- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this boundary condition applies
- valueValue of the BC
C++ Type:double
Controllable:Yes
Description:Value of the BC
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
DirichletBC
Imposes the essential boundary condition , where is a constant, controllable value.
Description
DirichletBC
is the simplest type of NodalBC
, and is used for imposing so-called "essential" boundary conditions on systems of partial differential equations (PDEs). Such boundary conditions force a particular set of degrees of freedom (DOFs) defined by the boundary
parameter to take on a single, controllable value. This class is appropriate to use for PDEs of the form
where is the domain, and is its boundary. In this case, a DirichletBC
object is used to impose the condition (2) on the subset of the boundary denoted by . In this case, the value
corresponds to the constant , and the user must define one or more sidesets corresponding to the boundary subset .
Preset boundary conditions
With the parameter preset = true
, the value of the boundary condition is applied before the solve begins. With preset = false
, the boundary condition is only enforced as the solve progresses. In most situations, presetting the boundary condition is better.
Example Input Syntax
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 3
[../]
(test/tests/bcs/matched_value_bc/matched_value_bc_test.i)Input Parameters
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements
- presetTrueWhether or not to preset the BC (apply the value before the solve begins).
Default:True
C++ Type:bool
Controllable:No
Description:Whether or not to preset the BC (apply the value before the solve begins).
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystem timeThe tag for the matrices this Kernel should fill
Default:system time
C++ Type:MultiMooseEnum
Options:nontime, system, time
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsresidualThe tag for the vectors this Kernel should fill
Default:residual
C++ Type:MultiMooseEnum
Options:nontime, time, residual
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
Input Files
- (test/tests/bcs/misc_bcs/convective_flux_bc.i)
- (test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level2.i)
- (test/tests/mesh/splitting/grid_from_generated.i)
- (test/tests/restart/start_time_override/start_time_override.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven.i)
- (test/tests/kernels/scalar_constraint/scalar_constraint_bc.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_different_submesh/main.i)
- (modules/combined/examples/phase_field-mechanics/hex_grain_growth_2D_eldrforce.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_mortar.i)
- (test/tests/executioners/nl_forced_its/2d_diffusion_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/2D/neumann.i)
- (test/tests/outputs/misc/default_names.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_sub3_multiple.i)
- (test/tests/bcs/periodic/trapezoid_non_periodic.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_smooth.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz.i)
- (modules/contact/test/tests/hertz_spherical/hertz_contact.i)
- (modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_traction_separation_base.i)
- (test/tests/nodalkernels/jac_test/bc_jacobian_test.i)
- (modules/tensor_mechanics/test/tests/creep_tangent_operator/creep.i)
- (test/tests/outputs/checkpoint/checkpoint_interval.i)
- (modules/porous_flow/test/tests/heat_conduction/no_fluid.i)
- (test/tests/kernels/block_kernel/block_kernel_test.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_11.i)
- (test/tests/multiapps/full_solve_multiapp/sub.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_points.i)
- (test/tests/misc/check_error/bad_bc_test.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction.i)
- (test/tests/auxkernels/parsed_aux/parsed_aux_test.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform4.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_increment.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test4q.i)
- (test/tests/transfers/multiapp_projection_transfer/fromsub_master.i)
- (test/tests/multiapps/sub_cycling_failure/sub.i)
- (test/tests/postprocessors/element_l2_norm/element_l2_norm.i)
- (test/tests/controls/time_periods/aux_kernels/enable_disable.i)
- (modules/tensor_mechanics/test/tests/beam/eigenstrain/eigenstrain_from_var.i)
- (test/tests/outputs/residual/output_residual_test.i)
- (test/tests/materials/discrete/reset_warning.i)
- (modules/tensor_mechanics/test/tests/initial_stress/gravity_cosserat.i)
- (modules/xfem/test/tests/mechanical_constraint/glued_penalty.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_master_inline.i)
- (modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_2.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/cp_slip_rate_integ/crysp_substep.i)
- (modules/tensor_mechanics/test/tests/action/ad_converter_action_multi_eigenstrain.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rspherical_incremental_small_elastic-noad.i)
- (test/tests/vectorpostprocessors/point_value_sampler_history/point_value_sampler_history.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d_KT.i)
- (test/tests/userobjects/Terminator/terminator_pass.i)
- (test/tests/ics/check_error/two_ics_on_same_boundary.i)
- (modules/contact/test/tests/mechanical_constraint/glued_kinematic.i)
- (test/tests/meshgenerators/gmsh_bcs/gmsh_bcs.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_test_transient.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_chorin.i)
- (test/tests/transfers/multiapp_conservative_transfer/master_nearest_point.i)
- (modules/thermal_hydraulics/test/tests/misc/count_iterations/count_iterations.i)
- (modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_first/small.i)
- (modules/porous_flow/test/tests/mass_conservation/mass13.i)
- (test/tests/materials/has_material/has_boundary_prop.i)
- (test/tests/multiapps/initial_intactive/master.i)
- (test/tests/vectorpostprocessors/time_data/time_data.i)
- (test/tests/parser/cli_multiapp_all/dt_from_master_sub.i)
- (modules/peridynamics/test/tests/simple_tests/2D_regularD_variableH_OSPD.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_fullysat_action.i)
- (test/tests/misc/check_error/interface_kernel_with_aux_var.i)
- (modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i)
- (test/tests/multiapps/picard_catch_up/sub.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/2drz_json.i)
- (test/tests/parser/multiple_inputs/diffusion1a.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictionless_kinematic.i)
- (modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fe-thermal.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/1d-strain.i)
- (modules/contact/test/tests/mortar_tm/2d/frictionless_second/finite_rr.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/two_way_many_apps_sub.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/sub.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4qnns.i)
- (test/tests/time_steppers/constant_dt/constant_dt.i)
- (test/tests/tag/eigen_tag.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4tt.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat4.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_substep.i)
- (modules/porous_flow/test/tests/thermal_conductivity/ThermalCondPorosity01.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_user_object.i)
- (test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value_ts_begin.i)
- (test/tests/time_integrators/newmark-beta/newmark_beta_inactive_steps.i)
- (test/tests/transfers/multiapp_copy_transfer/constant_monomial_from_sub/sub.i)
- (modules/heat_conduction/test/tests/verify_against_analytical/2d_steady_state.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/convergence/plastic_j2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/2d-mixed.i)
- (modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/master_quad.i)
- (test/tests/outputs/displacement/displacement_transient_test.i)
- (test/tests/outputs/format/output_test_nemesis.i)
- (test/tests/materials/has_material/has_block_prop.i)
- (modules/navier_stokes/test/tests/auxkernels/reynolds-number-functor-aux/fe.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_action.i)
- (modules/combined/test/tests/cavity_pressure/rz.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_transient.i)
- (test/tests/executioners/eigen_executioners/ane.i)
- (test/tests/multiapps/restart/sub.i)
- (test/tests/transfers/multiapp_conservative_transfer/master_userobject.i)
- (modules/tensor_mechanics/test/tests/strain_energy_density/rate_model_small.i)
- (test/tests/controls/time_periods/dampers/enable_disable.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp_fully_saturated.i)
- (test/tests/markers/combo_marker/combo_marker_test.i)
- (python/peacock/tests/input_tab/InputTreeWriter/gold/simple_diffusion_inactive.i)
- (test/tests/executioners/steady_time/steady_time.i)
- (modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/nonmatching.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized.i)
- (test/tests/dampers/bounding_value_nodal_damper/bounding_value_max_test.i)
- (test/tests/kernels/ad_value/generic_value.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/bc_gap_heat_transfer_displaced_conduction.i)
- (test/tests/geomsearch/2d_penetration_locator/2d_penetration_locator_test.i)
- (test/tests/transfers/multiapp_userobject_transfer/two_pipe_master.i)
- (modules/tensor_mechanics/test/tests/volumetric_deform_grad/elastic_stress.i)
- (examples/ex09_stateful_materials/ex09.i)
- (modules/xfem/test/tests/diffusion_xfem/diffusion_flux_bc.i)
- (modules/chemical_reactions/test/tests/parser/equilibrium_without_action.i)
- (modules/tensor_mechanics/test/tests/shell/static/pinched_cylinder_symm.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/sd-strain.i)
- (modules/peridynamics/test/tests/auxkernels/boundary_offset_node_area_2D.i)
- (modules/contact/test/tests/sliding_block/sliding/frictional_02_penalty.i)
- (modules/xfem/test/tests/solid_mechanics_basic/penny_crack.i)
- (test/tests/postprocessors/area_pp/area_pp.i)
- (modules/tensor_mechanics/test/tests/multi/mc_wpt_1.i)
- (modules/porous_flow/test/tests/numerical_diffusion/no_action.i)
- (test/tests/dirackernels/constant_point_source/2d_point_source.i)
- (test/tests/meshgenerators/sidesets_bounding_box_generator/overlapping_sidesets.i)
- (modules/contact/test/tests/verification/patch_tests/brick_1/brick1_template1.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro04.i)
- (modules/tensor_mechanics/test/tests/material_limit_time_step/elas_plas/nafems_nl1_lim.i)
- (test/tests/controls/error/non_existing_dependency.i)
- (test/tests/transfers/multiapp_conservative_transfer/sub_conservative_transfer.i)
- (test/tests/test_harness/csvdiff.i)
- (test/tests/restart/pointer_restart_errors/pointer_store_error.i)
- (test/tests/multiapps/picard/picard_abs_tol_master.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_save_euler.i)
- (modules/contact/test/tests/multiple_contact_pairs/multiple_pairs.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_mouth_dir.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_action.i)
- (test/tests/multiapps/steffensen/transient_main.i)
- (test/tests/postprocessors/element_time_derivative/el_time_deriv_1d_test.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform3.i)
- (modules/contact/examples/2d_indenter/indenter_rz_fine.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/parallel_master.i)
- (test/tests/multiapps/sub_cycling/sub_negative.i)
- (test/tests/kernels/forcing_function/forcing_function_error_check.i)
- (test/tests/multiapps/petsc_options/sub.i)
- (modules/tensor_mechanics/test/tests/strain_energy_density/rate_incr_model_elas_plas.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain.i)
- (test/tests/materials/material/qp_material.i)
- (modules/heat_conduction/tutorials/introduction/therm_step02a.i)
- (test/tests/mesh_modifiers/add_extra_nodeset/extra_nodeset_coord_test.i)
- (test/tests/thewarehouse/test1.i)
- (modules/functional_expansion_tools/examples/2D_interface_no_material/sub.i)
- (modules/heat_conduction/test/tests/convective_flux_function/convective_flux_function.i)
- (modules/misc/test/tests/kernels/thermo_diffusion/ad_thermo_diffusion.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_grav01a.i)
- (test/tests/postprocessors/nodal_extreme_value/block_nodal_pps_test.i)
- (test/tests/userobjects/element_quality_check/bypass_warning.i)
- (test/tests/misc/ad_robustness/ad_two_var_transient_diffusion.i)
- (test/tests/partitioners/petsc_partitioner/petsc_partitioner.i)
- (test/tests/multiapps/output_in_position/multilevel_master.i)
- (modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/sub.i)
- (test/tests/dirackernels/constant_point_source/3d_point_source.i)
- (modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/perfectQ8.i)
- (test/tests/controls/output/controllable.i)
- (test/tests/materials/derivative_material_interface/ad_material_chaining.i)
- (test/tests/reporters/iteration_info/iteration_info_steady.i)
- (test/tests/misc/save_in/save_in_soln_var_err_test.i)
- (modules/combined/test/tests/internal_volume/rspherical.i)
- (test/tests/auxkernels/solution_aux/solution_aux_multi_var.i)
- (test/tests/outputs/format/output_test_tecplot_binary.i)
- (test/tests/mesh/named_entities/named_entities_test_xda.i)
- (test/tests/mortar/continuity-2d-conforming/equalgradient.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne.i)
- (modules/stochastic_tools/test/tests/surrogates/polynomial_regression/sub_vector.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_incompatible_orders.i)
- (test/tests/dampers/constant_damper/constant_damper_test.i)
- (test/tests/adaptivity/initial_adapt/initial_adapt.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/except1.i)
- (modules/heat_conduction/test/tests/code_verification/cylindrical_test_no5.i)
- (test/tests/transfers/multiapp_projection_transfer/tosub_sub.i)
- (modules/richards/test/tests/dirac/bh_fu_07.i)
- (modules/tensor_mechanics/test/tests/postprocessors/sideset_reaction/sideset_reaction.i)
- (test/tests/postprocessors/scale_pps/scale_pps.i)
- (test/tests/partitioners/file_mesh_skip_partition/file_mesh_skip_partitioning.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/sub1.i)
- (test/tests/transfers/multiapp_reporter_transfer/between_multiapp/main.i)
- (test/tests/kernels/ad_coupled_value/ad_aux_coupled_time_value.i)
- (modules/porous_flow/test/tests/energy_conservation/heat04_action.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4nns.i)
- (modules/tensor_mechanics/test/tests/central_difference/lumped/1D/1d_lumped_explicit.i)
- (test/tests/multiapps/time_offset/master.i)
- (tutorials/darcy_thermo_mech/step01_diffusion/problems/step1.i)
- (modules/porous_flow/examples/tutorial/06_KT.i)
- (test/tests/misc/check_error/coupling_scalar_into_field.i)
- (modules/peridynamics/test/tests/generalized_plane_strain/generalized_plane_strain_H1NOSPD.i)
- (test/tests/misc/check_error/constraint_with_aux_var.i)
- (test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro05.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_2d.i)
- (test/tests/mesh_modifiers/lower_d_block/lower_d.i)
- (modules/level_set/test/tests/transfers/markers/single_level/master.i)
- (modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d_rot.i)
- (test/tests/time_integrators/bdf2/bdf2.i)
- (modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide_fake_plastic.i)
- (test/tests/meshgenerators/distributed_rectilinear/partition/squarish_partition.i)
- (test/tests/userobjects/layered_side_integral/layered_side_diffusive_flux_average.i)
- (modules/porous_flow/test/tests/fluidstate/theis.i)
- (modules/porous_flow/test/tests/capillary_pressure/brooks_corey2.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test1.i)
- (examples/ex07_ics/steady.i)
- (test/tests/variables/optionally_coupled/optionally_coupled_system.i)
- (modules/peridynamics/test/tests/failure_tests/2D_bond_status_convergence_BPD.i)
- (modules/phase_field/test/tests/MultiPhase/orderparameterfunctionmaterial.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_elem_map.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy.i)
- (test/tests/multiapps/picard_failure/picard_master.i)
- (modules/porous_flow/test/tests/actions/fullsat_borehole.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3nns.i)
- (modules/combined/test/tests/ad_cavity_pressure/rz.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_conduction_UOs_function.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/substep.i)
- (test/tests/userobjects/layered_integral/cumulative_layered_integral.i)
- (modules/tensor_mechanics/test/tests/test_jacobian/jacobian_test_planestrain.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/sub0.i)
- (test/tests/misc/displaced_mesh_coupling/ad.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_vi_solver.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/linesearch.i)
- (test/tests/outputs/perf_graph/multi_app/sub_sub_cycle.i)
- (modules/combined/examples/geochem-porous_flow/forge/porous_flow.i)
- (test/tests/mesh_modifiers/assign_subdomain_id/assign_subdomain_id.i)
- (modules/heat_conduction/test/tests/recover/recover.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/tosub_displaced_sub.i)
- (test/tests/misc/check_error/function_file_test1.i)
- (test/tests/postprocessors/print_perf_data/use_log_data_no_print.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/noaction_3d.i)
- (modules/tensor_mechanics/test/tests/recompute_radial_return/uniaxial_viscoplasticity_incrementalstrain.i)
- (modules/functional_expansion_tools/test/tests/standard_use/multiapp_print_coefficients.i)
- (test/tests/misc/check_error/missing_active_section.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/2D/neumann.i)
- (test/tests/meshgenerators/sidesets_bounding_box_generator/error_no_nodes_found.i)
- (test/tests/restart/kernel_restartable/kernel_restartable.i)
- (test/tests/tag/tag_ad_kernels.i)
- (modules/xfem/test/tests/crack_tip_enrichment/edge_crack_2d.i)
- (modules/tensor_mechanics/test/tests/radial_disp_aux/sphere_1d_spherical.i)
- (tutorials/darcy_thermo_mech/step09_mechanics/problems/step9.i)
- (modules/porous_flow/test/tests/mass_conservation/mass04.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_master_bad.i)
- (test/tests/time_steppers/constant_dt_regrowth/constant_dt_regrowth.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/save_euler.i)
- (modules/combined/examples/phase_field-mechanics/Pattern1.i)
- (modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/gap_conductivity_property.i)
- (test/tests/predictors/simple/predictor_test_skip_after_failed_tstep.i)
- (modules/tensor_mechanics/test/tests/power_law_creep/nonad_bounds.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub2.i)
- (test/tests/auxkernels/linear_combination/test.i)
- (test/tests/tag/2d_diffusion_tag_vector.i)
- (modules/contact/test/tests/mortar_tm/2d/ad_frictionless_fir/small.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl2D_xz.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_no_negative_aprismatic.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar.i)
- (test/tests/restrictable/block_api_test/block_restrictable.i)
- (modules/peridynamics/test/tests/simple_tests/2D_regularD_variableH_BPD.i)
- (test/tests/userobjects/side_user_object_no_boundary_error/side_no_boundary.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass2.i)
- (modules/contact/test/tests/hertz_spherical/hertz_contact_rz.i)
- (modules/tensor_mechanics/examples/bridge/bridge_large_strain.i)
- (test/tests/outputs/perf_graph/multi_app/sub.i)
- (test/tests/auxkernels/solution_aux/solution_aux_multi_err.i)
- (test/tests/ics/hermite_ic/hermite_ic.i)
- (test/tests/multiapps/picard/fully_coupled.i)
- (test/tests/materials/ad_material/ad_global_index_mapping.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
- (test/tests/auxkernels/solution_aux/thread_xda.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel.i)
- (test/tests/misc/check_error/check_syntax_error.i)
- (modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_with_gravity.i)
- (test/tests/outputs/exodus/hide_variables.i)
- (test/tests/userobjects/mat_prop_user_object/mat_prop_user_object.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus.i)
- (modules/tensor_mechanics/test/tests/visco/visco_small_strain.i)
- (test/tests/userobjects/layered_average/layered_average_interpolate.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_adaptivity.i)
- (modules/misc/test/tests/fracture_flow/single.i)
- (test/tests/userobjects/nearest_point_layered_average/points_from_uo.i)
- (test/tests/time_steppers/logconstant_dt/logconstant_dt.i)
- (test/tests/userobjects/layered_side_integral/layered_side_integral.i)
- (modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_ti.i)
- (modules/xfem/test/tests/solid_mechanics_basic/square_branch_quad_2d.i)
- (test/tests/geomsearch/patch_update_strategy/never.i)
- (modules/heat_conduction/tutorials/introduction/therm_step02.i)
- (test/tests/vectorpostprocessors/vector_of_postprocessors/vector_of_postprocessors.i)
- (test/tests/multiapps/check_error/check_error.i)
- (test/tests/materials/material/mat_cyclic_coupling.i)
- (test/tests/materials/material/coupled_material_test.i)
- (modules/porous_flow/examples/thm_example/2D_c.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/small.i)
- (modules/combined/test/tests/linear_elasticity/thermal_expansion.i)
- (test/tests/materials/ad_piecewise_linear_interpolation_material/piecewise_linear_interpolation_material.i)
- (test/tests/multiapps/relaxation/picard_relaxed_sub.i)
- (modules/porous_flow/test/tests/numerical_diffusion/fltvd.i)
- (modules/tensor_mechanics/test/tests/umat/shear_order/shear_order_umat.i)
- (test/tests/outputs/postprocessor/output_pps_hidden_shown_check.i)
- (test/tests/functions/parsed/scalar.i)
- (modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/advection_bc.i)
- (test/tests/geomsearch/quadrature_penetration_locator/quadrature_penetration_locator.i)
- (modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/2d_advection_bc.i)
- (test/tests/vectorpostprocessors/point_value_sampler/point_value_sampler.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/coplanar_twin_hardening.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/ld-stress.i)
- (modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_neckingRZ.i)
- (modules/contact/test/tests/nodal_area/nodal_area_Hex20.i)
- (test/tests/multiapps/picard/picard_adaptive_sub.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_from_end_part2.i)
- (modules/tensor_mechanics/test/tests/visco/gen_maxwell_relax.i)
- (test/tests/misc/check_error/invalid_steady_exec_test.i)
- (modules/richards/test/tests/newton_cooling/nc_lumped_01.i)
- (modules/porous_flow/test/tests/dirackernels/theis2.i)
- (modules/combined/test/tests/CHSplitFlux/simple_transient_diffusion_flux.i)
- (test/tests/postprocessors/geometry/2d_geometry.i)
- (test/tests/multiapps/multilevel/time_dt_from_master_master.i)
- (modules/porous_flow/examples/tutorial/11.i)
- (modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i)
- (test/tests/misc/check_error/bad_stateful_material.i)
- (modules/porous_flow/test/tests/poro_elasticity/terzaghi.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/fromsub_target_displaced.i)
- (test/tests/interfacekernels/1d_interface/sorted-interface-materials.i)
- (test/tests/userobjects/element_quality_check/failure_error.i)
- (modules/phase_field/test/tests/initial_conditions/ClosePackIC_3D.i)
- (test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rsc02.i)
- (test/tests/outputs/system_info/system_info_mesh.i)
- (tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/problems/step6c_decoupled.i)
- (modules/porous_flow/test/tests/adaptivity/tet4_adaptivity.i)
- (test/tests/usability/input.i)
- (modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_1constraint.i)
- (test/tests/mesh/splitting/grid_from_file.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test1.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/1d-stress.i)
- (modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_stress_prescribed.i)
- (modules/contact/test/tests/sliding_block/sliding/frictional_02_aug.i)
- (modules/contact/test/tests/verification/patch_tests/ring_2/ring2_template2.i)
- (test/tests/kernels/ad_transient_diffusion/ad_transient_diffusion.i)
- (test/tests/postprocessors/default_value/default_value.i)
- (modules/heat_conduction/test/tests/code_verification/spherical_test_no3.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_iso_with_pressure.i)
- (modules/thermal_hydraulics/test/tests/auxkernels/sum/sum.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/master.i)
- (test/tests/kernels/ad_2d_diffusion/2d_diffusion_bodyforce_test.i)
- (modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_with_density.i)
- (modules/contact/test/tests/bouncing-block-contact/ping-ponging/mortar-no-ping-pong_weighted.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test1q.i)
- (test/tests/multiapps/multilevel/time_dt_from_master_subsub.i)
- (modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i)
- (modules/contact/test/tests/3d-mortar-contact/frictionless-mortar-3d.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/patch_recovery.i)
- (test/tests/meshgenerators/mesh_extruder_generator/extrude_remap_layer2.i)
- (modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_second/small.i)
- (test/tests/outputs/error/all_reserved.i)
- (test/tests/executioners/nl_forced_its/many_nl_forced_its_ref_res.i)
- (modules/porous_flow/test/tests/relperm/corey1.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/1D/dirichlet.i)
- (modules/combined/test/tests/generalized_plane_strain_tm_contact/out_of_plane_pressure.i)
- (modules/combined/test/tests/cavity_pressure/negative_volume.i)
- (test/tests/misc/check_error/missing_coupled_mat_prop_test.i)
- (modules/porous_flow/examples/tidal/atm_tides.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/fromsub.i)
- (modules/contact/test/tests/verification/patch_tests/ring_3/ring3_mu_0_2_pen.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test3.i)
- (modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i)
- (test/tests/multiapps/restart/sub2.i)
- (modules/xfem/test/tests/side_integral/side_integral_3d.i)
- (modules/heat_conduction/test/tests/code_verification/cartesian_test_no5.i)
- (modules/combined/examples/mortar/eigenstrain_action.i)
- (test/tests/misc/check_error/scalar_aux_kernel_with_var.i)
- (test/tests/postprocessors/num_elems/num_elems.i)
- (test/tests/bcs/sideset_from_nodeset/sideset_from_nodeset_test2.i)
- (modules/porous_flow/test/tests/dirackernels/theis3.i)
- (modules/combined/test/tests/gap_heat_transfer_jac/two_blocks.i)
- (test/tests/controls/control_connection/alias_connection.i)
- (test/tests/mesh/node_list_from_side_list/node_list_from_side_list.i)
- (test/tests/misc/check_error/ic_bnd_for_non_nodal.i)
- (modules/combined/test/tests/ad_cavity_pressure/initial_temperature.i)
- (test/tests/materials/derivative_material_interface/material_chaining.i)
- (modules/heat_conduction/test/tests/heat_conduction/3d_quadrature_gap_heat_transfer/nonmatching.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/use_substep_dt.i)
- (test/tests/misc/stop_for_debugger/stop_for_debugger.i)
- (test/tests/geomsearch/3d_penetration_locator/3d_penetration_locator_test.i)
- (test/tests/markers/q_point_marker/q_point_marker.i)
- (modules/porous_flow/test/tests/heat_conduction/two_phase.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub_wrong_control.i)
- (test/tests/auxkernels/diffusion_flux/diffusion_flux.i)
- (test/tests/meshgenerators/mesh_extruder_generator/extrude_remap_layer1.i)
- (modules/contact/test/tests/simple_contact/simple_contact_test2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/L/large.i)
- (modules/contact/test/tests/verification/patch_tests/plane_4/plane4_mu_0_2_pen.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion_function/small_const.i)
- (modules/porous_flow/test/tests/newton_cooling/nc06.i)
- (modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_func.i)
- (test/tests/kernels/kernel_precompute/kernel_precompute_test.i)
- (test/tests/misc/save_in/diag_save_in_soln_var_err_test.i)
- (modules/combined/test/tests/DiffuseCreep/stress.i)
- (modules/tensor_mechanics/test/tests/radial_disp_aux/cylinder_2d_cartesian.i)
- (test/tests/outputs/debug/show_top_residuals.i)
- (modules/ray_tracing/test/tests/coord_type/rz_line_integral.i)
- (modules/heat_conduction/test/tests/heat_conduction/3d_quadrature_gap_heat_transfer/second.i)
- (modules/tensor_mechanics/tutorials/introduction/mech_step04.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/3D/neumann.i)
- (modules/tensor_mechanics/tutorials/introduction/mech_step02.i)
- (test/tests/executioners/eigen_executioners/ne_mat.i)
- (test/tests/functions/function_setup/function_setup_test.i)
- (test/tests/executioners/arbitrary_execute_flag/arbitrary_execute.i)
- (test/tests/misc/serialized_solution/adapt.i)
- (test/tests/outputs/output_interface/marker.i)
- (modules/combined/test/tests/power_law_creep/power_law_creep_restart1.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/multiple_boundary_ids.i)
- (test/tests/mesh/adapt/adapt_test_cycles.i)
- (modules/level_set/test/tests/transfers/markers/multi_level/sub.i)
- (modules/porous_flow/test/tests/poro_elasticity/terzaghi_constM.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/sub0.i)
- (modules/peridynamics/test/tests/restart/2D_mesh_restartable_H1NOSPD_second.i)
- (modules/xfem/test/tests/solid_mechanics_basic/elliptical_crack.i)
- (modules/peridynamics/test/tests/generalized_plane_strain/generalized_plane_strain_squares_OSPD.i)
- (tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7b_fine.i)
- (test/tests/outputs/output_if_base_contains/dt_from_master_sub.i)
- (test/tests/ics/data_struct_ic/data_struct_ic_test.i)
- (test/tests/postprocessors/point_value/point_value_error.i)
- (test/tests/auxkernels/quotient_aux/quotient_aux.i)
- (test/tests/mesh_modifiers/modifier_depend_order/modifier_depend_order.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_3/cyl3_mu_0_2_pen.i)
- (test/tests/multiapps/move_and_reset/multilevel_sub.i)
- (modules/phase_field/test/tests/initial_conditions/ClosePackIC.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/2d-strain.i)
- (modules/tensor_mechanics/test/tests/recompute_radial_return/isotropic_plasticity_errors.i)
- (modules/peridynamics/test/tests/simple_tests/2D_irregularD_variableH_BPD.i)
- (modules/tensor_mechanics/test/tests/2D_geometries/finite_planestrain.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/master.i)
- (modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results/sub.i)
- (modules/xfem/test/tests/single_var_constraint_2d/equal_value.i)
- (test/tests/vectorpostprocessors/least_squares_fit_history/least_squares_fit_history.i)
- (modules/contact/test/tests/mortar_dynamics/block-dynamics-friction.i)
- (test/tests/controls/time_periods/dampers/control.i)
- (modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/small_linear.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_trimesh.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/3tile.i)
- (test/tests/outputs/hide_vector_pp/hide_vector_pp.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized.i)
- (test/tests/mortar/displaced-gap-conductance-2d-bnd-coupling/gap-conductance-bnd-material.i)
- (test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lumped.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_ref_resid.i)
- (modules/heat_conduction/test/tests/recover/ad_recover.i)
- (test/tests/restart/restart_transient_from_steady/steady.i)
- (test/tests/restart/restartable_types/restartable_types.i)
- (modules/combined/test/tests/concentration_dependent_elasticity_tensor/concentration_dependent_elasticity_tensor.i)
- (tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7d_adapt_blocks.i)
- (test/tests/kernels/diffusion_with_hanging_node/ad_simple_diffusion.i)
- (test/tests/bcs/ad_coupled_lower_value/test.i)
- (modules/porous_flow/test/tests/dispersion/diff01.i)
- (modules/porous_flow/test/tests/newton_cooling/nc02.i)
- (modules/ray_tracing/test/tests/raykernels/variable_integral_ray_kernel/simple_diffusion_line_integral.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rsc01.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/3d-stress.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/patch_recovery.i)
- (modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i)
- (modules/tensor_mechanics/test/tests/visco/gen_maxwell_driving.i)
- (modules/porous_flow/test/tests/actions/fullsat_brine.i)
- (test/tests/transfers/multiapp_conservative_transfer/master_power_density.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/main.i)
- (test/tests/misc/deprecation/deprecation.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_deprecated.i)
- (modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_first/finite_rr.i)
- (test/tests/controls/syntax_based_naming_access/object_param.i)
- (test/tests/transfers/multiapp_userobject_transfer/tosub_master.i)
- (modules/contact/test/tests/glued/glued_contact_mechanical_constraint_test.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d-rz/finite.i)
- (test/tests/kernels/vector_fe/coupled_scalar_vector.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fully_saturated_action.i)
- (modules/xfem/test/tests/solid_mechanics_basic/penny_crack_cfp.i)
- (modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_1d.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fullsat.i)
- (modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_3d.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymmetric_gps_incremental.i)
- (modules/combined/test/tests/multiphase_mechanics/multiphasestress.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/3D/neumann.i)
- (test/tests/markers/error_tolerance_marker/error_tolerance_marker_test.i)
- (modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain_cut_mesh.i)
- (test/tests/outputs/dofmap/simple_transient.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test8.i)
- (modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d-dynamics-light.i)
- (modules/contact/test/tests/tension_release/8ElemTensionRelease.i)
- (modules/xfem/test/tests/diffusion_xfem/levelsetcut2d_aux.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_elemental_only.i)
- (test/tests/meshgenerators/stitched_mesh_generator/stitched_mesh_generator2.i)
- (test/tests/misc/check_error/override_name_variable_test.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push_h.i)
- (modules/porous_flow/test/tests/dispersion/diff01_action.i)
- (modules/richards/test/tests/gravity_head_1/gh02.i)
- (modules/contact/test/tests/pressure/pressureAugLag.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/radial_master.i)
- (modules/tensor_mechanics/tutorials/introduction/mech_step03.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/special/objective_shear.i)
- (test/tests/problems/eigen_problem/initial_condition/ne_ic_no_free.i)
- (modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_test.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_blocks.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/fracture_app_dirac.i)
- (modules/tensor_mechanics/test/tests/shell/static/plate_bending2.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/tosub_target_displaced.i)
- (test/tests/mesh_modifiers/add_side_sets/cylinder_normals.i)
- (test/tests/misc/check_error/invalid_aux_coupling_test.i)
- (test/tests/controls/tag_based_naming_access/object_param.i)
- (test/tests/materials/output/output.i)
- (modules/combined/test/tests/cavity_pressure/additional_volume.i)
- (test/tests/multiapps/relaxation/bad_relax_factor_master.i)
- (modules/heat_conduction/test/tests/postprocessors/convective_ht_side_integral.i)
- (modules/tensor_mechanics/test/tests/orthotropic_plasticity/orthotropic.i)
- (tutorials/tutorial01_app_development/step05_kernel_object/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (test/tests/mesh/mesh_generation/disc_sector.i)
- (tutorials/tutorial02_multiapps/step03_coupling/01_master.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/2d-strain.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_small_strain_y.i)
- (modules/navier_stokes/test/tests/finite_element/ins/jeffery_hamel/wedge_dirichlet.i)
- (test/tests/vectorpostprocessors/1d_line_sampler/1d_line_sampler.i)
- (test/tests/adaptivity/cycles_per_step/test.i)
- (modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/finite_strain_patch.i)
- (test/tests/geomsearch/quadrature_penetration_locator/1d_quadrature_penetration.i)
- (modules/porous_flow/test/tests/actions/basicthm_hm.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic_anisotropy/3d_bar_orthotropic.i)
- (test/tests/vectorpostprocessors/constant_vector_postprocessor/constant_vector_postprocessor.i)
- (modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
- (test/tests/outputs/intervals/no_intermediate.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/correctness/stvenantkirchhoff.i)
- (test/tests/problems/eigen_problem/preconditioners/ne_pbp.i)
- (modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d.i)
- (modules/xfem/test/tests/single_var_constraint_2d/propagating_1field.i)
- (test/tests/utils/mffd/mffd_test.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty.i)
- (test/tests/misc/max_var_n_dofs_per_elem/max_var_n_dofs_per_elem.i)
- (test/tests/multiapps/picard_multilevel/fullsolve_multilevel/master.i)
- (test/tests/mesh/adapt/patch_recovery_test.i)
- (test/tests/transfers/multiapp_userobject_transfer/3d_1d_sub.i)
- (modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_01.i)
- (test/tests/multiapps/picard/picard_adaptive_master.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_plane_strain_finite.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/03_master_subcycle.i)
- (test/tests/mesh/mesh_generation/annulus_sector.i)
- (test/tests/outputs/oversample/ex02_oversample.i)
- (test/tests/misc/check_error/function_file_test14.i)
- (modules/contact/test/tests/verification/patch_tests/brick_4/brick4_template2.i)
- (modules/combined/tutorials/introduction/thermal_mechanical_contact/thermomech_cont_step02.i)
- (modules/combined/test/tests/linear_elasticity/tensor.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_method_011orientation.i)
- (test/tests/outputs/postprocessor/postprocessor_console.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden4.i)
- (modules/contact/test/tests/verification/patch_tests/single_pnt_2d/single_point_2d_contact_line_search.i)
- (modules/contact/test/tests/nodal_area/nodal_area_Hex20_3.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/verification.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_rspherical.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test13.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/fileread.i)
- (test/tests/test_harness/exodiff.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_aniso_cleavage_plane.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs_sub.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1N.i)
- (test/tests/outputs/xda_xdr/xda_xdr.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-nodal-disp.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/patch/small_patch.i)
- (test/tests/outputs/recover/recover2.i)
- (modules/tensor_mechanics/test/tests/homogenization/anisoLongFiber.i)
- (test/tests/outputs/gmv/gmv.i)
- (test/tests/multiapps/sub_cycling_failure/master.i)
- (tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5a_steady.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-min-lm-mortar-disp.i)
- (test/tests/ics/component_ic/component_ic.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/multiple_eigenstrains_test.i)
- (test/tests/outputs/checkpoint/checkpoint.i)
- (modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_3d.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_steady_action.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i)
- (test/tests/controls/time_periods/aux_scalar_kernels/control.i)
- (test/tests/controls/time_periods/dirackernels/dirac.i)
- (modules/contact/test/tests/mortar_tm/2drz/frictionless_first/finite.i)
- (modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_12.i)
- (python/peacock/tests/common/transient.i)
- (test/tests/markers/error_tolerance_marker/error_tolerance_marker_adapt_test.i)
- (test/tests/outputs/format/output_test_gnuplot.i)
- (modules/contact/test/tests/mortar_tm/2d/frictionless_second/small.i)
- (test/tests/dirackernels/aux_scalar_variable/aux_scalar_variable.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/neohookean_small.i)
- (modules/contact/examples/2d_indenter/indenter_rz_nodeface_friction.i)
- (modules/tensor_mechanics/test/tests/check_error/poissons_ratio.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/1d-stress.i)
- (modules/tensor_mechanics/test/tests/truss/truss_3d.i)
- (test/tests/parser/parse_double_index/parse_double_index.i)
- (python/peacock/tests/input_tab/InputTree/gold/transient.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/07_master_multilevel.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_master.i)
- (modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i)
- (test/tests/markers/expected_error/displaced_error.i)
- (modules/stochastic_tools/test/tests/multiapps/batch_sampler_transient_multiapp/sub.i)
- (modules/peridynamics/test/tests/plane_stress/conventional_planestress_OSPD.i)
- (test/tests/mesh/mesh_generation/disc_sector_deprecated.i)
- (test/tests/kernels/vector_fe/coupled_scalar_default_vector_value.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl2D.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro01.i)
- (modules/contact/test/tests/mechanical_constraint/frictionless_kinematic.i)
- (test/tests/multiapps/grid-sequencing/coarse.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_plane_strain_incremental.i)
- (modules/tensor_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/sub.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/rates/truesdell_jacobian.i)
- (modules/combined/test/tests/ACGrGrElasticDrivingForce/bicrystal.i)
- (modules/tensor_mechanics/test/tests/static_deformations/cosserat_tension.i)
- (modules/thermal_hydraulics/test/tests/vectorpostprocessors/sampler_1d_vector/sampler_1d_vector.i)
- (modules/xfem/test/tests/checkpoint/checkpoint.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4nns.i)
- (test/tests/bcs/bc_preset_nodal/bc_preset_nodal.i)
- (modules/tensor_mechanics/test/tests/umat/predef/predef.i)
- (test/tests/outputs/variables/hide_output_via_variables_block.i)
- (modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/1D/dirichlet.i)
- (modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_small_strain.i)
- (test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/pbc_adaptivity.i)
- (test/tests/outputs/tecplot/tecplot_append.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest8.i)
- (test/tests/transfers/multiapp_copy_transfer/linear_lagrange_from_sub/sub.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-fb-lm-mortar-disp.i)
- (modules/xfem/test/tests/crack_tip_enrichment/penny_crack_3d.i)
- (test/tests/restart/kernel_restartable/kernel_restartable_second.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_z.i)
- (test/tests/postprocessors/side_average_value/side_average_value_test.i)
- (test/tests/mesh/mesh_generation/annulus_sector_deprecated.i)
- (test/tests/tag/2d_diffusion_vector_tag_test.i)
- (test/tests/postprocessors/element_average_value/element_average_value_test.i)
- (test/tests/postprocessors/nodal_sum/nodal_sum_block.i)
- (test/tests/materials/coupled_value_function/adjac.i)
- (test/tests/dirackernels/reporter_point_source/3d_vpp.i)
- (test/tests/bcs/coupled_dirichlet_bc/coupled_dirichlet_bc.i)
- (modules/thermal_hydraulics/test/tests/scalarkernels/ode_coef_time_derivative/test.i)
- (test/tests/transfers/multiapp_reporter_transfer/between_multiapp/sub0.i)
- (modules/porous_flow/test/tests/relperm/corey4.i)
- (test/tests/postprocessors/element_integral/element_block_integral_test.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/master2_wrong_positions.i)
- (test/tests/outputs/debug/show_material_props_debug.i)
- (modules/tensor_mechanics/tutorials/introduction/mech_step03a.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4nstt.i)
- (test/tests/problems/no_material_coverage_check/no_material_coverage_check.i)
- (test/tests/outputs/dofmap/simple_screen.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/non_coplanar_twin_hardening.i)
- (modules/combined/test/tests/thermo_mech/ad-thermo_mech.i)
- (test/tests/outputs/format/output_test_gmv.i)
- (test/tests/constraints/tied_value_constraint/tied_value_constraint_test.i)
- (test/tests/misc/check_error/check_dynamic_name_block_mismatch.i)
- (test/tests/functions/vector_postprocessor_function/vector_postprocessor_function.i)
- (test/tests/mesh/uniform_refine/3d_diffusion.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/rates/jaumann_shear.i)
- (modules/geochemistry/test/tests/kernels/advection_1.i)
- (modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i)
- (test/tests/multiapps/reset/master.i)
- (modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_small.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized.i)
- (python/peacock/tests/common/bad_mesh.i)
- (test/tests/postprocessors/nodal_sum/nodal_sum.i)
- (test/tests/geomsearch/1d_penetration_locator/1d_penetration_locator.i)
- (test/tests/dirackernels/reporter_point_source/2d_vpp.i)
- (modules/heat_conduction/test/tests/radiation_transfer_action/cavity_with_pillar_vf.i)
- (test/tests/controls/syntax_based_naming_access/system_object_param.i)
- (modules/peridynamics/test/tests/plane_stress/weak_planestress_H1NOSPD.i)
- (test/tests/outputs/console/console_print_toggles.i)
- (modules/porous_flow/test/tests/gravity/grav01a.i)
- (test/tests/outputs/exodus/variable_toggles.i)
- (modules/richards/test/tests/newton_cooling/nc02.i)
- (test/tests/actions/aux_scalar_variable/aux_scalar_variable.i)
- (test/tests/variables/second_derivative/interface_kernels.i)
- (modules/tensor_mechanics/test/tests/action/two_block_new.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking.i)
- (modules/contact/test/tests/catch_release/catch_release.i)
- (test/tests/kernels/array_kernels/array_diffusion_reaction_coupling.i)
- (test/tests/meshgenerators/mesh_extruder_generator/extrude_angle.i)
- (modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD_2.i)
- (modules/tensor_mechanics/test/tests/2D_geometries/planestrain.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_mortar_displaced.i)
- (modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3.i)
- (test/tests/materials/stateful_prop/stateful_prop_test.i)
- (test/tests/time_integrators/dirk/dirk-2d-heat-adap.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3nns.i)
- (test/tests/nodalkernels/constraint_enforcement/vi-bounding.i)
- (modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/rates/jaumann_jacobian.i)
- (modules/tensor_mechanics/test/tests/isotropicSD_plasticity/isotropicSD.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/user_object_Voce_BCC.i)
- (test/tests/ics/from_exodus_solution/nodal_part2.i)
- (modules/heat_conduction/test/tests/NAFEMS/transient/T3/nafems_t3_quad_template.i)
- (tutorials/darcy_thermo_mech/step02_darcy_pressure/tests/kernels/darcy_pressure/darcy_pressure.i)
- (test/tests/variables/high_order_monomial/high_order_monomial.i)
- (test/tests/materials/multiple_materials/multiple_materials_test.i)
- (test/tests/misc/check_error/function_file_test5.i)
- (test/tests/postprocessors/element_extreme_value/element_extreme_value.i)
- (test/tests/misc/check_error/steady_no_converge.i)
- (test/tests/outputs/vtk/vtk_diff.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rspherical_small_elastic.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/check_direction_twin_propagation.i)
- (test/tests/fvkernels/fv_adapt/transient-adapt.i)
- (test/tests/outputs/exodus/exodus_nodal.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/3d.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/thermal_expansion/free.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/beam.i)
- (test/tests/parser/cli_multiapp_group/dt_from_master_sub.i)
- (modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number_error_with_transient/sub.i)
- (test/tests/adaptivity/steady/steady.i)
- (modules/richards/test/tests/gravity_head_1/gh07.i)
- (test/tests/functions/pps_function/pp_function.i)
- (modules/combined/test/tests/power_law_creep/power_law_creep.i)
- (modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test1qtt.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_split.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt_restart.i)
- (modules/tensor_mechanics/test/tests/ad_simple_linear/linear-hand-coded.i)
- (modules/tensor_mechanics/test/tests/action/reduced_eigenstrain_action.i)
- (modules/xfem/test/tests/moment_fitting/solid_mechanics_moment_fitting.i)
- (test/tests/multiapps/sub_cycling/master_sub_output.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_displaced_master.i)
- (modules/contact/test/tests/mortar_restart/frictional_bouncing_block_action_restart_2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/1D/neumann.i)
- (test/tests/userobjects/layered_average/layered_average.i)
- (test/tests/meshgenerators/distributed_rectilinear/generator/distributed_rectilinear_mesh_generator.i)
- (modules/thermal_hydraulics/test/tests/materials/ad_convective_heat_transfer_coefficient/test.i)
- (test/tests/outputs/csv/csv_align.i)
- (test/tests/userobjects/solution_user_object/discontinuous_value_solution_uo_p1.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/small-2d-rz/small.i)
- (test/tests/outputs/displacement/displaced_eq_transient_test.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_from_end_part1.i)
- (modules/richards/test/tests/darcy/pp.i)
- (test/tests/misc/serialized_solution/uniform_refine.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform4.i)
- (test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_outside.i)
- (modules/porous_flow/examples/tutorial/03.i)
- (test/tests/materials/discrete/recompute_boundary_error.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/throw_test.i)
- (test/tests/mesh/mixed_dim/1d_2d.i)
- (modules/combined/test/tests/thermo_mech/youngs_modulus_function_temp.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i)
- (modules/thermal_hydraulics/test/tests/materials/ad_prandtl_number/test.i)
- (modules/tensor_mechanics/test/tests/strain_energy_density/tot_model.i)
- (modules/combined/tutorials/introduction/thermal_mechanical/thermomech_step01.i)
- (test/tests/misc/check_error/missing_req_par_action_obj_test.i)
- (modules/richards/test/tests/dirac/bh27.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_deficient_b.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_missing_local_object.i)
- (test/tests/materials/get_material_property_names/get_material_property_any_boundary_id.i)
- (modules/contact/test/tests/verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template1.i)
- (modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i)
- (test/tests/restart/restart_diffusion/exodus_refined_restart_2_test.i)
- (modules/heat_conduction/test/tests/postprocessors/ad_convective_ht_side_integral.i)
- (test/tests/parser/map_param/test.i)
- (test/tests/outputs/transferred_scalar_variable/transferred_scalar_variable.i)
- (modules/level_set/test/tests/transfers/markers/multi_level/master.i)
- (examples/ex12_pbp/ex12.i)
- (test/tests/misc/check_error/function_file_test9.i)
- (test/tests/transfers/multiapp_projection_transfer/high_order_sub.i)
- (tutorials/tutorial02_multiapps/step02_transfers/04_master_multiscale.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_iso.i)
- (test/tests/outputs/format/pps_screen_out_warn.i)
- (modules/heat_conduction/test/tests/convective_heat_flux/flux.i)
- (examples/ex06_transient/ex06.i)
- (test/tests/problems/eigen_problem/arraykernels/ne_two_variables.i)
- (modules/contact/test/tests/sliding_block/sliding/frictionless_penalty.i)
- (test/tests/auxkernels/forcing_function_aux/forcing_function_aux.i)
- (test/tests/interfacekernels/1d_interface/no-failed-point-inversions.i)
- (modules/thermal_hydraulics/test/tests/controls/parsed_function_control/test.i)
- (modules/richards/test/tests/buckley_leverett/bl20.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/3D/dirichlet.i)
- (modules/heat_conduction/test/tests/heat_conduction/3d_quadrature_gap_heat_transfer/moving.i)
- (test/tests/ics/bounding_box_ic/bounding_box_ic_test.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d_ctefunc.i)
- (test/tests/misc/check_error/nodal_bc_on_elemental_var.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion_function/finite_const.i)
- (modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d-interp-geometry.i)
- (python/peacock/tests/input_tab/InputTree/gold/fsp_test.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined3.i)
- (modules/tensor_mechanics/test/tests/plane_stress/3D_finite_tension_pull.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy_force_xy.i)
- (modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d-action.i)
- (test/tests/multiapps/sub_cycling/master_short.i)
- (modules/combined/test/tests/umat/gap_heat_transfer_umat.i)
- (modules/combined/examples/stochastic/graphite_ring_thermomechanics.i)
- (modules/porous_flow/test/tests/energy_conservation/heat04.i)
- (test/tests/misc/check_error/multi_precond_test.i)
- (test/tests/kernels/ad_coupled_value/ad_coupled_value.i)
- (test/tests/postprocessors/parsed_postprocessor/parsed_pp.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro03.i)
- (test/tests/executors/single/test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/neohookean.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard_subT.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized.i)
- (tutorials/darcy_thermo_mech/step01_diffusion/tests/kernels/simple_diffusion/simple_diffusion.i)
- (test/tests/misc/exception/parallel_exception_residual_transient.i)
- (test/tests/fvkernels/fv_simple_diffusion/dirichlet_rz.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3ns.i)
- (test/tests/geomsearch/nearest_node_locator/adapt.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_no_elements_in_bounding_box.i)
- (modules/tensor_mechanics/test/tests/j2_plasticity/tensor_mechanics_j2plasticity.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/02_sub_sublimit.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady.i)
- (modules/xfem/test/tests/pressure_bc/edge_3d_pressure.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_euler_angle.i)
- (modules/combined/test/tests/reference_residual/reference_residual_perfgraph.i)
- (test/tests/transfers/multiapp_transfer_transformation/transfer_transformation_sub.i)
- (test/tests/materials/functor_properties/functor-mat-props.i)
- (test/tests/meshgenerators/sidesets_bounding_box_generator/multiple_boundary_ids_3d.i)
- (modules/heat_conduction/test/tests/code_verification/cylindrical_test_no1.i)
- (test/tests/outputs/intervals/multiple_sync_times.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_it_plot_test.i)
- (test/tests/auxkernels/old_older_material_aux/old_mat_in_aux.i)
- (test/tests/controls/time_periods/user_objects/user_object.i)
- (modules/fluid_properties/test/tests/auxkernels/fluid_density_aux.i)
- (tutorials/tutorial01_app_development/step01_moose_app/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (modules/fluid_properties/test/tests/auxkernels/stagnation_temperature_aux.i)
- (modules/phase_field/test/tests/ADCHSplitChemicalPotential/simple_transient_diffusion.i)
- (python/chigger/tests/input/simple_diffusion_new_var.i)
- (test/tests/userobjects/Terminator/terminator_soft.i)
- (test/tests/markers/error_fraction_marker/error_fraction_marker_no_clear_test.i)
- (modules/tensor_mechanics/test/tests/umat/temperature/elastic_temperature.i)
- (test/tests/functions/solution_function/solution_function_test.i)
- (modules/porous_flow/test/tests/fluidstate/coldwater_injection.i)
- (tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7a_coarse.i)
- (test/tests/materials/output/output_multiple_files.i)
- (test/tests/parser/cli_multiapp_all/dt_from_master.i)
- (modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i)
- (test/tests/markers/boundary_marker/adjacent.i)
- (test/tests/outputs/perf_graph/multi_app/master.i)
- (modules/richards/test/tests/buckley_leverett/bl01_lumped.i)
- (test/tests/kernels/kernel_precompute/adkernel_precompute_test.i)
- (test/tests/postprocessors/element_variable_value/elemental_variable_value.i)
- (modules/tensor_mechanics/test/tests/1D_spherical/smallStrain_1DSphere.i)
- (test/tests/misc/check_error/missing_material_prop_test2.i)
- (test/tests/outputs/console/console_off.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test4.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/sub.i)
- (test/tests/postprocessors/mms_slope/mms_slope_test.i)
- (modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_multiple_action_and_materials.i)
- (modules/contact/test/tests/verification/patch_tests/ring_3/ring3_template2.i)
- (test/tests/test_harness/bad_kernel.i)
- (modules/tensor_mechanics/test/tests/ad_action/two_coord.i)
- (test/tests/kernels/simple_transient_diffusion/functor_transient_diffusion.i)
- (test/tests/multiapps/grid-sequencing/vi-fine-alone.i)
- (modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_incremental.i)
- (test/tests/controls/tag_based_naming_access/system_asterisk_param.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/master.i)
- (test/tests/materials/material/adv_mat_couple_test2.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-weighted-gap.i)
- (modules/xfem/test/tests/single_var_constraint_2d/stationary_equal.i)
- (modules/tensor_mechanics/examples/coal_mining/fine.i)
- (test/tests/time_integrators/bdf2/bdf2_adapt.i)
- (test/tests/multiapps/picard_multilevel/2level_picard/mutilevel_app.i)
- (modules/xfem/test/tests/solid_mechanics_basic/crack_propagation_2d.i)
- (modules/contact/tutorials/introduction/step02.i)
- (test/tests/dirackernels/constant_point_source/1d_point_source.i)
- (test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average.i)
- (python/chigger/tests/input/sub.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/thermal_expansion/constrained.i)
- (test/tests/preconditioners/smp/smp_group_test.i)
- (test/tests/misc/exception/parallel_exception_jacobian.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_small_strain_y_action.i)
- (test/tests/multiapps/check_error/sub1.i)
- (modules/porous_flow/test/tests/jacobian/mass01_fully_saturated.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_steady.i)
- (test/tests/meshgenerators/file_mesh_generator/2d_diffusion_test.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest6.i)
- (test/tests/outputs/format/output_test_gnuplot_ps.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test1tt.i)
- (modules/tensor_mechanics/test/tests/check_error/num_constants.i)
- (modules/heat_conduction/test/tests/heat_source_bar/ad_heat_source_bar.i)
- (modules/porous_flow/test/tests/mass_conservation/mass11.i)
- (test/tests/misc/check_error/coupling_field_into_scalar.i)
- (modules/peridynamics/test/tests/simple_tests/2D_regularD_constH_BPD.i)
- (modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.q_wall_transfer_3eqn.master.i)
- (test/tests/meshgenerators/sidesets_bounding_box_generator/overlapping_sidesets_not_found.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized_with_temp.i)
- (test/tests/auxkernels/vector_postprocessor_visualization/vector_postprocessor_visualization.i)
- (test/tests/transfers/multiapp_userobject_transfer/tosub_displaced_sub.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/06_sub_twoapps.i)
- (test/tests/interfacekernels/1d_interface/mixed_shapes.i)
- (test/tests/bcs/coupled_var_neumann/on_off.i)
- (test/tests/multiapps/picard/picard_sub.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small.i)
- (modules/tensor_mechanics/test/tests/initial_stress/gravity.i)
- (test/tests/misc/intermittent_failure/intermittent_failure.i)
- (test/tests/transfers/multiapp_reporter_transfer/between_multiapp/sub1.i)
- (test/tests/materials/functor_properties/prop-caching.i)
- (modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xdr.i)
- (test/tests/postprocessors/num_residual_eval/num_residual_eval.i)
- (modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_change.i)
- (test/tests/materials/stateful_prop/stateful_prop_on_bnd_only.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_ti.i)
- (test/tests/vectorpostprocessors/variable_value_volume_histogram/volume_histogram.i)
- (test/tests/kernels/simple_transient_diffusion/ill_conditioned_simple_diffusion.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff_old.i)
- (test/tests/postprocessors/pps_interval/pps_out_interval.i)
- (test/tests/vectorpostprocessors/point_value_sampler/not_found.i)
- (modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i)
- (test/tests/auxkernels/nodal_aux_var/multi_update_elem_var_test.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/REG_finite_strain_laromance.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/correctness/plastic_j2.i)
- (test/tests/misc/check_error/subdomain_restricted_kernel_mismatch.i)
- (test/tests/misc/check_error/old_integrity_check.i)
- (modules/tensor_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_implicit.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_planar.i)
- (test/tests/variables/block_aux_kernel/block_aux_kernel_test.i)
- (test/tests/mesh_modifiers/boundingbox_nodeset/boundingbox_nodeset_outside_test.i)
- (test/tests/mesh/unique_ids/unique_ids.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/06_master_twoapps.i)
- (modules/combined/test/tests/ad_cavity_pressure/additional_volume.i)
- (test/tests/auxkernels/gap_value/gap_value.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/boundary_tosub_master.i)
- (test/tests/outputs/xda/xdr.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i)
- (modules/xfem/test/tests/single_var_constraint_3d/stationary_equal_3d.i)
- (test/tests/mesh_modifiers/mesh_extruder/extruder_tri.i)
- (modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-wear-vel.i)
- (modules/tensor_mechanics/test/tests/action/custom_output.i)
- (modules/functional_expansion_tools/test/tests/standard_use/interface_sub.i)
- (test/tests/auxkernels/solution_scalar_aux/build.i)
- (modules/xfem/test/tests/corner_nodes_cut/corner_node_cut.i)
- (modules/contact/test/tests/dual_mortar/dm_mechanical_contact_precon.i)
- (test/tests/materials/interface_material/interface_value_material_split_mesh_stateful.i)
- (examples/ex14_pps/ex14_compare_solutions_2.i)
- (test/tests/misc/check_error/nodal_kernel_with_aux_var.i)
- (modules/navier_stokes/test/tests/finite_element/ins/coupled-force/gravity-through-coupled-force.i)
- (test/tests/mesh/adapt/displaced_adapt_test.i)
- (test/tests/materials/var_coupling/var_coupling.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i)
- (test/tests/materials/material/exception_material.i)
- (modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_finite_tension_pull.i)
- (modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d-dynamics-light-function.i)
- (modules/external_petsc_solver/test/tests/partition/moose_as_master.i)
- (test/tests/bcs/ad_1d_neumann/1d_neumann.i)
- (modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_variable.i)
- (test/tests/outputs/perf_graph/multi_app/master_full.i)
- (test/tests/transfers/from_full_solve/sub.i)
- (modules/navier_stokes/test/tests/finite_element/ins/wall_convection/steady.i)
- (modules/tensor_mechanics/test/tests/initial_stress/mc_tensile.i)
- (test/tests/materials/stateful_prop/stateful_prop_test_older.i)
- (test/tests/outputs/exodus/exodus_enable_initial.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_3D.i)
- (test/tests/actions/debug_block/debug_print_actions_test.i)
- (tutorials/tutorial01_app_development/step09_mat_props/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (test/tests/misc/check_error/function_file_test16.i)
- (modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_2d.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_nobcbc.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3.i)
- (modules/porous_flow/test/tests/basic_advection/except2.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_gravity.i)
- (test/tests/multiapps/secant/steady_sub.i)
- (test/tests/transfers/from_full_solve/master.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp.i)
- (test/tests/misc/check_error/bad_executioner_test.i)
- (modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/perfectQ9.i)
- (modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d_mhs.i)
- (test/tests/misc/initial_solution_copy/solutions_equal.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_fileread.i)
- (test/tests/kernels/ad_coupled_value/ad_aux_coupled_value.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/tosub_displaced_master.i)
- (test/tests/outputs/oversample/adapt.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/overlapping_sidesets_not_found.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel_basicthm.i)
- (test/tests/preconditioners/pbp/pbp_test_options.i)
- (test/tests/postprocessors/pps_interval/pps_bad_interval3.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard1.i)
- (modules/peridynamics/test/tests/plane_stress/conventional_planestress_H1NOSPD.i)
- (modules/stochastic_tools/examples/surrogates/sub.i)
- (modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/youngs_modulus_poissons_ratio_test.i)
- (modules/tensor_mechanics/test/tests/volumetric_eigenstrain/volumetric_eigenstrain.i)
- (test/tests/functions/function_ic/function_ic_test.i)
- (test/tests/outputs/output_dimension/output_dimension.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_coupled.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest2.i)
- (test/tests/misc/check_error/check_dynamic_name_block.i)
- (modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/ld-strain.i)
- (test/tests/meshgenerators/lower_d_block_generator/ids.i)
- (modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD.i)
- (modules/tensor_mechanics/test/tests/shell/static/plate_bending.i)
- (modules/richards/test/tests/gravity_head_1/gh14.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat1.i)
- (modules/porous_flow/test/tests/dirackernels/injection_production.i)
- (test/tests/scalar_kernels/ad_coupled_scalar/ad_coupled_scalar.i)
- (test/tests/bcs/conditional_bc/conditional_bc_test.i)
- (test/tests/userobjects/solution_user_object/discontinuous_value_solution_uo_p2.i)
- (test/tests/multiapps/sub_cycling/master.i)
- (test/tests/outputs/recover/recover1.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/c_integral_2d.i)
- (test/tests/auxkernels/normalization_aux/normalization_aux.i)
- (test/tests/mesh_modifiers/add_side_sets/cylinder_points.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_nobcbc.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts.i)
- (modules/tensor_mechanics/test/tests/ad_pressure/pressure_test.i)
- (tutorials/tutorial02_multiapps/step03_coupling/02_sub_picard.i)
- (modules/contact/test/tests/normalized_penalty/normalized_penalty.i)
- (tutorials/darcy_thermo_mech/step03_darcy_material/problems/step3b.i)
- (examples/ex11_prec/smp.i)
- (modules/contact/test/tests/mortar_tm/2d/frictionless_first/finite.i)
- (modules/tensor_mechanics/test/tests/beam/action/2_block_common.i)
- (modules/tensor_mechanics/test/tests/material_limit_time_step/mult_inelastic/no_inelastic_model_timestep_limit.i)
- (test/tests/meshgenerators/combiner_generator/combiner_generator.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest10.i)
- (modules/tensor_mechanics/test/tests/action/composite_eigenstrain.i)
- (modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_tr.i)
- (modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i)
- (python/peacock/tests/common/transient_heat_test.i)
- (modules/porous_flow/test/tests/fluidstate/coldwater_injection_radial.i)
- (modules/heat_conduction/test/tests/gray_lambert_radiator/coupled_heat_conduction.i)
- (test/tests/transfers/multiapp_projection_transfer/fromsub_sub.i)
- (test/tests/postprocessors/axisymmetric_centerline_average_value/axisymmetric_centerline_average_value_test.i)
- (modules/combined/test/tests/linear_elasticity/linear_elastic_material.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform1.i)
- (test/tests/meshgenerators/sidesets_from_normals_generator/sidesets_cylinder_normals_fixed.i)
- (modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement.i)
- (test/tests/outputs/postprocessor_final/postprocessor_final.i)
- (modules/richards/test/tests/buckley_leverett/bl02.i)
- (test/tests/outputs/output_interface/indicator.i)
- (modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i)
- (modules/contact/test/tests/mortar_tm/2drz/frictionless_second/finite.i)
- (test/tests/ics/boundary_ic/boundary_ic.i)
- (test/tests/time_steppers/iteration_adaptive/hit_function_knot.i)
- (test/tests/userobjects/force_aux_ordering/force_postaux.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_missing_sub_object.i)
- (modules/navier_stokes/test/tests/finite_element/ins/block-restriction/one-mat-two-eqn-sets.i)
- (test/tests/outputs/postprocessor_final/execute_pps_on_final.i)
- (modules/combined/test/tests/gravity/gravity_hex20.i)
- (modules/porous_flow/test/tests/energy_conservation/heat03.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/special/rotate.i)
- (modules/thermal_hydraulics/test/tests/auxkernels/weighted_average/weighted_average.i)
- (modules/porous_flow/test/tests/poro_elasticity/vol_expansion.i)
- (test/tests/postprocessors/pps_interval/pps_interval_mismatch.i)
- (modules/heat_conduction/test/tests/code_verification/spherical_test_no1.i)
- (python/peacock/tests/common/simple_diffusion.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_fake_plastic.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_mouth_dir.i)
- (test/tests/auxkernels/flux_average/flux_average.i)
- (modules/tensor_mechanics/test/tests/ad_simple_linear/linear-ad.i)
- (modules/tensor_mechanics/test/tests/radial_disp_aux/sphere_2d_axisymmetric.i)
- (test/tests/meshgenerators/plane_deletion/plane_deletion.i)
- (modules/tensor_mechanics/test/tests/beam/action/beam_action_chk.i)
- (test/tests/vectorpostprocessors/element_variables_difference_max/element_variables_difference_max.i)
- (test/tests/materials/generic_materials/generic_constant_material.i)
- (test/tests/ics/constant_ic/subdomain_constant_ic_test.i)
- (modules/tensor_mechanics/test/tests/action/action_multi_eigenstrain.i)
- (modules/combined/test/tests/eigenstrain/variable_finite.i)
- (test/tests/misc/check_error/multi_sub.i)
- (modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht.i)
- (modules/contact/test/tests/adaptivity/contact_initial_adaptivity.i)
- (modules/porous_flow/examples/tidal/atm_tides_open_hole.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_upwinded_grav01c.i)
- (modules/contact/test/tests/mortar_tm/2drz/frictionless_first/small.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_02.i)
- (modules/porous_flow/test/tests/newton_cooling/nc01.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_small.i)
- (modules/contact/test/tests/non-singular-frictional-mortar/frictional-mortar.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_basicthm.i)
- (modules/contact/test/tests/mortar_restart/frictional_bouncing_block_action_restart_1.i)
- (test/tests/auxkernels/solution_aux/build.i)
- (tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5c_outflow.i)
- (modules/heat_conduction/test/tests/code_verification/cartesian_test_no3.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform4.i)
- (test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/master.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform7.i)
- (test/tests/userobjects/threaded_general_user_object/test.i)
- (test/tests/problems/eigen_problem/eigensolvers/gipm.i)
- (test/tests/postprocessors/old_older_values/old_value.i)
- (modules/tensor_mechanics/test/tests/radial_disp_aux/cylinder_3d_cartesian.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/stvenantkirchhoff.i)
- (test/tests/misc/check_error/add_aux_variable_multiple_test.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_finite.i)
- (test/tests/outputs/csv/csv_restart_part1.i)
- (test/tests/outputs/iterative/iterative_vtk.i)
- (modules/contact/test/tests/verification/patch_tests/brick_2/brick2_aug.i)
- (modules/combined/examples/phase_field-mechanics/poly_grain_growth_2D_eldrforce.i)
- (tutorials/tutorial01_app_development/step10_auxkernels/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/sub1.i)
- (modules/phase_field/test/tests/SoretDiffusion/split_temp.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/convergence/elastic.i)
- (test/tests/mesh/nemesis/nemesis_repartitioning_test.i)
- (modules/combined/test/tests/generalized_plane_strain_tm_contact/generalized_plane_strain_tm_contact.i)
- (test/tests/materials/material/adv_mat_couple_test.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart2.i)
- (modules/porous_flow/test/tests/jacobian/mass_vol_exp03.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymmetric_gps_small.i)
- (test/tests/auxkernels/solution_aux/solution_aux_scale.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/action/no_action_1D.i)
- (test/tests/mesh_modifiers/assign_element_subdomain_id/quad_with_elementid_subdomainid_test.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_master_multiple.i)
- (modules/contact/test/tests/ring_contact/ring_contact.i)
- (modules/contact/test/tests/pdass_problems/ironing.i)
- (modules/functional_expansion_tools/test/tests/standard_use/multiapp_different_physical_boundaries.i)
- (test/tests/multiapps/detect_steady_state/sub.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/multilevel_master.i)
- (test/tests/dampers/max_increment/max_increment_damper_test.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rspherical_finite_elastic.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1.i)
- (test/tests/fvkernels/block-restriction/fv-and-fe-block-restriction.i)
- (modules/porous_flow/examples/tutorial/05.i)
- (test/tests/vectorpostprocessors/line_value_sampler/csv_delimiter.i)
- (modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_errors.i)
- (test/tests/preconditioners/multi_cycle_hypre/multi_cycle_hypre.i)
- (modules/chemical_reactions/test/tests/solid_kinetics/2species.i)
- (test/tests/kernels/2d_diffusion/2d_diffusion_bodyforce_test.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_displaced_sub.i)
- (modules/contact/test/tests/hertz_spherical/hertz_contact_hex27.i)
- (test/tests/kernels/block_kernel/block_vars.i)
- (test/tests/misc/check_error/missing_material_prop_test.i)
- (modules/porous_flow/test/tests/relperm/corey2.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_timoshenko_small.i)
- (test/tests/misc/exception/parallel_exception_jacobian_transient.i)
- (modules/combined/examples/phase_field-mechanics/EBSD_reconstruction_grain_growth_mech.i)
- (modules/richards/test/tests/pressure_pulse/pp_fu_21.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform9.i)
- (test/tests/bcs/pp_neumann/pp_neumann.i)
- (test/tests/mesh/mesh_generation/disc.i)
- (test/tests/misc/exception/parallel_exception_residual.i)
- (test/tests/multiapps/move_and_reset/master.i)
- (modules/tensor_mechanics/test/tests/truss/truss_plastic.i)
- (modules/contact/test/tests/tension_release/4ElemTensionRelease.i)
- (modules/combined/test/tests/internal_volume/rz.i)
- (modules/tensor_mechanics/examples/coal_mining/coarse.i)
- (modules/richards/test/tests/gravity_head_1/gh05.i)
- (test/tests/vectorpostprocessors/sideset_info/sideset_info.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty_contact_line_search.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/3D/neumann.i)
- (modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain.i)
- (modules/xfem/test/tests/moving_interface/moving_bimaterial.i)
- (test/tests/outputs/iterative/iterative_start_time.i)
- (tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/tests/kernels/darcy_advection/darcy_advection.i)
- (test/tests/outputs/iterative/output_start_step.i)
- (examples/ex17_dirac/ex17.i)
- (test/tests/multiapps/catch_up/failing_sub.i)
- (modules/contact/test/tests/pdass_problems/frictional_bouncing_block.i)
- (test/tests/interfacekernels/ik_displaced/different_jxw_displaced.i)
- (modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/combined_twinning_slip_100compression.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rspherical_finite_elastic-noad.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/planar_xz.i)
- (test/tests/bcs/periodic/periodic_subdomain_restricted_test.i)
- (modules/peridynamics/test/tests/simple_tests/2D_regularD_constH_OSPD.i)
- (test/tests/functions/default_function/default_function.i)
- (tutorials/tutorial01_app_development/step08_test_harness/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (test/tests/fvkernels/fv-to-fe-coupling/1d.i)
- (modules/contact/test/tests/bouncing-block-contact/variational-frictional.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_y.i)
- (test/tests/bcs/ad_function_neumann_bc/test.i)
- (test/tests/multiapps/output_in_position/sub.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/master2.i)
- (modules/thermal_hydraulics/test/tests/materials/ad_average_wall_temperature_3eqn/ad_average_wall_temperature_3eqn.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictional_04_penalty.i)
- (modules/tensor_mechanics/examples/uexternaldb_coupling/test.i)
- (modules/contact/test/tests/bouncing-block-contact/bouncing-block-ranfs.i)
- (modules/combined/test/tests/eigenstrain/variable.i)
- (test/tests/restart/new_dt/new_dt.i)
- (test/tests/scaling/up-to-date-scale-factors/up-to-date-scale-factors.i)
- (test/tests/userobjects/shape_element_user_object/shape_side_uo_physics_test.i)
- (test/tests/bcs/misc_bcs/vacuum_bc_test.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/stvenantkirchhoff_small.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_pipe_bend.i)
- (modules/contact/test/tests/mortar_dynamics/block-dynamics-friction-creep.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_2/cyl2_mu_0_2_pen.i)
- (modules/xfem/test/tests/second_order_elements/square_branch_quad9_2d.i)
- (test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub.i)
- (modules/combined/examples/publications/rapid_dev/fig7b.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_boundary_number.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_aprismatic_capyramidal.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_sub.i)
- (test/tests/misc/subdomain_setup/mat_prop_block.i)
- (modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_eqaux.i)
- (test/tests/scaling/residual-based/residual-based.i)
- (test/tests/variables/multiblock_restricted_var/multiblock_restricted_var_test.i)
- (modules/porous_flow/test/tests/mass_conservation/mass12.i)
- (test/tests/meshgenerators/file_mesh_generator/3d_steady_diffusion_iga.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/2d-stress.i)
- (test/tests/multiapps/move_and_reset/multilevel_sub_sub.i)
- (test/tests/postprocessors/coupled_solution_dofs/coupled_solution_dofs.i)
- (modules/combined/test/tests/thermo_mech/ad-youngs_modulus_function_temp.i)
- (test/tests/markers/boundary_marker/distance.i)
- (modules/contact/test/tests/bouncing-block-contact/frictional-mortar-fb-lm-mortar-disp.i)
- (test/tests/problems/custom_fe_problem/custom_fe_problem_test.i)
- (modules/combined/test/tests/cavity_pressure/3d.i)
- (modules/tensor_mechanics/test/tests/action/two_block_base_name.i)
- (test/tests/postprocessors/receiver_default/defaults.i)
- (modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template2.i)
- (modules/combined/test/tests/ad_cavity_pressure/multiple_postprocessors.i)
- (test/tests/postprocessors/element_integral_material_property/element_integral_material_property.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test2qtt.i)
- (modules/combined/examples/mortar/eigenstrain.i)
- (modules/richards/test/tests/gravity_head_1/gh03.i)
- (test/tests/misc/check_error/bad_kernel_var_test.i)
- (test/tests/outputs/intervals/intervals.i)
- (test/tests/misc/hit_cli/input1.i)
- (test/tests/multiapps/move/master.i)
- (test/tests/outputs/output_if_base_contains/dt_from_master_master.i)
- (test/tests/executioners/nullspace/singular.i)
- (modules/chemical_reactions/test/tests/aqueous_equilibrium/2species.i)
- (modules/navier_stokes/test/tests/finite_element/ins/pressure_channel/open_bc_pressure_BC_fieldSplit.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/convergence/elastic.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform1.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_topo_q_func.i)
- (test/tests/functions/parsed/mms_transient_coupled.i)
- (modules/porous_flow/test/tests/thm_rehbinder/fixed_outer_rz.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-reduced-active-set.i)
- (test/tests/adaptivity/interval/adapt_interval.i)
- (test/tests/misc/check_error/unused_param_test.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_basal_active.i)
- (test/tests/outputs/error/duplicate_outputs.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-mortar-disp.i)
- (examples/ex01_inputfile/ex01.i)
- (modules/tensor_mechanics/test/tests/j_integral_vtest/c_int_surfbreak_ellip_crack_sym_mm.i)
- (modules/peridynamics/test/tests/auxkernels/planestrain_thermomechanics_stretch_H1NOSPD.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test10.i)
- (modules/tensor_mechanics/test/tests/jacobian_damper/cube_load.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/incremental_small_elastic-noad.i)
- (modules/contact/test/tests/simple_contact/merged.i)
- (test/tests/preconditioners/pbp/pbp_test.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i)
- (test/tests/dirackernels/point_caching/point_caching_moving_mesh.i)
- (test/tests/time_steppers/cutback_factor_at_failure/function_dt_cutback.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_grav01b.i)
- (tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5b_transient.i)
- (modules/tensor_mechanics/test/tests/volumetric_eigenstrain/volumetric_mechanical.i)
- (test/tests/misc/ad_robustness/ad_two_nl_var_transient_diffusion.i)
- (modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i)
- (modules/porous_flow/test/tests/capillary_pressure/vangenuchten1.i)
- (modules/contact/test/tests/verification/patch_tests/brick_2/brick2_template2.i)
- (test/tests/outputs/perf_graph/multi_app/master_sub_cycle.i)
- (test/tests/variables/coupled_scalar/coupled_scalar.i)
- (modules/heat_conduction/test/tests/parallel_element_pps_test/parallel_element_pps_test.i)
- (modules/phase_field/test/tests/SoretDiffusion/direct_temp.i)
- (modules/tensor_mechanics/test/tests/umat/predef/predef_multiple.i)
- (modules/tensor_mechanics/examples/bridge/bridge.i)
- (modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i)
- (test/tests/misc/check_error/bad_kernel_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/L/small.i)
- (test/tests/nodalkernels/constraint_enforcement/lower-bound.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_small_strain_z.i)
- (test/tests/outputs/intervals/no_final_repeat.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/sd-stress.i)
- (test/tests/misc/check_error/nodal_material_test.i)
- (test/tests/constraints/coupled_tied_value_constraint/coupled_tied_value_constraint.i)
- (test/tests/materials/stateful_prop/spatial_adaptivity_test.i)
- (test/tests/auxkernels/ghosting_aux/ghosting_aux.i)
- (test/tests/restart/restart_transient_from_steady/steady_with_sub_sub.i)
- (test/tests/test_harness/good.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/linesearch.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_scalar_vector.i)
- (test/tests/mesh/no_mesh_block/no_mesh_block.i)
- (modules/richards/test/tests/buckley_leverett/bl20_lumped_fu.i)
- (test/tests/geomsearch/patch_update_strategy/auto.i)
- (test/tests/outputs/intervals/no_output.i)
- (modules/heat_conduction/test/tests/code_verification/cartesian_test_no2.i)
- (modules/tensor_mechanics/tutorials/basics/part_2.2.i)
- (modules/porous_flow/test/tests/relperm/vangenuchten1.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/parallel_sub.i)
- (test/tests/meshgenerators/centroid_partitioner/centroid_partitioner_mg.i)
- (python/chigger/tests/simple/sub.i)
- (test/tests/nodalkernels/jac_test/jac_test.i)
- (test/tests/transfers/multiapp_userobject_transfer/tosub_displaced_master.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_traction_steady_stabilized.i)
- (modules/heat_conduction/test/tests/sideset_heat_transfer/cfem_gap.i)
- (modules/richards/test/tests/gravity_head_1/gh04.i)
- (test/tests/misc/exception/2d_diffusion_skip_exception.i)
- (test/tests/transfers/get_transfers_from_feproblem/sub.i)
- (modules/stochastic_tools/examples/surrogates/pod_rb/2d_multireg/sub.i)
- (test/tests/multiapps/secant/transient_sub.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_1D_adaptivity.i)
- (modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_elem_read.i)
- (modules/tensor_mechanics/test/tests/2D_different_planes/planestrain_yz.i)
- (examples/ex02_kernel/ex02.i)
- (modules/porous_flow/test/tests/capillary_pressure/vangenuchten2.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat2.i)
- (test/tests/multiapps/centroid_multiapp/sub_app.i)
- (test/tests/scalar_kernels/ad_scalar_kernel/ad_scalar_kernel.i)
- (python/chigger/tests/simple/simple_diffusion.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_sub2_multiple.i)
- (test/tests/vectorpostprocessors/least_squares_fit/least_squares_fit.i)
- (test/tests/postprocessors/perf_graph_data/perf_graph.i)
- (test/tests/kernels/2d_diffusion/2d_diffusion_neumannbc_test.i)
- (test/tests/utils/copy_input_parameters/do_not_copy_parameters.i)
- (test/tests/multiapps/time_offset/sub.i)
- (test/tests/ics/from_exodus_solution/array.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_reject_large_dt.i)
- (modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_second/finite_rr.i)
- (test/tests/restart/restart_diffusion/exodus_refined_restart_1_test.i)
- (test/tests/materials/boundary_material/elem_aux_bc_on_bnd.i)
- (test/tests/kernels/ad_coupled_force/fe_test.i)
- (test/tests/variables/optionally_coupled/optionally_coupled.i)
- (test/tests/markers/box_marker/box_marker_adapt_test.i)
- (test/tests/executors/multiple/test.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest3.i)
- (test/tests/transfers/multiapp_projection_transfer/fixed_meshes_sub.i)
- (modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results_complete_history/sub.i)
- (test/tests/predictors/simple/predictor_test.i)
- (test/tests/multiapps/auto_diff_auto_scaling/sub.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3nstt.i)
- (test/tests/misc/check_error/function_file_test4.i)
- (test/tests/multiapps/catch_up/sub.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_direct.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/master.i)
- (modules/porous_flow/test/tests/gravity/grav01c_action.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_angle.i)
- (examples/ex11_prec/default.i)
- (test/tests/multiapps/multilevel/dt_from_master_subsub.i)
- (modules/richards/test/tests/gravity_head_1/gh11.i)
- (test/tests/mesh/centroid_partitioner/centroid_partitioner_test.i)
- (test/tests/misc/check_error/multi_master.i)
- (test/tests/executioners/adapt_and_modify/adapt_and_modify_heavy.i)
- (modules/contact/test/tests/verification/patch_tests/brick_4/brick4_mu_0_2_pen.i)
- (tutorials/tutorial02_multiapps/step02_transfers/02_sub_nearestnode.i)
- (test/tests/multiapps/picard/picard_master.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt.i)
- (modules/porous_flow/test/tests/numerical_diffusion/framework.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/to_multiple_boundaries_sub.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3qnns.i)
- (test/tests/utils/apply_input_parameters/apply_input_parameters.i)
- (modules/heat_conduction/test/tests/NAFEMS/transient/T3/nafems_t3_hex_template.i)
- (modules/porous_flow/test/tests/capillary_pressure/vangenuchten3.i)
- (modules/stochastic_tools/test/tests/ics/random_ic_distribution_test/random_ic_distribution_test.i)
- (test/tests/outputs/variables/output_vars_test.i)
- (test/tests/vectorpostprocessors/parallel_consistency/parallel_consistency.i)
- (test/tests/problems/mixed_coord/mixed_coord_test.i)
- (modules/tensor_mechanics/test/tests/check_error/bulk_modulus.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i)
- (modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/small_const.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady.i)
- (test/tests/materials/get_material_property_names/get_material_property_block_names.i)
- (modules/combined/test/tests/reference_residual/reference_residual.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_test_transient_new_name.i)
- (test/tests/partitioners/single_rank_partitioner/single_rank_partitioner.i)
- (modules/porous_flow/test/tests/poro_elasticity/terzaghi_basicthm.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test2q.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictionless_lm.i)
- (modules/tensor_mechanics/test/tests/action/action_eigenstrain.i)
- (test/tests/vectorpostprocessors/material_vector_postprocessor/basic.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard_subT_sub.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform5.i)
- (test/tests/misc/check_error/check_dynamic_name_boundary.i)
- (test/tests/materials/output/output_via_outputs.i)
- (test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_inside.i)
- (test/tests/adaptivity/initial_marker/initial_marker.i)
- (test/tests/vectorpostprocessors/line_function_sampler/line_function_sampler.i)
- (test/tests/controls/time_periods/multiapps/master.i)
- (modules/fsi/test/tests/fsi_acoustics/1D_fluid_only/1D_fluid_only.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden3.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_1/cyl1_template1.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3qnstt.i)
- (test/tests/materials/old_cyclic_dep/test.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/plane_strain_prescribed.i)
- (test/tests/outputs/format/pps_file_out_warn.i)
- (modules/tensor_mechanics/test/tests/volumetric_locking_verification/42_node.i)
- (modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_cylinder.i)
- (modules/tensor_mechanics/test/tests/finite_strain_jacobian/3d_bar.i)
- (modules/combined/test/tests/internal_volume/hex8.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/user_object.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/patch/small_patch.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_2d_tri6.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rz_small_elastic.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_mean_zero_pressure.i)
- (test/tests/mortar/3d-periodic/periodic.i)
- (test/tests/multiapps/picard_multilevel/2level_picard/sub_level1.i)
- (modules/tensor_mechanics/test/tests/central_difference/consistent/1D/1d_consistent_explicit.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test1.i)
- (modules/thermal_hydraulics/test/tests/materials/average_wall_temperature_3eqn/average_wall_temperature_3eqn.i)
- (modules/combined/examples/phase_field-mechanics/Nonconserved.i)
- (modules/tensor_mechanics/test/tests/material_limit_time_step/creep/nafems_test5a_lim.i)
- (test/tests/test_harness/csvdiff_comparison.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/3d-strain.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_c.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/sub0.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_3d_hex27.i)
- (modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/instantaneous.i)
- (test/tests/multiapps/loose_couple_time_adapt/begin.i)
- (test/tests/misc/check_error/function_file_test8.i)
- (test/tests/transfers/multiapp_copy_transfer/second_lagrange_from_sub/sub.i)
- (modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_syntax.i)
- (test/tests/multiapps/move/multilevel_sub.i)
- (modules/porous_flow/examples/flow_through_fractured_media/coarse.i)
- (modules/functional_expansion_tools/examples/2D_interface_different_submesh/sub.i)
- (test/tests/misc/check_error/ic_variable_not_specified.i)
- (test/tests/system_interfaces/input.i)
- (test/tests/problems/no_material_dependency_check/no_material_coverage_check.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_sub_1.i)
- (modules/xfem/test/tests/pressure_bc/edge_2d_pressure.i)
- (modules/xfem/test/tests/second_order_elements/square_branch_quad8_2d.i)
- (modules/contact/test/tests/verification/patch_tests/plane_1/plane1_mu_0_2_pen.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/out_of_plane_pressure.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/patch/large_patch.i)
- (modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm_cm.i)
- (test/tests/transfers/multiapp_interpolation_transfer/tosub_master.i)
- (modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template2.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/wli01.i)
- (test/tests/misc/check_error/missing_var_in_kernel_test.i)
- (modules/contact/test/tests/verification/patch_tests/ring_2/ring2_template1.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/boundary_tomaster_master.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_stab_jac_test.i)
- (modules/tensor_mechanics/test/tests/strain_energy_density/rate_model.i)
- (modules/tensor_mechanics/test/tests/central_difference/lumped/2D/2d_lumped_explicit.i)
- (test/tests/multiapps/slow_sub/sub.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_3/cyl3_template2.i)
- (examples/ex02_kernel/ex02_oversample.i)
- (modules/richards/test/tests/buckley_leverett/bl01_lumped_fu.i)
- (python/peacock/tests/common/fsp_test.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_action.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d_mean_ctefunc.i)
- (test/tests/outputs/oversample/oversample_file.i)
- (test/tests/dampers/min_damping/min_elem_damping.i)
- (test/tests/kernels/ad_2d_diffusion/2d_diffusion_neumannbc_test.i)
- (test/tests/outputs/transferred_scalar_variable/sub.i)
- (modules/tensor_mechanics/test/tests/CylindricalRankTwoAux/test.i)
- (test/tests/postprocessors/element_l2_difference/element_l2_difference.i)
- (modules/tensor_mechanics/test/tests/shell/static/large_strain_m_40_AD.i)
- (test/tests/userobjects/force_aux_ordering/force_preaux.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_3/cyl3_template1.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/action_3d.i)
- (python/peacock/tests/common/oversample.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_sub_sub.i)
- (test/tests/constraints/nodal_constraint/nodal_constraint_displaced_test.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rz_incremental_small_elastic.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_high_reynolds.i)
- (test/tests/multiapps/multilevel/time_dt_from_master_sub.i)
- (test/tests/meshgenerators/meta_data_store/mesh_meta_data_store.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/pp_sub.i)
- (test/tests/executioners/eigen_executioners/ne_coupled.i)
- (modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_stress.i)
- (modules/porous_flow/test/tests/newton_cooling/nc08.i)
- (test/tests/misc/check_error/bad_material_test.i)
- (modules/combined/examples/periodic_strain/global_strain_pfm_3D.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i)
- (modules/combined/test/tests/gravity/gravity_qp_select.i)
- (modules/contact/test/tests/mortar_dynamics/block-dynamics-action.i)
- (modules/contact/test/tests/mortar_tm/2d/ad_frictionless_sec/small.i)
- (test/tests/dirackernels/material_point_source/material_point_source.i)
- (modules/porous_flow/test/tests/thm_rehbinder/fixed_outer.i)
- (test/tests/multiapps/picard/picard_rel_tol_master.i)
- (test/tests/geomsearch/2d_moving_penetration/restart2.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM_action.i)
- (test/tests/mesh/side_list_from_node_list/side_list_from_node_list.i)
- (test/tests/preconditioners/smp/smp_single_test.i)
- (test/tests/variables/optionally_coupled/optionally_coupled_twovar.i)
- (test/tests/multiapps/max_procs_per_app/master.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/ref.i)
- (test/tests/misc/check_error/bad_enum_test.i)
- (test/tests/problems/action_custom_fe_problem/action_custom_fe_problem_test.i)
- (tutorials/tutorial02_multiapps/step02_transfers/01_master_meshfunction.i)
- (modules/combined/test/tests/linear_elasticity/extra_stress.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/user_object_011orientation.i)
- (modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_master.i)
- (test/tests/outputs/console/console_no_outputs_block.i)
- (modules/contact/test/tests/verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template1.i)
- (test/tests/kernels/tag_errors/tag_doesnt_exist/bad_transient.i)
- (test/tests/userobjects/pre_aux_based_on_exec_flag/pre_post_aux_test.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform3.i)
- (modules/contact/test/tests/mortar_tm/2d/ad_frictionless_fir/finite_rr.i)
- (modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d_fatigue.i)
- (modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i)
- (test/tests/userobjects/setup_interface_count/internal_side.i)
- (modules/contact/test/tests/mortar_tm/2d/ad_frictionless_sec/finite_rr.i)
- (test/tests/auxkernels/aux_nodal_scalar_kernel/aux_nodal_scalar_kernel.i)
- (modules/porous_flow/test/tests/poro_elasticity/vol_expansion_poroperm.i)
- (modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i)
- (modules/tensor_mechanics/test/tests/line_material_rank_two_sampler/rank_two_sampler.i)
- (test/tests/parser/cli_multiapp_single/dt_from_master_sub.i)
- (modules/contact/test/tests/verification/patch_tests/ring_1/ring1_template2.i)
- (test/tests/executioners/executioner/sln-time-adapt.i)
- (test/tests/restart/restart_diffusion/restart_diffusion_test_steady.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_separate.i)
- (modules/combined/test/tests/power_law_creep/power_law_creep_restart2.i)
- (modules/misc/test/tests/coupled_directional_mesh_height_interpolation/coupled_directional_mesh_height_interpolation.i)
- (test/tests/misc/check_error/wrong_displacement_order.i)
- (test/tests/multiapps/steffensen/steady_main.i)
- (modules/contact/test/tests/mortar_tm/horizontal_blocks_mortar_TM.i)
- (test/tests/misc/check_error/bad_number.i)
- (test/tests/multiapps/loose_couple_time_adapt/end.i)
- (test/tests/multiapps/steffensen/transient_sub.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/07_sub_multilevel.i)
- (test/tests/adaptivity/max_h_level/max_h_level.i)
- (modules/tensor_mechanics/test/tests/visco/gen_kv_creep.i)
- (test/tests/outputs/exodus/exodus_input.i)
- (test/tests/multiapps/petsc_options/master.i)
- (tutorials/darcy_thermo_mech/step08_postprocessors/problems/step8.i)
- (test/tests/materials/stateful_prop/stateful_prop_spatial_test.i)
- (modules/tensor_mechanics/test/tests/radial_disp_aux/cylinder_2d_axisymmetric.i)
- (test/tests/functions/piecewise_constant_from_csv/piecewise_constant.i)
- (modules/phase_field/test/tests/Nucleation/material.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/wli02.i)
- (modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform9_cosserat.i)
- (test/tests/controls/time_periods/multiapps/sub.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/orthotropic_rotation_Cijkl.i)
- (modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm_cfp.i)
- (test/tests/controls/time_periods/aux_scalar_kernels/enable_disable.i)
- (test/tests/multiapps/picard/function_dt_sub.i)
- (modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/dilatation.i)
- (modules/peridynamics/test/tests/simple_tests/2D_small_strain_H1NOSPD.i)
- (modules/combined/test/tests/axisymmetric_2d3d_solution_function/2d.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_transient.i)
- (test/tests/misc/exception/parallel_exception_initial_condition.i)
- (modules/chemical_reactions/test/tests/equilibrium_const/linear.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat3.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fully_saturated.i)
- (modules/tensor_mechanics/test/tests/beam/static/timoshenko_small_strain_y.i)
- (test/tests/restart/restart_transient_from_steady/restart_from_steady.i)
- (modules/richards/test/tests/pressure_pulse/pp_fu_22.i)
- (test/tests/misc/check_error/wrong_moose_object_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/2D/dirichlet.i)
- (test/tests/auxkernels/element_aux_boundary/high_order_boundary_aux.i)
- (modules/contact/test/tests/mortar_dynamics/block-dynamics.i)
- (test/tests/transfers/multiapp_conservative_transfer/secondary_negative_adjuster.i)
- (test/tests/controls/time_periods/kernels/kernels.i)
- (modules/combined/examples/xfem/xfem_thermomechanics_stress_growth.i)
- (modules/combined/test/tests/thermo_mech/thermo_mech.i)
- (test/tests/mortar/periodic-value/periodic.i)
- (modules/tensor_mechanics/test/tests/scalar_material_damage/scalar_material_damage_creep.i)
- (modules/porous_flow/examples/restart/gravityeq.i)
- (modules/combined/test/tests/thermal_strain/thermal_strain.i)
- (test/tests/dampers/interactions/interacting_node_elem_dampers.i)
- (test/tests/postprocessors/point_value/point_value.i)
- (modules/richards/test/tests/dirac/bh_lumped_07.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test6.i)
- (modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template1.i)
- (modules/combined/test/tests/poro_mechanics/borehole_highres.i)
- (modules/contact/test/tests/3d-mortar-contact/frictionless-mortar-3d-action.i)
- (modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_second/finite.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz_cross_section.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-weighted-gap-mixed-basis.i)
- (modules/porous_flow/test/tests/gravity/grav01c.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/stabilization/cook_small.i)
- (test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level1.i)
- (modules/tensor_mechanics/test/tests/postprocessors/material_tensor_average_test.i)
- (modules/contact/test/tests/pdass_problems/frictional_bouncing_block_action.i)
- (test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lump_preconditioned.i)
- (tutorials/tutorial02_multiapps/step03_coupling/01_sub.i)
- (modules/heat_conduction/tutorials/introduction/therm_step03a.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test3.i)
- (examples/ex04_bcs/dirichlet_bc.i)
- (test/tests/kernels/2d_diffusion/matdiffusion.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/action/no_action_L.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden1.i)
- (modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i)
- (test/tests/userobjects/Terminator/terminator_message.i)
- (test/tests/multiapps/reset/multilevel_sub.i)
- (test/tests/multiapps/catch_up/master.i)
- (modules/tensor_mechanics/test/tests/beam/fric_constraint/2_block_common_cross.i)
- (test/tests/meshgenerators/combiner_generator/combiner_multi_input_translate.i)
- (test/tests/multiapps/picard/steady_picard_sub.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/multiple_boundary_ids_3d.i)
- (test/tests/materials/discrete/recompute_no_calc.i)
- (test/tests/restrictable/boundary_api_test/boundary_restrictable.i)
- (test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux.i)
- (test/tests/multiapps/move/sub.i)
- (test/tests/kernels/ad_mat_diffusion/ad_2d_steady_state.i)
- (modules/navier_stokes/test/tests/finite_element/ins/block-restriction/two-mats-one-eqn-set.i)
- (test/tests/actions/get_actions/test_get_actions.i)
- (test/tests/globalparams/global_param/global_param_test.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_plane_stress.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/sub0.i)
- (test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_inside.i)
- (modules/chemical_reactions/test/tests/equilibrium_const/maier_kelly.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/multiple_thermal_eigenstrains.i)
- (modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump_func.i)
- (test/tests/mesh/named_entities/name_on_the_fly.i)
- (test/tests/parser/active_inactive/top_level.i)
- (test/tests/postprocessors/real_parameter_reporter/real_parameter_reporter.i)
- (test/tests/outputs/oversample/ex02_adapt.i)
- (test/tests/misc/check_error/check_dynamic_name_boundary_mismatch.i)
- (modules/tensor_mechanics/test/tests/t_stress/t_stress_crack_infinite_plate_2d.i)
- (test/tests/misc/check_error/function_file_test12.i)
- (test/tests/outputs/format/output_test_sln.i)
- (modules/thermal_hydraulics/test/tests/materials/wall_heat_transfer_coefficient_3eqn_dittus_boelter/test.i)
- (test/tests/kernels/jxw_grad_test_dep_on_displacements/jxw-spherical.i)
- (modules/stochastic_tools/examples/surrogates/polynomial_regression/sub.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/only_twinning_fcc.i)
- (examples/ex10_aux/ex10.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/target_boundary_sub.i)
- (modules/contact/test/tests/simple_contact/simple_contact_test.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_small_strain.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_MD.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform6.i)
- (modules/richards/test/tests/gravity_head_1/gh16.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_linesearch.i)
- (test/tests/meshgenerators/transform_generator/rotate_and_scale.i)
- (modules/contact/test/tests/bouncing-block-contact/ping-ponging/ranfs-ping-pong.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart1.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rz_finite_elastic.i)
- (modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-wear.i)
- (test/tests/executioners/nl_forced_its/many_nl_forced_its.i)
- (modules/peridynamics/test/tests/failure_tests/2D_stress_failure_H1NOSPD.i)
- (modules/functional_expansion_tools/examples/1D_volumetric_Cartesian/main.i)
- (test/tests/materials/stateful_prop/stateful_prop_adaptivity_test.i)
- (modules/contact/test/tests/mortar_dynamics/block-dynamics-friction-action.i)
- (test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
- (modules/combined/test/tests/poro_mechanics/terzaghi.i)
- (modules/tensor_mechanics/test/tests/beam/constraints/glued_constraint.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_nobcbc.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_action_lowerd_exists.i)
- (modules/porous_flow/examples/flow_through_fractured_media/diffusion.i)
- (test/tests/functions/solution_function/solution_function_exodus_interp_test.i)
- (modules/thermal_hydraulics/test/tests/controls/unit_trip_control/test.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar02.i)
- (modules/stochastic_tools/test/tests/multiapps/sampler_full_solve_multiapp/sub.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rd03.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/source_boundary_master.i)
- (modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d.i)
- (test/tests/multiapps/picard/steady_custom_picard_master.i)
- (test/tests/mesh/custom_partitioner/custom_linear_partitioner_test_displacement.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/master2_wrong_order.i)
- (test/tests/transfers/transfer_on_final/sub.i)
- (test/tests/outputs/format/output_test_xdr.i)
- (test/tests/markers/error_fraction_marker/error_fraction_marker_test.i)
- (modules/combined/examples/xfem/xfem_mechanics_prescribed_growth.i)
- (modules/heat_conduction/test/tests/transient_heat/transient_heat.i)
- (modules/tensor_mechanics/test/tests/ad_simple_linear/linear-ad-reverse-dependency.i)
- (modules/tensor_mechanics/test/tests/t_stress/t_stress_ellip_crack_3d.i)
- (test/tests/variables/coupled_scalar/coupled_scalar_old.i)
- (test/tests/multiapps/picard/pseudo_transient_picard_sub.i)
- (test/tests/meshgenerators/sidesets_from_normals_generator/sidesets_cylinder_normals.i)
- (test/tests/tag/2d_diffusion_matrix_tag_test.i)
- (test/tests/transfers/multiapp_conservative_transfer/primary_skipped_adjuster.i)
- (modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_no_action.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_nobcbc.i)
- (test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_outside.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4qtt.i)
- (test/tests/outputs/png/simple_transient_diffusion.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/main.i)
- (test/tests/parser/active_inactive/active_inactive.i)
- (modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d_propagation.i)
- (test/tests/tag/tag_neumann.i)
- (test/tests/misc/check_error/missing_function_test.i)
- (test/tests/bcs/1d_neumann/from_cubit.i)
- (modules/xfem/test/tests/bimaterials/inclusion_bimaterials_2d.i)
- (test/tests/misc/check_error/incomplete_kernel_variable_coverage_test.i)
- (modules/tensor_mechanics/test/tests/umat/print_c/print_compare_c.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_pipe_axial_force.i)
- (test/tests/multiapps/auto_diff_auto_scaling/main.i)
- (test/tests/userobjects/nearest_point_layered_side_average/nearest_point_layered_side_average.i)
- (modules/porous_flow/examples/thm_example/2D.i)
- (test/tests/multiapps/sub_cycling/sub_short.i)
- (modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1.i)
- (modules/tensor_mechanics/test/tests/pressure/ring.i)
- (test/tests/geomsearch/2d_penetration_locator/2d_triangle.i)
- (modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_test.i)
- (test/tests/misc/check_error/missing_mesh_test.i)
- (test/tests/userobjects/nearest_point_layered_integral/points_from_uo.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test3tt.i)
- (modules/stochastic_tools/test/tests/transfers/batch_sampler_transfer/sub.i)
- (modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_change_restart1.i)
- (test/tests/materials/material/material_check_test.i)
- (modules/richards/test/tests/rogers_stallybrass_clements/rsc_lumped_01.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test12.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_var_test.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4ns.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced.i)
- (test/tests/multiapps/reset/multilevel_master.i)
- (modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark_action.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/correctness/plastic_j2.i)
- (test/tests/misc/should_execute/should_execute.i)
- (modules/porous_flow/test/tests/adaptivity/tri3_adaptivity.i)
- (modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template1.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic_anisotropy/3d_bar_orthotropic_full_rotation.i)
- (modules/tensor_mechanics/test/tests/recompute_radial_return/affine_plasticity.i)
- (modules/stochastic_tools/test/tests/surrogates/pod_rb/internal/sub.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform3.i)
- (test/tests/misc/check_error/double_restrict_uo.i)
- (examples/ex15_actions/ex15.i)
- (modules/stochastic_tools/test/tests/vectorpostprocessors/multiple_stochastic_results/sub.i)
- (examples/ex01_inputfile/diffusion_pathological.i)
- (modules/contact/test/tests/fieldsplit/frictional_mortar_FS.i)
- (test/tests/multiapps/transient_multiapp/dt_from_multi.i)
- (modules/combined/test/tests/poro_mechanics/mandel.i)
- (test/tests/materials/material/material_test.i)
- (modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain_esm_using_cut_mesh.i)
- (modules/heat_conduction/test/tests/multiple_contact_pairs/multiple_contact_pairs.i)
- (modules/contact/test/tests/verification/patch_tests/brick_3/brick3_template1.i)
- (modules/combined/examples/effective_properties/effective_th_cond.i)
- (test/tests/variables/coupled_scalar/coupled_scalar_from_ic.i)
- (test/tests/kernels/coupled_time_derivative/coupled_time_derivative_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/L/small.i)
- (test/tests/multiapps/picard_catch_up/sub_failing_problem.i)
- (test/tests/multiapps/initial_intactive/sub.i)
- (modules/richards/test/tests/newton_cooling/nc01.i)
- (test/tests/misc/no_exodiff_map/no_exodiff_map.i)
- (test/tests/outputs/intervals/output_final.i)
- (test/tests/restart/start_time_override/transient.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_twinning/demonstration_combined_hcp_slip_twins.i)
- (modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_necking.i)
- (test/tests/transfers/multiapp_copy_transfer/multivariable_copy/sub.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized_second_order.i)
- (test/tests/materials/interface_material/interface_value_material_split_mesh.i)
- (test/tests/misc/check_error/linear_interp_not_increasing.i)
- (test/tests/multiapps/full_solve_multiapp/master.i)
- (test/tests/ics/lagrange_ic/3d_second_order.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_rz_test.i)
- (test/tests/auxkernels/solution_aux/solution_aux.i)
- (modules/heat_conduction/test/tests/code_verification/cartesian_test_no1.i)
- (test/tests/multiapps/positions_from_file/dt_from_multi_sub.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_grav01c.i)
- (modules/xfem/test/tests/single_var_constraint_3d/stationary_fluxjump_3d.i)
- (modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_action.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test2.i)
- (modules/tensor_mechanics/tutorials/basics/part_3_1.i)
- (modules/navier_stokes/test/tests/finite_element/ins/coupled-force/steady.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_action.i)
- (test/tests/predictors/simple/predictor_reference_residual_test.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test2.i)
- (test/tests/vectorpostprocessors/intersection_points_along_line/1d.i)
- (test/tests/controls/error/tid_warehouse_error.i)
- (test/tests/restart/duplicate_node/duplicate_node.i)
- (test/tests/outputs/dofmap/simple.i)
- (test/tests/postprocessors/nodal_sum/nodal_sum_block_non_unique.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_no_side_sets_found.i)
- (modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_ss.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test2qtt.i)
- (test/tests/kernels/jxw_grad_test_dep_on_displacements/not-handling-jxw.i)
- (modules/xfem/test/tests/moving_interface/phase_transition_3d.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4qnstt.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/sub.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_sub.i)
- (test/tests/outputs/tecplot/tecplot.i)
- (modules/contact/test/tests/verification/patch_tests/automatic_patch_update/sliding_update.i)
- (test/tests/transfers/multiapp_userobject_transfer/tosub_sub.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic_anisotropy/3d_bar_orthotropic_90deg_rotation.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady.i)
- (test/tests/postprocessors/change_over_fixed_point/change_over_fixed_point.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform_harden3.i)
- (test/tests/materials/output/output_boundary.i)
- (test/tests/multiapps/restart_subapp_ic/sub2.i)
- (test/tests/postprocessors/nodal_var_value/pps_output_test.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_mouth_dir_end_dir_vec.i)
- (test/tests/preconditioners/pbp/pbp_adapt_test.i)
- (modules/tensor_mechanics/test/tests/gravity/ad_gravity_test.i)
- (modules/porous_flow/test/tests/energy_conservation/heat03_rz.i)
- (modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm_cfp_cm.i)
- (test/tests/auxkernels/element_aux_var/elemental_sort_test.i)
- (test/tests/auxkernels/hardware_id_aux/hardware_id_aux.i)
- (test/tests/outputs/position/position.i)
- (test/tests/controls/moose_base_naming_access/base_object_param.i)
- (modules/combined/test/tests/beam_eigenstrain_transfer/master_uo_transfer.i)
- (modules/thermal_hydraulics/test/tests/controls/terminate/terminate.i)
- (modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction.i)
- (modules/contact/test/tests/sliding_block/sliding/frictionless_aug.i)
- (modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i)
- (modules/richards/test/tests/buckley_leverett/bl01_adapt.i)
- (test/tests/geomsearch/2d_moving_penetration/restart.i)
- (modules/tensor_mechanics/test/tests/beam/constraints/frictional_constraint.i)
- (test/tests/mesh_modifiers/smooth_mesh/mesh_smoother.i)
- (modules/combined/test/tests/cavity_pressure/multiple_postprocessors.i)
- (modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/pp_master.i)
- (test/tests/outputs/csv_final_and_latest/latest.i)
- (test/tests/controls/time_periods/aux_scalar_kernels/control_different.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_coeff.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/nonad_verification.i)
- (test/tests/outputs/postprocessor/postprocessor.i)
- (test/tests/misc/check_error/missing_executioner.i)
- (test/tests/misc/check_error/function_file_test6.i)
- (modules/tensor_mechanics/test/tests/2D_different_planes/planestrain_xy.i)
- (modules/porous_flow/test/tests/adaptivity/hex_adaptivity.i)
- (modules/richards/test/tests/gravity_head_1/gh01.i)
- (test/tests/vectorpostprocessors/csv_reader/transfer/sub.i)
- (test/tests/nodalkernels/jac_test/block_jacobian_test.i)
- (test/tests/kernels/ad_mat_diffusion/2d_steady_state.i)
- (modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2.i)
- (modules/porous_flow/test/tests/dirackernels/bh07.i)
- (test/tests/test_harness/output_csv_and_exodus.i)
- (test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/sub1.i)
- (test/tests/meshgenerators/combiner_generator/combiner_multi_input.i)
- (modules/porous_flow/test/tests/gravity/grav02b.i)
- (modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template1.i)
- (modules/porous_flow/test/tests/sinks/s13.i)
- (modules/tensor_mechanics/test/tests/truss/truss_3d_action.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_04.i)
- (tutorials/tutorial02_multiapps/step02_transfers/04_sub_multiscale.i)
- (modules/porous_flow/examples/tutorial/04.i)
- (modules/combined/test/tests/internal_volume/rz_cone.i)
- (modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01_slippery.i)
- (test/tests/tag/2d_diffusion_tag_matrix.i)
- (test/tests/multiapps/picard_sub_cycling/picard_master.i)
- (test/tests/test_harness/long_running.i)
- (test/tests/vectorpostprocessors/line_value_sampler/line_value_sampler.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_3d_tet10.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/overlapping_sidesets.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/planar_xy.i)
- (modules/contact/test/tests/verification/patch_tests/ring_3/ring3_template1.i)
- (test/tests/controls/moose_base_naming_access/base_param.i)
- (test/tests/mesh_modifiers/transform/rotate_and_scale.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/stabilization/cook_large.i)
- (modules/porous_flow/test/tests/adaptivity/quad_adaptivity.i)
- (modules/rdg/test/tests/advection_1d/block_restrictable.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4nnstt.i)
- (test/tests/multiapps/initial_failure/master.i)
- (modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_hht.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_z.i)
- (modules/richards/test/tests/dirac/bh07.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/correctness/cauchy-elastic.i)
- (tutorials/darcy_thermo_mech/step04_velocity_aux/problems/step4.i)
- (test/tests/mortar/displaced-gap-conductance-2d-bnd-coupling/gap-conductance-bnd-aux-kernel.i)
- (modules/tensor_mechanics/test/tests/power_law_creep/nonad_exception.i)
- (test/tests/transfers/transfer_with_reset/master.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/action_2d.i)
- (test/tests/multiapps/multiple_position_files/multiple_position_files.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/master2_quad.i)
- (test/tests/controls/time_periods/kernels/adkernels.i)
- (test/tests/controls/error/non_controllable_error.i)
- (modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart1.i)
- (test/tests/outputs/error/none_reserved.i)
- (test/tests/ics/constant_ic/constant_ic_test.i)
- (modules/peridynamics/test/tests/auxkernels/planestrain_thermomechanics_ranktwotensor_OSPD.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_plane_strain_small.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/upper_twin_fraction_limit.i)
- (test/tests/outputs/perf_graph/multi_app/sub_full.i)
- (test/tests/multiapps/initial_failure/sub.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/prop_block_read.i)
- (test/tests/outputs/csv/csv.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_quad9_levelsetcut.i)
- (modules/porous_flow/test/tests/jacobian/mass_vol_exp01.i)
- (test/tests/vectorpostprocessors/late_declaration_vector_postprocessor/late_declaration_vector_postprocessor.i)
- (modules/contact/tutorials/introduction/step01.i)
- (test/tests/kernels/ad_max_dofs_per_elem_error/ad_max_dofs_per_elem.i)
- (test/tests/auxkernels/element_aux_var/element_aux_var_test.i)
- (modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read_3d.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_3D.i)
- (modules/combined/test/tests/eigenstrain/composite.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/sub1.i)
- (test/tests/transfers/multiapp_userobject_transfer/3d_1d_master.i)
- (test/tests/dirackernels/point_caching/point_caching_error.i)
- (modules/tensor_mechanics/test/tests/2D_different_planes/planestrain_xz.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/1D/neumann.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_upwinded_nodens_grav01c_action.i)
- (modules/combined/examples/publications/rapid_dev/fig7a.i)
- (tutorials/darcy_thermo_mech/step05_heat_conduction/tests/bcs/outflow/outflow.i)
- (test/tests/mortar/displaced-gap-conductance-2d-bnd-coupling/gap-conductance.i)
- (test/tests/misc/check_error/missing_req_par_moose_obj_test.i)
- (test/tests/mesh_modifiers/mesh_extruder/extruder_quad.i)
- (test/tests/controls/pid_control/pid_pp_control.i)
- (test/tests/vectorpostprocessors/elements_along_line/1d.i)
- (modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/finite_linear.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/2d-stress.i)
- (test/tests/preconditioners/vcp/vcp_test.i)
- (modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/moving.i)
- (test/tests/misc/displaced_mesh_coupling/nonad.i)
- (modules/richards/test/tests/gravity_head_1/gh09.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_no_parts.i)
- (modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-pdass-tangential-lm-mortar-action.i)
- (modules/tensor_mechanics/test/tests/stickyBC/push_down.i)
- (modules/combined/test/tests/inelastic_strain/creep/creep_nl1.i)
- (modules/xfem/test/tests/moment_fitting/diffusion_moment_fitting_four_points.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3tt.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_points.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/1D/neumann.i)
- (test/tests/auxkernels/element_aux_var/block_global_depend_elem_aux.i)
- (modules/contact/test/tests/verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template3.i)
- (modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-fb-tangential-lm-mortar-disp.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz_force_xz.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion_function/mean.i)
- (modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i)
- (modules/richards/test/tests/pressure_pulse/pp_lumped_22.i)
- (modules/contact/test/tests/mortar_tm/2drz/frictionless_first/finite_rr.i)
- (test/tests/dirackernels/block_restriction/skip.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub_missing_control.i)
- (modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_incremental.i)
- (test/tests/vectorpostprocessors/material_vector_postprocessor/block-restrict-err.i)
- (modules/contact/test/tests/nodal_area/nodal_area_Hex27.i)
- (modules/heat_conduction/test/tests/ad_heat_conduction/test.i)
- (modules/porous_flow/examples/tutorial/06.i)
- (test/tests/constraints/nodal_constraint/nodal_constraint_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/2D/dirichlet.i)
- (test/tests/transfers/multiapp_conservative_transfer/master_conservative_transfer.i)
- (modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/second_order.i)
- (modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free.i)
- (modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/simple_diffusion_line_source.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized_second_order.i)
- (modules/combined/tutorials/introduction/thermal_mechanical_contact/thermomech_cont_step01.i)
- (test/tests/outputs/csv/csv_no_time.i)
- (test/tests/outputs/output_if_base_contains/dt_from_master_subsub.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/3d-stress.i)
- (modules/combined/test/tests/beam_eigenstrain_transfer/subapp1_uo_transfer.i)
- (test/tests/userobjects/layered_average/block_restricted.i)
- (modules/porous_flow/test/tests/relperm/corey3.i)
- (test/tests/misc/check_error/function_file_test17.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain_pressure_3D.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/mixed-transient-steady/mixed.i)
- (test/tests/postprocessors/nodal_var_value/nodal_var_value.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/creep_ramp_sub_true.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_rotation.i)
- (test/tests/outputs/iterative/output_step_window.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/cp_slip_rate_integ/crysp.i)
- (modules/stochastic_tools/test/tests/samplers/AdaptiveImportanceSampler/sub.i)
- (test/tests/materials/stateful_coupling/stateful_aux.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4qns.i)
- (modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_optimised.i)
- (examples/ex19_dampers/ex19.i)
- (modules/heat_conduction/test/tests/verify_against_analytical/ad_2d_steady_state.i)
- (test/tests/postprocessors/element_h1_error_pps/element_h1_error_pp_test.i)
- (test/tests/auxkernels/execute_on_cyclic/execute_on_cyclic.i)
- (test/tests/outputs/csv/csv_transient.i)
- (test/tests/outputs/oversample/oversample.i)
- (test/tests/multiapps/cliargs_from_file/cliargs_sub_2.i)
- (modules/stochastic_tools/test/tests/multiapps/sampler_transient_multiapp/sub.i)
- (test/tests/meshgenerators/mesh_extruder_generator/extrude_quad.i)
- (modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/noaction_2d.i)
- (modules/contact/test/tests/mortar_tm/2d/ad_frictionless_fir/finite.i)
- (modules/tensor_mechanics/test/tests/accumulate_aux/accumulate_aux.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/3D/dirichlet.i)
- (test/tests/misc/check_error/check_syntax_ok.i)
- (modules/combined/test/tests/internal_volume/rz_quad8.i)
- (test/tests/multiapps/sub_cycling/sub.i)
- (test/tests/postprocessors/variable_residual_norm/variable_residual.i)
- (test/tests/dirackernels/point_caching/point_caching_adaptive_refinement.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_09.i)
- (modules/combined/test/tests/poro_mechanics/pp_generation_unconfined.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized_with_temp_transient.i)
- (modules/contact/test/tests/normalized_penalty/normalized_penalty_Q8.i)
- (test/tests/functions/solution_function/solution_function_grad_p2.i)
- (modules/heat_conduction/tutorials/introduction/therm_step03.i)
- (modules/porous_flow/test/tests/poroperm/PermFromPoro02.i)
- (modules/combined/test/tests/poro_mechanics/unconsolidated_undrained.i)
- (test/tests/auxkernels/build_array_variable_aux/build_array_variable_aux.i)
- (modules/tensor_mechanics/test/tests/central_difference/consistent/1D/1d_consistent_implicit.i)
- (modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_test.i)
- (test/tests/misc/check_error/deprecated_block_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/L/large.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/03_sub_subcycle.i)
- (test/tests/misc/check_error/mesh_pointer_error_check.i)
- (modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d.i)
- (modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read.i)
- (test/tests/controls/time_periods/bcs/bcs_enable_disable.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_xyz.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne-coupled-resid-scaling.i)
- (modules/stochastic_tools/examples/paper/sub.i)
- (test/tests/misc/check_error/nan_test_transient.i)
- (test/tests/meshgenerators/sidesets_from_points_generator/sidesets_from_points.i)
- (test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub2.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff.i)
- (modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary_ray_tracing.i)
- (modules/porous_flow/test/tests/actions/basicthm_h.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_hmg.i)
- (modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_3.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y_action.i)
- (framework/contrib/hit/test/output.i)
- (modules/combined/test/tests/thermal_elastic/thermal_elastic.i)
- (modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_smooth.i)
- (test/tests/adaptivity/cycles_per_step/cycles_per_step.i)
- (tutorials/tutorial02_multiapps/step03_coupling/03_sub_subcycling_picard.i)
- (modules/tensor_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_explicit.i)
- (test/tests/restart/restartable_types/restartable_types2.i)
- (test/tests/nodalkernels/penalty_dirichlet/nodal_penalty_dirichlet.i)
- (test/tests/meshgenerators/concentric_circle_mesh_generator/concentric_circle_mesh2.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/3D/neumann.i)
- (python/chigger/tests/simple/mug_blocks.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/green-lagrange.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_aprismatic_active.i)
- (test/tests/transfers/transfer_interpolation/sub.i)
- (test/tests/vectorpostprocessors/nearest_point_integral/nearest_point_integral.i)
- (modules/combined/test/tests/poro_mechanics/undrained_oedometer.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rz_small_elastic-noad.i)
- (test/tests/nodalkernels/constraint_enforcement/upper-bound.i)
- (test/tests/multiapps/relaxation/sub_relaxed_master.i)
- (test/tests/transfers/multiapp_projection_transfer/tosub_master.i)
- (modules/tensor_mechanics/test/tests/strain_energy_density/incr_model_elas_plas.i)
- (test/tests/functions/image_function/image.i)
- (modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-fretting-wear-test.i)
- (tutorials/darcy_thermo_mech/step11_action/problems/step11.i)
- (test/tests/transfers/multiapp_userobject_transfer/sub.i)
- (modules/contact/test/tests/simple_contact/two_block_compress/two_equal_blocks_compress_3d.i)
- (modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_master.i)
- (modules/combined/test/tests/internal_volume/rz_displaced_quad8.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/multilevel_subsub.i)
- (test/tests/meshgenerators/mesh_extruder_generator/gen_extrude.i)
- (modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump.i)
- (modules/combined/test/tests/ad_cavity_pressure/3d.i)
- (modules/tensor_mechanics/test/tests/action/two_block.i)
- (modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_sub.i)
- (test/tests/ics/dependency/test.i)
- (test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/adaptivity.i)
- (modules/richards/test/tests/buckley_leverett/bl20_lumped.i)
- (test/tests/outputs/xda/xda.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fully_saturated_2.i)
- (test/tests/controls/syntax_based_naming_access/param.i)
- (test/tests/transfers/multiapp_high_order_variable_transfer/sub_L2_Lagrange.i)
- (modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_ti.i)
- (examples/ex11_prec/fdp.i)
- (test/tests/predictors/simple/predictor_skip_test.i)
- (modules/contact/test/tests/dual_mortar/dm_mechanical_contact.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/planar_yz.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_incremental.i)
- (modules/porous_flow/test/tests/relperm/vangenuchten2.i)
- (test/tests/reporters/perf_graph_reporter/perf_graph_reporter.i)
- (modules/richards/test/tests/pressure_pulse/pp_lumped_02.i)
- (test/tests/postprocessors/scalar_coupled_postprocessor/scalar_coupled_postprocessor_test.i)
- (test/tests/outputs/debug/show_top_residuals_debug.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/creep_ramp_sub_false_more_steps.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rz_incremental_small_elastic-noad.i)
- (modules/porous_flow/test/tests/actions/fullsat_brine_except1.i)
- (modules/navier_stokes/test/tests/finite_element/ins/velocity_channel/velocity_inletBC_no_parts.i)
- (test/tests/multiapps/steffensen/steady_sub.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_exponential_deprecated.i)
- (modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_3D.i)
- (modules/heat_conduction/test/tests/code_verification/spherical_test_no2.i)
- (modules/phase_field/test/tests/Nucleation/marker.i)
- (test/tests/postprocessors/num_nodes/num_nodes.i)
- (modules/navier_stokes/test/tests/finite_element/ins/boussinesq/boussinesq_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/boussinesq/boussinesq_square.i)
- (test/tests/misc/check_error/bc_with_aux_var.i)
- (modules/combined/test/tests/linear_elasticity/applied_strain.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/04_sub1_multiple.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/sub0.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_abbo.i)
- (modules/navier_stokes/test/tests/finite_element/ins/pressure_channel/open_bc_pressure_BC.i)
- (modules/richards/test/tests/buckley_leverett/bl21.i)
- (modules/phase_field/test/tests/Nucleation/timestep.i)
- (test/tests/materials/material/three_coupled_mat_test.i)
- (modules/chemical_reactions/examples/calcium_bicarbonate/calcium_bicarbonate.i)
- (test/tests/restart/new_dt/new_dt_restart.i)
- (modules/tensor_mechanics/test/tests/scalar_material_damage/combined_scalar_damage.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/fromsub_sub.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_3d.i)
- (test/tests/partitioners/custom_partition_generated_mesh/custom_partition_generated_mesh.i)
- (test/tests/parser/cli_multiapp_single/dt_from_master.i)
- (examples/ex04_bcs/neumann_bc.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/2D/neumann.i)
- (test/tests/auxkernels/bounds/constant_bounds.i)
- (test/tests/multiapps/picard_multilevel/2level_picard/sub_level2.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated_volume.i)
- (test/tests/misc/check_error/kernel_with_aux_var.i)
- (modules/tensor_mechanics/test/tests/initial_stress/gravity_with_aux.i)
- (test/tests/executioners/executioner/transient.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform11.i)
- (test/tests/multiapps/sub_cycling/main_negative.i)
- (python/chigger/tests/input/mug_blocks.i)
- (test/tests/restart/restart_transient_from_steady/steady_with_2subs_sub.i)
- (test/tests/transfers/get_transfers_from_feproblem/master.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/sub1.i)
- (modules/contact/test/tests/verification/patch_tests/ring_4/ring4_template1.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test4tt.i)
- (modules/stochastic_tools/test/tests/transfers/sobol/sub.i)
- (modules/navier_stokes/test/tests/finite_element/ins/stagnation/stagnation.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/sphere3D.i)
- (test/tests/auxkernels/nearest_node_value/nearest_node_value.i)
- (test/tests/mesh_modifiers/boundingbox_nodeset/boundingbox_nodeset_inside_test.i)
- (modules/stochastic_tools/test/tests/surrogates/load_store/sub.i)
- (test/tests/transfers/multiapp_interpolation_transfer/fromrestrictedsub_sub.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3nnstt.i)
- (modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i)
- (modules/tensor_mechanics/test/tests/test_jacobian/jacobian_test_RZ.i)
- (modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinear.i)
- (test/tests/meshgenerators/sidesets_bounding_box_generator/error_no_side_sets_found.i)
- (test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs_sub.i)
- (test/tests/dampers/min_damping/min_nodal_damping.i)
- (test/tests/misc/check_error/scalar_kernel_with_var.i)
- (test/tests/controls/time_periods/bcs/adbcs.i)
- (test/tests/outputs/displacement/displacement_test.i)
- (modules/richards/test/tests/pressure_pulse/pp_fu_02.i)
- (test/tests/misc/check_error/3D_RZ_error_check.i)
- (test/tests/time_steppers/cutback_factor_at_failure/constant_dt_cutback.i)
- (modules/peridynamics/test/tests/simple_tests/2D_finite_strain_H1NOSPD.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test2tt.i)
- (modules/contact/test/tests/verification/patch_tests/single_pnt_2d/single_point_2d_frictional.i)
- (modules/richards/test/tests/warrick_lomen_islas/wli01.i)
- (test/tests/postprocessors/difference_pps/difference_pps.i)
- (test/tests/materials/declare_overlap/error.i)
- (test/tests/vectorpostprocessors/work_balance/work_balance.i)
- (test/tests/userobjects/layered_average/layered_average_bounds_error.i)
- (modules/porous_flow/test/tests/basic_advection/1phase.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/thermal_expansion/free.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/02_master_sublimit.i)
- (test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux_with_jump_material.i)
- (test/tests/multiapps/picard/steady_picard_master.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_stabilized.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/fromsub_source_displaced.i)
- (modules/heat_conduction/test/tests/heat_source_bar/heat_source_bar.i)
- (modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-pdass-tangential-lm-mortar-disp.i)
- (modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i)
- (modules/phase_field/test/tests/flood_counter_aux_test/simple.i)
- (modules/richards/test/tests/rogers_stallybrass_clements/rsc02.i)
- (modules/peridynamics/test/tests/failure_tests/2D_stretch_failure_BPD.i)
- (modules/contact/test/tests/verification/overclosure_removal/overclosure.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictional_02_penalty.i)
- (test/tests/outputs/overwrite/overwrite.i)
- (modules/navier_stokes/test/tests/finite_element/ins/jeffery_hamel/wedge_natural.i)
- (test/tests/multiapps/relaxation/picard_sub.i)
- (test/tests/outputs/console/console.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard_sub.i)
- (test/tests/materials/output/limited_via_outputs.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i)
- (modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1_small_strain.i)
- (test/tests/outputs/console/multiapp/picard_master.i)
- (test/tests/misc/serialized_solution/serialized_solution.i)
- (modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/finite_const.i)
- (test/tests/userobjects/layered_average/layered_average_1d_displaced.i)
- (test/tests/outputs/checkpoint/checkpoint_block.i)
- (test/tests/materials/get_material_property_names/get_material_property_boundary_names.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_ts_test.i)
- (modules/combined/test/tests/multiphase_mechanics/twophasestress.i)
- (test/tests/outputs/postprocessor/postprocessor_invalid.i)
- (modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_force_step.i)
- (test/tests/mesh/mesh_generation/mesh_generation_test.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/test.i)
- (test/tests/misc/check_error/function_file_test3.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion_function/finite_linear.i)
- (test/tests/geomsearch/fake_block_to_boundary/fake_block_to_boundary.i)
- (modules/porous_flow/test/tests/chemistry/2species_equilibrium.i)
- (test/tests/outputs/append_date/append_date.i)
- (modules/stochastic_tools/test/tests/surrogates/pod_rb/errors/sub.i)
- (test/tests/materials/stateful_prop/stateful_prop_copy_test.i)
- (test/tests/performance/input.i)
- (test/tests/outputs/debug/show_top_residuals_nonlinear_only.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/stabilization/cook_small.i)
- (modules/thermal_hydraulics/test/tests/vectorpostprocessors/sampler_1d_real/sampler_1d_real.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/master_from_multiapp.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_no_substructure.i)
- (modules/heat_conduction/test/tests/heat_conduction/min_gap/min_gap.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping.i)
- (test/tests/misc/line_source/line_source.i)
- (test/tests/kernels/ad_simple_diffusion/ad_simple_diffusion.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i)
- (test/tests/postprocessors/side_diffusive_flux_integral/vector_functor_prop.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/3D/dirichlet.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_no_nodes_found.i)
- (modules/xfem/test/tests/diffusion_xfem/levelsetcut3d.i)
- (modules/tensor_mechanics/test/tests/scalar_material_damage/scalar_material_damage_creep_power.i)
- (test/tests/outputs/debug/show_material_props.i)
- (test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
- (test/tests/kernels/ad_mat_diffusion/1D_transient.i)
- (modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_cross_section.i)
- (test/tests/functions/parsed/vector_function.i)
- (test/tests/misc/check_error/time_integrator_error.i)
- (modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-vel.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rspherical_small_elastic-noad.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test3qtt.i)
- (tutorials/tutorial02_multiapps/step03_coupling/02_master_picard.i)
- (test/tests/executioners/nullspace/singular_contaminated.i)
- (test/tests/userobjects/element_quality_check/failure_warning.i)
- (modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_axial_motion.i)
- (python/peacock/tests/input_tab/InputTreeWriter/gold/simple_diffusion_no_diff.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/ref-displaced.i)
- (test/tests/transfers/multiapp_copy_transfer/errors/master.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_eigen_sol.i)
- (modules/contact/test/tests/verification/patch_tests/ring_4/ring4_mu_0_2_pen.i)
- (test/tests/postprocessors/nodal_var_value/screen_output_test.i)
- (test/tests/kernels/forcing_function/forcing_function_test.i)
- (test/tests/multiapps/secant/transient_main.i)
- (test/tests/bcs/periodic/wedge_sys.i)
- (modules/combined/test/tests/gap_heat_transfer_convex/gap_heat_transfer_convex.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test5.i)
- (test/tests/geomsearch/quadrature_nearest_node_locator/quadrature_nearest_node_locator.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/action/action_1D.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d_inst_ctefunc.i)
- (test/tests/userobjects/nearest_point_layered_average/nearest_point_layered_average.i)
- (test/tests/mortar/continuity-2d-conforming/conforming_two_var.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_topo_q_func.i)
- (modules/tensor_mechanics/test/tests/auxkernels/principalstress.i)
- (modules/xfem/test/tests/bimaterials/glued_bimaterials_2d.i)
- (examples/ex20_user_objects/ex20.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest7.i)
- (test/tests/materials/output/output_block_displaced.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform10.i)
- (modules/contact/test/tests/mortar_tm/2drz/frictionless_second/small.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_representative_slip_systems.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/no_multiapp.i)
- (modules/tensor_mechanics/test/tests/beam/static/torsion_2.i)
- (modules/tensor_mechanics/test/tests/action/two_coord.i)
- (test/tests/outputs/output_on/postprocessors.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest4.i)
- (modules/contact/test/tests/bouncing-block-contact/grid-sequencing/grid-sequencing.i)
- (test/tests/materials/output/output_block.i)
- (test/tests/controls/tag_based_naming_access/param.i)
- (test/tests/materials/discrete/recompute.i)
- (test/tests/geomsearch/penetration_locator/penetration_locator_test.i)
- (modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_2d.i)
- (test/tests/misc/check_error/kernel_with_empty_var.i)
- (modules/heat_conduction/test/tests/meshed_gap_thermal_contact/meshed_annulus_thermal_contact.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/thermal_eigenstrain_test.i)
- (test/tests/mesh/nemesis/nemesis_test.i)
- (modules/navier_stokes/test/tests/finite_element/ins/coupled-force/gravity-object.i)
- (test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs.i)
- (test/tests/nodalkernels/high_order_time_integration/high_order_time_integration.i)
- (modules/porous_flow/examples/tutorial/11_2D.i)
- (test/tests/misc/check_error/aux_kernel_with_var.i)
- (test/tests/constraints/equal_value_embedded_constraint/embedded_constraint.i)
- (tutorials/tutorial02_multiapps/step02_transfers/01_sub_meshfunction.i)
- (examples/ex05_amr/ex05.i)
- (test/tests/preconditioners/vcp/no_condense_test.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction.i)
- (modules/heat_conduction/test/tests/code_verification/spherical_test_no5.i)
- (modules/heat_conduction/test/tests/code_verification/cylindrical_test_no2.i)
- (test/tests/multiapps/detect_steady_state/master.i)
- (modules/contact/test/tests/fieldsplit/2blocks3d.i)
- (examples/ex08_materials/ex08.i)
- (test/tests/meshgenerators/distributed_rectilinear/generator/distributed_rectilinear_mesh_generator_adaptivity.i)
- (modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_fluxjump.i)
- (modules/contact/test/tests/verification/patch_tests/brick_1/brick1_template2.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D_adaptivity.i)
- (test/tests/multiapps/positions_from_file/dt_from_multi.i)
- (modules/porous_flow/test/tests/newton_cooling/nc04.i)
- (modules/xfem/test/tests/corner_nodes_cut/corner_edge_cut.i)
- (modules/misc/test/tests/kernels/thermo_diffusion/thermo_diffusion.i)
- (modules/heat_conduction/test/tests/meshed_gap_thermal_contact/meshed_gap_thermal_contact.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/action/no_action_L.i)
- (modules/thermal_hydraulics/test/tests/materials/ad_wall_heat_transfer_coefficient_3eqn_dittus_boelter/test.i)
- (modules/porous_flow/test/tests/gravity/grav02d.i)
- (modules/contact/test/tests/normalized_penalty/normalized_penalty_kin_Q8.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_elemental.i)
- (modules/ray_tracing/test/tests/coord_type/rspherical_line_integral.i)
- (test/tests/vectorpostprocessors/elements_along_line/2d.i)
- (modules/contact/test/tests/frictional/sliding_elastic_blocks_2d/sliding_elastic_blocks_2d_tp.i)
- (test/tests/mortar/displaced-gap-conductance-2d-non-conforming/gap-conductance.i)
- (modules/xfem/test/tests/corner_nodes_cut/notch.i)
- (test/tests/meshgenerators/sidesets_bounding_box_generator/multiple_boundary_ids.i)
- (test/tests/auxkernels/element_aux_var/l2_element_aux_var_test.i)
- (test/tests/outputs/format/output_test_gnuplot_gif.i)
- (test/tests/misc/check_error/function_file_test13.i)
- (test/tests/materials/output/block_via_outputs.i)
- (modules/contact/test/tests/mortar_tm/2d/frictionless_first/small.i)
- (test/tests/dirackernels/front_tracking/front_tracking.i)
- (modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4.i)
- (modules/combined/test/tests/internal_volume/rz_displaced.i)
- (modules/tensor_mechanics/test/tests/finite_strain_jacobian/bending_jacobian.i)
- (modules/tensor_mechanics/test/tests/2D_geometries/3D-RZ_finiteStrain_test.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/orthotropic_rotation_Cijkl.i)
- (test/tests/postprocessors/nodal_var_value/nodal_aux_var_value.i)
- (test/tests/postprocessors/function_value_pps/function_value_pps.i)
- (test/tests/mesh/mesh_generation/annulus.i)
- (test/tests/markers/value_range_marker/value_range_marker_test.i)
- (modules/tensor_mechanics/test/tests/test_jacobian/jacobian_spherical.i)
- (modules/tensor_mechanics/test/tests/2D_different_planes/gps_yz.i)
- (modules/combined/test/tests/combined_plasticity_temperature/ad_plasticity_temperature_dep_yield.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rspherical_incremental_small_elastic.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/errors/sub.i)
- (modules/navier_stokes/test/tests/finite_element/ins/boussinesq/benchmark/benchmark.i)
- (modules/tensor_mechanics/test/tests/gravity/block-gravity-kinetic-energy.i)
- (test/tests/problems/eigen_problem/jfnk_mo/ne_coupled_mo.i)
- (test/tests/mesh_modifiers/add_extra_nodeset/extra_nodeset_test.i)
- (modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d-dynamics.i)
- (test/tests/userobjects/setup_interface_count/element.i)
- (test/tests/multiapps/restart_multilevel/subsub.i)
- (test/tests/materials/piecewise_linear_interpolation_material/piecewise_linear_interpolation_material.i)
- (modules/porous_flow/examples/tutorial/05_tabulated.i)
- (test/tests/outputs/variables/output_vars_nonexistent.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain_direction.i)
- (test/tests/scaling/remove-singularity/test.i)
- (test/tests/auxkernels/solution_scalar_aux/solution_scalar_aux.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/action/action_L.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest1.i)
- (modules/richards/test/tests/pressure_pulse/pp01.i)
- (tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7c_adapt.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test9.i)
- (test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs_sub.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub.i)
- (modules/contact/test/tests/tan-pen-and-scaling/bouncing-block-tan-pen.i)
- (modules/combined/test/tests/heat_convection/heat_convection_function.i)
- (modules/tensor_mechanics/test/tests/umat/print/print_shear.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl3D.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/combined_twinning_slip_111tension.i)
- (modules/thermal_hydraulics/test/tests/jacobians/materials/ad_solid_material.i)
- (modules/contact/test/tests/simple_contact/simple_contact_rz_test.i)
- (modules/tensor_mechanics/test/tests/torque/torque_small.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/quad_sub.i)
- (test/tests/multiapps/picard_multilevel/picard_sub2.i)
- (modules/richards/test/tests/darcy/ss.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG2.i)
- (modules/phase_field/test/tests/electrochem_sintering/ElectrochemicalSintering_test.i)
- (test/tests/materials/stateful_prop/implicit_stateful.i)
- (test/tests/transfers/multiapp_userobject_transfer/master.i)
- (test/tests/kernels/tag_errors/tag_doesnt_exist/bad_tag.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_convergence_issue_flag.i)
- (test/tests/postprocessors/element_time_derivative/element_time_derivative_test.i)
- (test/tests/transfers/multiapp_high_order_variable_transfer/sub_L2_Lagrange_conservative.i)
- (modules/navier_stokes/test/tests/finite_element/ins/energy_source/steady-var.i)
- (modules/combined/test/tests/poro_mechanics/pp_generation_unconfined_action.i)
- (modules/contact/test/tests/bouncing-block-contact/tied-nodes.i)
- (test/tests/multiapps/picard_multilevel/picard_sub.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/2drz.i)
- (modules/contact/test/tests/verification/patch_tests/ring_1/ring1_template1.i)
- (modules/porous_flow/test/tests/poro_elasticity/undrained_oedometer.i)
- (modules/porous_flow/test/tests/actions/fullsat_brine_except4.i)
- (tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/tests/materials/packed_column/packed_column.i)
- (test/tests/controls/real_function_control/real_function_control.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/2D/dirichlet.i)
- (test/tests/postprocessors/element_l2_error_pps/element_l2_error_pp_test.i)
- (test/tests/geomsearch/patch_update_strategy/always-grid-sequence.i)
- (modules/porous_flow/test/tests/poro_elasticity/terzaghi_fully_saturated_volume.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp.i)
- (test/tests/controls/time_periods/nodalkernels/nodal.i)
- (test/tests/misc/check_error/dg_kernel_with_aux_var.i)
- (modules/tensor_mechanics/test/tests/1D_spherical/finiteStrain_1DSphere_hollow.i)
- (test/tests/restrictable/check_error/check_error.i)
- (tutorials/darcy_thermo_mech/step10_multiapps/problems/step10.i)
- (modules/porous_flow/test/tests/basic_advection/2phase.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_radiation_test.i)
- (test/tests/materials/discrete/recompute_block_error.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/combined_twinning_slip_error.i)
- (test/tests/restart/kernel_restartable/kernel_restartable_custom_name_second.i)
- (modules/porous_flow/test/tests/relperm/brooks_corey2.i)
- (modules/xfem/test/tests/moving_interface/cut_mesh_2d.i)
- (modules/stochastic_tools/test/tests/surrogates/gaussian_process/sub.i)
- (test/tests/transfers/transfer_interpolation/master.i)
- (modules/porous_flow/test/tests/numerical_diffusion/fltvd_no_antidiffusion.i)
- (test/tests/tag/tag_nodal_kernels.i)
- (modules/phase_field/test/tests/KKS_system/derivative_parsed_material.i)
- (test/tests/multiapps/picard_catch_up/master.i)
- (tutorials/tutorial02_multiapps/step03_coupling/03_master_subcycling_picard.i)
- (modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/01_master.i)
- (examples/ex03_coupling/ex03.i)
- (modules/richards/test/tests/pressure_pulse/pp21.i)
- (modules/tensor_mechanics/test/tests/dynamics/linear_constraint/disp_mid.i)
- (modules/richards/test/tests/gravity_head_1/gh06.i)
- (test/tests/materials/functor_properties/traditional-mat-props.i)
- (modules/heat_conduction/test/tests/multiple_radiation_cavities/multiple_radiation_cavities.i)
- (modules/contact/test/tests/verification/patch_tests/single_pnt_2d/single_point_2d.i)
- (test/tests/dirackernels/reporter_point_source/2d_vpp_transient.i)
- (test/tests/bcs/misc_bcs/vector_neumann_bc_test.i)
- (modules/tensor_mechanics/test/tests/nodal_patch_recovery/patch_recovery.i)
- (test/tests/userobjects/setup_interface_count/nodal.i)
- (modules/richards/test/tests/gravity_head_1/gh15.i)
- (test/tests/postprocessors/side_integral/side_integral_test.i)
- (modules/thermal_hydraulics/test/tests/materials/prandtl_number/test.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_dyn_variable_action.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_no_split.i)
- (test/tests/mesh_modifiers/add_side_sets/cylinder_normals_fixed.i)
- (modules/richards/test/tests/warrick_lomen_islas/wli02.i)
- (modules/tensor_mechanics/test/tests/visco/gen_kv_driving.i)
- (modules/tensor_mechanics/tutorials/basics/part_2.3.i)
- (modules/richards/test/tests/gravity_head_1/gh08.i)
- (modules/thermal_hydraulics/test/tests/auxkernels/convective_heat_flux_1phase/test.i)
- (modules/contact/test/tests/verification/patch_tests/plane_3/plane3_mu_0_2_pen.i)
- (test/tests/restart/kernel_restartable/kernel_restartable_custom_name.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated_volume.i)
- (modules/contact/test/tests/bouncing-block-contact/mixed-weighted-gap-swapped.i)
- (modules/combined/test/tests/thermo_mech/thermo_mech_smp.i)
- (modules/contact/examples/3d_berkovich/indenter_berkovich_friction.i)
- (test/tests/postprocessors/change_over_time/change_over_time.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-nodal-disp.i)
- (test/tests/bcs/coupled_var_neumann/coupled_var_neumann_nl.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_2d_quad8.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_stress_errorcheck.i)
- (modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart2.i)
- (modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d_as_2d.i)
- (test/tests/restrictable/internal_side_user_object/internal_side_user_object.i)
- (test/tests/multiapps/check_error/sub2.i)
- (test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs.i)
- (test/tests/interfacekernels/1d_interface/ik_save_in_test.i)
- (modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_reporter/sub.i)
- (modules/contact/test/tests/mortar_tm/2drz/frictionless_second/finite_rr.i)
- (modules/tensor_mechanics/examples/piston/piston_params.i)
- (test/tests/preconditioners/fsp/fsp_test_image.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/finite_elastic-noad.i)
- (modules/contact/test/tests/verification/hertz_cyl/quart_symm_q4/hertz_cyl_qsym_1deg_template1.i)
- (modules/tensor_mechanics/test/tests/2D_different_planes/gps_xy.i)
- (modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod.i)
- (modules/porous_flow/test/tests/actions/basicthm_th.i)
- (modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number/sub.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_pps_lim.i)
- (python/peacock/tests/input_tab/InputFileEditor/gold/fsp_test.i)
- (modules/tensor_mechanics/test/tests/umat/predef/dpredef.i)
- (modules/contact/test/tests/bouncing-block-contact/ping-ponging/kinematic-ping-pong.i)
- (modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem.i)
- (test/tests/misc/check_error/function_file_test2.i)
- (test/tests/transfers/multiapp_conservative_transfer/sub_userobject.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer_vector/sub.i)
- (modules/fsi/test/tests/fsi_acoustics/wave_height_bc/wave_height_bc.i)
- (modules/contact/test/tests/mechanical_constraint/glued_penalty.i)
- (modules/porous_flow/test/tests/jacobian/desorped_mass_vol_exp01.i)
- (test/tests/misc/check_error/bad_bc_var_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/action/action_1D.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_10.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test4.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i)
- (modules/contact/test/tests/frictional/single_point_2d/single_point_2d_tp.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/special/objective_shear.i)
- (modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_2constraint.i)
- (modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain_esm.i)
- (modules/ray_tracing/test/tests/raykernels/coupled_line_source_ray_kernel/coupled_line_source_ray_kernel.i)
- (modules/tensor_mechanics/test/tests/beam/eigenstrain/thermal_expansion_small.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence/3D/dirichlet.i)
- (modules/tensor_mechanics/test/tests/beam/static_vm/ansys_vm2.i)
- (modules/contact/test/tests/hertz_spherical/hertz_contact_hex20.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform2.i)
- (framework/contrib/hit/test/input.i)
- (modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/tosub_master.i)
- (test/tests/mesh/adapt/interval.i)
- (modules/richards/test/tests/gravity_head_1/gh12.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/badproperties/stvenantkirchhoff.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/05_sub_parallel.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_exponential.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain_shear.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fully_saturated.i)
- (modules/tensor_mechanics/test/tests/truss/truss_hex_action.i)
- (modules/contact/test/tests/simple_contact/two_block_compress/two_equal_blocks_compress_2d.i)
- (test/tests/misc/check_error/subdomain_restricted_auxkernel_mismatch.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test2tt.i)
- (tutorials/darcy_thermo_mech/step03_darcy_material/problems/step3.i)
- (test/tests/dirackernels/point_caching/point_caching_uniform_refinement.i)
- (test/tests/transfers/multiapp_copy_transfer/third_monomial_from_sub/sub.i)
- (test/tests/misc/selective_reinit/selective_reinit_test.i)
- (modules/tensor_mechanics/test/tests/poro/vol_expansion.i)
- (modules/combined/test/tests/eigenstrain/inclusion.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_small.i)
- (test/tests/partitioners/random_partitioner/random_partitioner.i)
- (test/tests/multiapps/picard/picard_custom_postprocessor.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d.i)
- (modules/peridynamics/test/tests/restart/2D_mesh_restartable_H1NOSPD.i)
- (modules/tensor_mechanics/test/tests/auxkernels/ranktwoscalaraux.i)
- (test/tests/utils/perf_graph_live_print/perf_graph_live_print.i)
- (modules/combined/test/tests/poro_mechanics/pp_generation.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_trimesh.i)
- (test/tests/multiapps/sub_cycling_failure/sub_gold.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3qtt.i)
- (test/tests/vectorpostprocessors/intersection_points_along_line/3d.i)
- (modules/tensor_mechanics/test/tests/ad_linear_elasticity/tensor.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/except2.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_master.i)
- (test/tests/auxkernels/ghosting_aux/no_algebraic_ghosting.i)
- (modules/contact/test/tests/sliding_block/sliding/frictional_04_penalty.i)
- (test/tests/controls/output/controllable_clear.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_twinning/modified_kalidindi_for_hcp.i)
- (test/tests/controls/real_function_control/multi_real_function_control.i)
- (test/tests/outputs/iterative/iterative_csv.i)
- (test/tests/mortar/1d/1d.i)
- (modules/tensor_mechanics/test/tests/umat/print_c/print_c.i)
- (modules/navier_stokes/test/tests/finite_element/ins/energy_source/steady.i)
- (modules/tensor_mechanics/test/tests/cohesive_zone_model/stretch_rotate_large_deformation.i)
- (modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_multiple_dimension_base.i)
- (test/tests/multiapps/centroid_multiapp/centroid_multiapp.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test2q.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_Cartesian/main.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/target_boundary_master.i)
- (test/tests/bcs/sideset_from_nodeset/sideset_from_nodeset_test.i)
- (examples/ex14_pps/ex14_compare_solutions_1.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/01_sub.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/finite.i)
- (test/tests/tag/tag_dirac_kernels.i)
- (test/tests/multiapps/picard_failure/picard_sub.i)
- (modules/xfem/test/tests/moving_interface/moving_diffusion.i)
- (modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_AD.i)
- (modules/tensor_mechanics/test/tests/homogenization/anisoShortFiber.i)
- (test/tests/executioners/eigen_executioners/normal_eigen_kernel.i)
- (modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/lambda_shear_modulus_test.i)
- (test/tests/controls/error/disable_executioner.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform8.i)
- (modules/peridynamics/test/tests/auxkernels/boundary_offset_node_volume_3D.i)
- (modules/porous_flow/examples/tutorial/13.i)
- (modules/navier_stokes/test/tests/finite_element/ins/coupled-force/steady-function.i)
- (python/peacock/tests/common/transient_with_date.i)
- (modules/richards/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (modules/porous_flow/examples/lava_lamp/1phase_convection.i)
- (modules/xfem/test/tests/pressure_bc/inclined_edge_2d_pressure.i)
- (tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/problems/step6a_coupled.i)
- (modules/contact/test/tests/nodal_area/nodal_area_3D.i)
- (modules/tensor_mechanics/test/tests/beam/static/timoshenko_small_strain_z.i)
- (test/tests/time_integrators/actually_explicit_euler/diverged.i)
- (modules/tensor_mechanics/tutorials/basics/part_1.1.i)
- (test/tests/bcs/matched_value_bc/matched_value_bc_test.i)
- (modules/combined/test/tests/thermal_elastic/ad-thermal_elastic.i)
- (modules/contact/test/tests/sliding_block/edge_dropping/two_equal_blocks_slide_2d.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest9.i)
- (test/tests/meshgenerators/lower_d_block_generator/names.i)
- (modules/porous_flow/test/tests/energy_conservation/heat04_fullysat_action.i)
- (modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i)
- (modules/fsi/test/tests/fsi_2d/fsi_flat_channel.i)
- (test/tests/bcs/coupled_var_neumann/coupled_var_neumann.i)
- (modules/porous_flow/test/tests/dispersion/disp01.i)
- (test/tests/kernels/diffusion_with_hanging_node/simple_diffusion.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/05_master_parallel.i)
- (test/tests/kernels/coefficient_time_derivative/coefficient_time_derivative_diffusion.i)
- (modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i)
- (tutorials/tutorial02_multiapps/step02_transfers/03_sub_uot.i)
- (test/tests/mesh_modifiers/mesh_extruder/extruder_angle.i)
- (test/tests/parser/param_substitution/param_substitution.i)
- (test/tests/multiapps/picard_failure/picard_sub_no_fail.i)
- (modules/porous_flow/test/tests/dispersion/disp01_heavy.i)
- (test/tests/meshgenerators/combiner_generator/combiner_multi_input_translate_from_file.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test1tt.i)
- (modules/tensor_mechanics/test/tests/torque/ad_torque_small.i)
- (test/tests/multiapps/relaxation/sub_relaxed_sub.i)
- (modules/heat_conduction/test/tests/joule_heating/transient_jouleheating.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/special/patch.i)
- (test/tests/multiapps/output_in_position/master.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_verbose.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_4/cyl4_mu_0_2_pen.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl2D_yz.i)
- (test/tests/misc/check_error/nodal_value_off_block.i)
- (modules/tensor_mechanics/test/tests/umat/temperature/elastic_dtemperature.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain_action.i)
- (modules/functional_expansion_tools/examples/2D_interface/sub.i)
- (test/tests/postprocessors/num_adaptivity_cycles/num_adaptivity_cycles_toggle_adaptivity_wait.i)
- (test/tests/materials/interface_material/interface_value_material_noIK.i)
- (modules/porous_flow/test/tests/numerical_diffusion/fully_saturated_action.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_master.i)
- (test/tests/executioners/eigen_executioners/ipm.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_angle.i)
- (test/tests/vectorpostprocessors/nodal_value_sampler/nodal_value_sampler.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_2d_quad9_test.i)
- (modules/tensor_mechanics/test/tests/umat/time_step/elastic_timestep.i)
- (test/tests/controls/time_periods/bcs/bcs_integrated.i)
- (test/tests/multiapps/full_solve_multiapp/master_eigen.i)
- (test/tests/mortar/1d/1d_nodebc_name.i)
- (test/tests/materials/ad_material/conversion/1d_dirichlet.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_stress_free_temp.i)
- (test/tests/restart/restart_transient_from_steady/steady_with_sub.i)
- (test/tests/mesh_modifiers/mesh_extruder/extrude_remap_layer2.i)
- (test/tests/materials/stateful_prop/computing_initial_residual_test.i)
- (test/tests/transfers/multiapp_projection_transfer/high_order_master.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/tosub_source_displaced.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_1/cyl1_mu_0_2_pen.i)
- (test/tests/parser/cli_argument/cli_arg_test.i)
- (test/tests/outputs/iterative/iterative_inline.i)
- (modules/contact/test/tests/mechanical_constraint/frictionless_kinematic_gap_offsets.i)
- (test/tests/outputs/vtk/vtk_diff_serial_mesh_parallel.i)
- (test/tests/multiapps/restart_subapp_ic/sub.i)
- (test/tests/multiapps/full_solve_multiapp_reset/sub.i)
- (test/tests/outputs/vtk/vtk_parallel.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_sub.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_multiple_softening.i)
- (test/tests/interfaces/random/random_material.i)
- (test/tests/kernels/vector_fe/coupled_vector_gradient.i)
- (modules/thermal_hydraulics/test/tests/materials/convective_heat_transfer_coefficient/test.i)
- (test/tests/transfers/multiapp_transfer_transformation/transfer_transformation.i)
- (modules/contact/test/tests/kinematic-and-scaling/bouncing-block-kinematic.i)
- (modules/tensor_mechanics/test/tests/check_error/youngs_modulus.i)
- (modules/xfem/test/tests/solid_mechanics_basic/test_crack_counter.i)
- (modules/combined/test/tests/linear_elasticity/linear_anisotropic_material.i)
- (modules/contact/test/tests/mechanical_constraint/frictionless_penalty.i)
- (modules/tensor_mechanics/tutorials/basics/part_2.1.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized_second_order.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp_nodens.i)
- (test/tests/geomsearch/patch_update_strategy/always.i)
- (test/tests/outputs/format/output_test_tecplot.i)
- (test/tests/restart/pointer_restart_errors/pointer_load_error.i)
- (modules/peridynamics/test/tests/generalized_plane_strain/out_of_plane_pressure_OSPD.i)
- (modules/tensor_mechanics/test/tests/ad_action/two_block_new.i)
- (modules/porous_flow/test/tests/jacobian/mass_vol_exp02.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_2d_quad9.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/sub.i)
- (modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i)
- (test/tests/misc/check_error/assertion_test.i)
- (modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_fluxjump_3d.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion_function/small_linear.i)
- (test/tests/kernels/2d_diffusion/2d_diffusion_test.i)
- (python/peacock/tests/common/transient_big.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/tosub_sub.i)
- (test/tests/multiapps/sub_cycling/master_iteration_adaptive.i)
- (modules/tensor_mechanics/test/tests/truss/truss_2d_action.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_rz_exponential.i)
- (test/tests/userobjects/nearest_point_layered_integral/nearest_point_layered_integral.i)
- (modules/contact/test/tests/frictional/single_point_2d/single_point_2d_predictor.i)
- (test/tests/auxkernels/element_aux_boundary/element_aux_boundary.i)
- (modules/peridynamics/test/tests/failure_tests/2D_singular_shape_tensor_H1NOSPD.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/boundary_tomaster_sub.i)
- (test/tests/materials/discrete/recompute_warning.i)
- (modules/richards/test/tests/pressure_pulse/pp22.i)
- (test/tests/outputs/console/console_transient.i)
- (modules/combined/test/tests/cavity_pressure/initial_temperature.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_power.i)
- (test/tests/mesh_modifiers/add_side_sets_from_bounding_box/add_side_sets_from_bounding_box.i)
- (test/tests/outputs/iterative/iterative_steady.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_bf.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/action/action_L.i)
- (modules/xfem/test/tests/moving_interface/moving_level_set.i)
- (test/tests/preconditioners/fsp/fsp_test.i)
- (modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined_hht.i)
- (modules/combined/test/tests/internal_volume/hex20.i)
- (modules/tensor_mechanics/test/tests/beam/static/torsion_1.i)
- (modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i)
- (test/tests/outputs/xml/xml_iterations.i)
- (tutorials/tutorial02_multiapps/app/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (modules/contact/test/tests/verification/patch_tests/ring_4/ring4_template2.i)
- (modules/porous_flow/test/tests/numerical_diffusion/pffltvd_action.i)
- (modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_first/finite.i)
- (modules/contact/test/tests/pdass_problems/cylinder_friction.i)
- (test/tests/postprocessors/element_integral_var_pps/initial_pps.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_ti.i)
- (modules/contact/test/tests/verification/patch_tests/brick_4/brick4_template1.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_file.i)
- (modules/chemical_reactions/test/tests/parser/equilibrium_action.i)
- (tutorials/darcy_thermo_mech/step03_darcy_material/tests/kernels/darcy_pressure/darcy_pressure.i)
- (modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_patch_test_base.i)
- (test/tests/dirackernels/material_point_source/material_error_check.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic/elastic_rotation_test.i)
- (test/tests/multiapps/multilevel/dt_from_sub_master.i)
- (test/tests/misc/execute_on/execute_on_test.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution.i)
- (test/tests/mesh_modifiers/mesh_extruder/extrude_remap_layer1.i)
- (test/tests/transfers/multiapp_interpolation_transfer/fromsub_sub.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub1.i)
- (modules/combined/test/tests/power_law_hardening/PowerLawHardening.i)
- (test/tests/misc/check_error/dirac_kernel_with_aux_var.i)
- (test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral.i)
- (test/tests/outputs/console/multiapp/picard_sub.i)
- (test/tests/meshgenerators/patch_mesh_generator/patch_mesh_generator.i)
- (modules/tensor_mechanics/test/tests/line_material_rank_two_sampler/rank_two_scalar_sampler.i)
- (test/tests/misc/check_error/bad_parsed_function_vars.i)
- (modules/level_set/test/tests/transfers/markers/single_level/sub.i)
- (modules/porous_flow/test/tests/relperm/unity.i)
- (test/tests/auxkernels/bounds/old_value_bounds.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/orthotropic_rotation_Cijkl.i)
- (test/tests/variables/curvilinear_element/curvilinear_element_test.i)
- (modules/tensor_mechanics/test/tests/volumetric_deform_grad/volumetric_strain_interface.i)
- (test/tests/executioners/eigen_executioners/ne_deficient_b.i)
- (test/tests/kernels/simple_transient_diffusion/simple_transient_diffusion.i)
- (test/tests/multiapps/transient_multiapp/dt_from_multi_sub.i)
- (modules/contact/test/tests/nodal_area/nodal_area_2D.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_01.i)
- (test/tests/geomsearch/quadrature_nearest_node_locator/qnnl_ad.i)
- (test/tests/interfacekernels/ad_coupled_value/coupled.i)
- (modules/xfem/test/tests/pressure_bc/2d_pressure_displaced_mesh.i)
- (modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template1.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3qns.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain_disp.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/special/patch.i)
- (modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_02.i)
- (test/tests/multiapps/override_cliargs/sub.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test7.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/from_one_sub_master.i)
- (test/tests/fvkernels/fv_coupled_var/coupled.i)
- (test/tests/executioners/nl_forced_its/nl_forced_its.i)
- (modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinearConstant.i)
- (modules/peridynamics/test/tests/simple_tests/2D_irregularD_variableH_OSPD.i)
- (modules/chemical_reactions/test/tests/solid_kinetics/2species_without_action.i)
- (test/tests/multiapps/multilevel/dt_from_sub_subsub.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_coupled_scaled.i)
- (modules/tensor_mechanics/test/tests/visco/burgers_creep.i)
- (test/tests/mesh/mixed_dim/1d_3d.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_radiation/gap_heat_transfer_radiation_test.i)
- (test/tests/multiapps/grid-sequencing/fine.i)
- (modules/stochastic_tools/test/tests/surrogates/pod_rb/boundary/sub.i)
- (test/tests/outputs/iterative/iterative_steady_sequence.i)
- (modules/porous_flow/test/tests/gravity/grav01d.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/cp_slip_rate_integ/crysp_linesearch.i)
- (modules/richards/test/tests/recharge_discharge/rd02.i)
- (modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_4.i)
- (test/tests/constraints/equal_value_boundary_constraint/equal_value_boundary_constraint_test.i)
- (test/tests/test_harness/csv_validation_tester_01.i)
- (test/tests/restart/restart_add_variable/add_variable_restart.i)
- (modules/richards/test/tests/recharge_discharge/rd03.i)
- (modules/peridynamics/test/tests/generalized_plane_strain/generalized_plane_strain_OSPD.i)
- (test/tests/outputs/iterative/iterative.i)
- (modules/contact/test/tests/verification/patch_tests/brick_1/brick1_aug.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform2.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i)
- (test/tests/outputs/console/additional_execute_on.i)
- (modules/combined/test/tests/break_mesh_interface_contact/break_mesh_interface_contact.i)
- (modules/stochastic_tools/test/tests/multiapps/batch_full_solve_multiapp/sub.i)
- (test/tests/postprocessors/memory_usage/print_memory_usage.i)
- (modules/xfem/test/tests/init_solution_propagation/init_solution_propagation.i)
- (modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZQuadratic.i)
- (test/tests/misc/check_error/function_file_test10.i)
- (modules/porous_flow/test/tests/recover/pffltvd.i)
- (test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/main.i)
- (modules/tensor_mechanics/test/tests/stickyBC/push_up.i)
- (modules/stochastic_tools/examples/batch/sub.i)
- (test/tests/misc/app_name/simple-diffusion.i)
- (test/tests/controls/syntax_based_naming_access/system_asterisk_param.i)
- (modules/heat_conduction/test/tests/verify_against_analytical/ad_1D_transient.i)
- (test/tests/outputs/nemesis/nemesis.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_bad_function_series.i)
- (modules/contact/test/tests/mortar_tm/2d/ad_frictionless_sec/finite.i)
- (modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined.i)
- (test/tests/transfers/multiapp_copy_transfer/linear_lagrange_to_sub/master.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_cutback.i)
- (modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/mean.i)
- (modules/contact/test/tests/tension_release/4ElemTensionRelease_mechanical_constraint.i)
- (test/tests/userobjects/layered_integral/layered_integral_test.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs.i)
- (test/tests/time_integrators/implicit-euler/ie_adapt.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/1d-strain.i)
- (tutorials/tutorial01_app_development/step02_input_file/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (modules/combined/test/tests/elastic_thermal_patch/elastic_thermal_patch.i)
- (test/tests/multiapps/sub_cycling_failure/master_gold.i)
- (test/tests/controls/time_periods/aux_kernels/control.i)
- (tutorials/tutorial03_verification/app/test/tests/step04_mms/2d_main.i)
- (modules/tensor_mechanics/test/tests/2D_different_planes/gps_xz.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/rz_finite_elastic-noad.i)
- (test/tests/ics/zero_ic/test.i)
- (modules/porous_flow/test/tests/dirackernels/theis1.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_file_extension.i)
- (test/tests/misc/check_error/nan_test.i)
- (modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/line_source_ray_kernel.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3q.i)
- (test/tests/outputs/misc/warehouse_access.i)
- (test/tests/auxkernels/element_quality_aux/element_quality_aux.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/two_way_many_apps_master.i)
- (test/tests/multiapps/check_error/sub_unused.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_1/cyl1_template2.i)
- (modules/phase_field/test/tests/CHSplitChemicalPotential/simple_transient_diffusion.i)
- (test/tests/outputs/tecplot/tecplot_binary.i)
- (modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i)
- (test/tests/geomsearch/3d_penetration_locator/3d_tet.i)
- (modules/porous_flow/test/tests/relperm/brooks_corey1.i)
- (test/tests/nodalkernels/constraint_enforcement/upper-and-lower-bound.i)
- (modules/tensor_mechanics/test/tests/cohesive_zone_model/bilinear_mixed_scale_strength.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform2.i)
- (modules/combined/test/tests/gravity/gravity.i)
- (modules/combined/test/tests/restart-transient-from-ss-with-stateful/master_tr.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test1q.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_action_existing_UOs.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/3tile_strain.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/sub.i)
- (modules/porous_flow/test/tests/thm_rehbinder/free_outer.i)
- (modules/tensor_mechanics/tutorials/basics/part_2.4.i)
- (modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_stress_relaxation.i)
- (test/tests/multiapps/sub_cycling/sub_iteration_adaptive.i)
- (modules/porous_flow/test/tests/dirackernels/injection_with_plasticity.i)
- (test/tests/multiapps/secant/steady_main.i)
- (test/tests/multiapps/picard_multilevel/picard_master.i)
- (modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_4/cyl4_template2.i)
- (test/tests/meshgenerators/combiner_generator/combiner_generator_from_file.i)
- (test/tests/bcs/function_neumann_bc/test.i)
- (modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_finite.i)
- (modules/combined/test/tests/fdp_geometric_coupling/fdp_geometric_coupling.i)
- (modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d.i)
- (test/tests/multiapps/picard_sub_cycling/fully_coupled.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/1D/neumann.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/exception.i)
- (test/tests/parser/cli_multiapp_group/dt_from_master.i)
- (test/tests/partitioners/block_weighted_partitioner/block_weighted_partitioner.i)
- (test/tests/misc/deprecation/deprecated_coupled_var.i)
- (test/tests/multiapps/reset/multilevel_sub_sub.i)
- (modules/tensor_mechanics/test/tests/umat/print/print.i)
- (test/tests/misc/check_error/range_check_param.i)
- (modules/combined/test/tests/restart-transient-from-ss-with-stateful/master_ss.i)
- (test/tests/mesh_modifiers/mesh_extruder/gen_extrude.i)
- (test/tests/fvkernels/fv_simple_diffusion/dirichlet.i)
- (test/tests/problems/eigen_problem/initial_condition/ne_ic.i)
- (modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/power_profile.i)
- (test/tests/transfers/multiapp_projection_transfer/fixed_meshes_master.i)
- (test/tests/outputs/exodus/invalid_hide_variables.i)
- (test/tests/userobjects/setup_interface_count/general.i)
- (test/tests/interfaces/random/random_uo.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y.i)
- (modules/combined/examples/publications/rapid_dev/fig8.i)
- (test/tests/misc/check_error/kernel_with_vector_var.i)
- (test/tests/misc/check_error/vector_kernel_with_standard_var.i)
- (modules/combined/test/tests/ad_power_law_creep/power_law_creep.i)
- (modules/navier_stokes/test/tests/finite_element/ins/rz-x-axial-coord/pipe-flow.i)
- (modules/tensor_mechanics/test/tests/static_deformations/cosserat_shear.i)
- (modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d_points.i)
- (modules/tensor_mechanics/test/tests/beam/action/2_block.i)
- (modules/heat_conduction/test/tests/verify_against_analytical/1D_transient.i)
- (modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_uniform.i)
- (test/tests/vectorpostprocessors/side_value_sampler/side_value_sampler.i)
- (modules/contact/test/tests/pressure/pressurePenalty_mechanical_constraint.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht.i)
- (test/tests/bcs/periodic/periodic_bc_displaced_problem.i)
- (modules/porous_flow/test/tests/energy_conservation/heat04_action_KT.i)
- (test/tests/outputs/error/duplicate_output_files.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/bc_gap_heat_transfer_displaced_radiation.i)
- (modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_axial_motion_delayed.i)
- (test/tests/kernels/ad_coupled_convection/ad_coupled_convection.i)
- (test/tests/vectorpostprocessors/elements_along_line/3d.i)
- (stork/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt_restart.i)
- (modules/xfem/test/tests/moving_interface/cut_mesh_3d.i)
- (modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template2.i)
- (modules/xfem/test/tests/diffusion_xfem/levelsetcut2d.i)
- (test/tests/relationship_managers/default_ghosting/default_ghosting.i)
- (test/tests/misc/check_error/multiple_bad_ic_test.i)
- (examples/ex21_debugging/ex21.i)
- (test/tests/kernels/ad_2d_diffusion/2d_diffusion_test.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/karthik-eg-1.i)
- (modules/combined/test/tests/heat_conduction_xfem/heat.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/convergence/plastic_j2.i)
- (test/tests/mesh/adapt_weight/adapt_weight_test.i)
- (modules/functional_expansion_tools/test/tests/standard_use/volume_coupled.i)
- (test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3ns.i)
- (test/tests/outputs/csv_final_and_latest/final.i)
- (modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01.i)
- (test/tests/test_harness/500_num_steps.i)
- (modules/contact/test/tests/verification/patch_tests/ring_2/ring2_mu_0_2_pen.i)
- (modules/tensor_mechanics/test/tests/action/material_output_order.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined5.i)
- (test/tests/vectorpostprocessors/histogram_vector_postprocessor/histogram_vector_postprocessor.i)
- (modules/tensor_mechanics/test/tests/gravity/gravity_test.i)
- (test/tests/userobjects/Terminator/terminator.i)
- (test/tests/outputs/console/multiapp/picard_master_both.i)
- (modules/heat_conduction/test/tests/homogenization/heatConduction2D.i)
- (test/tests/dampers/bounding_value_element_damper/bounding_value_max_test.i)
- (modules/tensor_mechanics/test/tests/umat/elastic_hardening/linear_strain_hardening.i)
- (test/tests/outputs/csv/csv_restart_part2.i)
- (test/tests/executioners/eigen_executioners/ne.i)
- (modules/phase_field/test/tests/KKS_system/bug.i)
- (modules/phase_field/test/tests/KKS_system/kks_phase_concentration.i)
- (modules/contact/test/tests/verification/patch_tests/ring_1/ring1_mu_0_2_pen.i)
- (modules/tensor_mechanics/test/tests/strain_energy_density/incr_model.i)
- (modules/peridynamics/test/tests/failure_tests/2D_bond_status_convergence_H1NOSPD.i)
- (test/tests/outputs/subdir_output/subdir_output.i)
- (modules/contact/test/tests/check_error/contact_displacements.i)
- (test/tests/fvkernels/fv_simple_diffusion/neumann.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D.i)
- (modules/tensor_mechanics/test/tests/ad_linear_elasticity/thermal_expansion.i)
- (test/tests/multiapps/transient_multiapp/dt_from_master_sub.i)
- (modules/richards/test/tests/pressure_pulse/pp02.i)
- (python/peacock/tests/input_tab/InputTree/gold/simple_diffusion.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/tosub.i)
- (modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_resid.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_rz.i)
- (tutorials/tutorial02_multiapps/step02_transfers/03_master_uot.i)
- (modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_without_action.i)
- (modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/advection_error_testing.i)
- (modules/tensor_mechanics/test/tests/scalar_material_damage/scalar_material_damage.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/to_multiple_boundaries_master.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D.i)
- (modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
- (modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_creep_plasticity.i)
- (test/tests/materials/ad_material/ad_material.i)
- (test/tests/postprocessors/variable_inner_product/variable_inner_product.i)
- (modules/richards/test/tests/dirac/bh_fu_08.i)
- (test/tests/postprocessors/num_iterations/num_iterations.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_finite.i)
- (test/tests/auxkernels/pp_depend/pp_depend.i)
- (test/tests/postprocessors/scalar_variable/scalar_variable_pps.i)
- (test/tests/bcs/vectorpostprocessor/vectorpostprocessor.i)
- (test/tests/scaling/off-diag-scaling/test.i)
- (test/tests/kernels/ad_mat_diffusion/ad_1D_transient.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_coeff_restart.i)
- (test/tests/coord_type/coord_type_rz.i)
- (modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden2.i)
- (test/tests/interfacekernels/1d_interface/single_variable_coupled_flux.i)
- (test/tests/preconditioners/smp/smp_single_adapt_test.i)
- (test/tests/actions/meta_action/meta_action_test.i)
- (tutorials/tutorial02_multiapps/step01_multiapps/07_sub_sub_multilevel.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain_hydrostat.i)
- (test/tests/transfers/multiapp_copy_transfer/second_lagrange_to_sub/master.i)
- (modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
- (modules/tensor_mechanics/test/tests/recompute_radial_return/isotropic_plasticity_incremental_strain.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xda.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/action/no_action_1D.i)
- (test/tests/multiapps/multiple_position_files/sub1.i)
- (modules/phase_field/test/tests/ADCHSoretDiffusion/simple_transient_diffusion_with_soret.i)
- (test/tests/misc/check_error/function_file_test15.i)
- (modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/elastic_rotation.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i)
- (test/tests/outputs/nemesis/nemesis_elemental.i)
- (modules/contact/test/tests/verification/patch_tests/brick_1/brick1_mu_0_2_pen.i)
- (test/tests/multiapps/sub_cycling_failure/failure_with_max_procs_set.i)
- (test/tests/postprocessors/num_dofs/num_dofs.i)
- (modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i)
- (modules/contact/test/tests/bouncing-block-contact/frictional-mortar-min-lm-mortar-disp.i)
- (test/tests/vectorpostprocessors/csv_reader/transfer/master.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_capyramidal_active.i)
- (test/tests/auxkernels/solution_aux/solution_aux_direct.i)
- (test/tests/outputs/intervals/sync_times.i)
- (modules/tensor_mechanics/test/tests/global_strain/global_strain_uniaxial.i)
- (test/tests/materials/stateful_coupling/stateful_coupling.i)
- (test/tests/vectorpostprocessors/intersection_points_along_line/2d.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_sort_test.i)
- (modules/tensor_mechanics/test/tests/beam/static/euler_pipe_axial_disp.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test3qns.i)
- (test/tests/postprocessors/element_integral/element_integral_test.i)
- (examples/ex16_timestepper/ex16.i)
- (modules/contact/test/tests/frictional/single_point_2d/single_point_2d.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/2D/dirichlet.i)
- (test/tests/controls/time_periods/bcs/bcs.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4qns.i)
- (test/tests/problems/eigen_problem/eigensolvers/ane.i)
- (test/tests/auxkernels/element_aux_var/element_high_order_aux_test.i)
- (modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_centerline_VLC.i)
- (modules/contact/test/tests/verification/patch_tests/plane_2/plane2_mu_0_2_pen.i)
- (modules/tensor_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_implicit.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_KT.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/special/rotate.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/1D/dirichlet.i)
- (test/tests/transfers/multiapp_userobject_transfer/main_nearest_sub_app.i)
- (modules/heat_conduction/test/tests/code_verification/cylindrical_test_no3.i)
- (modules/navier_stokes/test/tests/finite_element/ins/velocity_channel/velocity_inletBC_by_parts.i)
- (test/tests/executioners/adapt_and_modify/adapt_and_modify.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i)
- (modules/stochastic_tools/test/tests/transfers/sampler_transfer/sub.i)
- (modules/tensor_mechanics/test/tests/smeared_cracking/cracking_function.i)
- (test/tests/indicators/analytical_indicator/analytical_indicator_test.i)
- (modules/tensor_mechanics/tutorials/introduction/mech_step04a.i)
- (test/tests/mesh/split_uniform_refine/3d_diffusion.i)
- (modules/combined/test/tests/evolving_mass_density/expand_compress_test_tensors.i)
- (test/tests/variables/coupled_scalar/coupled_scalar_default.i)
- (modules/tensor_mechanics/test/tests/beam/static_vm/ansys_vm12.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/multilevel_sub.i)
- (test/tests/transfers/multiapp_postprocessor_to_scalar/sub2.i)
- (modules/chemical_reactions/test/tests/equilibrium_const/constant.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/patch/large_patch.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/exec_on_mismatch.i)
- (modules/stochastic_tools/test/tests/transfers/monte_carlo/sub.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)
- (test/tests/outputs/system_info/system_info.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_read_slip_prop.i)
- (test/tests/meshgenerators/block_deletion_generator/block_deletion_test11.i)
- (modules/navier_stokes/test/tests/finite_element/ins/block-restriction/two-mats-two-eqn-sets.i)
- (test/tests/controls/control_connection/control_connection.i)
- (modules/tensor_mechanics/test/tests/mohr_coulomb/many_deforms_cap.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/cauchy-elastic.i)
- (test/tests/restart/restart_diffusion/exodus_refined_refined_restart_2_test.i)
- (test/tests/transfers/multiapp_variable_value_sample_transfer/full_domain_primary.i)
- (modules/tensor_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_explicit.i)
- (modules/porous_flow/test/tests/capillary_pressure/brooks_corey1.i)
- (test/tests/mesh/mixed_dim/1d_2d_w_matl.i)
- (modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_linear_harden.i)
- (test/tests/mesh/gmsh_bcs/gmsh_bc_test.i)
- (modules/navier_stokes/test/tests/finite_element/ins/nonzero-malloc/test.i)
- (modules/tensor_mechanics/test/tests/check_error/shear_modulus.i)
- (test/tests/controls/pid_control/pid_control.i)
- (test/tests/transfers/multiapp_copy_transfer/constant_monomial_to_sub/master.i)
- (modules/combined/examples/periodic_strain/global_strain_pfm.i)
- (test/tests/functions/solution_function/solution_function_grad_p1.i)
- (modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-mortar-disp.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/3d-mixed.i)
- (modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_change_restart2.i)
- (test/tests/auxkernels/solution_aux/output_error.i)
- (modules/richards/test/tests/buckley_leverett/bl01.i)
- (modules/combined/test/tests/ad_power_law_creep/power_law_creep_smallstrain.i)
- (modules/combined/test/tests/beam_eigenstrain_transfer/subapp2_uo_transfer.i)
- (modules/combined/test/tests/phase_field_fracture/void2d_iso.i)
- (test/tests/geomsearch/2d_interior_boundary_penetration_locator/2d_interior_boundary_penetration_locator.i)
- (modules/xfem/test/tests/solid_mechanics_basic/test.i)
- (modules/tensor_mechanics/test/tests/central_difference/consistent/2D/2d_consistent_implicit.i)
- (modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymmetric_gps_finite.i)
- (modules/richards/test/tests/gravity_head_1/gh13.i)
- (modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_planar.i)
- (test/tests/functions/generic_function_material/generic_function_material_test.i)
- (test/tests/kernels/scalarkernel_vectorpostprocessor/scalarkernel_vectorpostprocessor.i)
- (modules/porous_flow/examples/tidal/barometric_fully_confined.i)
- (test/tests/userobjects/layered_average/layered_average_block.i)
- (modules/porous_flow/test/tests/energy_conservation/heat05.i)
- (modules/porous_flow/test/tests/density/GravDensity01.i)
- (test/tests/bcs/sin_bc/sin_neumann_test.i)
- (test/tests/vectorpostprocessors/material_vector_postprocessor/boundary-err.i)
- (test/tests/transfers/multiapp_interpolation_transfer/fromsub_master.i)
- (modules/porous_flow/test/tests/jacobian/heat_vol_exp01.i)
- (test/tests/controls/time_periods/error/control.i)
- (test/tests/outputs/common/console.i)
- (modules/heat_conduction/test/tests/conjugate_heat_transfer/conjugate_heat_transfer.i)
- (test/tests/meshgenerators/sidesets_bounding_box_generator/error_no_elements_in_bounding_box.i)
- (test/tests/partitioners/grid_partitioner/grid_partitioner.i)
- (test/tests/predictors/simple/predictor_skip_old_test.i)
- (test/tests/misc/check_error/missing_function_file_test.i)
- (modules/tensor_mechanics/test/tests/visco/visco_finite_strain.i)
- (modules/heat_conduction/test/tests/semiconductor_linear_conductivity/steinhart-hart_linear.i)
- (test/tests/materials/ad_material/ad_stateful_material.i)
- (modules/combined/test/tests/reference_residual/group_variables.i)
- (test/tests/meshgenerators/move_node_generator/test2.i)
- (test/tests/materials/stateful_prop/many_stateful_props.i)
- (modules/tensor_mechanics/test/tests/test_jacobian/jacobian_test_3D.i)
- (modules/contact/test/tests/ranfs-and-scaling/bouncing-block-ranfs.i)
- (modules/heat_conduction/test/tests/heat_conduction_ortho/heat_conduction_ortho.i)
- (modules/tensor_mechanics/test/tests/ad_action/two_block_no_action.i)
- (test/tests/meshgenerators/fancy_extruder_generator/need-neighbors.i)
- (modules/combined/test/tests/poro_mechanics/borehole_lowres.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_method_test.i)
- (test/tests/kernels/anisotropic_diffusion/aniso_diffusion.i)
- (modules/contact/test/tests/normal-nodal-lm-tan-tolerance/normal-nodal-lm-tan-tolerance.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard2.i)
- (test/tests/misc/check_error/bad_second_order_test.i)
- (test/tests/misc/petsc_option_left/2d_diffusion_petsc_option.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i)
- (modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template2.i)
- (modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test1qtt.i)
- (test/tests/multiapps/grid-sequencing/vi-coarser.i)
- (test/tests/multiapps/move_and_reset/sub.i)
- (python/peacock/tests/input_tab/InputTreeWriter/gold/simple_diffusion.i)
- (test/tests/multiapps/multilevel/dt_from_master_sub.i)
- (test/tests/controls/time_periods/constraints/constraints.i)
- (modules/porous_flow/examples/reservoir_model/regular_grid.i)
- (test/tests/outputs/console/moose_console.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/2D/neumann.i)
- (test/tests/controls/error/no_parameter_found.i)
- (modules/porous_flow/examples/tutorial/07.i)
- (test/tests/preconditioners/auto_smp/ad_coupled_convection.i)
- (test/tests/dirackernels/nonlinear_source/nonlinear_source.i)
- (modules/porous_flow/test/tests/gravity/grav01b.i)
- (test/tests/multiapps/loose_couple_time_adapt/adaptiveDT.i)
- (modules/richards/test/tests/pressure_pulse/pp_fu_lumped_22.i)
- (test/tests/transfers/transfer_with_reset/sub.i)
- (modules/contact/test/tests/pressure/pressurePenalty.i)
- (test/tests/markers/value_threshold_marker/value_threshold_marker_test.i)
- (test/tests/misc/jacobian/simple.i)
- (modules/richards/test/tests/gravity_head_1/gh_fu_03.i)
- (test/tests/functions/generic_function_material/generic_function_vector_material_test.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard3.i)
- (test/tests/kernels/jxw_grad_test_dep_on_displacements/jxw-cylindrical.i)
- (tutorials/tutorial02_multiapps/step02_transfers/02_master_nearestnode.i)
- (test/tests/controls/time_periods/error/steady_error.i)
- (test/tests/multiapps/relaxation/picard_master.i)
- (modules/xfem/test/tests/moving_interface/phase_transition_2d.i)
- (test/tests/parser/param_substitution/param_substitution_in_file.i)
- (test/tests/materials/material/material_block_bound_check.i)
- (modules/tensor_mechanics/test/tests/umat/elastic_hardening/elastic.i)
- (test/tests/multiapps/grid-sequencing/vi-coarse.i)
- (modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/perfect.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/except6.i)
- (tutorials/darcy_thermo_mech/step02_darcy_pressure/problems/step2.i)
- (test/tests/multiapps/move/multilevel_master.i)
- (test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven.i)
- (modules/combined/examples/phase_field-mechanics/Conserved.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass.i)
- (test/tests/controls/tag_based_naming_access/system_object_param.i)
- (test/tests/misc/check_error/function_file_test7.i)
- (modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/rates/truesdell_shear.i)
- (modules/porous_flow/test/tests/actions/fullsat_brine_except2.i)
- (test/tests/postprocessors/print_perf_data/print_perf_data.i)
- (modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_small.i)
- (test/tests/outputs/variables/output_vars_hidden_shown_check.i)
- (modules/peridynamics/test/tests/generalized_plane_strain/planestrain_prescribed_OSPD.i)
- (test/tests/functions/solution_function/solution_function_exodus_test.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/tosub_sub.i)
- (test/tests/kernels/bad_scaling_scalar_kernels/ill_conditioned_field_scalar_system.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/3d-strain.i)
- (modules/functional_expansion_tools/test/tests/errors/multiapp_bad_user_object.i)
- (test/tests/transfers/multiapp_interpolation_transfer/fromrestrictedsub_master.i)
- (test/tests/transfers/multiapp_conservative_transfer/primary_negative_adjuster.i)
- (test/tests/functions/linear_combination_function/lcf_vector.i)
- (test/tests/multiapps/multiple_position_files/sub2.i)
- (test/tests/outputs/common/exodus.i)
- (test/tests/restart/restart_transient_from_steady/steady_with_2subs.i)
- (python/chigger/tests/input/simple_diffusion.i)
- (modules/tensor_mechanics/test/tests/critical_time_step/timoshenko_smallstrain_critstep.i)
- (modules/tensor_mechanics/test/tests/material_limit_time_step/damage/scalar_material_damage_timestep_limit.i)
- (test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt.i)
- (test/tests/multiapps/multilevel/dt_from_master_master.i)
- (test/tests/postprocessors/execution_attribute_reporter/execution_attribute_reporter.i)
- (test/tests/mesh/adapt/adapt_time_test.i)
- (test/tests/geomsearch/nearest_node_locator/nearest_node_locator.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/rot-eg1.i)
- (modules/porous_flow/test/tests/numerical_diffusion/fltvd_none.i)
- (test/tests/mesh/stitched_mesh/stitched_mesh.i)
- (modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_2d_rot.i)
- (test/tests/meshgenerators/distributed_rectilinear/ghosting_elements/num_layers.i)
- (modules/tensor_mechanics/test/tests/truss/truss_2d.i)
- (test/tests/mesh/patterned_mesh/mesh_tester.i)
- (test/tests/postprocessors/num_adaptivity_cycles/num_adaptivity_cycles.i)
- (modules/porous_flow/test/tests/sinks/s09.i)
- (test/tests/markers/dont_mark/dont_mark_test.i)
- (modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i)
- (test/tests/multiapps/grid-sequencing/vi-fine.i)
- (modules/tensor_mechanics/test/tests/power_law_creep/ad_exception.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/fracture_only_aperture_changing.i)
- (test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_direct.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion_function/instantaneous.i)
- (test/tests/multiapps/slow_sub/master.i)
- (test/tests/auxkernels/nodal_aux_boundary/nodal_aux_boundary.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/1D/dirichlet.i)
- (modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/bulk_modulus_shear_modulus_test.i)
- (modules/xfem/test/tests/solid_mechanics_basic/square_branch_tri_2d.i)
- (modules/porous_flow/test/tests/infiltration_and_drainage/rd02.i)
- (modules/xfem/test/tests/moment_fitting/diffusion_moment_fitting_six_points.i)
- (modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
- (test/tests/materials/material_dependency/diff_kernel_aux_mat_dep.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/use_substep_dt.i)
- (test/tests/transfers/multiapp_mesh_function_transfer/missing_master.i)
- (modules/xfem/test/tests/corner_nodes_cut/corner_node_cut_twice.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_rot.i)
- (test/tests/constraints/equal_value_boundary_constraint/adaptivity.i)
- (test/tests/misc/check_error/deprecated_param_test.i)
- (test/tests/mesh_modifiers/assign_element_subdomain_id/tri_with_subdomainid_test.i)
- (test/tests/interfaces/random/random.i)
- (modules/tensor_mechanics/test/tests/action/no_block.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne-coupled-scaling.i)
- (modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/special/area.i)
- (modules/richards/test/tests/pressure_pulse/pp_fu_01.i)
- (modules/tensor_mechanics/test/tests/radial_disp_aux/sphere_3d_cartesian.i)
- (test/tests/postprocessors/find_value_on_line/findvalueonline.i)
- (modules/porous_flow/test/tests/energy_conservation/heat04_rz.i)
- (modules/tensor_mechanics/test/tests/pressure/pressure_test.i)
- (modules/combined/test/tests/gravity/gravity_rz_quad8.i)
- (test/tests/auxkernels/grad_component/grad_component.i)
- (modules/heat_conduction/test/tests/meshed_gap_thermal_contact/meshed_gap_thermal_contact_constant_conductance.i)
- (test/tests/materials/output/output_steady.i)
- (test/tests/controls/time_periods/transfers/master.i)
- (modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_direct/main.i)
- (modules/tensor_mechanics/test/tests/action/action_multi_eigenstrain_same_conditions.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG.i)
- (test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard.i)
- (modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_new_test.i)
- (modules/richards/test/tests/buckley_leverett/bl22_lumped.i)
- (modules/functional_expansion_tools/examples/2D_volumetric_Cartesian/main.i)
- (test/tests/ics/bounding_box_ic/bounding_box_ic_diffuse_test.i)
- (modules/richards/test/tests/gravity_head_1/gh10.i)
- (test/tests/outputs/console/console_warning.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_2/cyl2_template2.i)
- (modules/tensor_mechanics/test/tests/cohesive_zone_model/bilinear_mixed.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test3q.i)
- (test/tests/kernels/array_kernels/array_diffusion_reaction_other_coupling.i)
- (test/tests/auxkernels/nodal_aux_var/multi_update_var_test.i)
- (test/tests/mesh/checkpoint/checkpoint_split.i)
- (test/tests/outputs/iterative/output_end_step.i)
- (test/tests/controls/error/multiple_parameters_found.i)
- (test/tests/vectorpostprocessors/line_material_sampler/line_material_real_sampler.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction_function.i)
- (test/tests/mesh/custom_partitioner/custom_linear_partitioner_test.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/source_boundary_sub.i)
- (modules/porous_flow/test/tests/gravity/fully_saturated_upwinded_grav01c_action.i)
- (test/tests/materials/types/test.i)
- (test/tests/dirackernels/point_caching/point_caching.i)
- (test/tests/misc/check_error/bad_kernel_action.i)
- (modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_creep_plasticity_start_time.i)
- (test/tests/kernels/tag_errors/no_tags/no_tags.i)
- (test/tests/controls/time_periods/transfers/sub.i)
- (test/tests/postprocessors/old_vpp_value/old_vpp_value.i)
- (test/tests/restart/restart_transient_from_steady/restart_trans_with_sub.i)
- (modules/peridynamics/test/tests/nodalkernels/penalty_dirichlet_old_value.i)
- (test/tests/materials/output/output_warning.i)
- (test/tests/misc/check_error/incomplete_kernel_block_coverage_test.i)
- (test/tests/multiapps/restart_multilevel/sub.i)
- (test/tests/mesh/concentric_circle_mesh/concentric_circle_mesh.i)
- (test/tests/meshgenerators/patterned_mesh_generator/patterned_mesh_generator.i)
- (test/tests/userobjects/layered_integral/average_sample.i)
- (test/tests/scaling/residual-based/residual-based-two-var.i)
- (test/tests/partitioners/hierarchical_grid_partitioner/hierarchical_grid_partitioner.i)
- (python/peacock/tests/input_tab/InputTree/gold/simple_diffusion_vp.i)
- (modules/xfem/test/tests/second_order_elements/diffusion_3d_hex20.i)
- (modules/tensor_mechanics/test/tests/strain_energy_density/nonAD_rate_model_weak_plane.i)
- (modules/contact/test/tests/mortar_aux_kernels/frictional-mortar-3d-status.i)
- (modules/contact/test/tests/hertz_spherical/hertz_contact_rz_quad8.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/except1.i)
- (test/tests/materials/get_material_property_names/get_material_property_any_block_id.i)
- (test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
- (modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard_cubic.i)
- (test/tests/postprocessors/pps_interval/pps_bad_interval2.i)
- (modules/richards/test/tests/buckley_leverett/bl22_lumped_fu.i)
- (test/tests/kernels/ad_value/ad_value.i)
- (test/tests/mesh/custom_partitioner/custom_linear_partitioner_restart_test.i)
- (modules/contact/test/tests/mortar_tm/2d/frictionless_first/finite_rr.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_init_test.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_as_2d_topo_q_func.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp_action.i)
- (test/tests/restart/pointer_restart_errors/pointer_load_error2.i)
- (modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_action.i)
- (test/tests/postprocessors/cumulative_value_postprocessor/cumulative_value_postprocessor.i)
- (test/tests/outputs/exodus/variable_output_test.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/exception.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_4/cyl4_template1.i)
- (test/tests/multiapps/picard_sub_cycling/picard_sub.i)
- (test/tests/transfers/multiapp_postprocessor_interpolation_transfer/master_quad.i)
- (modules/tensor_mechanics/test/tests/umat/predef/predef_multiple_mat.i)
- (modules/xfem/test/tests/diffusion_xfem/diffusion.i)
- (test/tests/usability/bad.i)
- (test/tests/outputs/perf_graph/perf_graph.i)
- (modules/tensor_mechanics/test/tests/thermal_expansion_function/dilatation.i)
- (modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_action.i)
- (modules/contact/test/tests/verification/patch_tests/brick_3/brick3_template2.i)
- (modules/contact/test/tests/verification/hertz_cyl/quart_symm_q8/hertz_cyl_qsym_1deg_template1.i)
- (modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_as_2d.i)
- (modules/contact/test/tests/verification/patch_tests/brick_3/brick3_mu_0_2_pen.i)
- (test/tests/userobjects/setup_interface_count/side.i)
- (test/tests/multiapps/move_and_reset/multilevel_master.i)
- (test/tests/restrictable/undefined_ids/undefined_block_kernel.i)
- (test/tests/controls/dependency/test.i)
- (modules/porous_flow/test/tests/basic_advection/except1.i)
- (modules/tensor_mechanics/tutorials/basics/part_1.2.i)
- (test/tests/problems/eigen_problem/eigensolvers/gipm_ibc.i)
- (modules/level_set/examples/rotating_circle/circle_rotate_master.i)
- (test/tests/userobjects/layered_base_restartable/layered_base_restartable.i)
- (modules/tensor_mechanics/test/tests/anisotropic_patch/anisotropic_patch_test.i)
- (test/tests/multiapps/relaxation/picard_relaxed_master.i)
- (test/tests/userobjects/layered_average/layered_average_bounding_block.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d.i)
- (modules/navier_stokes/test/tests/finite_element/ins/hydrostatic/gravity.i)
- (modules/porous_flow/test/tests/buckley_leverett/bl01.i)
- (test/tests/problems/no_kernel_coverage_check/no_coverage_check.i)
- (modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1_cycle.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest5.i)
- (modules/stochastic_tools/examples/parameter_study/nonlin_diff_react/nonlin_diff_react_sub.i)
- (test/tests/auxkernels/gap_value/gap_value_subdomain_restricted.i)
- (test/tests/indicators/gradient_jump_indicator/gradient_jump_indicator_test.i)
- (modules/richards/test/tests/buckley_leverett/bl22.i)
- (test/tests/preconditioners/hmg/diffusion_hmg.i)
- (test/tests/problems/eigen_problem/eigensolvers/ipm.i)
- (test/tests/ics/random_ic_test/random_ic_test.i)
- (modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_base.i)
- (modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
- (modules/contact/test/tests/sliding_block/sliding/frictionless_kinematic.i)
- (examples/ex07_ics/transient.i)
- (test/tests/multiapps/picard/pseudo_transient_picard_master.i)
- (modules/combined/test/tests/gravity/gravity_rz.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/lower_limit.i)
- (test/tests/mesh/adapt/adapt_test.i)
- (test/tests/auxkernels/vector_magnitude/vector_magnitude.i)
- (test/tests/outputs/exodus/exodus.i)
- (modules/combined/test/tests/combined_plasticity_temperature/plasticity_temperature_dep_yield.i)
- (test/tests/auxkernels/vectorpostprocessor/vectorpostprocessor.i)
- (modules/tensor_mechanics/test/tests/lagrangian/updated/thermal_expansion/constrained.i)
- (modules/richards/test/tests/rogers_stallybrass_clements/rsc01.i)
- (python/peacock/tests/common/simple_diffusion2.i)
- (modules/combined/test/tests/gap_heat_transfer_convex/gap_heat_transfer_convex_gap_offsets.i)
- (modules/tensor_mechanics/test/tests/beam/fric_constraint/2_block_common_cross_stick.i)
- (modules/contact/test/tests/frictional/sliding_elastic_blocks_2d/sliding_elastic_blocks_2d.i)
- (test/tests/mesh_modifiers/block_deleter/BlockDeleterTest12.i)
- (modules/porous_flow/test/tests/actions/fullsat_brine_except3.i)
- (test/tests/mesh/named_entities/named_entities_test.i)
- (test/tests/transfers/multiapp_copy_transfer/third_monomial_to_sub/master.i)
- (modules/porous_flow/test/tests/numerical_diffusion/pffltvd.i)
- (modules/combined/test/tests/evolving_mass_density/uniform_expand_compress_test_tensors.i)
- (modules/tensor_mechanics/examples/cframe_iga/cframe_iga.i)
- (modules/tensor_mechanics/test/tests/pressure/cantilever.i)
- (test/tests/multiapps/reset/sub.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/3tile_json.i)
- (test/tests/bcs/1d_neumann/1d_neumann.i)
- (test/tests/transfers/multiapp_interpolation_transfer/tosub_sub.i)
- (modules/thermal_hydraulics/test/tests/controls/thm_solve_postprocessor_control/test.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_squares.i)
- (test/tests/time_steppers/calc_const_dt/calc_const_dt.i)
- (modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
- (test/tests/markers/uniform_marker/uniform_marker.i)
- (test/tests/phi_zero/simple_transient_diffusion.i)
- (test/tests/reporters/iteration_info/iteration_info.i)
- (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase.i)
- (modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/substep.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_by_parts.i)
- (tutorials/tutorial01_app_development/step06_input_params/test/tests/kernels/simple_diffusion/simple_diffusion.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined2.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/REG_finite_strain_power_law_creep.i)
- (modules/contact/test/tests/3d-mortar-contact/frictionless-mortar-3d-test-derivative-trimming.i)
- (modules/tensor_mechanics/test/tests/temperature_dependent_hardening/temp_dep_hardening.i)
- (modules/tensor_mechanics/test/tests/generalized_plane_strain/plane_strain.i)
- (modules/tensor_mechanics/examples/hyper_elastic_test.i)
- (test/tests/userobjects/layered_side_integral/layered_side_average.i)
- (test/tests/nodalkernels/constant_rate/constant_rate.i)
- (modules/contact/test/tests/verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template3.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/sphere2DRZ.i)
- (modules/tensor_mechanics/test/tests/gravity/material_vector_body_force.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/stabilization/cook_large.i)
- (modules/heat_conduction/test/tests/NAFEMS/transient/T3/nafems_t3_edge_template.i)
- (modules/contact/test/tests/verification/patch_tests/cyl_2/cyl2_template1.i)
- (test/tests/multiapps/max_procs_per_app/sub.i)
- (modules/porous_flow/test/tests/chemistry/2species_predis.i)
- (test/tests/bcs/ad_1d_neumann/from_cubit.i)
- (test/tests/mesh_modifiers/assign_element_subdomain_id/quad_with_subdomainid_test.i)
- (modules/porous_flow/test/tests/sinks/s09_fully_saturated.i)
- (modules/contact/test/tests/normalized_penalty/normalized_penalty_kin.i)
- (test/tests/multiapps/transient_multiapp/dt_from_master.i)
- (modules/tensor_mechanics/test/tests/recompute_radial_return/isotropic_plasticity_finite_strain.i)
- (test/tests/multiapps/multilevel/dt_from_sub_sub.i)
- (modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear_1step.i)
- (modules/tensor_mechanics/test/tests/rom_stress_update/creep_ramp_sub_false.i)
- (modules/stochastic_tools/test/tests/reporters/stochastic_reporter/sub.i)
- (test/tests/materials/discrete/recompute2.i)
- (test/tests/postprocessors/postprocessor_dependency/element_side_pp.i)
- (test/tests/materials/functor_properties/wrong-type.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4ns.i)
- (modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-lm-mortar-disp.i)
- (modules/functional_expansion_tools/test/tests/standard_use/volume_coupling_custom_norm.i)
- (modules/combined/test/tests/evolving_mass_density/shear_test_tensors.i)
- (modules/tensor_mechanics/test/tests/truss/truss_hex.i)
- (test/tests/misc/check_error/function_file_test11.i)
- (test/tests/postprocessors/relative_solution_difference_norm/test.i)
- (modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_eig_grad.i)
- (modules/combined/test/tests/power_law_creep/power_law_creep_smallstrain.i)
- (modules/xfem/test/tests/single_var_constraint_2d/stationary_jump.i)
- (modules/tensor_mechanics/test/tests/material_limit_time_step/damage/elements_changed_timestep_limit.i)
- (modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_multi.i)
- (test/tests/mesh/high_order_elems/high_order_elems.i)
- (modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/tauOpt.i)
- (modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i)
- (modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
- (test/tests/geomsearch/2d_moving_penetration/pl_test4q.i)
- (modules/contact/test/tests/sliding_block/edge_dropping/two_equal_blocks_slide_3d.i)
- (test/tests/transfers/multiapp_nearest_node_transfer/boundary_tosub_sub.i)
- (test/tests/misc/check_error/checked_pointer_param_test.i)
- (modules/fluid_properties/test/tests/auxkernels/stagnation_pressure_aux.i)
- (modules/contact/test/tests/verification/patch_tests/brick_2/brick2_template1.i)
- (test/tests/geomsearch/3d_moving_penetration/pl_test4qtt.i)
- (test/tests/test_harness/exception_transient.i)
- (modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_finite.i)
- (test/tests/postprocessors/default_value/real_value_override.i)
- (test/tests/outputs/csv/csv_sort.i)
- (test/tests/outputs/vtk/vtk_serial.i)
- (test/tests/misc/save_in/save_in_test.i)
- (modules/tensor_mechanics/test/tests/lagrangian/total/special/area.i)
- (modules/contact/test/tests/verification/patch_tests/brick_2/brick2_mu_0_2_pen.i)
- (modules/porous_flow/test/tests/heterogeneous_materials/vol_expansion_poroperm.i)
- (modules/contact/test/tests/mortar_tm/2d/frictionless_second/finite.i)
- (modules/porous_flow/test/tests/actions/basicthm_thm.i)
- (modules/tensor_mechanics/test/tests/lagrangian/materials/correctness/neohookean.i)
- (test/tests/indicators/value_jump_indicator/value_jump_indicator_test.i)
- (test/tests/outputs/displaced/displaced_adapt_test.i)
- (modules/tensor_mechanics/test/tests/ad_action/two_block.i)
- (test/tests/interfacekernels/1d_interface/reaction_1D_steady.i)
- (test/tests/kernels/coupled_time_derivative/ad_coupled_time_derivative_test.i)
- (test/tests/materials/interface_material/interface_value_material.i)
- (test/tests/parser/multiple_inputs/diffusion1c.i)
- (tutorials/darcy_thermo_mech/step03_darcy_material/tests/materials/packed_column/packed_column.i)
- (modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_test.i)
- (modules/fluid_properties/test/tests/auxkernels/specific_enthalpy_aux.i)
- (test/tests/userobjects/layered_average/layered_average_bounds.i)
- (python/peacock/tests/common/time_data.i)
- (modules/tensor_mechanics/test/tests/central_difference/consistent/2D/2d_consistent_explicit.i)
- (modules/xfem/test/tests/side_integral/side_integral.i)
- (modules/tensor_mechanics/test/tests/beam/constraints/frictionless_constraint.i)
- (modules/xfem/test/tests/second_order_elements/square_branch_tri6_2d.i)
- (modules/porous_flow/examples/tutorial/01.i)
- (test/tests/materials/material/bnd_material_test.i)
- (test/tests/postprocessors/num_adaptivity_cycles/num_adaptivity_cycles_toggle_adaptivity.i)
- (modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i)
- (modules/tensor_mechanics/test/tests/ad_elastic/incremental_small_elastic.i)
- (test/tests/actions/add_auxkernel_action/flux_average.i)
- (modules/porous_flow/test/tests/heat_advection/heat_advection_1d.i)
- (modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_1D.i)
- (modules/tensor_mechanics/test/tests/coupled_pressure/coupled_pressure_test.i)
Child Objects
(test/tests/bcs/matched_value_bc/matched_value_bc_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
# Solves a pair of coupled diffusion equations where u=v on the boundary
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 3
[../]
[./v]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[]
[Kernels]
active = 'diff_u diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'right_v left_u'
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 3
[../]
[./left_u]
type = MatchedValueBC
variable = u
boundary = 3
v = v
[../]
[]
[Preconditioning]
[./precond]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-10
l_tol = 1e-12
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/bcs/misc_bcs/convective_flux_bc.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0.0
[../]
[./right]
type = ConvectiveFluxBC
variable = u
boundary = 1
rate = 100
initial = 10
final = 20
duration = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[w]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = w
[]
[diffusion]
type = Diffusion
variable = w
[]
[source]
type = CoupledForce
variable = w
v = v
[]
[]
[BCs]
[dirichlet]
type = DirichletBC
variable = w
boundary = '0'
value = 0
[]
[]
[Postprocessors]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial linear'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial linear'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
# steady_state_detection = true
[]
[Outputs]
exodus = true
csv = true
# print_linear_residuals = false
[]
(test/tests/mesh/splitting/grid_from_generated.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[Partitioner]
type = GridPartitioner
nx = 2
ny = 2
nz = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
(test/tests/restart/start_time_override/start_time_override.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Problem]
restart_file_base = transient_out_cp/LATEST
skip_additional_restart_data = true
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[bodyforce]
type = BodyForce
variable = u
value = 10.0
[]
[ie]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 10
[]
[]
[Postprocessors]
[u_norm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
# Start time can be set explicitly here or be picked up from the restart file
num_steps = 5
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_aniso_hist_false.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2e-6
num_steps = 5
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven.i)
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./T]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
# x-momentum, time
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
# y-momentum, time
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
# temperature
[./temperature_time]
type = INSTemperatureTimeDerivative
variable = T
[../]
[./temperature_space]
type = INSTemperature
variable = T
u = vel_x
v = vel_y
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
(test/tests/kernels/scalar_constraint/scalar_constraint_bc.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
elem_type = QUAD4
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[./alpha]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ScalarKernels]
[./alpha_ced]
type = AlphaCED
variable = alpha
value = 10
[../]
[]
[BCs]
[./left]
type = ScalarVarBC
variable = u
boundary = '3'
alpha = alpha
[../]
[./right]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[../]
[]
[Preconditioning]
active = 'pc'
[./pc]
type = SMP
full = true
solve_type = 'PJFNK'
[../]
[./FDP_PJFNK]
type = FDP
full = true
solve_type = 'PJFNK'
# These options **together** cause a zero pivot in this problem, even without SUPG terms.
# But using either option alone appears to be OK.
# petsc_options_iname = '-mat_fd_coloring_err -mat_fd_type'
# petsc_options_value = '1.e-10 ds'
petsc_options_iname = '-mat_fd_coloring_err'
petsc_options_value = '1.e-10'
# petsc_options_iname = '-mat_fd_type'
# petsc_options_value = 'ds'
[../]
[] # End preconditioning block
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
hide = alpha
[]
(modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_different_submesh/main.i)
# Derived from the example '3D_volumetric_Cartesian' with the following differences:
#
# 1) The number of x and y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in x and z
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/combined/examples/phase_field-mechanics/hex_grain_growth_2D_eldrforce.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 17
nz = 0
xmax = 1000
ymax = 866
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 3
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./hex_ic]
type = PolycrystalHex
coloring_algorithm = bt
grain_num = 36
x_offset = 0.0
output_adjacency_matrix = true
[../]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = grn_36_test2_2D.tex
[../]
[./grain_tracker]
type = GrainTrackerElasticity
threshold = 0.2
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
flood_entity_type = ELEMENTAL
fill_method = symmetric9
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
euler_angle_provider = euler_angle_file
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = hex_ic
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = timestep_end
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = timestep_end
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x y'
variable = 'gr0 gr1 gr2'
[../]
[../]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -50.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 15 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
block = 0
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./dt]
type = TimestepSize
[../]
[./run_time]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[./bnd_length]
type = GrainBoundaryArea
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'disp_x disp_y'
off_diag_column = 'disp_y disp_x'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 40
nl_rel_tol = 1.0e-7
start_time = 0.0
num_steps = 50
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1.5
growth_factor = 1.2
cutback_factor = 0.8
optimal_iterations = 8
[../]
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 3
[../]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_mortar.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[Materials]
[./left]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[../]
[./right]
type = HeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
use_displaced_mesh = false
block = '1 2'
[../]
[]
[Constraints]
[./ced]
type = GapConductanceConstraint
variable = lm
secondary_variable = temp
k = 100
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-11
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/nl_forced_its/2d_diffusion_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# BCs cannot be preset due to Jacobian test
active = 'left right'
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
nl_forced_its = 2
nl_abs_tol = 1e-10
nl_rel_tol = 1e-50
solve_type = 'NEWTON'
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/2D/neumann.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '50000 * t'
[]
[pully]
type = ParsedFunction
value = '-30000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/outputs/misc/default_names.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./oversample]
type = Exodus
refinements = 1
[../]
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_sub3_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 3
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/periodic/trapezoid_non_periodic.i)
[Mesh]
file = trapezoid.e
uniform_refine = 1
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[periodic_dist]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[forcing]
type = GaussContForcing
variable = u
x_center = 2
y_center = -1
x_spread = 0.25
y_spread = 0.5
[]
[dot]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[periodic_dist]
type = PeriodicDistanceAux
variable = periodic_dist
point = '0.2 1.7 0.0'
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
value = 1
boundary = 2
[]
[left]
type = DirichletBC
variable = u
value = 2
boundary = 2
[]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_smooth.i)
# Uses a multi-smooted version of Mohr-Coulomb (via CappedMohrCoulombStressUpdate and ComputeMultipleInelasticStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # max_num_iters is the maximum number of NR iterations encountered in the element during the whole simulation
type = ElementExtremeValue
variable = max_num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./max_num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./max_num_iters_auxk]
type = MaterialRealAux
property = max_plastic_NR_iterations
variable = max_num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 6
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 1E16
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = ts
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 0.2E6
yield_function_tol = 1E-5
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = biaxial_smooth
perf_graph = true
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# The beam centerline is positioned on the global XZ plane at a 45deg. angle.
# Loading is along the global Y axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xz.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_y]
type = PointValue
point = '2.8284271 0.0 2.8284271'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/contact/test/tests/hertz_spherical/hertz_contact.i)
# Hertz Contact: Sphere on sphere
# Spheres have the same radius, Young's modulus, and Poisson's ratio.
# Define E:
# 1/E = (1-nu1^2)/E1 + (1-nu2^2)/E2
#
# Effective radius R:
# 1/R = 1/R1 + 1/R2
#
# F is the applied compressive load.
#
# Area of contact a::
# a^3 = 3FR/4E
#
# Depth of indentation d:
# d = a^2/R
#
#
# Let R1 = R2 = 2. Then R = 1.
#
# Let nu1 = nu2 = 0.25, E1 = E2 = 1.40625e7. Then E = 7.5e6.
#
# Let F = 10000. Then a = 0.1, d = 0.01.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]#Comment
file = hertz_contact.e
[] # Mesh
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 795.77471545947674 # 10000/pi/2^2
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.01 -0.01'
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
# extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[] # AuxKernels
[BCs]
[./base_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0.0
[../]
[./base_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0.0
[../]
[./base_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0.0
[../]
[./symm_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./symm_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[] # BCs
[Contact]
[./dummy_name]
primary = 1000
secondary = 100
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
[../]
[]
[Materials]
[./tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.40625e7
poissons_ratio = 0.25
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1'
[../]
[./tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '1000'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress_1000]
type = ComputeLinearElasticStress
block = '1000'
[../]
[] # Materials
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
l_max_its = 200
start_time = 0.0
dt = 0.5
end_time = 2.0
[] # Executioner
[Postprocessors]
[./maxdisp]
type = NodalVariableValue
nodeid = 122 # 123-1 where 123 is the exodus node number of the top-center node
variable = disp_y
[../]
[]
[Outputs]
[./out]
type = Exodus
[../]
[] # Outputs
(modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_traction_separation_base.i)
# base test to check the implemantation traction separation laws
# Loads are expressed using functions. See the czm_materials/3DC section in the
# test file for examples.
[Mesh]
[./msh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 1
[]
[./subdomain_1]
type = SubdomainBoundingBoxGenerator
input = msh
bottom_left = '0 0 0'
block_id = 1
top_right = '0.5 1 1'
[]
[./subdomain_2]
type = SubdomainBoundingBoxGenerator
input = subdomain_1
bottom_left = '0.5 0 0'
block_id = 2
top_right = '1 1 1'
[]
[./breakmesh]
input = subdomain_2
type = BreakMeshByBlockGenerator
[../]
[add_side_sets]
input = breakmesh
type = SideSetsFromNormalsGenerator
normals = '0 -1 0
0 1 0
-1 0 0
1 0 0
0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'y0 y1 x0 x1 z0 z1'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_yz stress_xz stress_xy'
[../]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[./czm1]
strain = SMALL
boundary = 'interface'
generate_output = 'traction_x traction_y traction_z normal_traction tangent_traction jump_x jump_y jump_z normal_jump tangent_jump'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = x0
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = x0
value = 0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
preset = false
boundary = x0
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = x1
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = x1
[../]
[./right_z]
type = FunctionDirichletBC
variable = disp_z
preset = false
boundary = x1
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = '1 2'
fill_method = symmetric_isotropic
C_ijkl = '0.3 0.5e8'
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[./czm_mat]
boundary = 'interface'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
solve_type = NEWTON
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
nl_max_its = 5
l_tol = 1e-10
l_max_its = 50
start_time = 0.0
dt = 0.2
end_time = 3
dtmin = 0.2
line_search = none
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
(test/tests/nodalkernels/jac_test/bc_jacobian_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[]
[Kernels]
[./diff_x]
type = CoefDiffusion
variable = u_x
coef = 0.1
[../]
[./diff_y]
type = CoefDiffusion
variable = u_y
coef = 0.1
[../]
[]
[NodalKernels]
[./test_y]
type = JacobianCheck
variable = u_y
boundary = top
[../]
[./test_x]
type = JacobianCheck
variable = u_x
boundary = top
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = u_x
preset = false
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = u_x
preset = false
boundary = right
value = 1
[../]
[./left_y]
type = DirichletBC
variable = u_y
preset = false
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
solve_type = NEWTON
# petsc_options = '-snes_check_jacobian -snes_check_jacobian_view'
nl_max_its = 1
nl_abs_tol = 1e0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/creep_tangent_operator/creep.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
second_order = true
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 10'
y = '0 1e-3'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
generate_output = 'hydrostatic_stress'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
[../]
[./elastic_strain]
type = ComputeMultipleInelasticStress
# inelastic_models = ''
tangent_operator = nonlinear
[../]
[./creep_ten]
type = PowerLawCreepStressUpdate
coefficient = 10e-24
n_exponent = 4
activation_energy = 0
base_name = creep_ten
[../]
[./creep_ten2]
type = PowerLawCreepStressUpdate
coefficient = 10e-24
n_exponent = 4
activation_energy = 0
base_name = creep_ten2
[../]
[./creep_one]
type = PowerLawCreepStressUpdate
coefficient = 1e-24
n_exponent = 4
activation_energy = 0
base_name = creep_one
[../]
[./creep_nine]
type = PowerLawCreepStressUpdate
coefficient = 9e-24
n_exponent = 4
activation_energy = 0
base_name = creep_nine
[../]
[./creep_zero]
type = PowerLawCreepStressUpdate
coefficient = 0e-24
n_exponent = 4
activation_energy = 0
base_name = creep_zero
[../]
[]
[BCs]
[./no_disp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_disp_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./pull_disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_rel_tol = 1e-5
num_steps = 5
dt = 1e-1
[]
[Postprocessors]
[./max_disp_x]
type = ElementExtremeValue
variable = disp_x
[../]
[./max_disp_y]
type = ElementExtremeValue
variable = disp_y
[../]
[./max_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
[../]
[./dt]
type = TimestepSize
[../]
[./num_lin]
type = NumLinearIterations
outputs = console
[../]
[./num_nonlin]
type = NumNonlinearIterations
outputs = console
[../]
[]
[Outputs]
csv = true
perf_graph = true
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/outputs/checkpoint/checkpoint_interval.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 11
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[out]
type = Checkpoint
interval = 3
num_files = 2
[]
[]
(modules/porous_flow/test/tests/heat_conduction/no_fluid.i)
# 0phase heat conduction.
# apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[temp]
initial_condition = 200
[]
[]
[Kernels]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp'
number_fluid_phases = 0
number_fluid_components = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2.2 0 0 0 0 0 0 0 0'
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 300
variable = temp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E1
end_time = 1E2
[]
[Postprocessors]
[t000]
type = PointValue
variable = temp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[t010]
type = PointValue
variable = temp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[t020]
type = PointValue
variable = temp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[t030]
type = PointValue
variable = temp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[t040]
type = PointValue
variable = temp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[t050]
type = PointValue
variable = temp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[t060]
type = PointValue
variable = temp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[t070]
type = PointValue
variable = temp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[t080]
type = PointValue
variable = temp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[t090]
type = PointValue
variable = temp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[t100]
type = PointValue
variable = temp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = no_fluid
[csv]
type = CSV
[]
exodus = false
[]
(test/tests/kernels/block_kernel/block_kernel_test.i)
[Mesh]
file = rectangle.e
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
function = 'x+y'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
num_steps = 10
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_11.i)
# unsaturated = false
# gravity = true
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_11
exodus = true
[]
(test/tests/multiapps/full_solve_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_points.i)
#This tests the J-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the J-Integrals using options
#to treat it as 3d.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
crack_front_points = '0 -10 .5
0 -10 0
0 -10 -.5'
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
radius_inner = '4.0 5.5'
radius_outer = '5.5 7.0'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_z
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_3d_points_out
exodus = true
csv = true
[]
(test/tests/misc/check_error/bad_bc_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
# Test for bad BC
[./left]
type = Foo
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 10.0
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = conduction
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/auxkernels/parsed_aux/parsed_aux_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[v]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[parsed]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
[left_u]
type = DirichletBC
variable = u
boundary = 2
value = 0
[]
[right_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[]
[right_v]
type = DirichletBC
variable = v
boundary = 1
value = 1
[]
[]
[Bounds]
[u_bounds]
type = ParsedAux
variable = parsed
args = 'u v'
function = '(u-0.5)^3*v'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform4.i)
# apply a pure tension, then some shear
# the BCs are designed to map out the yield function, showing
# the affect of 'cap' smoothing
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*(t-1E-6)*(t-1E-6)*1E6)'
[]
[topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-1E-6)*(t-1E-6)*1E6)'
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,1E-6)'
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[iter]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[iter]
type = PointValue
point = '0 0 0'
variable = iter
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tip_scheme = cap
smoother = 0
cap_rate = 0.001
cap_start = -1000.0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[]
[mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-4
plastic_models = wps
transverse_direction = '0 0 1'
debug_fspb = crash
debug_jac_at_stress = '1E4 2E4 3E4 2E4 -4E4 5E4 3E4 5E4 6E8'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-3
debug_pm_change = 1E-5
debug_intnl_change = 1E-5
[]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_increment.i)
[GlobalParams]
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
block = 0
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
planar_formulation = GENERALIZED_PLANE_STRAIN
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_zz
temperature = temp
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test4q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4q.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.025
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4q_out
exodus = true
[]
(test/tests/transfers/multiapp_projection_transfer/fromsub_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 9
ymax = 9
nx = 9
ny = 9
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v_nodal]
[]
[v_elemental]
order = CONSTANT
family = MONOMIAL
[]
[x_nodal]
[]
[x_elemental]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'NEWTON'
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '1 1 0 5 5 0'
input_files = fromsub_sub.i
[]
[]
[Transfers]
[v_nodal_tr]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = v
variable = v_nodal
[]
[v_elemental_tr]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = v
variable = v_elemental
[]
[x_elemental_tr]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = x
variable = x_elemental
[]
[x_nodal_tr]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = x
variable = x_nodal
[]
[]
(test/tests/multiapps/sub_cycling_failure/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_step = 15
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/element_l2_norm/element_l2_norm.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./L2_norm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/controls/time_periods/aux_kernels/enable_disable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/eigenstrain/eigenstrain_from_var.i)
# Test for eigenstrain from variables
# A constant axial eigenstrain of 0.01 is applied to a beam of length
# 4 m. The beam is fixed at one end. The eigenstrain causes a change in
# length of 0.04 m irrespective of the material properties of the beam.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./thermal_eig]
[../]
[./zero1]
[../]
[./zero2]
[../]
[]
[AuxKernels]
[./thermal_eig]
type = ConstantAux
value = 0.01
variable = thermal_eig
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e6
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.5
Ay = 0.0
Az = 0.0
Iy = 0.01
Iz = 0.01
y_orientation = '0.0 1.0 0.0'
eigenstrain_names = 'thermal'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./thermal]
type = ComputeEigenstrainBeamFromVariable
displacement_eigenstrain_variables = 'thermal_eig zero1 zero2'
eigenstrain_name = thermal
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
[./out]
type = Exodus
hide = 'thermal_eig zero1 zero2'
[../]
[]
(test/tests/outputs/residual/output_residual_test.i)
[Mesh]
file = sq-2blk.e
uniform_refine = 3
[]
[Variables]
# variable in the whole domain
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
# subdomain restricted variable
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[./exact_fn_v]
type = ParsedFunction
value = t+1
[../]
[]
[Kernels]
[./ie_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./ie_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_fn
[../]
[./bottom_v]
type = DirichletBC
variable = v
boundary = 5
value = 0
[../]
[./top_v]
type = FunctionDirichletBC
variable = v
boundary = 6
function = exact_fn_v
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
[Debug]
show_var_residual = 'u v'
show_var_residual_norms = true
[]
(test/tests/materials/discrete/reset_warning.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'prop'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'prop'
prop_values = 1
compute = false # testing that this produces warning because resetQpProperties is not re-defined
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/initial_stress/gravity_cosserat.i)
# Apply an initial stress that should be
# exactly that caused by gravity, and then
# do a transient step to check that nothing
# happens
# TODO: currently this has no div(moment_stress)
# contriution to the Kernels. This is because
# there is no way in MOOSE of calculating
# moment stresses and applying initial stresses.
# This will become possible after issue #7243 is
# resolved.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -10
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[./weight]
type = BodyForce
variable = disp_z
value = -0.5 # this is density*gravity
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./x]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./weight]
type = ParsedFunction
value = '0.5*z' # initial stress that should result from the weight force
[../]
[./kxx]
type = ParsedFunction
value = '0.4*z' # some arbitrary xx and yy stress that should not affect the result
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
fill_method = symmetric_isotropic
E_ijkl = '0.4 0.4' # young = 1, poisson = 0.25
[../]
[./strain]
type = ComputeCosseratSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'kxx 0 0 0 kxx 0 0 0 weight'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.0
dt = 1.0
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-8
nl_rel_tol = 1E-12
l_tol = 1E-3
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = gravity_cosserat
exodus = true
[]
(modules/xfem/test/tests/mechanical_constraint/glued_penalty.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.0 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 50 100'
y='0 0.02 0.1'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pull
[../]
[]
[Constraints]
[./disp_x]
type = XFEMSingleVariableConstraint
variable = disp_x
use_penalty = true
alpha = 1.0e8
use_displaced_mesh = true
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[./disp_y]
type = XFEMSingleVariableConstraint
variable = disp_y
use_penalty = true
alpha = 1.0e8
use_displaced_mesh = true
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 2.0
num_steps = 5000
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/multiapps/cliargs_from_file/cliargs_master_inline.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0
0.6 0.6 0 0.7 0.7 0'
cli_args_files = cliargs.txt
type = TransientMultiApp
input_files = 'cliargs_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_2.i)
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = 'axial_strain temp'
num_points = 21
sort_by = 'y'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/cp_slip_rate_integ/crysp_substep.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCPSlipRateRes
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.01 5 8 0.001 0.01 9 12 0.001 0.01'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
slip_incr_tol = 1
maximum_substep_iteration = 8
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.2
dtmax = 10.0
dtmin = 0.05
end_time = 1
[]
[Outputs]
file_base = crysp_substep_out
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/action/ad_converter_action_multi_eigenstrain.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Problem]
solve = false
[]
[Modules/TensorMechanics/Master]
[./block1]
block = 1
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[./block2]
block = 2
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = reg_eigenstrain1
[../]
[./converter1]
type = RankTwoTensorMaterialADConverter
block = 1
reg_props_in = 'reg_eigenstrain1'
ad_props_out = 'eigenstrain1'
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rspherical_incremental_small_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = StressDivergenceRSphericalTensors
component = 0
variable = disp_r
[../]
[]
[BCs]
[./center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeRSphericalIncrementalStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
nl_max_its = 200
[]
[Outputs]
exodus = true
file_base = rspherical_incremental_small_elastic_out
[]
(test/tests/vectorpostprocessors/point_value_sampler_history/point_value_sampler_history.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./point_sample]
type = PointValueSampler
variable = 'u'
points = '0.1 0.1 0'
sort_by = x
contains_complete_history = true
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d_KT.i)
# 1phase, heat advecting with a moving fluid
# Using the Kuzmin-Turek stabilization scheme
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[temp]
initial_condition = 200
[]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = '1-x'
[]
[]
[BCs]
[pp0]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[pp1]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[spit_heat]
type = DirichletBC
variable = temp
boundary = left
value = 300
[]
[suck_heat]
type = DirichletBC
variable = temp
boundary = right
value = 200
[]
[]
[Kernels]
[mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[fluid_advection]
type = PorousFlowFluxLimitedTVDAdvection
variable = pp
advective_flux_calculator = fluid_advective_flux
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[heat_advection]
type = PorousFlowFluxLimitedTVDAdvection
variable = temp
advective_flux_calculator = heat_advective_flux
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.6
alpha = 1.3
[]
[fluid_advective_flux]
type = PorousFlowAdvectiveFluxCalculatorSaturated
flux_limiter_type = superbee
[]
[heat_advective_flux]
type = PorousFlowAdvectiveFluxCalculatorSaturatedHeat
flux_limiter_type = superbee
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 100
density0 = 1000
viscosity = 4.4
thermal_expansion = 0
cv = 2
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 125
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 2 0 0 0 3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[massfrac]
type = PorousFlowMassFraction
[]
[PS]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres bjacobi 1E-15 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 0.6
[]
[VectorPostprocessors]
[T]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 51
sort_by = x
variable = temp
[]
[]
[Outputs]
file_base = heat_advection_1d_KT
[csv]
type = CSV
sync_times = '0.1 0.6'
sync_only = true
[]
[]
(test/tests/userobjects/Terminator/terminator_pass.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[]
[UserObjects]
[arnold]
type = Terminator
expression = 'dt > 20'
fail_mode = HARD
error_level = INFO
message = 'Arnold says this should end'
execute_on = TIMESTEP_END
[]
[]
[Kernels]
[cres]
type = Diffusion
variable = c
[]
[time]
type = TimeDerivative
variable = c
[]
[]
[BCs]
[c]
type = DirichletBC
variable = c
boundary = left
value = 0
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = IterationAdaptiveDT
dt = 4
[]
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
(test/tests/ics/check_error/two_ics_on_same_boundary.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./left]
type = ConstantIC
variable = u
boundary = left
value = 0.5
[../]
[./left2]
type = ConstantIC
variable = u
boundary = left
value = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
[]
(modules/contact/test/tests/mechanical_constraint/glued_kinematic.i)
[Mesh]
file = blocks_2d_nogap.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.01
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = glued
penalty = 1e+6
[../]
[]
(test/tests/meshgenerators/gmsh_bcs/gmsh_bcs.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = plate_hole.msh
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 12
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 10
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/restart/restart_diffusion/restart_diffusion_test_transient.i)
[Mesh]
file = steady_out.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_chorin.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 40
ny = 40
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 99
nodes = '0'
input = gen
[../]
[]
[Variables]
# x-velocity
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-velocity
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# x-star velocity
[./u_star]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-star velocity
[./v_star]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# Pressure
[./p]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
[./x_chorin_predictor]
type = INSChorinPredictor
variable = u_star
u = u
v = v
u_star = u_star
v_star = v_star
component = 0
predictor_type = 'new'
[../]
[./y_chorin_predictor]
type = INSChorinPredictor
variable = v_star
u = u
v = v
u_star = u_star
v_star = v_star
component = 1
predictor_type = 'new'
[../]
[./x_chorin_corrector]
type = INSChorinCorrector
variable = u
u_star = u_star
v_star = v_star
pressure = p
component = 0
[../]
[./y_chorin_corrector]
type = INSChorinCorrector
variable = v
u_star = u_star
v_star = v_star
pressure = p
component = 1
[../]
[./chorin_pressure_poisson]
type = INSChorinPressurePoisson
variable = p
u_star = u_star
v_star = v_star
[../]
[]
[BCs]
[./u_no_slip]
type = DirichletBC
variable = u
preset = false
boundary = 'bottom right left'
value = 0.0
[../]
[./u_lid]
type = DirichletBC
variable = u
preset = false
boundary = 'top'
value = 100.0
[../]
[./v_no_slip]
type = DirichletBC
variable = v
preset = false
boundary = 'bottom right top left'
value = 0.0
[../]
# Make u_star satsify all the same variables as the real velocity.
[./u_star_no_slip]
type = DirichletBC
variable = u_star
preset = false
boundary = 'bottom right left'
value = 0.0
[../]
[./u_star_lid]
type = DirichletBC
variable = u_star
preset = false
boundary = 'top'
value = 100.0
[../]
[./v_star_no_slip]
type = DirichletBC
variable = v_star
preset = false
boundary = 'bottom right top left'
value = 0.0
[../]
# With solid walls everywhere, we specify dp/dn=0, i.e the
# "natural BC" for pressure. Technically the problem still
# solves without pinning the pressure somewhere, but the pressure
# bounces around a lot during the solve, possibly because of
# the addition of arbitrary constants.
[./pressure_pin]
type = DirichletBC
variable = p
preset = false
boundary = '99'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
# rho = 1000 # kg/m^3
# mu = 0.798e-3 # Pa-s at 30C
# cp = 4.179e3 # J/kg-K at 30C
# k = 0.58 # W/m-K at ?C
# Dummy parameters
prop_names = 'rho mu cp k'
prop_values = '1 1 1 1'
[../]
[]
[Preconditioning]
#active = 'FDP_Newton'
#active = 'SMP_PJFNK'
active = 'SMP_Newton'
[./FDP_Newton]
type = FDP
full = true
solve_type = 'NEWTON'
#petsc_options_iname = '-mat_fd_coloring_err'
#petsc_options_value = '1.e-10'
[../]
# For some reason, nonlinear convergence with JFNK is poor, but it
# seems to be OK for SMP_Newton. This may indicate a a scaling issue
# in the JFNK case....
[./SMP_PJFNK]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[../]
[./SMP_Newton]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Note: the explicit case with lid velocity = 100 and a 40x40 was unstable
# for dt=1.e-4, even though the restriction should be dt < dx/|u| = 1/4000 = 2.5e-4
#
dt = 1.e-3
dtmin = 1.e-6
petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300 '
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
l_max_its = 300
start_time = 0.0
num_steps = 5
automatic_scaling = true
verbose = true
compute_scaling_once = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
file_base = lid_driven_chorin_out
exodus = true
[]
(test/tests/transfers/multiapp_conservative_transfer/master_nearest_point.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[block1]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0.5 0 0'
top_right = '1 1 0'
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[AuxVariables]
[from_sub]
[]
[]
[VectorPostprocessors]
[from_nearest_point]
type = NearestPointIntegralVariablePostprocessor
variable = power_density
points = '0 0.5 0 1 0.5 0'
[]
[to_nearest_point]
type = NearestPointIntegralVariablePostprocessor
variable = from_sub
points = '0 0.5 0 1 0.5 0'
execute_on = 'transfer'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
input_files = sub_nearest_point.i
positions = '0 0 0 0.5 0 0'
execute_on = timestep_end
[]
[]
[Transfers]
[to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = power_density
variable = from_master
to_multi_app = sub
execute_on = timestep_end
# The following inputs specify what postprocessors should be conserved
# 1 NearestPointIntegralVariablePostprocessor is specified on the master
# side with N points, where N is the number of subapps
# 1 pp is specified on the subapp side
from_postprocessors_to_be_preserved = 'from_nearest_point'
to_postprocessors_to_be_preserved = 'from_master_pp'
[]
[from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = sink
variable = from_sub
from_multi_app = sub
execute_on = timestep_end
# The following inputs specify what postprocessors should be conserved
# 1 NearestPointIntegralVariablePostprocessor is specified on the master
# with N points, where N is the number of subapps
# 1 pp is specified on the subapp side
to_postprocessors_to_be_preserved = 'to_nearest_point'
from_postprocessors_to_be_preserved = 'sink'
[]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/thermal_hydraulics/test/tests/misc/count_iterations/count_iterations.i)
# This tests the "Debug/count_iterations" parameter, which creates
# post-processors for numbers of linear and nonlinear iterations. A dummy
# diffusion solve is performed, and the numbers of iterations are stored in a
# CSV file.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
scheme = implicit-euler
[TimeStepper]
type = ConstantDT
dt = 0.01
[]
start_time = 0.0
num_steps = 2
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
csv = true
[]
[Debug]
count_iterations = true
[]
(modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_first/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'small'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
use_automatic_differentiation = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
use_automatic_differentiation = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeLinearElasticStress
block = 'plank block'
[]
[swell]
type = ADComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = ADGenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 10
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/porous_flow/test/tests/mass_conservation/mass13.i)
# The sample is an annulus in RZ coordinates.
# Roller BCs are applied to the rmin, top and bottom boundaries
# A constant displacement is applied to the outer boundary: disp_r = -0.01 * t * (r - rmin)/(rmax - rmin).
# There is no fluid flow.
# Fluid mass conservation is checked.
#
# The flag volumetric_locking_correction = true is set for the strain calculator,
# which ensures that the volumetric strain is uniform throughout the element
#
# Theoretically,
# volumetric_strain = volume / volume0 - 1 = ((rmax - 0.01*t)^2 - rmin^2) / (rmax^2 - rmin^2) - 1
# However, with ComputeAxisymmetricRZSmallStrain, strain_rr = -0.01 * t / (rmax - rmin)
# and strain_tt = disp_r / r = -0.01 * t * (1 - rmin / r_qp) / (rmax - rmin), where r_qp is the radius of the quadpoint
# With volumetric_locking_correction = true, r_qp = (rmax - rmin) / 2.
# The volumetric strain is
# epv = -0.01 * t * (2 - rmin / r_qp) / (rmax - rmin)
# and volume = volume0 * (1 + epv)
#
# Fluid conservation reads
# volume0 * rho0 * exp(P0/bulk) = volume * rho0 * exp(P/bulk), so
# P - P0 = bulk * log(volume0 / volume) = 0.5 * log(1 / (1 + epv))
# With rmax = 2 and rmin = 1
# fluid_mass = volume0 * rho0 * exp(P0/bulk) = pi*3 * 1 * exp(0.1/0.5) = 11.51145
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 1
xmax = 2
ymin = -0.5
ymax = 0.5
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.3
[]
[Variables]
[disp_r]
[]
[disp_z]
[]
[porepressure]
initial_condition = 0.1
[]
[]
[BCs]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'bottom top'
[]
[rmin_fixed]
type = DirichletBC
variable = disp_r
value = 0
boundary = left
[]
[contract]
type = FunctionDirichletBC
variable = disp_r
function = -0.01*t
boundary = right
[]
[]
[Kernels]
[grad_stress_r]
type = StressDivergenceRZTensors
variable = disp_r
component = 0
[]
[grad_stress_z]
type = StressDivergenceRZTensors
variable = disp_z
component = 1
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
component = 0
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
variable = disp_z
component = 1
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[]
[AuxVariables]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_rz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[strain_rr]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_tt]
order = CONSTANT
family = MONOMIAL
[]
[vol_strain]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_rz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rz
index_i = 0
index_j = 1
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[strain_rr]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_rr
index_i = 0
index_j = 0
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 1
index_j = 1
[]
[strain_tt]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_tt
index_i = 2
index_j = 2
[]
[vol_strain]
type = MaterialRealAux
property = PorousFlow_total_volumetric_strain_qp
variable = vol_strain
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
volumetric_locking_correction = true # the strain will be the same at every qp of the element
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_r disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1.0 0 0'
variable = porepressure
[]
[vol_strain]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = vol_strain
[]
[strain_rr]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = strain_rr
[]
[strain_zz]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = strain_zz
[]
[strain_tt]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = strain_tt
[]
[rdisp]
type = PointValue
outputs = csv
point = '2 0 0'
use_displaced_mesh = false
variable = disp_r
[]
[stress_rr]
type = PointValue
outputs = csv
point = '1 0 0'
variable = stress_rr
[]
[stress_zz]
type = PointValue
outputs = csv
point = '1 0 0'
variable = stress_zz
[]
[stress_tt]
type = PointValue
outputs = csv
point = '1 0 0'
variable = stress_tt
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 2
[]
[Outputs]
execute_on = 'initial timestep_end'
[csv]
type = CSV
[]
[]
(test/tests/materials/has_material/has_boundary_prop.i)
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
active = 'u_diff'
[./u_diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = MatTestNeumannBC
variable = u
boundary = 2
mat_prop = 'right_bc'
has_check = true
[../]
[]
[Materials]
[./right_bc]
type = GenericConstantMaterial
boundary = 2
prop_names = 'right_bc'
prop_values = '2.0'
[../]
[./other]
type = GenericConstantMaterial
boundary = 1
prop_names = 'other_value'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/initial_intactive/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '0 0 0'
type = TransientMultiApp
input_files = 'sub.i'
app_type = MooseTestApp
enable = false # Start with a multiapp that's disabled up front
sub_cycling = true
[../]
[]
[Controls]
[./multiapp_enable]
type = TimePeriod
disable_objects = 'MultiApps::sub'
start_time = 0
end_time = 1.3
execute_on = 'timestep_begin'
reverse_on_false = true
[../]
[]
(test/tests/vectorpostprocessors/time_data/time_data.i)
###############################################################
# The following tests that the CSV output object can include an
# additional .csv file that contains the time and timestep
# data from VectorPostprocessor object.
###############################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
[./out]
type = CSV
time_data = true
interval = 2
[../]
[]
(test/tests/parser/cli_multiapp_all/dt_from_master_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/peridynamics/test/tests/simple_tests/2D_regularD_variableH_OSPD.i)
# Test for ordinary state-based peridynamic formulation
# for regular grid from generated mesh with varying bond constants
# partial Jacobian
# Jacobian from bond-based formulation is used for preconditioning
# Square plate with Dirichlet boundary conditions applied
# at the left, top and bottom edges
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = ORDINARY_STATE
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.0
[../]
[./force_density]
type = ComputeSmallStrainVariableHorizonMaterialOSPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[]
[Outputs]
file_base = 2D_regularD_variableH_OSPD
exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_fullysat_action.i)
# Same as pp_generation.i, but using an Action
#
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass/porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 13.0
viscosity = 1.0
density0 = 1.0
[]
[]
[]
[PorousFlowFullySaturated]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
biot_coefficient = 0.3
gravity = '0 0 0'
fp = the_simple_fluid
stabilization = none # not needed: there is no flow
save_component_rate_in = nodal_kg_per_s
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[source]
type = BodyForce
function = 0.1
variable = porepressure
[]
[]
[AuxVariables]
[nodal_kg_per_s]
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[]
[]
[Functions]
[porosity_analytic]
type = ParsedFunction
value = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
vars = 'biot phi0 pp bulk'
vals = '0.3 0.1 p0 2'
[]
[]
[Postprocessors]
[nodal_kg_per_s]
type = PointValue
point = ' 0 0 0'
variable = nodal_kg_per_s
outputs = csv
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[porosity]
type = PointValue
outputs = 'console csv'
point = '0 0 0'
variable = porosity
[]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[porosity_analytic]
type = FunctionValuePostprocessor
function = porosity_analytic
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_fullysat_action
csv = true
[]
(test/tests/misc/check_error/interface_kernel_with_aux_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = u
[../]
[]
[InterfaceKernels]
[./nope]
type = InterfaceDiffusion
variable = v
neighbor_var = u
boundary = 'left'
D = 4
D_neighbor = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test.i)
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
hht_alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
hht_alpha = 0.11
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/multiapps/picard_catch_up/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./nan]
type = NanAtCountKernel
variable = v
count = 32
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
preset = false
boundary = left
value = 1
[../]
[./right_v]
type = FunctionDirichletBC
variable = v
preset = false
boundary = right
function = 't + 1'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
snesmf_reuse_base = false
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/2drz_json.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temperature]
initial_condition = 900.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = vonmises_stress
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./pressure_x]
type = Pressure
variable = disp_x
boundary = right
function = t
factor = 3.1675e5
[../]
[./pressure_y]
type = Pressure
variable = disp_y
boundary = top
function = t
factor = 6.336e5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.30e11
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = LAROMANCEStressUpdate
temperature = temperature
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
model = laromance/test/SS316H.json
outputs = all
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
automatic_scaling = true
compute_scaling_once = false
num_steps = 5
dt = 2
[]
[Postprocessors]
[./effective_strain_avg]
type = ElementAverageValue
variable = effective_creep_strain
[../]
[./temperature]
type = ElementAverageValue
variable = temperature
[../]
[./cell_dislocations]
type = ElementAverageValue
variable = cell_dislocations
[../]
[./wall_disloactions]
type = ElementAverageValue
variable = wall_dislocations
[../]
[./vonmises_stress]
type = ElementAverageValue
variable = vonmises_stress
[../]
[]
[Outputs]
csv = true
[]
(test/tests/parser/multiple_inputs/diffusion1a.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictionless_kinematic.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the kinematic method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2. The gold file is run
# on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[./horizontal_movement]
type = ParsedFunction
value = -0.04*sin(4*t)+0.02
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+6
normal_smoothing_distance = 0.1
[../]
[]
(modules/navier_stokes/test/tests/auxkernels/peclet-number-functor-aux/fe-thermal.i)
rho = 1
mu = 1
k = 1
cp = 1
[GlobalParams]
gravity = '0 0 0'
pspg = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[]
[]
[AuxVariables]
[Pe]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[Pe]
type = PecletNumberFunctorAux
variable = Pe
speed = speed
thermal_diffusivity = 'thermal_diffusivity'
[]
[]
[Variables]
[vel_x][]
[vel_y][]
[p][]
[T][]
[]
[Kernels]
# mass
[mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[]
# x-momentum, space
[x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[]
# y-momentum, space
[y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[]
[temperature_space]
type = INSTemperature
variable = T
u = vel_x
v = vel_y
[]
[]
[BCs]
[x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[]
[lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[]
[pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[]
[T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Materials]
[const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu k cp'
prop_values = '${rho} ${mu} ${k} ${cp}'
[]
[speed]
type = ADVectorMagnitudeFunctorMaterial
x_functor = vel_x
y_functor = vel_y
vector_magnitude_name = speed
[]
[thermal_diffusivity]
type = ThermalDiffusivityFunctorMaterial
k = ${k}
rho = ${rho}
cp = ${cp}
[]
[]
[Functions]
[lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type'
petsc_options_value = 'asm 2 lu'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/1d-strain.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
constraint_types = 'strain'
ndim = 1
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '1d.exo'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right'
points = '-1 0 0
7 0 0'
[]
[]
[Variables]
[disp_x]
[]
[hvar]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'strain11'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[strain11]
type = ParsedFunction
value = '4.0e-1*t'
[]
[]
[BCs]
[Periodic]
[all]
variable = disp_x
auto_direction = 'x'
[]
[]
[centerfix_x]
type = DirichletBC
boundary = "fixme"
variable = disp_x
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/contact/test/tests/mortar_tm/2d/frictionless_second/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite_rr'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5.0
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-7
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/two_way_many_apps_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.2
ymax = 0.2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master]
[../]
[./elemental_from_master]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./from_master]
type = Receiver
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4qnns.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4qnns_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(test/tests/time_steppers/constant_dt/constant_dt.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeStepper system.
#
# @Requirement F1.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
# Pluggable TimeStepper System
[./TimeStepper]
type = ConstantDT
dt = 0.2
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/tag/eigen_tag.i)
[Mesh/gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
[]
[Variables/u]
[]
[AuxVariables]
[vec_tag_diff]
order = FIRST
family = LAGRANGE
[]
[vec_tag_rhs]
order = FIRST
family = LAGRANGE
[]
[mat_tag_diff]
order = FIRST
family = LAGRANGE
[]
[mat_tag_rhs]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
extra_vector_tags = 'tag_diff'
extra_matrix_tags = 'tag_diff'
[]
[rhs]
type = CoefReaction
variable = u
extra_vector_tags = 'eigen tag_rhs'
extra_matrix_tags = 'tag_rhs'
[]
[]
[AuxKernels]
[vec_tag_diff]
type = TagVectorAux
variable = vec_tag_diff
v = u
vector_tag = tag_diff
[]
[vec_tag_rhs]
type = TagVectorAux
variable = vec_tag_rhs
v = u
vector_tag = tag_rhs
[]
[mat_tag_diff]
type = TagVectorAux
variable = mat_tag_diff
v = u
vector_tag = tag_diff
[]
[mat_tag_rhs]
type = TagVectorAux
variable = mat_tag_diff
v = u
vector_tag = tag_rhs
[]
[]
[BCs/homogeneous]
type = DirichletBC
boundary = 'top right bottom left'
variable = u
value = 0
[]
[Problem]
extra_tag_vectors = 'tag_diff tag_rhs'
extra_tag_matrices = 'tag_diff tag_rhs'
[]
[Executioner]
type = Eigenvalue
solve_type = NEWTON
eigen_problem_type = GEN_NON_HERMITIAN
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test4tt_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat4.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 10.0
# Poisson = 0.25
# layer_thickness = 10
# joint_normal_stiffness = 2.5
# joint_shear_stiffness = 2.0
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.156756756757E+01
# E_0011 = E_1100 = 3.855855855856E+00
# E_2222 = E_pp = 8.108108108108E+00
# E_0022 = E_1122 = E_2200 = E_2211 = 2.702702702703E+00
# G = E_0101 = E_0110 = E_1001 = E_1010 = 4
# Gt = E_qq = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 3.333333333333E+00
# E_2020 = E_2121 = 3.666666666667E+00
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.888888888889E+02
# B_0101 = B_1010 = 8.080808080808E+00
# B_0110 = B_1001 = -2.020202020202E+00
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 32*t/Gt
# disp_y = 24*t/Gt
# disp_z = 10*t/E_2222
# but leaving wc_x and wc_y unfixed
# yields the following strains:
# strain_xz = 32*t/Gt - wc_y = 9.6*t - wc_y
# strain_zx = wc_y
# strain_yz = 24*t/Gt + wc_x = 7.2*t + wc_x
# strain_zy = - wc_x
# strain_zz = 10*t/E_2222 = 1.23333333*t
# and all other components, and the curvature, are zero (assuming
# wc is uniform over the cube).
#
# When wc=0, the nonzero components of stress are therefore:
# stress_xx = stress_yy = 3.33333*t
# stress_xz = stress_zx = 32*t
# stress_yz = stress_zy = 24*t
# stress_zz = 10*t
# The moment stress is zero.
# So q = 40*t and p = 10*t
#
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = E_qq/Epp/2, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
# and
# stress_xx = stress_yy = 0
# and
# stress_zx = 32, and stress_zy = 24.
# This has resulted in a non-symmetric stress tensor, and there is
# zero moment stress, so the system is not in equilibrium. A
# nonzero wc must therefore be generated.
#
# The obvious choice of wc is such that stress_zx = 16 and
# stress_zy = 12, because then the final returned stress will
# be symmetric. This gives
# wc_y = - 48
# wc_x = 36
# At t=1, the nonzero components of stress are
# stress_xx = stress_yy = 3.33333
# stress_xz = 32, stress_zx = 16
# stress_yz = 24, stress_zy = 12
# stress_zz = 10*t
# The moment stress is zero.
#
# The returned stress is
# stress_xx = stress_yy = 0
# stress_xz = stress_zx = 16
# stress_yz = stress_zy = 12
# stress_zz = 0
# The total strains are given above.
# Since q returned from 40 to 20, plastic_strain_xz = 9.6/2 = 4.8
# and plastic_strain_yz = 7.2/2 = 3.6.
# Since p returned to zero, all of the total strain_zz is
# plastic, ie plastic_strain_zz = 1.23333
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 32*t/3.333333333333E+00
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 24*t/3.333333333333E+00
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 10*t/8.108108108108E+00
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./wc_x]
type = PointValue
point = '0 0 0'
variable = wc_x
[../]
[./wc_y]
type = PointValue
point = '0 0 0'
variable = wc_y
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = 'NEWTON'
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat4
csv = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_substep.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
gen_random_stress_flag = false
maximum_substep_iteration = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.5
dtmax = 10.0
dtmin = 0.5
num_steps = 3
[]
[Outputs]
file_base = crysp_substep_out
exodus = true
csv = true
gnuplot = true
[]
(modules/porous_flow/test/tests/thermal_conductivity/ThermalCondPorosity01.i)
# Trivial test of PorousFlowThermalConductivityFromPorosity
# Porosity = 0.1
# Solid thermal conductivity = 3
# Fluid thermal conductivity = 2
# Expected porous medium thermal conductivity = 3 * (1 - 0.1) + 2 * 0.1 = 2.9
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = -1
zmax = 0
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Variables]
[temp]
initial_condition = 1
[]
[pp]
initial_condition = 0
[]
[]
[Kernels]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temp
[]
[dummy]
type = Diffusion
variable = pp
[]
[]
[BCs]
[temp]
type = DirichletBC
variable = temp
boundary = 'front back'
value = 1
[]
[pp]
type = DirichletBC
variable = pp
boundary = 'front back'
value = 0
[]
[]
[AuxVariables]
[lambda_x]
order = CONSTANT
family = MONOMIAL
[]
[lambda_y]
order = CONSTANT
family = MONOMIAL
[]
[lambda_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[lambda_x]
type = MaterialRealTensorValueAux
property = PorousFlow_thermal_conductivity_qp
row = 0
column = 0
variable = lambda_x
[]
[lambda_y]
type = MaterialRealTensorValueAux
property = PorousFlow_thermal_conductivity_qp
row = 1
column = 1
variable = lambda_y
[]
[lambda_z]
type = MaterialRealTensorValueAux
property = PorousFlow_thermal_conductivity_qp
row = 2
column = 2
variable = lambda_z
[]
[]
[Postprocessors]
[lambda_x]
type = ElementalVariableValue
elementid = 0
variable = lambda_x
execute_on = 'timestep_end'
[]
[lambda_y]
type = ElementalVariableValue
elementid = 0
variable = lambda_y
execute_on = 'timestep_end'
[]
[lambda_z]
type = ElementalVariableValue
elementid = 0
variable = lambda_z
execute_on = 'timestep_end'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss_qp]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity_qp]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[lambda]
type = PorousFlowThermalConductivityFromPorosity
lambda_s = '3 0 0 0 3 0 0 0 3'
lambda_f = '2 0 0 0 2 0 0 0 2'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
[]
[Outputs]
file_base = ThermalCondPorosity01
csv = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_user_object.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.01
dtmax = 10.0
dtmin = 0.01
num_steps = 10
[]
[Outputs]
file_base = crysp_user_object_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value_ts_begin.i)
[Mesh]
file = square-2x2-nodeids.e
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = AverageNodalVariableValue
variable = u
boundary = 10
execute_on = TIMESTEP_BEGIN
[../]
[./node4]
type = AverageNodalVariableValue
variable = v
boundary = 13
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_avg_nodal_var_value_ts_begin
exodus = true
[]
(test/tests/time_integrators/newmark-beta/newmark_beta_inactive_steps.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of the TimeIntegrator system.
#
# Testing that the active_time parameter works as intended.
#
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 1
ny = 1
[]
[Variables]
[u]
[]
[]
[Functions]
[forcing_fn]
type = PiecewiseLinear
x = '0.0 0.1 0.6'
y = '0.0 1.0 1.0'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = 'right'
function = forcing_fn
[]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 6
dt = 0.1
[TimeIntegrator]
type = NewmarkBeta
inactive_tsteps = 1
[]
[]
[Postprocessors]
[udot]
type = ElementAverageTimeDerivative
variable = u
[]
[udotdot]
type = ElementAverageSecondTimeDerivative
variable = u
[]
[u]
type = ElementAverageValue
variable = u
[]
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_copy_transfer/constant_monomial_from_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./aux]
type = FunctionAux
variable = aux
execute_on = initial
function = 10*x*y
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
hide = 'u'
exodus = true
[]
(modules/heat_conduction/test/tests/verify_against_analytical/2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./properties]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1 1 1'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/convergence/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = false
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = false
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = false
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 1.0
exponent = 1.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/2d-mixed.i)
# 2D with mixed conditions on stress/strain
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
constraint_types = 'stress strain stress'
ndim = 2
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '2d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0'
fixed_normal = true
new_boundary = 'left right bottom top'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[hvar]
family = SCALAR
order = THIRD
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 strain22 stress12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '400*t'
[]
[strain22]
type = ParsedFunction
value = '-2.0e-2*t'
[]
[stress12]
type = ParsedFunction
value = '100*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y'
[]
[y]
variable = disp_y
auto_direction = 'x y'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix1"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix1"
variable = disp_y
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix2"
variable = disp_y
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary.i)
[Problem]
kernel_coverage_check = false
[]
[Mesh]
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1.3 1.9'
ix = '3 3 3'
dy = '6'
iy = '9'
subdomain_id = '0 1 2'
[../]
[./inner_left]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 0
paired_block = 1
new_boundary = 'inner_left'
[../]
[./inner_right]
type = SideSetsBetweenSubdomainsGenerator
input = inner_left
primary_block = 2
paired_block = 1
new_boundary = 'inner_right'
[../]
[./inner_top]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y - 6) < 1e-10'
normal = '0 1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_top'
input = 'inner_right'
[../]
[./inner_bottom]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y) < 1e-10'
normal = '0 -1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_bottom'
input = 'inner_top'
[../]
[./rename]
type = RenameBlockGenerator
old_block = '2'
new_block = '0'
input = inner_bottom
[../]
[]
[Variables]
[./temperature]
block = 0
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temperature
block = 0
diffusion_coefficient = 5
[../]
[]
[GrayDiffuseRadiation]
[./cavity]
boundary = '4 5 6 7'
emissivity = '0.9 0.8 0.4 1'
n_patches = '2 2 2 3'
partitioners = 'centroid centroid centroid centroid'
centroid_partitioner_directions = 'x y y x'
temperature = temperature
adiabatic_boundary = '7'
fixed_temperature_boundary = '6'
fixed_boundary_temperatures = '800'
view_factor_calculator = analytical
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
boundary = left
value = 1000
[../]
[./right]
type = DirichletBC
variable = temperature
boundary = right
value = 300
[../]
[]
[Postprocessors]
[./average_T_inner_right]
type = SideAverageValue
variable = temperature
boundary = inner_right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/master_quad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./master_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./func]
type = ParsedFunction
value = x*y*t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./func_aux]
type = FunctionAux
variable = master_aux
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./quad]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.05 0.05 0 0.95 0.05 0 0.05 0.95 0 0.95 0.95 0'
input_files = quad_sub.i
[../]
[]
[Transfers]
[./master_to_sub]
type = MultiAppVariableValueSamplePostprocessorTransfer
to_multi_app = quad
source_variable = master_aux
postprocessor = pp
[../]
[]
(test/tests/outputs/displacement/displacement_transient_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD4
displacements = 'u v'
[]
[Functions]
[./right_u]
type = ParsedFunction
value = 0.1*t
[../]
[./fn_v]
type = ParsedFunction
value = (x+1)*y*0.1*t
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 1
function = right_u
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '0 2'
function = fn_v
[../]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0
num_steps = 10
solve_type = 'PJFNK'
[]
[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/outputs/format/output_test_nemesis.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Postprocessors]
[./avg_block]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
nemesis = 1
[]
(test/tests/materials/has_material/has_block_prop.i)
[Mesh]
type = FileMesh
file = rectangle.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
active = 'u_diff'
[./u_diff]
type = MatCoefDiffusion
variable = u
block = '1 2'
conductivity = k
[../]
[]
[BCs]
[./left]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 0
[../]
[]
[Materials]
[./right]
type = GenericConstantMaterial
block = 2
prop_names = 'k k_right'
prop_values = '1 2'
[../]
[./left]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = '0.1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/navier_stokes/test/tests/auxkernels/reynolds-number-functor-aux/fe.i)
rho=1
mu=1
[GlobalParams]
gravity = '0 0 0'
pspg = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[]
[]
[AuxVariables]
[Reynolds]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[Reynolds]
type = ReynoldsNumberFunctorAux
variable = Reynolds
speed = speed
rho = ${rho}
mu = ${mu}
[]
[]
[Variables]
[vel_x]
[]
[vel_y]
[]
[p]
[]
[]
[Kernels]
# mass
[mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[]
# x-momentum, space
[x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[]
# y-momentum, space
[y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[]
[]
[BCs]
[x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[]
[lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[]
[pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[]
[]
[Materials]
[const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[]
[speed]
type = ADVectorMagnitudeFunctorMaterial
x_functor = vel_x
y_functor = vel_y
vector_magnitude_name = speed
[]
[]
[Functions]
[lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type'
petsc_options_value = 'asm 2 lu'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_action.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[MortarGapHeatTransfer]
[mortar_heat_transfer]
temperature = temp
primary_emissivity = 1.0
secondary_emissivity = 1.0
boundary = 100
use_displaced_mesh = true
gap_conductivity = 0.02
primary_boundary = 100
secondary_boundary = 101
gap_flux_options = 'CONDUCTION RADIATION'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
csv = true
[exodus]
type = Exodus
show = 'temp'
[]
[]
(modules/combined/test/tests/cavity_pressure/rz.i)
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (2) with an interior cavity of volume 8.
# Block 1 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts T in the following way:
# T => T0 + beta * t
# with
# beta = T0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# At t = 1, p = 200.
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
file = rz.e
[]
[Functions]
[./temperature]
type = PiecewiseLinear
x = '0 1'
y = '1 2'
scale_factor = 240.54443866068704
[../]
[]
[Variables]
[./disp_r]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_r
boundary = '1 2'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_z
boundary = '1 2'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 2
function = temperature
variable = temp
[../]
[./CavityPressure]
[./1]
boundary = 2
initial_pressure = 100
R = 8.314472
temperature = aveTempInterior
volume = internalVolume
startup_time = 0.5
output = ppress
[../]
[../]
[]
[Materials]
[./elastic_tensor1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 1
[../]
[./strain1]
type = ComputeAxisymmetricRZFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elastic_tensor2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 2
[../]
[./strain2]
type = ComputeAxisymmetricRZFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 2
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial linear'
[../]
[]
[Outputs]
exodus = true
[./checkpoint]
type = Checkpoint
num_files = 1
[../]
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_transient.i)
# Using a mixed-dimensional mesh
# Transient flow and solute transport along a fracture in a porous matrix
# advective dominated flow in the fracture and diffusion into the porous matrix
#
# Note that fine_steady.i must be run to initialise the porepressure properly
[Mesh]
file = 'gold/fine_steady_out.e'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
initial_from_file_var = pp
initial_from_file_timestep = 1
[]
[massfrac0]
[]
[]
[AuxVariables]
[velocity_x]
family = MONOMIAL
order = CONSTANT
block = fracture
[]
[velocity_y]
family = MONOMIAL
order = CONSTANT
block = fracture
[]
[]
[AuxKernels]
[velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[]
[velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[]
[]
[ICs]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0
variable = massfrac0
boundary = top
[]
[bottom]
type = DirichletBC
value = 1
variable = massfrac0
boundary = bottom
[]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro_fracture]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'fracture'
[]
[poro_matrix]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix1 matrix2'
[]
[diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 1.0
block = 'fracture'
[]
[diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 0.1
block = 'matrix1 matrix2'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # kf=3e-8, a=6e-4m. 1.8e-11 = kf * a
block = 'fracture'
[]
[permeability_matrix]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[]
[Functions]
[dt_controller]
type = PiecewiseConstant
x = '0 30 40 100 200 83200'
y = '0.01 0.1 1 10 100 32'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 86400
[TimeStepper]
type = FunctionDT
function = dt_controller
[]
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
[]
[VectorPostprocessors]
[xmass]
type = LineValueSampler
start_point = '0.4 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 167
variable = massfrac0
[]
[]
[Outputs]
perf_graph = true
console = true
csv = true
exodus = true
[]
(test/tests/executioners/eigen_executioners/ane.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
[]
# the minimum eigenvalue is (2*PI*(p-1)^(1/p)/a/p/sin(PI/p))^p;
# Its inverse is 35.349726539758187. Here a is equal to 10.
[Variables]
active = 'u'
[./u]
# second order is way better than first order
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./uic]
type = RandomIC
variable = u
[../]
[]
[Kernels]
active = 'diff rhs'
[./diff]
type = PHarmonic
variable = u
p = 3
[../]
[./rhs]
type = PMassEigenKernel
variable = u
p = 3
[../]
[]
[BCs]
active = 'homogeneous'
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 2'
value = 0
[../]
[]
[Executioner]
type = NonlinearEigen
bx_norm = 'unorm'
free_power_iterations = 10
nl_abs_tol = 1e-12
nl_rel_tol = 1e-50
k0 = 1.0
# important: constant initial value set by auto_initilization does not
# converge to the fundamental mode
auto_initialization = false
output_after_power_iterations = false
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
l_max_its = 100
[]
[Postprocessors]
active = 'unorm udiff'
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
# execute on residual is important for nonlinear eigen solver!
execute_on = linear
[../]
[./udiff]
type = ElementL2Diff
variable = u
outputs = console
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ane
exodus = true
[]
(test/tests/multiapps/restart/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
value = t*x
[../]
[./ffn]
type = ParsedFunction
value = x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_conservative_transfer/master_userobject.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
[VectorPostprocessors]
[to_nearest_point]
type = NearestPointIntegralVariablePostprocessor
variable = multi_layered_average
points = '0.3 0.1 0.3 0.7 0.1 0.3'
execute_on = 'transfer'
[]
[to_nearest_point_element]
type = NearestPointIntegralVariablePostprocessor
variable = element_multi_layered_average
points = '0.3 0.1 0.3 0.7 0.1 0.3'
execute_on = 'transfer'
[]
[]
[MultiApps]
[./sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub_userobject.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
user_object = layered_average
variable = multi_layered_average
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
from_postprocessors_to_be_preserved = 'from_postprocessor'
to_postprocessors_to_be_preserved = 'to_nearest_point'
[../]
[./element_layered_transfer]
user_object = layered_average
variable = element_multi_layered_average
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
from_postprocessors_to_be_preserved = 'from_postprocessor'
to_postprocessors_to_be_preserved = 'to_nearest_point_element'
[../]
[]
(modules/tensor_mechanics/test/tests/strain_energy_density/rate_model_small.i)
# Single element test to check the strain energy density calculation
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 2
[]
[AuxVariables]
[./SERD]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[../]
[./ramp_disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 6.8e-6 1.36e-5'
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = SMALL
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress elastic_strain_xx elastic_strain_yy elastic_strain_zz strain_xx strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SERD]
type = MaterialRealAux
variable = SERD
property = strain_energy_rate_density
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 'left'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 'bottom'
value = 0.0
[../]
[./top_disp]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 'top'
function = ramp_disp_y
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
coefficient = 3.125e-21 # 7.04e-17 #
n_exponent = 4.0
m_exponent = 0.0
activation_energy = 0.0
# max_inelastic_increment = 0.01
[../]
[./strain_energy_rate_density]
type = StrainEnergyRateDensity
inelastic_models = 'powerlawcrp'
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 2
num_steps = 2
[]
[Postprocessors]
[./etxx]
type = ElementalVariableValue
variable = strain_xx
elementid = 0
[../]
[./etyy]
type = ElementalVariableValue
variable = strain_yy
elementid = 0
[../]
[./etzz]
type = ElementalVariableValue
variable = strain_zz
elementid = 0
[../]
[./sigxx]
type = ElementAverageValue
variable = stress_xx
[../]
[./sigyy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigzz]
type = ElementAverageValue
variable = stress_zz
[../]
[./SERD]
type = ElementAverageValue
variable = SERD
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/controls/time_periods/dampers/enable_disable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp_fully_saturated.i)
# Pressure pulse in 1D with 1 phase, 3 component - transient
# using the PorousFlowFullySaturatedDarcyFlow Kernel
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[f0]
initial_condition = 0
[]
[f1]
initial_condition = 0.2
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = f0
[]
[flux1]
type = PorousFlowFullySaturatedDarcyFlow
variable = f0
gravity = '0 0 0'
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = f1
[]
[flux2]
type = PorousFlowFullySaturatedDarcyFlow
variable = f1
gravity = '0 0 0'
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp f0 f1'
number_fluid_phases = 1
number_fluid_components = 3
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac_nodes]
type = PorousFlowMassFraction
mass_fraction_vars = 'f0 f1'
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
preset = false
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -pc_factor_shift_type'
petsc_options_value = 'bcgs lu 1E-15 1E-10 10000 NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p005]
type = PointValue
variable = pp
point = '5 0 0'
execute_on = 'initial timestep_end'
[]
[p015]
type = PointValue
variable = pp
point = '15 0 0'
execute_on = 'initial timestep_end'
[]
[p025]
type = PointValue
variable = pp
point = '25 0 0'
execute_on = 'initial timestep_end'
[]
[p035]
type = PointValue
variable = pp
point = '35 0 0'
execute_on = 'initial timestep_end'
[]
[p045]
type = PointValue
variable = pp
point = '45 0 0'
execute_on = 'initial timestep_end'
[]
[p055]
type = PointValue
variable = pp
point = '55 0 0'
execute_on = 'initial timestep_end'
[]
[p065]
type = PointValue
variable = pp
point = '65 0 0'
execute_on = 'initial timestep_end'
[]
[p075]
type = PointValue
variable = pp
point = '75 0 0'
execute_on = 'initial timestep_end'
[]
[p085]
type = PointValue
variable = pp
point = '85 0 0'
execute_on = 'initial timestep_end'
[]
[p095]
type = PointValue
variable = pp
point = '95 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_3comp_fully_saturated
print_linear_residuals = false
csv = true
[]
(test/tests/markers/combo_marker/combo_marker_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.3 0.3 0'
top_right = '0.6 0.6 0'
inside = refine
outside = do_nothing
[../]
[./combo]
type = ComboMarker
markers = 'box box2'
[../]
[./box2]
type = BoxMarker
bottom_left = '0.5 0.5 0'
top_right = '0.8 0.8 0'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
[]
(python/peacock/tests/input_tab/InputTreeWriter/gold/simple_diffusion_inactive.i)
inactive = 'Kernels BCs Executioner'
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
inactive = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/steady_time/steady_time.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
nx = 4
ny = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = time_function
[../]
[]
[Functions]
[./time_function]
type = ParsedFunction
value = 't+1'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left right bottom top'
value = 0
[../]
[]
[Postprocessors]
[./norm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/nonmatching.i)
[Mesh]
file = nonmatching.e
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 1000
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
emissivity_primary = 0
emissivity_secondary = 0
secondary = leftright
quadrature = true
primary = rightleft
variable = temp
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[./gap_conductance]
type = GenericConstantMaterial
prop_names = 'gap_conductance gap_conductance_dT'
boundary = 'leftright rightleft'
prop_values = '1 0'
[../]
[]
[Postprocessors]
[./left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = leftright
diffusivity = thermal_conductivity
[../]
[./right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = rightleft
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = FIRST
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(test/tests/dampers/bounding_value_nodal_damper/bounding_value_max_test.i)
# This model tests the BoundingValueNodalDamper. The converged solution
# for u starts out in the range from 0 to 1, but after several steps,
# a volumetric source drives it to a value greater than 1, which is
# outside the range of the damper. At that point, the solution can
# no longer converge, and the model errors out with a failure to converge.
# The test verifies that the damper computes the correct value in the first
# nonlinear iteration when the solution exceeds the bounds.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./source]
type = BodyForce
variable = u
function = 't'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Dampers]
[./bounding_value_damp]
type = BoundingValueNodalDamper
min_value = 0.0
max_value = 1.0
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 3.0
dt = 0.5
dtmin = 0.5
nl_max_its = 5
[]
(test/tests/kernels/ad_value/generic_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./u_jac]
[../]
[./v_jac]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./value_test_v]
type = GenericValueTest
variable = v
diag_save_in = v_jac
[../]
[./ad_value_test]
type = ADGenericValueTest
variable = u
diag_save_in = u_jac
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/bc_gap_heat_transfer_displaced_conduction.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[ThermalContact]
[thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 100
secondary = 101
emissivity_primary = 0.0
emissivity_secondary = 0.0
gap_conductivity = 100.0
quadrature = true
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/geomsearch/2d_penetration_locator/2d_penetration_locator_test.i)
[Mesh]
file = 2d_contact_test.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./penetration]
order = FIRST
family = LAGRANGE
[../]
[./tangential_distance]
order = FIRST
family = LAGRANGE
[../]
[./normal_x]
order = FIRST
family = LAGRANGE
[../]
[./normal_y]
order = FIRST
family = LAGRANGE
[../]
[./closest_point_x]
order = FIRST
family = LAGRANGE
[../]
[./closest_point_y]
order = FIRST
family = LAGRANGE
[../]
[./element_id]
order = FIRST
family = LAGRANGE
[../]
[./side]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = penetration
boundary = 2
paired_boundary = 3
[../]
[./penetrate2]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 2
paired_boundary = 3
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 3
paired_boundary = 2
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 2
paired_boundary = 3
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 3
paired_boundary = 2
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 2
paired_boundary = 3
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 3
paired_boundary = 2
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 2
paired_boundary = 3
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 3
paired_boundary = 2
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 2
paired_boundary = 3
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 3
paired_boundary = 2
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 2
paired_boundary = 3
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 3
paired_boundary = 2
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 2
paired_boundary = 3
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 3
paired_boundary = 2
quantity = side
[../]
[]
[BCs]
active = 'block1_left block1_right block2_left block2_right'
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/two_pipe_master.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 5
nx = 5
ymin = 0
ymax = 5
ny = 5
zmin = 0
zmax = 5
nz = 5
[]
[./blocks]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '1 1 0'
top_right = '4 4 5'
[../]
[]
[AuxVariables]
[./from_sub_app_var]
order = CONSTANT
family = MONOMIAL
block = 1
initial_condition = 0
[../]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = front
value = -1
[]
[right]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 5
solve_type = 'NEWTON'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = final
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = two_pipe_sub.i
app_type = MooseTestApp
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[layered_transfer_from_sub_app]
type = MultiAppUserObjectTransfer
user_object = sub_app_uo
variable = from_sub_app_var
from_multi_app = sub_app
displaced_source_mesh = true
skip_bounding_box_check = true
[]
[]
(modules/tensor_mechanics/test/tests/volumetric_deform_grad/elastic_stress.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./elastic_stress]
type = ComputeDeformGradBasedStress
deform_grad_name = deformation_gradient
elasticity_tensor_name = elasticity_tensor
stress_name = stress
jacobian_name = Jacobian_mult
block = 0
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
csv = true
[]
(examples/ex09_stateful_materials/ex09.i)
[Mesh]
file = square.e
uniform_refine = 4
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./convected_ie]
type = TimeDerivative
variable = convected
[../]
[./example_diff]
# This Kernel uses "diffusivity" from the active material
type = ExampleDiffusion
variable = convected
[../]
[./conv]
type = ExampleConvection
variable = convected
some_variable = diffused
[../]
[./diffused_ie]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./left_convected]
type = DirichletBC
variable = convected
boundary = 'left'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = 'right'
value = 1
some_var = diffused
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[]
[Materials]
[./example_material]
type = ExampleMaterial
block = 1
initial_diffusivity = 0.05
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 10
dt = 1.0
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/xfem/test/tests/diffusion_xfem/diffusion_flux_bc.i)
# The Neumann BC is applied on the cutted boundary.
# The solution is not correct because so far integration along the cutted element faces is not right.
# To correct this, we need to re-calcuate the weights based on area/volume fraction. This will be implemented soon.
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 6
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./top_u]
type = NeumannBC
variable = u
boundary = 2
value = -1.0
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 0
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/chemical_reactions/test/tests/parser/equilibrium_without_action.i)
# Test AqueousEquilibriumReactions parser
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./pressure]
[../]
[./pa2]
[../]
[./pab]
[../]
[]
[AuxKernels]
[./pa2]
type = AqueousEquilibriumRxnAux
variable = pa2
v = a
log_k = 2
sto_v = 2
[../]
[./pab]
type = AqueousEquilibriumRxnAux
variable = pab
v = 'a b'
log_k = -2
sto_v = '1 1'
[../]
[]
[ICs]
[./a]
type = BoundingBoxIC
variable = a
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./b]
type = BoundingBoxIC
variable = b
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./a1_eq]
type = CoupledBEEquilibriumSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1_diff]
type = CoupledDiffusionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1_conv]
type = CoupledConvectionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
p = pressure
[../]
[./a2_eq]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2_diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2_conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[./b2_eq]
type = CoupledBEEquilibriumSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2_diff]
type = CoupledDiffusionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2_conv]
type = CoupledConvectionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-12
end_time = 10
dt = 10
[]
[Outputs]
file_base = equilibrium_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(modules/tensor_mechanics/test/tests/shell/static/pinched_cylinder_symm.i)
# Test for displacement of pinched cylinder
# Ref: Figure 10 and Table 6 from Dvorkin and Bathe, Eng. Comput., Vol. 1, 1984.
# A cylinder of radius 1 m and length 2 m (along Z axis) with clamped ends
# (at z = 0 and 2 m) is pinched at mid-length by placing point loads of 10 N
# at (1, 0, 1) and (-1, 0, 1). Due to the symmetry of the problem, only 1/8th
# of the cylinder needs to be modeled.
# The normalized series solution for the displacement at the loading point is
# w = Wc E t / P = 164.24; where Wc is the displacement in m, E is the Young's
# modulus, t is the thickness and P is the point load.
# For this problem, E = 1e6 Pa, L = 2 m, R = 1 m, t = 0.01 m, P = 10 N and
# Poisson's ratio = 0.3. FEM results from different mesh discretizations are
# presented below. Only the 10x10 mesh is included as a test.
# Mesh of 1/8 cylinder | FEM/analytical (Moose) | FEM/analytical (Dvorkin)
# |ratio of normalized disp.| ratio of normalized disp.
#----------------------|-------------------------|-------------------------
# 10 x 10 | 0.806 | 0.83
# 20 x 20 | 1.06 | 0.96
# 40 x 40 | 0.95 | -
# 80 x 160 | 0.96 | -
# The results from FEM analysis matches well with the series solution and with
# the solution presented by Dvorkin and Bathe (1984).
[Mesh]
[./mesh]
type = FileMeshGenerator
file = pinched_cyl_10_10.msh
[../]
[./block_100]
type = ParsedSubdomainMeshGenerator
input = mesh
combinatorial_geometry = 'x > -1.1 & x < 1.1 & y > -1.1 & y < 1.1 & z > -0.1 & z < 2.1'
block_id = 100
[../]
[./nodeset_1]
type = BoundingBoxNodeSetGenerator
input = block_100
top_right = '1.1 1.1 0'
bottom_left = '-1.1 -1.1 0'
new_boundary = 'CD' #CD
[../]
[./nodeset_2]
type = BoundingBoxNodeSetGenerator
input = nodeset_1
top_right = '1.1 1.1 1.0'
bottom_left = '-1.1 -1.1 1.0'
new_boundary = 'AB' #AB
[../]
[./nodeset_3]
type = BoundingBoxNodeSetGenerator
input = nodeset_2
top_right = '0.02 1.1 1.0'
bottom_left = '-0.1 0.98 0.0'
new_boundary = 'AD' #AD
[../]
[./nodeset_4]
type = BoundingBoxNodeSetGenerator
input = nodeset_3
top_right = '1.1 0.02 1.0'
bottom_left = '0.98 -0.1 0.0'
new_boundary = 'BC' #BC
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./simply_support_x]
type = DirichletBC
variable = disp_x
boundary = 'CD AD'
value = 0.0
[../]
[./simply_support_y]
type = DirichletBC
variable = disp_y
boundary = 'CD BC'
value = 0.0
[../]
[./simply_support_z]
type = DirichletBC
variable = disp_z
boundary = 'CD AB'
value = 0.0
[../]
[./simply_support_rot_x]
type = DirichletBC
variable = rot_x
boundary = 'CD BC'
value = 0.0
[../]
[./simply_support_rot_y]
type = DirichletBC
variable = rot_y
boundary = 'CD AD'
value = 0.0
[../]
[]
[DiracKernels]
[./point1]
type = ConstantPointSource
variable = disp_x
point = '1 0 1'
value = -2.5 # P = 10
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '100'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '100'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '100'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '100'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '100'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 1e6
poissons_ratio = 0.3
block = '100'
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '100'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.01
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = '100'
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z2]
type = PointValue
point = '1 0 1'
variable = disp_x
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/sd-strain.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
constraint_types = 'strain strain strain strain strain strain'
ndim = 3
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = SIXTH
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[hvar]
type = ScalarConstantIC
variable = hvar
value = 0.1
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[szz]
family = MONOMIAL
order = CONSTANT
[]
[syz]
family = MONOMIAL
order = CONSTANT
[]
[sxz]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[ezz]
family = MONOMIAL
order = CONSTANT
[]
[eyz]
family = MONOMIAL
order = CONSTANT
[]
[exz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[zz]
type = RankTwoAux
variable = szz
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[syz]
type = RankTwoAux
variable = syz
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[sxz]
type = RankTwoAux
variable = sxz
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[ezz]
type = RankTwoAux
variable = ezz
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
[]
[eyz]
type = RankTwoAux
variable = eyz
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 2
[]
[exz]
type = RankTwoAux
variable = exz
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'strain11 strain22 strain33 strain23 strain13 strain12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[strain11]
type = ParsedFunction
value = '4.0e-2*t'
[]
[strain22]
type = ParsedFunction
value = '-2.0e-2*t'
[]
[strain33]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain23]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain13]
type = ParsedFunction
value = '-7.0e-2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[szz]
type = ElementAverageValue
variable = szz
execute_on = 'initial timestep_end'
[]
[syz]
type = ElementAverageValue
variable = syz
execute_on = 'initial timestep_end'
[]
[sxz]
type = ElementAverageValue
variable = sxz
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[ezz]
type = ElementAverageValue
variable = ezz
execute_on = 'initial timestep_end'
[]
[eyz]
type = ElementAverageValue
variable = eyz
execute_on = 'initial timestep_end'
[]
[exz]
type = ElementAverageValue
variable = exz
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
#automatic_scaling = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
[Outputs]
exodus = false
csv = false
[]
(modules/peridynamics/test/tests/auxkernels/boundary_offset_node_area_2D.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./fmg]
type = FileMeshGenerator
file = 2D_square.e
[../]
[./mgpd]
type = MeshGeneratorPD
input = fmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gap_offset]
[../]
[./node_area]
[../]
[]
[AuxKernels]
[./gap_offset]
type = BoundaryOffsetPD
variable = gap_offset
[../]
[./node_area]
type = NodalVolumePD
variable = node_area
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./blk1]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./material_pd]
type = ComputeSmallStrainVariableHorizonMaterialBPD
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 1001
value = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/sliding_block/sliding/frictional_02_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# A friction coefficient of 0.2 is used. The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 1e+7
friction_coefficient = 0.2
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(modules/xfem/test/tests/solid_mechanics_basic/penny_crack.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
file = quarter_sym.e
[]
[UserObjects]
[./circle_cut_uo]
type = CircleCutUserObject
cut_data = '-0.5 -0.5 0
0.0 -0.5 0
-0.5 0 0'
[../]
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[DomainIntegral]
integrals = 'Jintegral'
crack_front_points = '-0.5 0.0 0.0
-0.25 -0.07 0
-0.15 -0.15 0
-0.07 -0.25 0
0 -0.5 0'
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '0 1 0'
crack_direction_vector_end_2 = '1 0 0'
crack_direction_method = CurvedCrackFront
intersecting_boundary = '3 4' #It would be ideal to use this, but can't use with XFEM yet
radius_inner = '0.3'
radius_outer = '0.6'
poissons_ratio = 0.3
youngs_modulus = 207000
block = 1
incremental = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
block = 1
[../]
[]
[Functions]
[./top_trac_z]
type = ConstantFunction
value = 10
[../]
[]
[BCs]
[./top_z]
type = FunctionNeumannBC
boundary = 2
variable = disp_z
function = top_trac_z
[../]
[./bottom_x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = 1
variable = disp_z
value = 0.0
[../]
[./sym_y]
type = DirichletBC
boundary = 3
variable = disp_y
value = 0.0
[../]
[./sym_x]
type = DirichletBC
boundary = 4
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = penny_crack_out
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/postprocessors/area_pp/area_pp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmax = 1.2
ymax = 2.3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./right]
type = AreaPostprocessor
boundary = 'right'
execute_on = 'initial timestep_end'
[../]
[./bottom]
type = AreaPostprocessor
boundary = 'bottom'
execute_on = 'initial timestep_end'
[../]
[./all]
type = AreaPostprocessor
boundary = 'left right bottom top'
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/multi/mc_wpt_1.i)
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[../]
[]
[Materials]
[./mc]
type = FiniteStrainMultiPlasticity
block = 0
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
ep_plastic_tolerance = 1E-9
plastic_models = 'mc wpt'
debug_fspb = crash
debug_jac_at_stress = '10 0 0 0 10 0 0 0 10'
debug_jac_at_pm = 1
debug_jac_at_intnl = 1
debug_stress_change = 1E-5
debug_pm_change = 1E-6
debug_intnl_change = 1E-6
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = mc_wpt_1
exodus = false
[./csv]
type = CSV
[../]
[]
(modules/porous_flow/test/tests/numerical_diffusion/no_action.i)
# Using upwinded and mass-lumped PorousFlow Kernels: this is equivalent of fully_saturated_action.i with stabilization = Full
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = tracer
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = porepressure
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-1
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/dirackernels/constant_point_source/2d_point_source.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
active = 'point_source1 point_source2'
[./point_source1]
type = ConstantPointSource
variable = u
value = 1.0
point = '0.2 0.3'
[../]
[./point_source2]
type = ConstantPointSource
variable = u
value = -0.5
point = '0.2 0.8'
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = 2d_out
exodus = true
[]
(test/tests/meshgenerators/sidesets_bounding_box_generator/overlapping_sidesets.i)
[Mesh]
#active = 'gmg'
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
[]
[./createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gmg
boundary_id_old = 'bottom back left'
boundary_id_new = 10
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
block_id = 0
boundary_id_overlap = true
[]
[./createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
boundary_id_old = 'right bottom'
boundary_id_new = 11
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
block_id = 0
boundary_id_overlap = true
[]
[./createNewSidesetThree]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetTwo
boundary_id_old = 'top front'
boundary_id_new = 12
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
block_id = 0
boundary_id_overlap = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./BCone]
type = DirichletBC
variable = u
boundary = 10
value = 1
[../]
[./BCtwo]
type = DirichletBC
variable = u
boundary = 11
value = 1
[../]
[./BCthree]
type = DirichletBC
variable = u
boundary = 12
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_1/brick1_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro04.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k
# with log k = A * phi + B
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[poro]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[]
[perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[]
[perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[]
[perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[]
[perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[]
[perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityExponential
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = log_k
A = 4.342945
B = -8
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/material_limit_time_step/elas_plas/nafems_nl1_lim.i)
#
# Tests material model IsotropicPlasticity with material based time stepper
# Boundary conditions from NAFEMS test NL1
#
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]#Comment
file = one_elem2.e
[] # Mesh
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_eff]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
[../]
[./plastic_strain_eff]
type = MaterialRealAux
property = effective_plastic_strain
variable = plastic_strain_eff
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
[../]
[] # AuxKernels
[Functions]
[./appl_dispx]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0'
y = '0.0 0.25e-4 0.50e-4 0.50e-4 0.50e-4 0.25e-4 0.0 0.0 0.0'
[../]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0'
y = '0.0 0.0 0.0 0.25e-4 0.50e-4 0.50e-4 0.50e-4 0.25e-4 0.0 '
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = appl_dispx
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = 1
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 5e6
hardening_constant = 0.0
relative_tolerance = 1e-20
absolute_tolerance = 1e-8
max_inelastic_increment = 0.000001
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-4
l_max_its = 100
nl_max_its = 20
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
time_t = '1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0'
time_dt = '0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1'
optimal_iterations = 30
iteration_window = 9
growth_factor = 2.0
cutback_factor = 0.5
timestep_limiting_postprocessor = matl_ts_min
[../]
start_time = 0.0
num_steps = 1000
end_time = 8.0
[] # Executioner
[Postprocessors]
[./matl_ts_min]
type = MaterialTimeStepPostprocessor
[../]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./plas_strain_eff]
type = ElementAverageValue
variable = plastic_strain_eff
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
output_linear = true
[../]
[] # Outputs
(test/tests/controls/error/non_existing_dependency.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[./ctrl]
type = TestControl
test_type = 'real'
parameter = 'BCs/left/value'
execute_on = 'initial timestep_begin'
depends_on = 'no-control'
[../]
[]
(test/tests/transfers/multiapp_conservative_transfer/sub_conservative_transfer.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0.05
xmax = 1.2
ymin = 0.05
ymax = 1.1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./coupledforce]
type = CoupledForce
variable = u
v = aux_u
[../]
[]
[AuxVariables]
[./aux_u]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./to_postprocessor]
type = ElementIntegralVariablePostprocessor
variable = aux_u
execute_on = 'transfer'
[../]
[]
[Problem]
type = FEProblem
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/test_harness/csvdiff.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5 # Gold file only has 4 steps
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./num_dofs]
type = NumDOFs
[../]
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/restart/pointer_restart_errors/pointer_store_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./restartable_types]
type = PointerStoreError
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./checkpoint]
type = Checkpoint
num_files = 1
[../]
[]
(test/tests/multiapps/picard/picard_abs_tol_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
fixed_point_max_its = 10
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_save_euler.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
block = 0
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
block = 0
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.01
dtmax = 10.0
dtmin = 0.01
num_steps = 10
[]
[Outputs]
file_base = crysp_save_euler_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(modules/contact/test/tests/multiple_contact_pairs/multiple_pairs.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = multiple_pairs.e
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[]
[]
[Materials]
[stiffStuff]
type = ComputeIsotropicElasticityTensor
block = '1 2 3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stiffStuff_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3'
[]
[]
[ICs]
[disp_y]
block = '2 3'
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Contact]
[action_name]
primary = '20 20'
secondary = '10 101'
penalty = 1e7
formulation = penalty
tangential_tolerance = 0.0001
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = '30 301'
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = '50 501'
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 60
dt = 2.0
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
nl_abs_tol = 1e-9
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[]
[VectorPostprocessors]
[cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '10 101'
sort_by = x
execute_on = NONLINEAR
[]
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_mouth_dir.i)
#This tests the J-Integral evaluation capability.
#This is a 2d plane strain model
#Crack direction is defined using the crack mouth coordinates.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackMouth
crack_mouth_boundary = 900
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_2d_mouth_dir_out
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_action.i)
# Pressure pulse in 1D with 1 phase - transient
# This input file uses the PorousFlowFullySaturated Action. For the non-Action version, see pressure_pulse_1d.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[]
[PorousFlowFullySaturated]
porepressure = pp
gravity = '0 0 0'
fp = simple_fluid
stabilization = Full
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d
print_linear_residuals = false
csv = true
[]
(test/tests/multiapps/steffensen/transient_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[coupling_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'steffensen'
fixed_point_max_its = 30
transformed_variables = 'u'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'transient_sub.i'
clone_master_mesh = true
execute_on = 'timestep_begin'
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
execute_on = 'timestep_begin'
[]
[u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
execute_on = 'timestep_begin'
[]
[]
(test/tests/postprocessors/element_time_derivative/el_time_deriv_1d_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -5
xmax = 5
ymin = -1
nx = 5
elem_type = EDGE
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = t*x+1
[../]
[]
[Kernels]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./diffusion]
type = Diffusion
variable = u
[../]
[./timeDer]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = u
boundary = '0 1'
value = 0
[../]
[]
[Postprocessors]
[./elementAvgTimeDerivative]
type = ElementAverageTimeDerivative
variable = u
[../]
[./elementAvgValue]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_el_time_deriv_1d
csv = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform3.i)
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[BCs]
[bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
# the following are "random" deformations
# each is O(1E-1) to provide large deformations
[topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E1'
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E1'
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E1'
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[]
[should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[]
[]
[Functions]
[should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.577350269
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 100
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 100
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(modules/contact/examples/2d_indenter/indenter_rz_fine.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Mesh]
patch_update_strategy = auto
patch_size = 2
partitioner = centroid
centroid_partitioner_direction = y
[simple_mesh]
type = FileMeshGenerator
file = indenter_rz_fine_bigsideset.e
[]
# For NodalVariableValue to work with distributed mesh
allow_renumbering = false
[]
[Functions]
[disp_y]
type = PiecewiseLinear
x = '0. 1.0 2.0 2.6 3.0'
y = '0. -4.5 -5.7 -5.7 -4.0'
[]
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[]
[AuxVariables]
[saved_x]
[]
[saved_y]
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
save_in = 'saved_x saved_y'
[]
[]
[BCs]
# Symmetries of the Problem
[symm_x_indenter]
type = DirichletBC
variable = disp_x
boundary = 5
value = 0.0
[]
[symm_x_material]
type = DirichletBC
variable = disp_x
boundary = 9
value = 0.0
[]
# Material should not fly away
[material_base_y]
type = DirichletBC
variable = disp_y
boundary = 8
value = 0.0
[]
# Drive indenter motion
[disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = disp_y
[]
[]
[Contact]
[contact]
secondary = 4
primary = 6
model = frictionless
# Investigate von Mises stress at the edge
correct_edge_dropping = true
formulation = mortar
c_normal = 1e+2
[]
[]
[UserObjects]
[slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 48
slip_sys_file_name = input_slip_sys_bcc48.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 48 0.0001 0.01'
uo_state_var_name = state_var_gss
slip_incr_tol = 10.0
block = 2
[]
[slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 48
uo_state_var_name = state_var_gss
block = 2
[]
[state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 48
groups = '0 24 48'
group_values = '900 1000' #120
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
block = 2
[]
[state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 48
hprops = '1.4 1000 1200 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
block = 2
[]
[]
[Materials]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e7
poissons_ratio = 0.25
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[crysp]
type = FiniteStrainUObasedCP
block = 2
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
maximum_substep_iteration = 20
[]
[elasticity_tensor]
type = ComputeElasticityTensorCP
block = 2
C_ijkl = '265190 113650 113650 265190 113650 265190 75769 75769 75760'
fill_method = symmetric9
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu basic NONZERO 1e-15'
line_search = 'none'
automatic_scaling = true
nl_abs_tol = 2.0e-07
nl_rel_tol = 2.0e-07
l_max_its = 40
l_abs_tol = 1e-08
l_tol = 1e-08
start_time = 0.0
dt = 0.01
end_time = 3.0 # Executioner
[]
[Postprocessors]
[maxdisp]
type = NodalVariableValue
nodeid = 39
variable = disp_y
[]
[resid_y]
type = NodalSum
variable = saved_y
boundary = 1
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
perf_graph = true
csv = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/parallel_master.i)
# This test was introduced for Issue #804 which saw data corruption
# during NearestNodeTransfer when running in parallel
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 1.0 0.0'
input_files = parallel_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
# Surface to volume data transfer
[./from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
execute_on = 'timestep_end'
[../]
[]
(test/tests/multiapps/sub_cycling/sub_negative.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = -1.0
end_time = 0
[TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.666
dt = 0.2
[]
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/forcing_function/forcing_function_error_check.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func'
[./forcing_func]
type = ParsedFunction
value = '"alpha*alpha*pi*pi*sin(alpha*pi*x)"'
vars = 'alpha'
vals = '16'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/multiapps/petsc_options/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/strain_energy_density/rate_incr_model_elas_plas.i)
# Single element test to check the strain energy density calculation
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 2
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[../]
[./ramp_disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 6.8e-6 1.36e-5'
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = SMALL
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress elastic_strain_xx elastic_strain_yy elastic_strain_zz plastic_strain_xx plastic_strain_yy plastic_strain_zz strain_xx strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 'left'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 'bottom'
value = 0.0
[../]
[./top_disp]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 'top'
function = ramp_disp_y
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 30e+6
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 1e2
hardening_constant = 0.0
[../]
[./strain_energy_density]
type = StrainEnergyDensity
incremental = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 2
num_steps = 2
[]
[Postprocessors]
[./epxx]
type = ElementalVariableValue
variable = elastic_strain_xx
elementid = 0
[../]
[./epyy]
type = ElementalVariableValue
variable = elastic_strain_yy
elementid = 0
[../]
[./epzz]
type = ElementalVariableValue
variable = elastic_strain_zz
elementid = 0
[../]
[./eplxx]
type = ElementalVariableValue
variable = plastic_strain_xx
elementid = 0
[../]
[./eplyy]
type = ElementalVariableValue
variable = plastic_strain_yy
elementid = 0
[../]
[./eplzz]
type = ElementalVariableValue
variable = plastic_strain_zz
elementid = 0
[../]
[./etxx]
type = ElementalVariableValue
variable = strain_xx
elementid = 0
[../]
[./etyy]
type = ElementalVariableValue
variable = strain_yy
elementid = 0
[../]
[./etzz]
type = ElementalVariableValue
variable = strain_zz
elementid = 0
[../]
[./sigxx]
type = ElementAverageValue
variable = stress_xx
[../]
[./sigyy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigzz]
type = ElementAverageValue
variable = stress_zz
[../]
[./SED]
type = ElementAverageValue
variable = SED
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./left-right]
auto_direction = 'x y'
variable = 'u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '0.1 0.2 0 0 0 -0.2'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/materials/material/qp_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat1]
type = QpMaterial
block = 0
outputs = all
constant_on = ELEMENT
property_name = 'zero_prop'
[../]
# The second copy of QpMaterial is not constant_on_elem.
[./mat2]
type = QpMaterial
block = 0
outputs = all
property_name = 'nonzero_prop'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/tutorials/introduction/therm_step02a.i)
#
# Single block thermal input with a line value sampler
# https://mooseframework.inl.gov/modules/heat_conduction/tutorials/introduction/therm_step02.html
#
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 1
[]
[]
[Variables]
[T]
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = T
[]
[]
[Materials]
[thermal]
type = HeatConductionMaterial
thermal_conductivity = 45.0
[]
[]
[BCs]
[t_left]
type = DirichletBC
variable = T
value = 300
boundary = 'left'
[]
[t_right]
type = FunctionDirichletBC
variable = T
function = '300+5*t'
boundary = 'right'
[]
[]
[Executioner]
type = Transient
end_time = 5
dt = 1
[]
[VectorPostprocessors]
[t_sampler]
type = LineValueSampler
variable = T
start_point = '0 0.5 0'
end_point = '2 0.5 0'
num_points = 20
sort_by = x
[]
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = therm_step02a_out
execute_on = final
[]
[]
(test/tests/mesh_modifiers/add_extra_nodeset/extra_nodeset_coord_test.i)
[Mesh]
[file]
type = FileMeshGenerator
file = square.e
[]
[middle_node]
type = ExtraNodesetGenerator
input = file
new_boundary = 'middle_node'
coord = '0.5 0.5'
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
active = 'left right middle'
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[middle]
type = DirichletBC
variable = u
boundary = 'middle_node'
value = -1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/thewarehouse/test1.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[manyblocks]
input = gen
type = ElemUniqueSubdomainsGenerator
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[mat_props]
type = GenericConstantMaterial
prop_names = diffusivity
prop_values = 2
[]
[]
[UserObjects]
[]
[Postprocessors]
[avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[]
[u1_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[u2_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[]
[diff]
type = DifferencePostprocessor
value1 = u1_avg
value2 = u2_avg
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[]
(modules/functional_expansion_tools/examples/2D_interface_no_material/sub.i)
# Derived from the example '2D_interface' with the following differences:
#
# 1) No materials are used
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = Diffusion
variable = s
[../]
[./time_diff_s]
type = TimeDerivative
variable = s
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = 1.0
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/heat_conduction/test/tests/convective_flux_function/convective_flux_function.i)
# This is a test of the ConvectiveFluxFunction BC.
# There is a single 1x1 element with a prescribed temperature
# on the left side and a convective flux BC on the right side.
# The temperature on the left is 100, and the far-field temp is 200.
# The conductance of the body (conductivity * length) is 10
#
# If the conductance in the BC is also 10, the temperature on the
# right side of the solid element should be 150 because half of the
# temperature drop should occur over the body and half in the BC.
#
# The integrated flux is deltaT * conductance, or -50 * 10 = -500.
# The negative sign indicates that heat is going into the body.
#
# The conductance is defined multiple ways using this input, and
# as long as it evaluates to 10, the result described above will
# be obtained.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Problem]
extra_tag_vectors = 'bcs'
[]
[Variables]
[temp]
initial_condition = 100.0
[]
[]
[AuxVariables]
[flux]
[]
[]
[AuxKernels]
[flux]
type = TagVectorAux
variable = flux
v = temp
vector_tag = 'bcs'
execute_on = timestep_end
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temp
[]
[]
[Materials]
[thermal]
type = HeatConductionMaterial
thermal_conductivity = 10.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = left
value = 100.0
[]
[right]
type = ConvectiveFluxFunction
variable = temp
boundary = right
T_infinity = 200.0
coefficient = 10.0 #This will behave as described in the header of this file if this evaluates to 10
extra_vector_tags = 'bcs'
[]
[]
[Postprocessors]
[integrated_flux]
type = NodalSum
variable = flux
boundary = right
[]
[]
[Executioner]
type = Transient
start_time = 0.0
end_time = 1.0
dt = 1.0
nl_rel_tol=1e-12
[]
[Outputs]
csv = true
[]
(modules/misc/test/tests/kernels/thermo_diffusion/ad_thermo_diffusion.i)
# Steady-state test for the ThermoDiffusion kernel.
#
# This test applies a constant temperature gradient to drive thermo-diffusion
# in the variable u. At steady state, the thermo-diffusion is balanced by
# diffusion due to Fick's Law, so the total flux is
#
# J = -D ( grad(u) - ( Qstar u / R ) grad(1/T) )
#
# If there are no fluxes at the boundaries, then there is no background flux and
# these two terms must balance each other everywhere:
#
# grad(u) = ( Qstar u / R ) grad(1/T)
#
# The dx can be eliminated to give
#
# d(ln u) / d(1/T) = Qstar / R
#
# This can be solved to give the profile for u as a function of temperature:
#
# u = A exp( Qstar / R T )
#
# Here, we are using simple heat conduction with Dirichlet boundaries on 0 <= x <= 1
# to give a linear profile for temperature: T = x + 1. We also need to apply one
# boundary condition on u, which is u(x=0) = 1. These conditions give:
#
# u = exp( -(Qstar/R) (x/(x+1)) )
#
# This analytical result is tracked by the aux variable "correct_u".
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
[]
[Variables]
[./u]
initial_condition = 1
[../]
[./temp]
initial_condition = 1
[../]
[]
[Kernels]
[./soret]
type = ADThermoDiffusion
variable = u
temperature = temp
[../]
[./diffC]
type = ADDiffusion
variable = u
[../]
# Heat diffusion gives a linear temperature profile to drive the Soret diffusion.
[./diffT]
type = ADDiffusion
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 1
[../]
[./leftt]
type = DirichletBC
variable = temp
preset = false
boundary = left
value = 1
[../]
[./rightt]
type = DirichletBC
variable = temp
preset = false
boundary = right
value = 2
[../]
[]
[Materials]
[./ad_soret_coefficient]
type = ADSoretCoeffTest
temperature = temp
coupled_var = u
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = NodalL2Error
variable = u
function = 'exp(-x/(x+1))'
[../]
[]
[Outputs]
execute_on = FINAL
exodus = true
[]
(modules/porous_flow/test/tests/gravity/fully_saturated_grav01a.i)
# Checking that gravity head is established
# 1phase, constant fluid-bulk, constant viscosity, constant permeability
# fully saturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[Kernels]
[flux0]
type = PorousFlowFullySaturatedDarcyBase
variable = pp
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1.2 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = fully_saturated_grav01a
[csv]
type = CSV
[]
[]
(test/tests/postprocessors/nodal_extreme_value/block_nodal_pps_test.i)
[Mesh]
file = rect-2blk.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = 1
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 6
value = 0
[../]
[./right_u]
type = NeumannBC
variable = u
boundary = 8
value = 4
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 6
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 3
value = 6
[../]
[]
[Postprocessors]
# This test demonstrates that you can have a block restricted NodalPostprocessor
[./restricted_max]
type = NodalMaxValue
variable = v
block = 1 # Block restricted
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/element_quality_check/bypass_warning.i)
[Mesh]
file = Quad.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[UserObjects]
[./elem_quality_check]
type = ElementQualityChecker
metric_type = DIAGONAL
failure_type = WARNING
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/misc/ad_robustness/ad_two_var_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[v][]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = ADTimeDerivative
variable = u
[../]
[coupled]
type = ADCoupledValueTest
variable = u
v = v
[]
[]
[DGKernels]
[dummy]
type = ADDGCoupledTest
variable = u
v = v
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/partitioners/petsc_partitioner/petsc_partitioner.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[Partitioner]
type = PetscExternalPartitioner
part_package = parmetis
[]
parallel_type = distributed
# Need a fine enough mesh to have good partition
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[npid]
family = Lagrange
order = first
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[npid_aux]
type = ProcessorIDAux
variable = npid
execute_on = 'INITIAL'
[]
[]
[Postprocessors]
[sum_sides]
type = StatVector
stat = sum
object = nl_wb_element
vector = num_partition_sides
[]
[min_elems]
type = StatVector
stat = min
object = nl_wb_element
vector = num_elems
[]
[max_elems]
type = StatVector
stat = max
object = nl_wb_element
vector = num_elems
[]
[]
[VectorPostprocessors]
[nl_wb_element]
type = WorkBalance
execute_on = initial
system = nl
balances = 'num_elems num_partition_sides'
outputs = none
[]
[]
[Outputs]
exodus = true
[out]
type = CSV
execute_on = FINAL
[]
[]
(test/tests/multiapps/output_in_position/multilevel_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = master.i
output_in_position = true
[../]
[]
(modules/stochastic_tools/test/tests/samplers/ParallelSubsetSimulation/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(test/tests/dirackernels/constant_point_source/3d_point_source.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
[./point_source1]
type = ConstantPointSource
variable = u
value = 0.1
point = '0.2 0.3 0.0'
[../]
[./point_source2]
type = ConstantPointSource
variable = u
value = -0.1
point = '0.2 0.8 0.0'
[../]
[./point_source3]
type = ConstantPointSource
variable = u
value = -1.0
point = '0.8 0.5 0.8'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = 3d_out
exodus = true
[]
(modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/perfectQ8.i)
[GlobalParams]
order = SECOND
[]
[Mesh]
file = perfectQ8.e
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 300
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
emissivity_primary = 0
emissivity_secondary = 0
variable = temp
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/controls/output/controllable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = u
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Outputs]
[./controls]
type = ControlOutput
clear_after_output = false
[../]
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
(test/tests/materials/derivative_material_interface/ad_material_chaining.i)
#
# This test validates the correct application of the chain rule to coupled
# material properties within DerivativeParsedMaterials
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./eta1]
[../]
[./eta2]
[../]
[]
[BCs]
[./left]
variable = eta1
boundary = left
type = DirichletBC
value = 0
[../]
[./right]
variable = eta1
boundary = right
type = DirichletBC
value = 1
[../]
[./top]
variable = eta2
boundary = top
type = DirichletBC
value = 0
[../]
[./bottom]
variable = eta2
boundary = bottom
type = DirichletBC
value = 1
[../]
[]
[Materials]
# T1 := (eta1+1)^4
[./term]
type = ADDerivativeParsedMaterial
f_name= T1
args = 'eta1'
function = '(eta1+1)^4'
derivative_order = 4
[../]
# in this material we substitute T1 explicitly
[./full]
type = ADDerivativeParsedMaterial
args = 'eta1 eta2'
f_name = F1
function = '(1-eta2)^4+(eta1+1)^4'
[../]
# in this material we utilize the T1 derivative material property
[./subs]
type = ADDerivativeParsedMaterial
args = 'eta1 eta2'
f_name = F2
function = '(1-eta2)^4+T1'
material_property_names = 'T1(eta1)'
[../]
# calculate differences between the explicit and indirect substitution version
# the use if the T1 property should include dT1/deta1 contributions!
# This also demonstrated the explicit use of material property derivatives using
# the D[...] syntax.
[./diff0]
type = ADParsedMaterial
f_name = D0
function = '(F1-F2)^2'
material_property_names = 'F1 F2'
[../]
[./diff1]
type = ADParsedMaterial
f_name = D1
function = '(dF1-dF2)^2'
material_property_names = 'dF1:=D[F1,eta1] dF2:=D[F2,eta1]'
[../]
[./diff2]
type = ADParsedMaterial
f_name = D2
function = '(d2F1-d2F2)^2'
material_property_names = 'd2F1:=D[F1,eta1,eta1] d2F2:=D[F2,eta1,eta1]'
[../]
# check that explicitly pulling a derivative yields the correct result by
# taking the difference of the manually calculated 1st derivative of T1 and the
# automatic derivative dT1 pulled in through dT1:=D[T1,eta1]
[./diff3]
type = ADParsedMaterial
f_name = E0
function = '(dTd1-(4*(eta1+1)^3))^2'
args = eta1
material_property_names = 'dTd1:=D[T1,eta1]'
[../]
[]
[Kernels]
[./eta1diff]
type = Diffusion
variable = eta1
[../]
[./eta2diff]
type = Diffusion
variable = eta2
[../]
[]
[Postprocessors]
[./D0]
type = ADElementIntegralMaterialProperty
mat_prop = D0
[../]
[./D1]
type = ADElementIntegralMaterialProperty
mat_prop = D1
[../]
[./D2]
type = ADElementIntegralMaterialProperty
mat_prop = D2
[../]
[./E0]
type = ADElementIntegralMaterialProperty
mat_prop = E0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
l_tol = 1e-03
[]
[Outputs]
execute_on = 'TIMESTEP_END'
csv = true
print_linear_residuals = false
[]
(test/tests/reporters/iteration_info/iteration_info_steady.i)
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Variables/u][]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 10
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Reporters/iteration_info]
type = IterationInfo
[]
[Outputs]
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(test/tests/misc/save_in/save_in_soln_var_err_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./saved]
[../]
[./bc_saved]
[../]
[./accumulated]
[../]
[./diag_saved]
[../]
[./bc_diag_saved]
[../]
[./saved_dirichlet]
[../]
[./diag_saved_dirichlet]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
save_in = 'u saved accumulated saved_dirichlet'
diag_save_in = 'diag_saved diag_saved_dirichlet'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
save_in = saved_dirichlet
diag_save_in = diag_saved_dirichlet
[../]
[./nbc]
type = NeumannBC
variable = u
boundary = right
value = 1
save_in = 'bc_saved accumulated'
diag_save_in = bc_diag_saved
[../]
[]
[Postprocessors]
[./left_flux]
type = NodalSum
variable = saved
boundary = 1
[../]
[./saved_norm]
type = NodalL2Norm
variable = saved
execute_on = timestep_end
block = 0
[../]
[./saved_dirichlet_norm]
type = NodalL2Norm
variable = saved_dirichlet
execute_on = timestep_end
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/test/tests/internal_volume/rspherical.i)
#
# Internal Volume Test
#
# This test is designed to compute the internal volume of a space considering
# an embedded volume inside.
#
# The mesh is composed of two blocks with an interior cavity of volume 3.
# The volume of each of the blocks is also 3. The volume of the entire sphere
# is 9.
#
[GlobalParams]
displacements = 'disp_x'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Mesh]
file = meshes/rspherical.e
construct_side_list_from_node_list = true
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e4
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
incremental = true
strain = FINITE
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = '1 2 3 4'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 3'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 10
component = 0
execute_on = 'initial timestep_end'
[../]
[./intVol1]
type = InternalVolume
boundary = 2
component = 0
execute_on = 'initial timestep_end'
[../]
[./intVol1Again]
type = InternalVolume
boundary = 9
component = 0
execute_on = 'initial timestep_end'
[../]
[./intVol2]
type = InternalVolume
boundary = 11
component = 0
execute_on = 'initial timestep_end'
[../]
[./intVolTotal]
type = InternalVolume
boundary = 4
component = 0
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_multi_var.i)
[Mesh]
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
solution = soln
variable = nn
scale_factor = 2.0
from_variable = nodal_10
add_factor = -20
[../]
[./en]
type = SolutionAux
solution = soln
variable = en
scale_factor = 2.0
from_variable = source_nodal
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource_added.e
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/outputs/format/output_test_tecplot_binary.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Tecplot
binary = true
[../]
[]
(test/tests/mesh/named_entities/named_entities_test_xda.i)
[Mesh]
file = named_entities.xda
uniform_refine = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
block = '1 center_block 3'
[./InitialCondition]
type = ConstantIC
value = 20
block = 'center_block 3'
[../]
[../]
[]
[AuxVariables]
[./reporter]
order = CONSTANT
family = MONOMIAL
block = 'left_block 3'
[../]
[]
[ICs]
[./reporter_ic]
type = ConstantIC
variable = reporter
value = 10
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
# Note we are using both names and numbers here
block = 'left_block 2 right_block'
[../]
[./body_force]
type = BodyForce
variable = u
block = 'center_block'
value = 10
[../]
[]
[AuxKernels]
[./hardness]
type = MaterialRealAux
variable = reporter
property = 'hardness'
block = 'left_block 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left_side'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right_side'
value = 1
[../]
[]
[Postprocessors]
[./elem_average]
type = ElementAverageValue
variable = u
block = 'center_block'
execute_on = 'initial timestep_end'
[../]
[./side_average]
type = SideAverageValue
variable = u
boundary = 'right_side'
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'hardness'
prop_values = 10
block = '1 right_block'
[../]
[./empty]
type = MTMaterial
block = 'center_block'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/mortar/continuity-2d-conforming/equalgradient.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-conf.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lmx]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[./lmy]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[ICs]
[./block1]
type = FunctionIC
variable = u
block = 1
function = y
[../]
[./block2]
type = FunctionIC
variable = u
block = 2
function = y-0.5
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[Constraints]
[./cedx]
type = EqualGradientConstraint
secondary_variable = u
variable = lmx
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
component = 0
[../]
[./cedy]
type = EqualGradientConstraint
secondary_variable = u
variable = lmy
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
component = 1
[../]
[]
[BCs]
[./all]
type = DiffusionFluxBC
variable = u
boundary = '2 4 100 101'
[../]
[./boundary]
type = DirichletBC
boundary = 1
variable = u
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
boundary = 3
variable = u
function = 0.5-t
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
nl_rel_tol = 1e-11
l_tol = 1e-10
l_max_its = 10
dt = 0.05
num_steps = 3
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(test/tests/problems/eigen_problem/eigensolvers/ne.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigen]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
file_base = monolith_newton
execute_on = 'timestep_end'
[]
(modules/stochastic_tools/test/tests/surrogates/polynomial_regression/sub_vector.i)
L = 1
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmax = ${L}
elem_type = EDGE3
[]
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 10000
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 2.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[VectorPostprocessors]
[T_vec]
type = LineValueSampler
variable = T
start_point = '0 0 0'
end_point = '${L} 0 0'
num_points = 10
sort_by = x
[]
[]
[Outputs]
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_incompatible_orders.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '36'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/dampers/constant_damper/constant_damper_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/adaptivity/initial_adapt/initial_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
initial_steps = 2
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/except1.i)
# checking for exception error messages
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[]
[topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.55
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
(modules/heat_conduction/test/tests/code_verification/cylindrical_test_no5.i)
# Problem II.5
#
# The volumetric heat generation in an infinitely long solid cylinder
# varies with spatial location. It has a constant thermal conductivity.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
vars = 'q ro beta'
vals = '1200 1 0.1'
value = 'q * (1-beta*x/ro)'
[../]
[./exact]
type = ParsedFunction
vars = 'uo q k ro beta'
vals = '300 1200 1 1 0.1'
value = 'uo + (0.25*q*ro^2/k) * ( (1-(x/ro)^2) - (1-(x/ro)^3) * beta * 4/9 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 300
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_projection_transfer/tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3
ymin = 0
ymax = 3
nx = 3
ny = 3
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u_nodal]
[../]
[./u_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./x_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./x_nodal]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'NEWTON'
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/richards/test/tests/dirac/bh_fu_07.i)
#fullyupwind
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
fully_upwind = true
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
value = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh_fu_07
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(modules/tensor_mechanics/test/tests/postprocessors/sideset_reaction/sideset_reaction.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Problem]
extra_tag_vectors = 'ref'
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[Postprocessors]
[./react_x]
type = SidesetReaction
direction = '1 0 0'
stress_tensor = stress
boundary = right
[../]
[]
[Modules/TensorMechanics/Master]
[plane_strain]
strain = FINITE
extra_vector_tags = 'ref'
add_variables = true
[]
[]
[BCs]
[leftx]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[]
[bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
boundary = back
variable = disp_z
value = 0.0
[]
[rightx]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = 't'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
line_search = none
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 0.01
dtmin = 0.01
end_time = 0.2
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/scale_pps/scale_pps.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[./scaled_u]
type = ScalePostprocessor
value = u_avg
scaling_factor = 2
execute_on = 'initial timestep_end'
[../]
[./scaled_scaled_u]
type = ScalePostprocessor
value = scaled_u
scaling_factor = 2
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/partitioners/file_mesh_skip_partition/file_mesh_skip_partitioning.i)
[Mesh]
[generate_2d]
type = FileMeshGenerator
file = 2d_base.e
skip_partitioning = true
[]
[extrude]
type = MeshExtruderGenerator
input = generate_2d
extrusion_vector = '0 0 1'
num_layers = 5
[]
[Partitioner]
type = HierarchicalGridPartitioner
nx_nodes = 2
ny_nodes = 1
nz_nodes = 1
nx_procs = 1
ny_procs = 1
nz_procs = 2
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid]
type = ProcessorIDAux
variable = pid
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_reporter_transfer/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppReporterTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
from_reporters = 'base_sub0_vpp/a base_sub0_vpp/b'
to_reporters = 'from_sub0_vpp/a from_sub0_vpp/b'
[]
[pp_transfer_2]
type = MultiAppReporterTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
from_reporters = 'base_sub1_vpp/a base_sub1_vpp/b'
to_reporters = 'from_sub1_vpp/a from_sub1_vpp/b'
[]
[]
(test/tests/kernels/ad_coupled_value/ad_aux_coupled_time_value.i)
###########################################################
# This is a simple test of coupling an aux variable into the
# ADCoupledTimeDerivative kernel.
# The expected solution for the variable v is
# v(x) = 1/2 * (x^2 + x)
###########################################################
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Functions]
[./u]
type = ParsedFunction
value = 't'
[../]
[]
[AuxKernels]
[./u]
type = FunctionAux
variable = u
function = u
[../]
[]
[Kernels]
[./time_v]
type = ADCoupledTimeDerivative
variable = v
v = u
[../]
[./diff_v]
type = ADDiffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = v
function = '1/2 * (x^2 + x)'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/energy_conservation/heat04_action.i)
# heat04, but using an action
#
# The sample is a single unit element, with fixed displacements on
# all sides. A heat source of strength S (J/m^3/s) is applied into
# the element. There is no fluid flow or heat flow. The rise
# in temperature, porepressure and stress, and the change in porosity is
# matched with theory.
#
# In this case, fluid mass must be conserved, and there is no
# volumetric strain, so
# porosity * fluid_density = constant
# Also, the energy-density in the rock-fluid system increases with S:
# d/dt [(1 - porosity) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T] = S
# Also, the porosity evolves according to THM as
# porosity = biot + (porosity0 - biot) * exp( (biot - 1) * P / fluid_bulk + rock_thermal_exp * T)
# Finally, the effective stress must be exactly zero (as there is
# no strain).
#
# Let us assume that
# fluid_density = dens0 * exp(P / fluid_bulk - fluid_thermal_exp * T)
# Then the conservation of fluid mass means
# porosity = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T)
# where dens0 * por0 = the initial fluid mass.
# The last expression for porosity, combined with the THM one,
# and assuming that biot = 1 for simplicity, gives
# porosity = 1 + (porosity0 - 1) * exp(rock_thermal_exp * T) = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T) .... (A)
#
# This stuff may be substituted into the heat energy-density equation:
# S = d/dt [(1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T]
#
# If S is constant then
# S * t = (1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T
# with T(t=0) = 0 then Eqn(A) implies that por0 = porosity0 and
# P / fluid_bulk = fluid_thermal_exp * T - log(1 + (por0 - 1) * exp(rock_thermal_exp * T)) + log(por0)
#
# Parameters:
# A = 2
# fluid_bulk = 2.0
# dens0 = 3.0
# fluid_thermal_exp = 0.5
# fluid_heat_cap = 2
# por0 = 0.5
# rock_thermal_exp = 0.25
# rock_density = 5
# rock_heat_capacity = 0.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[]
[]
[]
[PorousFlowUnsaturated]
coupling_type = ThermoHydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = pp
temperature = temp
dictator_name = Sir
biot_coefficient = 1.0
gravity = '0 0 0'
fp = the_simple_fluid
van_genuchten_alpha = 1.0E-12
van_genuchten_m = 0.5
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = Sir
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[pp]
[]
[temp]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[heat_source]
type = BodyForce
function = 1
variable = temp
[]
[]
[Functions]
[err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[]
[err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 0 0 0 0 0'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[]
[t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[]
[porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[]
[err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04_action
csv = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4nns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test4nns_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(modules/tensor_mechanics/test/tests/central_difference/lumped/1D/1d_lumped_explicit.i)
# Test for central difference integration for a 1D element
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
xmin = 0
xmax = 10
nx = 5
dim = 1
[../]
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[]
[NodalKernels]
[./force_x]
type = UserForcingFunctionNodalKernel
variable = disp_x
boundary = right
function = force_x
[../]
[]
[Functions]
[./force_x]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # force
scale_factor = 1e3
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.1
timestep_tolerance = 2e-10
dt = 0.005
[./TimeIntegrator]
type = CentralDifference
solve_type = lumped
[../]
[]
[Postprocessors]
[./accel_x]
type = PointValue
point = '10.0 0.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/multiapps/time_offset/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
input_files = 'sub.i'
global_time_offset = 0.8
[../]
[]
(tutorials/darcy_thermo_mech/step01_diffusion/problems/step1.i)
[Mesh]
type = GeneratedMesh # Can generate simple lines, rectangles and rectangular prisms
dim = 2 # Dimension of the mesh
nx = 100 # Number of elements in the x direction
ny = 10 # Number of elements in the y direction
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
# Adds a Linear Lagrange variable by default
[]
[]
[Kernels]
[diffusion]
type = ADDiffusion # Laplacian operator using automatic differentiation
variable = pressure # Operate on the "pressure" variable from above
[]
[]
[BCs]
[inlet]
type = DirichletBC # Simple u=value BC
variable = pressure # Variable to be set
boundary = left # Name of a sideset in the mesh
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Problem]
type = FEProblem # This is the "normal" type of Finite Element Problem in MOOSE
coord_type = RZ # Axisymmetric RZ
rz_coord_axis = X # Which axis the symmetry is around
[]
[Executioner]
type = Steady # Steady state problem
solve_type = NEWTON # Perform a Newton solve, uses AD to compute Jacobian terms
petsc_options_iname = '-pc_type -pc_hypre_type' # PETSc option pairs with values below
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true # Output Exodus format
[]
(modules/porous_flow/examples/tutorial/06_KT.i)
# Darcy flow with a tracer
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[tracer_concentration]
[]
[]
[ICs]
[tracer_concentration]
type = FunctionIC
function = '0.5*if(x*x+y*y<1.01,1,0)'
variable = tracer_concentration
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
mass_fraction_vars = tracer_concentration
stabilization = KT
flux_limiter_type = superbee
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_outer_porepressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[injected_tracer]
type = DirichletBC
variable = tracer_concentration
value = 0.5
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/coupling_scalar_into_field.i)
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./u]
[../]
[./a]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./coupled]
type = CoupledForce
variable = u
# this should trigger an error message, 'v' should a field variable
v = a
[../]
[]
[ScalarKernels]
[./alpha]
type = AlphaCED
variable = a
value = 1
[../]
[]
[BCs]
[./all]
type = DirichletBC
boundary = 'left right top bottom'
variable = u
value = 0
[../]
[]
[Executioner]
type = Steady
[]
(modules/peridynamics/test/tests/generalized_plane_strain/generalized_plane_strain_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/Peridynamics/Mechanics]
[./Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[../]
[./GeneralizedPlaneStrain]
[./all]
formulation = NONORDINARY_STATE
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
boundary = 1000
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1000
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
eigenstrain_names = thermal
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = thermal
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
exodus = true
file_base = generalized_plane_strain_H1NOSPD
[]
(test/tests/misc/check_error/constraint_with_aux_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Constraints]
[./nope]
type = CoupledTiedValueConstraint
variable = v
secondary = 2
primary = 3
primary_variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/postprocessors/avg_nodal_var_value/avg_nodal_var_value.i)
[Mesh]
file = square-2x2-nodeids.e
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = AverageNodalVariableValue
variable = u
boundary = 10
[../]
[./node4]
type = AverageNodalVariableValue
variable = v
boundary = 13
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_avg_nodal_var_value
exodus = true
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro05.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k
# with ln k = A * phi + B
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[poro]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[]
[perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[]
[perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[]
[perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[]
[perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[]
[perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityExponential
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = ln_k
A = 10.0
B = -18.420681
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_2d.i)
#This tests the J-Integral evaluation capability.
#This is a 2d plane strain model
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_2d_out
exodus = true
csv = true
[]
(test/tests/mesh_modifiers/lower_d_block/lower_d.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[lower]
type = LowerDBlockFromSidesetGenerator
input = gen
new_block_id = 10
sidesets = '0 0 1 2 3'
[]
[]
[Variables]
[u]
block = 0
[]
[v]
block = 10
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
block = 0
[]
[srcv]
type = BodyForce
block = 10
variable = v
function = 1
[]
[time_v]
type = TimeDerivative
block = 10
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/level_set/test/tests/transfers/markers/single_level/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Adaptivity]
marker = marker
max_h_level = 1
[./Markers]
[./marker]
type = BoxMarker
bottom_left = '0.25 0.25 0'
top_right = '0.75 0.75 0'
outside = DO_NOTHING
inside = REFINE
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = LevelSetProblem
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = LevelSetReinitializationMultiApp
input_files = 'sub.i'
execute_on = TIMESTEP_BEGIN
[../]
[]
[Transfers]
[./marker_to_sub]
type = LevelSetMeshRefinementTransfer
to_multi_app = sub
source_variable = marker
variable = marker
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d_rot.i)
#This tests the Interaction-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the Interaction-Integrals using options
#to treat it as 3d.
[GlobalParams]
order = FIRST
# order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d_rot.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI InteractionIntegralKII InteractionIntegralKIII'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '0 0 -1'
radius_inner = '4.0 5.5'
radius_outer = '5.5 7.0'
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
output_q = false
incremental = true
equivalent_k = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_x
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_x
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_z
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = interaction_integral_3d_rot_out
exodus = true
csv = true
[]
(test/tests/time_integrators/bdf2/bdf2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
elem_type = QUAD9
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
num_steps = 5
dt = 0.25
# [./Adaptivity]
# refine_fraction = 0.2
# coarsen_fraction = 0.3
# max_h_level = 4
# [../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide_fake_plastic.i)
# Example taken from Appendix A of
# S Forest "Mechanics of Cosserat media An introduction". Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4476&rep=rep1&type=pdf
#
# This example uses plasticity, but with inifinitely large yield strength, so it is really elasticity
#
# Analytically, the displacements are
# wc_z = B sinh(w_e y)
# disp_x = (2 mu_c B / w_e / (mu + mu_c)) (1 - cosh(w_e y))
# with w_e^2 = 2 mu mu_c / be / (mu + mu_c)
# and B = arbitrary integration constant
#
# Also, the only nonzero stresses are
# m_zy = 2 B be w_e cosh(w_e y)
# si_yx = -4 mu mu_c/(mu + mu_c) B sinh(w_e y)
#
# MOOSE gives these stress components correctly.
# However, it also gives a seemingly non-zero si_xy
# component. Upon increasing the resolution of the
# mesh (ny=10000, for example), the stress components
# are seen to limit correctly to the above forumlae
#
# I use mu = 2, mu_c = 3, be = 0.6, so w_e = 2
# Also i use B = 1, so at y = 1
# wc_z = 3.626860407847
# disp_x = -1.65731741465
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 100
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./disp_x_zero_at_y_zero]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[../]
[./disp_x_fixed_at_y_max]
type = DirichletBC
variable = disp_x
boundary = top
value = -1.65731741465
[../]
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_dispz]
type = DirichletBC
variable = disp_z
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./wc_z_zero_at_y_zero]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./wc_z_fixed_at_y_max]
type = DirichletBC
variable = wc_z
boundary = top
value = 3.626860407847
[../]
[]
[AuxVariables]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
E_ijkl = '1 2 3' # In Forest notation this is lambda=1 (this is unimportant), mu=2, mu_c=3
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./stress_fake_plasticity]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-12
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = y
variable = 'disp_x wc_z stress_yx couple_stress_zy'
start_point = '0 0 0'
end_point = '0 1 0'
num_points = 11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_glide_fake_plastic_out
exodus = false
csv = true
[]
(test/tests/meshgenerators/distributed_rectilinear/partition/squarish_partition.i)
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 20
ny = 30
partition = square
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[npid]
family = Lagrange
order = first
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[npid_aux]
type = ProcessorIDAux
variable = npid
execute_on = 'INITIAL'
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'hypre'
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_side_integral/layered_side_diffusive_flux_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_side_flux_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[AuxKernels]
[./lsfa]
type = SpatialUserObjectAux
variable = layered_side_flux_average
boundary = top
user_object = layered_side_flux_average
[../]
[]
[Materials]
[./gcm]
type = GenericConstantMaterial
prop_values = 2
prop_names = diffusivity
boundary = 'right top'
[../]
[]
[UserObjects]
[./layered_side_flux_average]
type = LayeredSideDiffusiveFluxAverage
direction = y
diffusivity = diffusivity
num_layers = 1
variable = u
execute_on = linear
boundary = top
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
(modules/porous_flow/test/tests/fluidstate/theis.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
xmax = 200
bias_x = 1.05
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 2e2
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = NodalValueSampler
sort_by = x
variable = 'pgas zi'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '1 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '1 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '1 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '1 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '1 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/porous_flow/test/tests/capillary_pressure/brooks_corey2.i)
# Test Brooks-Corey capillary pressure curve by varying saturation over the mesh
# lambda = 2, sat_lr = 0.1, log_extension = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[p0aux]
family = MONOMIAL
order = CONSTANT
[]
[p1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[p0]
type = PorousFlowPropertyAux
property = pressure
phase = 0
variable = p0aux
[]
[p1]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = p1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureBC
lambda = 2
log_extension = true
pe = 1e5
sat_lr = 0.1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityVG
phase = 0
m = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
variable = 's0aux s1aux p0aux p1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 500
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-6
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = radiation
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test1.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test1.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test1_out
exodus = true
[]
(examples/ex07_ics/steady.i)
[Mesh]
file = half-cone.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
# Use the initial Condition block underneath the variable
# for which we want to apply this initial condition
[./InitialCondition]
type = ExampleIC
coefficient = 2.0
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 2
[../]
[./right]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 8
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Outputs]
# Request that we output the initial condition so we can inspect
# the values with our visualization tool
exodus = true
[]
(test/tests/variables/optionally_coupled/optionally_coupled_system.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./coupled]
type = OptionallyCoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/peridynamics/test/tests/failure_tests/2D_bond_status_convergence_BPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
cracks_start = '0.25 0.5 0'
cracks_end = '0.75 0.5 0'
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./critical_stretch]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./bond_status]
type = StretchBasedFailureCriterionPD
critical_variable = critical_stretch
variable = bond_status
[../]
[]
[ICs]
[./critical_stretch]
type = ConstantIC
variable = critical_stretch
value = 0.001
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[./rbm_x]
type = RBMPresetOldValuePD
variable = disp_x
boundary = 999
[../]
[./rbm_y]
type = RBMPresetOldValuePD
variable = disp_y
boundary = 999
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialBPD
[../]
[]
[Postprocessors]
[./bond_status_updated_times]
type = BondStatusConvergedPostprocessorPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
dt = 0.5
end_time = 1
fixed_point_max_its = 5
accept_on_max_fixed_point_iteration = true
custom_pp = bond_status_updated_times
custom_abs_tol = 2
disable_fixed_point_residual_norm_check = true
[]
[Outputs]
file_base = 2D_bond_status_convergence_BPD
exodus = true
[]
(modules/phase_field/test/tests/MultiPhase/orderparameterfunctionmaterial.i)
#
# This test validates the helper materials that generate material properties for
# the h(eta) switching function and the g(eta) double well function
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 5
nz = 0
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[./left1]
type = DirichletBC
variable = eta1
boundary = 'left'
value = 0
[../]
[./right1]
type = DirichletBC
variable = eta1
boundary = 'right'
value = 1
[../]
[./left2]
type = DirichletBC
variable = eta2
boundary = 'left'
value = 0
[../]
[./right2]
type = DirichletBC
variable = eta2
boundary = 'right'
value = 1
[../]
[]
[Variables]
# order parameter 1
[./eta1]
order = FIRST
family = LAGRANGE
[../]
# order parameter 2
[./eta2]
order = FIRST
family = LAGRANGE
[../]
[]
[Materials]
[./h_eta1]
type = SwitchingFunctionMaterial
h_order = SIMPLE
eta = eta1
function_name = h1
outputs = exodus
[../]
[./h_eta2]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta2
function_name = h2
outputs = exodus
[../]
[./g_eta1]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta1
function_name = g1
outputs = exodus
[../]
[./g_eta2]
type = BarrierFunctionMaterial
g_order = LOW
eta = eta2
function_name = g2
outputs = exodus
[../]
[]
[Kernels]
[./eta1diff]
type = Diffusion
variable = eta1
[../]
[./eta2diff]
type = Diffusion
variable = eta2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_elem_map.i)
[Mesh]
file = elem_map.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./matid]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./matid]
type = SolutionAux
solution = soln
variable = matid
scale_factor = 1.0
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = elem_map.e
system_variables = MatID
timestep = LATEST
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1'
value = 1.0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the XY plane with load applied along the Z axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xy.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-0.7071067812 0.7071067812 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_z]
type = PointValue
point = '2.8284271 2.8284271 0.0'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/multiapps/picard_failure/picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
[MultiApps]
active = 'sub' # will be modified by CLI overrides
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[../]
[./sub_no_fail]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub_no_fail.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/porous_flow/test/tests/actions/fullsat_borehole.i)
# PorousFlowFullySaturated action with coupling_type = ThermoHydro (no
# mechanical effects), plus a Peaceman borehole with use_mobility = true
# to test that nodal relative permeability is added by this action.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1E7
[]
[temperature]
initial_condition = 323.15
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
dictator_name = dictator
stabilization = none
fp = simple_fluid
gravity = '0 0 0'
[]
[BCs]
[temperature]
type = DirichletBC
variable = temperature
boundary = 'left right'
value = 323.15
[]
[]
[UserObjects]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
wet_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 850
density = 2700
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = borehole_total_outflow_mass
point_file = borehole.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 0
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3nns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test3nns_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(modules/combined/test/tests/ad_cavity_pressure/rz.i)
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (2) with an interior cavity of volume 8.
# Block 1 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts T in the following way:
# T => T0 + beta * t
# with
# beta = T0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# At t = 1, p = 200.
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
file = rz.e
[]
[Functions]
[./temperature]
type = PiecewiseLinear
x = '0 1'
y = '1 2'
scale_factor = 240.54443866068704
[../]
[]
[Variables]
[./disp_r]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_r
boundary = '1 2'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_z
boundary = '1 2'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
preset = false
boundary = 2
function = temperature
variable = temp
[../]
[./CavityPressure]
[./1]
boundary = 2
initial_pressure = 100
R = 8.314472
temperature = aveTempInterior
volume = internalVolume
startup_time = 0.5
output = ppress
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elastic_tensor1]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 1
[../]
[./strain1]
type = ADComputeAxisymmetricRZFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elastic_tensor2]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 2
[../]
[./strain2]
type = ADComputeAxisymmetricRZFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 2
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial linear'
[../]
[]
[Outputs]
exodus = true
[./checkpoint]
type = Checkpoint
num_files = 1
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_conduction_UOs_function.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[]
[Functions]
[gc_function]
type = PiecewiseLinear
x = '-10000 10000'
y = '0.02 0.02'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[MortarGapHeatTransfer]
[mortar_heat_transfer]
temperature = temp
boundary = 100
use_displaced_mesh = true
primary_boundary = 100
secondary_boundary = 101
user_created_gap_flux_models = 'radiation_uo conduction_uo'
[]
[]
[UserObjects]
[radiation_uo]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction_uo]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity_function = gc_function
gap_conductivity_function_variable = temp
gap_conductivity = 1.0
use_displaced_mesh = true
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
csv = true
[exodus]
type = Exodus
show = 'temp'
[]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/substep.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
block = 0
stol = 1e-2
tan_mod_type = exact
maximum_substep_iteration = 10
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss]
type = ElementAverageValue
variable = gss
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 2.0
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 30.0
dtmin = 0.5
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
gnuplot = true
[]
(test/tests/userobjects/layered_integral/cumulative_layered_integral.i)
# ##########################################################
# This is a test of the UserObject System. The
# LayeredIntegral UserObject executes independently during
# the solve to compute a user-defined value. In this case
# an integral value in discrete layers along a vector
# in the domain. (Type: ElementalUserObject)
#
# @Requirement F6.40
# ##########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_integral]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./liaux]
type = SpatialUserObjectAux
variable = layered_integral
execute_on = timestep_end
user_object = layered_integral
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[UserObjects]
[./layered_integral]
type = LayeredIntegral
direction = y
num_layers = 3
variable = u
execute_on = linear
cumulative = true
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/test_jacobian/jacobian_test_planestrain.i)
# This test is designed to test the jacobian for a single
# element with/without volumetric locking correction.
# The mesh contains one element whose y displacement is zero at
# the bottom surface (y=0) and -1.0 at the top surface (y=1).
# Result: The hand coded jacobian matches well with the finite
# difference jacobian with an error norm in the order of 1e-15
# for total and incremental small strain formulations and with
# an error in the order of 1e-8 for finite strain formulations.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./y_force]
type = NeumannBC
variable = disp_y
boundary = top
value = -1.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[../]
[./strain]
block = 0
[../]
[./stress]
block = 0
[../]
[]
[Preconditioning]
active = 'smp'
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient #Transient
solve_type = NEWTON
petsc_options = '-snes_check_jacobian -snes_check_jacobian_view'
l_max_its = 100
nl_abs_tol = 1e-4
start_time = 0.0
num_steps = 1
dt = 0.005
dtmin = 0.005
end_time = 0.005
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/sub0.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average_0]
type = ElementAverageValue
variable = u
[]
[from_1]
type = Receiver
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/misc/displaced_mesh_coupling/ad.i)
[GlobalParams]
displacements = 'u'
[]
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./u]
type = ADDiffusion
use_displaced_mesh = true
variable = u
[../]
[./v]
type = ADDiffusion
use_displaced_mesh = false
variable = v
[../]
[]
[BCs]
[./no_x]
type = ADNeumannBC
variable = u
boundary = left
value = 1.0e-3
use_displaced_mesh = true
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./lright]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_vi_solver.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 20
xmax = 1
ymax = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[ICs]
[./c_ic]
type = FunctionIC
function = ic
variable = c
[../]
[]
[Functions]
[./ic]
type = ParsedFunction
value = 'if(x<0.5 & y < 0.55 & y > 0.45,1, 0)'
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./bounds_dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'top bottom'
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
use_snes_vi_solver = true
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Bounds]
[./c_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = c
bound_type = upper
bound_value = 1.0
[../]
[./c_lower_bound]
type = VariableOldValueBoundsAux
variable = bounds_dummy
bounded_variable = c
bound_type = lower
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -snes_type'
petsc_options_value = 'lu vinewtonrsls'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/linesearch.i)
[GlobalParams]
displacements = 'ux uy uz'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss
property = slip_resistance
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
maximum_substep_iteration = 200
use_line_search = true
min_line_search_step_size = 0.01
[../]
[./trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
resistance_tol = 0.01
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.02
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/perf_graph/multi_app/sub_sub_cycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(modules/combined/examples/geochem-porous_flow/forge/porous_flow.i)
# Input file modified from RobPodgorney version
# - 2D instead of 3D with different resolution. Effectively this means a 1m height of RobPodgorney aquifer is simulated. RobPodgorney total mass flux is 2.5kg/s meaning 0.25kg/s is appropriate here
# - Celsius instead of Kelvin
# - no use of PorousFlowPointEnthalpySourceFromPostprocessor since that is not yet merged into MOOSE: a DirichletBC is used instead
# - Use of PorousFlowFullySaturated instead of PorousFlowUnsaturated, and the save_component_rate_in feature to record the change in kg of each species at each node for passing to the Geochem simulation
# - MultiApps and Transfers to transfer information between this simulation and the aquifer_geochemistry.i simulation
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 225
ny = 200
xmin = -400
xmax = 500
ymin = -400
ymax = 400
[]
[injection_node]
input = gen
type = ExtraNodesetGenerator
new_boundary = injection_node
coord = '0 0 0'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[f_H]
initial_condition = 8.201229858451E-07
[]
[f_Na]
initial_condition = 2.281094143525E-03
[]
[f_K]
initial_condition = 2.305489507836E-04
[]
[f_Ca]
initial_condition = 5.818776782059E-04
[]
[f_Mg]
initial_condition = 1.539513498238E-07
[]
[f_SiO2]
initial_condition = 2.691822196469E-04
[]
[f_Al]
initial_condition = 4.457519474122E-08
[]
[f_Cl]
initial_condition = 4.744309776594E-03
[]
[f_SO4]
initial_condition = 9.516650880811E-06
[]
[f_HCO3]
initial_condition = 5.906126982324E-05
[]
[porepressure]
initial_condition = 20E6
[]
[temperature]
initial_condition = 220 # degC
scaling = 1E-6 # fluid enthalpy is roughly 1E6
[]
[]
[BCs]
[source_temperature]
type = DirichletBC
boundary = injection_node
variable = temperature
value = 70 # degC
[]
[]
[DiracKernels]
[inject_H]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 4.790385871045E-08
variable = f_H
[]
[inject_Na]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 7.586252963780E-07
variable = f_Na
[]
[inject_K]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.746517625125E-07
variable = f_K
[]
[inject_Ca]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 7.775129478597E-07
variable = f_Ca
[]
[inject_Mg]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 1.749872109005E-07
variable = f_Mg
[]
[inject_SiO2]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 4.100547515915E-06
variable = f_SiO2
[]
[inject_Al]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.502408592080E-08
variable = f_Al
[]
[inject_Cl]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 1.997260386272E-06
variable = f_Cl
[]
[inject_SO4]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.497372164191E-07
variable = f_SO4
[]
[inject_HCO3]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 5.003150992902E-06
variable = f_HCO3
[]
[inject_H2O]
type = PorousFlowPointSourceFromPostprocessor
point = ' 0 0 0'
mass_flux = 2.499865905987E-01
variable = porepressure
[]
[produce_H]
type = PorousFlowPeacemanBorehole
variable = f_H
SumQuantityUO = produced_mass_H
mass_fraction_component = 0
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Na]
type = PorousFlowPeacemanBorehole
variable = f_Na
SumQuantityUO = produced_mass_Na
mass_fraction_component = 1
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_K]
type = PorousFlowPeacemanBorehole
variable = f_K
SumQuantityUO = produced_mass_K
mass_fraction_component = 2
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Ca]
type = PorousFlowPeacemanBorehole
variable = f_Ca
SumQuantityUO = produced_mass_Ca
mass_fraction_component = 3
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Mg]
type = PorousFlowPeacemanBorehole
variable = f_Mg
SumQuantityUO = produced_mass_Mg
mass_fraction_component = 4
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_SiO2]
type = PorousFlowPeacemanBorehole
variable = f_SiO2
SumQuantityUO = produced_mass_SiO2
mass_fraction_component = 5
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Al]
type = PorousFlowPeacemanBorehole
variable = f_Al
SumQuantityUO = produced_mass_Al
mass_fraction_component = 6
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_Cl]
type = PorousFlowPeacemanBorehole
variable = f_Cl
SumQuantityUO = produced_mass_Cl
mass_fraction_component = 7
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_SO4]
type = PorousFlowPeacemanBorehole
variable = f_SO4
SumQuantityUO = produced_mass_SO4
mass_fraction_component = 8
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_HCO3]
type = PorousFlowPeacemanBorehole
variable = f_HCO3
SumQuantityUO = produced_mass_HCO3
mass_fraction_component = 9
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[produce_H2O]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = produced_mass_H2O
mass_fraction_component = 10
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[remove_heat_at_production_well]
type = PorousFlowPeacemanBorehole
variable = temperature
SumQuantityUO = produced_heat
point_file = production.bh
line_length = 1
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
use_enthalpy = true
character = 1
[]
[]
[UserObjects]
[produced_mass_H]
type = PorousFlowSumQuantity
[]
[produced_mass_Na]
type = PorousFlowSumQuantity
[]
[produced_mass_K]
type = PorousFlowSumQuantity
[]
[produced_mass_Ca]
type = PorousFlowSumQuantity
[]
[produced_mass_Mg]
type = PorousFlowSumQuantity
[]
[produced_mass_SiO2]
type = PorousFlowSumQuantity
[]
[produced_mass_Al]
type = PorousFlowSumQuantity
[]
[produced_mass_Cl]
type = PorousFlowSumQuantity
[]
[produced_mass_SO4]
type = PorousFlowSumQuantity
[]
[produced_mass_HCO3]
type = PorousFlowSumQuantity
[]
[produced_mass_H2O]
type = PorousFlowSumQuantity
[]
[produced_heat]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[heat_extracted]
type = PorousFlowPlotQuantity
uo = produced_heat
[]
[approx_production_temperature]
type = PointValue
point = '100 0 0'
variable = temperature
[]
[mass_extracted_H]
type = PorousFlowPlotQuantity
uo = produced_mass_H
execute_on = 'initial timestep_end'
[]
[mass_extracted_Na]
type = PorousFlowPlotQuantity
uo = produced_mass_Na
execute_on = 'initial timestep_end'
[]
[mass_extracted_K]
type = PorousFlowPlotQuantity
uo = produced_mass_K
execute_on = 'initial timestep_end'
[]
[mass_extracted_Ca]
type = PorousFlowPlotQuantity
uo = produced_mass_Ca
execute_on = 'initial timestep_end'
[]
[mass_extracted_Mg]
type = PorousFlowPlotQuantity
uo = produced_mass_Mg
execute_on = 'initial timestep_end'
[]
[mass_extracted_SiO2]
type = PorousFlowPlotQuantity
uo = produced_mass_SiO2
execute_on = 'initial timestep_end'
[]
[mass_extracted_Al]
type = PorousFlowPlotQuantity
uo = produced_mass_Al
execute_on = 'initial timestep_end'
[]
[mass_extracted_Cl]
type = PorousFlowPlotQuantity
uo = produced_mass_Cl
execute_on = 'initial timestep_end'
[]
[mass_extracted_SO4]
type = PorousFlowPlotQuantity
uo = produced_mass_SO4
execute_on = 'initial timestep_end'
[]
[mass_extracted_HCO3]
type = PorousFlowPlotQuantity
uo = produced_mass_HCO3
execute_on = 'initial timestep_end'
[]
[mass_extracted_H2O]
type = PorousFlowPlotQuantity
uo = produced_mass_H2O
execute_on = 'initial timestep_end'
[]
[mass_extracted]
type = LinearCombinationPostprocessor
pp_names = 'mass_extracted_H mass_extracted_Na mass_extracted_K mass_extracted_Ca mass_extracted_Mg mass_extracted_SiO2 mass_extracted_Al mass_extracted_Cl mass_extracted_SO4 mass_extracted_HCO3 mass_extracted_H2O'
pp_coefs = '1 1 1 1 1 1 1 1 1 1 1'
execute_on = 'initial timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_begin'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 2E-4
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 980
cv = 4000.0
cp = 4000.0
porepressure_coefficient = 0
[]
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = porepressure
temperature = temperature
mass_fraction_vars = 'f_H f_Na f_K f_Ca f_Mg f_SiO2 f_Al f_Cl f_SO4 f_HCO3'
save_component_rate_in = 'rate_H rate_Na rate_K rate_Ca rate_Mg rate_SiO2 rate_Al rate_Cl rate_SO4 rate_HCO3 rate_H2O' # change in kg at every node / dt
fp = the_simple_fluid
temperature_unit = Celsius
[]
[AuxVariables]
[rate_H]
[]
[rate_Na]
[]
[rate_K]
[]
[rate_Ca]
[]
[rate_Mg]
[]
[rate_SiO2]
[]
[rate_Al]
[]
[rate_Cl]
[]
[rate_SO4]
[]
[rate_HCO3]
[]
[rate_H2O]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.01
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2.5 0 0 0 2.5 0 0 0 2.5'
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
density = 2750.0
specific_heat_capacity = 900.0
[]
[]
[Preconditioning]
active = typically_efficient
[typically_efficient]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = ' hypre boomeramg'
[]
[strong]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm ilu NONZERO 2'
[]
[probably_too_strong]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 31536000 #1 year
[TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 500
[]
[]
[Outputs]
exodus = true
csv = true
[]
[MultiApps]
[react]
type = TransientMultiApp
input_files = aquifer_geochemistry.i
clone_master_mesh = true
execute_on = 'timestep_end'
[]
[]
[Transfers]
[changes_due_to_flow]
type = MultiAppCopyTransfer
source_variable = 'rate_H rate_Na rate_K rate_Ca rate_Mg rate_SiO2 rate_Al rate_Cl rate_SO4 rate_HCO3 rate_H2O temperature'
variable = 'pf_rate_H pf_rate_Na pf_rate_K pf_rate_Ca pf_rate_Mg pf_rate_SiO2 pf_rate_Al pf_rate_Cl pf_rate_SO4 pf_rate_HCO3 pf_rate_H2O temperature'
to_multi_app = react
[]
[massfrac_from_geochem]
type = MultiAppCopyTransfer
source_variable = 'massfrac_H massfrac_Na massfrac_K massfrac_Ca massfrac_Mg massfrac_SiO2 massfrac_Al massfrac_Cl massfrac_SO4 massfrac_HCO3'
variable = 'f_H f_Na f_K f_Ca f_Mg f_SiO2 f_Al f_Cl f_SO4 f_HCO3'
from_multi_app = react
[]
[]
(test/tests/mesh_modifiers/assign_subdomain_id/assign_subdomain_id.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[assign_id]
type = SubdomainIDGenerator
input = gen
subdomain_id = 3
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/recover/recover.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = recover_in.e
[]
[Variables]
[./temp]
initial_condition = 580.0
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_source]
type = BodyForce
variable = temp
block = pellet_type_1
value = 1e3
function = 't'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 5
secondary = 10
emissivity_primary = 0
emissivity_secondary = 0
quadrature = true
[../]
[]
[BCs]
[./outside]
type = DirichletBC
value = 580
boundary = '1 2 3'
variable = temp
[../]
[./edge]
type = DirichletBC
value = 700
boundary = 10
variable = temp
[../]
[]
[Materials]
[./thermal_3]
type = HeatConductionMaterial
block = 3
thermal_conductivity = 5
specific_heat = 12
[../]
[./thermal_1]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 16.0
specific_heat = 330.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = -200
n_startup_steps = 1
end_time = 1.02e5
num_steps = 10
dtmax = 2e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 2.0e2
optimal_iterations = 15
iteration_window = 2
[../]
[./Quadrature]
order = FIFTH
side_order = SEVENTH
[../]
[]
[Postprocessors]
[./ave_temp_interior]
type = SideAverageValue
boundary = 9
variable = temp
execute_on = 'initial linear'
[../]
[./avg_clad_temp]
type = SideAverageValue
boundary = 7
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_from_clad]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 5
diffusivity = thermal_conductivity
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/tosub_displaced_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master]
[../]
[./elemental_from_master]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
initial_condition = -.3
[../]
[./disp_y]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/function_file_test1.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_columns.csv #Will generate error because data is expected in rows
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/postprocessors/print_perf_data/use_log_data_no_print.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./elapsed]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/noaction_3d.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
constraint_types = 'stress strain strain strain stress strain strain strain strain'
ndim = 3
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = NINTH
[]
[]
[AuxVariables]
[pk1_stress_xx]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_yx]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_zx]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_xy]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_yy]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_zy]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_xz]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_yz]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_xx]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_yx]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_zx]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_xy]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_yy]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_zy]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_xz]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_yz]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_zz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pk1_stress_xx]
type = RankTwoAux
variable = pk1_stress_xx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[pk1_stress_yx]
type = RankTwoAux
variable = pk1_stress_yx
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[pk1_stress_zx]
type = RankTwoAux
variable = pk1_stress_zx
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[pk1_stress_xy]
type = RankTwoAux
variable = pk1_stress_xy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[pk1_stress_yy]
type = RankTwoAux
variable = pk1_stress_yy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[pk1_stress_zy]
type = RankTwoAux
variable = pk1_stress_zy
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[pk1_stress_xz]
type = RankTwoAux
variable = pk1_stress_xz
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[pk1_stress_yz]
type = RankTwoAux
variable = pk1_stress_yz
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[pk1_stress_zz]
type = RankTwoAux
variable = pk1_stress_zz
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[deformation_gradient_xx]
type = RankTwoAux
variable = deformation_gradient_xx
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[deformation_gradient_yx]
type = RankTwoAux
variable = deformation_gradient_yx
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[deformation_gradient_zx]
type = RankTwoAux
variable = deformation_gradient_zx
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[deformation_gradient_xy]
type = RankTwoAux
variable = deformation_gradient_xy
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[deformation_gradient_yy]
type = RankTwoAux
variable = deformation_gradient_yy
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[deformation_gradient_zy]
type = RankTwoAux
variable = deformation_gradient_zy
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[deformation_gradient_xz]
type = RankTwoAux
variable = deformation_gradient_xz
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[deformation_gradient_yz]
type = RankTwoAux
variable = deformation_gradient_yz
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[deformation_gradient_zz]
type = RankTwoAux
variable = deformation_gradient_zz
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 strain21 strain31 strain12 stress22 strain32 strain13 strain23 strain33'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '120.0*t'
[]
[stress22]
type = ParsedFunction
value = '65*t'
[]
[strain33]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain23]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain13]
type = ParsedFunction
value = '-7.0e-2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain32]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain31]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain21]
type = ParsedFunction
value = '-1.5e-2*t'
[]
[zero]
type = ConstantFunction
value = 0
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 20
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/recompute_radial_return/uniaxial_viscoplasticity_incrementalstrain.i)
# This is a test of the HyperbolicViscoplasticityStressUpdate model
# using the small strain formulation. The material is a visco-plastic material
# i.e. a time-dependent linear strain hardening plasticity model.
# A similar problem was run in Abaqus with exactly the same result, although the element
# used in the Abaqus simulation was a CAX4 element. Neverthless, due to the boundary conditions
# and load, the MOOSE and Abaqus result are the same.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 1x1x1cube.e
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t/100
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy plastic_strain_xx plastic_strain_yy plastic_strain_zz'
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.3
[../]
[./viscoplasticity]
type = HyperbolicViscoplasticityStressUpdate
yield_stress = 10.0
hardening_constant = 100.0
c_alpha = 0.2418e-6
c_beta = 0.1135
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'viscoplasticity'
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = none
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
num_steps = 30
dt = 1.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/functional_expansion_tools/test/tests/standard_use/multiapp_print_coefficients.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
print_when_set = true # Print coefficients when a MultiAppFXTransfer is executed
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
print_state = true # Print after the FX coefficients are computer
print_when_set = true # Print coefficients when a MultiAppFXTransfer is executed
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/misc/check_error/missing_active_section.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Check for missing referenced section
active = 'left right top'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/2D/neumann.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '50000 * t'
[]
[pully]
type = ParsedFunction
value = '-30000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/meshgenerators/sidesets_bounding_box_generator/error_no_nodes_found.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
#parallel_type = replicated
[]
[./createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gmg
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '0.5 0.5 0'
top_right = '1.9 1.9 0'
block_id = 0
[]
[./createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
boundary_id_old = 'top right'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.7 0.3 0'
block_id = 0
boundary_id_overlap = true
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[../]
[./rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/kernel_restartable/kernel_restartable.i)
###########################################################
# This test exercises the restart system and verifies
# correctness with parallel computation, but distributed
# and with threading.
#
# See kernel_restartable_second.i
#
# @Requirement F1.60
# @Requirement P1.10
# @Requirement P1.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./restart]
type = Checkpoint
num_files = 100
[../]
[]
(test/tests/tag/tag_ad_kernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-10
nl_rel_tol = 1e-9
nl_max_its = 1
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/crack_tip_enrichment/edge_crack_2d.i)
[XFEM]
qrule = volfrac
output_cut_plane = true
use_crack_tip_enrichment = true
crack_front_definition = crack_tip
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y'
displacements = 'disp_x disp_y'
cut_off_boundary = all
cut_off_radius = 0.2
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.0 1.0 0.5 1.0'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./crack_tip]
type = CrackFrontDefinition
crack_direction_method = CrackDirectionVector
crack_front_points = '0.5 1.0 0'
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
[../]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 9
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 2.0
elem_type = QUAD4
[]
[./all_node]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
top_right = '1 2 0'
bottom_left = '0 0 0'
input = gen
[../]
[./right_bottom_node]
type = ExtraNodesetGenerator
new_boundary = 'right_bottom_node'
coord = '1.0 0.0'
input = all_node
[../]
[./right_top_node]
type = ExtraNodesetGenerator
new_boundary = 'right_top_node'
coord = '1.0 2.0'
input = right_bottom_node
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = Pressure
variable = disp_y
boundary = top
factor = -1
displacements = 'disp_x disp_y'
[../]
[./bottom_y]
type = Pressure
variable = disp_y
boundary = bottom
factor = -1
displacements = 'disp_x disp_y'
[../]
[./fix_y]
type = DirichletBC
boundary = right_bottom_node
variable = disp_y
value = 0.0
[../]
[./fix_x]
type = DirichletBC
boundary = right_bottom_node
variable = disp_x
value = 0.0
[../]
[./fix_x2]
type = DirichletBC
boundary = right_top_node
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeCrackTipEnrichmentSmallStrain
displacements = 'disp_x disp_y'
crack_front_definition = crack_tip
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
# Since we do not sub-triangularize the tip element,
# we need to use higher order quadrature rule to improve
# integration accuracy.
# Here second = SECOND is for regression test only.
# However, order = SIXTH is recommended.
[./Quadrature]
type = GAUSS
order = SECOND
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 10
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 100
nl_rel_tol = 1e-12 #11
nl_abs_tol = 1e-12 #12
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
dtmin = 1.0
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = edge_crack_2d_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/radial_disp_aux/sphere_1d_spherical.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a sphere subjected to uniform thermal
# expansion represented using a 1D spherical model.
[Mesh]
type = GeneratedMesh
dim = 1
elem_type = EDGE3
nx = 4
xmin = 0.0
xmax = 1.0
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Problem]
coord_type = RSPHERICAL
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementSphereAux
variable = rad_disp
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
(tutorials/darcy_thermo_mech/step09_mechanics/problems/step9.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
ny = 200
nx = 10
ymax = 0.304 # Length of test chamber
xmax = 0.0257 # Test chamber radius
[]
[bottom]
type = SubdomainBoundingBoxGenerator
input = generate
location = inside
bottom_left = '0 0 0'
top_right = '0.01285 0.304 0'
block_id = 1
[]
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Modules/TensorMechanics/Master]
[all]
# This block adds all of the proper Kernels, strain calculators, and Variables
# for TensorMechanics in the correct coordinate system (autodetected)
add_variables = true
strain = FINITE
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
generate_output = 'vonmises_stress elastic_strain_xx elastic_strain_yy strain_xx strain_yy'
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = bottom
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = top
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = bottom
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = top
[]
[hold_inlet]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[hold_center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[]
[hold_outside]
type = DirichletBC
variable = disp_r
boundary = right
value = 0
[]
[]
[Materials]
viscosity_file = data/water_viscosity.csv
density_file = data/water_density.csv
thermal_conductivity_file = data/water_thermal_conductivity.csv
specific_heat_file = data/water_specific_heat.csv
thermal_expansion_file = data/water_thermal_expansion.csv
[column_top]
type = PackedColumn
block = 0
temperature = temperature
radius = 1.15
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[column_bottom]
type = PackedColumn
block = 1
temperature = temperature
radius = 1
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200e9 # (Pa) from wikipedia
poissons_ratio = .3 # from wikipedia
[]
[elastic_stress]
type = ADComputeFiniteStrainElasticStress
[]
[thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 300
eigenstrain_name = eigenstrain
temperature = temperature
thermal_expansion_coeff = 1e-5 # TM modules doesn't support material property, but it will
[]
[]
[Postprocessors]
[average_temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Transient
start_time = -1
end_time = 200
steady_state_tolerance = 1e-7
steady_state_detection = true
dt = 0.25
solve_type = PJFNK
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
#petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
#petsc_options_value = 'hypre boomeramg 500'
line_search = none
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/porous_flow/test/tests/mass_conservation/mass04.i)
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
# Fluid mass conservation is checked.
#
# Under these conditions
# porepressure = porepressure(t=0) - (Fluid bulk modulus)*log(1 - 0.01*t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 0.5
# initial porepressure = 0.1
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.1 - 0.5*log(1-0.01*t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
#
# Regarding the "log" - it comes from preserving fluid mass
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
initial_condition = 0.1
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
use_displaced_mesh = false
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 2
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = mass04
[csv]
type = CSV
[]
[]
(modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_master_bad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'phase_field_sub.i'
# Here we'll attempt to load a different module that's not compiled into this module
app_type = InvalidApp
# Here we set an input file specific relative library path instead of using MOOSE_LIBRARY_PATH
library_path = '../../../../../phase_field/lib'
[../]
[]
(test/tests/time_steppers/constant_dt_regrowth/constant_dt_regrowth.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_step = 3
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/save_euler.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(modules/combined/examples/phase_field-mechanics/Pattern1.i)
#
# Pattern example 1
#
# Phase changes driven by a combination mechanical (elastic) and chemical
# driving forces. In this three phase system a matrix phase, an oversized and
# an undersized precipitate phase compete. The chemical free energy favors a
# phase separation into either precipitate phase. A mix of both precipitate
# emerges to balance lattice expansion and contraction.
#
# This example demonstrates the use of
# * ACMultiInterface
# * SwitchingFunctionConstraintEta and SwitchingFunctionConstraintLagrange
# * DerivativeParsedMaterial
# * ElasticEnergyMaterial
# * DerivativeMultiPhaseMaterial
# * MultiPhaseStressMaterial
# which are the components to se up a phase field model with an arbitrary number
# of phases
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 80
ny = 80
nz = 0
xmin = -20
xmax = 20
ymin = -20
ymax = 20
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
min = 0
max = 0.8
seed = 1235
[../]
[../]
# Order parameter for the Matrix
[./eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[./eta3]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Mesh displacement
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
# Lagrange-multiplier
[./lambda]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_res]
type = CahnHilliard
variable = c
f_name = F
args = 'eta1 eta2 eta3'
[../]
[./time]
type = TimeDerivative
variable = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
f_name = phase
args = 'eta2 eta3'
function = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# matrix phase
[./elasticity_tensor_1]
type = ComputeElasticityTensor
base_name = phase1
C_ijkl = '3 3'
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeSmallStrain
base_name = phase1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
# oversized phase
[./elasticity_tensor_2]
type = ComputeElasticityTensor
base_name = phase2
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_2]
type = ComputeSmallStrain
base_name = phase2
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
[./eigenstrain_2]
type = ComputeEigenstrain
base_name = phase2
eigen_base = '0.02'
eigenstrain_name = eigenstrain
[../]
# undersized phase
[./elasticity_tensor_3]
type = ComputeElasticityTensor
base_name = phase3
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_3]
type = ComputeSmallStrain
base_name = phase3
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress_3]
type = ComputeLinearElasticStress
base_name = phase3
[../]
[./eigenstrain_3]
type = ComputeEigenstrain
base_name = phase3
eigen_base = '-0.05'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = '4*c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(c-0.9)^2-0.4'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
f_name = Fc3
function = '(c-0.9)^2-0.5'
args = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
base_name = phase1
f_name = Fe1
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
base_name = phase2
f_name = Fe2
derivative_order = 2
args = 'c' # should be empty
[../]
[./elastic_free_energy_3]
type = ElasticEnergyMaterial
base_name = phase3
f_name = Fe3
derivative_order = 2
args = 'c' # should be empty
[../]
# phase free energies (chemical + elastic)
[./phase_free_energy_1]
type = DerivativeSumMaterial
f_name = F1
sum_materials = 'Fc1 Fe1'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_2]
type = DerivativeSumMaterial
f_name = F2
sum_materials = 'Fc2 Fe2'
args = 'c'
derivative_order = 2
[../]
[./phase_free_energy_3]
type = DerivativeSumMaterial
f_name = F3
sum_materials = 'Fc3 Fe3'
args = 'c'
derivative_order = 2
[../]
# global free energy
[./free_energy]
type = DerivativeMultiPhaseMaterial
f_name = F
fi_names = 'F1 F2 F3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 3
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = MultiPhaseStressMaterial
phase_base = 'phase1 phase2 phase3'
h = 'h1 h2 h3'
[../]
[]
[BCs]
# the boundary conditions on the displacement enforce periodicity
# at zero total shear and constant volume
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 'right'
value = 0
[../]
[./Periodic]
[./disp_x]
auto_direction = 'y'
[../]
[./disp_y]
auto_direction = 'x'
[../]
# all other phase field variables are fully periodic
[./c]
auto_direction = 'x y'
[../]
[./eta1]
auto_direction = 'x y'
[../]
[./eta2]
auto_direction = 'x y'
[../]
[./eta3]
auto_direction = 'x y'
[../]
[./lambda]
auto_direction = 'x y'
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm ilu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
(modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/gap_conductivity_property.i)
[Mesh]
file = perfect.e
[]
[Variables]
[./temp]
[../]
[]
[AuxVariables]
[./gap_conductivity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./gap_conductivity]
type = MaterialRealAux
boundary = leftright
property = gap_conductivity
variable = gap_conductivity
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 300
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
emissivity_primary = 0
emissivity_secondary = 0
variable = temp
type = GapHeatTransfer
gap_conductivity = 3.0
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/predictors/simple/predictor_test_skip_after_failed_tstep.i)
# The purpose of this test is to test the simple predictor.
# The test is adjusted to produce a failed time step.
# The predictor option 'skip_after_failed_timestep' should suppress a prediction
# after the failed time step.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Functions]
[./ramp1]
type = PiecewiseLinear
x = '0 0.5 1'
y = '0 1 4'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bot]
type = DirichletBC
variable = u
boundary = bottom
value = 0.0
[../]
[./ss2_x]
type = FunctionDirichletBC
variable = u
boundary = top
function = ramp1
[../]
[]
[Problem]
type = FailingProblem
fail_step = 6
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-14
l_tol = 1e-14
start_time = 0.0
end_time = 1.0
[./TimeStepper]
type = ConstantDT
dt = 0.1
cutback_factor_at_failure = 0.5
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
skip_after_failed_timestep = true
[../]
[]
[Postprocessors]
[./final_residual]
type = Residual
residual_type = final
[../]
[./initial_residual_before]
type = Residual
residual_type = initial_before_preset
[../]
[./initial_residual_after]
type = Residual
residual_type = initial_after_preset
[../]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/power_law_creep/nonad_bounds.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[Modules/TensorMechanics/Master]
[finite]
add_variables = true
strain = FINITE
use_automatic_differentiation = true
[]
[]
[BCs]
[no_x]
type = ADDirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[top]
type = ADDirichletBC
variable = disp_x
boundary = 'top'
value = 1e-4
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[]
[elastic_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'creep'
outputs = all
[]
[creep]
type = ADPowerLawCreepTest
coefficient = 10e-22
n_exponent = 2
activation_energy = 0
internal_solve_full_iteration_history = true
internal_solve_output_on = always
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
num_steps = 1
[]
[Outputs]
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = Receiver
default = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/linear_combination/test.i)
# All tested logic is in the aux system
# The non-linear problem is unrelated
[Mesh]
type = GeneratedMesh
dim = 1
xmin = -1
xmax = 1
nx = 10
[]
[Functions]
[./v1_func]
type = ParsedFunction
value = (1-x)/2
[../]
[./v2_func]
type = ParsedFunction
value = (1+x)/2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./lc]
[../]
[./v1]
[../]
[./v2]
[../]
[./w1]
[../]
[./w2]
[../]
[]
[ICs]
[./v1_ic]
type = FunctionIC
variable = v1
function = v1_func
[../]
[./v2_ic]
type = FunctionIC
variable = v2
function = v2_func
[../]
[./w1_ic]
type = ConstantIC
variable = w1
value = 0.3
[../]
[./w2_ic]
type = ConstantIC
variable = w2
value = 0.5
[../]
[]
[AuxKernels]
[./lc-aux]
type = ParsedAux
variable = lc
function = 'v1*w1+v2*w2'
args = 'v1 w1 v2 w2'
execute_on = 'timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
(test/tests/tag/2d_diffusion_tag_vector.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = LAGRANGE
[../]
[./tag_variable2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag1
[../]
[./TagVectorAux2]
type = TagVectorAux
variable = tag_variable2
v = u
vector_tag = vec_tag2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
preset = false
extra_vector_tags = vec_tag1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
preset = false
extra_vector_tags = vec_tag2
[../]
[]
[Problem]
type = FEProblem
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = tag_vector_out
exodus = true
[]
(modules/contact/test/tests/mortar_tm/2d/ad_frictionless_fir/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'small'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeLinearElasticStress
block = 'plank block'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl2D_xz.i)
#
# 2D Cylindrical Gap Heat Transfer Test.
#
# This test exercises 2D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of an inner solid cylinder of radius = 1 unit, and outer
# hollow cylinder with an inner radius of 2 in the x-z plane. In other words,
# the gap between them is 1 radial unit in length.
#
# The calculated results are the same as for the cyl2D.i case in the x-y plane.
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
[file]
type = FileMeshGenerator
file = cyl2D.e
[]
[./rotate]
type = TransformGenerator
transform = ROTATE
vector_value = '0 90 0'
input = file
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[../]
[]
[Variables]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_conductance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./gap_cond]
type = MaterialRealAux
property = gap_conductance
variable = gap_conductance
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1000000.0
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1
quadrature = true
gap_geometry_type = CYLINDER
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '0 1 0'
[../]
[]
[BCs]
[./mid]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[./Quadrature]
order = fifth
side_order = seventh
[../]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_no_negative_aprismatic.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[center_node]
type = BoundingBoxNodeSetGenerator
input = cube
new_boundary = 'center_point'
top_right = '0.51 0.51 0'
bottom_left = '0.49 0.49 0'
[]
[back_edge_y]
type = BoundingBoxNodeSetGenerator
input = center_node
new_boundary = 'back_edge_y'
bottom_left = '0.9 0.5 0'
top_right = '1.1 0.5 0'
[]
[back_edge_x]
type = BoundingBoxNodeSetGenerator
input = back_edge_y
new_boundary = back_edge_x
bottom_left = '0.5 0.9 0'
top_right = '0.5 1.0 0'
[]
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_2]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_12]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_13]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_0]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_1]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_2]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_12]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_13]
order = CONSTANT
family = MONOMIAL
[]
[substructure_density]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_1]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_2]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_12]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_13]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[tau_0]
type = MaterialStdVectorAux
variable = resolved_shear_stress_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[tau_1]
type = MaterialStdVectorAux
variable = resolved_shear_stress_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[tau_2]
type = MaterialStdVectorAux
variable = resolved_shear_stress_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[tau_12]
type = MaterialStdVectorAux
variable = resolved_shear_stress_12
property = applied_shear_stress
index = 12
execute_on = timestep_end
[]
[tau_13]
type = MaterialStdVectorAux
variable = resolved_shear_stress_13
property = applied_shear_stress
index = 13
execute_on = timestep_end
[]
[forest_dislocations_0]
type = MaterialStdVectorAux
variable = forest_dislocations_0
property = forest_dislocation_density
index = 0
execute_on = timestep_end
[]
[forest_dislocations_1]
type = MaterialStdVectorAux
variable = forest_dislocations_1
property = forest_dislocation_density
index = 1
execute_on = timestep_end
[]
[forest_dislocations_2]
type = MaterialStdVectorAux
variable = forest_dislocations_2
property = forest_dislocation_density
index = 2
execute_on = timestep_end
[]
[forest_dislocations_12]
type = MaterialStdVectorAux
variable = forest_dislocations_12
property = forest_dislocation_density
index = 12
execute_on = timestep_end
[]
[forest_dislocations_13]
type = MaterialStdVectorAux
variable = forest_dislocations_13
property = forest_dislocation_density
index = 13
execute_on = timestep_end
[]
[substructure_density]
type = MaterialRealAux
variable = substructure_density
property = total_substructure_density
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_1]
type = MaterialStdVectorAux
variable = slip_resistance_1
property = slip_resistance
index = 1
execute_on = timestep_end
[]
[slip_resistance_2]
type = MaterialStdVectorAux
variable = slip_resistance_2
property = slip_resistance
index = 2
execute_on = timestep_end
[]
[slip_resistance_12]
type = MaterialStdVectorAux
variable = slip_resistance_12
property = slip_resistance
index = 12
execute_on = timestep_end
[]
[slip_resistance_13]
type = MaterialStdVectorAux
variable = slip_resistance_13
property = slip_resistance
index = 13
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'center_point back_edge_y'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'center_point back_edge_x'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
euler_angle_1 = 164.5
euler_angle_2 = 90.0
euler_angle_3 = 15.3
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = hcp_aprismatic_capyramidal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0
zero_tol = 1.1
initial_substructure_density = 1.0e3
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '0.5 5'
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '-1e5 -2e7'
normalized_slip_activiation_energy_per_mode = '4e-3 3e-2'
slip_energy_proportionality_factor_per_mode = '330 100'
substructure_rate_coefficient_per_mode = '400 100'
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '2e-3 2e-3' #minimize impact
grain_size = 20.0e-3 #20 microns
[]
[]
[Postprocessors]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[tau_0]
type = ElementAverageValue
variable = resolved_shear_stress_0
[]
[tau_1]
type = ElementAverageValue
variable = resolved_shear_stress_1
[]
[tau_2]
type = ElementAverageValue
variable = resolved_shear_stress_2
[]
[tau_12]
type = ElementAverageValue
variable = resolved_shear_stress_12
[]
[tau_13]
type = ElementAverageValue
variable = resolved_shear_stress_13
[]
[forest_dislocation_0]
type = ElementAverageValue
variable = forest_dislocations_0
[]
[forest_dislocation_1]
type = ElementAverageValue
variable = forest_dislocations_1
[]
[forest_dislocation_2]
type = ElementAverageValue
variable = forest_dislocations_2
[]
[forest_dislocation_12]
type = ElementAverageValue
variable = forest_dislocations_12
[]
[forest_dislocation_13]
type = ElementAverageValue
variable = forest_dislocations_13
[]
[substructure_density]
type = ElementAverageValue
variable = substructure_density
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_1]
type = ElementAverageValue
variable = slip_resistance_1
[]
[slip_resistance_2]
type = ElementAverageValue
variable = slip_resistance_2
[]
[slip_resistance_12]
type = ElementAverageValue
variable = slip_resistance_12
[]
[slip_resistance_13]
type = ElementAverageValue
variable = slip_resistance_13
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
nl_max_its = 20
l_max_its = 50
dt = 0.00375
dtmin = 1.0e-4
dtmax = 0.1
num_steps = 9
[]
[Outputs]
csv = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[]
[right]
type = HeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[]
[]
[Kernels]
[hc]
type = HeatConduction
variable = temp
use_displaced_mesh = false
block = '1 2'
[]
[]
[UserObjects]
[simple]
type = GapFluxModelSimple
k = 100
temperature = temp
boundary = 100
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = simple
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-11
[]
[Outputs]
exodus = true
[]
(test/tests/restrictable/block_api_test/block_restrictable.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
block = '1 2'
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = '1'
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = '2'
prop_names = 'a'
prop_values = '10'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/peridynamics/test/tests/simple_tests/2D_regularD_variableH_BPD.i)
# Test for bond-based peridynamic formulation
# for regular grid from generated mesh with varying bond constants
# Square plate with Dirichlet boundary conditions applied
# at the left, top and bottom edges
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./force_density]
type = ComputeSmallStrainVariableHorizonMaterialBPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[]
[Outputs]
file_base = 2D_regularD_variableH_BPD
exodus = true
[]
(test/tests/userobjects/side_user_object_no_boundary_error/side_no_boundary.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./avg]
type = SideAverageValue
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass2.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 5ft (60 in).
# The beam is massless with a lumped mass at the end of the beam of 5000 lb
# The properties of the cantilever beam are as follows:
# E = 1e7 and I = 120 in^4
# Assuming a square cross section A = sqrt(12 * I) = 37.95
# Shear modulus (G) = 3.846e6
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 1.0
# mass (m) = 5000 lb / 386 = 12.95
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 5.71 cps
# This implies that the corresponding time period of this beam is 0.175 s.
# The FEM solution for this beam with 10 elements gives
# a time period of 0.175 s with time step of 0.005 s.
# Reference: Strength of Materials by Marin ans Sauer, 2nd Ed.
# Example Problem 11-50, pg. 375
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 60.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-8
l_max_its = 50
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
start_time = 0.0
dt = 0.005
end_time = 1.5
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e7
poissons_ratio = 0.30005200208
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 37.95
Ay = 0.0
Az = 0.0
Iy = 120.0
Iz = 120.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/contact/test/tests/hertz_spherical/hertz_contact_rz.i)
# Hertz Contact: Sphere on sphere
# Spheres have the same radius, Young's modulus, and Poisson's ratio.
# Define E:
# 1/E = (1-nu1^2)/E1 + (1-nu2^2)/E2
#
# Effective radius R:
# 1/R = 1/R1 + 1/R2
#
# F is the applied compressive load.
#
# Area of contact a::
# a^3 = 3FR/4E
#
# Depth of indentation d:
# d = a^2/R
#
#
# Let R1 = R2 = 2. Then R = 1.
#
# Let nu1 = nu2 = 0.25, E1 = E2 = 1.40625e7. Then E = 7.5e6.
#
# Let F = 10000. Then a = 0.1, d = 0.01.
#
## Note: There is not a good way to check the result. The standard approach is
## to map contact pressure as a function of radius, but we don't have the
## contact pressure available. See the description on Wikipedia for details of
## analytic equations, and the Abaqus Benchmarks Manual, 1.1.11, for a plot of
## contact pressure vs. radius.
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]#Comment
file = hertz_contact_rz.e
displacements = 'disp_x disp_y'
allow_renumbering = false
[] # Mesh
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 795.77471545947674 # 10000/pi/2^2
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.01 -0.01'
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[] # AuxKernels
[BCs]
[./base_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0.0
[../]
[./symm_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[] # BCs
[Contact]
[./dummy_name]
primary = 1000
secondary = 100
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.4
penalty = 8e7
tangential_tolerance = 0.005
[../]
[]
[Materials]
[./tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.40625e7
poissons_ratio = 0.25
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1'
[../]
[./tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '1000'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress_1000]
type = ComputeLinearElasticStress
block = '1000'
[../]
[] # Materials
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
line_search = 'none'
nl_abs_tol = 1e-7
l_max_its = 200
start_time = 0.0
dt = 0.5
end_time = 2.0
[] # Executioner
[Postprocessors]
[./maxdisp]
type = NodalVariableValue
nodeid = 39 # 40-1 where 40 is the exodus node number of the top-left node
variable = disp_y
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[] # Outputs
(modules/tensor_mechanics/examples/bridge/bridge_large_strain.i)
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[./TensorMechanics]
#Stress divergence kernels
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
execute_on = timestep_end
scalar_type = VonMisesStress
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
active = 'density_steel stress strain elasticity_tensor_steel'
[./elasticity_tensor_steel]
#Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./elasticity_tensor_concrete]
#Creates the elasticity tensor using concrete parameters
youngs_modulus = 16.5e9 #Pa
poissons_ratio = 0.2
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[./density_concrete]
#Defines the density of concrete
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 2400 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
dt = 0.1
num_steps = 1
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/outputs/perf_graph/multi_app/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_multi_err.i)
[Mesh]
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
solution = soln
variable = nn
scale_factor = 2.0
#from_variable = source_nodal
#add_factor = -10teg
[../]
[./en]
type = SolutionAux
solution = soln
variable = en
scale_factor = 2.0
#from_variable = source_nodal
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource_added.e
system_variables = 'source_nodal nodal_10'
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/ics/hermite_ic/hermite_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
order = THIRD
family = HERMITE
[../]
[]
[Functions]
[./afunc]
type = ParsedFunction
value = x^2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[ICs]
[./func_ic]
function = afunc
variable = u
type = FunctionIC
[../]
[]
(test/tests/multiapps/picard/fully_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/ad_material/ad_global_index_mapping.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
second_order = true
[]
[Variables]
[u]
initial_condition = 1
[]
[v]
initial_condition = 1
order = SECOND
[]
[]
[Kernels]
[u_diff]
type = ADMatDiffusion
variable = u
diffusivity = diffusivity
[]
[v_diff]
type = ADMatDiffusion
variable = v
diffusivity = diffusivity
[]
[]
[BCs]
[left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[Materials]
[ad_coupled_mat]
type = ADCheckGlobalToDerivativeMap
u = u
v = v
mat_prop = diffusivity
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[ppwater]
initial_condition = 2e6
[]
[sgas]
initial_condition = 0.3
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[ppgas]
family = MONOMIAL
order = FIRST
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = ppwater
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sgas
fluid_component = 1
[]
[]
[AuxKernels]
[ppgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = ppgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater sgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 1e5
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e7
density0 = 1
thermal_expansion = 0
viscosity = 1e-5
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = ppwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[BCs]
[leftwater]
type = DirichletBC
boundary = left
value = 3e6
variable = ppwater
[]
[rightwater]
type = DirichletBC
boundary = right
value = 2e6
variable = ppwater
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1e3
end_time = 1e4
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'ppwater ppgas'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 11
[]
[]
[Outputs]
file_base = pressure_pulse_1d_2phasePS
print_linear_residuals = false
[csv]
type = CSV
execute_on = final
[]
[]
(test/tests/auxkernels/solution_aux/thread_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with ParallelMesh.
type = GeneratedMesh
parallel_type = REPLICATED
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[./uerror]
type = ElementL2Error
variable = u
function = u_xda_func
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/poro_elasticity/mandel.i)
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
#
# FINAL NOTE: The above solution assumes constant Biot Modulus.
# In porous_flow this is not true. Therefore the solution is
# a little different than in the paper. This test was therefore
# validated against MOOSE's poromechanics, which can choose either
# a constant Biot Modulus (which has been shown to agree with
# the analytic solution), or a non-constant Biot Modulus (which
# gives the same results as porous_flow).
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[]
[]
[Functions]
[top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[]
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[tot_force]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[]
[p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[]
[p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[]
[p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[]
[p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[]
[p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[]
[p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[]
[p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[]
[p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[]
[p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[]
[p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[]
[xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[]
[ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[]
[total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel
[csv]
interval = 3
type = CSV
[]
[]
(test/tests/misc/check_error/check_syntax_error.i)
[Mesh]
file = 2-lines.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ScalarKernels]
[./ced]
type = NodalEqualValueConstraint
variable = lm
var = u
boundary = '100 101 1'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = '2'
value = 3
[../]
[./evc1]
type = OneDEqualValueConstraintBC
variable = u
boundary = '100'
lambda = lm
component = 0
vg = 1
[../]
[./evc2]
type = OneDEqualValueConstraintBC
variable = u
boundary = '101'
lambda = lm
component = 0
vg = -1
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_with_gravity.i)
# One 3D element under ramped displacement loading.
#
# loading in z direction:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# Gravity is applied in y direction. To equilibrate the system
# under gravity, a static analysis is run in the first time step
# by turning off the inertial terms. (see controls block and
# DynamicTensorMechanics block).
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
# The y displacement would be offset by the gravity displacement.
# Also the y acceleration and velocity should be zero until the loading in
# the z direction starts (i.e, until 0.1s)
# Note: The time step used in the displacement data file should match
# the simulation time step (dt and dtmin in the Executioner block).
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.000025
static_initialization = true #turns off rayliegh damping for the first time step to stabilize system under gravity
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./gravity]
type = Gravity
variable = disp_y
value = -9.81
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./prescribed_displacement]
type = PresetDisplacement
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
boundary = front
function = displacement_front
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Controls] # turns off inertial terms for the first time step
[./period0]
type = TimePeriod
disable_objects = '*/vel_x */vel_y */vel_z */accel_x */accel_y */accel_z */inertia_x */inertia_y */inertia_z'
start_time = 0.0
end_time = 0.1 # dt used in the simulation
[../]
[../]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/outputs/exodus/hide_variables.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
hide = 'aux2 v num_aux'
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/userobjects/mat_prop_user_object/mat_prop_user_object.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./uo_e]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./uo_reporter]
type = MatPropUserObjectAux
variable = uo_e
material_user_object = uo
execute_on = timestep_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
[./material]
block = 0
type = GenericConstantMaterial
prop_names = 'e'
prop_values = 2.718281828459
[../]
[]
[UserObjects]
[./uo]
type = MaterialPropertyUserObject
mat_prop = 'e'
execute_on = timestep_end
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = uo_material
exodus = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus.i)
[Mesh]
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
solution = soln
variable = nn
scale_factor = 2.0
[../]
[./en]
type = SolutionAux
solution = soln
variable = en
scale_factor = 2.0
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/visco/visco_small_strain.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9 10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeLinearViscoelasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
l_tol = 1e-8
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = visco_small_strain_out
exodus = true
[]
(test/tests/userobjects/layered_average/layered_average_interpolate.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal_layered_average]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./layered_average]
type = SpatialUserObjectAux
variable = layered_average
execute_on = timestep_end
user_object = average
[../]
[./nodal_layered_average]
type = SpatialUserObjectAux
variable = nodal_layered_average
execute_on = timestep_end
user_object = average
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[]
[UserObjects]
[./average]
type = LayeredAverage
variable = u
direction = y
num_layers = 19
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_adaptivity.i)
# Pressure pulse in 1D with 1 phase - transient simulation with a constant
# PorousFlowPorosity and mesh adaptivity with an indicator
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[Adaptivity]
marker = marker
[Markers]
[marker]
type = ErrorFractionMarker
indicator = front
refine = 0.5
coarsen = 0.2
[]
[]
[Indicators]
[front]
type = GradientJumpIndicator
variable = pp
[]
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
preset = false
value = 3E6
variable = pp
[]
[right]
type = PorousFlowPiecewiseLinearSink
variable = pp
boundary = right
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E9'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E-6
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1e3
end_time = 5e3
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
print_linear_residuals = false
csv = true
[]
(modules/misc/test/tests/fracture_flow/single.i)
# Models fluid advecting down a single fracture sitting at x=0, and 0<=y<=3.
#
[Mesh]
type = FileMesh
file = 'single.e'
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_init]
type = ConstantIC
variable = u
value = 0
[../]
[]
[BCs]
[./inj]
type = DirichletBC
boundary = 1
variable = u
value = 1
[../]
[]
[Kernels]
[./matrix_dt]
type = CoefTimeDerivative
variable = u
Coefficient = 0.2 # matrix porosity
block = 1
[../]
[./matrix_diff]
type = AnisotropicDiffusion
variable = u
block = 1
tensor_coeff = '0.002 0 0 0 0 0 0 0 0' # matrix porosity * matrix diffusivity
[../]
[./fracture_dt]
type = CoefTimeDerivative
variable = u
Coefficient = 0.1 # fracture half-aperture * fracture porosity
block = 2
[../]
[./fracture_advect]
type = Convection
variable = u
block = 2
velocity = '0 0.08 0' # fracture half-aperture * velocity in fracture
[../]
[]
[Preconditioning]
[./standard]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 2e-1
end_time = 1.0
solve_type = Newton
nl_rel_tol = 1E-12
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/nearest_point_layered_average/points_from_uo.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 1.5
ymax = 1.5
zmax = 1.2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[np_layered_average]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[np_layered_average]
type = SpatialUserObjectAux
variable = np_layered_average
execute_on = timestep_end
user_object = npla
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 1
[]
[]
[UserObjects]
[npla]
type = NearestPointLayeredAverage
direction = y
num_layers = 3
variable = u
points = '0.375 0.0 0.3
1.125 0.0 0.3
0.375 0.0 0.9
1.125 0.0 0.9'
[]
[]
[VectorPostprocessors]
# getting the points from the user object itself is here exactly equivalent to the points
# provided in the 'spatial_manually_provided' vector postprocessor
[spatial_from_uo]
type = SpatialUserObjectVectorPostprocessor
userobject = npla
[]
[spatial_manually_provided]
type = SpatialUserObjectVectorPostprocessor
userobject = npla
points = '0.375 0.25 0.3
0.375 0.75 0.3
0.375 1.25 0.3
1.125 0.25 0.3
1.125 0.75 0.3
1.125 1.25 0.3
0.375 0.25 0.9
0.375 0.75 0.9
0.375 1.25 0.9
1.125 0.25 0.9
1.125 0.75 0.9
1.125 1.25 0.9'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
execute_on = 'final'
[]
(test/tests/time_steppers/logconstant_dt/logconstant_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 11
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
# Pluggable TimeStepper System
[./TimeStepper]
type = LogConstantDT
log_dt = 0.2
first_dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_side_integral/layered_side_integral.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_integral]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[AuxKernels]
[./liaux]
type = SpatialUserObjectAux
variable = layered_integral
boundary = right
user_object = layered_integral
[../]
[]
[UserObjects]
[./layered_integral]
type = LayeredSideIntegral
direction = y
num_layers = 3
variable = u
execute_on = linear
boundary = right
[../]
[]
[VectorPostprocessors]
[int]
type = SpatialUserObjectVectorPostprocessor
userobject = layered_integral
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement_ti.i)
# One 3D element under ramped displacement loading.
#
# loading:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# This displacement loading is applied using the PresetDisplacement boundary condition.
# Here, the given displacement time history is converted to an acceleration
# time history using Backward Euler time differentiation. Then, the resulting
# acceleration is integrated using Newmark time integration to obtain a
# displacement time history which is then applied to the boundary.
# This is done because if the displacement is applied using Dirichlet BC, the
# resulting acceleration is very noisy.
# Boundaries:
# x = 0 left
# x = 1 right
# y = 0 bottom
# y = 1 top
# z = 0 back
# z = 1 front
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.000025
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 19.63
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./Preset_displacement]
type = PresetDisplacement
variable = disp_z
function = displacement_front
boundary = front
beta = 0.25
velocity = vel_z
acceleration = accel_z
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
# Time integrator scheme
scheme = "newmark-beta"
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
file_base = "3D_QStatic_1_Ramped_Displacement_out"
exodus = true
csv = true
perf_graph = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/square_branch_quad_2d.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo0]
type = LineSegmentCutUserObject
cut_data = '-1.0000e-10 6.6340e-01 6.6340e-01 -1.0000e-10'
time_start_cut = 0.0
time_end_cut = 1.0
[../]
[./line_seg_cut_uo1]
type = LineSegmentCutUserObject
cut_data = '3.3120e-01 3.3200e-01 1.0001e+00 3.3200e-01'
time_start_cut = 1.0
time_end_cut = 2.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
planar_formulation = PLANE_STRAIN
add_variables = true
[../]
[]
[Functions]
[./right_disp_x]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[./top_disp_y]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[]
[BCs]
[./right_x]
type = FunctionDirichletBC
boundary = 1
variable = disp_x
function = right_disp_x
[../]
[./top_y]
type = FunctionDirichletBC
boundary = 2
variable = disp_y
function = top_disp_y
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./left_x]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 2.2
num_steps = 5000
[]
[Outputs]
file_base = square_branch_quad_2d_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/geomsearch/patch_update_strategy/never.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = never
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/tutorials/introduction/therm_step02.i)
#
# Single block thermal input with boundary conditions
# https://mooseframework.inl.gov/modules/heat_conduction/tutorials/introduction/therm_step02.html
#
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 1
[]
[]
[Variables]
[T]
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = T
[]
[]
[Materials]
[thermal]
type = HeatConductionMaterial
thermal_conductivity = 45.0
[]
[]
[BCs]
[t_left]
type = DirichletBC
variable = T
value = 300
boundary = 'left'
[]
[t_right]
type = FunctionDirichletBC
variable = T
function = '300+5*t'
boundary = 'right'
[]
[]
[Executioner]
type = Transient
end_time = 5
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/vector_of_postprocessors/vector_of_postprocessors.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./max]
type = ElementExtremeValue
variable = u
[../]
[./min]
type = ElementExtremeValue
variable = u
value_type = min
[../]
[]
[VectorPostprocessors]
[./min_max]
type = VectorOfPostprocessors
postprocessors = 'min max'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = false
csv = true
[]
(test/tests/multiapps/check_error/check_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./multi]
type = TransientMultiApp
app_type = MooseTestApp
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/material/mat_cyclic_coupling.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = some_prop
[../]
[./conv]
type = MatConvection
variable = u
x = 1
y = 0
mat_prop = some_other_prop
[../]
[]
[BCs]
[./right]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[]
[Materials]
# order is switched intentionally, so we won't get lucky and dep-resolver has to do its job
[./mat2]
type = CoupledMaterial
block = 0
mat_prop = 'some_prop'
coupled_mat_prop = 'some_other_prop'
[../]
[./mat1]
type = CoupledMaterial
block = 0
mat_prop = 'some_other_prop'
coupled_mat_prop = 'some_prop'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_coupled
exodus = true
[]
(test/tests/materials/material/coupled_material_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = mp1
[../]
[./conv]
type = MatConvection
variable = u
x = 1
y = 0
mat_prop = some_prop
[../]
[]
[BCs]
[./right]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[]
[Materials]
# order is switched intentionally, so we won't get luck and dep-resolver has to do its job
[./mat2]
type = CoupledMaterial
block = 0
mat_prop = 'some_prop'
coupled_mat_prop = 'mp1'
[../]
[./mat1]
type = GenericConstantMaterial
block = 0
prop_names = 'mp1'
prop_values = '2'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_coupled
exodus = true
[]
(modules/porous_flow/examples/thm_example/2D_c.i)
# Two phase, temperature-dependent, with mechanics and chemistry, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[mineral_conc_m3_per_m3]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.1
[]
[eqm_const]
initial_condition = 0.0
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[mineral]
type = PorousFlowPropertyAux
property = mineral_concentration
mineral_species = 0
variable = mineral_conc_m3_per_m3
[]
[eqm_const_auxk]
type = ParsedAux
variable = eqm_const
args = temp
function = '(358 - temp) / (358 - 294)'
[]
[porosity_auxk]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
value = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
number_aqueous_kinetic = 1
aqueous_phase_number = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Modules]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosity
porosity_zero = 0.2
chemical = true
reference_chemistry = 0.1
initial_mineral_concentrations = 0.1
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[predis]
type = PorousFlowAqueousPreDisChemistry
num_reactions = 1
primary_concentrations = 1.0 # fixed activity
equilibrium_constants_as_log10 = true
equilibrium_constants = eqm_const
primary_activity_coefficients = 1.0 # fixed activity
reactions = 1
kinetic_rate_constant = 1E-6
molar_volume = 1.0
specific_reactive_surface_area = 1.0
activation_energy = 0.0 # no Arrhenius
[]
[mineral_conc]
type = PorousFlowAqueousPreDisMineral
initial_concentrations = 0.1
[]
[predis_nodes]
type = PorousFlowAqueousPreDisChemistry
at_nodes = true
num_reactions = 1
primary_concentrations = 1.0 # fixed activity
equilibrium_constants_as_log10 = true
equilibrium_constants = eqm_const
primary_activity_coefficients = 1.0 # fixed activity
reactions = 1
kinetic_rate_constant = 1E-6
molar_volume = 1.0
specific_reactive_surface_area = 1.0
activation_energy = 0.0 # no Arrhenius
[]
[mineral_conc_nodes]
type = PorousFlowAqueousPreDisMineral
at_nodes = true
initial_concentrations = 0.1
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[mineral_bh] # mineral concentration (m^3(mineral)/m^3(rock)) at the borehole
type = PointValue
variable = mineral_conc_m3_per_m3
point = '0.1 0 0'
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt mineral_conc_m3_per_m3 porosity'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 50'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'small'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[secondary]
input = block_rename
type = LowerDBlockFromSidesetGenerator
sidesets = 'block_left'
new_block_id = '30'
new_block_name = 'frictionless_secondary_subdomain'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'plank_right'
new_block_id = '20'
new_block_name = 'frictionless_primary_subdomain'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[temp]
order = ${order}
block = 'plank block'
scaling = 1e-1
[]
[thermal_lm]
order = ${order}
block = 'frictionless_secondary_subdomain'
scaling = 1e-7
[]
[frictionless_normal_lm]
order = FIRST
block = 'frictionless_secondary_subdomain'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
[]
[]
[Kernels]
[hc]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = 'plank block'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[thermal_contact]
type = GapConductanceConstraint
variable = thermal_lm
secondary_variable = temp
k = 1
use_displaced_mesh = true
primary_boundary = plank_right
primary_subdomain = frictionless_primary_subdomain
secondary_boundary = block_left
secondary_subdomain = frictionless_secondary_subdomain
displacements = 'disp_x disp_y'
[]
[]
[BCs]
[left_temp]
type = DirichletBC
variable = temp
boundary = 'plank_left'
value = 400
[]
[right_temp]
type = DirichletBC
variable = temp
boundary = 'block_right'
value = 300
[]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeLinearElasticStress
block = 'plank block'
[]
[heat_plank]
type = ADHeatConductionMaterial
block = plank
thermal_conductivity = 2
specific_heat = 1
[]
[heat_block]
type = ADHeatConductionMaterial
block = block
thermal_conductivity = 1
specific_heat = 1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount -snes_max_it'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15 20'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'none'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[avg_temp]
type = ElementAverageValue
variable = temp
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
checkpoint = true
[comp]
type = CSV
show = 'contact avg_temp'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/combined/test/tests/linear_elasticity/thermal_expansion.i)
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
# Materials properties into AuxVariables - these are elemental variables, not nodal variables.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
eigenstrain_names = eigenstrain
add_variables = true
generate_output = 'stress_xx stress_yy stress_xy'
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eigenstrain]
type = ComputeEigenstrain
eigen_base = '1e-4'
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(test/tests/materials/ad_piecewise_linear_interpolation_material/piecewise_linear_interpolation_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
nz = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff1]
type = ADDiffusion
variable = u
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./m1]
type = ADPiecewiseLinearInterpolationMaterial
property = m1
variable = u
xy_data = '0 0
1 1'
block = 0
outputs = all
[../]
[./m2]
type = ADPiecewiseLinearInterpolationMaterial
property = m2
variable = u
x = '0 1'
y = '0 1'
block = 0
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/relaxation/picard_relaxed_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/numerical_diffusion/fltvd.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
nl_max_its = 500
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(modules/tensor_mechanics/test/tests/umat/shear_order/shear_order_umat.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
nx = 1
ny = 1
nz = 1
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = 1.0e-5*t
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'stress_xy stress_yz stress_xz strain_xy strain_yz strain_xz'
[]
[]
[BCs]
[pull_function]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = top_pull
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[Materials]
# This input file is used to compare the MOOSE and UMAT models, activating
# specific ones with cli args.
# 1. Active for umat calculation
[umat]
type = AbaqusUMATStress
constant_properties = ' '
plugin = '../../../plugins/elastic_incremental_anisotropic'
num_state_vars = 0
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elastic]
type = ComputeElasticityTensor
fill_method = orthotropic
C_ijkl = '1.0e5 1.0e5 1.0e5 1.0e4 2.0e4 3.0e4 0.0 0.0 0.0 0.0 0.0 0.0'
# skip_check = true
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
l_tol = 1e-9
start_time = 0.0
end_time = 10.0
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/postprocessor/output_pps_hidden_shown_check.i)
# Computing two postprocessors and specifying one of them both in the
# show list and the hide list, which should throw an error message.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./lr_u]
type = DirichletBC
variable = u
boundary = '1 3'
value = 1
[../]
[]
[Postprocessors]
[./elem_56]
type = ElementalVariableValue
variable = u
elementid = 56
[../]
[./elem_12]
type = ElementalVariableValue
variable = u
elementid = 12
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
[./console]
type = Console
show = 'elem_56'
hide = 'elem_56'
[../]
[]
(test/tests/functions/parsed/scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./scalar]
family = SCALAR
initial_condition = 0
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./scalar_aux]
type = FunctionScalarAux
variable = scalar
function = func
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = left_bc
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Functions]
[./left_bc]
type = ParsedFunction
value = s
vals = scalar
vars = s
[../]
[./func]
type = ParsedFunction
value = t
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/advection_bc.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 10.0
nx = 100
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./vx]
[../]
[./force]
[../]
[]
[ICs]
[./vx]
type = FunctionIC
variable = vx
function = vx_function
[../]
[./force]
type = FunctionIC
variable = force
function = forcing
[../]
[]
[Kernels]
[./advection]
type = MassConvectiveFlux
variable = phi
vel_x = vx
[../]
[./rhs]
type = CoupledForce
variable = phi
v = force
[../]
[]
[BCs]
[./inflow_enthalpy]
type = DirichletBC
variable = phi
boundary = 'left'
value = 1
[../]
[./outflow_term]
type = AdvectionBC
variable = phi
velocity_vector = 'vx'
boundary = 'right'
[../]
[]
[Functions]
[./vx_function]
type = ParsedFunction
value = '1 + x * x'
[../]
[./forcing]
type = ParsedFunction
value = 'x'
[../]
[./analytical]
type = ParsedFunction
value = '(1 + 0.5 * x * x) / (1 + x * x)'
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = phi
function = analytical
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/geomsearch/quadrature_penetration_locator/quadrature_penetration_locator.i)
[Mesh]
file = 2dcontact_collide.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./penetration]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/bcs/advection_bc/2d_advection_bc.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10.0
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./phi]
[../]
[]
[AuxVariables]
[./vx]
[../]
[./force]
[../]
[]
[ICs]
[./vx]
type = FunctionIC
variable = vx
function = vx_function
[../]
[./force]
type = FunctionIC
variable = force
function = forcing
[../]
[]
[Kernels]
[./advection]
type = MassConvectiveFlux
variable = phi
vel_x = vx
[../]
[./rhs]
type = CoupledForce
variable = phi
v = force
[../]
[]
[BCs]
[./inflow_enthalpy]
type = DirichletBC
variable = phi
boundary = 'left'
value = 1
[../]
[./outflow_term]
type = AdvectionBC
variable = phi
velocity_vector = 'vx'
boundary = 'right'
[../]
[]
[Functions]
[./vx_function]
type = ParsedFunction
value = '1 + x * x'
[../]
[./forcing]
type = ParsedFunction
value = 'x'
[../]
[./analytical]
type = ParsedFunction
value = '(1 + 0.5 * x * x) / (1 + x * x)'
[../]
[]
[Postprocessors]
[./error]
type = ElementL2Error
variable = phi
function = analytical
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/vectorpostprocessors/point_value_sampler/point_value_sampler.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./point_sample]
type = PointValueSampler
variable = 'u v'
points = '0.1 0.1 0 0.23 0.4 0 0.78 0.2 0'
sort_by = x
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/coplanar_twin_hardening.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = total_volume_fraction_twins
execute_on = timestep_end
[]
[twin_resistance_0]
type = MaterialStdVectorAux
variable = twin_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[twin_resistance_1]
type = MaterialStdVectorAux
variable = twin_resistance_1
property = slip_resistance
index = 1
execute_on = timestep_end
[]
[twin_resistance_2]
type = MaterialStdVectorAux
variable = twin_resistance_2
property = slip_resistance
index = 2
execute_on = timestep_end
[]
[twin_resistance_3]
type = MaterialStdVectorAux
variable = twin_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_tau_0]
type = MaterialStdVectorAux
variable = twin_tau_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[twin_tau_1]
type = MaterialStdVectorAux
variable = twin_tau_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[twin_tau_2]
type = MaterialStdVectorAux
variable = twin_tau_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[twin_tau_3]
type = MaterialStdVectorAux
variable = twin_tau_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-1.0e-3*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.08e5 6.034e4 6.034e4 1.08e5 6.03e4 1.08e5 2.86e4 2.86e4 2.86e4' #Tallon and Wolfenden. J. Phys. Chem. Solids (1979)
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_only_xtalpl'
tan_mod_type = exact
[]
[twin_only_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
number_slip_systems = 4
slip_sys_file_name = 'select_twin_systems_verify_hardening.txt'
initial_twin_lattice_friction = 6.0
non_coplanar_coefficient_twin_hardening = 0
non_coplanar_twin_hardening_exponent = 0
coplanar_coefficient_twin_hardening = 8e8
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[twin_resistance_0]
type = ElementAverageValue
variable = twin_resistance_0
[]
[twin_resistance_1]
type = ElementAverageValue
variable = twin_resistance_1
[]
[twin_resistance_2]
type = ElementAverageValue
variable = twin_resistance_2
[]
[twin_resistance_3]
type = ElementAverageValue
variable = twin_resistance_3
[]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.05
dtmin = 1e-6
dtmax = 10.0
num_steps = 4
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/ld-stress.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
constraint_types = 'stress strain strain stress stress strain stress stress stress'
ndim = 3
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = NINTH
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[hvar]
type = ScalarConstantIC
variable = hvar
value = 0.1
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 zero zero stress12 stress22 zero stress13 stress23 stress33'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '4.0e2*t'
[]
[stress22]
type = ParsedFunction
value = '-2.0e2*t'
[]
[stress33]
type = ParsedFunction
value = '8.0e2*t'
[]
[stress23]
type = ParsedFunction
value = '2.0e2*t'
[]
[stress13]
type = ParsedFunction
value = '-7.0e2*t'
[]
[stress12]
type = ParsedFunction
value = '1.0e2*t'
[]
[stress32]
type = ParsedFunction
value = '1.0e2*t'
[]
[stress31]
type = ParsedFunction
value = '2.0e2*t'
[]
[stress21]
type = ParsedFunction
value = '-1.5e2*t'
[]
[zero]
type = ConstantFunction
value = 0
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
[Outputs]
exodus = false
csv = false
[]
(modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_neckingRZ.i)
#
[Mesh]
file = necking_quad4.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./disp_r]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./AxisymmetricRZ]
use_displaced_mesh = true
# save_in_disp_r = force_r
save_in_disp_z = force_z
[../]
[]
[AuxVariables]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
# [./force_r]
# order = FIRST
# family = LAGRANGE
# [../]
[./force_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[../]
[./strain_rr]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_rr
index_i = 0
index_j = 0
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = 't/5'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#changed to SM values using E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeAxisymmetricRZFiniteStrain
block = 1
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = j2
[../]
[]
[Executioner]
end_time = 0.1
dt = 0.005
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-15
l_tol = 1e-9
[]
[Postprocessors]
[./stress_rr]
type = ElementAverageValue
variable = stress_rr
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./strain_rr]
type = ElementAverageValue
variable = strain_rr
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./disp_z]
type = NodalSum
variable = disp_z
boundary = top
[../]
[./force_z]
type = NodalSum
variable = force_z
boundary = top
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
perf_graph = true
[]
(modules/contact/test/tests/nodal_area/nodal_area_Hex20.i)
[Mesh]
file = nodal_area_Hex20.e
[]
[GlobalParams]
order = SECOND
displacements = 'displ_x displ_y displ_z'
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0 1'
y = '0 20e-6'
[../]
[]
[Variables]
[./displ_x]
[../]
[./displ_y]
[../]
[./displ_z]
[../]
[]
[AuxVariables]
[./react_x]
[../]
[./react_y]
[../]
[./react_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
incremental = true
save_in = 'react_x react_y react_z'
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[../]
[]
[BCs]
[./move_right]
type = FunctionDirichletBC
boundary = '1'
variable = displ_x
function = disp
[../]
[./fixed_x]
type = DirichletBC
boundary = '3 4'
variable = displ_x
value = 0
[../]
[./fixed_y]
type = DirichletBC
boundary = 10
variable = displ_y
value = 0
[../]
[./fixed_z]
type = DirichletBC
boundary = 11
variable = displ_z
value = 0
[../]
[]
[Contact]
[./dummy_name]
primary = 3
secondary = 2
penalty = 1e7
tangential_tolerance = 1e-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-9
l_tol = 1e-4
l_max_its = 40
start_time = 0.0
dt = 1.0
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Postprocessors]
[./react_x]
type = NodalSum
variable = react_x
boundary = 1
execute_on = 'initial timestep_end'
[../]
[./total_area]
type = NodalSum
variable = nodal_area_dummy_name
boundary = 2
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard/picard_adaptive_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[./TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.4
growth_factor = 1.2
optimal_iterations = 6
dt = 0.1
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_diffusion/restart_diffusion_from_end_part2.i)
[Mesh]
file = restart_diffusion_from_end_part1_out.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = LATEST
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/visco/gen_maxwell_relax.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./disp]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.001
[../]
[]
[Materials]
[./maxwell]
type = GeneralizedMaxwellModel
creep_modulus = '3.333333e9 3.333333e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = maxwell
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_maxwell_relax_out
exodus = true
[]
(test/tests/misc/check_error/invalid_steady_exec_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
# Time kernel in a steady state simulation
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/richards/test/tests/newton_cooling/nc_lumped_01.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1000
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 1.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 2E6
[../]
[./newton]
type = RichardsPiecewiseLinearSink
variable = pressure
boundary = right
pressures = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
bare_fluxes = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
use_mobility = false
use_relperm = false
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-15 10000'
[../]
[]
[Executioner]
type = Transient
end_time = 1E8
dt = 1E6
[]
[Outputs]
file_base = nc_lumped_01
interval = 100000
execute_on = 'initial final'
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/theis2.i)
# Theis problem: Flow to single sink
# Constant rate injection between 200 and 1000 s.
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
bias_x = 1.1
bias_y = 1.1
ymax = 100
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[pp]
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 200
end_time = 1000
nl_abs_tol = 1e-10
[]
[Outputs]
perf_graph = true
file_base = theis2
[csv]
type = CSV
execute_on = final
[]
[]
[ICs]
[PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[]
[]
[DiracKernels]
[sink]
type = PorousFlowSquarePulsePointSource
start_time = 200
end_time = 1000
point = '0 0 0'
mass_flux = -0.04
variable = pp
[]
[]
[BCs]
[right]
type = DirichletBC
variable = pp
value = 20e6
boundary = right
[]
[top]
type = DirichletBC
variable = pp
value = 20e6
boundary = top
[]
[]
[VectorPostprocessors]
[pressure]
type = SideValueSampler
variable = pp
sort_by = x
execute_on = timestep_end
boundary = bottom
[]
[]
(modules/combined/test/tests/CHSplitFlux/simple_transient_diffusion_flux.i)
# Same problem as in moose/test/tests/kernels/simple_transient_diffusion
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = '0.1'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility_tensor]
type = ConstantAnisotropicMobility
block = 0
M_name = mobility_tensor
tensor = '1 0 0 0 1 0 0 0 1'
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = mobility_tensor
weights = var_dep
args = c
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_max_its = 5
dt = 0.1
num_steps = 20
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/geometry/2d_geometry.i)
radius = 0.5
inner_box_length = 2.2
outer_box_length = 3
sides = 16
alpha = ${fparse 2 * pi / ${sides}}
perimeter_correction = ${fparse alpha / 2 / sin(alpha / 2)}
area_correction = ${fparse alpha / sin(alpha)}
[Mesh]
file = 2d.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
initial_condition = 1
block = circle
[../]
[./v]
initial_condition = 2
block = 'inside outside'
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./circle]
type = DirichletBC
variable = u
boundary = circle_side_wrt_inside
value = 2
[../]
[./inner]
type = DirichletBC
variable = v
boundary = circle_side_wrt_circle
value = 4
[../]
[./outer]
type = DirichletBC
variable = v
boundary = outside_side
value = 6
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
block = circle
[../]
[./v_avg]
type = ElementAverageValue
variable = v
block = 'inside outside'
[../]
[./circle_perimeter_wrt_circle]
type = AreaPostprocessor
boundary = circle_side_wrt_circle
[../]
[./circle_perimeter_wrt_inside]
type = AreaPostprocessor
boundary = circle_side_wrt_inside
[../]
[./inside_perimeter_wrt_inside]
type = AreaPostprocessor
boundary = inside_side_wrt_inside
[../]
[./inside_perimeter_wrt_outside]
type = AreaPostprocessor
boundary = inside_side_wrt_outside
[../]
[./outside_perimeter]
type = AreaPostprocessor
boundary = outside_side
[../]
[./circle_area]
type = VolumePostprocessor
block = circle
[../]
[./inside_area]
type = VolumePostprocessor
block = inside
[../]
[./outside_area]
type = VolumePostprocessor
block = outside
[../]
[./total_area]
type = VolumePostprocessor
block = 'circle inside outside'
[../]
[./circle_perimeter_exact]
type = FunctionValuePostprocessor
function = 'circle_perimeter_exact'
[../]
[./inside_perimeter_exact]
type = FunctionValuePostprocessor
function = 'inside_perimeter_exact'
[../]
[./outside_perimeter_exact]
type = FunctionValuePostprocessor
function = 'outside_perimeter_exact'
[../]
[./circle_area_exact]
type = FunctionValuePostprocessor
function = 'circle_area_exact'
[../]
[./inside_area_exact]
type = FunctionValuePostprocessor
function = 'inside_area_exact'
[../]
[./outside_area_exact]
type = FunctionValuePostprocessor
function = 'outside_area_exact'
[../]
[./total_area_exact]
type = FunctionValuePostprocessor
function = 'total_area_exact'
[../]
[]
[Functions]
[./circle_perimeter_exact]
type = ParsedFunction
value = '2 * pi * ${radius} / ${perimeter_correction}'
[../]
[./inside_perimeter_exact]
type = ParsedFunction
value = '${inner_box_length} * 4'
[../]
[./outside_perimeter_exact]
type = ParsedFunction
value = '${outer_box_length} * 4'
[../]
[./circle_area_exact]
type = ParsedFunction
value = 'pi * ${radius}^2 / ${area_correction}'
[../]
[./inside_area_exact]
type = ParsedFunction
value = '${inner_box_length}^2 - pi * ${radius}^2 / ${area_correction}'
[../]
[./outside_area_exact]
type = ParsedFunction
value = '${outer_box_length}^2 - ${inner_box_length}^2'
[../]
[./total_area_exact]
type = ParsedFunction
value = '${outer_box_length}^2'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/multilevel/time_dt_from_master_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 100
[]
[Functions]
[./dts]
type = PiecewiseLinear
x = '0 1'
y = '0.25 1'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.25
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[./out]
type = Console
output_file = true
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = time_dt_from_master_sub.i
[../]
[]
(modules/porous_flow/examples/tutorial/11.i)
# Two-phase borehole injection problem
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_x disp_y'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 20.1E6
[]
[T]
initial_condition = 330
scaling = 1E-5
[]
[disp_x]
scaling = 1E-5
[]
[disp_y]
scaling = 1E-5
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[]
[vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
variable = pgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = T
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[]
[conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[]
[vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
variable = T
[]
[grad_stress_x]
type = StressDivergenceTensors
temperature = T
variable = disp_x
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 0
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
variable = disp_x
use_displaced_mesh = false
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
temperature = T
variable = disp_y
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 1
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
variable = disp_y
use_displaced_mesh = false
component = 1
[]
[]
[AuxVariables]
[disp_z]
[]
[effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[]
[mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[]
[mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[swater]
family = MONOMIAL
order = CONSTANT
[]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_tt]
family = MONOMIAL
order = CONSTANT
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[]
[swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[]
[sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[]
[stress_rr]
type = RankTwoScalarAux
variable = stress_rr
rank_two_tensor = stress
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[]
[stress_tt]
type = RankTwoScalarAux
variable = stress_tt
rank_two_tensor = stress
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[]
[]
[BCs]
[roller_tmax]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[]
[roller_tmin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[]
[pinned_top_bottom_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'top bottom'
[]
[pinned_top_bottom_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_x]
type = Pressure
boundary = injection_area
variable = disp_x
component = 0
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cavity_pressure_y]
type = Pressure
boundary = injection_area
variable = disp_y
component = 1
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[]
[constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[]
[outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = rmax
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[]
[relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[porosity_mat]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[]
[initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[effective_fluid_pressure_mat]
type = PorousFlowEffectiveFluidPressure
[]
[volumetric_strain]
type = PorousFlowVolumetricStrain
[]
[]
[Postprocessors]
[effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[]
[]
[Functions]
[constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/multiphase_mechanics/elasticenergymaterial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
nz = 0
xmax = 250
ymax = 250
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./c]
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./dummy]
type = MatDiffusion
variable = c
diffusivity = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[./elasticenergy]
type = ElasticEnergyMaterial
args = 'c'
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/bad_stateful_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
[./stateful_mat]
type = BadStatefulMaterial
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 4
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
(modules/porous_flow/test/tests/poro_elasticity/terzaghi.i)
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
#
# FINAL NOTE: The above solution assumes constant Biot Modulus.
# In porous_flow this is not true. Therefore the solution is
# a little different than in the paper. This test was therefore
# validated against MOOSE's poromechanics, which can choose either
# a constant Biot Modulus (which has been shown to agree with
# the analytic solution), or a non-constant Biot Modulus (which
# gives the same results as porous_flow).
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[]
[topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 0.96
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 4
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[]
[p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[]
[p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[]
[p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[]
[p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[]
[p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[]
[p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[]
[p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[]
[p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[]
[p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[]
[p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi
[csv]
type = CSV
[]
[]
(test/tests/transfers/multiapp_mesh_function_transfer/fromsub_target_displaced.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
displacements = 'x_disp y_disp'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./transferred_u]
[../]
[./elemental_transferred_u]
order = CONSTANT
family = MONOMIAL
[../]
[./x_disp]
initial_condition = -0.1
[../]
[./y_disp]
initial_condition = -0.1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '.099 .099 0 .599 .599 0 0.599 0.099 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = fromsub_sub.i
[../]
[]
[Transfers]
[./from_sub]
source_variable = sub_u
variable = transferred_u
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
displaced_target_mesh = true
[../]
[./elemental_from_sub]
source_variable = sub_u
variable = elemental_transferred_u
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
displaced_target_mesh = true
[../]
[]
(test/tests/interfacekernels/1d_interface/sorted-interface-materials.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[]
[Variables]
[u]
block = '0'
initial_condition = 1
[]
[v]
block = '1'
initial_condition = 0
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
block = 0
[]
[diff_v]
type = Diffusion
variable = v
block = 1
[]
[]
[InterfaceKernels]
[interface]
type = ADMaterialPropertySource
variable = u
neighbor_var = v
boundary = primary0_interface
source = couple
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[]
[]
[Materials]
[consumer]
type = ConsumerInterfaceMaterial
prop_consumed = ad_jump
prop_produced = couple
boundary = primary0_interface
[]
[jump]
type = JumpInterfaceMaterial
var = u
neighbor_var = v
boundary = primary0_interface
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/element_quality_check/failure_error.i)
[Mesh]
file = Quad.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[UserObjects]
[./elem_quality_check]
type = ElementQualityChecker
metric_type = STRETCH
failure_type = ERROR
upper_bound = 1.0
lower_bound = 0.5
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/initial_conditions/ClosePackIC_3D.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmax = 0.5
ymax = .5
zmax = 0.5
uniform_refine = 3
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[ICs]
[./close_pack]
radius = 0.1
outvalue = 0
variable = phi
invalue = 1
type = ClosePackIC
[../]
[]
(test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rsc02.i)
# RSC test with low-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '3E-2 5E-1 8E-1'
x = '0 1 5'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater poil'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[]
[]
[Modules]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 10
thermal_expansion = 0
viscosity = 1e-3
[]
[oil]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 20
thermal_expansion = 0
viscosity = 2e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = poil
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
compute_enthalpy = false
compute_internal_energy = false
[]
[oil]
type = PorousFlowSingleComponentFluid
fp = oil
phase = 1
compute_enthalpy = false
compute_internal_energy = false
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_oil]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
[]
[]
[Variables]
[pwater]
[]
[poil]
[]
[]
[ICs]
[water_init]
type = ConstantIC
variable = pwater
value = 0
[]
[oil_init]
type = ConstantIC
variable = poil
value = 15
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = poil
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = poil
[]
[]
[AuxVariables]
[SWater]
family = MONOMIAL
order = CONSTANT
[]
[SOil]
family = MONOMIAL
order = CONSTANT
[]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[]
[AuxKernels]
[SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[]
[SOil]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 1
variable = SOil
[]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[recharge]
type = PorousFlowSink
variable = pwater
boundary = 'left'
flux_function = -1.0
[]
[fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[]
[fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10000'
[]
[]
[VectorPostprocessors]
[swater]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = SWater
start_point = '0 0 0'
end_point = '7 0 0'
sort_by = x
num_points = 21
execute_on = timestep_end
[]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[TimeStepper]
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = rsc02
[along_line]
type = CSV
execute_vector_postprocessors_on = final
[]
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(test/tests/outputs/system_info/system_info_mesh.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Adaptivity]
marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.1
indicator = indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
print_mesh_changed_info = true
[]
(tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/problems/step6c_decoupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[pressure]
[]
[]
[AuxKernels]
[pressure]
type = FunctionAux
variable = pressure
function = 't*x*x*y'
execute_on = timestep_end
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[column]
type = PackedColumn
radius = 1
temperature = 293.15 # 20C
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 300
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/adaptivity/tet4_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
elem_type = TET4
dim = 3
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(test/tests/usability/input.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_1constraint.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/mesh/splitting/grid_from_file.i)
[Mesh]
type = FileMesh
file = grid_from_file.e
[Partitioner]
type = GridPartitioner
nx = 2
ny = 2
nz = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test1.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test1.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test1_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/1d-stress.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x'
constraint_types = 'stress'
ndim = 1
large_kinematics = true
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '1d.exo'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right'
points = '-1 0 0
7 0 0'
[]
[]
[Variables]
[disp_x]
[]
[hvar]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '4.0e2*t'
[]
[]
[BCs]
[Periodic]
[all]
variable = disp_x
auto_direction = 'x'
[]
[]
[centerfix_x]
type = DirichletBC
boundary = "fixme"
variable = disp_x
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_stress_prescribed.i)
#
# 1x1x1 unit cube with time-varying pressure on top face
#
# The problem is a one-dimensional creep analysis. The top face has a
# pressure load that is a function of time. The creep strain can be
# calculated analytically. There is no practical active linear
# isotropic plasticity because the yield stress for the plasticity
# model is set to 1e30 MPa, which will not be reached in this
# regression test.
#
# The analytic solution to this problem is:
#
# d ec
# ---- = a*S^b with S = c*t^d
# dt
#
# d ec = a*c^b*t^(b*d) dt
#
# a*c^b
# ec = ----- t^(b*d+1)
# b*d+1
#
# where S = stress
# ec = creep strain
# t = time
# a = constant
# b = constant
# c = constant
# d = constant
#
# With a = 3e-24,
# b = 4,
# c = 1,
# d = 1/2, and
# t = 32400
# we have
#
# S = t^(1/2) = 180
#
# ec = 1e-24*t^3 = 3.4012224e-11
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_yy'
[../]
[]
[Functions]
[./pressure]
type = ParsedFunction
value = 'sqrt(t)'
[../]
[./dts]
type = PiecewiseLinear
y = '1e-2 1e-1 1e0 1e1 1e2'
x = '0 7e-1 7e0 7e1 1e2'
[../]
[]
[BCs]
[./top_pressure]
type = Pressure
variable = disp_y
boundary = top
function = pressure
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.8e7
poissons_ratio = 0.3
[../]
[./creep_plas]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep plas'
tangent_operator = elastic
[../]
[./creep]
type = PowerLawCreepStressUpdate
coefficient = 3.0e-24
n_exponent = 4
m_exponent = 0
activation_energy = 0
[../]
[./plas]
type = IsotropicPlasticityStressUpdate
hardening_constant = 1
yield_stress = 1e30
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-10
nl_abs_tol = 1e-7
l_tol = 1e-6
start_time = 0.0
end_time = 32400
dt = 1e-2
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Postprocessors]
[./timestep]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/sliding_block/sliding/frictional_02_aug.i)
# This is a benchmark test that checks constraint based frictional
# contact using the augmented lagrangian method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# A friction coefficient of 0.2 is used. The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[AuxVariables]
[./contact_traction]
[../]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 20
nl_max_its = 200
dt = 0.1
end_time = 15
num_steps = 200
l_tol = 1e-6
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Problem]
type = AugmentedLagrangianContactProblem
solution_variables = 'disp_x disp_y'
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 100
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 1e+7
friction_coefficient = 0.2
formulation = augmented_lagrange
normalize_penalty = true
al_penetration_tolerance = 1e-6
al_incremental_slip_tolerance = 1.0e-2
al_frictional_force_tolerance = 1e-3
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
(modules/contact/test/tests/verification/patch_tests/ring_2/ring2_template2.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(test/tests/kernels/ad_transient_diffusion/ad_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = ADTimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/default_value/default_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = DefaultPostprocessorDiffusion
variable = u
#pps_name = invalid_postprocessor_name
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/spherical_test_no3.i)
# Problem III.3
#
# The thermal conductivity of a spherical shell varies linearly with
# temperature: k = k0(1+beta* u). The inside radius is ri and the outside radius
# is ro. It has a constant internal heat generation q and is exposed to
# the same constant temperature on both surfaces: u(ri) = u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
xmin = 0.2
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'q k0 ri ro beta u0'
vals = '1200 1 0.2 1.0 1e-3 0'
value = 'u0+(1/beta)*( ( 1 + (1/3)*beta*((ro^2-x^2)-(ro^2-ri^2) * (1/x-1/ro)/(1/ri-1/ro))*q/k0 )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'left right'
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
f_name = 'thermal_conductivity'
args = u
function = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_iso_with_pressure.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco fracture_pressure'
prop_values = '1e-3 0.04 1e-4 1e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
I_name = 'indicator_function'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./indicator_function]
type = DerivativeParsedMaterial
f_name = indicator_function
args = 'c'
function = 'c'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/auxkernels/sum/sum.i)
# Tests the sum aux, which sums an arbitrary number of aux variables
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[sum]
family = MONOMIAL
order = CONSTANT
[]
[value1]
family = MONOMIAL
order = CONSTANT
[]
[value2]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sum_auxkernel]
type = SumAux
variable = sum
values = 'value1 value2'
[]
[value1_kernel]
type = ConstantAux
variable = value1
value = 2
[]
[value2_kernel]
type = ConstantAux
variable = value2
value = 3
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[sum_pp]
type = ElementalVariableValue
elementid = 0
variable = sum
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 5
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
input_files = sub.i
[]
[]
[Transfers]
[pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
to_multi_app = pp_sub
from_postprocessor = average
to_aux_scalar = from_master_app
[]
[]
(test/tests/kernels/ad_2d_diffusion/2d_diffusion_bodyforce_test.i)
###########################################################
# This is a simple test of the Kernel System.
# It solves the Laplacian equation on a small 2x2 grid.
# The "Diffusion" kernel is used to calculate the
# residuals of the weak form of this operator. The
# "BodyForce" kernel is used to apply a time-dependent
# volumetric source.
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[./bf]
type = ADBodyForce
variable = u
postprocessor = ramp
[../]
[]
[Functions]
[./ramp]
type = ParsedFunction
value = 't'
[../]
[]
[Postprocessors]
[./ramp]
type = FunctionValuePostprocessor
function = ramp
execute_on = linear
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 1.0
solve_type = 'NEWTON'
[]
[Outputs]
file_base = bodyforce_out
exodus = true
[]
(modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_with_density.i)
# Simple equilibrium reaction example with fluid density and gravity included
# in calculation of the Darcy velocity. For details about reaction network,
# see documentation in 2species.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2,
a + b = pab -2'
secondary_species = 'pa2 pab'
pressure = pressure
gravity = '-1 0 0'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
gravity = '-1 0 0'
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
gravity = '-1 0 0'
[../]
[./p]
type = DarcyFluxPressure
variable = pressure
gravity = '-1 0 0'
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
preset = false
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
preset = false
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[./pleft]
type = DirichletBC
variable = pressure
preset = false
value = 2
boundary = left
[../]
[./pright]
type = DirichletBC
variable = pressure
preset = false
value = 1
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity density'
prop_values = '1e-4 1e-4 0.2 4'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(modules/contact/test/tests/bouncing-block-contact/ping-ponging/mortar-no-ping-pong_weighted.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = long-bottom-block-no-lower-d.e
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = false
use_automatic_differentiation = true
strain = SMALL
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e0
poissons_ratio = 0.3
[]
[stress]
type = ADComputeLinearElasticStress
[]
[]
[Contact]
[leftright]
secondary = 10
primary = 20
model = frictionless
formulation = mortar
c_normal = 1e-1
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
num_steps = 40
end_time = 200
dt = 5
dtmin = 5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type'
petsc_options_value = 'lu 1e-5 NONZERO'
l_max_its = 30
nl_max_its = 20
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
line_search = 'none'
snesmf_reuse_base = true
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test1q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test1q.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test1q_out
exodus = true
[]
(test/tests/multiapps/multilevel/time_dt_from_master_subsub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 100
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./console]
type = Console
output_file = true
[../]
[]
(modules/combined/test/tests/DiffuseCreep/stress_flux_n_gb_relax.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./gb_relax_prefactor]
type = DerivativeParsedMaterial
block = 0
function = '0.01*(c-0.15)*gb'
args = 'c gb'
f_name = gb_relax_prefactor
derivative_order = 1
[../]
[./gb_relax]
type = GBRelaxationStrainIncrement
property_name = gb_relax
prefactor_name = gb_relax_prefactor
gb_normal_name = gb_normal
[../]
[./creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = 'diffuse gb_relax'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/3d-mortar-contact/frictionless-mortar-3d.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
second_order = false
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[disp_z]
block = '1 2'
[]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[ICs]
[disp_z]
block = 1
variable = disp_z
value = '${fparse offset}'
type = ConstantIC
[]
[disp_x]
block = 1
variable = disp_x
value = 0
type = ConstantIC
[]
[disp_y]
block = 1
variable = disp_y
value = 0
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[disp_z]
type = MatDiffusion
variable = disp_z
[]
[]
[Constraints]
[normal_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = .5
dtmin = .01
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 1e-5'
l_max_its = 100
nl_max_its = 30
# nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/patch_recovery.i)
[GlobalParams]
displacements = 'ux uy'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[AuxVariables]
[stress_xx_recovered]
order = FIRST
family = LAGRANGE
[]
[stress_yy_recovered]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[tdisp]
type = ParsedFunction
value = 0.01*t
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[stress_xx_recovered]
type = NodalPatchRecoveryAux
variable = stress_xx_recovered
nodal_patch_recovery_uo = stress_xx_patch
execute_on = 'TIMESTEP_END'
[]
[stress_yy_recovered]
type = NodalPatchRecoveryAux
variable = stress_yy_recovered
nodal_patch_recovery_uo = stress_yy_patch
execute_on = 'TIMESTEP_END'
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = uy
boundary = top
function = tdisp
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[]
[UserObjects]
[stress_xx_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '0 0'
execute_on = 'TIMESTEP_END'
[]
[stress_yy_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '1 1'
execute_on = 'TIMESTEP_END'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/mesh_extruder_generator/extrude_remap_layer2.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = multiblock.e
[]
[./extrude]
type = MeshExtruderGenerator
input = fmg
num_layers = 6
extrusion_vector = '0 0 2'
bottom_sideset = 'new_bottom'
top_sideset = 'new_top'
# Remap layers
existing_subdomains = '1 2 5'
layers = '1 3 5'
new_ids = '10 12 15' # Repeat this remapping for each layer
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 'new_bottom'
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 'new_top'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_second/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'small'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = 0
ymax = 10
nx = 2
ny = 33
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
use_automatic_differentiation = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
use_automatic_differentiation = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeLinearElasticStress
block = 'plank block'
[]
[swell]
type = ADComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = ADGenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 3
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/outputs/error/all_reserved.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./all]
type = Exodus
[../]
[]
(test/tests/executioners/nl_forced_its/many_nl_forced_its_ref_res.i)
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_vector_tags = ref
[../]
[./dt]
type = TimeDerivative
variable = u
extra_vector_tags = ref
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
line_search = none
nl_forced_its = 10
num_steps = 1
[]
(modules/porous_flow/test/tests/relperm/corey1.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Corey exponent n = 1 for both phases (linear residual saturation)
# No residual saturation in either phase
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 1
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 1
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-8
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/1D/dirichlet.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/combined/test/tests/generalized_plane_strain_tm_contact/out_of_plane_pressure.i)
# Tests for application of out-of-plane pressure in generalized plane strain.
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./saved_zz]
order = FIRST
family = SCALAR
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
out_of_plane_pressure = traction_function
factor = 1e5
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxScalarKernels]
[./gps_ref_res]
type = GeneralizedPlaneStrainReferenceResidual
variable = saved_zz
generalized_plane_strain = gps_GeneralizedPlaneStrainUserObject
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./traction_function]
type = PiecewiseLinear
x = '0 2'
y = '0 1'
[../]
[]
[BCs]
[./leftx]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./strain]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-11
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/cavity_pressure/negative_volume.i)
#
# Cavity Pressure Test
#
# This test is designed to compute a negative number of moles
# to trigger an error check in the CavityPressureUserObject.
# The negative number of moles is achieved by supplying an
# open volume to the InternalVolume postprocessor, which
# calculates a negative volume.
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 2
[]
[Functions]
[./temperature]
type = PiecewiseLinear
x = '0 1'
y = '1 2'
scale_factor = 100
[../]
[]
[Variables]
[./temperature]
initial_condition = 100
[../]
[]
[Modules/TensorMechanics/Master]
[./block]
strain = FINITE
add_variables = true
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temperature
use_displaced_mesh = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 2
function = temperature
variable = temperature
[../]
[./CavityPressure]
[./pressure]
boundary = 'top bottom right'
initial_pressure = 10e5
R = 8.3143
output_initial_moles = initial_moles
temperature = aveTempInterior
volume = internalVolume
startup_time = 0.5
output = ppress
[../]
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 'top bottom right'
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = AxisymmetricCenterlineAverageValue
boundary = left
variable = temperature
execute_on = 'initial linear'
[../]
[]
[Outputs]
exodus = false
[]
(test/tests/misc/check_error/missing_coupled_mat_prop_test.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
# This material is global and uses a coupled property
[./mat_global]
type = CoupledMaterial
mat_prop = 'some_prop'
coupled_mat_prop = 'mp1'
block = '1 2'
[../]
# This material supplies a value for block 1 ONLY
[./mat_0]
type = GenericConstantMaterial
block = 1
prop_names = 'mp1'
prop_values = 2
[../]
[]
[Executioner]
type = Steady
# solve_type = 'PJFNK'
# preconditioner = 'ILU'
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = missing_mat_prop_test
exodus = true
[]
(modules/porous_flow/examples/tidal/atm_tides.i)
# A 10m x 10m "column" of height 100m is subjected to cyclic pressure at its top
# Assumptions:
# the boundaries are impermeable, except the top boundary
# only vertical displacement is allowed
# the atmospheric pressure sets the total stress at the top of the model
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = 0
xmax = 10
ymin = 0
ymax = 10
zmin = -100
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.6
multiply_by_density = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
scaling = 1E11
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '-10000*z' # approximately correct
[]
[]
[Functions]
[ini_stress_zz]
type = ParsedFunction
value = '(25000 - 0.6*10000)*z' # remember this is effective stress
[]
[cyclic_porepressure]
type = ParsedFunction
value = 'if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[]
[neg_cyclic_porepressure]
type = ParsedFunction
value = '-if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[]
[]
[BCs]
# zmin is called 'back'
# zmax is called 'front'
# ymin is called 'bottom'
# ymax is called 'top'
# xmin is called 'left'
# xmax is called 'right'
[no_x_disp]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_x=0 everywhere
[]
[no_y_disp]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_y=0 everywhere
[]
[no_z_disp_at_bottom]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[pp]
type = FunctionDirichletBC
variable = porepressure
function = cyclic_porepressure
boundary = front
[]
[total_stress_at_top]
type = FunctionNeumannBC
variable = disp_z
function = neg_cyclic_porepressure
boundary = front
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 1000.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
gravity = '0 0 -10'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 10.0E9 # drained bulk modulus
poissons_ratio = 0.25
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0 0 0 0 ini_stress_zz'
eigenstrain_name = ini_stress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 2E9
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-14'
[]
[density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500.0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[uz0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = disp_z
[]
[p100]
type = PointValue
outputs = csv
point = '0 0 -100'
variable = porepressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = -3600 # so postprocessors get recorded correctly at t=0
dt = 3600
end_time = 360000
nl_abs_tol = 5E-7
nl_rel_tol = 1E-10
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_mesh_function_transfer/fromsub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[transferred_u]
[]
[elemental_transferred_u]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
positions = '.099 .099 0 .599 .599 0 0.599 0.099 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = fromsub_sub.i
[]
[]
[Transfers]
[from_sub]
source_variable = 'sub_u sub_u'
variable = 'transferred_u elemental_transferred_u'
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
[]
[]
(modules/contact/test/tests/verification/patch_tests/ring_3/ring3_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test3.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test3_out
exodus = true
[]
(modules/combined/examples/phase_field-mechanics/kks_mechanics_VTS.i)
# KKS phase-field model coupled with elasticity using the Voigt-Taylor scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170329e
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2388*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1338*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22
[../]
[./matl_e33]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = e33
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
outputs = exodus
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
outputs = exodus
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
base_name = matrix
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = ppt
fill_method = symmetric9
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./strain_matrix]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = matrix
[../]
[./strain_ppt]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
base_name = ppt
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeEigenstrain
base_name = ppt
eigen_base = '1 1 1 0 0 0'
prefactor = misfit
eigenstrain_name = 'eigenstrain_ppt'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./global_strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[VectorPostprocessors]
#[./eta]
# type = LineValueSampler
# start_point = '-10 0 0'
# end_point = '10 0 0'
# variable = eta
# num_points = 321
# sort_by = id
#[../]
#[./eta_position]
# type = FindValueOnLineSample
# vectorpostprocessor = eta
# variable_name = eta
# search_value = 0.5
#[../]
# [./f_el]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = f_el
# [../]
# [./f_el_a]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_m
# [../]
# [./f_el_b]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fe_p
# [../]
# [./h_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = h
# [../]
# [./fm_out]
# type = LineMaterialRealSampler
# start = '-20 0 0'
# end = '20 0 0'
# sort_by = id
# property = fm
# [../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
[./csv]
type = CSV
execute_on = 'final'
[../]
#[./console]
# type = Console
# output_file = true
# [../]
[]
(test/tests/multiapps/restart/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
value = t*x
[../]
[./ffn]
type = ParsedFunction
value = x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/side_integral/side_integral_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_cut_uo]
type = RectangleCutUserObject
cut_data = ' -1.0 -0.1 -1.0
2.0 1.1 -1.0
2.0 1.1 1.0
-1.0 -0.1 1.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./front]
type = DirichletBC
variable = u
boundary = front
value = 3
[../]
[./back]
type = DirichletBC
variable = u
boundary = back
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Postprocessors]
[./front]
type = SideIntegralVariablePostprocessor
variable = u
boundary = front
[../]
[./back]
type = SideIntegralVariablePostprocessor
variable = u
boundary = back
[../]
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/heat_conduction/test/tests/code_verification/cartesian_test_no5.i)
# Problem I.5
#
# The volumetric heat generation in an infinite plate varies linearly
# with spatial location. It has constant thermal conductivity.
# It is insulated on the left boundary and exposed to a
# constant temperature on the right.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
vars = 'q L beta'
vals = '1200 1 0.1'
value = 'q * (1-beta*x/L)'
[../]
[./exact]
type = ParsedFunction
vars = 'uo q k L beta'
vals = '300 1200 1 1 0.1'
value = 'uo + (0.5*q*L^2/k) * ( (1-(x/L)^2) - (1-(x/L)^3) * beta/3 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 300
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/combined/examples/mortar/eigenstrain_action.i)
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[]
[Modules/PhaseField/MortarPeriodicity]
[./strain]
variable = 'disp_x disp_y'
periodicity = gradient
periodic_directions = 'x y'
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
(test/tests/misc/check_error/scalar_aux_kernel_with_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = u
[../]
[]
[AuxScalarKernels]
[./nope]
type = ConstantScalarAux
variable = u
value = 11
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/postprocessors/num_elems/num_elems.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
nz = 0
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[./v_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 1
solve_type = PJFNK
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 3
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./num_elems_active]
type = NumElems
elem_filter = 'ACTIVE'
execute_on = 'initial timestep_end'
[../]
[./num_elems_total]
type = NumElems
elem_filter = 'TOTAL'
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/bcs/sideset_from_nodeset/sideset_from_nodeset_test2.i)
[Mesh]
file = cube_no_sidesets2.e
construct_side_list_from_node_list = true
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 3
value = 3
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = cube_tet_out
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/theis3.i)
# Two phase Theis problem: Flow from single source
# Constant rate injection 0.5 kg/s
# 1D cylindrical mesh
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 2000
bias_x = 1.05
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[ppwater]
initial_condition = 20e6
[]
[sgas]
initial_condition = 0
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = ppwater
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = sgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater sgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 1e5
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 1e-3
thermal_expansion = 0
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 10
viscosity = 1e-4
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = ppwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
compute_enthalpy = false
compute_internal_energy = false
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
compute_enthalpy = false
compute_internal_energy = false
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = ppwater
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 0.5
variable = sgas
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e4
[TimeStepper]
type = IterationAdaptiveDT
dt = 10
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = NodalValueSampler
sort_by = x
variable = 'ppwater sgas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[ppwater]
type = PointValue
point = '4 0 0'
variable = ppwater
[]
[sgas]
type = PointValue
point = '4 0 0'
variable = sgas
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[]
[Outputs]
file_base = theis3
print_linear_residuals = false
perf_graph = true
[csv]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/combined/test/tests/gap_heat_transfer_jac/two_blocks.i)
# This problem consists of two beams with different prescribed temperatures on
# the top of the top beam and the bottom of the bottom beam. The top beam is
# fixed against vertical displacement on the top surface, and the bottom beam
# bends downward due to thermal expansion.
# This is a test of the effectiveness of the Jacobian terms coupling temperature
# and displacement for thermal contact. The Jacobian is not exactly correct,
# but is close enough that this challenging problem converges in a small number
# of nonlinear iterations using NEWTON.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[./msh]
type = FileMeshGenerator
file = two_blocks.e
[]
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = thermal_expansion
generate_output = 'stress_xx stress_yy stress_zz stress_yz stress_xz stress_xy'
use_automatic_differentiation = true
[../]
[]
[Contact]
[./mechanical]
primary = 4
secondary = 5
formulation = kinematic
tangential_tolerance = 1e-1
penalty = 1e10
[../]
[]
[ThermalContact]
[./thermal]
type = GapHeatTransfer
variable = temp
primary = 4
secondary = 5
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1e4
quadrature = true
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 7
value = 0
[../]
[./top_temp]
type = DirichletBC
variable = temp
boundary = 7
value = 1000.0
[../]
[./bot_temp]
type = DirichletBC
variable = temp
boundary = 6
value = 500.0
[../]
[]
[Materials]
[./density]
type = Density
density = 100
[../]
[./temp]
type = ADHeatConductionMaterial
thermal_conductivity = 1e5
specific_heat = 620.0
[../]
[./Elasticity_tensor]
type = ADComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0.3 0.5e8'
[../]
[./thermal_eigenstrain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-5
stress_free_temperature = 500
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
[Executioner]
automatic_scaling = true
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
solve_type = NEWTON
nl_max_its = 15
l_tol = 1e-10
l_max_its = 50
start_time = 0.0
dt = 0.2
dtmin = 0.2
num_steps = 1
line_search = none
[]
(test/tests/controls/control_connection/alias_connection.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[./control]
type = TestControl
execute_on = INITIAL
test_type = 'alias'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/node_list_from_side_list/node_list_from_side_list.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[rename]
type = RenameBoundaryGenerator
input = gen
old_boundary = 'left'
new_boundary = 'renamed_left'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/ic_bnd_for_non_nodal.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 1
variable = u
boundary = top
[../]
[../]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/ad_cavity_pressure/initial_temperature.i)
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ADComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ADComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/derivative_material_interface/material_chaining.i)
#
# This test validates the correct application of the chain rule to coupled
# material properties within DerivativeParsedMaterials
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./eta1]
[../]
[./eta2]
[../]
[]
[BCs]
[./left]
variable = eta1
boundary = left
type = DirichletBC
value = 0
[../]
[./right]
variable = eta1
boundary = right
type = DirichletBC
value = 1
[../]
[./top]
variable = eta2
boundary = top
type = DirichletBC
value = 0
[../]
[./bottom]
variable = eta2
boundary = bottom
type = DirichletBC
value = 1
[../]
[]
[Materials]
# T1 := (eta1+1)^4
[./term]
type = DerivativeParsedMaterial
f_name= T1
args = 'eta1'
function = '(eta1+1)^4'
derivative_order = 4
[../]
# in this material we substitute T1 explicitly
[./full]
type = DerivativeParsedMaterial
args = 'eta1 eta2'
f_name = F1
function = '(1-eta2)^4+(eta1+1)^4'
[../]
# in this material we utilize the T1 derivative material property
[./subs]
type = DerivativeParsedMaterial
args = 'eta1 eta2'
f_name = F2
function = '(1-eta2)^4+T1'
material_property_names = 'T1(eta1)'
[../]
# calculate differences between the explicit and indirect substitution version
# the use if the T1 property should include dT1/deta1 contributions!
# This also demonstrated the explicit use of material property derivatives using
# the D[...] syntax.
[./diff0]
type = ParsedMaterial
f_name = D0
function = '(F1-F2)^2'
material_property_names = 'F1 F2'
[../]
[./diff1]
type = ParsedMaterial
f_name = D1
function = '(dF1-dF2)^2'
material_property_names = 'dF1:=D[F1,eta1] dF2:=D[F2,eta1]'
[../]
[./diff2]
type = ParsedMaterial
f_name = D2
function = '(d2F1-d2F2)^2'
material_property_names = 'd2F1:=D[F1,eta1,eta1] d2F2:=D[F2,eta1,eta1]'
[../]
# check that explicitly pulling a derivative yields the correct result by
# taking the difference of the manually calculated 1st derivative of T1 and the
# automatic derivative dT1 pulled in through dT1:=D[T1,eta1]
[./diff3]
type = ParsedMaterial
f_name = E0
function = '(dTd1-(4*(eta1+1)^3))^2'
args = eta1
material_property_names = 'dTd1:=D[T1,eta1]'
[../]
[]
[Kernels]
[./eta1diff]
type = Diffusion
variable = eta1
[../]
[./eta2diff]
type = Diffusion
variable = eta2
[../]
[]
[Postprocessors]
[./D0]
type = ElementIntegralMaterialProperty
mat_prop = D0
[../]
[./D1]
type = ElementIntegralMaterialProperty
mat_prop = D1
[../]
[./D2]
type = ElementIntegralMaterialProperty
mat_prop = D2
[../]
[./E0]
type = ElementIntegralMaterialProperty
mat_prop = E0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
l_tol = 1e-03
[]
[Outputs]
execute_on = 'TIMESTEP_END'
csv = true
print_linear_residuals = false
[]
(modules/heat_conduction/test/tests/heat_conduction/3d_quadrature_gap_heat_transfer/nonmatching.i)
[Mesh]
file = nonmatching.e
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 1000
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
variable = temp
emissivity_primary = 0
emissivity_secondary = 0
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Postprocessors]
[./left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = leftright
diffusivity = thermal_conductivity
[../]
[./right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = rightleft
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/use_substep_dt.i)
[GlobalParams]
displacements = 'ux uy uz'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
elem_type = HEX8
displacements = 'ux uy uz'
[]
[AuxVariables]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = slip_resistance
index = 0
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_increment
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./pushy]
type = FunctionDirichletBC
variable = uy
boundary = top
function = '-0.1*t'
[../]
[./pullz]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.1*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
maximum_substep_iteration = 1
[../]
[./trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[./uy_avg_top]
type = SideAverageValue
variable = uy
boundary = top
[]
[./uz_avg_front]
type = SideAverageValue
variable = uz
boundary = front
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1.0
num_steps = 5
dtmin = 0.001
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
[]
(test/tests/misc/stop_for_debugger/stop_for_debugger.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/3d_penetration_locator/3d_penetration_locator_test.i)
[Mesh]
file = 3d_penetration_test.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./penetration]
order = FIRST
family = LAGRANGE
[../]
[./tangential_distance]
order = FIRST
family = LAGRANGE
[../]
[./normal_x]
order = FIRST
family = LAGRANGE
[../]
[./normal_y]
order = FIRST
family = LAGRANGE
[../]
[./normal_z]
order = FIRST
family = LAGRANGE
[../]
[./closest_point_x]
order = FIRST
family = LAGRANGE
[../]
[./closest_point_y]
order = FIRST
family = LAGRANGE
[../]
[./closest_point_z]
order = FIRST
family = LAGRANGE
[../]
[./element_id]
order = FIRST
family = LAGRANGE
[../]
[./side]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = penetration
boundary = 2
paired_boundary = 3
[../]
[./penetrate2]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 2
paired_boundary = 3
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 3
paired_boundary = 2
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 2
paired_boundary = 3
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 3
paired_boundary = 2
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 2
paired_boundary = 3
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 3
paired_boundary = 2
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 2
paired_boundary = 3
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 3
paired_boundary = 2
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 2
paired_boundary = 3
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 3
paired_boundary = 2
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 2
paired_boundary = 3
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 3
paired_boundary = 2
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 2
paired_boundary = 3
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 3
paired_boundary = 2
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 2
paired_boundary = 3
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 3
paired_boundary = 2
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 2
paired_boundary = 3
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 3
paired_boundary = 2
quantity = side
[../]
[]
[BCs]
active = 'block1_left block1_right block2_left block2_right'
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/markers/q_point_marker/q_point_marker.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Adaptivity]
[./Markers]
[./marker]
type = QPointMarker
variable = u
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/heat_conduction/two_phase.i)
# 2phase heat conduction, with saturation fixed at 0.5
# apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[phase0_porepressure]
initial_condition = 0
[]
[phase1_saturation]
initial_condition = 0.5
[]
[temp]
initial_condition = 200
[]
[]
[Kernels]
[dummy_p0]
type = TimeDerivative
variable = phase0_porepressure
[]
[dummy_s1]
type = TimeDerivative
variable = phase1_saturation
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[heat_conduction]
type = PorousFlowHeatConduction
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp phase0_porepressure phase1_saturation'
number_fluid_phases = 2
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 0.4
thermal_expansion = 0
cv = 1
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 0.3
thermal_expansion = 0
cv = 2
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.3 0 0 0 0 0 0 0 0'
wet_thermal_conductivity = '1.7 0 0 0 0 0 0 0 0'
exponent = 1.0
aqueous_phase_number = 1
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = phase0_porepressure
phase1_saturation = phase1_saturation
capillary_pressure = pc
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.8
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 0.25
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 300
variable = temp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E1
end_time = 1E2
[]
[Postprocessors]
[t000]
type = PointValue
variable = temp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[t010]
type = PointValue
variable = temp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[t020]
type = PointValue
variable = temp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[t030]
type = PointValue
variable = temp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[t040]
type = PointValue
variable = temp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[t050]
type = PointValue
variable = temp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[t060]
type = PointValue
variable = temp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[t070]
type = PointValue
variable = temp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[t080]
type = PointValue
variable = temp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[t090]
type = PointValue
variable = temp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[t100]
type = PointValue
variable = temp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = two_phase
[csv]
type = CSV
[]
exodus = false
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub_wrong_control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = RealFunctionControl
function = '1'
parameter = 'BCs/left/value'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/diffusion_flux/diffusion_flux.i)
[Mesh]
type = GeneratedMesh # Can generate simple lines, rectangles and rectangular prisms
dim = 2 # Dimension of the mesh
nx = 10 # Number of elements in the x direction
ny = 10 # Number of elements in the y direction
xmax = 1.0
ymax = 1.0
[]
[Variables]
[./T]
[../]
[]
[AuxVariables]
[./flux_x]
order = FIRST
family = MONOMIAL
[../]
[./flux_y]
order = FIRST
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = MatDiffusionTest # A Laplacian operator
variable = T
prop_name = 'thermal_conductivity'
[../]
[./diff_ad]
type = ADMatDiffusion # A Laplacian operator
variable = T
diffusivity = 'thermal_conductivity'
[../]
[]
[AuxKernels]
[./flux_x]
type = DiffusionFluxAux
diffusivity = 'thermal_conductivity'
variable = flux_x
diffusion_variable = T
component = x
[../]
[./flux_y]
type = DiffusionFluxAux
diffusivity = 'thermal_conductivity'
variable = flux_y
diffusion_variable = T
component = y
[../]
[]
[BCs]
[./inlet]
type = DirichletBC # Simple u=value BC
variable = T
boundary = left
value = 4000 # K
[../]
[./outlet]
type = DirichletBC
variable = T
boundary = right
value = 400 # K
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '10' # in W/mK
[../]
[]
[VectorPostprocessors]
# avoid sampling an element variable on faces
[./line_sample]
type = LineValueSampler
variable = 'T flux_x flux_y'
start_point = '0.01 0.01 0'
end_point = '0.98 0.01 0'
num_points = 11
sort_by = id
[../]
[]
[Executioner]
type = Steady # Steady state problem
solve_type = PJFNK #Preconditioned Jacobian Free Newton Krylov
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type' #Matches with the values below
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true # Output Exodus format
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/meshgenerators/mesh_extruder_generator/extrude_remap_layer1.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = multiblock.e
[]
[./extrude]
type = MeshExtruderGenerator
input = fmg
num_layers = 6
extrusion_vector = '0 0 2'
bottom_sideset = 'new_bottom'
top_sideset = 'new_top'
# Remap layers
existing_subdomains = '1 2 5'
layers = '1 3 5'
new_ids = '10 12 15
30 32 35
50 52 55'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 'new_bottom'
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 'new_top'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/simple_contact/simple_contact_test2.i)
[Mesh]
file = contact.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[../]
[]
[Contact]
[./dummy_name]
primary = 3
secondary = 2
penalty = 5e6
formulation = penalty
primary_secondary_jacobian = false
normalize_penalty = true
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.0001
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
line_search = 'none'
nl_abs_tol = 1e-8
l_max_its = 100
nl_max_its = 10
dt = 1.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/L/large.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_4/plane4_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/thermal_expansion_function/small_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/newton_cooling/nc06.i)
# Newton cooling from a bar. 1-phase and heat, steady
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[pressure]
[]
[temp]
[]
[]
[ICs]
# have to start these reasonably close to their steady-state values
[pressure]
type = FunctionIC
variable = pressure
function = '(2-x/100)*1E6'
[]
[temperature]
type = FunctionIC
variable = temp
function = 100+0.1*x
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
gravity = '0 0 0'
variable = pressure
[]
[heat_advection]
type = PorousFlowHeatAdvection
gravity = '0 0 0'
variable = temp
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e6
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
cv = 1e6
porepressure_coefficient = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
n = 2
phase = 0
[]
[]
[BCs]
[leftp]
type = DirichletBC
variable = pressure
boundary = left
value = 2E6
[]
[leftt]
type = DirichletBC
variable = temp
boundary = left
value = 100
[]
[newtonp]
type = PorousFlowPiecewiseLinearSink
variable = pressure
boundary = right
pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
use_mobility = false
use_relperm = false
fluid_phase = 0
flux_function = 1
[]
[newton]
type = PorousFlowPiecewiseLinearSink
variable = temp
boundary = right
pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
use_mobility = false
use_relperm = false
use_internal_energy = true
fluid_phase = 0
flux_function = 1
[]
[]
[VectorPostprocessors]
[porepressure]
type = LineValueSampler
variable = pressure
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 11
execute_on = timestep_end
[]
[temperature]
type = LineValueSampler
variable = temp
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 11
execute_on = timestep_end
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol '
petsc_options_value = 'gmres asm lu 100 NONZERO 2 1E-8 1E-15'
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
file_base = nc06
execute_on = timestep_end
exodus = true
[along_line]
type = CSV
execute_vector_postprocessors_on = timestep_end
[]
[]
(modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_func.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = jump_func
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[Functions]
[./jump_func]
type = ParsedFunction
value = '0.5'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/kernels/kernel_precompute/kernel_precompute_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'convected'
[./convected]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff conv'
[./diff]
type = DiffusionPrecompute
variable = convected
[../]
[./conv]
type = ConvectionPrecompute
variable = convected
velocity = '1.0 0.0 0.0'
[../]
[]
[BCs]
active = 'bottom top'
[./bottom]
type = DirichletBC
variable = convected
boundary = 'left'
value = 0
[../]
[./top]
type = DirichletBC
variable = convected
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/misc/save_in/diag_save_in_soln_var_err_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./saved]
[../]
[./bc_saved]
[../]
[./accumulated]
[../]
[./diag_saved]
[../]
[./bc_diag_saved]
[../]
[./saved_dirichlet]
[../]
[./diag_saved_dirichlet]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
save_in = 'saved accumulated saved_dirichlet'
diag_save_in = 'u diag_saved diag_saved_dirichlet'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
save_in = saved_dirichlet
diag_save_in = diag_saved_dirichlet
[../]
[./nbc]
type = NeumannBC
variable = u
boundary = right
value = 1
save_in = 'bc_saved accumulated'
diag_save_in = bc_diag_saved
[../]
[]
[Postprocessors]
[./left_flux]
type = NodalSum
variable = saved
boundary = 1
[../]
[./saved_norm]
type = NodalL2Norm
variable = saved
execute_on = timestep_end
block = 0
[../]
[./saved_dirichlet_norm]
type = NodalL2Norm
variable = saved_dirichlet
execute_on = timestep_end
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/test/tests/DiffuseCreep/stress.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./creep_strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
variable = creep_strain_yy
rank_two_tensor = creep_strain
index_i = 1
index_j = 1
[../]
[./creep_strain_xy]
type = RankTwoAux
variable = creep_strain_xy
rank_two_tensor = creep_strain
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/radial_disp_aux/cylinder_2d_cartesian.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a cylinder subjected to uniform thermal
# expansion represented using a 2D Cartesian model.
[Mesh]
type = FileMesh
file = circle_sector_2d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
family = LAGRANGE
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementCylinderAux
variable = rad_disp
origin = '0 0 0'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(test/tests/outputs/debug/show_top_residuals.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./debug] # This is only a test, this should be turned on via the [Debug] block
type = TopResidualDebugOutput
num_residuals = 1
[../]
[]
(modules/ray_tracing/test/tests/coord_type/rz_line_integral.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 1
[]
[]
[Variables/u]
[]
[BCs]
[fixed]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = u
[]
[source]
type = BodyForce
variable = u
value = 10
[]
[]
[UserObjects]
[study]
type = RepeatableRayStudy
names = 'ray0 ray1'
start_points = '0 0.5 0
0 0.1 0'
end_points = '2.0 0.5 0
2.0 0.9 0'
[]
[]
[RayKernels]
[variable_integral]
type = VariableIntegralRayKernel
study = study
variable = u
[]
[]
[Postprocessors]
[ray0_value]
type = RayIntegralValue
ray_kernel = variable_integral
ray = ray0
[]
[ray1_value]
type = RayIntegralValue
ray_kernel = variable_integral
ray = ray1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Problem]
coord_type = RZ
[]
[Outputs]
exodus = true
csv = true
[]
(modules/heat_conduction/test/tests/heat_conduction/3d_quadrature_gap_heat_transfer/second.i)
[Mesh]
file = nonmatching.e
second_order = true
[]
[Variables]
[./temp]
order = SECOND
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 1000
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
variable = temp
emissivity_primary = 0
emissivity_secondary = 0
type = GapHeatTransfer
order = SECOND
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Postprocessors]
[./left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = leftright
diffusivity = thermal_conductivity
[../]
[./right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = rightleft
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/tutorials/introduction/mech_step04.i)
#
# Multiple submesh setup with two cantilevers side by side
# https://mooseframework.inl.gov/modules/tensor_mechanics/tutorials/introduction/step04.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[generated1]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 15
xmin = -0.6
xmax = -0.1
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar1
[]
[generated2]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 15
xmin = 0.1
xmax = 0.6
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar2
boundary_id_offset = 4
[]
[collect_meshes]
type = MeshCollectionGenerator
inputs = 'generated1 generated2'
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
# we anticipate large deformation
strain = FINITE
[]
[]
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[Pressure]
[sides]
boundary = 'pillar1_left pillar2_right'
function = 1e4*t
[]
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
# we anticipate large deformation
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 0.5
[Predictor]
type = SimplePredictor
scale = 1
[]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/3D/neumann.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/tutorials/introduction/mech_step02.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
[]
[]
#
# Added boundary/loading conditions
# https://mooseframework.inl.gov/modules/tensor_mechanics/tutorials/introduction/step02.html
#
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[Pressure]
[top]
boundary = top
function = 1e7*t
[]
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
# consider all off-diagonal Jacobians for preconditioning
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# we chose a direct solver here
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/eigen_executioners/ne_mat.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
active = 'u'
[./u]
# second order is way better than first order
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff rhs'
[./diff]
type = Diffusion
variable = u
[../]
[./rhs]
type = MaterialEigenKernel
variable = u
mat = varmat
[../]
[]
[Materials]
[./var_mat]
type = VarCouplingMaterialEigen
block = 0
var = u
material_prop_name = varmat
[../]
[]
[BCs]
active = 'homogeneous'
[./homogeneous]
type = DirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
value = 0
[../]
[]
[Executioner]
type = NonlinearEigen
bx_norm = 'unorm'
normalization = 'unorm'
normal_factor = 9.990012561844
free_power_iterations = 2
nl_abs_tol = 1e-12
nl_rel_tol = 1e-50
k0 = 1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'unorm udiff'
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
# execute on residual is important for nonlinear eigen solver!
execute_on = linear
[../]
[./udiff]
type = ElementL2Diff
variable = u
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ne_mat
exodus = true
[]
(test/tests/functions/function_setup/function_setup_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./ts_func]
type = TimestepSetupFunction
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./u_td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./ts_aux]
type = FunctionAux
variable = u_aux
function = ts_func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
num_steps = 5
dt = 1
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/executioners/arbitrary_execute_flag/arbitrary_execute.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./arbitrary]
type = TestPostprocessor
test_type = custom_execute_on
execute_on = 'INITIAL JUST_GO'
[../]
[]
[Executioner]
type = TestSteady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = CSV
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
(test/tests/misc/serialized_solution/adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./aux_serialized]
type = TestSerializedSolution
system = aux
[../]
[./nl_serialized]
type = TestSerializedSolution
system = nl
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = box_refine
[./Markers]
[./box_refine]
type = BoxMarker
bottom_left = '0.2 0.2 0'
top_right = '0.8 0.8 0'
inside = REFINE
outside = DONT_MARK
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/outputs/output_interface/marker.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
[./Indicators]
[./indicator_0]
type = GradientJumpIndicator
variable = u
outputs = none
[../]
[./indicator_1]
type = GradientJumpIndicator
variable = u
outputs = none
[../]
[../]
[./Markers]
[./marker_0]
type = ValueThresholdMarker
outputs = markers
refine = 0.5
variable = u
[../]
[./marker_1]
type = BoxMarker
bottom_left = '0.25 0.25 0'
top_right = '0.75 0.75 0'
inside = REFINE
outside = DONT_MARK
outputs = markers
[../]
[../]
[]
[Outputs]
[./markers]
type = Exodus
[../]
[./no_markers]
type = Exodus
[../]
[]
(modules/combined/test/tests/power_law_creep/power_law_creep_restart1.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = Density
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 6
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[./out]
type = Checkpoint
num_files = 1
[../]
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/multiple_boundary_ids.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'left bottom'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.2 0.9 0'
[]
[createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
block_id = 0
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '0.5 0.5 0'
top_right = '1.1 1.1 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/adapt/adapt_test_cycles.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '20 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.3
max_h_level = 7
cycles_per_step = 2
[../]
[]
[Outputs]
file_base = out_cycles
exodus = true
[]
(modules/level_set/test/tests/transfers/markers/multi_level/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[AuxVariables]
[./marker]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
hide = 'u'
exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/terzaghi_constM.i)
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[]
[topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 0.96
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 4
constant_fluid_bulk_modulus = 8
constant_biot_modulus = 16
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[]
[p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[]
[p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[]
[p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[]
[p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[]
[p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[]
[p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[]
[p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[]
[p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[]
[p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[]
[p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi_constM
[csv]
type = CSV
[]
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/sub0.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[base_0]
family = SCALAR
order = FIRST
initial_condition = 1
[]
[from_1]
type = MooseVariableScalar
order = FOURTH
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(modules/peridynamics/test/tests/restart/2D_mesh_restartable_H1NOSPD_second.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
restart_file_base = 2D_mesh_restartable_hnospd_out_cp/LATEST
[]
[Mesh]
file = 2D_mesh_restartable_hnospd_out_cp/LATEST
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1003
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0.001
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e8
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_mesh_restartable_H1NOSPD_second_out
exodus = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/elliptical_crack.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
file = quarter_sym.e
[]
[UserObjects]
[./ellip_cut_uo]
type = EllipseCutUserObject
cut_data = '-0.5 -0.5 0
-0.5 -0.1 0
0.1 -0.5 0'
[../]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI'
crack_direction_method = CurvedCrackFront
radius_inner = '0.1'
radius_outer = '0.2'
poissons_ratio = 0.3
youngs_modulus = 207000
block = 1
crack_front_points_provider = ellip_cut_uo
number_points_from_provider = 12
closed_loop = true
incremental = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[Functions]
[./top_trac_z]
type = ConstantFunction
value = 10
[../]
[]
[BCs]
[./top_z]
type = FunctionNeumannBC
boundary = 2
variable = disp_z
function = top_trac_z
[../]
[./bottom_x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = 1
variable = disp_z
value = 0.0
[../]
[./sym_y]
type = DirichletBC
boundary = 3
variable = disp_y
value = 0.0
[../]
[./sym_x]
type = DirichletBC
boundary = 4
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = elliptical_crack_out
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
(modules/peridynamics/test/tests/generalized_plane_strain/generalized_plane_strain_squares_OSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./fmg]
type = FileMeshGenerator
file = squares.e
[../]
[./gpd]
type = MeshGeneratorPD
input = fmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./stress_zz1]
order = FIRST
family = LAGRANGE
[../]
[./stress_zz2]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/Peridynamics/Mechanics]
[./Master]
[./block1]
formulation = ORDINARY_STATE
block = 1001
[../]
[./block2]
formulation = ORDINARY_STATE
block = 1002
[../]
[../]
[./GeneralizedPlaneStrain]
[./block1]
formulation = ORDINARY_STATE
scalar_out_of_plane_strain = scalar_strain_zz1
out_of_plane_stress_variable = stress_zz1
block = 1001
[../]
[./block2]
formulation = ORDINARY_STATE
scalar_out_of_plane_strain = scalar_strain_zz2
out_of_plane_stress_variable = stress_zz2
block = 1002
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_zz1]
type = NodalRankTwoPD
variable = stress_zz1
rank_two_tensor = stress
scalar_out_of_plane_strain = scalar_strain_zz1
poissons_ratio = 0.3
youngs_modulus = 1e6
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
output_type = component
index_i = 2
index_j = 2
block = 1001
[../]
[./stress_zz2]
type = NodalRankTwoPD
variable = stress_zz2
scalar_out_of_plane_strain = scalar_strain_zz2
poissons_ratio = 0.3
youngs_modulus = 1e6
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
rank_two_tensor = stress
output_type = component
index_i = 2
index_j = 2
block = 1002
[../]
[]
[Postprocessors]
[./react_z1]
type = NodalVariableIntegralPD
variable = stress_zz1
block = 1001
[../]
[./react_z2]
type = NodalVariableIntegralPD
variable = stress_zz2
block = 1002
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom1_x]
type = DirichletBC
boundary = 1001
variable = disp_x
value = 0.0
[../]
[./bottom1_y]
type = DirichletBC
boundary = 1001
variable = disp_y
value = 0.0
[../]
[./bottom2_x]
type = DirichletBC
boundary = 1002
variable = disp_x
value = 0.0
[../]
[./bottom2_y]
type = DirichletBC
boundary = 1002
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1001 1002'
[../]
[./force_density1]
type = ComputeSmallStrainVariableHorizonMaterialOSPD
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
scalar_out_of_plane_strain = scalar_strain_zz1
block = 1001
[../]
[./force_density2]
type = ComputeSmallStrainVariableHorizonMaterialOSPD
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
scalar_out_of_plane_strain = scalar_strain_zz2
block = 1002
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
l_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
[]
[Outputs]
exodus = true
file_base = generalized_plane_strain_squares_OSPD
[]
(tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7b_fine.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 3
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
uniform_refine = 3
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = left
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[column]
type = PackedColumn
radius = 1
temperature = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
end_time = 100
dt = 0.25
start_time = -1
steady_state_tolerance = 1e-5
steady_state_detection = true
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/output_if_base_contains/dt_from_master_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = dt_from_master_subsub.i
[../]
[]
(test/tests/ics/data_struct_ic/data_struct_ic_test.i)
[Mesh]
type = GeneratedMesh
nx = 10
ny = 10
dim = 2
# DataStructIC creates an IC based on node numbering
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ICs]
[./ds_ic]
type = DataStructIC
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/point_value/point_value_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./value]
type = PointValue
variable = u
point = '14.371 .41 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/quotient_aux/quotient_aux.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./ratio]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./ratio_auxkernel]
type = QuotientAux
variable = ratio
numerator = u
denominator = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/modifier_depend_order/modifier_depend_order.i)
[Mesh]
[file]
type = FileMeshGenerator
file = square.e
[]
# Mesh Modifiers
# If no dependencies are defined, the order of execution is not defined (based on pointer locations) so
# this test case has several dependencies to minimize the chance of getting lucky when things aren't defined properly.
# Rotations along different axes must occur in a defined order to end up at the right orientation at the end.
# The final mesh will be angled at 45 degrees with new sidesets where there were none before.
[add_side_sets]
type = SideSetsFromNormalsGenerator
input = last_rotate
normals = ' 0.70710678118 0.70710678118 0
-0.70710678118 -0.70710678118 0'
new_boundary = 'up_right down_left'
variance = 1e-3
fixed_normal = true
[]
[last_rotate]
type = TransformGenerator
input = rotate4
transform = ROTATE
vector_value = '-45 0 0'
[]
[rotate1]
type = TransformGenerator
input = file
transform = ROTATE
vector_value = '0 0 82'
[]
[rotate3]
type = TransformGenerator
input = rotate2
transform = ROTATE
vector_value = '0 36 0'
[]
[rotate4]
type = TransformGenerator
input = rotate3
transform = ROTATE
vector_value = '0 0 -82'
[]
[rotate2]
type = TransformGenerator
input = rotate1
transform = ROTATE
vector_value = '0 -36 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = down_left
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = up_right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/cyl_3/cyl3_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(test/tests/multiapps/move_and_reset/multilevel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub_sub.i
output_in_position = true
[../]
[]
(modules/phase_field/test/tests/initial_conditions/ClosePackIC.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
ymax = .5
uniform_refine = 5
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./phi]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[ICs]
[./close_pack]
radius = 0.07
outvalue = 0
variable = phi
invalue = 1
type = ClosePackIC
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/2d-strain.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
constraint_types = 'strain strain strain'
ndim = 2
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '2d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0'
fixed_normal = true
new_boundary = 'left right bottom top'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[hvar]
family = SCALAR
order = THIRD
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'strain11 strain22 strain12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[strain11]
type = ParsedFunction
value = '4.0e-2*t'
[]
[strain22]
type = ParsedFunction
value = '-2.0e-2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y'
[]
[y]
variable = disp_y
auto_direction = 'x y'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix1"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix1"
variable = disp_y
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix2"
variable = disp_y
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/recompute_radial_return/isotropic_plasticity_errors.i)
# This simulation uses the piece-wise linear strain hardening model
# with the incremental small strain formulation; incremental small strain
# is required to produce the strain_increment for the DiscreteRadialReturnStressIncrement
# class, which handles the calculation of the stress increment to return
# to the yield surface in a J2 (isotropic) plasticity problem.
#
# This test is used to check the error messages in the discrete radial return
# model DiscreteRRIsotropicPlasticity; cli_args are used to check all of the
# error messages in the DiscreteRRIsotropicPlasticity model.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t*(0.0625)
[../]
[./harden_func]
type = PiecewiseLinear
x = '0 0.0003 0.0007 0.0009'
y = '50 52 54 56'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy plastic_strain_xx plastic_strain_yy plastic_strain_zz'
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
relative_tolerance = 1e-25
absolute_tolerance = 1e-5
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-18
nl_abs_tol = 1e-10
l_tol = 1e-12
start_time = 0.0
end_time = 0.025
dt = 0.00125
dtmin = 0.0001
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/peridynamics/test/tests/simple_tests/2D_irregularD_variableH_BPD.i)
# Test for bond-based peridynamic formulation
# for irregular grid from file mesh with varying bond constants
# Square plate with Dirichlet boundary conditions applied
# at the left, top and bottom edges
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./fmg]
type = FileMeshGenerator
file = square.e
[../]
[./gpd]
type = MeshGeneratorPD
input = fmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1004
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1002
function = '-0.001*t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./force_density]
type = ComputeSmallStrainVariableHorizonMaterialBPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[]
[Outputs]
file_base = 2D_irregularD_variableH_BPD
exodus = true
[]
(modules/tensor_mechanics/test/tests/2D_geometries/finite_planestrain.i)
# This test uses the strain calculator ComputePlaneFiniteStrain,
# which is generated through the use of the TensorMechanics MasterAction.
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = PLANE_STRAIN
add_variables = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
[../]
[]
[Functions]
[./pull]
type = ParsedFunction
value ='0.005 * t'
[../]
[]
[BCs]
[./leftx]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./pull]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pull
[../]
[]
[Materials]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
l_max_its = 100
l_tol = 1e-10
nl_max_its = 10
nl_rel_tol = 1e-12
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub.i
[]
[]
[Transfers]
[pp_transfer]
type = MultiAppPostprocessorTransfer
to_multi_app = pp_sub
from_postprocessor = average
to_postprocessor = from_master
[]
[]
(modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
[Outputs]
[]
(modules/xfem/test/tests/single_var_constraint_2d/equal_value.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMEqualValueAtInterface
geometric_cut_userobject = 'line_seg_cut_uo'
use_displaced_mesh = false
variable = u
value = 1
alpha = 1e5
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/vectorpostprocessors/least_squares_fit_history/least_squares_fit_history.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = 't'
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = left
function = 't'
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
outputs = none
[../]
[./least_squares_fit_coeffs]
type = LeastSquaresFitHistory
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
order = 1
[../]
[./shift_and_scale_x_least_squares_fit_coeffs]
type = LeastSquaresFitHistory
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
x_shift = 1
x_scale = 10
order = 1
[../]
[./shift_and_scale_y_least_squares_fit_coeffs]
type = LeastSquaresFitHistory
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
y_shift = 1
y_scale = 10
order = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
num_steps = 3
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
execute_on = 'timestep_end'
csv = true
[]
(modules/contact/test/tests/mortar_dynamics/block-dynamics-friction.i)
starting_point = 2e-1
offset = -0.19
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
allow_renumbering = false
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[mechanical_normal_lm]
block = 3
use_dual = true
[]
[mechanical_tangential_lm]
block = 3
use_dual = true
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
stiffness_damping_coefficient = 0.05
hht_alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[gap]
block = 3
[]
[]
[AuxKernels]
[gap]
type = WeightedGapAux
variable = gap
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
use_displaced_mesh = true
[]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeDynamicFrictionalForceLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = mechanical_normal_lm
friction_lm = mechanical_tangential_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1e4
c_t = 1e4
mu = 0.5
interpolate_normals = false
newmark_beta = 0.25
newmark_gamma = 0.5
capture_tolerance = 1.0e-3
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = mechanical_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = mechanical_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = mechanical_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = mechanical_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 30 # 50
function = '0' # '1e-2*t'
[]
[]
[Executioner]
type = Transient
end_time = 75
dt = 0.05
dtmin = .005
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err '
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
nl_max_its = 50
line_search = 'none'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[mechanical_tangential_lm]
type = NodalValueSampler
block = '3'
variable = mechanical_tangential_lm
sort_by = 'x'
execute_on = TIMESTEP_END
[]
[]
(test/tests/controls/time_periods/dampers/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 0.95e-8
[]
[Postprocessors]
[./nlin]
type = NumNonlinearIterations
[../]
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Outputs]
csv = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = '*::const_damp'
start_time = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
(modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/small_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_trimesh.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 2D version
[Mesh]
type = FileMesh
file = trimesh.msh
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
block = '50'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.305,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.04 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/3tile.i)
# Tests the tile and partition assembly for overlapping partitions and
# a variety of different overlapping tile conditions.
# Creep_rate should always be 2.718281828459
endtime = 1.9
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[temp_aux]
type = FunctionAux
variable = temperature
function = temp_fcn
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[rhom_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12'
direction = LEFT_INCLUSIVE
[]
[rhoi_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11'
direction = LEFT_INCLUSIVE
[]
[vmJ2_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '25.68 25.68 45.0 55.28 63.0 67.12 85.0 85.0 85.0 85.0 85.0 85.0 55.28 63.0 67.12 63.0 63.0 55.28 96.72 63.0'
direction = LEFT_INCLUSIVE
[]
[evm_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01'
direction = LEFT_INCLUSIVE
[]
[temp_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '940.0 940.0 940.0 940.0 940.0 940.0 940.0 905.0 897.0 881.0 860.0 821.0 860.0 881.0 897.0 897.0 905.0 897.0 860.0 860.0'
direction = LEFT_INCLUSIVE
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pull_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 1e-5 # This is required to make a non-zero effective trial stress so radial return is engaged
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 1e13
poissons_ratio = 0.3
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[rom_stress_prediction]
type = LAROMANCE3TileTest
temperature = temperature
effective_inelastic_strain_name = effective_creep_strain
internal_solve_full_iteration_history = true
apply_strain = false
outputs = all
verbose = true
wall_dislocation_density_forcing_function = rhoi_fcn
cell_dislocation_density_forcing_function = rhom_fcn
old_creep_strain_forcing_function = evm_fcn
wall_input_window_low_failure = ERROR
wall_input_window_high_failure = ERROR
cell_input_window_low_failure = ERROR
cell_input_window_high_failure = ERROR
temperature_input_window_low_failure = DONOTHING
temperature_input_window_high_failure = ERROR
stress_input_window_low_failure = DONOTHING
stress_input_window_high_failure = ERROR
old_strain_input_window_low_failure = ERROR
old_strain_input_window_high_failure = ERROR
environment_input_window_low_failure = ERROR
environment_input_window_high_failure = ERROR
effective_stress_forcing_function = vmJ2_fcn
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-1 # Nothing is really being solved here, so loose tolerances are okay
dt = 0.1
end_time = ${endtime}
timestep_tolerance = 1e-3
[]
[Postprocessors]
[extrapolation]
type = ElementAverageValue
variable = ROM_extrapolation
outputs = console
[]
[old_strain_in]
type = FunctionValuePostprocessor
function = evm_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[partition_weight]
type = ElementAverageMaterialProperty
mat_prop = partition_weight
[]
[rhom_in]
type = FunctionValuePostprocessor
function = rhom_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[rhoi_in]
type = FunctionValuePostprocessor
function = rhoi_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[vmJ2_in]
type = FunctionValuePostprocessor
function = vmJ2_fcn
execute_on = 'TIMESTEP_END initial'
[]
[creep_rate]
type = ElementAverageMaterialProperty
mat_prop = creep_rate
[]
[rhom_rate]
type = ElementAverageMaterialProperty
mat_prop = cell_dislocation_rate
[]
[rhoi_rate]
type = ElementAverageMaterialProperty
mat_prop = wall_dislocation_rate
[]
[]
[Outputs]
csv = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
(test/tests/outputs/hide_vector_pp/hide_vector_pp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = NumElems
outputs = csv
[../]
[]
[VectorPostprocessors]
[./vpp]
type = LineValueSampler
variable = u
start_point = '0 0 0'
end_point = '1 1 0'
num_points = 10
sort_by = id
outputs = 'test'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[./test]
type = CSV
execute_on = 'FINAL'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 64
ny = 64
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
alpha = .1
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
file_base = lid_driven_stabilized_out
[]
[Postprocessors]
[lin]
type = NumLinearIterations
[]
[nl]
type = NumNonlinearIterations
[]
[lin_tot]
type = CumulativeValuePostprocessor
postprocessor = 'lin'
[]
[nl_tot]
type = CumulativeValuePostprocessor
postprocessor = 'nl'
[]
[]
(test/tests/mortar/displaced-gap-conductance-2d-bnd-coupling/gap-conductance-bnd-material.i)
[Mesh]
displacements = 'disp_x disp_y'
[file]
type = FileMeshGenerator
file = nodal_normals_test_offset_nonmatching_gap.e
# block 1: left
# block 2: right
[]
[./primary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = '20'
[../]
[./secondary]
input = primary
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = '10'
[../]
[]
[AuxVariables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[AuxKernels]
[function_x]
type = FunctionAux
function = '.05 * t'
variable = 'disp_x'
block = '2'
[]
[function_y]
type = FunctionAux
function = '.05 * t'
variable = 'disp_y'
block = '2'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./T]
block = '1 2'
[../]
[./lambda]
block = '10'
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = T
boundary = '5'
value = 0
[../]
[./right]
type = DirichletBC
variable = T
boundary = '8'
value = 1
[../]
[]
[Kernels]
[./conduction]
type = Diffusion
variable = T
block = '1 2'
[../]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[./mortar]
type = GapHeatConductanceMaterial
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = 20
secondary_subdomain = 10
variable = lambda
secondary_variable = T
use_displaced_mesh = true
material_property = 'layer_modifier'
correct_edge_dropping = true
[../]
[]
[Materials]
[constant]
type = ADGenericConstantMaterial
prop_names = 'gap_conductance'
prop_values = '.03'
block = '1 2'
use_displaced_mesh = true
[]
[bnd_material_modifier]
type = ADGenericConstantMaterial
prop_names = 'layer_modifier'
prop_values = '5.0'
boundary = '1 2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 5
petsc_options_iname = '-pc_type -snes_linesearch_type'
petsc_options_value = 'lu basic'
[]
[Outputs]
exodus = true
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
(test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lumped.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.001
[./TimeIntegrator]
type = ActuallyExplicitEuler
solve_type = lumped
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_ref_resid.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
group_variables = 'disp_x disp_y'
[]
[Variables]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
planar_formulation = GENERALIZED_PLANE_STRAIN
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_zz
temperature = temp
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./saved_x]
type = TagVectorAux
variable = 'saved_x'
vector_tag = 'ref'
v = 'disp_x'
execute_on = timestep_end
[../]
[./saved_y]
type = TagVectorAux
variable = 'saved_y'
vector_tag = 'ref'
execute_on = timestep_end
v = 'disp_y'
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/recover/ad_recover.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = recover_in.e
[]
[Variables]
[./temp]
initial_condition = 580.0
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_source]
type = ADMatHeatSource
material_property = volumetric_heat
variable = temp
scalar = 1e3
block = pellet_type_1
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 5
secondary = 10
emissivity_primary = 0
emissivity_secondary = 0
quadrature = true
[../]
[]
[BCs]
[./outside]
type = DirichletBC
value = 580
boundary = '1 2 3'
variable = temp
[../]
[./edge]
type = DirichletBC
value = 700
boundary = 10
variable = temp
[../]
[]
[Materials]
[./volumetric_heat]
type = ADGenericFunctionMaterial
prop_names = 'volumetric_heat'
prop_values = 't'
[../]
[./thermal_3]
type = ADHeatConductionMaterial
block = 3
thermal_conductivity = 5
specific_heat = 12
[../]
[./thermal_1]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 16.0
specific_heat = 330.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-11
start_time = -200
n_startup_steps = 1
end_time = 1.02e5
num_steps = 10
dtmax = 2e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 2.0e2
optimal_iterations = 15
iteration_window = 2
[../]
[./Quadrature]
order = FIFTH
side_order = SEVENTH
[../]
[]
[Postprocessors]
[./ave_temp_interior]
type = SideAverageValue
boundary = 9
variable = temp
execute_on = 'initial linear'
[../]
[./avg_clad_temp]
type = SideAverageValue
boundary = 7
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_from_clad]
type = ADSideDiffusiveFluxIntegral
variable = temp
boundary = 5
diffusivity = thermal_conductivity
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_steady/steady.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
checkpoint = true
[]
(test/tests/restart/restartable_types/restartable_types.i)
###########################################################
# This is a simple test of the restart/recover capability.
# The test object "RestartableTypesChecker" is used
# to reload data from a previous simulation written out
# with the object "RestartableTypes".
#
# See "restartable_types2.i"
#
# @Requirement F1.60
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./restartable_types]
type = RestartableTypes
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./out]
type = Checkpoint
num_files = 1
[../]
[]
(modules/combined/test/tests/concentration_dependent_elasticity_tensor/concentration_dependent_elasticity_tensor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -0.5
ymin = -0.5
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
disp_x = disp_x
disp_y = disp_y
[../]
[]
[AuxVariables]
[./c]
[../]
[./C11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_s11]
type = RankTwoAux
variable = s11_aux
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./matl_C11]
type = RankFourAux
variable = C11_aux
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeConcentrationDependentElasticityTensor
block = 0
c = c
C1_ijkl = '6 6'
C0_ijkl = '1 1'
fill_method1 = symmetric_isotropic
fill_method0 = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 0
disp_x = disp_x
disp_y = disp_y
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.5
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-8
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.2
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
(tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7d_adapt_blocks.i)
[Mesh]
uniform_refine = 3
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 4
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[bottom]
type = SubdomainBoundingBoxGenerator
input = generate
location = inside
bottom_left = '0 0 0'
top_right = '0.304 0.01285 0'
block_id = 1
[]
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = left
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
viscosity_file = data/water_viscosity.csv
density_file = data/water_density.csv
thermal_conductivity_file = data/water_thermal_conductivity.csv
specific_heat_file = data/water_specific_heat.csv
[column_bottom]
type = PackedColumn
block = 1
radius = 1.15
temperature = temperature
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
[]
[column_top]
type = PackedColumn
block = 0
radius = 1
temperature = temperature
porosity = '0.25952 + 0.7*x/0.304'
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
end_time = 100
dt = 0.25
start_time = -1
steady_state_tolerance = 1e-5
steady_state_detection = true
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Adaptivity]
marker = error_frac
max_h_level = 3
[Indicators]
[temperature_jump]
type = GradientJumpIndicator
variable = temperature
scale_by_flux_faces = true
[]
[]
[Markers]
[error_frac]
type = ErrorFractionMarker
coarsen = 0.025
indicator = temperature_jump
refine = 0.9
[]
[]
[]
[Outputs]
[out]
type = Exodus
output_material_properties = true
[]
[]
(test/tests/kernels/diffusion_with_hanging_node/ad_simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[force]
type = ADBodyForce
variable = u
function = '0'
[]
[]
[BCs]
# BCs cannot be preset due to Jacobian test
[./left]
type = DirichletBC
preset = false
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
preset = false
variable = u
boundary = right
value = 1
[../]
[]
[Preconditioning]
[./pre]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-pc_svd_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'svd'
[]
[Outputs]
exodus = true
[]
[Adaptivity]
marker = box
max_h_level = 1
initial_steps = 1
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.5 0 0'
top_right = '1 1 0'
inside = 'refine'
outside = 'do_nothing'
[../]
[../]
[]
(test/tests/bcs/ad_coupled_lower_value/test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[../]
[lower_d]
type = LowerDBlockFromSidesetGenerator
input = square
new_block_name = 'lower'
sidesets = 'top right'
[]
[]
[Variables]
[./u]
block = 0
[../]
[lower]
block = 'lower'
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = 0
[../]
[]
[NodalKernels]
[time]
type = TimeDerivativeNodalKernel
variable = lower
block = lower
[]
[growth]
type = ConstantRate
rate = 1
variable = lower
block = lower
[]
[]
[BCs]
[./dirichlet]
type = DirichletBC
variable = u
boundary = 'left bottom'
value = 0
[../]
[./neumann]
type = ADCoupledLowerValue
variable = u
boundary = 'right top'
lower_d_var = lower
[../]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dispersion/diff01.i)
# Test diffusive part of PorousFlowDispersiveFlux kernel by setting dispersion
# coefficients to zero. Pressure is held constant over the mesh, and gravity is
# set to zero so that no advective transport of mass takes place.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 10
bias_x = 1.1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[massfrac0]
[]
[]
[AuxVariables]
[velocity]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[velocity]
type = PorousFlowDarcyVelocityComponent
variable = velocity
component = x
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e5
[]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[]
[BCs]
[left]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[]
[right]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[]
[pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[]
[pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1e5
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e7
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1 1'
tortuosity = 0.1
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 20
[]
[VectorPostprocessors]
[xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[]
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(modules/porous_flow/test/tests/newton_cooling/nc02.i)
# Newton cooling from a bar. 1-phase steady
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1000
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[pressure]
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = '(2-x/100)*1E6'
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
gravity = '0 0 0'
variable = pressure
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e6
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
n = 2
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pressure
boundary = left
value = 2E6
[]
[newton]
type = PorousFlowPiecewiseLinearSink
variable = pressure
boundary = right
pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
use_mobility = false
use_relperm = false
fluid_phase = 0
flux_function = 1
[]
[]
[VectorPostprocessors]
[porepressure]
type = LineValueSampler
variable = pressure
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 20
execute_on = timestep_end
[]
[]
[Preconditioning]
active = 'andy'
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol '
petsc_options_value = 'gmres asm lu 100 NONZERO 2 1E-12 1E-15'
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = nc02
execute_on = timestep_end
exodus = false
[along_line]
type = CSV
execute_vector_postprocessors_on = timestep_end
[]
[]
(modules/ray_tracing/test/tests/raykernels/variable_integral_ray_kernel/simple_diffusion_line_integral.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmax = 5
ymax = 5
[]
[]
[Variables/u]
[]
[Kernels/diff]
type = Diffusion
variable = u
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = false
csv = true
[rays]
type = RayTracingExodus
study = study
output_data = false # enable for data output
output_data_nodal = false # enable for nodal data output
execute_on = NONE # TIMESTEP_END for Ray mesh output
[]
[]
[UserObjects/study]
type = RepeatableRayStudy
names = 'diag
right_up'
start_points = '0 0 0
5 0 0'
end_points = '5 5 0
5 5 0'
execute_on = TIMESTEP_END
# Needed to cache trace information for RayTracingMeshOutput
# always_cache_traces = true
# Needed to cache Ray data for RayTracingMeshOutput
# data_on_cache_traces = true
[]
[RayKernels/u_integral]
type = VariableIntegralRayKernel
variable = u
[]
[Postprocessors]
[diag_line_integral]
type = RayIntegralValue
ray_kernel = u_integral
ray = diag
[]
[right_up_line_integral]
type = RayIntegralValue
ray_kernel = u_integral
ray = right_up
[]
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rsc01.i)
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater poil'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[]
[]
[Modules]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 10
thermal_expansion = 0
viscosity = 1e-3
[]
[oil]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 20
thermal_expansion = 0
viscosity = 2e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = poil
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
compute_enthalpy = false
compute_internal_energy = false
[]
[oil]
type = PorousFlowSingleComponentFluid
fp = oil
phase = 1
compute_enthalpy = false
compute_internal_energy = false
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_oil]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
[]
[]
[Variables]
[pwater]
[]
[poil]
[]
[]
[ICs]
[water_init]
type = ConstantIC
variable = pwater
value = 0
[]
[oil_init]
type = ConstantIC
variable = poil
value = 15
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pwater
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = poil
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = poil
[]
[]
[AuxVariables]
[SWater]
family = MONOMIAL
order = CONSTANT
[]
[SOil]
family = MONOMIAL
order = CONSTANT
[]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[]
[AuxKernels]
[SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[]
[SOil]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 1
variable = SOil
[]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[recharge]
type = PorousFlowSink
variable = pwater
boundary = 'left'
flux_function = -1.0
[]
[fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[]
[fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10000'
[]
[]
[VectorPostprocessors]
[swater]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = SWater
start_point = '0 0 0'
end_point = '7 0 0'
sort_by = x
num_points = 21
execute_on = timestep_end
[]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[TimeStepper]
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = rsc01
[along_line]
type = CSV
execute_vector_postprocessors_on = final
[]
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/3d-stress.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = NINTH
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 zero zero stress12 stress22 zero stress13 stress23 stress33'
execute_on = 'initial linear'
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
constraint_types = 'stress strain strain stress stress strain stress stress stress'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
macro_gradient = hvar
constraint_types = 'stress strain strain stress stress strain stress stress stress'
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
macro_gradient = hvar
constraint_types = 'stress strain strain stress stress strain stress stress stress'
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
macro_gradient = hvar
constraint_types = 'stress strain strain stress stress strain stress stress stress'
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
ndim = 3
large_kinematics = true
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '4.0e2*t'
[]
[stress22]
type = ParsedFunction
value = '-2.0e2*t'
[]
[stress33]
type = ParsedFunction
value = '8.0e2*t'
[]
[stress23]
type = ParsedFunction
value = '2.0e2*t'
[]
[stress13]
type = ParsedFunction
value = '-7.0e2*t'
[]
[stress12]
type = ParsedFunction
value = '1.0e2*t'
[]
[stress32]
type = ParsedFunction
value = '1.0e2*t'
[]
[stress31]
type = ParsedFunction
value = '2.0e2*t'
[]
[stress21]
type = ParsedFunction
value = '-1.5e2*t'
[]
[zero]
type = ConstantFunction
value = 0
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
macro_gradient = hvar
large_kinematics = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/patch_recovery.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
displacements = 'ux uy'
[]
[Variables]
[ux]
[]
[uy]
[]
[]
[AuxVariables]
[stress_xx_recovered]
order = FIRST
family = LAGRANGE
[]
[stress_yy_recovered]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[tdisp]
type = ParsedFunction
value = 0.01*t
[]
[]
[Kernels]
[TensorMechanics]
displacements = 'ux uy'
use_displaced_mesh = true
[]
[]
[AuxKernels]
[stress_xx_recovered]
type = NodalPatchRecoveryAux
variable = stress_xx_recovered
nodal_patch_recovery_uo = stress_xx_patch
execute_on = 'TIMESTEP_END'
[]
[stress_yy_recovered]
type = NodalPatchRecoveryAux
variable = stress_yy_recovered
nodal_patch_recovery_uo = stress_yy_patch
execute_on = 'TIMESTEP_END'
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = uy
boundary = top
function = tdisp
[]
[]
[UserObjects]
[slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[]
[slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[]
[state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[]
[state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[]
[stress_xx_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '0 0'
execute_on = 'TIMESTEP_END'
[]
[stress_yy_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '1 1'
execute_on = 'TIMESTEP_END'
[]
[]
[Materials]
[crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[]
[strain]
type = ComputeFiniteStrain
displacements = 'ux uy'
[]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/poro/vol_expansion_action.i)
# This is identical to vol_expansion.i, but uses the PoroMechanics action
#
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./PoroMechanics]
porepressure = p
displacements = 'disp_x disp_y disp_z'
[../]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion_action
exodus = true
[]
(modules/tensor_mechanics/test/tests/visco/gen_maxwell_driving.i)
# Represents a unique Maxwell module with E = 10GPa and eta = 10 days with an imposed eigenstrain alpha = 0.001.
# The behavior is set up so that the creep strain is driven by both the elastic stress and the internal
# stress induced by the eigenstrain (E * alpha).
#
# In this test, the specimen is free of external stress (sigma = 0) so the creep deformation only derives from
# the eigenstrain. The total strain to be expected is:
# epsilon = alpha * (1 + t / eta)
# Both the stress and the elastic strain are 0.
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[]
[Materials]
[./eigen]
type = ComputeEigenstrain
eigenstrain_name = eigen_true
eigen_base = '1e-3 1e-3 1e-3 0 0 0'
[../]
[./maxwell]
type = GeneralizedMaxwellModel
creep_modulus = '10e9'
creep_viscosity = '10'
poisson_ratio = 0.2
young_modulus = 10e9
driving_eigenstrain = eigen_true
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigen_true'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = maxwell
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-11
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_maxwell_driving_out
exodus = true
[]
(modules/porous_flow/test/tests/actions/fullsat_brine.i)
# Test the density, viscosity, enthalpy and internal energy
# calculated by the PorousFlowBrine material when using
# PorousFlowFullySaturated action.
# Density (rho) and enthalpy (h) From Driesner (2007), Geochimica et
# Cosmochimica Acta 71, 4902-4919 (2007).
# Viscosity from Phillips et al, A technical databook for
# geothermal energy utilization, LbL-12810 (1981).
# Internal energy = h - p / rho.
# Pressure 20 MPa
# Temperature 50C
# xnacl = 0.1047 (equivalent to 2.0 molality)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
block = '0'
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = pp
temperature = temp
mass_fraction_vars = "nacl"
fluid_properties_type = PorousFlowBrine
nacl_name = nacl
dictator_name = dictator
stabilization = none
[]
[Variables]
[pp]
initial_condition = 20E6
[]
[temp]
initial_condition = 323.15
[]
[nacl]
initial_condition = 0.1047
[]
[]
[Kernels]
# All provided by PorousFlowFullySaturated action
[]
[BCs]
[t_bdy]
type = DirichletBC
variable = temp
boundary = 'left right'
value = 323.15
[]
[p_bdy]
type = DirichletBC
variable = pp
boundary = 'left right'
value = 20E6
[]
[nacl_bdy]
type = DirichletBC
variable = nacl
boundary = 'left right'
value = 0.1047
[]
[]
[Postprocessors]
[pressure]
type = ElementIntegralVariablePostprocessor
variable = pp
[]
[temperature]
type = ElementIntegralVariablePostprocessor
variable = temp
[]
[xnacl]
type = ElementIntegralVariablePostprocessor
variable = nacl
[]
[density]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_density_qp0'
[]
[viscosity]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_viscosity_qp0'
[]
[enthalpy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_enthalpy_qp0'
[]
[energy]
type = ElementIntegralMaterialProperty
mat_prop = 'PorousFlow_fluid_phase_internal_energy_nodal0'
[]
[]
[Materials]
# Thermal conductivity
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
wet_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
[]
# Specific heat capacity
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 850
density = 2700
[]
# Permeability
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-13 0 0 0 1E-13 0 0 0 1E-13'
[]
# Porosity
[porosity]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = fullsat_brine
csv = true
execute_on = 'timestep_end'
[]
(test/tests/transfers/multiapp_conservative_transfer/master_power_density.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 1
nx = 10
ny = 10
[]
[block1]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0.5 0 0'
top_right = '1 1 0'
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[AuxVariables]
[from_sub]
[]
[]
[Postprocessors]
[pwr0]
type = ElementIntegralVariablePostprocessor
block = 0
variable = power_density
[]
[pwr1]
type = ElementIntegralVariablePostprocessor
block = 1
variable = power_density
[]
[from_sub0]
type = ElementIntegralVariablePostprocessor
block = 0
variable = from_sub
execute_on = 'transfer'
[]
[from_sub1]
type = ElementIntegralVariablePostprocessor
block = 1
variable = from_sub
execute_on = 'transfer'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
input_files = sub_power_density.i
positions = '0 0 0 0.5 0 0'
execute_on = timestep_end
[]
[]
[Transfers]
[to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = power_density
variable = from_master
to_multi_app = sub
execute_on = timestep_end
# The following inputs specify what postprocessors should be conserved
# N pps are specified on the master side, where N is the number of subapps
# 1 pp is specified on the subapp side
from_postprocessors_to_be_preserved = 'pwr0 pwr1'
to_postprocessors_to_be_preserved = 'from_master_pp'
[]
[from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = sink
variable = from_sub
from_multi_app = sub
execute_on = timestep_end
# The following inputs specify what postprocessors should be conserved
# N pps are specified on the master side, where N is the number of subapps
# 1 pp is specified on the subapp side
to_postprocessors_to_be_preserved = 'from_sub0 from_sub1'
from_postprocessors_to_be_preserved = 'sink'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppScalarToAuxScalarTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
source_variable = base_0
to_aux_scalar = from_0
[]
[pp_transfer_2]
type = MultiAppScalarToAuxScalarTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
source_variable = base_1
to_aux_scalar = from_1
[]
[]
(test/tests/misc/deprecation/deprecation.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_deprecated.i)
#
# Simple pull test for cracking.
# The stress increases for two steps and then drops to zero.
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 1 2 3 4'
y = '0 1 0 -1 0'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pull]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = displ
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.8e7
poissons_ratio = 0
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 1.68e6
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type'
petsc_options_value = '101 asm lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-5
start_time = 0.0
end_time = 0.1
dt = 0.025
[]
[Outputs]
exodus = true
file_base = cracking_out
[]
(modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_first/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite_rr'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
extra_vector_tags = 'ref'
[]
[plank]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ADComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = ADGenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-12
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/controls/syntax_based_naming_access/object_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/test_object/point'
execute_on = 'initial'
[../]
[]
(test/tests/transfers/multiapp_userobject_transfer/tosub_master.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_average_value]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./layered_aux]
type = SpatialUserObjectAux
variable = layered_average_value
execute_on = timestep_end
user_object = layered_average
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[UserObjects]
[./layered_average]
type = LayeredAverage
variable = u
direction = y
num_layers = 4
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
execute_on = timestep_end
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = tosub_sub.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
user_object = layered_average
variable = multi_layered_average
type = MultiAppUserObjectTransfer
to_multi_app = sub_app
[../]
[./element_layered_transfer]
user_object = layered_average
variable = element_multi_layered_average
type = MultiAppUserObjectTransfer
to_multi_app = sub_app
[../]
[]
(modules/contact/test/tests/glued/glued_contact_mechanical_constraint_test.i)
# This is a mechanical constraint (contact formulation) version of glued_contact_mechanical_constraint.i
[Mesh]
file = glued_contact_test.e
[]
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./up]
type = PiecewiseLinear
x = '0 1'
y = '0 0.5001'
[../]
[./lateral]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 1 0'
scale_factor = 0.5
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[Contact]
[./dummy_name]
primary = 2
secondary = 3
penalty = 1e6
model = glued
formulation = kinematic
[../]
[]
[BCs]
[./bottom_lateral]
type = FunctionDirichletBC
variable = disp_x
boundary = 1
function = lateral
[../]
[./bottom_up]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = up
[../]
[./bottom_out]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff1_strain]
type= ComputeFiniteStrain
block = '1'
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stiffStuff2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff2_strain]
type= ComputeFiniteStrain
block = '2'
[../]
[./stiffStuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
#petsc_options_iname = '-pc_type -pc_hypre_type -snes_type -snes_ls -snes_linesearch_type -ksp_gmres_restart'
#petsc_options_value = 'hypre boomeramg ls basic basic 101'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'ilu 101'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 0.1
num_steps = 30
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
active = ''
[./resid]
type = Residual
[../]
[./iters]
type = NumNonlinearIterations
[../]
[]
[Outputs]
file_base = mechanical_constraint_out
exodus = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d-rz/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[secondary]
input = block_rename
type = LowerDBlockFromSidesetGenerator
sidesets = 'block_left'
new_block_id = '30'
new_block_name = 'frictionless_secondary_subdomain'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'plank_right'
new_block_id = '20'
new_block_name = 'frictionless_primary_subdomain'
[]
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[temp]
order = ${order}
block = 'plank block'
scaling = 1e-1
[]
[thermal_lm]
order = ${order}
block = 'frictionless_secondary_subdomain'
scaling = 1e-7
[]
[frictionless_normal_lm]
order = FIRST
block = 'frictionless_secondary_subdomain'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
strain = FINITE
[]
[]
[Kernels]
[hc]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = 'plank block'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[thermal_contact]
type = GapConductanceConstraint
variable = thermal_lm
secondary_variable = temp
k = 1
use_displaced_mesh = true
primary_boundary = plank_right
primary_subdomain = frictionless_primary_subdomain
secondary_boundary = block_left
secondary_subdomain = frictionless_secondary_subdomain
displacements = 'disp_x disp_y'
[]
[]
[BCs]
[left_temp]
type = DirichletBC
variable = temp
boundary = 'plank_left'
value = 400
[]
[right_temp]
type = DirichletBC
variable = temp
boundary = 'block_right'
value = 300
[]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
preset = false
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
preset = false
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[heat_plank]
type = ADHeatConductionMaterial
block = plank
thermal_conductivity = 2
specific_heat = 1
[]
[heat_block]
type = ADHeatConductionMaterial
block = block
thermal_conductivity = 1
specific_heat = 1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount -snes_max_it'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15 20'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'none'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[avg_temp]
type = ElementAverageValue
variable = temp
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
checkpoint = true
[comp]
type = CSV
show = 'contact avg_temp'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/kernels/vector_fe/coupled_scalar_vector.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = -1
ymin = -1
elem_type = QUAD9
[]
[Variables]
[./u]
family = NEDELEC_ONE
order = FIRST
[../]
[./v]
[../]
[]
[Kernels]
[./wave]
type = VectorFEWave
variable = u
x_forcing_func = 'x_ffn'
y_forcing_func = 'y_ffn'
[../]
[./diff]
type = Diffusion
variable = v
[../]
[./source]
type = BodyForce
variable = v
[../]
[./advection]
type = EFieldAdvection
variable = v
efield = u
charge = 'positive'
mobility = 100
[../]
[]
[BCs]
[./bnd]
type = VectorCurlPenaltyDirichletBC
boundary = 'left right top bottom'
penalty = 1e10
function_x = 'x_sln'
function_y = 'y_sln'
variable = u
[../]
[./bnd_v]
type = DirichletBC
boundary = 'left right top bottom'
value = 0
variable = v
[../]
[]
[Functions]
[./x_ffn]
type = ParsedFunction
value = '(2*pi*pi + 1)*cos(pi*x)*sin(pi*y)'
[../]
[./y_ffn]
type = ParsedFunction
value = '-(2*pi*pi + 1)*sin(pi*x)*cos(pi*y)'
[../]
[./x_sln]
type = ParsedFunction
value = 'cos(pi*x)*sin(pi*y)'
[../]
[./y_sln]
type = ParsedFunction
value = '-sin(pi*x)*cos(pi*y)'
[../]
[]
[Preconditioning]
[./pre]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'asm'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_linesearch_monitor'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fully_saturated_action.i)
# 1phase, heat advecting with a moving fluid
# Using the PorousFlowFullySaturated Action with various stabilization options
# With stabilization=none, this should produce an identical result to heat_advection_1d_fully_saturated.i
# With stabilization=Full, this should produce an identical result to heat_advection_1d.i and heat_advection_1d_fullsat.i
# With stabilization=KT, this should produce an identical result to heat_advection_1D_KT.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[temp]
initial_condition = 200
[]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = '1-x'
[]
[]
[BCs]
[pp0]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[pp1]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[spit_heat]
type = DirichletBC
variable = temp
boundary = left
value = 300
[]
[suck_heat]
type = DirichletBC
variable = temp
boundary = right
value = 200
[]
[]
[PorousFlowFullySaturated]
porepressure = pp
temperature = temp
coupling_type = ThermoHydro
fp = simple_fluid
add_darcy_aux = false
stabilization = none
flux_limiter_type = superbee
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 100
density0 = 1000
viscosity = 4.4
thermal_expansion = 0
cv = 2
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[zero_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 0 0 0 0 0'
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 125
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 2 0 0 0 3'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 0.6
[]
[VectorPostprocessors]
[T]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 51
sort_by = x
variable = temp
[]
[]
[Outputs]
file_base = heat_advection_1d_fully_saturation_action
[csv]
type = CSV
sync_times = '0.1 0.6'
sync_only = true
[]
[]
(modules/xfem/test/tests/solid_mechanics_basic/penny_crack_cfp.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -1.1
xmax = 1.1
ymin = -1.1
ymax = 1.1
zmin = -1.1
zmax = 1.1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[UserObjects]
[./circle_cut_uo]
type = CircleCutUserObject
cut_data = '0 0 0
0 -0.5 0
-0.5 0 0'
[../]
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[DomainIntegral]
integrals = 'KfromJIntegral'
crack_direction_method = CurvedCrackFront
radius_inner = '0.3'
radius_outer = '0.6'
poissons_ratio = 0.3
youngs_modulus = 207000
block = 0
crack_front_points_provider = circle_cut_uo
number_points_from_provider = 10
closed_loop = true
incremental = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
block = 0
[../]
[]
[Functions]
[./top_trac_z]
type = ConstantFunction
value = 10
[../]
[]
[BCs]
[./top_z]
type = FunctionNeumannBC
boundary = front
variable = disp_z
function = top_trac_z
[../]
[./bottom_x]
type = DirichletBC
boundary = back
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = back
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = back
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_1d.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 2
[]
[]
[Variables/u]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.1
[]
[]
[UserObjects/study]
type = LotsOfRaysRayStudy
ray_kernel_coverage_check = false
vertex_to_vertex = true
centroid_to_vertex = true
centroid_to_centroid = true
execute_on = timestep_end
[]
[RayBCs/kill]
type = KillRayBC
boundary = 'left right'
[]
[Postprocessors]
[total_distance]
type = RayTracingStudyResult
study = study
result = total_distance
execute_on = timestep_end
[]
[total_rays]
type = RayTracingStudyResult
study = study
result = total_rays_started
execute_on = timestep_end
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fullsat.i)
# 1phase, heat advecting with a moving fluid
# Full upwinding is used, as implemented by the PorousFlowFullySaturatedUpwindHeatAdvection added
# In this case, the results should be identical to the case when the PorousFlowHeatAdvection Kernel is used.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[temp]
initial_condition = 200
[]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = '1-x'
[]
[]
[BCs]
[pp0]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[pp1]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[spit_heat]
type = DirichletBC
variable = temp
boundary = left
value = 300
[]
[suck_heat]
type = DirichletBC
variable = temp
boundary = right
value = 200
[]
[]
[Kernels]
[mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[advection]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[heat_advection]
type = PorousFlowFullySaturatedUpwindHeatAdvection
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.6
alpha = 1.3
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 100
density0 = 1000
viscosity = 4.4
thermal_expansion = 0
cv = 2
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 125
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 2 0 0 0 3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[massfrac]
type = PorousFlowMassFraction
[]
[PS]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres bjacobi 1E-15 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 0.6
[]
[VectorPostprocessors]
[T]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 51
sort_by = x
variable = temp
[]
[]
[Outputs]
[csv]
type = CSV
sync_times = '0.1 0.6'
sync_only = true
[]
[]
(modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 0
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymmetric_gps_incremental.i)
#
# This test checks the generalized plane strain using incremental small strain formulation.
# The model consists of two sets of line elements. One undergoes a temperature rise of 100 with
# the other seeing a temperature rise of 300. Young's modulus is 3600, and
# Poisson's ratio is 0.2. The thermal expansion coefficient is 1e-8. All
# nodes are constrained against movement.
#
# For plane strain case, i.e., without constraining the strain_yy to be uniform,
# the stress solution would be [-6e-3, -6e-3, -6e-3] and [-18e-3, -18e-3, -18e-3] (xx, yy, zz).
# The generalized plane strain kernels work to balance the force in y direction.
#
# With out of plane strain of 3e-6, the stress solution becomes
# [-3e-3, 6e-3, -3e-3] and [-15e-3, -6e-3, -15e-3] (xx, yy, zz). This gives
# a domain integral of out-of-plane stress to be zero.
#
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = lines.e
[]
[Variables]
[disp_x]
[]
[temp]
initial_condition = 580.0
[]
[scalar_strain_yy]
order = FIRST
family = SCALAR
[]
[]
[Functions]
[temp100]
type = PiecewiseLinear
x = '0 1'
y = '580 680'
[]
[temp300]
type = PiecewiseLinear
x = '0 1'
y = '580 880'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[]
[Modules/TensorMechanics/Master]
[gps]
planar_formulation = GENERALIZED_PLANE_STRAIN
scalar_out_of_plane_strain = scalar_strain_yy
strain = SMALL
incremental = true
generate_output = 'strain_xx strain_yy strain_zz stress_xx stress_yy stress_zz'
eigenstrain_names = eigenstrain
temperature = temp
[]
[]
[BCs]
[no_x]
type = DirichletBC
boundary = 1000
value = 0
variable = disp_x
[]
[temp100]
type = FunctionDirichletBC
variable = temp
function = temp100
boundary = 2
[]
[temp300]
type = FunctionDirichletBC
variable = temp
function = temp300
boundary = 3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[]
[thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[]
[stress]
type = ComputeStrainIncrementBasedStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_abs_tol = 1e-10
start_time = 0
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
console = true
[]
(modules/combined/test/tests/multiphase_mechanics/multiphasestress.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 2
ymin = 0
ymax = 2
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./eta1]
[./InitialCondition]
type = FunctionIC
function = 'x/2'
[../]
[../]
[./eta2]
[./InitialCondition]
type = FunctionIC
function = 'y/2'
[../]
[../]
[./eta3]
[./InitialCondition]
type = FunctionIC
function = '(2^0.5-(y-1)^2=(y-1)^2)/2'
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeElasticityTensor
base_name = A
fill_method = symmetric9
C_ijkl = '1e6 1e5 1e5 1e6 0 1e6 .4e6 .2e6 .5e6'
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
eigenstrain_names = eigenstrain
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./eigenstrain_A]
type = ComputeEigenstrain
base_name = A
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor_B]
type = ComputeElasticityTensor
base_name = B
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
eigenstrain_names = 'B_eigenstrain'
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./eigenstrain_B]
type = ComputeEigenstrain
base_name = B
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'B_eigenstrain'
[../]
[./elasticity_tensor_C]
type = ComputeElasticityTensor
base_name = C
fill_method = symmetric9
C_ijkl = '1.1e6 1e5 0 1e6 0 1e6 .5e6 .2e6 .5e6'
[../]
[./strain_C]
type = ComputeSmallStrain
base_name = C
eigenstrain_names = 'C_eigenstrain'
[../]
[./stress_C]
type = ComputeLinearElasticStress
base_name = C
[../]
[./eigenstrain_C]
type = ComputeEigenstrain
base_name = C
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'C_eigenstrain'
[../]
[./switching_A]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
[../]
[./switching_B]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
[../]
[./switching_C]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
[../]
[./combined]
type = MultiPhaseStressMaterial
phase_base = 'A B C'
h = 'h1 h2 h3'
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/3D/neumann.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(test/tests/markers/error_tolerance_marker/error_tolerance_marker_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./solution]
type = ParsedFunction
value = (exp(x)-1)/(exp(1)-1)
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
[./Indicators]
[./error]
type = AnalyticalIndicator
variable = u
function = solution
[../]
[../]
[./Markers]
[./marker]
type = ErrorToleranceMarker
coarsen = 4e-9
indicator = error
refine = 1e-8
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain_cut_mesh.i)
# This test is for two layer materials with different youngs modulus with AD
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[XFEM]
output_cut_plane = true
[]
[UserObjects]
[cut]
type = InterfaceMeshCut2DUserObject
mesh_file = line.e
interface_velocity_function = -1
heal_always = true
[]
[]
[Mesh]
use_displaced_mesh = true
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 5
ymin = 0
ymax = 5
elem_type = QUAD4
[]
[left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0 0'
input = generated_mesh
[]
[left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0 5'
input = left_bottom
[]
[]
# [Functions]
# [ls_func]
# type = ParsedFunction
# value = 'y-2.73+t'
# []
# []
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[ls]
[]
[a_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[a_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[a_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[b_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[b_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[b_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
# [ls_function]
# type = FunctionAux
# variable = ls
# function = ls_func
# []
[a_strain_xx]
type = RankTwoAux
variable = a_strain_xx
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
[]
[a_strain_yy]
type = RankTwoAux
variable = a_strain_yy
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
[]
[a_strain_xy]
type = RankTwoAux
variable = a_strain_xy
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
[]
[b_strain_xx]
type = RankTwoAux
variable = b_strain_xx
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
[]
[b_strain_yy]
type = RankTwoAux
variable = b_strain_yy
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
[]
[b_strain_xy]
type = RankTwoAux
variable = b_strain_xy
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
[]
[stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[]
[stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Constraints]
[dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[]
[dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[]
[]
[BCs]
[bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[]
[bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[]
[topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[]
[topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[]
[]
[Materials]
[elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[strain_A]
type = ComputeFiniteStrain
base_name = A
[]
[stress_A]
type = ComputeFiniteStrainElasticStress
base_name = A
[]
[elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e7
poissons_ratio = 0.3
[]
[strain_B]
type = ComputeFiniteStrain
base_name = B
[]
[stress_B]
type = ComputeFiniteStrainElasticStress
base_name = B
[]
[combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[]
[combined_jacob_mult]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[]
[]
[Postprocessors]
[disp_x_norm]
type = ElementL2Norm
variable = disp_x
[]
[disp_y_norm]
type = ElementL2Norm
variable = disp_y
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-13
nl_abs_tol = 1e-50
# time control
start_time = 0.0
dt = 0.1
num_steps = 4
max_xfem_update = 1
[]
[Outputs]
print_linear_residuals = false
exodus = true
[]
(test/tests/outputs/dofmap/simple_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = marker
initial_steps = 1
initial_marker = marker
[./Markers]
[./marker]
type = UniformMarker
mark = REFINE
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
[./dofmap]
type = DOFMap
execute_on = timestep_begin
[../]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test8.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '4 4 1'
[../]
[./interior_nodeset]
type = GenerateBoundingBoxNodeSet
input = SubdomainBoundingBox1
new_boundary = interior_ns
bottom_left = '2 2 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = interior_nodeset
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d-dynamics-light.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[AuxVariables]
[mortar_tangent_x]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_y]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_z]
family = LAGRANGE
order = FIRST
[]
[]
[AuxKernels]
[friction_x_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_x
component = 0
boundary = 'top_bottom'
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_y
component = 1
boundary = 'top_bottom'
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_z
component = 2
boundary = 'top_bottom'
[]
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 1
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
uniform_refine = 0
allow_renumbering = false
[]
[Variables]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_3d_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
hht_alpha = 0.0
newmark_beta = 0.25
newmark_gamma = 0.5
mass_damping_coefficient = 0.0
stiffness_damping_coefficient = 0.1
displacements = 'disp_x disp_y disp_z'
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
block = '1 2'
strain = FINITE
density = density
[]
[]
[Materials]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e4
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Constraints]
[friction]
type = ComputeDynamicFrictionalForceLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
friction_lm = mortar_tangential_lm
friction_lm_dir = mortar_tangential_3d_lm
mu = 0.4
c = 1e4
c_t = 1.0e4
newmark_beta = 0.25
newmark_gamma = 0.5
interpolate_normals = false
correct_edge_dropping = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_dir_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_dir_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_dir_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = .025
dt = .025
dtmin = .001
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu NONZERO 1e-14'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
line_search = 'basic'
[TimeIntegrator]
type = NewmarkBeta
gamma = 0.5
beta = 0.25
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[frictional-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[frictional-pressure-3d]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_3d_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_x]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_x
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_y]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_y
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[]
(modules/contact/test/tests/tension_release/8ElemTensionRelease.i)
[Mesh]
file = 8ElemTensionRelease.e
partitioner = centroid
centroid_partitioner_direction = x
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Functions]
[./up]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0.0001 0 -.0001'
[../]
[]
[AuxVariables]
[./status]
[../]
[./pid]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[]
[]
[Contact]
[./dummy_name]
primary = 2
secondary = 3
penalty = 1e6
model = frictionless
tangential_tolerance = 0.01
[../]
[]
[AuxKernels]
[./pid]
type = ProcessorIDAux
variable = pid
execute_on = 'initial timestep_end'
[../]
[./status]
type = PenetrationAux
quantity = mechanical_status
variable = status
boundary = 3
paired_boundary = 2
execute_on = timestep_end
[../]
[]
[BCs]
[./lateral]
type = DirichletBC
variable = disp_x
boundary = '1 4'
value = 0
[../]
[./bottom_up]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = up
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 0.1
num_steps = 30
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/diffusion_xfem/levelsetcut2d_aux.i)
# 2D: Mesh is cut by level set based cutter
# The level set is a MOOSE auxvariable
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '3 5'
[../]
[./ls_func]
type = ParsedFunction
value = 'x-0.5'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 3
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_elemental_only.i)
[Mesh]
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./en]
type = SolutionAux
solution = soln
variable = en
scale_factor = 2.0
from_variable = source_element
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = 'source_element'
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/meshgenerators/stitched_mesh_generator/stitched_mesh_generator2.i)
[Mesh]
[./fmg_left]
type = FileMeshGenerator
file = left.e
[]
[./fmg_center]
type = FileMeshGenerator
file = center.e
[]
[./fmg_right]
type = FileMeshGenerator
file = right.e
[]
[./smg]
type = StitchedMeshGenerator
inputs = 'fmg_left fmg_center fmg_right'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'right left;
right left'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/override_name_variable_test.i)
# Two non-linear variables with the same name
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 5
ny = 5
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
# Note this section is a repeat of the one above
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push_h.i)
# A column of elements has its bottom pulled down, and then pushed up again.
# Hardening of the tensile strength means that the top element also
# experiences plastic deformation
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = 'if(t>1,-2.0+t,-t)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 1E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 0
value_residual = 1E8
internal_limit = 0.1
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E8
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1000
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
perfect_guess = false
min_step_size = 0.1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E-2
nl_rel_tol = 1e-15
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 3.0
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_push_h
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/dispersion/diff01_action.i)
# Test diffusive part of PorousFlowDispersiveFlux kernel by setting dispersion
# coefficients to zero. Pressure is held constant over the mesh, and gravity is
# set to zero so that no advective transport of mass takes place.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmax = 10
bias_x = 1.1
[]
[GlobalParams]
PorousFlowDictator = andy_heheheh
[]
[Variables]
[pp]
[]
[massfrac0]
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e5
[]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[]
[BCs]
[left]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[]
[right]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[]
[pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[]
[pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1e5
[]
[]
[Kernels]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = massfrac0
disp_trans = 0
disp_long = 0
gravity = '0 0 0'
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = pp
disp_trans = 0
disp_long = 0
gravity = '0 0 0'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 1E7
viscosity = 0.001
density0 = 1000.0
[]
[]
[]
[PorousFlowUnsaturated]
porepressure = pp
gravity = '0 0 0'
fp = the_simple_fluid
dictator_name = andy_heheheh
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
mass_fraction_vars = massfrac0
[]
[Materials]
[poro]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1 1'
tortuosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 20
[]
[VectorPostprocessors]
[xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[]
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(modules/richards/test/tests/gravity_head_1/gh02.i)
# unsaturated = true
# gravity = false
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh02
exodus = true
[]
(modules/contact/test/tests/pressure/pressureAugLag.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = false
[]
[Mesh]
file = pressure.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_yy'
[]
[]
[Contact]
[./m20_s10]
primary = 20
secondary = 10
penalty = 1e7
formulation = augmented_lagrange
al_penetration_tolerance = 1e-8
tangential_tolerance = 1e-3
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 5
value = 0.0
[../]
[./Pressure]
[./press]
boundary = 7
factor = 1e3
[../]
[../]
[./down]
type = DirichletBC
variable = disp_y
boundary = 8
value = -2e-3
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1.0e6
poissons_ratio = 0.0
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Dampers]
[./limitX]
type = MaxIncrement
max_increment = 1e-5
variable = disp_x
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
#petsc_options_iname = '-pc_type -pc_hypre_type -snes_type -snes_ls -snes_linesearch_type -ksp_gmres_restart'
#petsc_options_value = 'hypre boomeramg ls basic basic 101'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
l_tol = 1e-8
l_max_its = 100
nl_max_its = 20
dt = 1.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/radial_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '0.2 0.2 0 0.7 0.7 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub0.i sub1.i'
[../]
[]
[Transfers]
[./pp_transfer]
postprocessor = average
variable = from_sub
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = sub
interp_type = radial_basis
radius = 1.5
[../]
[]
(modules/tensor_mechanics/tutorials/introduction/mech_step03.i)
#
# Added subdomains and subdomain-specific properties
# https://mooseframework.inl.gov/modules/tensor_mechanics/tutorials/introduction/step03.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
xmax = 2
ymax = 1
[]
# assign two subdomains
[block1]
type = SubdomainBoundingBoxGenerator
input = generated
block_id = 1
bottom_left = '0 0 0'
top_right = '1 1 0'
[]
[block2]
type = SubdomainBoundingBoxGenerator
input = block1
block_id = 2
bottom_left = '1 0 0'
top_right = '2 1 0'
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
[]
[]
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[Pressure]
[top]
boundary = top
function = 1e7*t
[]
[]
[]
[Materials]
[elasticity1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
block = 1
[]
[elasticity2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5e8
poissons_ratio = 0.3
block = 2
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/special/objective_shear.i)
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Functions]
[shearme]
type = PiecewiseLinear
x = '0 1'
y = '0 2'
[]
[]
[BCs]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[bottom_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[bottom_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = bottom
value = 0.0
[]
[shear]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = shearme
preset = true
[]
[hmm]
type = DirichletBC
preset = true
variable = disp_y
boundary = top
value = 0.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
[]
[Outputs]
exodus = true
[]
(test/tests/problems/eigen_problem/initial_condition/ne_ic_no_free.i)
[Mesh]
file = 'gold/ne_ic_out.e'
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
[./u]
order = FIRST
family = LAGRANGE
# Use a good initial so that Newton can converge when we do not use free power iterations
initial_from_file_var = u
initial_from_file_timestep = 1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigen]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
free_power_iterations = 0
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_test.i)
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 2D axisymmetric geometry.
# This test uses the strain calculator ComputeAxisymmetricRZFiniteStrain,
# which is generated through the use of the TensorMechanics MasterAction.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 2D-RZ_mesh.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = xzero
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = yzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = Pressure
variable = disp_r
boundary = outer
function = '200000*t'
[../]
[./exterior_pressure_z]
type = Pressure
variable = disp_z
boundary = outer
function = '200000*t'
[../]
[./interior_pressure_r]
type = Pressure
variable = disp_r
boundary = inner
function = '100000*t'
[../]
[./interior_pressure_z]
type = Pressure
variable = disp_z
boundary = inner
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_blocks.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek
# 2D version with blocks
# Top block: tracer is defined here, with velocity = (0.1, 0, 0)
# Central block: tracer is not defined here
# Bottom block: tracer is defined here, with velocity = (-0.1, 0, 0)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
xmin = 0
xmax = 1
ny = 5
ymin = 0
ymax = 1
[]
[top]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0.6 0'
top_right = '1 1 0'
block_id = 1
[]
[center]
input = bottom
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0.4 0'
top_right = '1 0.6 0'
block_id = 2
[]
[bottom]
input = top
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.6 0'
block_id = 3
[]
[split_bdys]
type = BreakBoundaryOnSubdomainGenerator
input = center
boundaries = 'left right'
[]
[]
[GlobalParams]
block = '1 2 3'
[]
[Variables]
[tracer]
block = '1 3'
[]
[dummy]
[]
[]
[ICs]
[tracer_top]
type = FunctionIC
variable = tracer
function = 'if(x<0.1 | x>0.3, 0, 1)'
block = '1'
[]
[tracer_bot]
type = FunctionIC
variable = tracer
function = 'if(x<0.7 | x > 0.9, 0, 1)'
block = '3'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
block = '1 3'
[]
[flux_top]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo_top
block = '1'
[]
[flux_bot]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo_bot
block = '3'
[]
[.dummy]
type = TimeDerivative
variable = dummy
[]
[]
[UserObjects]
[fluo_top]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
block = '1'
[]
[fluo_bot]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '-0.1 0 0'
block = '3'
[]
[]
[BCs]
[no_tracer_on_left_top]
type = DirichletBC
variable = tracer
value = 0
boundary = 'left_to_1'
[]
[remove_tracer_top]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = 'right_to_1'
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[no_tracer_on_left_bot]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = 'left_to_3'
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[remove_tracer_bot]
type = DirichletBC
variable = tracer
value = 0
boundary = 'right_to_3'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer_bot]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 11
sort_by = x
variable = tracer
[]
[tracer_top]
type = LineValueSampler
start_point = '0 1 0'
end_point = '1 1 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/fracture_app_dirac.i)
# A fracture, which is a 1D line of elements, is embedded in a matrix, which is a 2D surface of elements.
#
# The heat equation governs temperature in the fracture and matrix system, and heat energy is transferred between the two using a MultiApp approach
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 20
xmin = 0
xmax = 10.0
[]
[]
[Variables]
[frac_T]
[]
[]
[BCs]
[frac_T]
type = DirichletBC
variable = frac_T
boundary = left
value = 1
[]
[]
[AuxVariables]
[transferred_matrix_T]
[]
[joules_per_s]
[]
[]
[Kernels]
[dot_frac_T]
type = CoefTimeDerivative
Coefficient = 1E-2
variable = frac_T
[]
[fracture_diffusion]
type = AnisotropicDiffusion
variable = frac_T
tensor_coeff = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[toMatrix]
type = PorousFlowHeatMassTransfer
variable = frac_T
v = transferred_matrix_T
transfer_coefficient = 0.02
save_in = joules_per_s
[]
[]
[VectorPostprocessors]
[heat_transfer_rate]
type = NodalValueSampler
outputs = none
sort_by = id
variable = joules_per_s
[]
[frac_T]
type = NodalValueSampler
outputs = frac_T
sort_by = x
variable = frac_T
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
nl_rel_tol = 1e-8
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
[]
[Outputs]
print_linear_residuals = false
exodus = false
[frac_T]
type = CSV
execute_on = final
[]
[]
(modules/tensor_mechanics/test/tests/shell/static/plate_bending2.i)
# Shell element verification test from Abaqus verification manual 1.3.13
# A 40 m x 20 m x 1 m plate that has E = 1000 Pa and Poisson's ratio = 0.3
# is subjected to the following boundary/loading conditions. A single shell
# element is used to model the plate.
# disp_z = 0 at vertices A (0, 0), B (40, 0) and D (20, 0).
# disp_x and disp_y are zero at all four vertices.
# F_z = -2.0 N at vertex C (40, 20).
# M_x = 20.0 Nm at vertices A and B (bottom boundary)
# M_x = -20.0 Nm at vertices C and D (top boundary)
# M_y = 10.0 Nm at vertices B and C (right boundary)
# M_y = -10.0 Nm at vertices A and D (left boundary)
# The disp_z at vertex C is -12.54 m using S4 elements in Abaqus.
# The solution obtained using Moose is -12.519 m with a relative error
# of 0.16%.
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 1
xmin = 0.0
xmax = 40.0
ymin = 0.0
ymax = 20.0
[../]
[./c_node]
type = ExtraNodesetGenerator
input = gmg
new_boundary = 100
coord = '40.0 20.0'
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./simply_support_x]
type = DirichletBC
variable = disp_x
boundary = 'right top bottom left'
value = 0.0
[../]
[./simply_support_y]
type = DirichletBC
variable = disp_y
boundary = 'right top bottom left'
value = 0.0
[../]
[./simply_support_z]
type = DirichletBC
variable = disp_z
boundary = 'bottom left'
value = 0.0
[../]
[]
[NodalKernels]
[./force_C]
type = ConstantRate
variable = disp_z
boundary = 100
rate = -2.0
[../]
[./Mx_AB]
type = ConstantRate
variable = rot_x
boundary = bottom
rate = 20.0
[../]
[./Mx_CD]
type = ConstantRate
variable = rot_x
boundary = top
rate = -20.0
[../]
[./My_BC]
type = ConstantRate
variable = rot_y
boundary = right
rate = 10.0
[../]
[./My_AD]
type = ConstantRate
variable = rot_y
boundary = left
rate = -10.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
#nl_max_its = 2
nl_rel_tol = 1e-10
nl_abs_tol = 6e-6
dt = 1.0
dtmin = 1.0
end_time = 3
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 1e3
poissons_ratio = 0.3
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 1.0
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z2]
type = PointValue
point = '40.0 20.0 0.0'
variable = disp_z
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_mesh_function_transfer/tosub_target_displaced.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '.1 .1 0 0.6 0.6 0 0.6 0.1 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = tosub_sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
source_variable = u
variable = transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
displaced_target_mesh = true
[../]
[./elemental_to_sub]
source_variable = u
variable = elemental_transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
displaced_target_mesh = true
[../]
[]
(test/tests/mesh_modifiers/add_side_sets/cylinder_normals.i)
[Mesh]
[file]
type = FileMeshGenerator
file = cylinder.e
[]
# Mesh Modifiers
[add_side_sets]
type = SideSetsFromNormalsGenerator
input = file
normals = '0 0 1
0 1 0
0 0 -1'
# This parameter allows the normal
# to vary slightly from adjacent element
# to element so that a sidset can follow
# a curve. It is false by default.
fixed_normal = false
new_boundary = 'top side bottom'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = top
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/invalid_aux_coupling_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./nodal_aux]
order = FIRST
family = LAGRANGE
[../]
[./elemental_aux]
# order = FIRST
# family = LAGRANGE
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nodal]
type = CoupledAux
variable = nodal_aux
coupled = elemental_aux
[../]
[./elemental]
type = ConstantAux
variable = elemental_aux
value = 6
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/controls/tag_based_naming_access/object_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
control_tags = 'tag'
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag::*/point'
execute_on = 'initial'
[../]
[]
(test/tests/materials/output/output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
outputs = all
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/cavity_pressure/additional_volume.i)
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * / (V_cavity / T_cavity + V_add / T_add)
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T_cavity is the temperature in the cavity
# T_add is the temperature of the additional volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7. An additional volume of 2 is added.
#
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V_cavity0 + gamma * t + V_add
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V_cavity0 = 7
# V_add = 2
# T_add = 100
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# An additional volume of 2 with a temperature of 100.0 is included.
#
# So, n0 = p0 * (V_cavity / T_cavity + V_add / T_add) / R
# = 100 * (7 / 240.544439 + 2 / 100) / 8.314472
# = 0.59054
#
# The parameters combined at t = 1 gives p = 249.647.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.59054'
[../]
[./additional_volume]
type = ConstantFunction
value = 2
[../]
[./temperature_of_additional_volume]
type = ConstantFunction
value = 100
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
additional_volumes = volume1
temperature_of_additional_volumes = temperature1
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
snesmf_reuse_base = false
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[./volume1]
type = FunctionValuePostprocessor
function = additional_volume
execute_on = 'initial linear'
[../]
[./temperature1]
type = FunctionValuePostprocessor
function = temperature_of_additional_volume
execute_on = 'initial linear'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/relaxation/bad_relax_factor_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
initial_condition = 1
[../]
[./inverse_v]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = inverse_v
[../]
[]
[AuxKernels]
[./invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
relaxation_factor = 2.0
transformed_variables = u
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = picard_relaxed_sub.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/heat_conduction/test/tests/postprocessors/convective_ht_side_integral.i)
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '0.45 0.1 0.45'
ix = '5 1 5'
dy = '0.45 0.1 0.45'
iy = '5 1 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[../]
[./add_iss_1]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 'interface'
input = cartesian
[../]
[./block_deleter]
type = BlockDeletionGenerator
block = 2
input = add_iss_1
[../]
[]
[Variables]
[./temperature]
initial_condition = 300
[../]
[]
[AuxVariables]
[./channel_T]
family = MONOMIAL
order = CONSTANT
initial_condition = 400
[../]
[./channel_Hw]
family = MONOMIAL
order = CONSTANT
initial_condition = 1000
[../]
[]
[Kernels]
[./graphite_diffusion]
type = HeatConduction
variable = temperature
diffusion_coefficient = 'k_s'
[../]
[]
[BCs]
## boundary conditions for the thm channels in the reflector
[./channel_heat_transfer]
type = CoupledConvectiveHeatFluxBC
variable = temperature
htc = channel_Hw
T_infinity = channel_T
boundary = 'interface'
[../]
# hot boundary on the left
[./left]
type = DirichletBC
variable = temperature
value = 1000
boundary = 'left'
[../]
# cool boundary on the right
[./right]
type = DirichletBC
variable = temperature
value = 300
boundary = 'right'
[../]
[]
[Materials]
[./thermal]
type = GenericConstantMaterial
prop_names = 'k_s'
prop_values = '12'
[../]
[./htc_material]
type = GenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1000'
[../]
[./tfluid_mat]
type = PiecewiseLinearInterpolationMaterial
property = tfluid_mat
variable = channel_T
x = '400 500'
y = '400 500'
[../]
[]
[Postprocessors]
[./Qw1]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc_var = channel_Hw
T_solid = temperature
boundary = interface
[../]
[./Qw2]
type = ConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[./Qw3]
type = ConvectiveHeatTransferSideIntegral
T_fluid = tfluid_mat
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/orthotropic_plasticity/orthotropic.i)
# UserObject Orthotropic test, with constant hardening.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_xz'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 300
[../]
[./Orthotropic]
type = TensorMechanicsPlasticOrthotropic
b = -0.2
c1 = '1 1 1 1 1 1'
c2 = '1 1 1 1 1 1'
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1e-9
plastic_models = Orthotropic
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
(tutorials/tutorial01_app_development/step05_kernel_object/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/mesh_generation/disc_sector.i)
# Generates a sector of a Disc Mesh between angle=Pi/4 and angle=3Pi/4
# Radius of outside circle=5
# Solves the diffusion equation with u=-5 at origin, and u=0 on outside
# as well as u=-5+r at angle=Pi/4 and u=-5+r^4/125 at angle=3Pi/4
[Mesh]
type = AnnularMesh
nr = 10
nt = 12
rmin = 0
rmax = 5
dmin = 45
dmax = 135
growth_r = 1.3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./inner]
type = DirichletBC
variable = u
value = -5.0
boundary = rmin
[../]
[./outer]
type = FunctionDirichletBC
variable = u
function = 0
boundary = rmax
[../]
[./tmin]
type = FunctionDirichletBC
variable = u
function = '-5.0+sqrt(x*x + y*y)'
boundary = dmin
[../]
[./tmax]
type = FunctionDirichletBC
variable = u
function = '-5.0+pow(x*x + y*y, 2)/125'
boundary = dmax
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step03_coupling/01_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
f_name = D
args = 'vt'
function = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '01_sub.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/2d-strain.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
constraint_types = 'strain strain strain strain'
ndim = 2
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '2d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0'
fixed_normal = true
new_boundary = 'left right bottom top'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[hvar]
family = SCALAR
order = FOURTH
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'strain11 strain22 strain21 strain12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[strain11]
type = ParsedFunction
value = '4.0e-1*t'
[]
[strain22]
type = ParsedFunction
value = '-2.0e-1*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-1*t'
[]
[strain21]
type = ParsedFunction
value = '-1.5e-1*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y'
[]
[y]
variable = disp_y
auto_direction = 'x y'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix1"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix1"
variable = disp_y
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix2"
variable = disp_y
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_small_strain_y.i)
# Test for small strain Euler beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poisson's ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 5.78e-2 m
# Using 10 elements to discretize the beam element, the FEM solution is 5.766e-2 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# References:
# Prathap and Bhashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
# Note that the force is scaled by 1e-4 compared to the reference problem.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/jeffery_hamel/wedge_dirichlet.i)
# This input file tests whether we can converge to the semi-analytical
# solution for flow in a 2D wedge.
[GlobalParams]
gravity = '0 0 0'
# Params used by the WedgeFunction for computing the exact solution.
# The value of K is only required for comparing the pressure to the
# exact solution, and is computed by the associated jeffery_hamel.py
# script.
alpha_degrees = 15
Re = 30
K = -9.78221333616
f = f_theta
[]
[Mesh]
[file]
type = FileMeshGenerator
# file = wedge_4x6.e
file = wedge_8x12.e
# file = wedge_16x24.e
# file = wedge_32x48.e
# file = wedge_64x96.e
[]
[./corner_node]
# Pin is on the centerline of the channel on the left-hand side of
# the domain at r=1. If you change the domain, you will need to
# update this pin location for the pressure exact solution to
# work.
type = ExtraNodesetGenerator
new_boundary = pinned_node
coord = '1 0'
input = file
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[BCs]
[./vel_x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'inlet outlet'
function = 'vel_x_exact'
[../]
[./vel_y_inlet]
type = FunctionDirichletBC
variable = vel_y
boundary = 'inlet outlet'
function = 'vel_y_exact'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
num_steps = 5
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-13
nl_abs_tol = 1e-11
nl_max_its = 10
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
[]
[Functions]
[./f_theta]
# Non-dimensional solution values f(eta), 0 <= eta <= 1 for
# alpha=15 deg, Re=30. Note: this introduces an input file
# ordering dependency: this Function must appear *before* the two
# functions below which use it since apparently proper dependency
# resolution is not done in this scenario.
type = PiecewiseLinear
data_file = 'f.csv'
format = 'columns'
[../]
[./vel_x_exact]
type = WedgeFunction
var_num = 0
mu = 1
rho = 1
[../]
[./vel_y_exact]
type = WedgeFunction
var_num = 1
mu = 1
rho = 1
[../]
[./p_exact]
type = WedgeFunction
var_num = 2
mu = 1
rho = 1
[../]
[]
[Postprocessors]
[./vel_x_L2_error]
type = ElementL2Error
variable = vel_x
function = vel_x_exact
execute_on = 'initial timestep_end'
[../]
[./vel_y_L2_error]
type = ElementL2Error
variable = vel_y
function = vel_y_exact
execute_on = 'initial timestep_end'
[../]
[./p_L2_error]
type = ElementL2Error
variable = p
function = p_exact
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/vectorpostprocessors/1d_line_sampler/1d_line_sampler.i)
# Tests the ability of a line sampler to correctly sample a coincident line. In
# 1-D, it was found that sometimes only the first few elements would be found,
# due to floating point precision error in equality tests for the points. This
# test uses a mesh configuration for which this has occurred and ensures that
# the output CSV file contains all points for the LineMaterialRealSampler vector
# postprocessor.
my_xmax = 1.2
[Mesh]
type = GeneratedMesh
parallel_type = replicated # Until RayTracing.C is fixed
dim = 1
nx = 10
xmin = 0
xmax = ${my_xmax}
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Materials]
[./my_mat]
type = GenericConstantMaterial
prop_names = 'my_prop'
prop_values = 5
[../]
[]
[VectorPostprocessors]
[./my_vpp]
type = LineMaterialRealSampler
property = my_prop
start = '0 0 0'
end = '${my_xmax} 0 0'
sort_by = x
[../]
[]
[Outputs]
[./out]
type = CSV
execute_vector_postprocessors_on = 'timestep_end'
show = 'my_vpp'
precision = 5
[../]
[]
(test/tests/adaptivity/cycles_per_step/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/finite_strain_patch.i)
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[Mesh]
# Comment
# Mesh
file = patch_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
# Functions
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[]
[Variables]
# Variables
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
# AuxVariables
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
# AuxKernels
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[]
[BCs]
# BCs
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = '1 2 3 4 5 6 7'
C_ijkl = '1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = '1 2 3 4 5 6 7'
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3 4 5 6 7'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
petsc_options_iname = -pc_type
petsc_options_value = lu
end_time = 2.0
[]
[Outputs]
exodus = true
[] # Output
(test/tests/geomsearch/quadrature_penetration_locator/1d_quadrature_penetration.i)
[Mesh]
type = FileMesh
file = 1d_penetration.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./penetration]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/actions/basicthm_hm.i)
# PorousFlowBasicTHM action with coupling_type = HydroMechanical
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 3
xmax = 10
ymax = 3
[]
[aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 1 0'
top_right = '10 2 0'
[]
[injection_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'injection_area'
normal = '-1 0 0'
input = 'aquifer'
[]
[outflow_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'outflow_area'
normal = '1 0 0'
input = 'injection_area'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caprock aquifer'
input = 'outflow_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y'
biot_coefficient = 1.0
[]
[Variables]
[porepressure]
initial_condition = 1e6
[]
[disp_x]
scaling = 1e-10
[]
[disp_y]
scaling = 1e-10
[]
[]
[AuxVariables]
[temperature]
initial_condition = 293
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = HydroMechanical
gravity = '0 0 0'
fp = simple_fluid
use_displaced_mesh = false
add_stress_aux = false
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1.5e6
boundary = injection_area
[]
[constant_outflow_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = outflow_area
pt_vals = '0 1e9'
multipliers = '0 1e9'
flux_function = 1e-6
PT_shift = 1e6
[]
[top_bottom]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'top bottom'
[]
[right]
type = DirichletBC
variable = disp_x
value = 0
boundary = right
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 2e-7
fluid_bulk_modulus = 1e7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[permeability_caprock]
type = PorousFlowPermeabilityConst
block = caprock
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5e9
poissons_ratio = 0.0
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e4
dt = 1e3
nl_abs_tol = 1e-14
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic_anisotropy/3d_bar_orthotropic.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 10
nx = 6
ny = 2
nz = 2
elem_type = HEX8
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '2 0 0'
input = corner
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_xz'
[]
[]
[Materials]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = orthotropic
C_ijkl = '2.0e5 2.0e5 2.0e5 0.71428571e5 0.71428571e5 0.71428571e5 0.4 0.4 0.4 0.4 0.4 0.4' # Isotropic
[]
[]
[BCs]
[fix_corner_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0
[]
[fix_corner_y]
type = DirichletBC
variable = disp_y
boundary = 101
value = 0
[]
[fix_side_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[move_z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[]
[move_y]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 't*1.4'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-12
nl_max_its = 50
l_tol = 1e-4
l_max_its = 50
dt = 0.4
dtmin = 0.4
num_steps = 1
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/constant_vector_postprocessor/constant_vector_postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./constant]
type = ConstantVectorPostprocessor
value = '1.5 2.7'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
input = file
[]
[xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[]
[ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[]
[ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[]
[zmax]
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
input = ymax
[]
[zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[]
[excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
input = excav
new_boundary = roof
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[wc_x]
[]
[wc_y]
[]
[porepressure]
scaling = 1E-5
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[]
[]
[Kernels]
[cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[]
[x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[]
[y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[]
[x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[]
[y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[]
[gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = porepressure
fluid_component = 0
[]
[]
[AuxVariables]
[saturation]
order = CONSTANT
family = MONOMIAL
[]
[darcy_x]
order = CONSTANT
family = MONOMIAL
[]
[darcy_y]
order = CONSTANT
family = MONOMIAL
[]
[darcy_z]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[wc_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zx]
order = CONSTANT
family = MONOMIAL
[]
[stress_zy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[perm_xx]
order = CONSTANT
family = MONOMIAL
[]
[perm_yy]
order = CONSTANT
family = MONOMIAL
[]
[perm_zz]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[]
[darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[]
[darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[]
[darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[]
[perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[]
[perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[]
[mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[]
[mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[]
[wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[]
[wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[]
[mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[]
[mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[]
[wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[]
[wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[]
[no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[]
[no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[]
[fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[]
[roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[]
[roof_bcs]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[]
[]
[Functions]
[ini_pp]
type = ParsedFunction
vars = 'bulk p0 g rho0'
vals = '2E3 0.0 1E-5 1E3'
value = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[]
[ini_xx]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[]
[ini_zz]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[]
[excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '0.5 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[]
[density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '0.5 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[]
[roof_conductance]
type = ParsedFunction
vars = 'end_t ymin ymax maxval minval'
vals = '0.5 0 1000.0 1E7 0'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[]
[mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[]
[mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[]
[mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[]
[mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[]
[mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[]
[wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[]
[wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[]
[wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[]
[permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[]
[permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[]
[elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[]
[elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[]
[strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[]
[stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[]
[wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[]
[undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[]
[undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[]
[min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[]
[min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[]
[min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[]
[max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = perm_zz
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
# petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
# petsc_options_value = ' lu mumps'
# best if you do not have mumps:
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
# best if you do not have mumps or superlu_dist:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.014706
end_time = 0.014706 #0.5
[]
[Outputs]
interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
(test/tests/outputs/intervals/no_intermediate.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
execute_on = 'initial final'
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/correctness/stvenantkirchhoff.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[strain]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[boty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = strain
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 67000.0
lambda = 40000.0
[]
[compute_stress]
type = ComputeStVenantKirchhoffStress
large_kinematics = true
[]
[compute_strain]
type = ComputeLagrangianStrain
large_kinematics = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 5
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.01
dtmin = 0.01
end_time = 0.01
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/problems/eigen_problem/preconditioners/ne_pbp.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diffu]
type = Diffusion
variable = u
[../]
[./difv]
type = Diffusion
variable = v
[../]
[./rhsu]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./rhsv]
type = CoefReaction
variable = v
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./homogeneousu]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./homogeneousv]
type = DirichletBC
variable = v
boundary = '0 1 2 3'
value = 0
[../]
[./eigenu]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./eigenv]
type = EigenDirichletBC
variable = v
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = JFNK
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
[Preconditioning]
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'LU LU'
[../]
[]
(modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d.i)
#This tests the Interaction-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the Interaction-Integrals using options
#to treat it as 3d.
[GlobalParams]
order = FIRST
# order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI InteractionIntegralKII InteractionIntegralKIII'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
radius_inner = '4.0 5.5'
radius_outer = '5.5 7.0'
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
output_q = false
incremental = true
equivalent_k = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_z
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = interaction_integral_3d_out
exodus = true
csv = true
[]
(modules/xfem/test/tests/single_var_constraint_2d/propagating_1field.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/utils/mffd/mffd_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
mffd_type = 'ds'
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2. The gold file is run
# on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[./horizontal_movement]
type = ParsedFunction
value = -0.04*sin(4*t)+0.02
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(test/tests/misc/max_var_n_dofs_per_elem/max_var_n_dofs_per_elem.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./max_dofs]
type = MaxVarNDofsPerElemPP
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_multilevel/fullsolve_multilevel/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
initial_condition = 50
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = u
[]
[source]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = u
boundary = '1'
value = 100
[]
[]
[Postprocessors]
[avg_u]
type = ElementAverageValue
variable = u
execute_on = 'initial linear'
[]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial linear'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
fixed_point_rel_tol = 1E-3
fixed_point_abs_tol = 1.0e-05
fixed_point_max_its = 12
[]
[MultiApps]
[level1-]
type = FullSolveMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub_level1.i
execute_on = 'timestep_end'
# We have to make backups of the full tree in order to do a proper restore for the Picard iteration.
no_backup_and_restore = false
[]
[]
[Transfers]
[u_to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = u
variable = u
to_multi_app = level1-
execute_on = 'timestep_end'
[]
[v_from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = v
variable = v
from_multi_app = level1-
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/mesh/adapt/patch_recovery_test.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 4
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.5
coarsen_fraction = 0.05
# max_h_level = 8
error_estimator = PatchRecoveryErrorEstimator
[../]
[]
[Outputs]
file_base = patch_out
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/3d_1d_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./disp_x_fn]
type = ParsedFunction
value = '-x'
[../]
[./disp_z_fn]
type = ParsedFunction
value = 'x'
[../]
[]
[AuxVariables]
[./sub_app_var]
family = MONOMIAL
order = CONSTANT
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[./disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[../]
[]
[UserObjects]
[./sub_app_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 10
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_01.i)
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFullyUpwindFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc_fu_01
interval = 100000
execute_on = 'initial timestep_end final'
exodus = true
[]
(test/tests/multiapps/picard/picard_adaptive_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
# cutback_factor, growth_factor, optimal_iterations, time_dt and time_t added through CLI args
[../]
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_adaptive_sub.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_plane_strain_finite.i)
#
# This test checks elastic stress calculations with mechanical and thermal
# strain using finite strain formulation. Young's modulus is 3600, and Poisson's ratio is 0.2.
# The axisymmetric, plane strain 1D mesh is pulled with displacement of 2e-3.
# Thus, the strain is [log(1+1e-3)=9.995e-4, 0, log(1+1e-3)=9.995e-4] (xx, yy, zz). This gives stress of
# [4.9975, 1.999, 4.9975]. After a temperature increase of 100 with alpha of
# 1e-6, the stress becomes [4.3975, 1.399, 4.3975].
#
[GlobalParams]
displacements = disp_x
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-3'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./ps]
planar_formulation = PLANE_STRAIN
strain = FINITE
generate_output = 'strain_xx strain_zz stress_xx stress_yy stress_zz'
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/03_master_subcycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '03_sub_subcycle.i'
sub_cycling = true
# output_sub_cycles = true
[]
[]
(test/tests/mesh/mesh_generation/annulus_sector.i)
# Generates a sector of an Annular Mesh between angle=Pi/4 and angle=3Pi/4
# Radius of inside circle=1
# Radius of outside circle=5
# Solves the diffusion equation with
# u=0 on inside
# u=log(5) on outside
# u=log(r) at angle=Pi/4 and angle=3Pi/4
[Mesh]
type = AnnularMesh
nr = 10
nt = 12
rmin = 1
rmax = 5
dmin = 45
dmax = 135
growth_r = 1.3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./inner]
type = DirichletBC
variable = u
value = 0.0
boundary = rmin
[../]
[./outer]
type = FunctionDirichletBC
variable = u
function = log(5)
boundary = rmax
[../]
[./min_angle]
type = FunctionDirichletBC
variable = u
function = 'log(sqrt(x*x + y*y))'
boundary = 'dmin dmax'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/oversample/ex02_oversample.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmax = 0
elem_type = QUAD9
[]
[Variables]
[./diffused]
order = SECOND
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./foo]
variable = diffused
type = ConstantPointSource
value = 1
point = '0.3 0.3 0.0'
[../]
[]
[BCs]
active = 'all'
[./all]
type = DirichletBC
variable = diffused
boundary = 'bottom left right top'
value = 0.0
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./os2]
type = Exodus
refinements = 2
[../]
[./os4]
type = Exodus
refinements = 4
[../]
[]
(test/tests/misc/check_error/function_file_test14.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_rows_more_data.csv # will generate an error because of more data lines than 2
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_4/brick4_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x59]
type = NodalVariableValue
nodeid = 58
variable = disp_x
[../]
[./disp_x64]
type = NodalVariableValue
nodeid = 63
variable = disp_x
[../]
[./disp_y59]
type = NodalVariableValue
nodeid = 58
variable = disp_y
[../]
[./disp_y64]
type = NodalVariableValue
nodeid = 63
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x59 disp_y59 disp_x64 disp_y64 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/combined/tutorials/introduction/thermal_mechanical_contact/thermomech_cont_step02.i)
#
# Three shell thermo mechanical contact
# https://mooseframework.inl.gov/modules/combined/tutorials/introduction/step02.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
block = '0 1 2'
[]
[Problem]
# switch to an axisymmetric coordinate system
coord_type = RZ
[]
[Mesh]
# inner cylinder
[inner]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 40
xmax = 1
ymin = -1.75
ymax = 1.75
boundary_name_prefix = inner
[]
# middle shell with subdomain ID 1
[middle_elements]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 40
xmin = 1.1
xmax = 2.1
ymin = -2.5
ymax = 2.5
boundary_name_prefix = middle
boundary_id_offset = 4
[]
[middle]
type = SubdomainIDGenerator
input = middle_elements
subdomain_id = 1
[]
# outer shell with subdomain ID 2
[outer_elements]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 48
xmin = 2.2
xmax = 3.2
ymin = -3
ymax = 3
boundary_name_prefix = outer
boundary_id_offset = 8
[]
[outer]
type = SubdomainIDGenerator
input = outer_elements
subdomain_id = 2
[]
[collect_meshes]
type = MeshCollectionGenerator
inputs = 'inner middle outer'
[]
# add set of 3 nodes to remove rigid body modes for y-translation in each block
[pin]
type = ExtraNodesetGenerator
input = collect_meshes
new_boundary = pin
coord = '0 0 0; 1.6 0 0; 2.7 0 0'
[]
patch_update_strategy = iteration
[]
[Variables]
# temperature field variable (first order Lagrange by default)
[T]
[]
# temperature lagrange multipliers
[Tlm1]
block = 'inner_gap_secondary_subdomain'
[]
[Tlm2]
block = 'outer_gap_secondary_subdomain'
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = T
[]
[dTdt]
type = HeatConductionTimeDerivative
variable = T
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
eigenstrain_names = thermal
generate_output = 'vonmises_stress stress_xx strain_xx stress_yy strain_yy'
volumetric_locking_correction = true
temperature = T
[]
[]
[Contact]
[inner_gap]
primary = middle_left
secondary = inner_right
model = frictionless
formulation = mortar
c_normal = 1e+0
[]
[outer_gap]
primary = outer_left
secondary = middle_right
model = frictionless
formulation = mortar
c_normal = 1e+0
[]
[]
[Constraints]
# thermal contact constraint
[Tlm1]
type = GapConductanceConstraint
variable = Tlm1
secondary_variable = T
use_displaced_mesh = true
k = 1e-1
primary_boundary = middle_left
primary_subdomain = inner_gap_secondary_subdomain
secondary_boundary = inner_right
secondary_subdomain = inner_gap_primary_subdomain
[]
[Tlm2]
type = GapConductanceConstraint
variable = Tlm2
secondary_variable = T
use_displaced_mesh = true
k = 1e-1
primary_boundary = outer_left
primary_subdomain = outer_gap_secondary_subdomain
secondary_boundary = middle_right
secondary_subdomain = outer_gap_primary_subdomain
[]
[]
[BCs]
[center_axis_fix]
type = DirichletBC
variable = disp_x
boundary = 'inner_left'
value = 0
[]
[y_translation_fix]
type = DirichletBC
variable = disp_y
boundary = 'pin'
value = 0
[]
[heat_center]
type = FunctionDirichletBC
variable = T
boundary = 'inner_left'
function = t*40
[]
[cool_right]
type = DirichletBC
variable = T
boundary = 'outer_right'
value = 0
[]
[]
[Materials]
[eigen_strain_inner]
type = ComputeThermalExpansionEigenstrain
eigenstrain_name = thermal
temperature = T
thermal_expansion_coeff = 1e-3
stress_free_temperature = 0
block = 0
[]
[eigen_strain_middle]
type = ComputeThermalExpansionEigenstrain
eigenstrain_name = thermal
temperature = T
thermal_expansion_coeff = 2e-4
stress_free_temperature = 0
block = 1
[]
[eigen_strain_outer]
type = ComputeThermalExpansionEigenstrain
eigenstrain_name = thermal
temperature = T
thermal_expansion_coeff = 1e-5
stress_free_temperature = 0
block = 2
[]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
# thermal properties
[thermal_conductivity_0]
type = HeatConductionMaterial
thermal_conductivity = 50
specific_heat = 1
block = 0
[]
[thermal_conductivity_1]
type = HeatConductionMaterial
thermal_conductivity = 5
specific_heat = 1
block = 1
[]
[thermal_conductivity_2]
type = HeatConductionMaterial
thermal_conductivity = 1
specific_heat = 1
block = 2
[]
[density]
type = Density
density = 1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
# [Debug]
# show_var_residual_norms = true
# []
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu nonzero '
snesmf_reuse_base = false
end_time = 7
dt = 0.05
nl_rel_tol = 1e-08
nl_abs_tol = 1e-50
[Predictor]
type = SimplePredictor
scale = 0.5
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(modules/combined/test/tests/linear_elasticity/tensor.i)
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./diffused]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[AuxVariables]
[./C11]
order = CONSTANT
family = MONOMIAL
[../]
[./C12]
order = CONSTANT
family = MONOMIAL
[../]
[./C13]
order = CONSTANT
family = MONOMIAL
[../]
[./C14]
order = CONSTANT
family = MONOMIAL
[../]
[./C15]
order = CONSTANT
family = MONOMIAL
[../]
[./C16]
order = CONSTANT
family = MONOMIAL
[../]
[./C22]
order = CONSTANT
family = MONOMIAL
[../]
[./C23]
order = CONSTANT
family = MONOMIAL
[../]
[./C24]
order = CONSTANT
family = MONOMIAL
[../]
[./C25]
order = CONSTANT
family = MONOMIAL
[../]
[./C26]
order = CONSTANT
family = MONOMIAL
[../]
[./C33]
order = CONSTANT
family = MONOMIAL
[../]
[./C34]
order = CONSTANT
family = MONOMIAL
[../]
[./C35]
order = CONSTANT
family = MONOMIAL
[../]
[./C36]
order = CONSTANT
family = MONOMIAL
[../]
[./C44]
order = CONSTANT
family = MONOMIAL
[../]
[./C45]
order = CONSTANT
family = MONOMIAL
[../]
[./C46]
order = CONSTANT
family = MONOMIAL
[../]
[./C55]
order = CONSTANT
family = MONOMIAL
[../]
[./C56]
order = CONSTANT
family = MONOMIAL
[../]
[./C66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[AuxKernels]
[./matl_C11]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C11
[../]
[./matl_C12]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C12
[../]
[./matl_C13]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C13
[../]
[./matl_C14]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 2
variable = C14
[../]
[./matl_C15]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 2
variable = C15
[../]
[./matl_C16]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 1
variable = C16
[../]
[./matl_C22]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
variable = C22
[../]
[./matl_C23]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
variable = C23
[../]
[./matl_C24]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 2
variable = C24
[../]
[./matl_C25]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 2
variable = C25
[../]
[./matl_C26]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 1
variable = C26
[../]
[./matl_C33]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
variable = C33
[../]
[./matl_C34]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 1
index_l = 2
variable = C34
[../]
[./matl_C35]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C35
[../]
[./matl_C36]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 1
variable = C36
[../]
[./matl_C44]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
variable = C44
[../]
[./matl_C45]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 2
variable = C45
[../]
[./matl_C46]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 1
variable = C46
[../]
[./matl_C55]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 2
variable = C55
[../]
[./matl_C56]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 1
variable = C56
[../]
[./matl_C66]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
variable = C66
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric21
C_ijkl ='1111 1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = '2'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = '0 2'
value = 0.5
[../]
[./disp_x_BC2]
type = DirichletBC
variable = disp_x
boundary = '1 3'
value = 0.01
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = '0 2'
value = 0.8
[../]
[./disp_y_BC2]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.02
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_method_011orientation.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./lagrangian_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./lagrangian_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./lagrangian_strain_zz]
type = RankTwoAux
variable = lagrangian_strain_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./lagrangian_strain_yy]
type = RankTwoAux
rank_two_tensor = total_lagrangian_strain
variable = lagrangian_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = slip_resistance
index = 0
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_increment
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
euler_angle_1 = 120.0
euler_angle_2 = 125.264
euler_angle_3 = 45.0
[../]
[./stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[../]
[./trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./lagrangian_strain_yy]
type = ElementAverageValue
variable = lagrangian_strain_yy
[../]
[./lagrangian_strain_zz]
type = ElementAverageValue
variable = lagrangian_strain_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.05
dtmin = 0.01
dtmax = 10.0
num_steps = 10
[]
[Outputs]
csv = true
[]
(test/tests/outputs/postprocessor/postprocessor_console.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./var1]
type = NumVars
system = 'NL'
[../]
[./var2]
type = NumVars
system = 'NL'
outputs = 'console'
execute_on = 'timestep_begin timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden4.i)
# apply repeated stretches to observe cohesion hardening, with cubic
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[]
[topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[]
[]
[AuxVariables]
[wps_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningCubic
value_0 = 1E3
value_residual = 2E3
internal_limit = 0.00007
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/single_pnt_2d/single_point_2d_contact_line_search.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = single_point_2d.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./appl_disp]
type = PiecewiseLinear
x = '0 0.001 0.101'
y = '0 0.0 -0.10'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./incslip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./incslip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = appl_disp
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 4
value = -0.002001
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputePlaneFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputePlaneFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Postprocessors]
[./disp_x]
type = NodalVariableValue
nodeid = 5
variable = disp_x
[../]
[./disp_y]
type = NodalVariableValue
nodeid = 5
variable = disp_y
[../]
[./inc_slip_x]
type = NodalVariableValue
nodeid = 5
variable = inc_slip_x
[../]
[./inc_slip_y]
type = NodalVariableValue
nodeid = 5
variable = inc_slip_y
[../]
[./accum_slip_x]
type = NodalVariableValue
nodeid = 5
variable = accum_slip_x
[../]
[./accum_slip_y]
type = NodalVariableValue
nodeid = 5
variable = accum_slip_y
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -mat_superlu_dist_iterrefine'
petsc_options_value = 'lu superlu_dist 1'
line_search = 'contact'
contact_line_search_allowed_lambda_cuts = 0
contact_line_search_ltol = 0.5
l_max_its = 15
nl_max_its = 10
dt = 0.001
end_time = 0.002
num_steps = 10000
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
dtmin = 0.001
l_tol = 1e-3
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
csv = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = frictionless
formulation = kinematic
penalty = 1e12
normalize_penalty = true
tangential_tolerance = 1e-3
[../]
[]
(modules/contact/test/tests/nodal_area/nodal_area_Hex20_3.i)
[Mesh]
file = nodal_area_Hex20.e
[]
[GlobalParams]
order = SECOND
displacements = 'displ_x displ_y displ_z'
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0 1'
y = '0 20e-6'
[../]
[]
[Variables]
[./displ_x]
[../]
[./displ_y]
[../]
[./displ_z]
[../]
[]
[AuxVariables]
[./react_x]
[../]
[./react_y]
[../]
[./react_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
incremental = true
save_in = 'react_x react_y react_z'
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[../]
[]
[BCs]
[./move_right]
type = FunctionDirichletBC
boundary = '1'
variable = displ_x
function = disp
[../]
[./fixed_x]
type = DirichletBC
boundary = '3 4'
variable = displ_x
value = 0
[../]
[./fixed_y]
type = DirichletBC
boundary = 10
variable = displ_y
value = 0
[../]
[./fixed_z]
type = DirichletBC
boundary = 11
variable = displ_z
value = 0
[../]
[]
[Contact]
[./dummy_name]
primary = 3
secondary = 2
formulation = penalty
penalty = 1e9
tangential_tolerance = 1e-5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-7
l_tol = 1e-4
l_max_its = 40
nl_max_its = 10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Postprocessors]
[./react_x]
type = NodalSum
variable = react_x
boundary = 1
[../]
[./total_area]
type = NodalSum
variable = nodal_area_dummy_name
boundary = 2
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/verification.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temperature]
[../]
[]
[AuxKernels]
[./temp_aux]
type = FunctionAux
variable = temperature
function = temp_fcn
execute_on = 'initial timestep_begin'
[../]
[]
[Functions]
[./rhom_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 1
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhoi_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 2
format = columns
xy_in_file_only = false
direction = right
[../]
[./vmJ2_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 3
format = columns
xy_in_file_only = false
direction = right
[../]
[./evm_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 4
format = columns
xy_in_file_only = false
direction = right
[../]
[./temp_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 5
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhom_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 7
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhoi_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 8
format = columns
xy_in_file_only = false
direction = right
[../]
[./creep_rate_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 10
format = columns
xy_in_file_only = false
direction = right
[../]
[./rhom_diff_fcn]
type = ParsedFunction
vars = 'rhom_soln rhom'
vals = 'rhom_soln rhom'
value = 'abs(rhom_soln - rhom) / rhom_soln'
[../]
[./rhoi_diff_fcn]
type = ParsedFunction
vars = 'rhoi_soln rhoi'
vals = 'rhoi_soln rhoi'
value = 'abs(rhoi_soln - rhoi) / rhoi_soln'
[../]
[./creep_rate_diff_fcn]
type = ParsedFunction
vars = 'creep_rate_soln creep_rate'
vals = 'creep_rate_soln creep_rate'
value = 'abs(creep_rate_soln - creep_rate) / creep_rate_soln'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[../]
[]
[BCs]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./pressure_x]
type = Pressure
variable = disp_x
boundary = right
function = vmJ2_fcn
factor = 0.5e6
[../]
[./pressure_y]
type = Pressure
variable = disp_y
boundary = top
function = vmJ2_fcn
factor = -0.5e6
[../]
[./pressure_z]
type = Pressure
variable = disp_z
boundary = front
function = vmJ2_fcn
factor = -0.5e6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
effective_inelastic_strain_name = effective_creep_strain
internal_solve_full_iteration_history = true
outputs = all
wall_dislocation_density_forcing_function = rhoi_fcn
cell_dislocation_density_forcing_function = rhom_fcn
old_creep_strain_forcing_function = evm_fcn
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_ksp_ew -snes_converged_reason -ksp_converged_reason'# -ksp_error_if_not_converged -snes_error_if_not_converged'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
automatic_scaling = true
compute_scaling_once = false
nl_abs_tol = 1e-10
dt = 1e-3
end_time = 1e-2
[]
[Postprocessors]
[./effective_strain_avg]
type = ElementAverageValue
variable = effective_creep_strain
outputs = console
[../]
[./temperature]
type = ElementAverageValue
variable = temperature
outputs = console
[../]
[./rhom]
type = ElementAverageValue
variable = cell_dislocations
[../]
[./rhoi]
type = ElementAverageValue
variable = wall_dislocations
[../]
[./vonmises_stress]
type = ElementAverageValue
variable = vonmises_stress
outputs = console
[../]
[./creep_rate]
type = ElementAverageValue
variable = creep_rate
[../]
[./rhom_in]
type = FunctionValuePostprocessor
function = rhom_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[../]
[./rhoi_in]
type = FunctionValuePostprocessor
function = rhoi_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[../]
[./vmJ2_in]
type = FunctionValuePostprocessor
function = vmJ2_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[../]
[./rhom_soln]
type = FunctionValuePostprocessor
function = rhom_soln_fcn
outputs = console
[../]
[./rhoi_soln]
type = FunctionValuePostprocessor
function = rhoi_soln_fcn
outputs = console
[../]
[./creep_rate_soln]
type = FunctionValuePostprocessor
function = creep_rate_soln_fcn
outputs = console
[../]
[./rhom_diff]
type = FunctionValuePostprocessor
function = rhom_diff_fcn
outputs = console
[../]
[./rhoi_diff]
type = FunctionValuePostprocessor
function = rhoi_diff_fcn
outputs = console
[../]
[./creep_rate_diff]
type = FunctionValuePostprocessor
function = creep_rate_diff_fcn
outputs = console
[../]
[./rhom_max_diff]
type = TimeExtremeValue
postprocessor = rhom_diff
outputs = console
[../]
[./rhoi_max_diff]
type = TimeExtremeValue
postprocessor = rhoi_diff
outputs = console
[../]
[./creep_rate_max_diff]
type = TimeExtremeValue
postprocessor = creep_rate_diff
outputs = console
[../]
[]
[Outputs]
csv = true
file_base = 'verification_1e-3_out'
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_rspherical.i)
#
# 1-D spherical Gap Heat Transfer Test
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two "blocks" with a mesh biased toward the gap
# between them. Each block is unit length. The gap between them is one
# unit in length.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far left boundary
# is ramped from 100 to 200 over one time unit, and then held fixed for an additional
# time unit. The temperature of the far right boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks, or spheres in the case of RSPHERICAL.:
#
# Flux = (T_left - T_right) * (gapK/(r^2*((1/r1)-(1/r2))))
#
# For gapK = 1 (default value)
#
# The area is taken as the area of the secondary (inner) surface:
#
# Area = 4 * pi * 1 * 1
#
# The integrated heat flux across the gap at time 2 is then:
#
# 4*pi*k*delta_T/((1/r1)-(1/r2))
# 4*pi*1*100/((1/1) - (1/2)) = 2513.3 watts
#
# For comparison, see results from the flux post processors.
#
#
[Problem]
coord_type = RSPHERICAL
[]
[Mesh]
file = gap_heat_transfer_htonly_rspherical.e
construct_side_list_from_node_list = true
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_geometry_type = sphere
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1e6
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# I don't know enough about this test to say why it needs such a
# loose nl_abs_tol... after timestep 10 the residual basically can't
# be reduced much beyond the initial residual. The test probably
# needs to be revisited to determine why.
nl_abs_tol = 1e-3
nl_rel_tol = 1e-10
l_tol = 1e-6
l_max_its = 100
line_search = 'none'
nl_max_its = 10
dt = 1e-1
dtmin = 1e-1
end_time = 2.0
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test13.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[../]
[rename]
type = RenameBlockGenerator
input = SubdomainBoundingBox
old_block = 1
new_block = 'my_name'
[]
[./ed0]
type = BlockDeletionGenerator
input = rename
block = 'my_name'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/fileread.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[./uz]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
intvar_read_type = file_input
state_variable_file_name = input_state_variable.txt
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/test_harness/exodiff.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 10 # causes a diff
[../]
[]
[Executioner]
type = Transient
num_steps = 4 # Gold file only has 4 steps
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d.i)
# Pressure pulse in 1D with 1 phase - transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d
print_linear_residuals = false
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_aniso_cleavage_plane.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./c]
family = LAGRANGE
order = FIRST
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[]
[Kernels]
[./ACbulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterfaceCleavageFracture]
type = ACInterfaceCleavageFracture
variable = c
beta_penalty = 1
cleavage_plane_normal = '-0.707 0.707 0.0'
[../]
[./dcdt]
type = TimeDerivative
variable = c
[../]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
preset = true
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
preset = true
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
preset = true
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 5
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmax = 0.3
ymax = 0.3
[]
[AuxVariables]
[power_density]
[]
[]
[Variables]
[temp]
[]
[]
[Kernels]
[heat_conduction]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '1 3'
value = 100
[]
[bc2]
type = NeumannBC
variable = temp
boundary = '0 2'
value = 10.0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 3
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[temp_fuel_avg]
type = ElementAverageValue
variable = temp
block = '0'
execute_on = 'initial timestep_end'
[]
[pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
csv = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1N.i)
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[]
[topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[iter]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[iter_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[iter]
type = PointValue
point = '0 0 0'
variable = iter
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningConstant
value = 1
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensileN
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
normal_vector = '0 0 1'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
ep_plastic_tolerance = 1E-5
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/outputs/xda_xdr/xda_xdr.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
xda = true
xdr = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-nodal-disp.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
secondary = 10
primary = 20
variable = normal_lm
primary_variable = disp_x
disp_y = disp_y
[../]
[./disp_x]
type = NormalNodalMechanicalContact
secondary = 10
primary = 20
variable = disp_x
primary_variable = disp_x
lambda = normal_lm
component = x
[../]
[./disp_y]
type = NormalNodalMechanicalContact
secondary = 10
primary = 20
variable = disp_y
primary_variable = disp_y
lambda = normal_lm
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/patch/small_patch.i)
[Mesh]
[base]
type = FileMeshGenerator
file = 'patch.xda'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right bottom top back front'
points = ' 0 0.5 0.5
1 0.5 0.5
0.5 0.0 0.5
'
' 0.5 1.0 0.5
0.5 0.5 0.0
0.5 0.5 1.0'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[front]
type = DirichletBC
preset = true
variable = disp_z
boundary = front
value = 0.1
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
dtmin = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/recover/recover2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = recover_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/homogenization/anisoLongFiber.i)
#
# Test from:
# Multiple Scale Analysis of Heterogeneous Elastic Structures Using
# Homogenization Theory and Voronoi Cell Finite Element Method
# by S.Ghosh et. al, Int J. Solids Structures, Vol. 32, No. 1,
# pp. 27-62, 1995.
#
# From that paper, elastic constants should be:
# E1111: 136.1
# E2222: 245.8
# E1212: 46.85
# E1122: 36.08
#
# Note: this is for plane stress conditions
#
[Mesh]
file = anisoLongFiber.e
[]
[Variables]
[./dx_xx]
order = FIRST
family = LAGRANGE
[../]
[./dy_xx]
order = FIRST
family = LAGRANGE
[../]
[./dx_yy]
order = FIRST
family = LAGRANGE
[../]
[./dy_yy]
order = FIRST
family = LAGRANGE
[../]
[./dx_xy]
order = FIRST
family = LAGRANGE
[../]
[./dy_xy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./div_x_xx]
type = StressDivergenceTensors
component = 0
variable = dx_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_y_xx]
type = StressDivergenceTensors
component = 1
variable = dy_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_x_yy]
type = StressDivergenceTensors
component = 0
variable = dx_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_y_yy]
type = StressDivergenceTensors
component = 1
variable = dy_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_x_xy]
type = StressDivergenceTensors
component = 0
variable = dx_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./div_y_xy]
type = StressDivergenceTensors
component = 1
variable = dy_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./homo_dx_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xx
component = 0
column = xx
base_name = xx
[../]
[./homo_dy_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xx
component = 1
column = xx
base_name = xx
[../]
[./homo_dx_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_yy
component = 0
column = yy
base_name = yy
[../]
[./homo_dy_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_yy
component = 1
column = yy
base_name = yy
[../]
[./homo_dx_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xy
component = 0
column = xy
base_name = xy
[../]
[./homo_dy_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xy
component = 1
column = xy
base_name = xy
[../]
[]
[BCs]
[./Periodic]
[./top_bottom]
primary = 30
secondary = 40
translation = '0 1 0'
[../]
[./left_right]
primary = 10
secondary = 20
translation = '1 0 0'
[../]
[../]
[./dx_xx_anchor]
type = DirichletBC
variable = dx_xx
boundary = 1
value = 0.0
[../]
[./dy_xx_anchor]
type = DirichletBC
variable = dy_xx
boundary = 1
value = 0.0
[../]
[./dx_yy_anchor]
type = DirichletBC
variable = dx_yy
boundary = 1
value = 0.0
[../]
[./dy_yy_anchor]
type = DirichletBC
variable = dy_yy
boundary = 1
value = 0.0
[../]
[./dx_xy_anchor]
type = DirichletBC
variable = dx_xy
boundary = 1
value = 0.0
[../]
[./dy_xy_anchor]
type = DirichletBC
variable = dy_xy
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./elastic_stress_xx]
type = ComputeLinearElasticStress
base_name = xx
[../]
[./elastic_stress_yy]
type = ComputeLinearElasticStress
base_name = yy
[../]
[./elastic_stress_xy]
type = ComputeLinearElasticStress
base_name = xy
[../]
[./strain_xx]
type = ComputeSmallStrain
displacements = 'dx_xx dy_xx'
base_name = xx
[../]
[./strain_yy]
type = ComputeSmallStrain
displacements = 'dx_yy dy_yy'
base_name = yy
[../]
[./strain_xy]
type = ComputeSmallStrain
displacements = 'dx_xy dy_xy'
base_name = xy
[../]
[./block1]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xx
[../]
[./block2]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = yy
[../]
[./block3]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xy
[../]
[./block4]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xx
[../]
[./block5]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = yy
[../]
[./block6]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xy
[../]
[]
[Postprocessors]
[./E1111]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2222]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = yy
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1122]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2211]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = yy
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1212]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xy
column = xy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter -pc_hypre_boomeramg_grid_sweeps_all -ksp_type -mat_mffd_type'
petsc_options_value = '201 hypre boomeramg 2 2 fgmres ds'
line_search = 'none'
l_tol = 1e-4
l_max_its = 40
nl_max_its = 40
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
end_time = 10.0
num_steps = 1
dt = 10
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/outputs/gmv/gmv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
gmv = true
[]
(test/tests/multiapps/sub_cycling_failure/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5a_steady.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = DirichletBC
variable = temperature
boundary = right
value = 300 # (K)
[]
[]
[Materials]
[steel]
type = ADGenericConstantMaterial
prop_names = thermal_conductivity
prop_values = 18 # K: (W/m*K) from wikipedia @296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation.i)
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass*porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[]
[source]
type = BodyForce
function = 0.1
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 13
density0 = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Functions]
[porosity_analytic]
type = ParsedFunction
value = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
vars = 'biot phi0 pp bulk'
vals = '0.3 0.1 p0 2'
[]
[]
[Postprocessors]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[porosity]
type = PointValue
outputs = 'console csv'
point = '0 0 0'
variable = porosity
[]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[porosity_analytic]
type = FunctionValuePostprocessor
function = porosity_analytic
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_max_it -snes_stol'
petsc_options_value = 'bcgs bjacobi 10000 1E-11'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation
[csv]
type = CSV
[]
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-min-lm-mortar-disp.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
secondary_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = 'min'
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/ics/component_ic/component_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = SCALAR
[../]
[]
[AuxVariables]
[./a]
order = SECOND
family = SCALAR
[../]
[]
[ICs]
[./v_ic]
type = ScalarComponentIC
variable = 'v'
values = '1 2'
[../]
[./a_ic]
type = ScalarComponentIC
variable = 'a'
values = '4 5'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ScalarKernels]
[./ask]
type = AlphaCED
variable = v
value = 100
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./v1]
type = ScalarVariable
variable = v
component = 0
execute_on = 'initial timestep_end'
[../]
[./v2]
type = ScalarVariable
variable = v
component = 1
execute_on = 'initial timestep_end'
[../]
[./a1]
type = ScalarVariable
variable = a
component = 0
execute_on = 'initial timestep_end'
[../]
[./a2]
type = ScalarVariable
variable = a
component = 1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
[./out]
type = Exodus
execute_scalars_on = none
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/multiple_eigenstrains_test.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[temperature]
order = FIRST
family = LAGRANGE
[]
[f1_xx]
order = CONSTANT
family = MONOMIAL
[]
[f1_yy]
order = CONSTANT
family = MONOMIAL
[]
[f1_zz]
order = CONSTANT
family = MONOMIAL
[]
[f2_xx]
order = CONSTANT
family = MONOMIAL
[]
[f2_yy]
order = CONSTANT
family = MONOMIAL
[]
[f2_zz]
order = CONSTANT
family = MONOMIAL
[]
[feig_xx]
order = CONSTANT
family = MONOMIAL
[]
[feig_yy]
order = CONSTANT
family = MONOMIAL
[]
[feig_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[temperature]
type = FunctionAux
variable = temperature
function = '300+400*t' # temperature increases at a constant rate
execute_on = timestep_begin
[]
[f1_xx]
type = RankTwoAux
variable = f1_xx
rank_two_tensor = thermal_deformation_gradient_1
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[f1_yy]
type = RankTwoAux
variable = f1_yy
rank_two_tensor = thermal_deformation_gradient_1
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[f1_zz]
type = RankTwoAux
variable = f1_zz
rank_two_tensor = thermal_deformation_gradient_1
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[f2_xx]
type = RankTwoAux
variable = f2_xx
rank_two_tensor = thermal_deformation_gradient_2
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[f2_yy]
type = RankTwoAux
variable = f2_yy
rank_two_tensor = thermal_deformation_gradient_2
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[f2_zz]
type = RankTwoAux
variable = f2_zz
rank_two_tensor = thermal_deformation_gradient_2
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[feig_xx]
type = RankTwoAux
variable = feig_xx
rank_two_tensor = eigenstrain_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[feig_yy]
type = RankTwoAux
variable = feig_yy
rank_two_tensor = eigenstrain_deformation_gradient
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[feig_zz]
type = RankTwoAux
variable = feig_zz
rank_two_tensor = eigenstrain_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
eigenstrain_names = "thermal_eigenstrain_1 thermal_eigenstrain_2"
tan_mod_type = exact
maximum_substep_iteration = 5
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[thermal_eigenstrain_1]
type = ComputeCrystalPlasticityThermalEigenstrain
eigenstrain_name = thermal_eigenstrain_1
deformation_gradient_name = thermal_deformation_gradient_1
temperature = temperature
thermal_expansion_coefficients = '1e-05 2e-05 3e-05' # thermal expansion coefficients along three directions
[]
[thermal_eigenstrain_2]
type = ComputeCrystalPlasticityThermalEigenstrain
eigenstrain_name = thermal_eigenstrain_2
deformation_gradient_name = thermal_deformation_gradient_2
temperature = temperature
thermal_expansion_coefficients = '2e-05 3e-05 4e-05' # thermal expansion coefficients along three directions
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[f1_xx]
type = ElementAverageValue
variable = f1_xx
[]
[f1_yy]
type = ElementAverageValue
variable = f1_yy
[]
[f1_zz]
type = ElementAverageValue
variable = f1_zz
[]
[f2_xx]
type = ElementAverageValue
variable = f2_xx
[]
[f2_yy]
type = ElementAverageValue
variable = f2_yy
[]
[f2_zz]
type = ElementAverageValue
variable = f2_zz
[]
[feig_xx]
type = ElementAverageValue
variable = feig_xx
[]
[feig_yy]
type = ElementAverageValue
variable = feig_yy
[]
[feig_zz]
type = ElementAverageValue
variable = feig_zz
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.1
dtmin = 1e-4
end_time = 10
[]
[Outputs]
csv = true
[console]
type = Console
max_rows = 5
[]
[]
(test/tests/outputs/checkpoint/checkpoint.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 11
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_3d.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
[]
[]
[Variables/u]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.1
[]
[]
[UserObjects/study]
type = LotsOfRaysRayStudy
ray_kernel_coverage_check = false
vertex_to_vertex = true
centroid_to_vertex = true
centroid_to_centroid = true
execute_on = timestep_end
[]
[RayBCs/kill]
type = KillRayBC
boundary = 'top right bottom left front back'
[]
[Postprocessors]
[total_distance]
type = RayTracingStudyResult
study = study
result = total_distance
execute_on = timestep_end
[]
[total_rays]
type = RayTracingStudyResult
study = study
result = total_rays_started
execute_on = timestep_end
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_steady_action.i)
# Pressure pulse in 1D with 1 phase - steady
# This file employs the PorousFlowFullySaturated Action. For the non-Action version see pressure_pulse_1d.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[]
[PorousFlowFullySaturated]
porepressure = pp
gravity = '0 0 0'
fp = simple_fluid
stabilization = Full
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_steady
print_linear_residuals = false
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_elastic.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./elastic]
type = ComputeFiniteStrainElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-5
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 3e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/aux_scalar_kernels/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
family = SCALAR
[../]
[./aux1]
family = SCALAR
[../]
[]
[Functions]
[./func]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./scalar_aux0]
type = FunctionScalarAux
variable = aux0
function = func
[../]
[./scalar_aux1]
type = FunctionScalarAux
variable = aux1
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = '*/scalar_aux0 */scalar_aux1'
start_time = 0.25
end_time = 0.75
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/controls/time_periods/dirackernels/dirac.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[DiracKernels]
[./point_source]
type = ConstantPointSource
variable = u
value = 1
point = '0.25 0.25'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./point_source]
type = TimePeriod
disable_objects = 'DiracKernel::point_source'
start_time = '0.15'
end_time = '0.35'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/contact/test/tests/mortar_tm/2drz/frictionless_first/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = GenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2_planar.i)
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./dil]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
internal_constraint_tolerance = 1E-9
use_custom_returnMap = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial2_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
interval = 1
[../]
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_12.i)
# unsaturated = true
# gravity = true
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_12
exodus = true
[]
(python/peacock/tests/common/transient.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(test/tests/markers/error_tolerance_marker/error_tolerance_marker_adapt_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
nz = 4
uniform_refine = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./solution]
type = ParsedFunction
value = (exp(x)-1)/(exp(1)-1)
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 1
marker = marker
[./Indicators]
[./error]
type = AnalyticalIndicator
variable = u
function = solution
[../]
[../]
[./Markers]
[./marker]
type = ErrorToleranceMarker
coarsen = 3e-10
indicator = error
refine = 7e-10
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/format/output_test_gnuplot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
gnuplot = true
[]
(modules/contact/test/tests/mortar_tm/2d/frictionless_second/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'small'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeLinearElasticStress
block = 'plank block'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5.0
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/dirackernels/aux_scalar_variable/aux_scalar_variable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./shared]
family = SCALAR
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./source_value]
type = ScalarVariable
variable = shared
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
hide = shared
exodus = true
[]
[DiracKernels]
[./source_0]
variable = u
shared = shared
type = ReportingConstantSource
point = '0.2 0.2'
[../]
[./source_1]
point = '0.8 0.8'
factor = 2
variable = u
shared = shared
type = ReportingConstantSource
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/neohookean_small.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[compute_stress]
type = ComputeNeoHookeanStress
lambda = 4000.0
mu = 6700.0
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 3
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
(modules/contact/examples/2d_indenter/indenter_rz_nodeface_friction.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[Mesh]#Comment
file = indenter_rz_fine.e
displacements = 'disp_x disp_y'
# For NodalVariableValue to work with distributed mesh
allow_renumbering = false
[] # Mesh
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0. 1.0 1.8 2. 3.0'
y = '0. -4.5 -5.4 -5.4 -4.0'
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[saved_x]
[]
[saved_y]
[]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[] # AuxKernels
[BCs]
# Symmetries of the Problem
[./symm_x_indenter]
type = DirichletBC
variable = disp_x
boundary = 5
value = 0.0
[../]
[./symm_x_material]
type = DirichletBC
variable = disp_x
boundary = 9
value = 0.0
[../]
# Material should not fly away
[./material_base_y]
type = DirichletBC
variable = disp_y
boundary = 8
value = 0.0
[../]
# Drive indenter motion
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = disp_y
[../]
[] # BCs
[Contact]
[./dummy_name]
primary = 6
secondary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.5
penalty = 8e6
tangential_tolerance = 0.005
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
secondary = 4
primary = 6
[../]
[]
[Materials]
[./tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e7
poissons_ratio = 0.25
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./tensor_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./power_law_hardening]
type = IsotropicPowerLawHardeningStressUpdate
strength_coefficient = 1e5 #K
strain_hardening_exponent = 0.5 #n
block = '2'
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_hardening'
tangent_operator = elastic
block = '2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu basic NONZERO 1e-15'
line_search = 'none'
automatic_scaling = true
nl_abs_tol = 1.5e-07
nl_rel_tol = 1.5e-07
l_max_its = 40
start_time = 0.0
dt = 0.025
end_time = 3.0
[]
[Postprocessors]
[./maxdisp]
type = NodalVariableValue
nodeid = 39 # 40-1 where 40 is the exodus node number
variable = disp_y
[../]
[resid_y]
type = NodalSum
variable = saved_y
boundary = 1
[]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
perf_graph = true
csv = true
[]
(modules/tensor_mechanics/test/tests/check_error/poissons_ratio.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.6
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/1d-stress.i)
# 1D stress controlled test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = false
constraint_types = 'stress'
ndim = 1
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '1d.exo'
[]
[ss]
type = SideSetsFromPointsGenerator
input = base
points = '-1 0 0
7 0 0'
new_boundary = 'left right'
[]
[]
[Variables]
[disp_x]
[]
[hvar]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'func_stress'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[func_stress]
type = ParsedFunction
value = '1800*t'
[]
[func_strain]
type = ParsedFunction
value = '1.0e-2*t'
[]
[]
[BCs]
[Periodic]
[all]
variable = disp_x
auto_direction = 'x'
[]
[]
[centerfix_x]
type = DirichletBC
boundary = "fixme"
variable = disp_x
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = default
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/truss/truss_3d.i)
[Mesh]
type = FileMesh
file = truss_3d.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0.0
[../]
[./fixx2]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 2
function = x2
[../]
[./fixx3]
type = DirichletBC
variable = disp_x
preset = false
boundary = 3
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./fixy2]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = y2
[../]
[./fixy3]
type = DirichletBC
variable = disp_y
preset = false
boundary = 3
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[./fixz3]
type = DirichletBC
variable = disp_z
preset = false
boundary = 3
value = 0
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = '1 2'
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
dt = 1
num_steps = 3
end_time = 3
[]
[Kernels]
[./solid_x]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[./solid_y]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 1
variable = disp_y
area = area
save_in = react_y
[../]
[./solid_z]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 2
variable = disp_z
area = area
save_in = react_z
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = '1 2'
youngs_modulus = 1e6
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/parser/parse_double_index/parse_double_index.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./double_index]
type = ReadDoubleIndex
real_di = ' 1.1 ; 2.1 2.2 2.3 ; 3.1 3.2'
uint_di = ' 11 ; 21 22 23 ;
31 32'
int_di = ' 11 ; -21 -22 -23 ;
31 32'
long_di = ' -11 ; 21 22 23 ; -31 -32'
subid_di = '22 ; 32 33 34 ; 42 43'
bid_di = '21 ; 31 32 33 ; 41 42'
str_di = 'string00 ; string10 string11 string12 ; string20 string21 '
file_di = 'file00; file10 file11 file12; file20 file21'
file_no_di = 'file_no00; file_no10 file_no11 file_no12; file_no20 file_no21'
mesh_file_di = 'mesh_file00; mesh_file10 mesh_file11 mesh_file12; mesh_file20 mesh_file21'
subdomain_name_di = 'subdomain_name00; subdomain_name10 subdomain_name11 subdomain_name12; subdomain_name20 subdomain_name21'
boundary_name_di = 'boundary_name00; boundary_name10 boundary_name11 boundary_name12; boundary_name20 boundary_name21'
function_name_di = 'function_name00; function_name10 function_name11 function_name12; function_name20 function_name21'
userobject_name_di = 'userobject_name00; userobject_name10 userobject_name11 userobject_name12; userobject_name20 userobject_name21'
indicator_name_di = 'indicator_name00; indicator_name10 indicator_name11 indicator_name12; indicator_name20 indicator_name21'
marker_name_di = 'marker_name00; marker_name10 marker_name11 marker_name12; marker_name20 marker_name21'
multiapp_name_di = 'multiapp_name00; multiapp_name10 multiapp_name11 multiapp_name12; multiapp_name20 multiapp_name21'
postprocessor_name_di = 'postprocessor_name00; postprocessor_name10 postprocessor_name11 postprocessor_name12; postprocessor_name20 postprocessor_name21'
vector_postprocessor_name_di = 'vector_postprocessor_name00; vector_postprocessor_name10 vector_postprocessor_name11 vector_postprocessor_name12; vector_postprocessor_name20 vector_postprocessor_name21'
output_name_di = 'output_name00; output_name10 output_name11 output_name12; output_name20 output_name21'
material_property_name_di = 'material_property_name00; material_property_name10 material_property_name11 material_property_name12; material_property_name20 material_property_name21'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
file_base = parse_double_index
[]
(python/peacock/tests/input_tab/InputTree/gold/transient.i)
# ##########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
# ##########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Functions]
[forcing_fn]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
value = '3*t*t*((x*x)+(y*y))-(4*t*t*t)'
[]
[exact_fn]
type = ParsedFunction
value = 't*t*t*((x*x)+(y*y))'
[]
[]
[Kernels]
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
inactive = 'left right'
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[left]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[]
[]
[Postprocessors]
[l2_err]
type = ElementL2Error
variable = 'u'
function = exact_fn
[]
[dt]
type = TimestepSize
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
scheme = implicit-euler
solve_type = PJFNK
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/07_master_multilevel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[uno]
type = TransientMultiApp
positions = '0 0 0 1 0 0'
input_files = '07_sub_multilevel.i'
[]
[]
(test/tests/multiapps/cliargs_from_file/cliargs_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions_file = positions.txt
cli_args_files = cliargs.txt
type = TransientMultiApp
input_files = 'cliargs_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/heat_conduction/test/tests/radiative_bcs/radiative_bc_cyl.i)
#
# Thin cylindrical shell with very high thermal conductivity
# so that temperature is almost uniform at 500 K. Radiative
# boundary conditions is applied. Heat flux out of boundary
# 'right' should be 3723.36; this is approached as the mesh
# is refined
#
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1'
ix = '1 10'
dy = '1 1'
subdomain_id = '1 2 1 2'
[../]
[./remove_1]
type = BlockDeletionGenerator
block = 1
input = cartesian
[../]
[./readd_left]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(x - 1) < 1e-4'
new_sideset_name = left
input = remove_1
[../]
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./temp]
initial_condition = 800.0
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 800
[../]
[./radiative_bc]
type = InfiniteCylinderRadiativeBC
boundary = right
variable = temp
boundary_radius = 2
boundary_emissivity = 0.2
cylinder_radius = 3
cylinder_emissivity = 0.7
Tinfinity = 500
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '1 1.0e5'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options = '-snes_converged_reason'
line_search = none
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
[]
[Postprocessors]
[./right]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = thermal_conductivity
[../]
[./min_temp]
type = ElementExtremeValue
variable = temp
value_type = min
[../]
[./max_temp]
type = ElementExtremeValue
variable = temp
value_type = max
[../]
[]
[Outputs]
csv = true
[]
(test/tests/markers/expected_error/displaced_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
uniform_refine = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
[]
[Adaptivity]
[./Markers]
[./test]
type = UniformMarker
# this triggers the expected error
use_displaced_mesh = true
mark = DONT_MARK
[../]
[../]
[]
(modules/stochastic_tools/test/tests/multiapps/batch_sampler_transient_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(modules/peridynamics/test/tests/plane_stress/conventional_planestress_OSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1003
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0.001
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = ORDINARY_STATE
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e8
poissons_ratio = 0.3
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialOSPD
plane_stress = true
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[]
[Outputs]
file_base = conventional_planestress_OSPD
exodus = true
[]
(test/tests/mesh/mesh_generation/disc_sector_deprecated.i)
# Generates a sector of a Disc Mesh between angle=Pi/4 and angle=3Pi/4
# Radius of outside circle=5
# Solves the diffusion equation with u=-5 at origin, and u=0 on outside
# as well as u=-5+r at angle=Pi/4 and u=-5+r^4/125 at angle=3Pi/4
[Mesh]
type = AnnularMesh
nr = 10
nt = 12
rmin = 0
rmax = 5
tmin = 0.785398163
tmax = 2.356194490
growth_r = 1.3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./inner]
type = DirichletBC
variable = u
value = -5.0
boundary = rmin
[../]
[./outer]
type = FunctionDirichletBC
variable = u
function = 0
boundary = rmax
[../]
[./tmin]
type = FunctionDirichletBC
variable = u
function = '-5.0+sqrt(x*x + y*y)'
boundary = tmin
[../]
[./tmax]
type = FunctionDirichletBC
variable = u
function = '-5.0+pow(x*x + y*y, 2)/125'
boundary = tmax
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/vector_fe/coupled_scalar_default_vector_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -1.1
ymin = -1.1
xmax = 1.1
ymax = 1.1
[]
[Variables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = v
[../]
[./source]
type = BodyForce
variable = v
[../]
[./advection]
type = EFieldAdvection
variable = v
charge = 'positive'
mobility = 1
[../]
[]
[BCs]
[left]
type = DirichletBC
variable = v
value = 0
boundary = left
[]
[right]
type = DirichletBC
variable = v
value = 1
boundary = right
[]
[]
[Preconditioning]
[./pre]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'asm'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_linesearch_monitor'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl2D.i)
#
# 2D Cylindrical Gap Heat Transfer Test.
#
# This test exercises 2D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of an inner solid cylinder of radius = 1 unit, and outer
# hollow cylinder with an inner radius of 2 in the x-y plane. In other words,
# the gap between them is 1 radial unit in length.
#
# The conductivity of both cylinders is set very large to achieve a uniform
# temperature in each cylinder. The temperature of the center node of the
# inner cylinder is ramped from 100 to 200 over one time unit. The temperature
# of the outside of the outer, hollow cylinder is held fixed at 100.
#
# A simple analytical solution is possible for the integrated heat flux
# between the inner and outer cylinders:
#
# Integrated Flux = (T_left - T_right) * (gapK/(r*ln(r2/r1))) * Area
#
# For gapK = 1 (default value)
#
# The area is taken as the area of the secondary (inner) surface:
#
# Area = 2 * pi * h * r, where h is the height of the cylinder.
#
# The integrated heat flux across the gap at time 1 is then:
#
# 2*pi*h*k*delta_T/(ln(r2/r1))
# 2*pi*1*1*100/(ln(2/1)) = 906.5 watts
#
# For comparison, see results from the integrated flux post processors.
# This simulation makes use of symmetry, so only 1/4 of the cylinders is meshed
# As such, the integrated flux from the post processors is 1/4 of the total,
# or 226.6 watts.
# The value coming from the post processor is slightly less than this
# but converges as mesh refinement increases.
# Note that the 2D and 3D results are the same.
#
# Simulating contact is challenging. Regression tests that exercise
# contact features can be difficult to solve consistently across multiple
# platforms. While designing these tests, we felt it worth while to note
# some aspects of these tests. The following applies to:
# sphere3D.i, sphere2DRZ.i, cyl2D.i, and cyl3D.i.
# 1. We decided that to perform consistently across multiple platforms we
# would use very small convergence tolerance. In this test we chose an
# nl_rel_tol of 1e-12.
# 2. Due to such a high value for thermal conductivity (used here so that the
# domains come to a uniform temperature) the integrated flux at time = 0
# was relatively large (the value coming from SideIntegralFlux =
# -_diffusion_coef[_qp]*_grad_u[_qp]*_normals[_qp] where the diffusion coefficient
# here is thermal conductivity).
# Even though _grad_u[_qp] is small, in this case the diffusion coefficient
# is large. The result is a number that isn't exactly zero and tends to
# fail exodiff. For this reason the parameter execute_on = initial should not
# be used. That parameter is left to default settings in these regression tests.
#
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = cyl2D.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[../]
[]
[Variables]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_conductance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./gap_cond]
type = MaterialRealAux
property = gap_conductance
variable = gap_conductance
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1000000.0
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1
quadrature = true
gap_geometry_type = CYLINDER
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '0 0 1'
[../]
[]
[BCs]
[./mid]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[./Quadrature]
order = fifth
side_order = seventh
[../]
[]
[Outputs]
exodus = true
[./Console]
type = Console
[../]
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro01.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * f * d^2 * phi^n / (1-phi)^m
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[poro]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[]
[perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[]
[perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[]
[perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[]
[perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[]
[perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityKozenyCarman
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = kozeny_carman_fd2
f = 0.1
d = 5
m = 2
n = 7
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(modules/contact/test/tests/mechanical_constraint/frictionless_kinematic.i)
[Mesh]
file = blocks_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = frictionless
penalty = 1e+6
[../]
[]
(test/tests/multiapps/grid-sequencing/coarse.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[./diff]
type = Diffusion
variable = u
[../]
[rxn]
type = Reaction
variable = u
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = 'PJFNK'
petsc_options = '-snes_monitor_solution'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_plane_strain_incremental.i)
#
# This test checks elastic stress calculations with mechanical and thermal
# strain using incremental small strain formulation. Young's modulus is 3600, and Poisson's ratio is 0.2.
# The axisymmetric, plane strain 1D mesh is pulled with 1e-6 strain. Thus,
# the strain is [1e-6, 0, 1e-6] (xx, yy, zz). This gives stress of
# [5e-3, 2e-3, 5e-3]. After a temperature increase of 100 with alpha of
# 1e-8, the stress becomes [-1e-3, -4e-3, -1e-3].
#
[GlobalParams]
displacements = disp_x
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-6'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./ps]
planar_formulation = PLANE_STRAIN
strain = SMALL
incremental = true
generate_output = 'strain_xx strain_zz stress_xx stress_yy stress_zz'
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
(modules/tensor_mechanics/test/tests/critical_time_step/non-isotropic_error_test.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 15
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = D
[]
[absorption]
type = MaterialReaction
variable = u
coefficient = sig
[]
[source]
type = BodyForce
variable = u
value = 1.0
[]
[]
[Materials]
[diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 2.0
[]
[xs]
type = GenericConstantMaterial
prop_names = sig
prop_values = 2.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[max]
type = NodalExtremeValue
variable = u
value_type = max
[]
[]
[Outputs]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/rates/truesdell_jacobian.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
objective_rate = truesdell
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(modules/combined/test/tests/ACGrGrElasticDrivingForce/bicrystal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 3
xmax = 1000
ymax = 1000
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 2
var_name_base = gr
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./PolycrystalICs]
[./BicrystalBoundingBoxIC]
x1 = 0
y1 = 0
x2 = 500
y2 = 1000
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./active_bounds_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
flood_counter = grain_tracker
execute_on = 'initial timestep_begin'
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
flood_counter = grain_tracker
execute_on = 'initial timestep_begin'
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./active_bounds_elemental]
type = FeatureFloodCountAux
variable = active_bounds_elemental
field_display = ACTIVE_BOUNDS
execute_on = 'initial timestep_begin'
flood_counter = grain_tracker
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
[../]
[]
[BCs]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -10.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 75 # nm
GBmob0 = 2.5e-6 #m^4/(Js) from Schoenfelder 1997
Q = 0.23 #Migration energy in eV
GBenergy = 0.708 #GB energy in J/m^2
time_scale = 1.0e-6
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[UserObjects]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = test.tex
[../]
[./grain_tracker]
type = GrainTrackerElasticity
connecting_threshold = 0.05
compute_var_to_feature_map = true
flood_entity_type = elemental
execute_on = 'initial timestep_begin'
euler_angle_provider = euler_angle_file
fill_method = symmetric9
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
outputs = none
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./gr0_area]
type = ElementIntegralVariablePostprocessor
variable = gr0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
coupled_groups = 'gr0,gr1 disp_x,disp_y'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_max_its = 30
l_tol = 1e-4
nl_max_its = 30
nl_rel_tol = 1e-9
start_time = 0.0
num_steps = 3
dt = 0.2
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.7
coarsen_fraction = 0.1
max_h_level = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/static_deformations/cosserat_tension.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
zmax = 0.2
[]
[bottom_xline1]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[bottom_xline2]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0.5 0 0'
input = bottom_xline1
[]
[bottom_xline3]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '1 0 0'
input = bottom_xline2
[]
[bottom_zline1]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '0 0 0.0'
input = bottom_xline3
[]
[bottom_zline2]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '0 0 0.1'
input = bottom_zline1
[]
[bottom_zline3]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '0 0 0.2'
input = bottom_zline2
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Postprocessors]
[./disp_y_top]
type = PointValue
point = '0.5 1 0.1'
variable = disp_y
[../]
[./wc_z_top]
type = PointValue
point = '0.5 1 0.1'
variable = wc_z
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
[./y_bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./x_line]
type = DirichletBC
variable = disp_z
boundary = 101
value = 0
[../]
[./z_line]
type = DirichletBC
variable = disp_x
boundary = 102
value = 0
[../]
[./wc_x_bottom]
type = DirichletBC
variable = wc_x
boundary = bottom
value = 0
[../]
[./wc_y_bottom]
type = DirichletBC
variable = wc_y
boundary = bottom
value = 0
[../]
[./wc_z_bottom]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./top_force]
type = NeumannBC
variable = disp_y
boundary = top
value = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = 0.5
E_ijkl = '1 2 1.3333'
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_tension_out
exodus = true
[]
(modules/thermal_hydraulics/test/tests/vectorpostprocessors/sampler_1d_vector/sampler_1d_vector.i)
# Tests the Sampler1DVector vector post-processor, which samples
# a component of a vector-valued material on a block of a 1-D mesh.
[Mesh]
type = GeneratedMesh
xmax = 10
dim = 1
nx = 5
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[mat]
type = VectorPropertyTestMaterial
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[VectorPostprocessors]
[test_property_vpp]
type = Sampler1DVector
block = 0
property = test_property
index = 1
sort_by = x
[]
[]
[Outputs]
[out]
type = CSV
file_base = out
execute_vector_postprocessors_on = timestep_end
show = 'test_property_vpp'
[]
[]
(modules/xfem/test/tests/checkpoint/checkpoint.i)
# This test is for two layer materials with different youngs modulus
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Mesh]
displacements = 'disp_x disp_y'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
[]
[./left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0.0 0.0'
input = gen
[../]
[./left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0.0 5.'
input = left_bottom
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'y-2.5'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'bt'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-7
# time control
start_time = 0.0
dt = 0.1
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
checkpoint = true
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4nns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test4nns_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(test/tests/bcs/bc_preset_nodal/bc_preset_nodal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
# We will use preset BCs
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = bc_preset_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/predef/predef.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t*10
[]
[]
[AuxVariables]
[strain_yy]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[Pressure]
[bc_presssure]
boundary = top
function = top_pull
[]
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
# Active for
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_predef'
num_state_vars = 0
external_fields = 'strain_yy'
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
base_name = 'base'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[strain_dependent_elasticity_tensor]
type = CompositeElasticityTensor
args = strain_yy
tensors = 'base'
weights = 'prefactor_material'
[]
[prefactor_material_block]
type = DerivativeParsedMaterial
f_name = prefactor_material
args = strain_yy
function = '1.0/(1.0 + strain_yy)'
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 30
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/variables/hide_output_via_variables_block.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
outputs = none
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/static_deformations/cosserat_glide.i)
# Example taken from Appendix A of
# S Forest "Mechanics of Cosserat media An introduction". Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4476&rep=rep1&type=pdf
#
# Analytically, the displacements are
# wc_z = B sinh(w_e y)
# disp_x = (2 mu_c B / w_e / (mu + mu_c)) (1 - cosh(w_e y))
# with w_e^2 = 2 mu mu_c / be / (mu + mu_c)
# and B = arbitrary integration constant
#
# Also, the only nonzero stresses are
# m_zy = 2 B be w_e cosh(w_e y)
# si_yx = -4 mu mu_c/(mu + mu_c) B sinh(w_e y)
#
# MOOSE gives these stress components correctly.
# However, it also gives a seemingly non-zero si_xy
# component. Upon increasing the resolution of the
# mesh (ny=10000, for example), the stress components
# are seen to limit correctly to the above forumlae
#
# I use mu = 2, mu_c = 3, be = 0.6, so w_e = 2
# Also i use B = 1, so at y = 1
# wc_z = 3.626860407847
# disp_x = -1.65731741465
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 100
ymax = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
displacements = 'wc_x wc_y wc_z'
component = 2
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./disp_x_zero_at_y_zero]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0
[../]
[./disp_x_fixed_at_y_max]
type = DirichletBC
variable = disp_x
boundary = top
value = -1.65731741465
[../]
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_dispz]
type = DirichletBC
variable = disp_z
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'back front bottom top left right'
value = 0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'back front bottom top left right'
value = 0
[../]
[./wc_z_zero_at_y_zero]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0
[../]
[./wc_z_fixed_at_y_max]
type = DirichletBC
variable = wc_z
boundary = top
value = 3.626860407847
[../]
[]
[AuxVariables]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = '1.1 0.6 0.6' # In Forest notation this is alpha=1.1 (this is unimportant), beta=gamma=0.6.
fill_method_bending = 'general_isotropic'
E_ijkl = '1 2 3' # In Forest notation this is lambda=1 (this is unimportant), mu=2, mu_c=3
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = y
variable = 'disp_x wc_z stress_yx couple_stress_zy'
start_point = '0 0 0'
end_point = '0 1 0'
num_points = 11
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = cosserat_glide_out
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/1D/dirichlet.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 5.0
dtmin = 5.0
end_time = 5.0
[]
(modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_small_strain.i)
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
tangent_operator = elastic
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.01
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/pbc_adaptivity.i)
[Mesh]
[dmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 40
ny = 40
xmax = 40
ymax = 40
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./pid]
order = CONSTANT
family = monomial
[]
[]
[AuxKernels]
[./pidaux]
type = ProcessorIDAux
variable = pid
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
primary = 'left'
secondary = 'right'
translation = '40 0 0'
[../]
[./y]
variable = u
primary = 'bottom'
secondary = 'top'
translation = '0 40 0'
[../]
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = -0.01
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = -0.01
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = right
value = 0.01
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 5
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
(test/tests/outputs/tecplot/tecplot_append.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Tecplot
ascii_append = true
[../]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest8.i)
# 2D, removal of a block containing a nodeset inside it
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '4 4 1'
[]
[interior_nodeset]
type = BoundingBoxNodeSetGenerator
input = SubdomainBoundingBox1
new_boundary = interior_ns
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = interior_nodeset
block_id = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_copy_transfer/linear_lagrange_from_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-mortar-fb-lm-mortar-disp.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
secondary_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = 'fb'
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/xfem/test/tests/crack_tip_enrichment/penny_crack_3d.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
use_crack_tip_enrichment = true
crack_front_definition = crack_front
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y enrich1_z enrich2_z enrich3_z enrich4_z'
cut_off_boundary = all
cut_off_radius = 0.3
[]
[UserObjects]
[circle_cut_uo]
type = CircleCutUserObject
cut_data = '0 0 0
0.5 0 0
0 0.5 0'
[]
[crack_front]
type = CrackFrontDefinition
crack_direction_method = CurvedCrackFront
crack_front_points = '0.500000000000000 0 0
0.000000000000000 0.500000000000000 0
-0.500000000000000 0.000000000000000 0
-0.000000000000000 -0.500000000000000 0'
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 3
xmin = -1.0
xmax = 1.0
ymin = -1.0
ymax = 1.0
zmin = -0.75
zmax = 0.75
elem_type = HEX8
[]
[all_node]
type = BoundingBoxNodeSetGenerator
input = gen
new_boundary = 'all'
top_right = '1 1 1'
bottom_left = '-1 -1 -1'
[]
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[SED]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[]
[Kernels]
[TensorMechanics]
use_displaced_mesh = false
volumetric_locking_correction = false
[]
[]
[BCs]
[top_z]
type = Pressure
variable = disp_z
boundary = front
factor = -1
[]
[bottom_x]
type = DirichletBC
boundary = back
variable = disp_x
value = 0.0
[]
[bottom_y]
type = DirichletBC
boundary = back
variable = disp_y
value = 0.0
[]
[bottom_z]
type = DirichletBC
boundary = back
variable = disp_z
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[strain]
type = ComputeCrackTipEnrichmentSmallStrain
crack_front_definition = crack_front
enrichment_displacements = 'enrich1_x enrich2_x enrich3_x enrich4_x enrich1_y enrich2_y enrich3_y enrich4_y enrich1_z enrich2_z enrich3_z enrich4_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
[Quadrature]
type = GAUSS
order = SECOND
[]
# controls for linear iterations
l_max_its = 10
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[console]
type = Console
output_linear = true
[]
[]
(test/tests/restart/kernel_restartable/kernel_restartable_second.i)
###########################################################
# This test exercises the restart system and verifies
# correctness with parallel computation, but distributed
# and with threading.
#
# See kernel_restartable.i
#
# @Requirement F1.60
# @Requirement P1.10
# @Requirement P1.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
restart_file_base = kernel_restartable_restart_cp/LATEST
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_z.i)
# Large strain/large rotation cantilever beam test
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# Poisson's ratio (nu) = -0.99995
# shear coefficient (k) = 1.0
# Area (A) = 1.0
# Iy = Iz = 0.16
# The dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha ia quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in z
# large rotations + small strain = -0.92 m in x and 2.38 m in z
# large rotations + large strain = -0.954 m in x and 2.37 m in z (exact -1.0 m in x and 2.4 m in z)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_z2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 2
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeFiniteBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
large_strain = true
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_z
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/postprocessors/side_average_value/side_average_value_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 2
ymin = 0
ymax = 1
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
active = 'left right'
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[average]
type = SideAverageValue
boundary = 0
variable = u
[]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/mesh/mesh_generation/annulus_sector_deprecated.i)
# Generates a sector of an Annular Mesh between angle=Pi/4 and angle=3Pi/4
# Radius of inside circle=1
# Radius of outside circle=5
# Solves the diffusion equation with
# u=0 on inside
# u=log(5) on outside
# u=log(r) at angle=Pi/4 and angle=3Pi/4
[Mesh]
type = AnnularMesh
nr = 10
nt = 12
rmin = 1
rmax = 5
tmin = 0.785398163
tmax = 2.356194490
growth_r = 1.3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./inner]
type = DirichletBC
variable = u
value = 0.0
boundary = rmin
[../]
[./outer]
type = FunctionDirichletBC
variable = u
function = log(5)
boundary = rmax
[../]
[./min_angle]
type = FunctionDirichletBC
variable = u
function = 'log(sqrt(x*x + y*y))'
boundary = 'tmin tmax'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(test/tests/tag/2d_diffusion_vector_tag_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = LAGRANGE
[../]
[./tag_variable2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./reaction1]
type = Reaction
variable = u
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./reaction2]
type = Reaction
variable = u
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[./reaction3]
type = Reaction
variable = u
[../]
[./reaction4]
type = Reaction
variable = u
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag1
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagVectorAux
variable = tag_variable2
v = u
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 3
value = 10
extra_vector_tags = vec_tag1
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 100
extra_vector_tags = vec_tag2
[../]
[./right1]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 100
[../]
[./right2]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 100
[../]
[]
[Problem]
type = TagTestProblem
extra_tag_vectors = 'vec_tag1 vec_tag2'
test_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = vector_tag_test_out
exodus = true
[]
(test/tests/postprocessors/element_average_value/element_average_value_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 2
ymin = 0
ymax = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Outputs]
exodus = true
csv = true
file_base = out
[]
(test/tests/postprocessors/nodal_sum/nodal_sum_block.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./left]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 100
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./nodal_sum]
type = NodalSum
variable = u
execute_on = 'initial timestep_end'
block = '0 100'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/materials/coupled_value_function/adjac.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
[]
[]
[Variables]
[u]
initial_condition = 0.1
[]
[v]
initial_condition = 0.1
[]
[]
[Materials]
[Du]
type = ADCoupledValueFunctionMaterial
function = x
v = v
prop_name = Du
[]
[Dv]
type = ADCoupledValueFunctionMaterial
function = x^2
v = u
prop_name = Dv
[]
[]
[Kernels]
[diff_u]
type = ADMatDiffusion
diffusivity = Du
variable = u
[]
[dudt]
type = ADTimeDerivative
variable = u
[]
[diff_v]
type = ADMatDiffusion
diffusivity = Dv
variable = v
[]
[dvdt]
type = ADTimeDerivative
variable = v
[]
[]
[BCs]
[u_left]
type = DirichletBC
boundary = left
variable = u
value = 1
[]
[u_right]
type = DirichletBC
boundary = right
variable = u
value = 0.1
[]
[v_top]
type = DirichletBC
boundary = top
variable = v
value = 1
[]
[v_bottom]
type = DirichletBC
boundary = bottom
variable = v
value = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.1
num_steps = 4
[]
[Outputs]
exodus = true
[]
(test/tests/dirackernels/reporter_point_source/3d_vpp.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[DiracKernels]
[point_source]
type = ReporterPointSource
variable = u
x_coord_name = csv_reader/x3
y_coord_name = csv_reader/y3
z_coord_name = csv_reader/z3
value_name = csv_reader/value3
[]
[]
[VectorPostprocessors]
[csv_reader]
type = CSVReader
csv_file = point_value_file.csv
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/coupled_dirichlet_bc/coupled_dirichlet_bc.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./coupled_force_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
# BCs on left
# u: u=1
# v: v=2
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 2
[../]
# BCs on right
# u: c*u + u^2 + v^2 = 9
# v: no flux
[./right_u]
type = CoupledDirichletBC
variable = u
boundary = 1
value = 9
v=v
[../]
[]
[Preconditioning]
[./precond]
type = SMP
# 'full = true' is required for computeOffDiagJacobian() to get
# called. If you comment this out, you should see that this test
# requires a different number of linear and nonlinear iterations.
full = true
[../]
[]
[Executioner]
type = Steady
# solve_type = 'PJFNK'
solve_type = 'NEWTON'
# Uncomment next line to disable line search. With line search enabled, you must use full=true with Newton or else it will fail.
# line_search = 'none'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-10
l_tol = 1e-12
nl_max_its = 10
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/thermal_hydraulics/test/tests/scalarkernels/ode_coef_time_derivative/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[u]
[]
[n]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[n_ic]
type = ScalarConstantIC
variable = n
value = 0
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[]
[ScalarKernels]
[ctd]
type = ODECoefTimeDerivative
variable = n
coef = 2.
[]
[ode1]
type = ParsedODEKernel
variable = n
function = '-4'
[]
[]
[BCs]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
abort_on_solve_fail = true
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_reporter_transfer/between_multiapp/sub0.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[VectorPostprocessors]
[base_sub0_vpp]
type = ConstantVectorPostprocessor
vector_names = 'a b'
value = '30 30 30; 40 40 40'
[]
[from_sub1_vpp]
type = ConstantVectorPostprocessor
vector_names = 'a b'
value = '10 10 10 ; 20 20 20'
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/relperm/corey4.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
family = LAGRANGE
order = FIRST
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityCorey
scaling = 0.1
phase = 0
n = 2
s_res = 0.2
sum_s_res = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
scaling = 10.0
phase = 1
n = 2
s_res = 0.3
sum_s_res = 0.5
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-8
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/postprocessors/element_integral/element_block_integral_test.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./integral_left]
type = ElementIntegralVariablePostprocessor
variable = u
block = 1
[../]
[./integral_right]
type = ElementIntegralVariablePostprocessor
variable = u
block = 2
[../]
[./integral_all]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
[]
[Outputs]
file_base = out_block
exodus = false
csv = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/master2_wrong_positions.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub_app]
order = THIRD
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub2.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub
from_postprocessor = point_value
to_aux_scalar = from_sub_app
[../]
[]
(test/tests/outputs/debug/show_material_props_debug.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./subdomains]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./block]
type = GenericConstantMaterial
block = '0 1'
prop_names = 'property0 property1 property2 property3 property4 property5 property6 property7 property8 property9 property10'
prop_values = '0 1 2 3 4 5 6 7 8 9 10'
[../]
[./boundary]
type = GenericConstantMaterial
prop_names = bnd_prop
boundary = top
prop_values = 12345
[../]
[./restricted]
type = GenericConstantMaterial
block = 1
prop_names = 'restricted0 restricted1'
prop_values = '10 11'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Debug]
show_material_props = true
[]
(modules/tensor_mechanics/tutorials/introduction/mech_step03a.i)
#
# Added subdomains and subdomain-specific properties
# https://mooseframework.inl.gov/modules/tensor_mechanics/tutorials/introduction/step03.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 20
xmin = -0.25
xmax = 0.25
ymax = 5
[]
[block1]
type = SubdomainBoundingBoxGenerator
input = generated
block_id = 1
bottom_left = '-0.25 0 0'
top_right = '0 5 0'
[]
[block2]
type = SubdomainBoundingBoxGenerator
input = block1
block_id = 2
bottom_left = '0 0 0'
top_right = '0.25 5 0'
[]
# select a single node in the center of the bottom boundary
[pin]
type = ExtraNodesetGenerator
input = block2
new_boundary = pin
coord = '0 0 0'
[]
[]
[AuxVariables]
[T]
[]
[]
[AuxKernels]
[temperature_ramp]
type = FunctionAux
execute_on = TIMESTEP_BEGIN
variable = T
function = 300+5*t
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[pin_x]
type = DirichletBC
variable = disp_x
boundary = pin
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[expansion1]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 0.001
stress_free_temperature = 300
eigenstrain_name = thermal_expansion
block = 1
[]
[expansion2]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 0.002
stress_free_temperature = 300
eigenstrain_name = thermal_expansion
block = 2
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4nstt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test4nstt_out
exodus = true
[]
(test/tests/problems/no_material_coverage_check/no_material_coverage_check.i)
[Mesh]
file = rectangle.e
[]
[Problem]
material_coverage_check = false
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = 'diff1'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/dofmap/simple_screen.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./w]
[../]
[]
[Kernels]
[./diffu]
type = Diffusion
variable = u
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./dofmap]
type = DOFMap
output_screen = true
output_file = false
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/non_coplanar_twin_hardening.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = total_volume_fraction_twins
execute_on = timestep_end
[]
[twin_resistance_0]
type = MaterialStdVectorAux
variable = twin_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[twin_resistance_1]
type = MaterialStdVectorAux
variable = twin_resistance_1
property = slip_resistance
index = 1
execute_on = timestep_end
[]
[twin_resistance_2]
type = MaterialStdVectorAux
variable = twin_resistance_2
property = slip_resistance
index = 2
execute_on = timestep_end
[]
[twin_resistance_3]
type = MaterialStdVectorAux
variable = twin_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_tau_0]
type = MaterialStdVectorAux
variable = twin_tau_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[twin_tau_1]
type = MaterialStdVectorAux
variable = twin_tau_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[twin_tau_2]
type = MaterialStdVectorAux
variable = twin_tau_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[twin_tau_3]
type = MaterialStdVectorAux
variable = twin_tau_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-1.0e-3*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.08e5 6.034e4 6.034e4 1.08e5 6.03e4 1.08e5 2.86e4 2.86e4 2.86e4' #Tallon and Wolfenden. J. Phys. Chem. Solids (1979)
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_only_xtalpl'
tan_mod_type = exact
[]
[twin_only_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
number_slip_systems = 4
slip_sys_file_name = 'select_twin_systems_verify_hardening.txt'
initial_twin_lattice_friction = 6.0
non_coplanar_coefficient_twin_hardening = 8e4
non_coplanar_twin_hardening_exponent = 0.1
coplanar_coefficient_twin_hardening = 0
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[twin_resistance_0]
type = ElementAverageValue
variable = twin_resistance_0
[]
[twin_resistance_1]
type = ElementAverageValue
variable = twin_resistance_1
[]
[twin_resistance_2]
type = ElementAverageValue
variable = twin_resistance_2
[]
[twin_resistance_3]
type = ElementAverageValue
variable = twin_resistance_3
[]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.05
dtmin = 1e-6
dtmax = 10.0
num_steps = 4
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/combined/test/tests/thermo_mech/ad-thermo_mech.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
volumetric_locking_correction = true
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
[../]
[]
[Kernels]
[./TensorMechanics]
use_automatic_differentiation = true
[../]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./bottom_temp]
type = DirichletBC
variable = temp
preset = false
boundary = 1
value = 10.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./strain]
type = ADComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 0.0
thermal_expansion_coeff = 1e-5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./heat]
type = ADHeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
l_tol = 1e-3
l_max_its = 100
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/format/output_test_gmv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
gmv = true
[]
(test/tests/constraints/tied_value_constraint/tied_value_constraint_test.i)
# [Debug]
# show_top_residuals = 5
# []
[Mesh]
type = FileMesh
file = constraint_test.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
# active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Constraints]
[./value]
type = TiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = u
[../]
[]
[Preconditioning]
# active = 'FDP'
active = ''
[./FDP]
# full = true
# off_diag_row = 'v'
# off_diag_column = 'u'
type = FDP
[../]
[]
[Executioner]
# l_tol = 1e-1
# l_tol = 1e-
# nl_rel_tol = 1e-14
type = Steady
solve_type = NEWTON
l_max_its = 100
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/misc/check_error/check_dynamic_name_block_mismatch.i)
[Mesh]
file = three_block.e
# These names will be applied on the fly to the
# mesh so they can be used in the input file
# In addition they will show up in the input file
block_id = '1 2'
block_name = 'wood steel copper'
boundary_id = '1 2'
boundary_name = 'left right'
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Materials]
active = empty
[./empty]
type = MTMaterial
block = 'wood steel copper'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/functions/vector_postprocessor_function/vector_postprocessor_function.i)
#This function linearly interpolates the data generated by a vector post
#processor. The purpose is to have a function take points and a field variable
#(aux or primary) as arguments.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 4
xmin = 0.0
xmax = 0.004
ymin = 0.0
ymax = 0.008
[]
[Variables]
[./u]
initial_condition = 0
[../]
[]
[AuxVariables]
[./v]
initial_condition = 1
[../]
[]
[Functions]
[./ramp_u]
type = ParsedFunction
value = 't'
[../]
[./point_value_function_u]
type = VectorPostprocessorFunction
component = y
argument_column = y
value_column = u
vectorpostprocessor_name = point_value_vector_postprocessor_u
[../]
[./line_value_function_v]
type = VectorPostprocessorFunction
component = y
argument_column = y
value_column = v
vectorpostprocessor_name = line_value_vector_postprocessor_v
[../]
[./function_v]
type = PiecewiseLinear
x = '0 0.008'
y = '1 2'
axis = y
[../]
[]
[Kernels]
[./diffusion_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_v]
type = FunctionAux
variable = v
function = function_v
[../]
[]
[BCs]
[./top_u]
type = FunctionDirichletBC
boundary = top
variable = u
function = ramp_u
[../]
[./bottom_u]
type = DirichletBC
boundary = bottom
variable = u
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -ksp_gmres_restart'
petsc_options_value = ' lu superlu_dist 51'
line_search = 'none'
l_max_its = 50
l_tol = 1e-3
nl_max_its = 20
nl_rel_tol = 1e-4
nl_abs_tol = 1e-6
start_time = 0
num_steps = 1
dt = 1
[]
[Postprocessors]
[./point_value_postprocessor_u]
type = FunctionValuePostprocessor
function = point_value_function_u
point = '0.002 0.004 0'
[../]
[./line_value_postprocessor_v]
type = FunctionValuePostprocessor
function = line_value_function_v
point = '0.002 0.004 0'
[../]
[./postprocessor_average_u]
type = ElementAverageValue
variable = u
[../]
[./postprocessor_average_v]
type = ElementAverageValue
variable = v
[../]
[]
[VectorPostprocessors]
[./point_value_vector_postprocessor_u]
type = PointValueSampler
variable = u
points = '0 0.001 0 0 0.004 0 0 0.008 0'
#points = '0.001 0 0 0.002 0 0'
sort_by = y
execute_on = linear
[../]
[./line_value_vector_postprocessor_v]
type = LineValueSampler
variable = v
start_point = '0 0.001 0'
end_point = '0 0.008 0'
num_points = 5
sort_by = y
execute_on = linear
[../]
[]
[Outputs]
interval = 1
csv = false
exodus = true
file_base = out
[./console]
type = Console
output_linear = true
max_rows = 10
[../]
[]
(test/tests/mesh/uniform_refine/3d_diffusion.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 16
ny = 16
nz = 16
dim = 3
[../]
parallel_type = distributed
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[ghosting0]
order = CONSTANT
family = MONOMIAL
[]
[ghosting1]
order = CONSTANT
family = MONOMIAL
[]
[ghosting2]
order = CONSTANT
family = MONOMIAL
[]
[]
[UserObjects]
[ghosting_uo0]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 0
[]
[ghosting_uo1]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 1
[]
[ghosting_uo2]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 2
[]
[]
[AuxKernels]
[ghosting0]
type = ElementUOAux
variable = ghosting0
element_user_object = ghosting_uo0
field_name = "ghosted"
execute_on = initial
[]
[ghosting1]
type = ElementUOAux
variable = ghosting1
element_user_object = ghosting_uo1
field_name = "ghosted"
execute_on = initial
[]
[ghosting2]
type = ElementUOAux
variable = ghosting2
element_user_object = ghosting_uo2
field_name = "ghosted"
execute_on = initial
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
nemesis = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/rates/jaumann_shear.i)
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Functions]
[shearme]
type = PiecewiseLinear
x = '0 10'
y = '0 20'
[]
[]
[BCs]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[bottom_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[bottom_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = bottom
value = 0.0
[]
[shear]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = shearme
preset = true
[]
[hmm]
type = DirichletBC
preset = true
variable = disp_y
boundary = top
value = 0.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
objective_rate = jaumann
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Postprocessors]
[exy]
type = ElementAverageValue
variable = strain_xy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = stress_xy
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 4
[]
[Outputs]
exodus = false
csv = true
[]
(modules/geochemistry/test/tests/kernels/advection_1.i)
# A step-like initial concentration is advected to the right using a constant velocity.
# Because of the Dirichlet BC on the left, the step-like concentration profile is maintained (up to the usual numerical diffusion)
# Because upwinding_type=full in the ConservativeAdvection Kernel, there are no overshoots and undershoots
# The total amount of "conc" should increase by dt * velocity every timestep, as recorded by the front_position Postprocessor
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
[]
[Variables]
[conc]
[]
[]
[ICs]
[conc]
type = FunctionIC
function = 'if(x<=0.25, 1, 0)'
variable = conc
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1.0
variable = conc
[]
[]
[Kernels]
[dot]
type = GeochemistryTimeDerivative
variable = conc
[]
[adv]
type = ConservativeAdvection
velocity = velocity
upwinding_type = full
variable = conc
[]
[]
[AuxVariables]
[velocity]
family = MONOMIAL_VEC
order = CONSTANT
[]
[]
[AuxKernels]
[velocity]
type = VectorFunctionAux
function = vel_fcn
variable = velocity
[]
[]
[Functions]
[vel_fcn]
type = ParsedVectorFunction
value_x = 1
value_y = 0
value_z = 0
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 0.1
[]
[Postprocessors]
[front_position]
type = ElementIntegralVariablePostprocessor
variable = conc
[]
[]
[Outputs]
csv = true
[]
(modules/xfem/test/tests/moving_interface/verification/1D_xy_homog1mat.i)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed linear level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0000064
# 0.6 520 520.0000323
# 0.8 560 560.0000896
# 1.0 600 600.0001870
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+200)'
[../]
[./ls_func]
type = ParsedFunction
value = '1-(x-0.04)-0.2*t'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_du]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/multiapps/reset/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
reset_apps = 0
reset_time = 0.05
[../]
[]
(modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_small.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_small_out'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(python/peacock/tests/common/bad_mesh.i)
[Mesh]
type = GeneratedMesh
dim = 20
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/nodal_sum/nodal_sum.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./left]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 100
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./nodal_sum]
type = NodalSum
variable = u
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/geomsearch/1d_penetration_locator/1d_penetration_locator.i)
[Mesh]
file = 1d_contact.e
dim = 2
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./gap_distance]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left_left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right_right
value = 1
[../]
[]
[AuxKernels]
[./distance]
type = PenetrationAux
variable = gap_distance
boundary = left_right
paired_boundary = right_left
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/dirackernels/reporter_point_source/2d_vpp.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
uniform_refine = 4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[DiracKernels]
inactive = 'reporter_point_source_err'
[vpp_point_source]
type = ReporterPointSource
variable = u
value_name = 'csv_reader/u'
x_coord_name = 'csv_reader/x'
y_coord_name = 'csv_reader/y'
z_coord_name = 'csv_reader/z'
[]
[reporter_point_source]
type = ReporterPointSource
variable = u
value_name = 'reporterData2/u2'
x_coord_name = 'reporterData1/x'
y_coord_name = 'reporterData1/y'
z_coord_name = 'reporterData1/z'
[]
[reporter_point_source_err]
type = ReporterPointSource
variable = u
value_name = 'reporterData2/u2'
x_coord_name = 'reporterData2/x2'
y_coord_name = 'reporterData1/y'
z_coord_name = 'reporterData1/z'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[VectorPostprocessors]
[csv_reader]
type = CSVReader
csv_file = point_value_file.csv
[]
[]
[Reporters]
[reporterData1]
type = ConstantReporter
real_vector_names = 'x y z u'
real_vector_values = '0.2 0.2 0.0; 0.3 0.8 0.0; 0 0 0; 5 5 5'
[]
[reporterData2]
type = ConstantReporter
real_vector_names = 'x2 y2 z2 u2'
real_vector_values = '0.2 0.2; 0.3 0.8 0.0; 0 0 0; 1 -.5 0'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_action/cavity_with_pillar_vf.i)
[Mesh]
[cartesian]
type = CartesianMeshGenerator
dim = 3
dx = '0.1 0.3 0.4 0.3 0.1'
ix = ' 1 3 4 3 1'
dy = '0.1 0.3 0.4 0.3 0.1'
iy = ' 1 3 4 3 1'
dz = '0.1 0.8 0.2 0.1'
iz = ' 1 8 2 1'
subdomain_id = '1 1 1 1 1
1 15 15 15 1
1 15 1 15 1
1 15 15 15 1
1 1 1 1 1
1 12 12 12 1
11 0 103 0 14
11 104 2 102 14
11 0 101 0 14
1 13 13 13 1
1 12 12 12 1
11 0 0 0 14
11 0 105 0 14
11 0 0 0 14
1 13 13 13 1
1 1 1 1 1
1 16 16 16 1
1 16 16 16 1
1 16 16 16 1
1 1 1 1 1'
[]
[left_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 11
paired_block = '0 101 102 103 104 105'
new_boundary = left_interior_wall
input = cartesian
[]
[right_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 14
paired_block = '0 101 102 103 104 105'
new_boundary = right_interior_wall
input = left_interior
[]
[bottom_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 12
paired_block = '0 101 102 103 104 105'
new_boundary = bottom_interior_wall
input = right_interior
[]
[top_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 13
paired_block = '0 101 102 103 104 105'
new_boundary = top_interior_wall
input = bottom_interior
[]
[front_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 15
paired_block = '0 101 102 103 104 105'
new_boundary = front_interior_wall
input = top_interior
[]
[back_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 16
paired_block = '0 101 102 103 104 105'
new_boundary = back_interior_wall
input = front_interior
[]
[pillar_left]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 104
new_boundary = pillar_left
input = 'back_interior'
[]
[pillar_right]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 102
new_boundary = pillar_right
input = 'pillar_left'
[]
[pillar_bottom]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 103
new_boundary = pillar_bottom
input = 'pillar_right'
[]
[pillar_top]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 101
new_boundary = pillar_top
input = 'pillar_bottom'
[]
[pillar_back]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 105
new_boundary = pillar_back
input = 'pillar_top'
[]
[rename_block]
type = RenameBlockGenerator
old_block = '2 11 12 13 14 15 16 101 102 103 104 105'
new_block = '2 1 1 1 1 1 1 0 0 0 0 0'
input = 'pillar_back'
[]
[]
[GrayDiffuseRadiation]
[cavity]
sidesets = '6 7 8 9 10 11 12 13 14 15 16'
emissivity = '0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8'
n_patches = '5 5 5 5 5 5 5 5 5 5 5'
partitioners = 'metis metis metis metis metis metis metis metis metis metis metis'
temperature = temperature
ray_tracing_face_order = SECOND
[]
[]
[Variables]
[temperature]
initial_condition = 300
block = '1 2'
[]
[]
[Kernels]
[hc]
type = HeatConduction
variable = temperature
block = '1 2'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temperature
boundary = left
value = 500
[]
[front]
type = DirichletBC
variable = temperature
boundary = front
value = 300
[]
[]
[Materials]
[hcmat]
type = HeatConductionMaterial
thermal_conductivity = 25.0
specific_heat = 490.0
block = '1 2'
[]
[density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '80'
block = '1 2'
[]
[]
[Executioner]
type = Steady
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
[]
[Outputs]
exodus = true
[]
(test/tests/controls/syntax_based_naming_access/system_object_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'DiracKernels/test_object/point'
execute_on = 'initial'
[../]
[]
(modules/peridynamics/test/tests/plane_stress/weak_planestress_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
out_of_plane_strain = strain_zz
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1003
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0.001
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Kernels]
[./strain_zz]
type = WeakPlaneStressNOSPD
variable = strain_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e8
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = weak_planestress_H1NOSPD
exodus = true
[]
(test/tests/outputs/console/console_print_toggles.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
# This block is needed so cli_args in the tests files is available
[./console]
type = Console
[../]
[]
(modules/porous_flow/test/tests/gravity/grav01a.i)
# Checking that gravity head is established
# 1phase, vanGenuchten, constant fluid-bulk, constant viscosity, constant permeability, Corey relative perm
# fully saturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[Kernels]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1.2 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[pp_00]
type = PointValue
variable = pp
point = '0 0 0'
[]
[pp_01]
type = PointValue
variable = pp
point = '-0.1 0 0'
[]
[pp_02]
type = PointValue
variable = pp
point = '-0.2 0 0'
[]
[pp_03]
type = PointValue
variable = pp
point = '-0.3 0 0'
[]
[pp_04]
type = PointValue
variable = pp
point = '-0.4 0 0'
[]
[pp_05]
type = PointValue
variable = pp
point = '-0.5 0 0'
[]
[pp_06]
type = PointValue
variable = pp
point = '-0.6 0 0'
[]
[pp_07]
type = PointValue
variable = pp
point = '-0.7 0 0'
[]
[pp_08]
type = PointValue
variable = pp
point = '-0.8 0 0'
[]
[pp_09]
type = PointValue
variable = pp
point = '-0.9 0 0'
[]
[pp_10]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = grav01a
[csv]
type = CSV
[]
[]
(test/tests/outputs/exodus/variable_toggles.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(modules/richards/test/tests/newton_cooling/nc02.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1000
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 1.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_pressure
[../]
[../]
[]
[Functions]
active = 'initial_pressure'
[./initial_pressure]
type = ParsedFunction
value = 2000000-x*1000000/100
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 2E6
[../]
[./newton]
type = RichardsPiecewiseLinearSink
variable = pressure
boundary = right
pressures = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
bare_fluxes = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
use_mobility = false
use_relperm = false
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-15 10000'
[../]
[]
[Executioner]
type = Steady
snesmf_reuse_base = false
[]
[Outputs]
execute_on = 'timestep_end'
file_base = nc02
exodus = true
[]
(test/tests/actions/aux_scalar_variable/aux_scalar_variable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./a_very_unique_auxiliary_variable_name_good_for_error_checking]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/variables/second_derivative/interface_kernels.i)
# This is testing a scenario where volumetric system (like kernels) asks for second derivatives
# and the formulation includes a system using neighbor elements (like DGKernels or
# InterfaceKernels)
# If the latter did not request the second derivatives MOOSE should not be computing those.
# The PDEs solved are quite contrived, the Biharmonic kernel is there just to trigger the
# computation of second derivatives.
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
xmax = 2
ymax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 2 0'
block_id = 1
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain1
primary_block = '0'
paired_block = '1'
new_boundary = 'middle'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = 0
[../]
[./v]
order = FIRST
family = LAGRANGE
block = 1
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./bh]
type = Biharmonic
variable = u
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = v
boundary = middle
D = 4
D_neighbor = 2
[../]
[]
[BCs]
[./u]
type = DirichletBC
variable = u
value = 1
boundary = 'right middle'
[../]
[./v]
type = DirichletBC
variable = v
value = 2
boundary = 'left middle'
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/action/two_block_new.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. They
# can be overwritten in the subblocks.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[./block1]
# the `block` parameter is only valid insde a subblock.
block = 1
[../]
[./block2]
block = 2
# the `additional_generate_output` parameter is also only valid inside a
# subblock. Values specified here are appended to the `generate_output`
# parameter values.
additional_generate_output = 'strain_yy'
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking.i)
#
# Simple pull test for cracking.
# The stress increases for two steps and then drops to zero.
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 1 2 3 4'
y = '0 1 0 -1 0'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pull]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = displ
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.8e7
poissons_ratio = 0
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 1.68e6
softening_models = abrupt_softening
[../]
[./abrupt_softening]
type = AbruptSoftening
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type'
petsc_options_value = '101 asm lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-5
start_time = 0.0
end_time = 0.1
dt = 0.025
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/catch_release/catch_release.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = catch_release.e
[]
[Functions]
[./up]
type = PiecewiseLinear
x = '0 1 2.00 3 4'
y = '0 1 1.01 1 0'
scale_factor = 0.5
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_yy'
[]
[]
[Contact]
[./dummy_name]
primary = 2
secondary = 3
penalty = 1e6
model = frictionless
[../]
[]
[BCs]
[./lateral]
type = DirichletBC
variable = disp_x
boundary = '1 4'
value = 0.0
[../]
[./bottom_up]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 1
function = up
[../]
[./out]
type = DirichletBC
variable = disp_z
boundary = '1 4'
value = 0.0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuffStress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
#petsc_options_iname = '-pc_type -snes_type -snes_ls -snes_linesearch_type -ksp_gmres_restart'
#petsc_options_value = 'ilu ls basic basic 101'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-4
l_tol = 1e-4
l_max_its = 100
nl_max_its = 20
dt = 1.0
end_time = 4.0
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/array_kernels/array_diffusion_reaction_coupling.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
components = 2
[]
[v]
[]
[]
[Kernels]
[diff]
type = ArrayDiffusion
variable = u
diffusion_coefficient = dc
[]
[reaction]
type = ArrayReaction
variable = u
reaction_coefficient = rc
[]
[diffv]
type = Diffusion
variable = v
[]
[vu]
type = ArrayCoupledForce
variable = u
v = v
coef = '0 0.5'
[]
[]
[BCs]
[left]
type = ArrayDirichletBC
variable = u
boundary = 1
values = '0 0'
[]
[right]
type = ArrayDirichletBC
variable = u
boundary = 2
values = '1 2'
[]
[leftv]
type = DirichletBC
variable = v
boundary = 1
value = 0
[]
[rightv]
type = DirichletBC
variable = v
boundary = 2
value = 2
[]
[]
[Materials]
[dc]
type = GenericConstantArray
prop_name = dc
prop_value = '1 1'
[]
[rc]
type = GenericConstant2DArray
prop_name = rc
prop_value = '1 0; -0.1 1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[intu0]
type = ElementIntegralArrayVariablePostprocessor
variable = u
component = 0
[]
[intu1]
type = ElementIntegralArrayVariablePostprocessor
variable = u
component = 1
[]
[intv]
type = ElementIntegralVariablePostprocessor
variable = v
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/mesh_extruder_generator/extrude_angle.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = chimney_quad.e
[]
[./extrude]
type = MeshExtruderGenerator
input = fmg
num_layers = 20
extrusion_vector = '1e-2 1e-2 0'
bottom_sideset = '10'
top_sideset = '20'
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 10
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 20
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_quad_angle
exodus = true
[]
(modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD_2.i)
# Test that models bending of a rotated cantilever beam using shell elements
# A cantilever beam of length 10 m (in Z direction) and cross-section
# 1 m x 0.1 m is modeled using 4 shell elements placed along the length
# (Figure 6a from Dvorkin and Bathe, 1984). All displacements and
# X rotations are fixed on the bottom boundary. E = 2100000 and v = 0.0.
# A load of 0.5 N (in the Y direction) is applied at each node on the top
# boundary resulting in a total load of 1 N.
# The analytical solution for displacement at tip using small strain/rotations # is PL^3/3EI + PL/AG = 1.90485714 m
# The FEM solution using 4 shell elements is 1.875095 m with a relative error
# of 1.5%.
# Similarly, the analytical solution for slope at tip is PL^2/2EI = 0.285714286
# The FEM solution is 0.2857143 and the relative error is 5e-6%.
# The stress_zz for the four elements at y = -0.57735 * (t/2) (first qp below mid-surface of shell) are:
# 3031.089 Pa, 2165.064 Pa, 1299.038 Pa and 433.0127 Pa.
# Note the above values are the average stresses in each element.
# Analytically, stress_zz decreases linearly from z = 0 to z = 10 m.
# The maximum value of stress_zz at z = 0 is My/I = PL * 0.57735*(t/2)/I = 3464.1 Pa
# Therefore, the analytical value of stress at y = -0.57735 * (t/2) at the mid-point
# of the four elements are:
# 3031.0875 Pa, 2165.0625 Pa, 1299.0375 Pa ,433.0125 Pa
# The relative error in stress_zz is in the order of 5e-5%.
# The stress_yz at y = -0.57735 * (t/2) at all four elements from the simulation is 10 Pa.
# The analytical solution for the shear stress is: V/2/I *((t^2)/4 - y^2), where the shear force (V)
# is 1 N at any z along the length of the beam. Therefore, the analytical shear stress at
# y = -0.57735 * (t/2) is 10 Pa at any location along the length of the beam.
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
[./rotate]
type = TransformGenerator
input = gen
transform = ROTATE
vector_value = '0 90 0'
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = global_stress_t_points_0
index_i = 2
index_j = 2
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'bottom'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 'bottom'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 'bottom'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 'top'
rate = 0.5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_max_its = 2
nl_rel_tol = 1e-10
nl_abs_tol = 5e-4
dt = 1
dtmin = 1
end_time = 1
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '1.0 0.0 10.0'
variable = disp_y
[../]
[./rot_y_tip]
type = PointValue
point = '0.0 0.0 10.0'
variable = rot_y
[../]
[./stress_zz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_zz
[../]
[./stress_zz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_zz
[../]
[./stress_zz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_zz
[../]
[./stress_zz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_zz
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/2D_geometries/planestrain.i)
# This test uses the strain calculator ComputePlaneSmallStrain,
# which is generated through the use of the TensorMechanics MasterAction.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
planar_formulation = PLANE_STRAIN
add_variables = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
[../]
[]
[Functions]
[./pull]
type = ParsedFunction
value ='0.01 * t'
[../]
[]
[BCs]
[./rightx]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./pull]
type = FunctionDirichletBC
boundary = 2
variable = disp_y
function = pull
[../]
[]
[Materials]
[./linear_stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
l_max_its = 100
l_tol = 1e-10
nl_max_its = 15
nl_rel_tol = 1e-12
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_mortar_displaced.i)
[Mesh]
displacements = 'disp_x disp_y'
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[Materials]
[./left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[../]
[./right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[../]
[]
[Kernels]
[./hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[../]
[./hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[../]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[Constraints]
[./ced]
type = GapConductanceConstraint
variable = lm
secondary_variable = temp
k = 100
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[../]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
[]
[Outputs]
exodus = true
show = 'temp disp_x disp_y'
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3.i)
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-10
nl_rel_tol = 1E-12
l_tol = 1E-2
l_max_its = 50
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial3
exodus = true
[./csv]
type = CSV
[../]
[]
(test/tests/materials/stateful_prop/stateful_prop_test.i)
[Mesh]
dim = 3
file = cube.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = 'old' # Use the "Old" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[./prop1_output_init]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
execute_on = initial
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./stateful]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
(test/tests/time_integrators/dirk/dirk-2d-heat-adap.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
start_time = 0.0
num_steps = 5
dt = 0.25
[./TimeIntegrator]
type = LStableDirk2
[../]
[./Adaptivity]
refine_fraction = 0.07
coarsen_fraction = 0.
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/push_and_shear.i)
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pushed
# upwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 1E-2 # higher values mean more damping via stiffness
hht_alpha = 0 # better nonlinear convergence than for alpha>0
[]
[inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[]
[inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[]
[inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[]
[]
[BCs]
[no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[]
[z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[]
[bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = min(10*t,1)
[]
[]
[AuxVariables]
[accel_x]
[]
[vel_x]
[]
[accel_y]
[]
[vel_y]
[]
[accel_z]
[]
[vel_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[strainp_xx]
order = CONSTANT
family = MONOMIAL
[]
[strainp_xy]
order = CONSTANT
family = MONOMIAL
[]
[strainp_xz]
order = CONSTANT
family = MONOMIAL
[]
[strainp_yy]
order = CONSTANT
family = MONOMIAL
[]
[strainp_yz]
order = CONSTANT
family = MONOMIAL
[]
[strainp_zz]
order = CONSTANT
family = MONOMIAL
[]
[straint_xx]
order = CONSTANT
family = MONOMIAL
[]
[straint_xy]
order = CONSTANT
family = MONOMIAL
[]
[straint_xz]
order = CONSTANT
family = MONOMIAL
[]
[straint_yy]
order = CONSTANT
family = MONOMIAL
[]
[straint_yz]
order = CONSTANT
family = MONOMIAL
[]
[straint_zz]
order = CONSTANT
family = MONOMIAL
[]
[f_shear]
order = CONSTANT
family = MONOMIAL
[]
[f_tensile]
order = CONSTANT
family = MONOMIAL
[]
[f_compressive]
order = CONSTANT
family = MONOMIAL
[]
[intnl_shear]
order = CONSTANT
family = MONOMIAL
[]
[intnl_tensile]
order = CONSTANT
family = MONOMIAL
[]
[iter]
order = CONSTANT
family = MONOMIAL
[]
[ls]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[]
[vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[]
[strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[]
[strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[]
[strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[]
[strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[]
[strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[]
[straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[]
[straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[]
[straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[]
[straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[]
[straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[]
[straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[]
[f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[]
[f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[]
[f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[]
[intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[]
[intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[]
[iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[]
[ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[]
[t_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[]
[c_strength]
type = TensorMechanicsHardeningConstant
value = 0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[]
[strain]
type = ComputeIncrementalSmallStrain
[]
[admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[]
[stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0.5E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 0.5
dt = 0.1
type = Transient
[]
[Outputs]
file_base = push_and_shear
exodus = true
csv = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3nns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test3nns_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(test/tests/nodalkernels/constraint_enforcement/vi-bounding.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(modules/combined/test/tests/eigenstrain/variable_cahnhilliard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 16
ny = 16
xmin = 0
xmax = 50
ymin = 0
ymax = 50
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/rates/jaumann_jacobian.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
objective_rate = jaumann
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(modules/tensor_mechanics/test/tests/isotropicSD_plasticity/isotropicSD.i)
# UserObject IsotropicSD test, with constant hardening.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 300
[../]
[./IsotropicSD]
type = TensorMechanicsPlasticIsotropicSD
b = -0.2
c = -0.779422863
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = IsotropicSD
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/user_object_Voce_BCC.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 48
slip_sys_file_name = input_slip_sys_bcc48.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 12 0.001 0.1 13 24 0.001 0.1 25 48 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 48
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 48
groups = '0 12 24 48'
group_values = '50 51 52'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_voce
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_voce]
type = CrystalPlasticityStateVarRateComponentVoce
variable_size = 48
crystal_lattice_type = 'BCC'
groups = '0 12 24 48'
h0_group_values = '1 2 3'
tau0_group_values = '50 51 52'
tauSat_group_values = '70 81 92'
hardeningExponent_group_values = '1 2 3'
selfHardening_group_values ='4 5 6'
coplanarHardening_group_values='7 8 9'
GroupGroup_Hardening_group_values = '10 20 30
40 50 60
70 80 90'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_voce'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/ics/from_exodus_solution/nodal_part2.i)
# Use the exodus file for restarting the problem:
# - restart one variable
# - and have one extra variable with IC
#
[Mesh]
file = out_nodal_part1.e
[]
[Functions]
[./exact_fn]
type = ParsedFunction
value = ((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
value = -4
[../]
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = 6
[../]
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
x2 = 1.0
y1 = 0.0
y2 = 1.0
inside = 3.0
outside = 1.0
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = '3'
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_nodal_var_restart
exodus = true
[]
(modules/heat_conduction/test/tests/NAFEMS/transient/T3/nafems_t3_quad_template.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 0.01
elem_type = QUAD4
[]
[Variables]
[./temp]
initial_condition = 0.0
[../]
[]
[BCs]
[./FixedTempLeft]
type = DirichletBC
variable = temp
boundary = left
value = 0.0
[../]
[./FunctionTempRight]
type = FunctionDirichletBC
variable = temp
boundary = right
function = '100.0 * sin(pi*t/40)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '35.0 440.5 7200.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_tol = 1e-5
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
dt = 1
end_time = 32.0
[]
[Postprocessors]
[./target_temp]
type = NodalVariableValue
variable = temp
nodeid = 9
[../]
[]
[Outputs]
csv = true
[]
(tutorials/darcy_thermo_mech/step02_darcy_pressure/tests/kernels/darcy_pressure/darcy_pressure.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
permeability = 0.8451e-9 # (m^2) 1mm spheres.
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First dot for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/variables/high_order_monomial/high_order_monomial.i)
###########################################################
# This is a simple test demonstrating the use of the
# Higher order monomial variable type.
#
# @Requirement F3.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
# Monomial variable types
[AuxVariables]
[./first]
family = MONOMIAL
[../]
[./second]
order = SECOND
family = MONOMIAL
[../]
[./third]
order = THIRD
family = MONOMIAL
[../]
[]
[Functions]
[./first]
type = ParsedFunction
value = 1+2*x+2*y
[../]
[./second]
type = ParsedFunction
value = 1+2*x+4*x*x+2*y+4*y*y+4*x*y
[../]
[./third]
type = ParsedFunction
value = 1+2*x+4*x*x+8*x*x*x+2*y+4*y*y+8*y*y*y+4*x*y+8*x*x*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./first]
type = FunctionAux
variable = first
function = first
execute_on = timestep_end
[../]
[./second]
type = FunctionAux
variable = second
function = second
execute_on = timestep_end
[../]
[./third]
type = FunctionAux
variable = third
function = third
execute_on = timestep_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./first_error]
type = ElementL2Error
variable = first
function = first
execute_on = 'initial timestep_end'
[../]
[./second_error]
type = ElementL2Error
variable = second
function = second
execute_on = 'initial timestep_end'
[../]
[./third_error]
type = ElementL2Error
variable = third
function = third
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/multiple_materials/multiple_materials_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./diff1]
order = CONSTANT
family = MONOMIAL
[../]
[./diff2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff1]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./diff2]
type = DiffMKernel
variable = v
mat_prop = diff2
[../]
[]
[AuxKernels]
[./diff1]
type = MaterialRealAux
variable = diff1
property = diff1
[../]
[./diff2]
type = MaterialRealAux
variable = diff2
property = diff2
[../]
[]
[BCs]
# Mesh Generation produces boundaries in counter-clockwise fashion
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Materials]
[./dm1]
type = GenericConstantMaterial
block = 0
prop_names = 'diff1'
prop_values = '2'
[../]
[./dm2]
type = GenericConstantMaterial
block = 0
prop_names = 'diff2'
prop_values = '4'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/misc/check_error/function_file_test5.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = dummy
xy_data = '1 2'
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/postprocessors/element_extreme_value/element_extreme_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[max]
type = ElementExtremeValue
variable = u
[]
[min]
type = ElementExtremeValue
variable = u
value_type = min
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/steady_no_converge.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1e10
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_max_its = 10
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/vtk/vtk_diff.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rspherical_small_elastic.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = ADStressDivergenceRSphericalTensors
component = 0
variable = disp_r
[../]
[]
[BCs]
[./center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeRSphericalSmallStrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/check_direction_twin_propagation.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
elem_type = HEX8
[]
[]
[AuxVariables]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_6]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_7]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_8]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_9]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_11]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_6]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_7]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_8]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_9]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_11]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_4]
type = MaterialStdVectorAux
variable = twin_volume_fraction_4
property = twin_system_volume_fraction
index = 4
execute_on = timestep_end
[]
[twin_volume_fraction_5]
type = MaterialStdVectorAux
variable = twin_volume_fraction_5
property = twin_system_volume_fraction
index = 5
execute_on = timestep_end
[]
[twin_volume_fraction_6]
type = MaterialStdVectorAux
variable = twin_volume_fraction_6
property = twin_system_volume_fraction
index = 6
execute_on = timestep_end
[]
[twin_volume_fraction_7]
type = MaterialStdVectorAux
variable = twin_volume_fraction_7
property = twin_system_volume_fraction
index = 7
execute_on = timestep_end
[]
[twin_volume_fraction_8]
type = MaterialStdVectorAux
variable = twin_volume_fraction_8
property = twin_system_volume_fraction
index = 8
execute_on = timestep_end
[]
[twin_volume_fraction_9]
type = MaterialStdVectorAux
variable = twin_volume_fraction_9
property = twin_system_volume_fraction
index = 9
execute_on = timestep_end
[]
[twin_volume_fraction_10]
type = MaterialStdVectorAux
variable = twin_volume_fraction_10
property = twin_system_volume_fraction
index = 10
execute_on = timestep_end
[]
[twin_volume_fraction_11]
type = MaterialStdVectorAux
variable = twin_volume_fraction_11
property = twin_system_volume_fraction
index = 11
execute_on = timestep_end
[]
[twin_tau_0]
type = MaterialStdVectorAux
variable = twin_tau_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[twin_tau_1]
type = MaterialStdVectorAux
variable = twin_tau_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[twin_tau_2]
type = MaterialStdVectorAux
variable = twin_tau_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[twin_tau_3]
type = MaterialStdVectorAux
variable = twin_tau_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[twin_tau_4]
type = MaterialStdVectorAux
variable = twin_tau_4
property = applied_shear_stress
index = 4
execute_on = timestep_end
[]
[twin_tau_5]
type = MaterialStdVectorAux
variable = twin_tau_5
property = applied_shear_stress
index = 5
execute_on = timestep_end
[]
[twin_tau_6]
type = MaterialStdVectorAux
variable = twin_tau_6
property = applied_shear_stress
index = 6
execute_on = timestep_end
[]
[twin_tau_7]
type = MaterialStdVectorAux
variable = twin_tau_7
property = applied_shear_stress
index = 7
execute_on = timestep_end
[]
[twin_tau_8]
type = MaterialStdVectorAux
variable = twin_tau_8
property = applied_shear_stress
index = 8
execute_on = timestep_end
[]
[twin_tau_9]
type = MaterialStdVectorAux
variable = twin_tau_9
property = applied_shear_stress
index = 9
execute_on = timestep_end
[]
[twin_tau_10]
type = MaterialStdVectorAux
variable = twin_tau_10
property = applied_shear_stress
index = 10
execute_on = timestep_end
[]
[twin_tau_11]
type = MaterialStdVectorAux
variable = twin_tau_11
property = applied_shear_stress
index = 11
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-5.0e-4*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.08e5 6.034e4 6.034e4 1.08e5 6.03e4 1.08e5 2.86e4 2.86e4 2.86e4' #Tallon and Wolfenden. J. Phys. Chem. Solids (1979)
fill_method = symmetric9
euler_angle_1 = 54.74
euler_angle_2 = 45.0
euler_angle_3 = 270.0
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_only_xtalpl'
tan_mod_type = exact
[]
[twin_only_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = 'fcc_input_twinning_systems.txt'
initial_twin_lattice_friction = 2.0
[]
[]
[Postprocessors]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[twin_volume_fraction_4]
type = ElementAverageValue
variable = twin_volume_fraction_4
[]
[twin_volume_fraction_5]
type = ElementAverageValue
variable = twin_volume_fraction_5
[]
[twin_volume_fraction_6]
type = ElementAverageValue
variable = twin_volume_fraction_6
[]
[twin_volume_fraction_7]
type = ElementAverageValue
variable = twin_volume_fraction_7
[]
[twin_volume_fraction_8]
type = ElementAverageValue
variable = twin_volume_fraction_8
[]
[twin_volume_fraction_9]
type = ElementAverageValue
variable = twin_volume_fraction_9
[]
[twin_volume_fraction_10]
type = ElementAverageValue
variable = twin_volume_fraction_10
[]
[twin_volume_fraction_11]
type = ElementAverageValue
variable = twin_volume_fraction_11
[]
[twin_tau_0]
type = ElementAverageValue
variable = twin_tau_0
[]
[twin_tau_1]
type = ElementAverageValue
variable = twin_tau_1
[]
[twin_tau_2]
type = ElementAverageValue
variable = twin_tau_2
[]
[twin_tau_3]
type = ElementAverageValue
variable = twin_tau_3
[]
[twin_tau_4]
type = ElementAverageValue
variable = twin_tau_4
[]
[twin_tau_5]
type = ElementAverageValue
variable = twin_tau_5
[]
[twin_tau_6]
type = ElementAverageValue
variable = twin_tau_6
[]
[twin_tau_7]
type = ElementAverageValue
variable = twin_tau_7
[]
[twin_tau_8]
type = ElementAverageValue
variable = twin_tau_8
[]
[twin_tau_9]
type = ElementAverageValue
variable = twin_tau_9
[]
[twin_tau_10]
type = ElementAverageValue
variable = twin_tau_10
[]
[twin_tau_11]
type = ElementAverageValue
variable = twin_tau_11
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.025
dtmin = 0.0125
num_steps = 9
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/fvkernels/fv_adapt/transient-adapt.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
elem_type = QUAD4
[]
[]
[Variables]
[u]
order = CONSTANT
family = MONOMIAL
[]
[v][]
[]
[Functions]
[force]
type = ParsedFunction
value = t
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = BodyForce
variable = v
function = force
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = coeff
[]
[force]
type = FVBodyForce
variable = u
function = force
[]
[]
[FVBCs]
[right]
type = FVDirichletBC
variable = u
boundary = right
value = 1
[]
[left]
type = FVDirichletBC
variable = u
boundary = left
value = 0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = 'NEWTON'
[]
[Adaptivity]
marker = box
initial_steps = 1
[Markers]
[box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[]
[]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/exodus/exodus_nodal.i)
##
# \file exodus/exodus_nodal.i
# \example exodus/exodus_nodal.i
# Input file for testing nodal data output
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[./aux3]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
hide = 'u v aux0 aux1'
scalar_as_nodal = true
elemental_as_nodal = true
execute_elemental_on = none
execute_scalars_on = none
execute_postprocessors_on = none
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/3d.i)
p = 1e5
E = 3.3e11
stress_unit = 'Pa'
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
initial_condition = 900.0
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pressure_x]
type = Pressure
variable = disp_x
boundary = right
factor = ${p}
[]
[pressure_y]
type = Pressure
variable = disp_y
boundary = top
factor = -${p}
[]
[pressure_z]
type = Pressure
variable = disp_z
boundary = front
factor = -${p}
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = ${E}
poissons_ratio = 0.3
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
outputs = all
stress_unit = ${stress_unit}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
automatic_scaling = true
compute_scaling_once = false
num_steps = 5
[]
[Postprocessors]
[effective_strain_avg]
type = ElementAverageValue
variable = effective_creep_strain
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[cell_dislocations]
type = ElementAverageValue
variable = cell_dislocations
[]
[wall_disloactions]
type = ElementAverageValue
variable = wall_dislocations
[]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/thermal_expansion/free.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
eigenstrain_names = "thermal_contribution"
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[control_temperature]
type = FunctionAux
variable = temperature
function = temperature_control
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[]
[Functions]
[temperature_control]
type = ParsedFunction
value = '100*t'
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = SMALL
new_system = true
formulation = TOTAL
volumetric_locking_correction = false
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[thermal_expansion]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1.0e-3
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
end_time = 1
dt = 1
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/beam.i)
# A beam with its ends fully clamped
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 10
nz = 10
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -50
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./gravity_y]
type = Gravity
use_displaced_mesh = false
variable = disp_y
value = -10
[../]
[]
[BCs]
[./zmax_xfixed]
type = DirichletBC
variable = disp_x
boundary = front
value = 0
[../]
[./zmax_yfixed]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./zmax_zfixed]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./zmin_xfixed]
type = DirichletBC
variable = disp_x
boundary = back
value = 0
[../]
[./zmin_yfixed]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./zmin_zfixed]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 2E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.5
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 0
value_residual = 0
internal_limit = 0.1
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E80
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1000
tip_smoother = 1E5
smoothing_tol = 1E5
yield_function_tol = 1E-5
perfect_guess = true
min_step_size = 0.1
[../]
[./density]
type = GenericFunctionMaterial
block = 0
prop_names = density
prop_values = 1E3*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E-2
nl_rel_tol = 1e-15
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 10
dt = 1
type = Transient
[]
[Outputs]
file_base = beam
exodus = true
csv = true
[]
(test/tests/parser/cli_multiapp_group/dt_from_master_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number_error_with_transient/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
# coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/adaptivity/steady/steady.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[subdomain]
type = SubdomainBoundingBoxGenerator
input = gen
bottom_left = '0.25 0.25 0'
top_right = '0.75 0.75 0'
block_id = 100
[]
[]
[Variables/u]
[]
[Kernels/diff]
type = Diffusion
variable = u
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_marker = uniform
initial_steps = 1
[Markers/uniform]
type = UniformMarker
mark = REFINE
block = 100
[]
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh07.i)
# unsaturated = false
# gravity = true
# supg = true
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh07
exodus = true
[]
(test/tests/functions/pps_function/pp_function.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./function_force]
function = pp_func
variable = u
type = BodyForce
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
[Functions]
[./pp_func]
pp = right_value
type = PostprocessorFunction
[../]
[]
[Postprocessors]
[./right_value]
variable = u
execute_on = linear
boundary = 1
type = SideAverageValue
[../]
[]
(modules/combined/test/tests/power_law_creep/power_law_creep.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
tangent_operator = elastic
[../]
[./power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = Density
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/phase_field-mechanics/kks_mechanics_KHS.i)
# KKS phase-field model coupled with elasticity using Khachaturyan's scheme as
# described in L.K. Aagesen et al., Computational Materials Science, 140, 10-21 (2017)
# Original run #170403a
[Mesh]
type = GeneratedMesh
dim = 3
nx = 640
ny = 1
nz = 1
xmin = -10
xmax = 10
ymin = 0
ymax = 0.03125
zmin = 0
zmax = 0.03125
elem_type = HEX8
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
block = 0
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
block = 0
[../]
[./w_ic]
variable = w
type = ConstantIC
value = 0.00991
block = 0
[../]
[./cm_ic]
variable = cm
type = ConstantIC
value = 0.131
block = 0
[../]
[./cp_ic]
variable = cp
type = ConstantIC
value = 0.236
block = 0
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta'
vals = '0.8034'
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.2389*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10)+0.1339*(1-(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^3*(6*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))^2-15*(0.5*(1.0+tanh(x/delta/sqrt(2.0))))+10))'
vars = 'delta'
vals = '0.8034'
[../]
[./psi_eq_int]
type = ParsedFunction
value = 'volume*psi_alpha'
vars = 'volume psi_alpha'
vals = 'volume psi_alpha'
[../]
[./gamma]
type = ParsedFunction
value = '(psi_int - psi_eq_int) / dy / dz'
vars = 'psi_int psi_eq_int dy dz'
vals = 'psi_int psi_eq_int 0.03125 0.03125'
[../]
[]
[AuxVariables]
[./sigma11]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma33]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[./e12]
order = CONSTANT
family = MONOMIAL
[../]
[./e22]
order = CONSTANT
family = MONOMIAL
[../]
[./e33]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el11]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el12]
order = CONSTANT
family = MONOMIAL
[../]
[./e_el22]
order = CONSTANT
family = MONOMIAL
[../]
[./f_el]
order = CONSTANT
family = MONOMIAL
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[./psi]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22
[../]
[./matl_sigma33]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = sigma33
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11
[../]
[./f_el]
type = MaterialRealAux
variable = f_el
property = f_el_mat
execute_on = timestep_end
[../]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fm
fb_name = fp
w = 0.0264
kappa_names = kappa
interfacial_vars = eta
[../]
[./psi_potential]
variable = psi
type = ParsedAux
args = 'Fglobal w c f_el sigma11 e11'
function = 'Fglobal - w*c + f_el - sigma11*e11'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./front_y]
type = DirichletBC
variable = disp_y
boundary = front
value = 0
[../]
[./back_y]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Chemical Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
f_name = f_el_mat
args = 'eta'
outputs = exodus
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# 1- h(eta), putting in function explicitly
[./one_minus_h_eta_explicit]
type = DerivativeParsedMaterial
f_name = one_minus_h_explicit
args = eta
function = 1-eta^3*(6*eta^2-15*eta+10)
outputs = exodus
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa misfit'
prop_values = '0.7 0.7 0.01704 0.00377'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
base_name = C_matrix
C_ijkl = '103.3 74.25 74.25 103.3 74.25 103.3 46.75 46.75 46.75'
fill_method = symmetric9
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '100.7 71.45 71.45 100.7 71.45 100.7 50.10 50.10 50.10'
base_name = C_ppt
fill_method = symmetric9
[../]
[./C]
type = CompositeElasticityTensor
args = eta
tensors = 'C_matrix C_ppt'
weights = 'one_minus_h_explicit h'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_ppt'
[../]
[./eigen_strain]
type = ComputeVariableEigenstrain
eigen_base = '0.00377 0.00377 0.00377 0 0 0'
prefactor = h
args = eta
eigenstrain_name = 'eigenstrain_ppt'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = fm
fb_name = fp
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = fm
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fm
fb_name = fp
w = 0.0264
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = fm
[../]
[./ACBulk_el] #This adds df_el/deta for strain interpolation
type = AllenCahn
variable = eta
f_name = f_el_mat
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-11
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.5
[../]
[]
[Postprocessors]
[./f_el_int]
type = ElementIntegralMaterialProperty
mat_prop = f_el_mat
[../]
[./c_alpha]
type = SideAverageValue
boundary = left
variable = c
[../]
[./c_beta]
type = SideAverageValue
boundary = right
variable = c
[../]
[./e11_alpha]
type = SideAverageValue
boundary = left
variable = e11
[../]
[./e11_beta]
type = SideAverageValue
boundary = right
variable = e11
[../]
[./s11_alpha]
type = SideAverageValue
boundary = left
variable = sigma11
[../]
[./s22_alpha]
type = SideAverageValue
boundary = left
variable = sigma22
[../]
[./s33_alpha]
type = SideAverageValue
boundary = left
variable = sigma33
[../]
[./s11_beta]
type = SideAverageValue
boundary = right
variable = sigma11
[../]
[./s22_beta]
type = SideAverageValue
boundary = right
variable = sigma22
[../]
[./s33_beta]
type = SideAverageValue
boundary = right
variable = sigma33
[../]
[./f_el_alpha]
type = SideAverageValue
boundary = left
variable = f_el
[../]
[./f_el_beta]
type = SideAverageValue
boundary = right
variable = f_el
[../]
[./f_c_alpha]
type = SideAverageValue
boundary = left
variable = Fglobal
[../]
[./f_c_beta]
type = SideAverageValue
boundary = right
variable = Fglobal
[../]
[./chem_pot_alpha]
type = SideAverageValue
boundary = left
variable = w
[../]
[./chem_pot_beta]
type = SideAverageValue
boundary = right
variable = w
[../]
[./psi_alpha]
type = SideAverageValue
boundary = left
variable = psi
[../]
[./psi_beta]
type = SideAverageValue
boundary = right
variable = psi
[../]
[./total_energy]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[../]
# Get simulation cell size from postprocessor
[./volume]
type = ElementIntegralMaterialProperty
mat_prop = 1
[../]
[./psi_eq_int]
type = FunctionValuePostprocessor
function = psi_eq_int
[../]
[./psi_int]
type = ElementIntegralVariablePostprocessor
variable = psi
[../]
[./gamma]
type = FunctionValuePostprocessor
function = gamma
[../]
[./int_position]
type = FindValueOnLine
start_point = '-10 0 0'
end_point = '10 0 0'
v = eta
target = 0.5
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Outputs]
[./exodus]
type = Exodus
interval = 20
[../]
checkpoint = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test1qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test1q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test1qtt_out
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_split.i)
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 40
ny = 40
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
boundary = 99
nodes = '0'
input = gen
[../]
[]
[Variables]
# x-velocity
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-velocity
[./v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# x-acceleration
[./a1]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# y-acceleration
[./a2]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
# Pressure
[./p]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Kernels]
# split-momentum, x
[./x_split_momentum]
type = INSSplitMomentum
variable = a1
u = u
v = v
a1 = a1
a2 = a2
component = 0
[../]
# split-momentum, y
[./y_split_momentum]
type = INSSplitMomentum
variable = a2
u = u
v = v
a1 = a1
a2 = a2
component = 1
[../]
# projection-x, space
[./x_proj_space]
type = INSProjection
variable = u
a1 = a1
a2 = a2
pressure = p
component = 0
[../]
# projection-y, space
[./y_proj_space]
type = INSProjection
variable = v
a1 = a1
a2 = a2
pressure = p
component = 1
[../]
# projection-x, time
[./x_proj_time]
type = TimeDerivative
variable = u
[../]
# projection-y, time
[./y_proj_time]
type = TimeDerivative
variable = v
[../]
# Pressure
[./pressure_poisson]
type = INSPressurePoisson
variable = p
a1 = a1
a2 = a2
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = u
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = DirichletBC
variable = u
boundary = 'top'
value = 100.0
[../]
[./y_no_slip]
type = DirichletBC
variable = v
boundary = 'bottom right top left'
value = 0.0
[../]
# Acceleration boundary conditions. What should these
# be on the lid? What should they be in general? I tried pinning
# values of acceleration at one node but that didn't seem to work.
# I also tried setting non-zero acceleration values on the lid but
# that didn't converge.
[./x_no_accel]
type = DirichletBC
variable = a1
boundary = 'bottom right top left'
value = 0.0
[../]
[./y_no_accel]
type = DirichletBC
variable = a2
boundary = 'bottom right top left'
value = 0.0
[../]
# With solid walls everywhere, we specify dp/dn=0, i.e the
# "natural BC" for pressure. Technically the problem still
# solves without pinning the pressure somewhere, but the pressure
# bounces around a lot during the solve, possibly because of
# the addition of arbitrary constants.
[./pressure_pin]
type = DirichletBC
variable = p
boundary = '99'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
# rho = 1000 # kg/m^3
# mu = 0.798e-3 # Pa-s at 30C
# cp = 4.179e3 # J/kg-K at 30C
# k = 0.58 # W/m-K at ?C
# Dummy parameters
prop_names = 'rho mu cp k'
prop_values = '1 1 1 1'
[../]
[]
[Preconditioning]
# [./FDP_Newton]
# type = FDP
# full = true
# petsc_options = '-snes'
# #petsc_options_iname = '-mat_fd_coloring_err'
# #petsc_options_value = '1.e-10'
# [../]
[./SMP_PJFNK]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[../]
[]
[Executioner]
type = Transient
dt = 1.e-4
dtmin = 1.e-6
petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300 '
line_search = 'none'
nl_rel_tol = 1e-5
nl_max_its = 6
l_tol = 1e-6
l_max_its = 100
start_time = 0.0
num_steps = 1000
[]
[Outputs]
file_base = lid_driven_split_out
exodus = true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt_restart.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dtmin = 1.0
end_time = 25.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 1
linear_iteration_ratio = 1
dt = 2.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Problem]
restart_file_base = adapt_tstep_shrink_init_dt_out_cp/LATEST
[]
(modules/tensor_mechanics/test/tests/ad_simple_linear/linear-hand-coded.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0e10
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = "linear-out"
[]
(modules/tensor_mechanics/test/tests/action/reduced_eigenstrain_action.i)
#
# This test checks whether the ComputeReducedOrderEigenstrain is functioning properly
# when using the automatic_eigenstrain_names within the TensorMechanicsAction. These
# results should match the results found in the eigenstrain folder for reducedOrderRZLinear.i
#
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
xmax = 3
xmin = 1
ymax = 1
ymin = 0
#second_order = true
[]
[Problem]
solve = false
[]
[Functions]
[./tempLinear]
type = ParsedFunction
value = '715-5*x'
[../]
[./tempQuadratic]
type = ParsedFunction
value = '2.5*x*x-15*x+722.5'
[../]
[./tempCubic]
type = ParsedFunction
value = '-1.25*x*x*x+11.25*x*x-33.75*x+733.75'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[AuxVariables]
[./hydro_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./hydro_first]
order = FIRST
family = MONOMIAL
[../]
[./hydro_second]
order = SECOND
family = MONOMIAL
[../]
[./sxx_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./sxx_first]
order = FIRST
family = MONOMIAL
[../]
[./sxx_second]
order = SECOND
family = MONOMIAL
[../]
[./szz_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./szz_first]
order = FIRST
family = MONOMIAL
[../]
[./szz_second]
order = SECOND
family = MONOMIAL
[../]
[./temp2]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
temperature = temp2
automatic_eigenstrain_names = true
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./hydro_constant_aux]
type = RankTwoScalarAux
variable = hydro_constant
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_first_aux]
type = RankTwoScalarAux
variable = hydro_first
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_second_aux]
type = RankTwoScalarAux
variable = hydro_second
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./sxx_constant_aux]
type = RankTwoAux
variable = sxx_constant
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_first_aux]
type = RankTwoAux
variable = sxx_first
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_second_aux]
type = RankTwoAux
variable = sxx_second
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./szz_constant_aux]
type = RankTwoAux
variable = szz_constant
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_first_aux]
type = RankTwoAux
variable = szz_first
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_second_aux]
type = RankTwoAux
variable = szz_second
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./temp2]
type = FunctionAux
variable = temp2
function = tempLinear
execute_on = timestep_begin
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./temp_right]
type = DirichletBC
variable = temp
boundary = right
value = 700
[../]
[./temp_left]
type = DirichletBC
variable = temp
boundary = left
value = 710
[../]
[]
[Materials]
[./fuel_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0
[../]
[./fuel_thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1
temperature = temp2
stress_free_temperature = 700.0
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./reduced_order_eigenstrain]
type = ComputeReducedOrderEigenstrain
input_eigenstrain_names = 'thermal_eigenstrain'
eigenstrain_name = 'reduced_eigenstrain'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
num_steps = 1
nl_rel_tol = 1e-8 #1e-12
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[VectorPostprocessors]
[./hydro]
type = LineValueSampler
warn_discontinuous_face_values = false
num_points = 100
start_point = '1 0.07e-3 0'
end_point = '3 0.07e-3 0'
sort_by = x
variable = 'hydro_constant hydro_first hydro_second temp2 disp_x disp_y'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/xfem/test/tests/moment_fitting/solid_mechanics_moment_fitting.i)
# Test for a mechanics problem which uses four points moment_fitting approach.
# See this paper (https://doi.org/10.1007/s00466-018-1544-2) for more details about moment_fitting approach.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo0]
type = LineSegmentCutUserObject
cut_data = '0.0000e+00 6.3330e-01 3.9000e-01 6.3330e-01'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./line_seg_cut_uo1]
type = LineSegmentCutUserObject
cut_data = '3.9000e-01 6.3330e-01 6.8000e-01 6.3330e-01'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
[../]
[]
[Functions]
[./right_trac_x]
type = ParsedFunction
value = '-(t*M*y)/I'
vars = 'M E I'
vals = '2e4 1e6 0.666666667'
[../]
[./bottom_disp_y]
type = ParsedFunction
value = '((t*M)/(2*E*I))*(1-nu*nu)*(x*x-0.25*l*l)'
vars = 'M E I l nu'
vals = '2e4 1e6 0.666666667 2.0 0.3'
[../]
[./soln_x]
type = ParsedFunction
value = '-(M/(E*I))*(1-nu*nu)*x*y'
vars = 'M E I nu'
vals = '2e4 1e6 0.666666667 0.3'
[../]
[./soln_y]
type = ParsedFunction
value = '(M/(2*E*I))*(1-nu*nu)*(x*x-0.25*l*l+(nu/(1-nu))*y*y)'
vars = 'M E I l nu'
vals = '2e4 1e6 0.666666667 2.0 0.3'
[../]
[]
[BCs]
[./right_x]
type = FunctionNeumannBC
boundary = 1
variable = disp_x
function = right_trac_x
[../]
[./bottom_y]
type = FunctionDirichletBC
boundary = 0
variable = disp_y
function = bottom_disp_y
[../]
[./left_x]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
# [./Quadrature]
# order = FOURTH
# type = MONOMIAL
# [../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 0.5
end_time = 1.0
num_steps = 5000
[]
[Postprocessors]
[./numel]
type = NumElems
execute_on = timestep_end
[../]
[./integral]
type = ElementVectorL2Error
var_x = disp_x
var_y = disp_y
function_x = soln_x
function_y = soln_y
execute_on = timestep_end
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/multiapps/sub_cycling/master_sub_output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
output_sub_cycles = true
[../]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_displaced_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[./elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.48 0 0 -1.01 0 0'
input_files = fromsub_displaced_sub.i
[../]
[]
[Transfers]
[./from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
displaced_source_mesh = true
[../]
[./elemental_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = elemental_from_sub
displaced_source_mesh = true
[../]
[]
(modules/contact/test/tests/mortar_restart/frictional_bouncing_block_action_restart_2.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = frictional_bouncing_block_action_restart_1_checkpoint_cp/0021_mesh.cpr
skip_partitioning = true
allow_renumbering = false
[]
uniform_refine = 0 # 1,2
patch_update_strategy = always
[]
[Problem]
#Note that the suffix is left off in the parameter below.
restart_file_base = frictional_bouncing_block_action_restart_1_checkpoint_cp/LATEST # You may also use a specific number here
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
generate_output = 'stress_xx stress_yy'
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Contact]
[frictional]
primary = 20
secondary = 10
formulation = mortar
model = coulomb
friction_coefficient = 0.4
c_normal = 1.0e1
c_tangential = 1.0e6
generate_mortar_mesh = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = '40'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = '40'
value = 0.0
[]
[topy]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 20 * t) + ${offset}'
preset = false
[]
[leftx]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 30
function = '2e-2 * t'
# function = '0'
preset = false
[]
[]
[Executioner]
type = Transient
end_time = 6 # 70
start_time = 5.25
dt = 0.25 # 0.1 for finer meshes (uniform_refine)
dtmin = .01
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-13 1e-5'
l_max_its = 30
nl_max_its = 40
line_search = 'basic'
snesmf_reuse_base = false
nl_abs_tol = 1e-9
nl_rel_tol = 1e-9
l_tol = 1e-07 # Tightening l_tol can help with friction
[]
[Debug]
show_var_residual_norms = true
[]
[VectorPostprocessors]
[cont_press]
type = NodalValueSampler
variable = frictional_normal_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[friction]
type = NodalValueSampler
variable = frictional_tangential_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[]
[Outputs]
exodus = true
[checkfile]
type = CSV
show = 'cont_press friction'
start_time = 0.0
execute_vector_postprocessors_on = FINAL
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative_nli contact cumulative_li num_l'
[num_nl]
type = NumNonlinearIterations
[]
[num_l]
type = NumLinearIterations
[]
[cumulative_nli]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[cumulative_li]
type = CumulativeValuePostprocessor
postprocessor = num_l
[]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = 'frictional_secondary_subdomain'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/1D/neumann.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '200 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionNeumannBC
boundary = left
variable = disp_x
function = pull
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 5.0
dtmin = 5.0
end_time = 5.0
[]
(test/tests/userobjects/layered_average/layered_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./layered_average]
type = SpatialUserObjectAux
variable = layered_average
execute_on = timestep_end
user_object = average
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[]
[UserObjects]
[./average]
type = LayeredAverage
variable = u
direction = y
num_layers = 2
[../]
[]
[VectorPostprocessors]
[avg]
type = SpatialUserObjectVectorPostprocessor
userobject = average
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/meshgenerators/distributed_rectilinear/generator/distributed_rectilinear_mesh_generator.i)
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[npid]
family = Lagrange
order = first
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[npid_aux]
type = ProcessorIDAux
variable = npid
execute_on = 'INITIAL'
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'hypre'
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/materials/ad_convective_heat_transfer_coefficient/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[Hw_ak]
type = ADMaterialRealAux
variable = Hw
property = Hw
[]
[]
[Materials]
[props]
type = ADGenericConstantMaterial
prop_names = 'Nu k D_h'
prop_values = '1000 2 20'
[]
[Hw_material]
type = ADConvectiveHeatTransferCoefficientMaterial
Nu = Nu
D_h = D_h
k = k
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[Hw]
type = ElementalVariableValue
elementid = 0
variable = Hw
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/outputs/csv/csv_align.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[./norm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 4
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = CSV
align = true
delimiter = ', '
sync_times = '0.123456789123412 0.15 0.2'
precision = 8
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/userobjects/solution_user_object/discontinuous_value_solution_uo_p1.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./discontinuous_variable]
order = CONSTANT
family = MONOMIAL
[../]
[./continuous_variable]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./discontinuous_function]
type = ParsedFunction
value = 'if(x<0.5,3,5)'
[../]
[./continuous_function]
type = ParsedFunction
value = 'if(x<0.5,x,2*x-0.5)'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ICs]
[./discontinuous_variable]
type = FunctionIC
variable = discontinuous_variable
function = discontinuous_function
[../]
[./continuous_variable]
type = FunctionIC
variable = continuous_variable
function = continuous_function
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./one]
type = DirichletBC
variable = u
boundary = 'right top bottom'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = discontinuous_value_solution_uo_p1
exodus = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/small-2d-rz/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'small'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[secondary]
input = block_rename
type = LowerDBlockFromSidesetGenerator
sidesets = 'block_left'
new_block_id = '30'
new_block_name = 'frictionless_secondary_subdomain'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'plank_right'
new_block_id = '20'
new_block_name = 'frictionless_primary_subdomain'
[]
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[temp]
order = ${order}
block = 'plank block'
scaling = 1e-1
[]
[thermal_lm]
order = ${order}
block = 'frictionless_secondary_subdomain'
scaling = 1e-7
[]
[frictionless_normal_lm]
order = FIRST
block = 'frictionless_secondary_subdomain'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
[]
[]
[Kernels]
[hc]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = 'plank block'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[thermal_contact]
type = GapConductanceConstraint
variable = thermal_lm
secondary_variable = temp
k = 1
use_displaced_mesh = true
primary_boundary = plank_right
primary_subdomain = frictionless_primary_subdomain
secondary_boundary = block_left
secondary_subdomain = frictionless_secondary_subdomain
displacements = 'disp_x disp_y'
[]
[]
[BCs]
[left_temp]
type = DirichletBC
variable = temp
boundary = 'plank_left'
value = 400
[]
[right_temp]
type = DirichletBC
variable = temp
boundary = 'block_right'
value = 300
[]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
preset = false
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
preset = false
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeLinearElasticStress
block = 'plank block'
[]
[heat_plank]
type = ADHeatConductionMaterial
block = plank
thermal_conductivity = 2
specific_heat = 1
[]
[heat_block]
type = ADHeatConductionMaterial
block = block
thermal_conductivity = 1
specific_heat = 1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount -snes_max_it'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15 20'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'none'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[avg_temp]
type = ElementAverageValue
variable = temp
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
checkpoint = true
[comp]
type = CSV
show = 'contact avg_temp'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/outputs/displacement/displaced_eq_transient_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 5
ny = 5
elem_type = QUAD4
displacements = 'u v'
[]
[Functions]
[./right_u]
type = ParsedFunction
value = 0.1*t
[../]
[./fn_v]
type = ParsedFunction
value = (x+1)*y*0.1*t
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td_u]
type = TimeDerivative
variable = u
use_displaced_mesh = true
[../]
[./diff_u]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = FunctionDirichletBC
variable = u
boundary = 1
function = right_u
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '0 2'
function = fn_v
[../]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0
num_steps = 10
solve_type = 'PJFNK'
[]
[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/restart/restart_diffusion/restart_diffusion_from_end_part1.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/darcy/pp.i)
# investigating pressure pulse in 1D
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
variable = pressure
fluid_weight = '0 0 0'
fluid_viscosity = 1E-3
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
[../]
[]
[Kernels]
[./time_deriv]
type = TimeDerivative
[../]
[./darcy]
type = DarcyFlux
[../]
[]
[AuxVariables]
[./f_0]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_0]
type = DarcyFluxComponent
component = x
variable = f_0
porepressure = pressure
[../]
[]
[Materials]
[./solid]
type = DarcyMaterial
block = 0
mat_permeability = '2E-5 0 0 0 2E-5 0 0 0 2E-5' # this is the permeability (1E-15) multiplied by the bulk modulus (2E9) divided by the porosity (0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'bcgs bjacobi'
dt = 1E3
end_time = 1E4
[]
[Outputs]
file_base = pp
execute_on = 'timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/misc/serialized_solution/uniform_refine.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./lag]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./aux]
type = TestSerializedSolution
system = aux
execute_on = 'initial timestep_end'
[../]
[./nl]
type = TestSerializedSolution
system = nl
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform4.i)
# Plastic deformation, compression failure
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 4*t
# disp_y = 3*t
# disp_z = -t
# should yield trial stress:
# stress_zz = 12*t
# stress_zx = 16*t
# stress_zy = -12*t
# Use compressive strength = 6, we should return to stress_zz = -6,
# and stress_xx = stress_yy = -2*t up to t=1 when the system is completely
# plastic, so these stress components will not change
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 4*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 3*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = -t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 80
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform4
csv = true
[]
(test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_outside.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
#uniform_refine = 2
[]
[./subdomains]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
location = OUTSIDE
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/03.i)
# Darcy flow with heat advection and conduction
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[temperature]
initial_condition = 293
scaling = 1E-8
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 313
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
thermal_expansion = 0.0002
cp = 4194
cv = 4186
porepressure_coefficient = 0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(test/tests/materials/discrete/recompute_boundary_error.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[]
[]
[Variables]
[u]
initial_condition = 2
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 2
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 3
[]
[]
[Materials]
[recompute_props]
type = RecomputeMaterial
boundary = 'left'
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
[]
[newton]
type = NewtonMaterial
boundary = 'left right'
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[]
[left]
type = GenericConstantMaterial
prop_names = 'f f_prime'
prop_values = '1 0.5 '
block = '10 0'
outputs = all
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/throw_test.i)
# Illustrates throwing an Exception from a Material. In this case we
# don't actually recover from the segfault (so it is a RunException
# test) but in practice one could do so. The purpose of this test is
# to ensure that exceptions can be thrown from Materials with stateful
# material properties without reading/writing to/from uninitialized
# memory.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 2
internal_limit = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
[../]
[]
[Executioner]
end_time = 1
dt = 1
dtmin = 1
type = Transient
[]
[Outputs]
file_base = SEGFAULT
csv = true
[]
(test/tests/mesh/mixed_dim/1d_2d.i)
[Mesh]
file = 1d_2d.e
# 1d_2d.e contains QUAD4 and BEAM2 elements.
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 4
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 100
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 101
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/test/tests/thermo_mech/youngs_modulus_function_temp.i)
# ---------------------------------------------------------------------------
# This test is designed to verify the variable elasticity tensor functionality in the
# ComputeFiniteStrainElasticStress class with the elasticity_tensor_has_changed flag
# by varying the young's modulus with temperature. A constant strain is applied
# to the mesh in this case, and the stress varies with the changing elastic constants.
#
# Geometry: A single element cube in symmetry boundary conditions and pulled
# at a constant displacement to create a constant strain in the x-direction.
#
# Temperature: The temperature varies from 400K to 700K in this simulation by
# 100K each time step. The temperature is held constant in the last
# timestep to ensure that the elasticity tensor components are constant
# under constant temperature.
#
# Results: Because Poisson's ratio is set to zero, only the stress along the x
# axis is non-zero. The stress changes with temperature.
#
# Temperature(K) strain_{xx}(m/m) Young's Modulus(Pa) stress_{xx}(Pa)
# 400 0.001 10.0e6 1.0e4
# 500 0.001 10.0e6 1.0e4
# 600 0.001 9.94e6 9.94e3
# 700 0.001 9.93e6 9.93e3
#
# The tensor mechanics results align exactly with the analytical results above
# when this test is run with ComputeIncrementalSmallStrain. When the test is
# run with ComputeFiniteStrain, a 0.05% discrepancy between the analytical
# strains and the simulation strain results is observed, and this discrepancy
# is carried over into the calculation of the elastic stress.
#-------------------------------------------------------------------------
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 400
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_function]
type = PiecewiseLinear
x = '1 4'
y = '400 700'
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./u_left_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_back_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./u_pull_right]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.001
[../]
[./temp_bc_1]
type = FunctionDirichletBC
variable = temp
preset = false
boundary = '1 2 3 4'
function = temperature_function
[../]
[]
[Materials]
[./youngs_modulus]
type = PiecewiseLinearInterpolationMaterial
xy_data = '0 10e+6
599.9999 10e+6
600 9.94e+6
99900 10e3'
property = youngs_modulus
variable = temp
[../]
[./elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
args = temp
youngs_modulus = youngs_modulus
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
end_time = 5
[]
[Postprocessors]
[./elastic_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./elastic_stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./temp]
type = AverageNodalVariableValue
variable = temp
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(403.003-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '1.0 0 150.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '1.0 0 150.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.01
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(modules/thermal_hydraulics/test/tests/materials/ad_prandtl_number/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Pr]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[RPr_ak]
type = ADMaterialRealAux
variable = Pr
property = Pr
[]
[]
[Materials]
[props]
type = ADGenericConstantMaterial
prop_names = 'cp mu k'
prop_values = '1 2 4'
[]
[Pr_material]
type = ADPrandtlNumberMaterial
cp = cp
k = k
mu = mu
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[Pr]
type = ElementalVariableValue
elementid = 0
variable = Pr
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/tensor_mechanics/test/tests/strain_energy_density/tot_model.i)
# Single element test to check the strain energy density calculation
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 2
[]
[AuxVariables]
[SED]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[]
[]
[Modules/TensorMechanics/Master]
[master]
strain = SMALL
add_variables = true
incremental = false
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress strain_xx strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
[]
[]
[AuxKernels]
[SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[]
[Pressure]
[top]
boundary = 'top'
function = rampConstantUp
[]
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 30e+6
poissons_ratio = 0.3
[]
[elastic_stress]
type = ComputeLinearElasticStress
[]
[strain_energy_density]
type = StrainEnergyDensity
incremental = false
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[epxx]
type = ElementalVariableValue
variable = strain_xx
elementid = 0
[]
[epyy]
type = ElementalVariableValue
variable = strain_yy
elementid = 0
[]
[epzz]
type = ElementalVariableValue
variable = strain_zz
elementid = 0
[]
[sigxx]
type = ElementAverageValue
variable = stress_xx
[]
[sigyy]
type = ElementAverageValue
variable = stress_yy
[]
[sigzz]
type = ElementAverageValue
variable = stress_zz
[]
[SED]
type = ElementAverageValue
variable = SED
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/combined/tutorials/introduction/thermal_mechanical/thermomech_step01.i)
#
# Single block coupled thermal/mechanical
# https://mooseframework.inl.gov/modules/combined/tutorials/introduction/thermoech_step01.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 1
[]
[pin]
type = ExtraNodesetGenerator
input = generated
new_boundary = pin
coord = '0 0 0'
[]
[]
[Variables]
[T]
initial_condition = 300.0
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = T
[]
[time_derivative]
type = HeatConductionTimeDerivative
variable = T
[]
[heat_source]
type = HeatSource
variable = T
value = 5e4
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
automatic_eigenstrain_names = true
generate_output = 'vonmises_stress'
[]
[]
[Materials]
[thermal]
type = HeatConductionMaterial
thermal_conductivity = 45.0
specific_heat = 0.5
[]
[density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = 8000.0
[]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[expansion1]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 0.001
stress_free_temperature = 300
eigenstrain_name = thermal_expansion
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[BCs]
[t_left]
type = DirichletBC
variable = T
value = 300
boundary = 'left'
[]
[t_right]
type = FunctionDirichletBC
variable = T
function = '300+5*t'
boundary = 'right'
[]
[pin_x]
type = DirichletBC
variable = disp_x
boundary = pin
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/missing_req_par_action_obj_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 4
[]
# This meta-Action is not a MooseObjectAction so we are testing
# missing required parameters on standard Actions (variables)
[ConvectionDiffusion]
[]
[BCs]
active = 'left_convected right_convected left_diffused right_diffused'
[./left_convected]
type = DirichletBC
variable = convected
boundary = '3'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = '1'
value = 1
some_var = diffused
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = '3'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(modules/richards/test/tests/dirac/bh27.i)
#2-phase version of bh07 (go to steadystate with borehole)
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.6
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.6
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGnone
[../]
[./SUPGgas]
type = RichardsSUPGnone
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = 1E7
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = 1E7
[../]
[]
[BCs]
[./fix_outer_w]
type = DirichletBC
boundary = perimeter
variable = pwater
value = 1E7
[../]
[./fix_outer_g]
type = DirichletBC
boundary = perimeter
variable = pgas
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
fully_upwind = true
variable = pwater
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2 # this is to make the length 1m borehole fill the entire 2m height
[../]
[./bh_gas_dummy]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
fully_upwind = true
variable = pgas
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2 # this is to make the length 1m borehole fill the entire 2m height
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./water_mass]
type = RichardsMass
variable = pwater
execute_on = 'initial timestep_end'
[../]
[./gas_mass]
type = RichardsMass
variable = pgas
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 20 1E-10 1E-100'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh27
execute_on = 'initial timestep_end final'
interval = 1000000
exodus = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_deficient_b.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
eigen = true
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./rhs]
type = CoupledForce
variable = u
v = v
extra_vector_tags = 'eigen'
[../]
[./src_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./homogeneous_u]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./homogeneous_v]
type = DirichletBC
variable = v
boundary = '0 1 2 3'
value = 0
[../]
[./eigenBC_u]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./eigenBC_v]
type = EigenDirichletBC
variable = v
boundary = '0 1 2 3'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
file_base = ne_deficient_b
execute_on = 'timestep_end'
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_missing_local_object.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/materials/get_material_property_names/get_material_property_any_boundary_id.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./add_subdomain]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '1 1 0'
bottom_left = '0 0.5 0'
block_id = 100
block_name = 'top'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./boundary]
type = GenericConstantMaterial
prop_names = boundary_prop
boundary = ANY_BOUNDARY_ID
prop_values = 54321
[../]
[]
[UserObjects]
[./get_material_boundary_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'ANY_BOUNDARY_ID'
property_name = 'boundary_prop'
test_type = 'boundary'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template1.i)
[GlobalParams]
order = SECOND
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x639]
type = NodalVariableValue
nodeid = 638
variable = disp_x
[../]
[./disp_y639]
type = NodalVariableValue
nodeid = 638
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-5
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 3.5
l_tol = 1e-3
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x639 disp_y639 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
primary = 2
secondary = 3
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
[../]
[]
(modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test.i)
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
[]
(test/tests/restart/restart_diffusion/exodus_refined_restart_2_test.i)
[Mesh]
file = exodus_refined_restart_1.e
# Restart relies on the ExodusII_IO::copy_nodal_solution()
# functionality, which only works with ReplicatedMesh.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = exodus_refined_restart_2
exodus = true
[]
(modules/heat_conduction/test/tests/postprocessors/ad_convective_ht_side_integral.i)
[Mesh]
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '0.45 0.1 0.45'
ix = '5 1 5'
dy = '0.45 0.1 0.45'
iy = '5 1 5'
subdomain_id = '1 1 1
1 2 1
1 1 1'
[../]
[./add_iss_1]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = 'interface'
input = cartesian
[../]
[./block_deleter]
type = BlockDeletionGenerator
block = 2
input = add_iss_1
[../]
[]
[Variables]
[./temperature]
initial_condition = 300
[../]
[]
[AuxVariables]
[./channel_T]
family = MONOMIAL
order = CONSTANT
initial_condition = 400
[../]
[./channel_Hw]
family = MONOMIAL
order = CONSTANT
initial_condition = 1000
[../]
[]
[Kernels]
[./graphite_diffusion]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'thermal_conductivity'
[../]
[]
[BCs]
## boundary conditions for the thm channels in the reflector
[./channel_heat_transfer]
type = CoupledConvectiveHeatFluxBC
variable = temperature
htc = channel_Hw
T_infinity = channel_T
boundary = 'interface'
[../]
# hot boundary on the left
[./left]
type = DirichletBC
variable = temperature
value = 1000
boundary = 'left'
[../]
# cool boundary on the right
[./right]
type = DirichletBC
variable = temperature
value = 300
boundary = 'right'
[../]
[]
[Materials]
[./pronghorn_solid_material]
type = ADHeatConductionMaterial
temp = temperature
thermal_conductivity = 25
specific_heat = 1000
[../]
[./htc_material]
type = ADGenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1000'
[../]
[./tfluid_mat]
type = ADPiecewiseLinearInterpolationMaterial
property = tfluid_mat
variable = channel_T
x = '400 500'
y = '400 500'
[../]
[]
[Postprocessors]
[./Qw1]
type = ADConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc_var = channel_Hw
T_solid = temperature
boundary = interface
[../]
[./Qw2]
type = ADConvectiveHeatTransferSideIntegral
T_fluid_var = channel_T
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[./Qw3]
type = ADConvectiveHeatTransferSideIntegral
T_fluid = tfluid_mat
htc = alpha_wall
T_solid = temperature
boundary = interface
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(test/tests/parser/map_param/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[u]
[]
[v]
[]
[w]
[]
[]
[Kernels]
inactive = 'odd_entries bad_value'
[diff]
type = ADDiffusion
variable = u
[]
[diff_v]
type = ADDiffusion
variable = v
[]
[diff_w]
type = ADDiffusion
variable = w
[]
[map]
type = MapMultiplyCoupledVars
variable = u
v = v
w = w
coupled_var_multipliers = 'v 2 w 3'
dummy_string_to_string_map = 'a 1 b c'
dummy_ullong_to_uint_map = '5000000000 1 2 0'
dummy_uint_to_uint_map = '50 1 2 0'
dummy_ulong_to_uint_map = '50 1 2 0'
[]
[odd_entries]
type = MapMultiplyCoupledVars
variable = u
v = v
w = w
coupled_var_multipliers = 'v 2 w'
dummy_string_to_string_map = 'a 1 b c'
dummy_ullong_to_uint_map = '5000000000 1 2 0'
dummy_uint_to_uint_map = '50 1 2 0'
dummy_ulong_to_uint_map = '50 1 2 0'
[]
[bad_value]
type = MapMultiplyCoupledVars
variable = u
v = v
w = w
coupled_var_multipliers = 'v 2 w a'
dummy_string_to_string_map = 'a 1 b c'
dummy_ullong_to_uint_map = '5000000000 1 2 0'
dummy_uint_to_uint_map = '50 1 2 0'
dummy_ulong_to_uint_map = '50 1 2 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[left_w]
type = DirichletBC
variable = w
boundary = left
value = 0
[]
[right_w]
type = DirichletBC
variable = w
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/transferred_scalar_variable/transferred_scalar_variable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./average_scalar]
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
[../]
[]
[Transfers]
[./average_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = sub
from_postprocessor = average
to_aux_scalar = average_scalar
[../]
[]
(modules/level_set/test/tests/transfers/markers/multi_level/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Adaptivity]
marker = marker
max_h_level = 2
cycles_per_step = 2
[./Indicators]
[./error]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.4
refine = 0.5
indicator = error
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = LevelSetProblem
[]
[Executioner]
type = Transient
dt = 0.02
num_steps = 4
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = TransientMultiApp
input_files = 'sub.i'
execute_on = TIMESTEP_END
[../]
[]
[Transfers]
[./marker_to_sub]
type = LevelSetMeshRefinementTransfer
to_multi_app = sub
source_variable = marker
variable = marker
check_multiapp_execute_on = false
[../]
[]
[Outputs]
hide = u
exodus = true
[]
(examples/ex12_pbp/ex12.i)
[Mesh]
file = square.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
# The Preconditioning block
[Preconditioning]
[./PBP]
type = PBP
solve_order = 'diffused forced'
preconditioner = 'LU LU'
off_diag_row = 'forced'
off_diag_column = 'diffused'
[../]
[]
[Kernels]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./conv_forced]
type = CoupledForce
variable = forced
v = diffused
[../]
[./diff_forced]
type = Diffusion
variable = forced
[../]
[]
[BCs]
#Note we have active on and neglect the right_forced BC
active = 'left_diffused right_diffused left_forced'
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 100
[../]
[./left_forced]
type = DirichletBC
variable = forced
boundary = 'left'
value = 0
[../]
[./right_forced]
type = DirichletBC
variable = forced
boundary = 'right'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = JFNK
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/function_file_test9.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/transfers/multiapp_projection_transfer/high_order_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Functions]
[./test_function]
type = ParsedFunction
value = '2.5*x^2 + 0.75*y^2 + 0.15*x*y'
[../]
[]
[AuxVariables]
[./from_master]
family = monomial
order = first
[../]
[./test_var]
family = monomial
order = first
[./InitialCondition]
type = FunctionIC
function = test_function
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/04_master_multiscale.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '04_sub_multiscale.i'
cli_args = 'BCs/right/value=1 BCs/right/value=2 BCs/right/value=3'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_iso.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/format/pps_screen_out_warn.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./avg_block]
type = ElementAverageValue
variable = u
outputs = 'console'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
[./console]
type = Console
execute_postprocessors_on = none
[../]
[]
(modules/heat_conduction/test/tests/convective_heat_flux/flux.i)
# This is a test of the ConvectiveHeatFluxBC.
# There is a single 1x1 element with a prescribed temperature
# on the left side and a convective flux BC on the right side.
# The temperature on the left is 100, and the far-field temp is 200.
# The conductance of the body (conductivity * length) is 10
#
# If the conductance in the BC is also 10, the temperature on the
# right side of the solid element should be 150 because half of the
# temperature drop should occur over the body and half in the BC.
#
# The integrated flux is deltaT * conductance, or -50 * 10 = -500.
# The negative sign indicates that heat is going into the body.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Problem]
extra_tag_vectors = 'bcs'
[]
[Variables]
[./temp]
initial_condition = 100.0
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
diffusion_coefficient = 10
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = left
value = 100.0
[../]
[./right]
type = ConvectiveHeatFluxBC
variable = temp
boundary = right
T_infinity = 200.0
heat_transfer_coefficient = 10
heat_transfer_coefficient_dT = 0
[../]
[]
[Postprocessors]
[./right_flux]
type = SideDiffusiveFluxAverage
variable = temp
boundary = right
diffusivity = 10
[../]
[]
[Executioner]
type = Transient
num_steps = 1.0
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
(examples/ex06_transient/ex06.i)
[Mesh]
file = cyl-tet.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
# Include our time derivative here
[./euler]
type = ExampleTimeDerivative
variable = diffused
time_coefficient = 20.0
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 0
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 1
[../]
[]
# Transient (time-dependent) details for simulations go here:
[Executioner]
type = Transient # Here we use the Transient Executioner (instead of steady)
solve_type = 'PJFNK'
num_steps = 75 # Run for 75 time steps, solving the system each step.
dt = 1 # each time step will have duration "1"
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/problems/eigen_problem/arraykernels/ne_two_variables.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diffu]
type = Diffusion
variable = u
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[./rhsu]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./rhsv]
type = CoefReaction
variable = v
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./homogeneousu]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./homogeneousv]
type = DirichletBC
variable = v
boundary = '0 1 2 3'
value = 0
[../]
[./eigenu]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./eigenv]
type = EigenDirichletBC
variable = v
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(modules/contact/test/tests/sliding_block/sliding/frictionless_penalty.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the penalty method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(test/tests/auxkernels/forcing_function_aux/forcing_function_aux.i)
# This is a test of the ForcingFunctionAux AuxKernel.
# The diffusion equation for u is solved with boundary conditions to force a gradient
# du/dx = 2, which is constant in time.
# du/dx is integrated over the unit square domain using a postprocessor, resulting in 2.
# The value of this postprocessor is supplied to the forcing function f used by
# the ForcingFunctionAux AuxKernel, which increments the AuxVariable T.
# Since the time step is 1, the value of T increases by 2 for each time step.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./grad_u_x]
order = CONSTANT
family = MONOMIAL
initial_condition = 2
[../]
[./T]
order = CONSTANT
family = MONOMIAL
initial_condition = 100
[../]
[]
[Functions]
[./u_ic_func]
type = ParsedFunction
value = '2*x'
[../]
[./f]
type = ParsedFunction
vars = f
vals = grad_int
value = f
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = u
function = u_ic_func
[../]
[]
[Kernels]
[./dudt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./grad_u_x_aux]
type = VariableGradientComponent
variable = grad_u_x
component = x
gradient_variable = u
[../]
[./T_increment]
type = ForcingFunctionAux
variable = T
function = f
[../]
[]
[Postprocessors]
[./grad_int]
type = ElementIntegralVariablePostprocessor
variable = grad_u_x
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
num_steps = 2
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/interfacekernels/1d_interface/no-failed-point-inversions.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[break]
type = BreakMeshByBlockGenerator
input = interface
[]
displacements = 'disp_x'
[]
[AuxVariables]
[disp_x][]
[]
[ICs]
[right]
type = ConstantIC
variable = disp_x
block = 1
value = 1
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = '0'
[]
[v]
order = FIRST
family = LAGRANGE
block = '1'
[]
[]
[Kernels]
[diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[]
[diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
[]
[]
[InterfaceKernels]
[penalty_interface]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
penalty = 1e6
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[]
[block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[area]
type = AreaPostprocessor
use_displaced_mesh = true
boundary = 'right'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/parsed_function_control/test.i)
# This test takes a value of (a) function, (b) postprocessor, (c) scalar variable,
# (d) real-valued control value and (f) bool-valued control value and evaluates it via
# ParsedFunctionControl object
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Functions]
[pps_fn]
type = ConstantFunction
value = 4
[]
[fn]
type = ConstantFunction
value = 5
[]
[]
[AuxVariables]
[sv]
family = SCALAR
order = FIRST
initial_condition = 0
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxScalarKernels]
[sv_ak]
type = ConstantScalarAux
variable = sv
value = 3
execute_on = 'timestep_begin'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Components]
[]
[Postprocessors]
[pps]
type = FunctionValuePostprocessor
function = pps_fn
execute_on = 'timestep_begin'
[]
[result]
type = RealControlDataValuePostprocessor
control_data_name = eval_ctrl:value
execute_on = 'timestep_end'
[]
[]
[ControlLogic]
[ctrl]
type = GetFunctionValueControl
function = 2
[]
[trip]
type = UnitTripControl
condition = 't > 0'
[]
[eval_ctrl]
type = ParsedFunctionControl
function = 'a + b + c + d + f'
vars = 'a b c d f'
vals = 'fn pps sv ctrl:value trip:state'
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 2
abort_on_solve_fail = true
[]
[Outputs]
csv = true
show = 'result'
[]
(modules/richards/test/tests/buckley_leverett/bl20.i)
# two-phase version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 30
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '0.1 0.5 0.5 1 2 4'
x = '0 0.1 1 5 40 42'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E6
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[./bounds_dummy]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./richardsppenalty]
type = RichardsPPenalty
variable = pgas
a = 1E-18
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Bounds]
[./pwater_upper_bounds]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = pwater
bound_type = upper
bound_value = 1E7
[../]
[./pwater_lower_bounds]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = pwater
bound_type = lower
bound_value = -310000
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_water
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_gas
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = pwater
boundary = left
value = 1E6
[../]
[./left_g]
type = DirichletBC
variable = pgas
boundary = left
value = 1E6
[../]
[./right_w]
type = DirichletBC
variable = pwater
boundary = right
value = -300000
[../]
[./right_g]
type = DirichletBC
variable = pgas
boundary = right
value = 0
[../]
[]
[Functions]
[./initial_water]
type = ParsedFunction
value = 1000000*(1-min(x/5,1))-300000*(max(x-5,0)/max(abs(x-5),1E-10))
[../]
[./initial_gas]
type = ParsedFunction
value = max(1000000*(1-x/5),0)+1000
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-6'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'standard'
[./bounded]
# must use --use-petsc-dm command line argument
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type -ksp_rtol -ksp_atol'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 50 vinewtonssls 1E-20 1E-20'
[../]
[./standard]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 1E-10 1E-10 20 1E-20 1E-20'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bl20
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
hide = pgas
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/3D/dirichlet.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.4 * t'
[]
[pully]
type = ParsedFunction
value = '-0.2 * t'
[]
[pullz]
type = ParsedFunction
value = '0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[pull_z]
type = FunctionDirichletBC
boundary = right
variable = disp_z
function = pullz
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
(modules/heat_conduction/test/tests/heat_conduction/3d_quadrature_gap_heat_transfer/moving.i)
[Mesh]
file = nonmatching.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Functions]
[./disp_y]
type = ParsedFunction
value = 0.1*t
[../]
[./left_temp]
type = ParsedFunction
value = 1000+t
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./disp_y]
type = FunctionAux
variable = disp_y
function = disp_y
block = left
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = temp
boundary = leftleft
function = left_temp
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
type = GapHeatTransfer
variable = temp
primary = rightleft
secondary = leftright
emissivity_primary = 0
emissivity_secondary = 0
quadrature = true
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
use_displaced_mesh = true
[../]
[]
[Postprocessors]
[./left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = leftright
diffusivity = thermal_conductivity
[../]
[./right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = rightleft
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 9
dt = 1
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/ics/bounding_box_ic/bounding_box_ic_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.1
y1 = 0.1
x2 = 0.6
y2 = 0.6
inside = 2.3
outside = 4.6
[../]
[../]
[]
[AuxVariables]
active = 'u_aux'
[./u_aux]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.1
y1 = 0.1
x2 = 0.6
y2 = 0.6
inside = 1.34
outside = 6.67
[../]
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d_ctefunc.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = 10.0*(2*x/504)
[../]
[./cte_func]
type = PiecewiseLinear
x = '-10 -6 -2 0 2 6 10'
y = '1.484e-5 1.489e-5 1.494e-5 1.496e-5 1.498e-5 1.502e-5 1.505e-5'
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
temperature = temp
incremental = true
eigenstrain_names = thermal_expansion
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
eigenstrain_names = thermal_expansion
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
block = 1
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[../]
[]
(test/tests/misc/check_error/nodal_bc_on_elemental_var.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Variables]
[u]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bcs]
type = DirichletBC
variable = u
boundary = 'left right'
value = 1
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
abort_on_solve_fail = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion_function/finite_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d-interp-geometry.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
uniform_refine = 0
[]
[Variables]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_x_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_y_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
[]
[]
[Materials]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e4
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Constraints]
[friction]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
mu = 0.4
c = 1e4
c_t = 1.0e4
friction_lm = mortar_tangential_x_lm
friction_lm_dir = mortar_tangential_y_lm
interpolate_normals = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_x_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_x_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_x_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[tangential_dir_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_y_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[tangential_dir_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_y_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_y_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = true
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = .025
dt = .025
dtmin = .001
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-14 1e-5'
l_max_its = 15
nl_max_its = 30
nl_rel_tol = 1e-11
nl_abs_tol = 1e-12
line_search = 'basic'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[]
(python/peacock/tests/input_tab/InputTree/gold/fsp_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[v]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[conv_v]
type = CoupledForce
variable = v
v = 'u'
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
inactive = 'right_v'
[left_u]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[]
[right_u]
type = DirichletBC
variable = u
boundary = '2'
value = 100
[]
[left_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[]
[right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[]
[]
[Executioner]
# This is setup automatically in MOOSE (SetupPBPAction.C)
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type'
# petsc_options_value = 'asm'
type = Steady
[]
[Preconditioning]
[FSP]
# It is the starting point of splitting
type = FSP
topsplit = 'uv' # uv should match the following block name
[uv]
# Generally speaking, there are four types of splitting we could choose
# <additive,multiplicative,symmetric_multiplicative,schur>
# An approximate solution to the original system
# | A_uu A_uv | | u | _ |f_u|
# | 0 A_vv | | v | - |f_v|
# is obtained by solving the following subsystems
# A_uu u = f_u and A_vv v = f_v
# If splitting type is specified as schur, we may also want to set more options to
# control how schur works using PETSc options
# petsc_options_iname = '-pc_fieldsplit_schur_fact_type -pc_fieldsplit_schur_precondition'
# petsc_options_value = 'full selfp'
splitting = 'u v' # u and v are the names of subsolvers
splitting_type = additive
[]
[u]
# PETSc options for this subsolver
# A prefix will be applied, so just put the options for this subsolver only
vars = 'u'
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[]
[v]
# PETSc options for this subsolver
vars = 'v'
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[]
[]
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined3.i)
# Plastic deformation, tensile failure, inclined normal = (0, 1, 0)
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the ymax surface of a unit cube:
# disp_x = 4*t
# disp_y = t
# disp_z = 3*t
# should yield trial stress:
# stress_yy = 12*t
# stress_yx = 16*t
# stress_yz = 12*t
# Use tensile strength = 6, we should return to stress_yy = 6,
# and stress_xx = stress_zz = 2*t up to t=1 when the system is completely
# plastic, so these stress components will not change
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = 4*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = 3*t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 80
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '0 1 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_inclined3
csv = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/3D_finite_tension_pull.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Problem]
extra_tag_vectors = 'ref'
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[AuxVariables]
[react_x]
[]
[]
[Postprocessors]
[react_x]
type = NodalSum
variable = 'react_x'
boundary = 'right'
[]
[stress_xx]
type = ElementalVariableValue
variable = 'stress_xx'
elementid = 0
[]
[strain_zz]
type = ElementalVariableValue
variable = 'strain_zz'
elementid = 0
[]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
strain = FINITE
extra_vector_tags = 'ref'
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
add_variables = true
[]
[]
[AuxKernels]
[react_x]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_x'
variable = 'react_x'
[]
[]
[BCs]
[leftx]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[]
[bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
boundary = back
variable = disp_z
value = 0.0
[]
[rightx]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = 't'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 0.01
dtmin = 0.01
end_time = 0.2
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xy_force_xy.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the XY plane with load applied along the Z axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xy.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-0.7071067812 0.7071067812 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 0.7071067812e-4
[../]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = -0.7071067812e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '2.8284271 2.8284271 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '2.8284271 2.8284271 0.0'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d-action.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
allow_renumbering = false
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
[]
[]
[Materials]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e4
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Contact]
[mortar]
primary = 'bottom_top'
secondary = 'top_bottom'
formulation = mortar
model = coulomb
friction_coefficient = 0.4
c_normal = 1e4
c_tangential = 1.0e4
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = .025
dt = .025
dtmin = .001
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-14 1e-5'
l_max_its = 15
nl_max_its = 30
nl_rel_tol = 1e-11
nl_abs_tol = 1e-12
line_search = 'basic'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'mortar_secondary_subdomain'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = mortar_secondary_subdomain
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[frictional-pressure]
type = NodalValueSampler
block = mortar_secondary_subdomain
variable = mortar_tangential_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[frictional-pressure-3d]
type = NodalValueSampler
block = mortar_secondary_subdomain
variable = mortar_tangential_3d_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[tangent_x]
type = NodalValueSampler
block = mortar_secondary_subdomain
variable = mortar_tangent_x
sort_by = 'id'
execute_on = NONLINEAR
[]
[tangent_y]
type = NodalValueSampler
block = mortar_secondary_subdomain
variable = mortar_tangent_y
sort_by = 'id'
execute_on = NONLINEAR
[]
[]
(test/tests/multiapps/sub_cycling/master_short.i)
# The master app will do 4 timesteps, while sub app only 2. This tests that the sub app will not
# do anything during the inactive period.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
end_time = 0.4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub_short.i
sub_cycling = true
[../]
[]
(modules/combined/test/tests/umat/gap_heat_transfer_umat.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
[]
[Mesh]
file = gap_heat_transfer_mesh.e
[]
[Functions]
[disp]
type = PiecewiseLinear
x = '0 2.0'
y = '0 1.0'
[]
[temp]
type = PiecewiseLinear
x = '0 1'
y = '273 2000'
[]
[pressure_function]
type = PiecewiseLinear
x = '0 1'
y = '0 200'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[temp]
initial_condition = 273
[]
[]
[ThermalContact]
[thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 2
secondary = 3
emissivity_primary = 0
emissivity_secondary = 0
[]
[]
[Modules/TensorMechanics/Master/All]
volumetric_locking_correction = true
strain = FINITE
generate_output = 'strain_yy stress_yy'
[]
[Kernels]
[heat]
type = HeatConduction
variable = temp
[]
[]
[BCs]
[move_right]
type = FunctionDirichletBC
boundary = '3'
variable = disp_x
function = disp
[]
[fixed_x]
type = DirichletBC
boundary = '1'
variable = disp_x
value = 0
[]
[fixed_y]
type = DirichletBC
boundary = '1 2 4'
variable = disp_y
value = 0
[]
[fixed_z]
type = DirichletBC
boundary = '1 2 3 4'
variable = disp_z
value = 0
[]
[temp_bottom]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[]
[temp_top]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[]
[Pressure]
[example]
boundary = 3
function = pressure_function
[]
[]
[]
[Materials]
# 1. Active for umat calculation
[umat]
type = AbaqusUMATStress
constant_properties = '1.0e6 0.3'
plugin = '../../../../tensor_mechanics/test/plugins/elastic_temperature'
num_state_vars = 0
temperature = temp
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
base_name = 'base'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[temp_dependent_elasticity_tensor]
type = CompositeElasticityTensor
block = '1 2'
args = temp
tensors = 'base'
weights = 'prefactor_material'
[]
[prefactor_material_block]
type = DerivativeParsedMaterial
block = '1 2'
f_name = prefactor_material
args = temp
function = '273/(temp)'
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[heat]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1.0
[]
[density]
type = Density
block = '1 2'
density = 1.0
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
dt = 0.1
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/stochastic/graphite_ring_thermomechanics.i)
# Generate 1/4 of a 2-ring disk and extrude it by half to obtain
# 1/8 of a 3D tube. Mirror boundary conditions will exist on the
# cut portions.
[Mesh]
[disk]
type = ConcentricCircleMeshGenerator
num_sectors = 10
radii = '1.0 1.1 1.2'
rings = '1 1 1'
has_outer_square = false
preserve_volumes = false
portion = top_right
[]
[ring]
type = BlockDeletionGenerator
input = disk
block = 1
new_boundary = 'inner'
[]
[cylinder]
type = MeshExtruderGenerator
input = ring
extrusion_vector = '0 0 1.5'
num_layers = 15
bottom_sideset = 'back'
top_sideset = 'front'
[]
[]
[Variables]
[T]
initial_condition = 300
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[hc]
type = HeatConduction
variable = T
[]
[TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[]
[BCs]
[temp_inner]
type = FunctionNeumannBC
variable = T
boundary = 'inner'
function = surface_source
[]
[temp_front]
type = ConvectiveHeatFluxBC
variable = T
boundary = 'front'
T_infinity = 300
heat_transfer_coefficient = 10
[]
[temp_outer]
type = ConvectiveHeatFluxBC
variable = T
boundary = 'outer'
T_infinity = 300
heat_transfer_coefficient = 10
[]
# mirror boundary conditions.
[disp_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[disp_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[]
[disp_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0.0
[]
[]
[Materials]
[cond_inner]
type = GenericConstantMaterial
block = 2
prop_names = thermal_conductivity
prop_values = 25
[]
[cond_outer]
type = GenericConstantMaterial
block = 3
prop_names = thermal_conductivity
prop_values = 100
[]
[elasticity_tensor_inner]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
block = 2
[]
[elasticity_tensor_outer]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.1e5
poissons_ratio = 0.2
block = 3
[]
[thermal_strain_inner]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 2e-6
temperature = T
stress_free_temperature = 300
eigenstrain_name = eigenstrain_inner
block = 2
[]
[thermal_strain_outer]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 300
eigenstrain_name = eigenstrain_outer
block = 3
[]
[strain_inner] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_inner'
block = 2
[]
[strain_outer] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigenstrain_outer'
block = 3
[]
[stress] #We use linear elasticity
type = ComputeLinearElasticStress
[]
[]
[Functions]
[surface_source]
type = ParsedFunction
value = 'Q_t*pi/2.0/3.0 * cos(pi/3.0*z)'
vars = 'Q_t'
vals = heat_source
[]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 100
nl_abs_tol = 1e-9
l_tol = 1e-04
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[VectorPostprocessors]
[temp_center]
type = LineValueSampler
variable = T
start_point = '1 0 0'
end_point = '1.2 0 0'
num_points = 11
sort_by = 'x'
[]
[temp_end]
type = LineValueSampler
variable = T
start_point = '1 0 1.5'
end_point = '1.2 0 1.5'
num_points = 11
sort_by = 'x'
[]
[dispx_center]
type = LineValueSampler
variable = disp_x
start_point = '1 0 0'
end_point = '1.2 0 0'
num_points = 11
sort_by = 'x'
[]
[dispx_end]
type = LineValueSampler
variable = disp_x
start_point = '1 0 1.5'
end_point = '1.2 0 1.5'
num_points = 11
sort_by = 'x'
[]
[dispz_end]
type = LineValueSampler
variable = disp_z
start_point = '1 0 1.5'
end_point = '1.2 0 1.5'
num_points = 11
sort_by = 'x'
[]
[]
[Postprocessors]
[heat_source]
type = FunctionValuePostprocessor
function = 1
scale_factor = 10000
execute_on = linear
[]
[temp_center_inner]
type = PointValue
variable = T
point = '1 0 0'
[]
[temp_center_outer]
type = PointValue
variable = T
point = '1.2 0 0'
[]
[temp_end_inner]
type = PointValue
variable = T
point = '1 0 1.5'
[]
[temp_end_outer]
type = PointValue
variable = T
point = '1.2 0 1.5'
[]
[dispx_center_inner]
type = PointValue
variable = disp_x
point = '1 0 0'
[]
[dispx_center_outer]
type = PointValue
variable = disp_x
point = '1.2 0 0'
[]
[dispx_end_inner]
type = PointValue
variable = disp_x
point = '1 0 1.5'
[]
[dispx_end_outer]
type = PointValue
variable = disp_x
point = '1.2 0 1.5'
[]
[dispz_inner]
type = PointValue
variable = disp_z
point = '1 0 1.5'
[]
[dispz_outer]
type = PointValue
variable = disp_z
point = '1.2 0 1.5'
[]
[]
[Outputs]
exodus = false
csv = false
[]
(modules/porous_flow/test/tests/energy_conservation/heat04.i)
# The sample is a single unit element, with fixed displacements on
# all sides. A heat source of strength S (J/m^3/s) is applied into
# the element. There is no fluid flow or heat flow. The rise
# in temperature, porepressure and stress, and the change in porosity is
# matched with theory.
#
# In this case, fluid mass must be conserved, and there is no
# volumetric strain, so
# porosity * fluid_density = constant
# Also, the energy-density in the rock-fluid system increases with S:
# d/dt [(1 - porosity) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T] = S
# Also, the porosity evolves according to THM as
# porosity = biot + (porosity0 - biot) * exp( (biot - 1) * P / fluid_bulk + rock_thermal_exp * T)
# Finally, the effective stress must be exactly zero (as there is
# no strain).
#
# Let us assume that
# fluid_density = dens0 * exp(P / fluid_bulk - fluid_thermal_exp * T)
# Then the conservation of fluid mass means
# porosity = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T)
# where dens0 * por0 = the initial fluid mass.
# The last expression for porosity, combined with the THM one,
# and assuming that biot = 1 for simplicity, gives
# porosity = 1 + (porosity0 - 1) * exp(rock_thermal_exp * T) = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T) .... (A)
#
# This stuff may be substituted into the heat energy-density equation:
# S = d/dt [(1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T]
#
# If S is constant then
# S * t = (1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T
# with T(t=0) = 0 then Eqn(A) implies that por0 = porosity0 and
# P / fluid_bulk = fluid_thermal_exp * T - log(1 + (por0 - 1) * exp(rock_thermal_exp * T)) + log(por0)
#
# Parameters:
# A = 2
# fluid_bulk = 2.0
# dens0 = 3.0
# fluid_thermal_exp = 0.5
# fluid_heat_cap = 2
# por0 = 0.5
# rock_thermal_exp = 0.25
# rock_density = 5
# rock_heat_capacity = 0.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[]
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[pp]
[]
[temp]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1.0
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[]
[heat_source]
type = BodyForce
function = 1
variable = temp
[]
[]
[Functions]
[err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[]
[err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
temperature_unit = Kelvin
fp = the_simple_fluid
phase = 0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[]
[t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[]
[porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[]
[err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04
exodus = true
[csv]
type = CSV
[]
[]
(test/tests/misc/check_error/multi_precond_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Preconditioning]
active = 'PBP FDP'
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'LU LU'
off_diag_row = 'v'
off_diag_column = 'u'
[../]
[./FDP]
type = FDP
off_diag_row = 'v'
off_diag_column = 'u'
[../]
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff_u conv_v diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 100
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
l_max_its = 1
nl_max_its = 1
solve_type = JFNK
[]
[Outputs]
file_base = pbp_out
exodus = true
[]
(test/tests/kernels/ad_coupled_value/ad_coupled_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
elem_type = quad9
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[./u]
[../]
[./v]
[../]
[./w]
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./diff_w]
type = Diffusion
variable = w
[../]
[./ad_coupled_value]
type = ADCoupledValueTest
variable = u
v = v
[../]
[./ad_coupled_value_w]
type = ADCoupledValueTest
variable = u
v = w
[../]
[./ad_coupled_value_x]
type = ADCoupledValueTest
variable = u
# v = 2.0 (Using the default value)
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[./left_w]
type = DirichletBC
variable = w
boundary = left
value = 0
[../]
[./right_w]
type = DirichletBC
variable = w
boundary = right
value = 1
[../]
[]
[Preconditioning]
active = ''
[./smp]
type = SMP
[../]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-10
nl_rel_tol = 1e-9
nl_max_its = 1
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/parsed_postprocessor/parsed_pp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./L2_norm]
type = ElementL2Norm
variable = u
[../]
[L1_norm]
type = ElementL1Error
function = 0
variable = u
[]
[parsed]
type = ParsedPostprocessor
function = 'L2_norm / L1_norm'
pp_names = 'L2_norm L1_norm'
[]
[parsed_with_t]
type = ParsedPostprocessor
function = 'L2_norm + L1_norm + t'
pp_names = 'L2_norm L1_norm'
use_t = true
[]
[parsed_with_constants]
type = ParsedPostprocessor
function = 'L2_norm + 3*L1_norm + mu'
pp_names = 'L2_norm L1_norm'
constant_names = 'mu'
constant_expressions = '4'
[]
[]
[Executioner]
type = Transient
num_steps = 4
nl_abs_tol = 1e-8
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro03.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * B * exp(A * phi)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[poro]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[]
[perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[]
[perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[]
[perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[]
[perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[]
[perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityExponential
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = exp_k
A = 10
B = 1e-8
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(test/tests/executors/single/test.i)
[Problem]
solve = false
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executors]
[my_first_executor]
type = BinaryTestExecutor
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/neohookean.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.01
max = 0.01
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.01
max = 0.01
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.01
max = 0.01
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '400 * t'
[]
[pully]
type = ParsedFunction
value = '-200 * t'
[]
[pullz]
type = ParsedFunction
value = '300 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[compute_stress]
type = ComputeNeoHookeanStress
lambda = 40000.0
mu = 67000.0
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 3
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard_subT.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./T]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./power]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
[]
[Kernels]
[./diff_T]
type = Diffusion
variable = T
[../]
[./src_T]
type = CoupledForce
variable = T
v = power
[../]
[]
[BCs]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
fixed_point_max_its = 20
fixed_point_rel_tol = 1e-6
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
keep_solution_during_restore = true
input_files = ne_coupled_picard_subT_sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./T_to_sub]
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
source_variable = T
variable = T
execute_on = timestep_end
[../]
[./power_from_sub]
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
source_variable = power
variable = power
execute_on = timestep_end
[../]
[]
[Outputs]
csv = true
exodus =true
execute_on = 'timestep_end'
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = FIRST
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(tutorials/darcy_thermo_mech/step01_diffusion/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/exception/parallel_exception_residual_transient.i)
[Mesh]
file = 2squares.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = residual
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.005
solve_type = 'PJFNK'
snesmf_reuse_base = false
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet_rz.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# x can't start at zero because FV's weak dirichlet BCs need a non-zero area
# on the left so their numerical flux contribution isn't zero'd out -
# causing there to basically be no BC on the left.
xmin = .1
xmax = 1
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 7
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3ns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test3ns_out
exodus = true
[]
(test/tests/geomsearch/nearest_node_locator/adapt.i)
[Mesh]
file = 2dcontact_collide.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./distance]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[AuxKernels]
[./zero]
type = ConstantAux
variable = distance
[../]
[./distance]
type = NearestNodeDistanceAux
variable = distance
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = uniform
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_no_elements_in_bounding_box.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'left bottom'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.8 0.2 0'
[]
[createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
block_id = 0
boundary_id_old = 'right top'
boundary_id_new = 11
bottom_left = '1.7 0.7 0'
top_right = '2.1 1.1 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/j2_plasticity/tensor_mechanics_j2plasticity.i)
[Mesh]
displacements = 'x_disp y_disp z_disp'
[generated_mesh]
type = GeneratedMeshGenerator
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 6
input = generated_mesh
[]
[snode]
type = ExtraNodesetGenerator
coord = '1.0 0.0 0.0'
new_boundary = 7
input = cnode
[]
[]
[Variables]
[./x_disp]
order = FIRST
family = LAGRANGE
[../]
[./y_disp]
order = FIRST
family = LAGRANGE
[../]
[./z_disp]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'x_disp y_disp z_disp'
use_displaced_mesh = true
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block=0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'x_disp y_disp z_disp'
[../]
[]
[Functions]
[./topfunc]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./bottom3]
type = DirichletBC
variable = z_disp
boundary = 0
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = z_disp
boundary = 5
function = topfunc
[../]
[./corner1]
type = DirichletBC
variable = x_disp
boundary = 6
value = 0.0
[../]
[./corner2]
type = DirichletBC
variable = y_disp
boundary = 6
value = 0.0
[../]
[./corner3]
type = DirichletBC
variable = z_disp
boundary = 6
value = 0.0
[../]
[./side1]
type = DirichletBC
variable = y_disp
boundary = 7
value = 0.0
[../]
[./side2]
type = DirichletBC
variable = z_disp
boundary = 7
value = 0.0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[./pe11]
order = CONSTANT
family = MONOMIAL
[../]
[./pe22]
order = CONSTANT
family = MONOMIAL
[../]
[./pe33]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./pe11]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe11
index_i = 0
index_j = 0
[../]
[./pe22]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe22
index_i = 1
index_j = 1
[../]
[./pe33]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = pe33
index_i = 2
index_j = 2
[../]
[./eqv_plastic_strain]
type = MaterialRealAux
property = eqv_plastic_strain
variable = peeq
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full=true
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmax=1
dtmin=0.1
end_time=1.0
nl_abs_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/02_sub_sublimit.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/xfem/test/tests/pressure_bc/edge_3d_pressure.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = false
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 9
nz = 10
xmin = -0.1
xmax = 0.1
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
elem_type = HEX8
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = '-0.2 0.0 -0.5
-0.2 0.0 0.0
0.2 0.0 0.0
0.2 0.0 -0.5'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz'
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0 2.0 4.0 6.0 8.0'
y = '0 1000 0 1000 0'
[../]
[]
[DiracKernels]
[./p_x]
type = XFEMPressure
variable = disp_x
component = 0
function = pressure
[../]
[./p_y]
type = XFEMPressure
variable = disp_y
component = 1
function = pressure
[../]
[./p_z]
type = XFEMPressure
variable = disp_z
component = 2
function = pressure
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
boundary = 'bottom top'
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 'bottom top'
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = 'bottom top'
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
file_base = edge_3d_pressure_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_euler_angle.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[euler_angle_1]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_2]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[euler_angle_1]
type = MaterialRealVectorValueAux
variable = euler_angle_1
property = updated_Euler_angle
component = 0
execute_on = timestep_end
[]
[euler_angle_2]
type = MaterialRealVectorValueAux
variable = euler_angle_2
property = updated_Euler_angle
component = 1
execute_on = timestep_end
[]
[euler_angle_3]
type = MaterialRealVectorValueAux
variable = euler_angle_3
property = updated_Euler_angle
component = 2
execute_on = timestep_end
[]
[]
[BCs]
[Periodic]
[all]
variable = 'disp_x'
auto_direction = 'z'
[]
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '0.01*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
euler_angle_1 = 90
euler_angle_2 = 30
euler_angle_3 = 45
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[updated_euler_angle]
type = ComputeUpdatedEulerAngle
radian_to_degree = true
[]
[]
[Postprocessors]
[euler_angle_1]
type = ElementAverageValue
variable = euler_angle_1
[]
[euler_angle_2]
type = ElementAverageValue
variable = euler_angle_2
[]
[euler_angle_3]
type = ElementAverageValue
variable = euler_angle_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.1
dtmin = 0.01
end_time = 5
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/reference_residual/reference_residual_perfgraph.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./saved_t]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
volumetric_locking_correction = true
incremental = true
save_in = 'saved_x saved_y saved_z'
eigenstrain_names = thermal_expansion
strain = FINITE
decomposition_method = EigenSolution
extra_vector_tags = 'ref'
temperature = temp
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
save_in = saved_t
extra_vector_tags = 'ref'
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 1 2'
y = '0 1 1'
scale_factor = 0.1
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[../]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = bottom
value = 10.0
[../]
[./top_temp]
type = DirichletBC
variable = temp
boundary = top
value = 20.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
block = 0
eigenstrain_name = thermal_expansion
temperature = temp
thermal_expansion_coeff = 1e-5
stress_free_temperature = 0.0
[../]
[./heat1]
type = HeatConductionMaterial
block = 0
specific_heat = 1.0
thermal_conductivity = 1e-3 #Tuned to give temperature reference resid close to that of solidmech
[../]
[./density]
type = Density
block = 0
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
l_tol = 1e-3
l_max_its = 100
dt = 1.0
end_time = 2.0
[]
[Postprocessors]
[./res_calls]
type = PerfGraphData
section_name = "ReferenceResidualProblem::computeResidualInternal"
data_type = calls
[../]
[./elapsed]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_transfer_transformation/transfer_transformation_sub.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[./subdomain_id]
type = ElementSubdomainIDGenerator
input = gmg
subdomain_ids = '0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4'
[]
[./boundary01]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain_id
primary_block = '0'
paired_block = '1'
new_boundary = 'boundary01'
[]
[./boundary10]
type = SideSetsBetweenSubdomainsGenerator
input = boundary01
primary_block = '1'
paired_block = '0'
new_boundary = 'boundary10'
[]
[./boundary12]
type = SideSetsBetweenSubdomainsGenerator
input = boundary10
primary_block = '1'
paired_block = '2'
new_boundary = 'boundary12'
[]
[./boundary21]
type = SideSetsBetweenSubdomainsGenerator
input = boundary12
primary_block = '2'
paired_block = '1'
new_boundary = 'boundary21'
[]
[./boundary23]
type = SideSetsBetweenSubdomainsGenerator
input = boundary21
primary_block = '2'
paired_block = '3'
new_boundary = 'boundary23'
[]
[./boundary32]
type = SideSetsBetweenSubdomainsGenerator
input = boundary23
primary_block = '3'
paired_block = '2'
new_boundary = 'boundary32'
[]
[./boundary34]
type = SideSetsBetweenSubdomainsGenerator
input = boundary32
primary_block = '3'
paired_block = '4'
new_boundary = 'boundary34'
[]
[./boundary43]
type = SideSetsBetweenSubdomainsGenerator
input = boundary34
primary_block = '4'
paired_block = '3'
new_boundary = 'boundary43'
[]
uniform_refine = 3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./frommaster]
[]
[./frommasterelem]
order = constant
family = monomial
[../]
[]
[BCs]
[./left0]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right0]
type = DirichletBC
variable = u
boundary = boundary01
value = 1
[../]
[./right1]
type = DirichletBC
variable = u
boundary = boundary12
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = boundary23
value = 0
[../]
[./right3]
type = DirichletBC
variable = u
boundary = boundary34
value = 0
[../]
[./right4]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/functor_properties/functor-mat-props.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff_u]
type = FunctorMatDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = GenericFunctorMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[]
[block1]
type = GenericFunctorMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/sidesets_bounding_box_generator/multiple_boundary_ids_3d.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
#parallel_type = replicated
[]
[./createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gmg
boundary_id_old = 'left bottom front'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 -0.1'
top_right = '0.1 0.2 0.3'
block_id = 0
[]
[./createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
boundary_id_old = 'right top back'
boundary_id_new = 11
bottom_left = '0.6 0.7 0.8'
top_right = '1.1 1.1 1.1'
block_id = 0
[]
[./createNewSidesetThree]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetTwo
boundary_id_old = 'left top back'
boundary_id_new = 12
bottom_left = '-0.1 0.9 0.9'
top_right = '0.1 1.1 1.1'
block_id = 0
[]
[./createNewSidesetFour]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetThree
boundary_id_old = 'front'
boundary_id_new = 13
bottom_left = '0.4 0.4 0.9'
top_right = '0.6 0.6 1.1'
block_id = 0
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./firstBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[../]
[./secondBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[../]
[./thirdBC]
type = DirichletBC
variable = u
boundary = 12
value = 0
[../]
[./fourthBC]
type = DirichletBC
variable = u
boundary = 13
value = 0.5
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/cylindrical_test_no1.i)
# Problem II.1
#
# An infinitely long hollow cylinder has an inner radius ri and
# outer radius ro. It has a constant thermal conductivity k and
# internal heat generation q. It is allowed to reach thermal
# equilibrium while being exposed to constant temperatures on its
# inside and outside boundaries: u(ri) = ui and u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'ri ro ui uo'
vals = '0.2 1.0 300 0'
value = '( uo * log(ri) - ui * log(ro) + (ui-uo) * log(x) ) / log(ri/ro)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 5.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/outputs/intervals/multiple_sync_times.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus_3]
type = Exodus
interval = 3
file_base = multiple_sync_times_out_3
[../]
[./exodus_5]
type = Exodus
interval = 5
file_base = multiple_sync_times_out_5
[../]
[./exodus_sync_0]
type = Exodus
sync_times = '0.45 0.525 0.6'
sync_only = true
file_base = multiple_sync_times_sync_0
[../]
[./exodus_sync_1]
type = Exodus
sync_times = '0.475 0.485'
file_base = multiple_sync_times_sync_1
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_it_plot_test.i)
#
# 1-D Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two element blocks containing one element each. Each
# element is a unit cube. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far left boundary
# is ramped from 100 to 200 over one time unit, and then held fixed for an additional
# time unit. The temperature of the far right boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks:
#
# Flux = (T_left - T_right) * (gapK/gap_width)
#
# The gap conductivity is specified as 1, thus
#
# gapK(Tavg) = 1.0*Tavg
#
#
# The heat flux across the gap at time = 2 is then:
#
# Flux(2) = 100 * (1.0/1.0) = 100
#
# For comparison, see results from the flux post processors
#
[Mesh]
file = gap_heat_transfer_htonly_test.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_abs_tol = 1e-5
nl_rel_tol = 1e-12
l_tol = 1e-10
l_max_its = 100
start_time = 0.0
dt = 1e-1
end_time = 2.0
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
[Outputs]
file_base = out_it_plot
[./exodus]
type = Exodus
execute_on = 'initial timestep_end nonlinear'
nonlinear_residual_dt_divisor = 100
[../]
[]
(test/tests/auxkernels/old_older_material_aux/old_mat_in_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./old_mat_aux]
type = OldMaterialAux
property_name = prop
variable = aux
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./func]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericFunctionMaterial
prop_names = prop
prop_values = func
block = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/user_objects/user_object.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
initial_condition = 0.01
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./nodal]
type = AverageNodalVariableValue
variable = u
execute_on = 'TIMESTEP_END'
[../]
[./elemental]
type = ElementAverageValue
variable = u
execute_on = 'TIMESTEP_END'
[../]
[./general]
type = PointValue
point = '0.5 0.5 0'
variable = u
execute_on = 'TIMESTEP_END'
[../]
[./internal_side]
type = NumInternalSides
[../]
[./side]
type = SideAverageValue
boundary = right
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./pp_control]
type = TimePeriod
enable_objects = '*/nodal */elemental */general */internal_side */side'
start_time = 0.5
end_time = 1
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
(modules/fluid_properties/test/tests/auxkernels/fluid_density_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./pressure]
[../]
[./temperature]
[../]
[./density]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./pressure_ak]
type = ConstantAux
variable = pressure
value = 10e6
[../]
[./temperature_ak]
type = ConstantAux
variable = temperature
value = 400.0
[../]
[./density]
type = FluidDensityAux
variable = density
fp = eos
p = pressure
T = temperature
[../]
[]
[Modules]
[./FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial01_app_development/step01_moose_app/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/fluid_properties/test/tests/auxkernels/stagnation_temperature_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./specific_internal_energy]
[../]
[./specific_volume]
[../]
[./velocity]
[../]
[./stagnation_temperature]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./specific_internal_energy_ak]
type = ConstantAux
variable = specific_internal_energy
value = 1026.2e3
[../]
[./specific_volume_ak]
type = ConstantAux
variable = specific_volume
value = 0.0012192
[../]
[./velocity_ak]
type = ConstantAux
variable = velocity
value = 10.0
[../]
[./stagnation_temperature_ak]
type = StagnationTemperatureAux
variable = stagnation_temperature
e = specific_internal_energy
v = specific_volume
vel = velocity
fp = eos
[../]
[]
[Modules]
[./FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/ADCHSplitChemicalPotential/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[]
[Kernels]
[./conc]
type = ADCHSplitConcentration
variable = c
chemical_potential_var = mu
mobility = mobility_prop
[../]
[./chempot]
type = ADCHSplitChemicalPotential
variable = mu
chemical_potential = mu_prop
[../]
[./time]
type = ADTimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = ADPiecewiseLinearInterpolationMaterial
property = mu_prop
variable = c
x = '0 1'
y = '0 1'
[../]
[./mobility_prop]
type = ADGenericConstantMaterial
prop_names = mobility_prop
prop_values = 0.1
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 2'
dt = 0.1
num_steps = 20
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(python/chigger/tests/input/simple_diffusion_new_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[./New_0]
[../]
[]
[AuxKernels]
[./aux_kernel]
type = FunctionAux
variable = aux
function = sin(2*pi*x)*sin(2*pi*y)
execute_on = 'initial'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/Terminator/terminator_soft.i)
###########################################################
# This is a test of the UserObject System. The
# Terminator UserObject executes independently after
# each solve and can terminate the solve early due to
# user-defined criteria. (Type: GeneralUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[UserObjects]
[./arnold]
type = Terminator
expression = 'dt > 20'
fail_mode = SOFT
execute_on = TIMESTEP_END
[../]
[]
[Kernels]
[./cres]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./c]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 100
num_steps = 6
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
(test/tests/markers/error_fraction_marker/error_fraction_marker_no_clear_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./solution]
type = ParsedFunction
value = (exp(x)-1)/(exp(1)-1)
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 2
marker = marker
[./Indicators]
[./error]
type = AnalyticalIndicator
variable = u
function = solution
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = error
refine = 0.3
clear_extremes = false
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/temperature/elastic_temperature.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = t/100
[]
# Forced evolution of temperature
[temperature_load]
type = ParsedFunction
value = '273 + 10*t'
[]
# Factor to multiply the elasticity tensor in MOOSE
[elasticity_prefactor]
type = ParsedFunction
value = '273/(273 + 10*t)'
[]
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[temperature_function]
type = FunctionAux
variable = temperature
function = temperature_load
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'stress_yy'
[]
[]
[BCs]
[y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
# This input file is used to compare the MOOSE and UMAT models, activating
# specific ones with cli args.
# 1. Active for umat calculation
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_temperature'
num_state_vars = 0
temperature = temperature
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elastic]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000
poissons_ratio = 0.3
elasticity_tensor_prefactor = 'elasticity_prefactor'
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
num_steps = 30
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/functions/solution_function/solution_function_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[Functions]
[./initial_cond_func]
type = SolutionFunction
solution = ex_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[UserObjects]
[./ex_soln]
type = SolutionUserObject
system_variables = u
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/porous_flow/test/tests/fluidstate/coldwater_injection.i)
# Cold water injection into 1D hot reservoir (Avdonin, 1964)
#
# To generate results presented in documentation for this problem,
# set xmax = 50 and nx = 250 in the Mesh block, and dtmax = 100 and
# end_time = 1.3e5 in the Executioner block.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 25
xmax = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[temperature]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[temperature]
type = PorousFlowPropertyAux
variable = temperature
property = temperature
execute_on = 'initial timestep_end'
[]
[]
[Variables]
[pliquid]
initial_condition = 5e6
[]
[h]
scaling = 1e-6
[]
[]
[ICs]
[hic]
type = PorousFlowFluidPropertyIC
variable = h
porepressure = pliquid
property = enthalpy
temperature = 170
temperature_unit = Celsius
fp = water
[]
[]
[BCs]
[pleft]
type = DirichletBC
variable = pliquid
value = 5.05e6
boundary = left
[]
[pright]
type = DirichletBC
variable = pliquid
value = 5e6
boundary = right
[]
[hleft]
type = DirichletBC
variable = h
value = 678.52e3
boundary = left
[]
[hright]
type = DirichletBC
variable = h
value = 721.4e3
boundary = right
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pliquid
[]
[massflux]
type = PorousFlowAdvectiveFlux
variable = pliquid
[]
[heat]
type = PorousFlowEnergyTimeDerivative
variable = h
[]
[heatflux]
type = PorousFlowHeatAdvection
variable = h
[]
[heatcond]
type = PorousFlowHeatConduction
variable = h
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pliquid h'
number_fluid_phases = 2
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
pc_max = 1e6
sat_lr = 0.1
m = 0.5
alpha = 1e-5
[]
[fs]
type = PorousFlowWaterVapor
water_fp = water
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[watervapor]
type = PorousFlowFluidStateSingleComponent
porepressure = pliquid
enthalpy = h
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
sum_s_res = 0.1
[]
[internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2900
specific_heat_capacity = 740
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '20 0 0 0 20 0 0 0 20'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 5e3
nl_abs_tol = 1e-10
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
[]
[]
[VectorPostprocessors]
[line]
type = ElementValueSampler
sort_by = x
variable = temperature
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
[csv]
type = CSV
execute_on = final
[]
[]
(tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7a_coarse.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 3
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = left
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[column]
type = PackedColumn
radius = 1
temperature = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
end_time = 100
dt = 0.25
start_time = -1
steady_state_tolerance = 1e-5
steady_state_detection = true
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/output/output_multiple_files.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property'
outputs = exodus1
variable = u
[../]
[./block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property'
outputs = exodus2
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./exodus1]
type = Exodus
hide = u
[../]
[./exodus2]
type = Exodus
hide = u
[../]
[]
(test/tests/parser/cli_multiapp_all/dt_from_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[MultiApps]
[./sub_left]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_master_sub.i'
app_type = MooseTestApp
[../]
[./sub_right]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_master_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/tensor_mechanics/test/tests/orthotropic_plasticity/powerRuleHardening.i)
# UserObject Orthotropic test, with power rule hardening with rate 1e1.
# Linear strain is applied in the x direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e1
[../]
[./Orthotropic]
type = TensorMechanicsPlasticOrthotropic
b = -0.1
c1 = '1 1 1 1 1 1'
c2 = '1 1 1 1 1 1'
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = Orthotropic
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = .25
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
perf_graph = false
csv = true
[]
(test/tests/markers/boundary_marker/adjacent.i)
###########################################################
# This is a test of the Mesh Marker System. It marks
# elements with flags indicating whether they should be
# refined, coarsened, or left alone. This system
# has the ability to use the Mesh Indicator System.
#
# @Requirement F2.50
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# Mesh Marker System
[Adaptivity]
[Markers]
[boundary]
type = BoundaryMarker
next_to = right
mark = refine
[]
[]
initial_marker = boundary
initial_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/perf_graph/multi_app/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0'
type = TransientMultiApp
input_files = 'sub.i'
app_type = MooseTestApp
[../]
[]
(modules/richards/test/tests/buckley_leverett/bl01_lumped.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-4
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
active = 'calculate_seff'
[./calculate_seff]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_pressure
[../]
[../]
[]
[BCs]
active = 'left'
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 980000
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Functions]
active = 'initial_pressure'
[./initial_pressure]
type = ParsedFunction
value = max((1000000-x/5*1000000)-20000,-20000)
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20'
[../]
[]
[Executioner]
type = Transient
end_time = 50
dt = 2
snesmf_reuse_base = false
[]
[Outputs]
file_base = bl01_lumped
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/kernels/kernel_precompute/adkernel_precompute_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = convected
[../]
[./conv]
type = ADConvectionPrecompute
variable = convected
velocity = '1.0 0.0 0.0'
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = convected
preset = false
boundary = 'left'
value = 0
[../]
[./top]
type = DirichletBC
variable = convected
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/postprocessors/element_variable_value/elemental_variable_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 1
ymax = 0.1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 10
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./elem_left]
type = ElementalVariableValue
variable = u
elementid = 0
[]
[./elem_right]
type = ElementalVariableValue
variable = u
elementid = 9
[]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/1D_spherical/smallStrain_1DSphere.i)
# This simulation models the mechanics solution for a solid sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner center of the sphere, r = 0, is pinned to prevent
# movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{- P * (1 - 2 * v) * r}{E}
#
# where P is the applied pressure, v is Poisson's ration, E is Young's Modulus,
# and r is the radial position.
#
# The test assumes a radius of 4, zero displacement at r = 0mm, and an applied
# outer pressure of 1MPa. Under these conditions in a solid sphere, the radial
# stress is constant and has a value of -1 MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 4
nx = 4
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
add_variables = true
save_in = residual_r
generate_output = 'spherical_hoop_stress spherical_radial_stress'
spherical_center_point = '0.0 0.0 0.0'
[]
[]
[AuxVariables]
[residual_r]
[]
[]
[Postprocessors]
[stress_rr]
type = ElementAverageValue
variable = spherical_radial_stress
[]
[stress_tt]
type = ElementAverageValue
variable = spherical_hoop_stress
[]
[residual_r]
type = NodalSum
variable = residual_r
boundary = right
[]
[]
[BCs]
[innerDisp]
type = DirichletBC
boundary = left
variable = disp_r
value = 0.0
[]
[outerPressure]
type = Pressure
boundary = right
variable = disp_r
factor = 1
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[]
[stress]
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 0.25
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/missing_material_prop_test2.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_km_kernel]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat11]
type = GenericConstantMaterial
block = 1
prop_names = 'diff1'
prop_values = '1'
[../]
[./mat12]
type = GenericConstantMaterial
block = 1
prop_names = 'diff2'
prop_values = '1'
[../]
[./mat22]
type = GenericConstantMaterial
block = 2
prop_names = 'diff2'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
[Debug]
show_material_props = true
[]
(test/tests/outputs/console/console_off.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
console=false
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test4.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 0.03
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 10000
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 5.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Outputs]
[]
(test/tests/postprocessors/mms_slope/mms_slope_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
# do not use uniform refine, we are using adaptive refining
# uniform_refine = 6
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func u_func'
[./forcing_func]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[./u_func]
type = ParsedGradFunction
value = sin(alpha*pi*x)
grad_x = alpha*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-14
[./Adaptivity]
# if the refine fraction is 1 it will refine every element
# remember < 1 means only refine that percentage of elements
refine_fraction = 1
steps = 6
# do not coarsen at all
coarsen_fraction = 0
# maximum level of refinement steps, make sure this is > max_r_steps
max_h_level = 10
# leave this as is
error_estimator = KellyErrorEstimator
[../]
[]
# print l2 and h1 errors from the Postprocessors too so I can compare
[Postprocessors]
active = 'l2_error h1_error dofs'
# active = ' '
[./l2_error]
type = ElementL2Error
variable = u
function = u_func
[../]
[./h1_error]
type = ElementH1Error
variable = u
function = u_func
[../]
[./dofs]
type = NumDOFs
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_multiple_action_and_materials.i)
[Mesh]
[./msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 4
zmin = 0
zmax = 4
[../]
[./subdomain_id]
type = ElementSubdomainIDGenerator
input = msh
subdomain_ids = '0 1 2 3'
[]
[./split]
type = BreakMeshByBlockGenerator
input = subdomain_id
split_interface = true
[]
[add_side_sets]
input = split
type = SideSetsFromNormalsGenerator
normals = '0 -1 0
0 1 0
-1 0 0
1 0 0
0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'y0 y1 x0 x1 z0 z1'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./stretch]
type = PiecewiseLinear
x = '0 1'
y = '0 100'
[../]
[]
[Constraints]
[x1]
type = EqualValueBoundaryConstraint
variable = disp_x
secondary = 'x1' # boundary
penalty = 1e6
[]
[y1]
type = EqualValueBoundaryConstraint
variable = disp_y
secondary = 'y1' # boundary
penalty = 1e6
[]
[]
[BCs]
[./fix_x]
type = DirichletBC
preset = true
value = 0.0
boundary = x0
variable = disp_x
[../]
[./fix_y]
type = DirichletBC
preset = true
value = 0.0
boundary = y0
variable = disp_y
[../]
[./fix_z]
type = DirichletBC
preset = true
value = 0.0
boundary = z0
variable = disp_z
[../]
[./back_z]
type = FunctionNeumannBC
boundary = z1
variable = disp_z
use_displaced_mesh = false
function = stretch
[../]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[./czm_ik_012]
boundary = 'Block0_Block1 Block1_Block2'
base_name = 'czm_b012'
[../]
[./czm_ik_23]
boundary = 'Block2_Block3'
base_name = 'czm_b23'
[../]
[]
[Materials]
# cohesive materials
[./czm_3dc]
type = SalehaniIrani3DCTraction
boundary = 'Block0_Block1 Block1_Block2'
normal_gap_at_maximum_normal_traction = 1
tangential_gap_at_maximum_shear_traction = 0.5
maximum_normal_traction = 500
maximum_shear_traction = 300
base_name = 'czm_b012'
[../]
[./czm_elastic_incremental]
type = PureElasticTractionSeparationIncremental
boundary = 'Block2_Block3'
normal_stiffness = 500
tangent_stiffness = 300
base_name = 'czm_b23'
[../]
# bulk materials
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200e4
poissons_ratio = 0.3
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
use_automatic_differentiation = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_xz'
[../]
[../]
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
l_max_its = 20
start_time = 0.0
dt = 0.25
dtmin = 0.25
num_steps =1
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_3/ring3_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
# petsc_options = '-mat_superlu_dist_iterrefine -mat_superlu_dist_replacetinypivot'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(test/tests/test_harness/bad_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = BogusKernel
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4 # Gold file only has 4 steps
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/ad_action/two_coord.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 16
ny = 8
xmin = -1
xmax = 1
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-1 0 0'
top_right = '0 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[Problem]
coord_type = 'XYZ RZ'
block = '1 2'
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
active = 'block1 block2'
[./error]
strain = SMALL
add_variables = true
[../]
[./block1]
strain = SMALL
add_variables = true
block = 1
use_automatic_differentiation = true
[../]
[./block2]
strain = SMALL
add_variables = true
block = 2
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./vmstress]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./vmstress]
type = ADRankTwoScalarAux
rank_two_tensor = total_strain
variable = vmstress
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress]
type = ADComputeLinearElasticStress
block = '1 2'
[../]
[]
[BCs]
[./topx]
type = DirichletBC
boundary = 'top'
variable = disp_x
value = 0.0
[../]
[./topy]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./bottomx]
type = DirichletBC
boundary = 'bottom'
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.05
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/simple_transient_diffusion/functor_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = FunctorMatDiffusion
variable = u
diffusivity = 0.1
[]
[time]
type = FunctorTimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/grid-sequencing/vi-fine-alone.i)
l=10
nx=80
num_steps=2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_incremental.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
incremental = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/controls/tag_based_naming_access/system_asterisk_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag/*/point'
execute_on = 'initial'
[../]
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[from_sub]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
positions = '0.2 0.2 0 0.7 0.7 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub0.i sub1.i'
[]
[]
[Transfers]
[pp_transfer]
postprocessor = average
variable = from_sub
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = sub
[]
[]
(test/tests/materials/material/adv_mat_couple_test2.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat_3]
type = GenericConstantMaterial
prop_names = 'prop3'
prop_values = '300'
block = '1 2'
[../]
[./mat_2]
type = CoupledMaterial
mat_prop = 'prop2'
coupled_mat_prop = 'prop3'
block = '1 2'
[../]
[./mat_1]
type = CoupledMaterial2
mat_prop = 'prop1'
coupled_mat_prop1 = 'prop2'
coupled_mat_prop2 = 'prop3'
block = '1 2'
[../]
[]
[Executioner]
type = Steady
# solve_type = 'PJFNK'
# preconditioner = 'ILU'
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out_adv_coupled2
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-weighted-gap.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[normal_lm]
block = 3
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = true
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/xfem/test/tests/single_var_constraint_2d/stationary_equal.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/examples/coal_mining/fine.i)
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/fine.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
value = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '100.0 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '100.0 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5
end_time = 100.0
[]
[Outputs]
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(test/tests/time_integrators/bdf2/bdf2_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/picard_multilevel/2level_picard/mutilevel_app.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
initial_condition = 50
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = u
[]
[source]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = u
boundary = '1'
value = 100
[]
[]
[Postprocessors]
[avg_u]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_begin timestep_end'
[]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_begin timestep_end'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
fixed_point_rel_tol = 1E-3
fixed_point_abs_tol = 1.0e-05
fixed_point_max_its = 2
accept_on_max_fixed_point_iteration = true
[]
[MultiApps]
[level1-]
type = FullSolveMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub_level1.i
execute_on = 'timestep_end'
keep_solution_during_restore = true
[]
[]
[Transfers]
[u_to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = u
variable = u
to_multi_app = level1-
execute_on = 'timestep_end'
[]
[v_from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = v
variable = v
from_multi_app = level1-
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[screen]
type = Console
execute_postprocessors_on= "timestep_end timestep_begin"
[]
[]
(modules/xfem/test/tests/solid_mechanics_basic/crack_propagation_2d.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
use_crack_growth_increment = true
crack_growth_increment = 0.2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.7 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./xfem_marker_uo]
type = XFEMRankTwoTensorMarkerUserObject
execute_on = timestep_end
tensor = stress
scalar_type = MaxPrincipal
threshold = 5e+1
average = true
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 50 100'
y='0 0.02 0.1'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pull
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 2.0
num_steps = 5000
max_xfem_update = 1
[]
[Outputs]
file_base = crack_propagation_2d_out
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
(modules/contact/tutorials/introduction/step02.i)
#
# Switching to mortar based mechanical contact
# https://mooseframework.inl.gov/modules/contact/tutorials/introduction/step02.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
block = 0
[]
[Mesh]
[generated1]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 15
xmin = -0.6
xmax = -0.1
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar1
[]
[generated2]
type = GeneratedMeshGenerator
dim = 2
nx = 6
ny = 15
xmin = 0.1
xmax = 0.6
# avoid edge-to-edge contact (work in progress)
ymax = 4.999
bias_y = 0.9
boundary_name_prefix = pillar2
boundary_id_offset = 4
[]
[collect_meshes]
type = MeshCollectionGenerator
inputs = 'generated1 generated2'
[]
patch_update_strategy = iteration
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'vonmises_stress'
[]
[]
[Contact]
[pillars]
primary = pillar1_right
secondary = pillar2_left
model = frictionless
formulation = mortar
[]
[]
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[Pressure]
[sides]
boundary = 'pillar1_left pillar2_right'
# we square time here to get a more progressive loading curve
# (more pressure later on once contact is established)
function = 1e4*t^2
[]
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 0.5
[Predictor]
type = SimplePredictor
scale = 1
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/dirackernels/constant_point_source/1d_point_source.i)
###########################################################
# This is test of the Dirac delta function System. The
# ConstantPointSource object is used to apply a constant
# Dirac delta contribution at a specified point in the
# domain.
#
# @Requirement F3.50
###########################################################
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
[./point_source1]
type = ConstantPointSource
variable = u
value = 1.0
point = '0.2 0 0'
[../]
[./point_source2]
type = ConstantPointSource
variable = u
value = -0.5
point = '0.7 0 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = 1d_out
exodus = true
[]
(test/tests/postprocessors/side_diffusive_flux_average/side_diffusive_flux_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./right_bc]
# Flux BC for computing the analytical solution in the postprocessor
type = ParsedFunction
value = exp(y)+1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = right
function = right_bc
[../]
[]
[Materials]
[./mat_props]
type = GenericConstantMaterial
block = 0
prop_names = diffusivity
prop_values = 2
[../]
[./mat_props_bnd]
type = GenericConstantMaterial
boundary = right
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxAverage
variable = u
boundary = right
diffusivity = diffusivity
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(python/chigger/tests/input/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
use_problem_dimension = false
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/thermal_expansion/constrained.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
eigenstrain_names = "thermal_contribution"
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[control_temperature]
type = FunctionAux
variable = temperature
function = temperature_control
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[rightx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[]
[Functions]
[temperature_control]
type = ParsedFunction
value = '100*t'
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = SMALL
new_system = true
formulation = TOTAL
volumetric_locking_correction = false
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[thermal_expansion]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1.0e-3
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
end_time = 1
dt = 1
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(test/tests/preconditioners/smp/smp_group_test.i)
###########################################################
# This test exercises the customer Preconditioner System.
# A Single Matrix Preconditioner is built using
# coupling specified by the user.
#
# @Requirement F1.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[./v]
[../]
[./p]
[../]
[./q]
[../]
[]
# Single Matrix Preconditioner
[Preconditioning]
[./SMP]
type = SMP
coupled_groups = 'u,v p,q'
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./diff_p]
type = Diffusion
variable = p
[../]
[./conv_p]
type = CoupledForce
variable = p
v = q
[../]
[./diff_q]
type = Diffusion
variable = q
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./bottom_v]
type = DirichletBC
variable = v
boundary = 0
value = 5
[../]
[./top_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[./left_p]
type = DirichletBC
variable = p
boundary = 1
value = 2
[../]
[./bottom_q]
type = DirichletBC
variable = q
boundary = 0
value = 3
[../]
[./top_q]
type = DirichletBC
variable = q
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_max_its = 2
[]
[Outputs]
exodus = true
[]
(test/tests/misc/exception/parallel_exception_jacobian.i)
[Mesh]
file = 2squares.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = jacobian
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = TestSteady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_small_strain_y_action.i)
# Test for small strain Euler beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
file_base = 'euler_small_strain_y_out'
exodus = true
[]
(test/tests/multiapps/check_error/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/mass01_fully_saturated.i)
# FullySaturatedMassTimeDerivative
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y disp_z'
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
bulk_modulus = 1.5
density0 = 1.0
[]
[]
[]
[Variables]
[pp]
[]
[T]
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[pp]
type = RandomIC
variable = pp
min = 0
max = 1
[]
[T]
type = RandomIC
variable = T
min = 0
max = 1
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = pp
coupling_type = ThermoHydroMechanical
biot_coefficient = 0.9
[]
[dummyT]
type = TimeDerivative
variable = T
[]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp disp_x disp_y disp_z T'
number_fluid_phases = 1
number_fluid_components = 1
[]
[simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1E20
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 2.0
shear_modulus = 3.0
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst # only the initial vaue of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.9
fluid_bulk_modulus = 1.5
solid_bulk_compliance = 0.5
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.9
fluid_coefficient = 0.5
drained_coefficient = 0.4
[]
[]
[Preconditioning]
[check]
type = SMP
full = true
#petsc_options = '-snes_test_display'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 2
[]
[Outputs]
exodus = false
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_steady.i)
# Pressure pulse in 1D with 1 phase - steady
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[]
[Kernels]
active = flux
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_steady
print_linear_residuals = false
csv = true
[]
(test/tests/meshgenerators/file_mesh_generator/2d_diffusion_test.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 4
ny = 4
dim = 2
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest6.i)
# 3D, non-concave
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 2
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 2
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[SubdomainBoundingBox3]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox2
block_id = 1
bottom_left = '2 2 1'
top_right = '3 3 2'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox3
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/format/output_test_gnuplot_ps.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Gnuplot
extension = ps
[../]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test1tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test1tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test1tt_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/check_error/num_constants.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = cube.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 1e6
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/heat_conduction/test/tests/heat_source_bar/ad_heat_source_bar.i)
# This is a simple 1D test of the volumetric heat source with material properties
# of a representative ceramic material. A bar is uniformly heated, and a temperature
# boundary condition is applied to the left side of the bar.
# Important properties of problem:
# Length: 0.01 m
# Thermal conductivity = 3.0 W/(mK)
# Specific heat = 300.0 J/K
# density = 10431.0 kg/m^3
# Prescribed temperature on left side: 600 K
# When it has reached steady state, the temperature as a function of position is:
# T = -q/(2*k) (x^2 - 2*x*length) + 600
# or
# T = -6.3333e+7 * (x^2 - 0.02*x) + 600
# on left side: T=600, on right side, T=6933.3
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 0.01
nx = 20
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
thermal_conductivity = thermal_conductivity
[../]
[./heatsource]
type = ADMatHeatSource
material_property = volumetric_heat
variable = temp
scalar = 10
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 600
[../]
[]
[Materials]
[./density]
type = ADGenericConstantMaterial
prop_names = 'density thermal_conductivity volumetric_heat '
prop_values = '10431.0 3.0 3.8e7'
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./right]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./error]
type = NodalL2Error
function = '-3.8e+8/(2*3) * (x^2 - 2*x*0.01) + 600'
variable = temp
[../]
[]
[Outputs]
execute_on = FINAL
exodus = true
[]
(modules/porous_flow/test/tests/mass_conservation/mass11.i)
# The sample is a single unit element, with roller BCs on the sides and bottom.
# The top is free to move and fluid is injected at a constant rate of 1kg/s
# There is no fluid flow.
# Fluid mass conservation is checked.
# Under these conditions the fluid mass should increase at 1kg/s
# The porepressure should increase: rho0 * exp(P/bulk) = rho * exp(P0/bulk) + 1*t
# The stress_zz should be exactly biot * P since total stress is zero
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
initial_condition = 0.1
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[]
[DiracKernels]
[inject]
type = PorousFlowPointSourceFromPostprocessor
point = '0 0 0'
mass_flux = 1.0
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
use_displaced_mesh = false
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 2
[]
[Outputs]
execute_on = 'initial timestep_end'
[csv]
type = CSV
[]
[]
(test/tests/misc/check_error/coupling_field_into_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
[]
[AuxVariables]
[./v]
[../]
[]
[Variables]
[./u]
[../]
[./a]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./slm]
type = ScalarLagrangeMultiplier
variable = u
# this should trigger an error message, lambda is scalar
lambda = v
[../]
[]
[ScalarKernels]
[./alpha]
type = AlphaCED
variable = a
value = 1
[../]
[]
[BCs]
[./all]
type = DirichletBC
boundary = 'left right top bottom'
variable = u
value = 0
[../]
[]
[Executioner]
type = Steady
[]
(modules/peridynamics/test/tests/simple_tests/2D_regularD_constH_BPD.i)
# Test for bond-based peridynamic formulation
# for regular grid from generated mesh with const bond constants
# Square plate with Dirichlet boundary conditions applied
# at the left, top and bottom edges
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialBPD
[../]
[]
[Functions]
[./disp_x_anal]
type = PiecewiseLinear
axis = x
x = '0 1'
y = '0 -0.00033'
[../]
[./disp_y_anal]
type = PiecewiseLinear
axis = y
x = '0 1'
y = '-0.001 0'
[../]
[]
[Postprocessors]
[./anal_disp_L2]
type = NodalFunctionsL2NormPD
functions = 'disp_x_anal disp_y_anal'
[../]
[./disp_diff_L2]
type = NodalDisplacementDifferenceL2NormPD
analytic_functions = 'disp_x_anal disp_y_anal'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[]
[Outputs]
file_base = 2D_regularD_constH_BPD
exodus = true
[]
(modules/phase_field/examples/kim-kim-suzuki/kks_example_dirichlet.i)
#
# KKS simple example in the split form
#
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 50
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 0.4
zmin = 0
zmax = 0
[]
[AuxVariables]
[./Fglobal]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# hydrogen concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# Liquid phase solute concentration
[./cl]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# Solid phase solute concentration
[./cs]
order = FIRST
family = LAGRANGE
initial_condition = 0.9
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 0.5*(1.0-tanh((x)/sqrt(2.0)))
[../]
[./ic_func_c]
type = ParsedFunction
value = '0.9*(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10)+0.1*(1-(0.5*(1.0-tanh(x/sqrt(2.0))))^3*(6*(0.5*(1.0-tanh(x/sqrt(2.0))))^2-15*(0.5*(1.0-tanh(x/sqrt(2.0))))+10))'
[../]
[]
[ICs]
[./eta]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = 'c'
boundary = 'left'
value = 0.5
[../]
[./left_eta]
type = DirichletBC
variable = 'eta'
boundary = 'left'
value = 0.5
[../]
[]
[Materials]
# Free energy of the liquid
[./fl]
type = DerivativeParsedMaterial
f_name = fl
args = 'cl'
function = '(0.1-cl)^2'
[../]
# Free energy of the solid
[./fs]
type = DerivativeParsedMaterial
f_name = fs
args = 'cs'
function = '(0.9-cs)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L eps_sq'
prop_values = '0.7 0.7 1.0 '
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cl + h(eta)*cs
[./PhaseConc]
type = KKSPhaseConcentration
ca = cl
variable = cs
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotSolute]
type = KKSPhaseChemicalPotential
variable = cl
cb = cs
fa_name = fl
fb_name = fs
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cl
fa_name = fl
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = fl
fb_name = fs
w = 1.0
args = 'cl cs'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cl
cb = cs
fa_name = fl
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = eps_sq
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./GlobalFreeEnergy]
variable = Fglobal
type = KKSGlobalFreeEnergy
fa_name = fl
fb_name = fs
w = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm ilu nonzero'
l_max_its = 100
nl_max_its = 100
nl_abs_tol = 1e-10
end_time = 800
dt = 4.0
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[./integral]
type = ElementL2Error
variable = eta
function = ic_func_eta
[../]
[]
[Outputs]
exodus = true
console = true
gnuplot = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.q_wall_transfer_3eqn.master.i)
# This tests a heat flux transfer using the MultiApp system. Simple heat
# conduction problem is solved, then the heat flux is picked up by the slave
# side of the solve, slave side solves and transfers its variables back to the
# master
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 1
nx = 10
[]
[Functions]
[sin_fn]
type = ParsedFunction
value = '1000*t*sin(pi*x)'
[]
[]
[Variables]
[T]
[]
[]
[AuxVariables]
[q_wall]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[q_wal_ak]
type = FunctionAux
variable = q_wall
function = sin_fn
execute_on = 'initial timestep_end'
[]
[]
[ICs]
[T_ic]
type = ConstantIC
variable = T
value = 300
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = T
[]
[diff]
type = Diffusion
variable = T
[]
[]
[BCs]
[left]
type = DirichletBC
variable = T
boundary = 'left right'
value = 300
[]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 2
nl_abs_tol = 1e-10
abort_on_solve_fail = true
[]
[MultiApps]
[thm]
type = TransientMultiApp
app_type = ThermalHydraulicsApp
input_files = phy.q_wall_transfer_3eqn.slave.i
execute_on = 'initial timestep_end'
[]
[]
[Transfers]
[q_to_thm]
type = MultiAppNearestNodeTransfer
to_multi_app = thm
source_variable = q_wall
variable = q_wall
[]
[]
[Outputs]
exodus = true
show = 'q_wall'
[]
(test/tests/meshgenerators/sidesets_bounding_box_generator/overlapping_sidesets_not_found.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
[]
[./createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gmg
boundary_id_old = 'bottom top'
boundary_id_new = 11
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
block_id = 0
boundary_id_overlap = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./BCone]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./BCtwo]
type = DirichletBC
variable = u
boundary = 11
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized_with_temp.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[temperature][]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = temperature
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'k'
[../]
[temperature_supg]
type = INSADEnergySUPG
variable = temperature
velocity = velocity
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[./temperature_hot]
type = DirichletBC
variable = temperature
boundary = 'bottom'
value = 1
[../]
[./temperature_cold]
type = DirichletBC
variable = temperature
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temperature
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/vector_postprocessor_visualization/vector_postprocessor_visualization.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
parallel_type = REPLICATED
partitioner = linear
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[num_elems]
family = MONOMIAL
order = CONSTANT
[]
[partition_surface_area]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[wb_num_elems]
type = VectorPostprocessorVisualizationAux
vpp = 'wb'
vector_name = num_elems
variable = num_elems
execute_on = 'TIMESTEP_END'
[]
[wb_partition_surface_area]
type = VectorPostprocessorVisualizationAux
vpp = 'wb'
vector_name = partition_surface_area
variable = partition_surface_area
execute_on = 'TIMESTEP_END'
[]
[]
[VectorPostprocessors]
[wb]
type = WorkBalance
sync_to_all_procs = 'true'
execute_on = 'INITIAL'
[]
[]
(test/tests/transfers/multiapp_userobject_transfer/tosub_displaced_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
initial_condition = 0.0
[../]
[./disp_y]
initial_condition = 0.5
[../]
[]
[Functions]
[./axial_force]
type = ParsedFunction
value = 1000*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = axial_force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
coord_type = rz
type = FEProblem
[]
(tutorials/tutorial02_multiapps/step01_multiapps/06_sub_twoapps.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/interfacekernels/1d_interface/mixed_shapes.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[./interface_again]
input = interface
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'primary1_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = MONOMIAL
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[../]
[./diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
[../]
[./body_u]
type = BodyForce
variable = u
block = 0
function = 'x^3+x^2+x+1'
[../]
[./body_v]
type = BodyForce
variable = v
block = 1
function = 'x^3+x^2+x+1'
[../]
[]
[DGKernels]
[./dg_diff_v]
type = DGDiffusion
variable = v
block = 1
diff = 2
sigma = 6
epsilon = -1
[../]
[]
[InterfaceKernels]
[./interface]
type = OneSideDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
D = 4
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
# [./right]
# type = DirichletBC
# variable = v
# boundary = 'right'
# value = 0
# [../]
[./right]
type = DGFunctionDiffusionDirichletBC
variable = v
boundary = 'right'
function = 0
epsilon = -1
sigma = 6
[../]
[./middle]
type = NeumannBC
variable = u
boundary = 'primary0_interface'
value = '.5'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/bcs/coupled_var_neumann/on_off.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./coupled_bc_var]
[../]
[./active]
initial_condition = 1
[../]
[]
[AuxKernels]
[./active_right]
type = ConstantAux
variable = active
value = 0.5
boundary = 1
[../]
[]
[ICs]
[./coupled_bc_var]
type = FunctionIC
variable = coupled_bc_var
function = set_coupled_bc_var
[../]
[]
[Functions]
[./set_coupled_bc_var]
type = ParsedFunction
value = 'y - 0.5'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = CoupledVarNeumannBC
variable = u
boundary = 1
v = coupled_bc_var
scale_factor = active
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first and third frequencies of this beam are:
# f1 = 1/(2 pi) * (3.5156/L^2) * sqrt(EI/rho)
# f2 = 6.268 f1
# This implies that the corresponding time period of this beam are 2.858 s and 0.455s
# The FEM solution for this beam with 10 element gives time periods of 2.856 s and 0.4505s with a time step of 0.01.
# A smaller time step is required to obtain a closer match for the lower time periods/higher frequencies.
# A higher time step of 0.05 is used in this test to reduce testing time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0 0.0 0.0 0.0
# 0.05 0.0016523559162602 0.066094236650407 2.6437694660163
# 0.1 0.0051691308901533 0.07457676230532 -2.3044684398197
# 0.15 0.0078956772343372 0.03448509146203 4.7008016060883
# 0.2 0.0096592517031463 0.03605788729033 -0.63788977295649
# 0.25 0.011069233444348 0.020341382357756 0.0092295756535376
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
dim = 1
nx = 10
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.05 0.1 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.05
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/initial_stress/gravity.i)
# Apply an initial stress that should be
# exactly that caused by gravity, and then
# do a transient step to check that nothing
# happens
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -10
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./weight]
type = BodyForce
variable = disp_z
value = -0.5 # this is density*gravity
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./x]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./weight]
type = ParsedFunction
value = '0.5*z' # initial stress that should result from the weight force
[../]
[./kxx]
type = ParsedFunction
value = '0.4*z' # some arbitrary xx and yy stress that should not affect the result
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.25
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'kxx 0 0 0 kxx 0 0 0 weight'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.0
dt = 1.0
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-8
nl_rel_tol = 1E-12
l_tol = 1E-3
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = gravity
exodus = true
[]
(test/tests/misc/intermittent_failure/intermittent_failure.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# This object will behave different on different invocations if
# MOOSE_ENABLE_INTERMITTENT_FAILURES is set
[UserObjects]
[intermittent_failure]
type = IntermittentFailureUO
timestep_to_fail = 2
[]
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_reporter_transfer/between_multiapp/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 3
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[VectorPostprocessors]
[base_sub1_vpp]
type = ConstantVectorPostprocessor
vector_names = 'a b'
value = '25 25 25; 12 12 13'
[]
[from_sub0_vpp]
type = ConstantVectorPostprocessor
vector_names = 'a b'
value = '101 102 103 ; 201 202 203'
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/materials/functor_properties/prop-caching.i)
n=5
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = ${n}
ny = ${n}
nz = ${n}
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff_u]
type = FunctorMatDiffusion
variable = u
diffusivity = 'slow_prop'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 0
[]
[]
[Materials]
[slow_prop]
type = ReallyExpensiveFunctorMaterial
execute_on = 'always'
[]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/surface_tension_KKS/surface_tension_KKS.i)
#
# KKS coupled with elasticity. Physical parameters for matrix and precipitate phases
# are gamma and gamma-prime phases, respectively, in the Ni-Al system.
# Parameterization is as described in L.K. Aagesen et al., Computational Materials
# Science, 140, 10-21 (2017), with isotropic elastic properties in both phases
# and without eigenstrain.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 200
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# solute concentration
[./c]
order = FIRST
family = LAGRANGE
[../]
# chemical potential
[./w]
order = FIRST
family = LAGRANGE
[../]
# solute phase concentration (matrix)
[./cm]
order = FIRST
family = LAGRANGE
initial_condition = 0.13
[../]
# solute phase concentration (precipitate)
[./cp]
order = FIRST
family = LAGRANGE
initial_condition = 0.235
[../]
[]
[AuxVariables]
[./energy_density]
family = MONOMIAL
[../]
[./extra_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./extra_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./c_ic]
variable = c
type = FunctionIC
function = ic_func_c
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '6.431 100'
[../]
[./ic_func_c]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));0.235*eta_an^3*(6*eta_an^2-15*eta_an+10)+0.13*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0'
vals = '6.431 100'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce c = (1-h(eta))*cm + h(eta)*cp
[./PhaseConc]
type = KKSPhaseConcentration
ca = cm
variable = cp
c = c
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cm
cb = cp
fa_name = f_total_matrix
fb_name = f_total_ppt
[../]
#
# Cahn-Hilliard Equation
#
[./CHBulk]
type = KKSSplitCHCRes
variable = c
ca = cm
fa_name = f_total_matrix
w = w
[../]
[./dcdt]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./ckernel]
type = SplitCHWRes
mob_name = M
variable = w
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_ppt
w = 0.0033
args = 'cp cm'
[../]
[./ACBulkC]
type = KKSACBulkC
variable = eta
ca = cm
cb = cp
fa_name = f_total_matrix
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[AuxKernels]
[./extra_xx]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 0
index_j = 0
variable = extra_xx
[../]
[./extra_yy]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 1
index_j = 1
variable = extra_yy
[../]
[./extra_zz]
type = RankTwoAux
rank_two_tensor = extra_stress
index_i = 2
index_j = 2
variable = extra_zz
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain_xx
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = strain_yy
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cm'
function = '6.55*(cm-0.13)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cm'
[../]
# Free energy of the precipitate phase
[./fp]
type = DerivativeParsedMaterial
f_name = fp
args = 'cp'
function = '6.55*(cp-0.235)^2'
[../]
# Elastic energy of the precipitate
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = ppt
f_name = fe_p
args = ' '
[../]
# Total free energy of the precipitate
[./Total_energy_ppt]
type = DerivativeSumMaterial
f_name = f_total_ppt
sum_materials = 'fp fe_p'
args = 'cp'
[../]
# Total elastic energy
[./Total_elastic_energy]
type = DerivativeTwoPhaseMaterial
eta = eta
f_name = f_el_mat
fa_name = fe_m
fb_name = fe_p
outputs = exodus
W = 0
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
outputs = exodus
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa'
prop_values = '0.7 0.7 0.1365'
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = matrix
fill_method = symmetric_isotropic
[../]
[./Stiffness_ppt]
type = ComputeElasticityTensor
C_ijkl = '74.25 14.525'
base_name = ppt
fill_method = symmetric_isotropic
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_ppt]
type = ComputeRSphericalSmallStrain
base_name = ppt
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
base_name = ppt
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./interface_stress]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.0033
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
#
# Precondition using handcoded off-diagonal terms
#
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-9
nl_abs_tol = 1.0e-10
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[./csv]
type = CSV
execute_on = 'final'
[../]
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xdr.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = GeneratedMesh
parallel_type = replicated
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xdr_func]
type = SolutionFunction
solution = xdr_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xdr_kernel]
type = SolutionAux
variable = u_aux
solution = xdr_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xdr_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_xdr_0001_mesh.xdr
es = aux_nonlinear_solution_xdr_0001.xdr
execute_on = initial
[../]
[./xdr_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_xdr_0001_mesh.xdr
es = aux_nonlinear_solution_xdr_0001.xdr
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xdr_func
variable = u
type = FunctionIC
[../]
[]
(test/tests/postprocessors/num_residual_eval/num_residual_eval.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 2
ymin = 0
ymax = 2
# Since this test prints the number of residual evaluations, its
# output strongly depends on the number of processors you run it on,
# and, apparently, the type of Mesh. To reduce this variability, we
# limit it to run with ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Postprocessors]
[./nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[../]
[./elements]
type = NumElems
execute_on = 'initial timestep_end'
[../]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./residuals]
type = NumResidualEvaluations
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_change.i)
# This is a test designed to evaluate the cabability of the
# IterationAdaptiveDT TimeStepper to adjust time step size according to
# a function. For example, if the power input function for a BISON
# simulation rapidly increases or decreases, the IterationAdaptiveDT
# TimeStepper should take time steps small enough to capture the
# oscillation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
block = 1
[]
[Mesh]
file = 1hex8_10mm_cube.e
[]
[Functions]
[./Fiss_Function]
type = PiecewiseLinear
x = '0 1e6 2e6 2.001e6 2.002e6'
y = '0 3e8 3e8 12e8 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
volumetric_locking_correction = true
incremental = true
eigenstrain_names = thermal_expansion
decomposition_method = EigenSolution
add_variables = true
generate_output = 'vonmises_stress'
temperature = temp
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[./heat_source]
type = HeatSource
variable = temp
value = 1.0
function = Fiss_Function
[../]
[]
[BCs]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = 1
value = 300
[../]
[./top_bottom_disp_x]
type = DirichletBC
variable = disp_x
boundary = '1'
value = 0
[../]
[./top_bottom_disp_y]
type = DirichletBC
variable = disp_y
boundary = '1'
value = 0
[../]
[./top_bottom_disp_z]
type = DirichletBC
variable = disp_z
boundary = '1'
value = 0
[../]
[]
[Materials]
[./thermal]
type = HeatConductionMaterial
temp = temp
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 300e6
poissons_ratio = .3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 5e-6
stress_free_temperature = 300.0
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[./density]
type = Density
density = 10963.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
verbose = true
nl_abs_tol = 1e-10
start_time = 0.0
num_steps = 50000
end_time = 2.002e6
[./TimeStepper]
type = IterationAdaptiveDT
timestep_limiting_function = Fiss_Function
max_function_change = 3e7
dt = 1e6
[../]
[]
[Postprocessors]
[./Temperature_of_Block]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./vonMises]
type = ElementAverageValue
variable = vonmises_stress
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/materials/stateful_prop/stateful_prop_on_bnd_only.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0.0
[../]
[./right]
type = MTBC
variable = u
boundary = right
grad = 1.0
prop_name = thermal_conductivity
[../]
[]
[Materials]
[./volatile]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = 10
block = 0
[../]
[./stateful_on_boundary]
type = StatefulSpatialTest
boundary = right
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_bnd_only
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_ti.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./rot_accel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_accel_x
first = false
[../]
[./rot_accel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_accel_y
first = false
[../]
[./rot_accel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_accel_z
first = false
[../]
[./rot_vel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_vel_x
[../]
[./rot_vel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_vel_y
[../]
[./rot_vel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_vel_z
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./rot_x_inertial]
type = NodalRotationalInertia
variable = rot_x
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 0
[../]
[./rot_y_inertial]
type = NodalRotationalInertia
variable = rot_y
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 1
[../]
[./rot_z_inertial]
type = NodalRotationalInertia
variable = rot_z
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 2
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
start_time = 0.0
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
# Time integrator scheme
scheme = "newmark-beta"
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = "dyn_euler_small_added_mass_inertia_damping_out"
exodus = true
csv = true
perf_graph = true
[]
(test/tests/vectorpostprocessors/variable_value_volume_histogram/volume_histogram.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmin = -5
xmax = 5
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x<2&x>-2'
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = c
boundary = 'left right'
value = 0
[../]
[]
[VectorPostprocessors]
[./histo]
type = VolumeHistogram
variable = c
min_value = 0
max_value = 1.1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = PJFNK
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/kernels/simple_transient_diffusion/ill_conditioned_simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
preset = false
boundary = right
function = constant
[../]
[]
[Functions]
[constant]
type = ParsedFunction
value = '1'
[]
[ramp]
type = ParsedFunction
value = 't'
[]
[]
[Materials]
active = 'constant'
[constant]
type = GenericConstantMaterial
prop_names = 'D'
prop_values = '1e20'
[]
[function]
type = GenericFunctionMaterial
prop_names = 'D'
prop_values = '10^(t-1)'
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 2
dtmin = 2
solve_type = NEWTON
petsc_options = '-pc_svd_monitor -ksp_view_pmat -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -snes_stol'
petsc_options_value = 'svd 0'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff_old.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./tempfuncaux]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
use_old_temperature = true
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
[../]
[]
(test/tests/postprocessors/pps_interval/pps_out_interval.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
file_base = pps_out_interval
interval = 2
exodus = true
[./console]
type = Console
interval = 1
[../]
[]
(test/tests/vectorpostprocessors/point_value_sampler/not_found.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./point_sample]
type = PointValueSampler
variable = 'u v'
points = '0.1 0.1 0 0.23 0.4 0 0.78 0.2 0 1.2 0.2 0'
sort_by = x
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_newmark.i)
# Wave propogation in 1D using Newmark time integration
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# This equation is equivalent to:
#
# density*accel + Div Stress= 0
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.021501116638234119e-02, 2.073994362053969628e-02 and -5.045094181261772920e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.0
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.0
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/auxkernels/nodal_aux_var/multi_update_elem_var_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./tt]
order = CONSTANT
family = MONOMIAL
initial_condition = 100
[../]
[./ten]
order = CONSTANT
family = MONOMIAL
initial_condition = 1
[../]
[./2k]
order = CONSTANT
family = MONOMIAL
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./all]
variable = tt
type = MultipleUpdateElemAux
vars = 'ten 2k'
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_multi_elem_var
exodus = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/REG_finite_strain_laromance.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 1
xmax = 2
nx = 50
ny = 50
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
eigenstrain_names = 'thermal'
use_automatic_differentiation = false
[]
[]
[AuxVariables]
[temp]
initial_condition = 1000.0
[]
[]
[AuxKernels]
[cooling]
type = FunctionAux
variable = temp
function = '1000-10*t*x'
[]
[]
[BCs]
[bottom_fix]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[left_fix]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[]
[]
[Materials]
[eigenstrain]
type = ComputeThermalExpansionEigenstrain
eigenstrain_name = 'thermal'
stress_free_temperature = 1000
thermal_expansion_coeff = 1e-4 #1e-4
temperature = temp
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.30e11
poissons_ratio = 0.3
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temp
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
outputs = all
[]
[]
[Postprocessors]
[lin_its]
type = NumLinearIterations
[]
[total_lin_its]
type = CumulativeValuePostprocessor
postprocessor = lin_its
[]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-8
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
end_time = 10
dt = 1
automatic_scaling = true
[]
[Outputs]
# print_linear_converged_reason = false
# print_nonlinear_converged_reason = false
# print_linear_residuals = false
perf_graph = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_stress_free_temp.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material; however, in this case the stress free temperature of the material
# has been set to 200K so that there is an initial delta temperature of 100K.
# An initial temperature of 300K is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. The final temperature is 675K
# The thermal strain increment should therefore be
# (675K - 300K) * 1.3e-5 1/K + 100K * 1.3e-5 1/K = 6.175e-3 m/m.
# This test uses a start up step to identify problems in the calculation of
# eigenstrains with a stress free temperature that is different from the initial
# value of the temperature in the problem
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[AuxVariables]
[./eigenstrain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(5000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./temp]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./eigenstrain_yy]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_xx]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ADRankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = -0.0125
n_startup_steps = 1
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./eigenstrain_xx]
type = ElementAverageValue
variable = eigenstrain_xx
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_yy]
type = ElementAverageValue
variable = eigenstrain_yy
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ElementAverageValue
variable = eigenstrain_zz
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ElementAverageValue
variable = total_strain_xx
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ElementAverageValue
variable = total_strain_yy
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ElementAverageValue
variable = total_strain_zz
execute_on = 'initial timestep_end'
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/correctness/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 0.1
exponent = 2.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[./strain]
type = ElementAverageValue
variable = strain_xx
[]
[./stress]
type = ElementAverageValue
variable = stress_xx
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.001
dtmin = 0.001
end_time = 0.05
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/misc/check_error/subdomain_restricted_kernel_mismatch.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
block = 1
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = v
block = 2
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/misc/check_error/old_integrity_check.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = 0
ymax = 1
nx = 20
ny = 10
elem_type = QUAD9
[]
[Functions]
[./bc_fn_v]
type = ParsedFunction
value = (x*x+y*y)
[../]
[]
[Variables]
[./v]
family = LAGRANGE
order = SECOND
[../]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff_v]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./conv_v]
type = CoupledConvection
variable = v
velocity_vector = u
lag_coupling = true # Here we are asking for an old value but this is a steady test!
[../]
[]
[BCs]
[./top_v]
type = FunctionDirichletBC
variable = v
boundary = top
function = bc_fn_v
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_implicit.i)
# One element test to test the central difference time integrator.
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 2
nx = 1
ny = 2
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '1 2 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./x_bot]
type = PresetDisplacement
boundary = bottom
variable = disp_x
beta = 0.25
velocity = vel_x
acceleration = accel_x
function = disp
[../]
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[]
[NodalKernels]
[./nodal_mass_x]
type = NodalTranslationalInertia
variable = 'disp_x'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[./nodal_mass_y]
type = NodalTranslationalInertia
variable = 'disp_y'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_abs_tol = 1e-11
nl_rel_tol = 1e-11
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Postprocessors]
[./accel_2x]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_planar.i)
# Uses an unsmoothed version of capped-Mohr-Coulomb (via ComputeMultiPlasticityStress with TensorMechanicsPlasticTensileMulti and TensorMechanicsPlasticMohrCoulombMulti) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its]
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its]
type = ElementExtremeValue
variable = num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./plastic_strain_aux]
type = MaterialRankTwoTensorAux
i = 2
j = 2
property = plastic_strain
variable = plastic_strain
[../]
[./num_iters_auxk] # cannot use plastic_NR_iterations directly as this is zero, since no NR iterations are actually used, since we use a custom algorithm to do the return
type = ParsedAux
args = plastic_strain
function = 'if(plastic_strain>0,1,0)'
variable = num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 3E6
[../]
[./tensile]
type = TensorMechanicsPlasticTensileMulti
tensile_strength = ts
yield_function_tolerance = 1
internal_constraint_tolerance = 1.0E-6
#shift = 1
use_custom_returnMap = false
use_custom_cto = false
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
use_custom_returnMap = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-6
plastic_models = 'tensile mc'
max_NR_iterations = 50
specialIC = rock
deactivation_scheme = safe_to_dumb
debug_fspb = crash
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2.5E6 0 0 0 2.5E6 0 0 0 2.5E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = cmc_planar
perf_graph = true
exodus = false
csv = true
[]
(test/tests/variables/block_aux_kernel/block_aux_kernel_test.i)
###########################################################
# This is a simple test of the AuxVariable System.
# A single discretized explicit variable is added to the
# system which is independent of the nonlinear variables
# being solved for by the solver.
#
# @Requirement F5.10
###########################################################
[Mesh]
file = gap_test.e
# This test uses the geometric search system, which does not currently work
# in parallel with DistributedMesh enabled. For more information, see #2121.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./distance]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff u_time'
[./diff]
type = Diffusion
variable = u
[../]
[./u_time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./x]
type = FunctionAux
variable = disp_x
function = 0
block = 1
[../]
[./y]
type = FunctionAux
variable = disp_y
function = 0
block = 1
[../]
[./z]
type = FunctionAux
variable = disp_z
function = t
block = 1
[../]
[./gap_distance]
type = NearestNodeDistanceAux
variable = distance
boundary = 2
paired_boundary = 3
[../]
[./gap_distance2]
type = NearestNodeDistanceAux
variable = distance
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
active = 'block1_left block1_right block2_left block2_right'
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 1.0
num_steps = 8
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/mesh_modifiers/boundingbox_nodeset/boundingbox_nodeset_outside_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[middle_node]
type = BoundingBoxNodeSetGenerator
input = gen
new_boundary = middle_node
top_right = '1.1 1.1 0'
bottom_left = '0.51 0.51 0'
location = OUTSIDE
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[middle]
type = DirichletBC
variable = u
boundary = middle_node
value = -1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
file_base = boundingbox_nodeset_outside_out
exodus = true
[]
(test/tests/mesh/unique_ids/unique_ids.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[UserObjects]
[./verify_elem_unique_ids]
type = VerifyElementUniqueID
[../]
[./verify_nodal_unique_ids]
type = VerifyNodalUniqueID
[../]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/06_master_twoapps.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[app1]
type = TransientMultiApp
positions = '0 0 0 1 0 0 2 0 0'
input_files = '06_sub_twoapps.i'
[]
[app2]
type = TransientMultiApp
positions = '0 0 0 1 0 0'
input_files = '06_sub_twoapps.i'
[]
[]
(modules/combined/test/tests/ad_cavity_pressure/additional_volume.i)
#
# Cavity Pressure Test using using automatic differentiation
#
# This test is designed to compute an internal pressure based on
# p = n * R * / (V_cavity / T_cavity + V_add / T_add)
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T_cavity is the temperature in the cavity
# T_add is the temperature of the additional volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7. An additional volume of 2 is added.
#
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V_cavity0 + gamma * t + V_add
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V_cavity0 = 7
# V_add = 2
# T_add = 100
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# An additional volume of 2 with a temperature of 100.0 is included.
#
# So, n0 = p0 * (V_cavity / T_cavity + V_add / T_add) / R
# = 100 * (7 / 240.544439 + 2 / 100) / 8.314472
# = 0.59054
#
# The parameters combined at t = 1 gives p = 249.647.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.59054'
[../]
[./additional_volume]
type = ConstantFunction
value = 2
[../]
[./temperature_of_additional_volume]
type = ConstantFunction
value = 100
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
additional_volumes = volume1
temperature_of_additional_volumes = temperature1
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ADComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ADComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[./volume1]
type = FunctionValuePostprocessor
function = additional_volume
execute_on = 'initial linear'
[../]
[./temperature1]
type = FunctionValuePostprocessor
function = temperature_of_additional_volume
execute_on = 'initial linear'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/gap_value/gap_value.i)
[Mesh]
file = nonmatching.e
dim = 2
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in the GeometricSearch system. See #2121 for more
# information.
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./gap_value]
block = left
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 'leftbottom rightbottom'
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 'lefttop righttop'
value = 1
[../]
[]
[AuxKernels]
[./gap_value_aux]
type = GapValueAux
variable = gap_value
boundary = leftright
paired_variable = u
paired_boundary = rightleft
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/boundary_tosub_master.i)
[Mesh]
file = 2blk.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left_1]
type = DirichletBC
variable = u
boundary = '1'
value = 4
[../]
[./left_2]
type = DirichletBC
variable = u
boundary = '2'
value = 3
[../]
[./right_3]
type = DirichletBC
variable = u
boundary = '3'
value = 2
[../]
[./right_4]
type = DirichletBC
variable = u
boundary = '4'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 -4 0'
input_files = boundary_tosub_sub.i
[../]
[]
[Transfers]
[./to_sub_1]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
source_boundary = 1
variable = from_master_1
[../]
[./to_sub_2]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
source_boundary = 2
variable = from_master_2
[../]
[./to_sub_3]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
source_boundary = 3
variable = from_master_3
[../]
[./to_sub_4]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
source_boundary = 4
variable = from_master_4
[../]
[]
(test/tests/outputs/xda/xdr.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
xdr = true
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((min(t/end_t,1)*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*min(t/end_t,1)*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 10000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_wp
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/xfem/test/tests/single_var_constraint_3d/stationary_equal_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/mesh_modifiers/mesh_extruder/extruder_tri.i)
[Mesh]
[file]
type = FileMeshGenerator
file = ellipse_tri.e
[]
[extrude]
type = MeshExtruderGenerator
input = file
num_layers = 20
extrusion_vector = '0 0 5'
bottom_sideset = '2'
top_sideset = '4'
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = 2
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = 4
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_tri
exodus = true
[]
[Debug]
show_actions = true
[]
(modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-wear-vel.i)
starting_point = 0.5e-1
offset = -0.05
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[normal_lm]
block = 3
use_dual = true
scaling = 1.0e3
[]
[frictional_lm]
block = 3
use_dual = true
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
zeta = 1.0
hht_alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[worn_depth]
block = '3'
[]
[gap_vel]
block = '3'
[]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[]
[AuxKernels]
[gap_vel]
type = WeightedGapVelAux
variable = gap_vel
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
disp_x = disp_x
disp_y = disp_y
[]
[worn_depth]
type = MortarArchardsLawAux
variable = worn_depth
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
displacements = 'disp_x disp_y'
friction_coefficient = 0.5
energy_wear_coefficient = 1.0
normal_pressure = normal_lm
[]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeDynamicFrictionalForceLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1e4
c_t = 1e6
mu = 0.15
friction_lm = frictional_lm
interpolate_normals = false
capture_tolerance = 1.0e-5
newmark_beta = 0.25
newmark_gamma = 0.5
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(16.0 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 0.3
dt = 0.03
dtmin = .002
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15'
nl_max_its = 40
nl_abs_tol = 1.0e-11
nl_rel_tol = 1.0e-11
line_search = 'l2'
snesmf_reuse_base = true
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/action/custom_output.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[ring]
type = GeneratedMeshGenerator
dim = 3
[]
[]
[BCs]
[fix_x1]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[]
[fix_x2]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = 0.1*sin(t)
[]
[fix_y]
type = DirichletBC
boundary = 'left right'
variable = disp_y
value = 0
[]
[fix_z]
type = DirichletBC
boundary = 'left right'
variable = disp_z
value = 0
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'vonmises_stress effective_alt_total_strain'
[]
[]
[Materials]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[elastic]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 0.3
shear_modulus = 100
[]
[alt_strain]
type = ComputeFiniteStrain
base_name = alt
[]
[]
[Executioner]
type = Transient
num_steps = 12
solve_type = PJFNK
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(modules/functional_expansion_tools/test/tests/standard_use/interface_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = Diffusion
variable = s
[../]
[./time_diff_s]
type = TimeDerivative
variable = s
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = 1.0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/auxkernels/solution_scalar_aux/build.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./a]
family = SCALAR
order = FIRST
[../]
[]
[Functions]
[./a_fn]
type = ParsedFunction
value = '4 - t'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxScalarKernels]
[./a_sk]
type = FunctionScalarAux
variable = a
function = a_fn
execute_on = 'initial timestep_begin'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
dt = 1
num_steps = 3
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/corner_nodes_cut/corner_node_cut.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.0 0.5 0.5 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
[../]
[]
[BCs]
[./top_x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./top_y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.1
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./bottom_x]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# max_xfem_update = 1
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/contact/test/tests/dual_mortar/dm_mechanical_contact_precon.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = -1.05
xmax = -0.05
ymin = -1
ymax = 0
nx = 4
ny = 8
elem_type = QUAD4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = '10 11 12 13'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 8
elem_type = QUAD4
[]
[right_block_sidesets]
type = RenameBoundaryGenerator
input = right_block
old_boundary = '0 1 2 3'
new_boundary = '20 21 22 23'
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block_sidesets
subdomain_id = 2
[]
[combined_mesh]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[]
[]
[Functions]
[horizontal_movement]
type = PiecewiseLinear
x ='0 0.5 2'
y = '0 0.1 0.1'
[]
[vertical_movement]
type = PiecewiseLinear
x ='0 0.5 2'
y = '0.001 0.001 0.2'
[]
[]
[BCs]
[push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = horizontal_movement
[]
[fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 21
value = 0.0
[]
[fix_right_y]
type = DirichletBC
variable = disp_y
boundary = 21
value = 0.0
[]
[push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 13
function = vertical_movement
[]
[]
[Materials]
[elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[]
[]
[Contact]
[leftright]
secondary = '11'
primary = '23'
formulation = mortar
model = frictionless
[]
[]
[Preconditioning]
[vcp]
type = VCP
full = true
lm_variable = 'leftright_normal_lm'
primary_variable = 'disp_x'
preconditioner = 'AMG'
is_lm_coupling_diagonal = true
adaptive_condensation = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
dt = 0.2
dtmin = 0.2
end_time = 1.0
l_max_its = 20
nl_max_its = 8
nl_rel_tol = 1e-6
snesmf_reuse_base = false
[]
[Outputs]
file_base = ./dm_contact_gmesh_out
[comp]
type = CSV
show = 'contact normal_lm avg_disp_x avg_disp_y max_disp_x max_disp_y min_disp_x min_disp_y'
execute_on = 'FINAL'
[]
[]
[Postprocessors]
[contact]
type = ContactDOFSetSize
variable = leftright_normal_lm
subdomain = leftright_secondary_subdomain
[]
[normal_lm]
type = ElementAverageValue
variable = leftright_normal_lm
block = leftright_secondary_subdomain
[]
[avg_disp_x]
type = ElementAverageValue
variable = disp_x
block = '1 2'
[]
[avg_disp_y]
type = ElementAverageValue
variable = disp_y
block = '1 2'
[]
[max_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
[]
[max_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
[]
[min_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
value_type = min
[]
[min_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
value_type = min
[]
[]
(test/tests/materials/interface_material/interface_value_material_split_mesh_stateful.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
xmax = 2
ny = 2
ymax = 2
elem_type = QUAD4
[]
[./subdomain_id]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1 0 0'
top_right = '2 2 0'
block_id = 1
[../]
[./split]
type = BreakMeshByBlockGenerator
input = subdomain_id
[../]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 1
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = 'diffusivity'
block = 0
[../]
[./diff_v]
type = MatDiffusion
variable = v
diffusivity = 'diffusivity'
block = 1
[../]
[]
[InterfaceKernels]
[tied]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
penalty = 1e6
jump_prop_name = "average_jump"
boundary = 'interface'
[]
[]
[BCs]
[u_left]
type = DirichletBC
boundary = 'left'
variable = u
value = 1
[]
[v_right]
type = DirichletBC
boundary = 'right'
variable = v
value = 0
[]
[]
[Materials]
[./stateful1]
type = StatefulMaterial
block = 0
initial_diffusivity = 1
# outputs = all
[../]
[./stateful2]
type = StatefulMaterial
block = 1
initial_diffusivity = 2
# outputs = all
[../]
[./interface_material_avg]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = average
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
couple_old_values_and_properties = true
[../]
[./interface_material_jump_primary_minus_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_primary_minus_secondary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
couple_old_values_and_properties = true
[../]
[./interface_material_jump_secondary_minus_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_secondary_minus_primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
couple_old_values_and_properties = true
[../]
[./interface_material_jump_abs]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_abs
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
couple_old_values_and_properties = true
[../]
[./interface_material_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
couple_old_values_and_properties = true
[../]
[./interface_material_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
mat_prop_var_out_basename = diff_var
boundary = interface
interface_value_type = secondary
nl_var_primary = u
nl_var_secondary = v
couple_old_values_and_properties = true
[../]
[]
[AuxKernels]
[./interface_material_avg]
type = MaterialRealAux
property = diff_average
variable = diffusivity_average
boundary = interface
[]
[./interface_material_jump_primary_minus_secondary]
type = MaterialRealAux
property = diff_jump_primary_minus_secondary
variable = diffusivity_jump_primary_minus_secondary
boundary = interface
[]
[./interface_material_jump_secondary_minus_primary]
type = MaterialRealAux
property = diff_jump_secondary_minus_primary
variable = diffusivity_jump_secondary_minus_primary
boundary = interface
[]
[./interface_material_jump_abs]
type = MaterialRealAux
property = diff_jump_abs
variable = diffusivity_jump_abs
boundary = interface
[]
[./interface_material_primary]
type = MaterialRealAux
property = diff_primary
variable = diffusivity_primary
boundary = interface
[]
[./interface_material_secondary]
type = MaterialRealAux
property = diff_secondary
variable = diffusivity_secondary
boundary = interface
[]
[./interface_material_avg_prev]
type = MaterialRealAux
property = diff_average_prev
variable = diffusivity_average_prev
boundary = interface
[]
[./interface_material_jump_primary_minus_secondary_prev]
type = MaterialRealAux
property = diff_jump_primary_minus_secondary_prev
variable = diffusivity_jump_primary_minus_secondary_prev
boundary = interface
[]
[./interface_material_jump_secondary_minus_primary_prev]
type = MaterialRealAux
property = diff_jump_secondary_minus_primary_prev
variable = diffusivity_jump_secondary_minus_primary_prev
boundary = interface
[]
[./interface_material_jump_abs_prev]
type = MaterialRealAux
property = diff_jump_abs_prev
variable = diffusivity_jump_abs_prev
boundary = interface
[]
[./interface_material_primary_prev]
type = MaterialRealAux
property = diff_primary_prev
variable = diffusivity_primary_prev
boundary = interface
[]
[./interface_material_secondary_prev]
type = MaterialRealAux
property = diff_secondary_prev
variable = diffusivity_secondary_prev
boundary = interface
[]
[diffusivity_var]
type = MaterialRealAux
property = diffusivity
variable = diffusivity_var
[]
[]
[AuxVariables]
[diffusivity_var]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_average]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_primary_minus_secondary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_secondary_minus_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_abs]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_secondary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_average_prev]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_primary_minus_secondary_prev]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_secondary_minus_primary_prev]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_abs_prev]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_primary_prev]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_secondary_prev]
family = MONOMIAL
order = CONSTANT
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
num_steps = 3
dt = 0.5
[]
[Outputs]
exodus = true
[]
(examples/ex14_pps/ex14_compare_solutions_2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = forced
[../]
[./forcing]
type = BodyForce
variable = forced
function = 'x*x+y*y' # Any object expecting a function name can also receive a ParsedFunction string
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = forced
boundary = 'bottom right top left'
value = 0
[../]
[]
[UserObjects]
[./fine_solution]
# Read in the fine grid solution
type = SolutionUserObject
system_variables = forced
mesh = ex14_compare_solutions_1_out_0000_mesh.xda
es = ex14_compare_solutions_1_out_0000.xda
[../]
[]
[Functions]
[./fine_function]
# Create a Function out of the fine grid solution
# Note: This references the SolutionUserObject above
type = SolutionFunction
solution = fine_solution
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./Quadrature]
# The integration of the error happens on the coarse mesh
# To reduce integration error of the finer solution we can
# raise the integration order.
# Note: This will slow down the calculation a bit
order = SIXTH
[../]
[]
[Postprocessors]
[./error]
# Compute the error between the computed solution and the fine-grid solution
type = ElementL2Error
variable = forced
function = fine_function
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/misc/check_error/nodal_kernel_with_aux_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[NodalKernels]
[./nope]
type = TimeDerivativeNodalKernel
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/coupled-force/gravity-through-coupled-force.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[u]
family = LAGRANGE_VEC
[]
[]
[AuxVariables]
[gravity]
family = LAGRANGE_VEC
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[gravity]
type = VectorConstantIC
x_value = '0'
y_value = '-9.81'
variable = gravity
[]
[]
[Kernels]
inactive = 'momentum_coupled_forces_two_vars momentum_coupled_forces_two_funcs'
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[momentum_coupled_forces_var_and_func]
type = INSADMomentumCoupledForce
variable = velocity
coupled_vector_var = u
vector_function = 'vector_gravity_func'
[]
[momentum_coupled_forces_two_vars]
type = INSADMomentumCoupledForce
variable = velocity
coupled_vector_var = 'u gravity'
[]
[momentum_coupled_forces_two_funcs]
type = INSADMomentumCoupledForce
variable = velocity
vector_function = 'vector_func vector_gravity_func'
[]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[u_diff]
type = VectorDiffusion
variable = u
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left top'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[u_left]
type = VectorFunctionDirichletBC
variable = u
boundary = 'left'
function_x = 1
function_y = 1
[]
[u_right]
type = VectorFunctionDirichletBC
variable = u
boundary = 'right'
function_x = -1
function_y = -1
[]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
[out]
type = Exodus
hide = 'gravity'
[]
[]
[Functions]
[vector_func]
type = ParsedVectorFunction
value_x = '-2*x + 1'
value_y = '-2*x + 1'
[]
[vector_gravity_func]
type = ParsedVectorFunction
value_x = '0'
value_y = '-9.81'
[]
[]
(test/tests/mesh/adapt/displaced_adapt_test.i)
# Adaptivity on displaced problem
# - testing initial_refinement and adaptivity as well
#
# variables:
# - u and v_aux are used for displacing the problem
# - v is used to get some refinements
#
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
displacements = 'u aux_v'
[]
[Functions]
[./aux_v_fn]
type = ParsedFunction
value = x*(y-0.5)/5
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 0.1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./aux_k_1]
type = FunctionAux
variable = aux_v
function = aux_v_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
exodus = true
[./displaced]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/materials/var_coupling/var_coupling.i)
# The purpose of this test is to make sure that MooseVariable dependencies from Materials are properly handled.
#
# It it's not, this test will segfault
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux1]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./coupling_u]
type = VarCouplingMaterial
block = 0
var = u
[../]
[]
[Postprocessors]
[./aux1_integral]
type = ElementIntegralVariablePostprocessor
variable = aux1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/functional_expansion_tools/examples/3D_volumetric_cylindrical/main.i)
# Basic example coupling a master and sub app in a 3D cylindrical mesh from an input file
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable, the recommended approach.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = FileMesh
file = cyl-tet.e
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/materials/material/exception_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./mat]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./time_derivative]
type = TimeDerivative
variable = u
[../]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[./f]
type = BodyForce
variable = u
function = '20'
[../]
[]
[AuxKernels]
[./mat]
# Sequence of events:
# 1.) MaterialRealAux is re-evaluated every linear iteration
# 2.) MaterialRealAux calls ExceptionMaterial::computeQpProperties()
# 3.) ExceptionMaterial throws a MooseException.
# 4.) The MooseException is caught and handled by MOOSE.
# 5.) The next solve is automatically failed.
# 6.) Time timestep is cut and we try again.
#
# The idea is to test that MOOSE can recover when exceptions are
# thrown during AuxKernel evaluation, and not just nonlinear
# residual/jacobian evaluation.
type = MaterialRealAux
variable = mat
property = matp
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = u
boundary = 'left top bottom right'
value = 0
[../]
[]
[Materials]
[./mat]
type = ExceptionMaterial
block = 0
rank = 0
coupled_var = u
[../]
[]
[Executioner]
type = Transient
dt = 0.1
end_time = .5
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_finite_tension_pull.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
out_of_plane_strain = strain_zz
[]
[Problem]
extra_tag_vectors = 'ref'
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[strain_zz]
[]
[]
[AuxVariables]
[react_x]
[]
[]
[Postprocessors]
[react_x]
type = NodalSum
variable = 'react_x'
boundary = 'right'
[]
[stress_xx]
type = ElementalVariableValue
variable = 'stress_xx'
elementid = 0
[]
[strain_zz]
type = ElementalVariableValue
variable = 'strain_zz'
elementid = 0
[]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
strain = FINITE
planar_formulation = WEAK_PLANE_STRESS
extra_vector_tags = 'ref'
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
[]
[]
[AuxKernels]
[react_x]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_x'
variable = 'react_x'
[]
[]
[BCs]
[leftx]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.0
[]
[bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[]
[rightx]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = 't'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 0.01
dtmin = 0.01
end_time = 0.2
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d-dynamics-light-function.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[AuxVariables]
[mortar_tangent_x]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_y]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_z]
family = LAGRANGE
order = FIRST
[]
[]
[AuxKernels]
[friction_x_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_x
component = 0
boundary = 'top_bottom'
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_y
component = 1
boundary = 'top_bottom'
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_z
component = 2
boundary = 'top_bottom'
[]
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 1
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
uniform_refine = 0
allow_renumbering = false
[]
[Functions]
# x: Contact pressure
# y: Magnitude of tangential relative velocity
# z: Temperature (to be implemented)
[mu_function]
type = ParsedFunction
value = '0.3 + 0.5 * 2.17^(-x/100) - 10.0 * y'
[]
[]
[Variables]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_3d_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
hht_alpha = 0.0
newmark_beta = 0.25
newmark_gamma = 0.5
mass_damping_coefficient = 0.0
stiffness_damping_coefficient = 0.1
displacements = 'disp_x disp_y disp_z'
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
block = '1 2'
strain = FINITE
density = density
[]
[]
[Materials]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e4
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Constraints]
[friction]
type = ComputeDynamicFrictionalForceLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
friction_lm = mortar_tangential_lm
friction_lm_dir = mortar_tangential_3d_lm
c = 1e4
c_t = 1.0e4
newmark_beta = 0.25
newmark_gamma = 0.5
interpolate_normals = false
correct_edge_dropping = true
function_friction = mu_function
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_dir_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_dir_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[tangential_dir_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
correct_edge_dropping = true
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'top_top'
function = '0.025*t'
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = .05
dt = .025
dtmin = .001
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu NONZERO 1e-14'
nl_rel_tol = 5e-13
nl_abs_tol = 5e-13
line_search = 'basic'
[TimeIntegrator]
type = NewmarkBeta
gamma = 0.5
beta = 0.25
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[frictional-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[frictional-pressure-3d]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_3d_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_x]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_x
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_y]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_y
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[]
(modules/external_petsc_solver/test/tests/partition/moose_as_master.i)
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 20
ny = 21
partition = square
[]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./cf]
type = CoupledForce
coef = 10000
variable = u
v=v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
input_files = 'petsc_transient_as_sub.i'
app_type = ExternalPetscSolverApp
library_path = '../../../../external_petsc_solver/lib'
[../]
[]
[Transfers]
[./fromsub]
type = MultiAppMeshFunctionTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[../]
[]
(test/tests/bcs/ad_1d_neumann/1d_neumann.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = ADNeumannBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_variable.i)
[GlobalParams]
displacements = 'disp_x'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 5
[]
[Variables]
[./disp_x]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[]
[Functions]
[./prefac]
type = ParsedFunction
value = '1+2*x'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
elasticity_tensor_prefactor = prefac
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/outputs/perf_graph/multi_app/master_full.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
[MultiApps]
[./full_solve]
type = FullSolveMultiApp
execute_on = initial
positions = '0 0 0'
input_files = sub_full.i
[../]
[]
(test/tests/transfers/from_full_solve/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/wall_convection/steady.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[temperature][]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = temperature
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'k'
[../]
[temperature_ambient_convection]
type = INSADEnergyAmbientConvection
variable = temperature
alpha = 1
T_ambient = 0.5
[]
[temperature_supg]
type = INSADEnergySUPG
variable = temperature
velocity = velocity
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[./temperature_hot]
type = DirichletBC
variable = temperature
boundary = 'bottom'
value = 1
[../]
[./temperature_cold]
type = DirichletBC
variable = temperature
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temperature
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/initial_stress/mc_tensile.i)
# In this example, an initial stress is applied that
# is inadmissible, and the return-map algorithm must be
# used to return to the yield surface before any other
# computations can be carried out.
# In this case, the return-map algorithm must subdivide
# the initial stress, otherwise it does not converge.
# This test is testing that subdivision process.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = 'back'
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = 'back'
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front'
function = '2*t-1'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front'
function = 't-1'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = 't-1'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
outputs = console
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E5
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 60
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 4.0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[./str]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./pt]
type = TensorMechanicsPlasticTensile
tensile_strength = str
yield_function_tolerance = 1E-3
tensile_tip_smoother = 0.05
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '8E6 4E6 -18E6 4E6 -40E6 -2E6 -18E6 -2E6 -34E6'
eigenstrain_name = ini_stress
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-9
plastic_models = 'pt mc'
deactivation_scheme = safe
max_NR_iterations = 100
min_stepsize = 0.1
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = mc_tensile
exodus = false
[./csv]
type = CSV
[../]
[]
(test/tests/materials/stateful_prop/stateful_prop_test_older.i)
[Mesh]
dim = 3
file = cube.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = 'older' # Use the "Older" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output_init]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
execute_on = initial
[../]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./stateful]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_older
exodus = true
csv = true
[]
(test/tests/outputs/exodus/exodus_enable_initial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
execute_on = 'initial timestep_end'
[../]
[]
[Debug]
show_var_residual_norms = true
#show_actions = true
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_3D.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, employing PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 3D version
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
xmin = 0
xmax = 1
ny = 4
ymin = 0
ymax = 0.5
nz = 3
zmin = 0
zmax = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.5 2'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 0.3
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/actions/debug_block/debug_print_actions_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 0
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Debug]
show_action_dependencies = true
show_actions = true
show_top_residuals = 5
[]
(tutorials/tutorial01_app_development/step09_mat_props/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/function_file_test16.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_rows_more_data.csv
xy_in_file_only = false
y_index_in_file = 3 # will generate an error because no forth row of data
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/ray_tracing/test/tests/traceray/adaptivity/adaptivity_2d.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[Variables/u]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.1
[]
[]
[UserObjects/study]
type = LotsOfRaysRayStudy
ray_kernel_coverage_check = false
vertex_to_vertex = true
centroid_to_vertex = true
centroid_to_centroid = true
execute_on = timestep_end
[]
[RayBCs/kill]
type = KillRayBC
boundary = 'top right bottom left'
[]
[Postprocessors]
[total_distance]
type = RayTracingStudyResult
study = study
result = total_distance
execute_on = timestep_end
[]
[total_rays]
type = RayTracingStudyResult
study = study
result = total_rays_started
execute_on = timestep_end
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_nobcbc.i)
[GlobalParams]
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[outlet]
type = INSADMomentumNoBCBC
variable = velocity
pressure = p
boundary = 'top'
[]
# When the NoBCBC is applied on the outlet boundary then there is nothing
# constraining the pressure. Thus we must pin the pressure somewhere to ensure
# that the problem is not singular. If the below BC is not applied then
# -pc_type svd -pc_svd_monitor reveals a singular value
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test3_out
exodus = true
[]
(modules/porous_flow/test/tests/basic_advection/except2.i)
# PorousFlowDarcyVelocityMaterial attempts to have at_nodes = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P]
[]
[]
[ICs]
[P]
type = FunctionIC
variable = P
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = P
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
at_nodes = true
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_gravity.i)
# Test for small strain euler beam vibration in y direction
# Test uses NodalGravity instead of UserForcingFunctionNodalKernel to apply the
# force.
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass = 0.01899772 at the cantilever end
# mass = 2.0 at the fixed end (just for file testing purposes does not alter result)
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = NodalGravity
variable = disp_y
boundary = 'left right'
gravity_value = 52.6378954948 # inverse of nodal mass at cantilever end
function = force
# nodal_mass_file = nodal_mass.csv # commented out for testing purposes
# mass = 0.01899772 # commented out for testing purposes
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = dyn_euler_small_added_mass_out
exodus = true
csv = true
perf_graph = true
[]
(test/tests/multiapps/secant/steady_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[]
[Kernels]
[diff_v]
type = Diffusion
variable = v
[]
[force_v]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[Postprocessors]
[vnorm]
type = ElementL2Norm
variable = v
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'secant'
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/transfers/from_full_solve/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# This test currently diffs when run in parallel with DistributedMesh enabled,
# most likely due to the fact that CONSTANT MONOMIALS are currently not written
# out correctly in this case. For more information, see #2122.
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_full]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./full_solve]
type = FullSolveMultiApp
app_type = MooseTestApp
execute_on = initial
positions = '0 0 0'
input_files = sub.i
[../]
[]
[Transfers]
[./from_full]
type = MultiAppNearestNodeTransfer
from_multi_app = full_solve
source_variable = u
variable = from_full
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.05
dtmax = 10.0
dtmin = 0.05
num_steps = 10
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/misc/check_error/bad_executioner_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
# Test for bad executioner
[Executioner]
type = Foo
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/perfectQ9.i)
[GlobalParams]
order = SECOND
[]
[Mesh]
file = perfectQ9.e
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 300
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
emissivity_primary = 0
emissivity_secondary = 0
variable = temp
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d_mhs.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[XFEM]
geometric_cut_userobjects = 'cut_mesh'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = HEX8
[]
[UserObjects]
[./cut_mesh]
type = CrackMeshCut3DUserObject
mesh_file = mesh_edge_crack.xda
growth_dir_method = 'max_hoop_stress'
size_control = 1
n_step_growth = 1
function_v = growth_func_v
crack_front_nodes = '7 6 5 4'
[../]
[]
[Functions]
[./growth_func_v]
type = ParsedFunction
value = 0.15
[../]
[]
[DomainIntegral]
integrals = 'Jintegral InteractionIntegralKI InteractionIntegralKII'
displacements = 'disp_x disp_y disp_z'
crack_front_points_provider = cut_mesh
number_points_from_provider = 4
crack_direction_method = CurvedCrackFront
radius_inner = '0.15'
radius_outer = '0.45'
poissons_ratio = 0.3
youngs_modulus = 207000
block = 0
incremental = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[Functions]
[./top_trac_x]
type = ConstantFunction
value = 100
[../]
[./top_trac_y]
type = ConstantFunction
value = 0
[../]
[]
[BCs]
[./top_x]
type = FunctionNeumannBC
boundary = top
variable = disp_x
function = top_trac_x
[../]
[./top_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = top_trac_y
[../]
[./bottom_x]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = bottom
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
block = 0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 4.0
max_xfem_update = 1
[]
[Outputs]
file_base = edge_crack_3d_mhs_out
execute_on = 'timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/misc/initial_solution_copy/solutions_equal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./initial_func]
type = ParsedFunction
value = sin(pi*x)*sin(pi*y)
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./source]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
active = 'func_bc'
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./func_bc]
type = FunctionDirichletBC
variable = u
boundary = 'bottom right top left'
function = initial_func
[../]
[]
[Postprocessors]
[./test_pp]
type = TestCopyInitialSolution
execute_on = timestep_begin
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[ICs]
[./initial]
function = initial_func
variable = u
type = FunctionIC
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_fileread.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx=1
ny=1
nz=1
xmin=0.0
xmax=1.0
ymin=0.0
ymax=1.0
zmin=0.0
zmax=1.0
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = 'initial timestep_end'
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = 'initial timestep_end'
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
slip_sys_res_prop_file_name = input_slip_sys_res.txt
slip_sys_flow_prop_file_name = input_slip_sys_flow_prop.txt
hprops = '1.0 541.5 60.8 109.8 2.5'
nss = 12
intvar_read_type = slip_sys_res_file
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
execute_on = 'initial timestep_end'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
execute_on = 'initial timestep_end'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
execute_on = 'initial timestep_end'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.05
dtmax = 10.0
dtmin = 0.05
num_steps = 10
[]
[Outputs]
file_base = crysp_fileread_out
exodus = true
[]
(test/tests/kernels/ad_coupled_value/ad_aux_coupled_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[v]
initial_condition = 2
[]
[exact]
[]
[]
[ICs]
[exact]
type = FunctionIC
function = 'x*(2-x)'
variable = exact
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ad_coupled_value]
type = ADCoupledValueTest
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/tosub_displaced_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0.48 0 0'
input_files = tosub_displaced_sub.i
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = from_master
displaced_target_mesh = true
[../]
[./elemental_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = elemental_from_master
displaced_target_mesh = true
[../]
[]
(test/tests/outputs/oversample/adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t*t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = PJFNK
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./oversample]
type = Exodus
refinements = 2
file_base = adapt_out_oversample
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/overlapping_sidesets_not_found.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'bottom top'
boundary_id_new = 11
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
boundary_id_overlap = true
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[BCone]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[BCtwo]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/mandel_basicthm.i)
# using a BasicTHM Action
#
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedFullySaturatedMassTimeDerivative kernels
# with multiply_by_density = false, so that this problem becomes linear
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[]
[]
[Functions]
[top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[]
[]
[AuxVariables]
[tot_force]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 8.0
viscosity = 1.0
density0 = 1.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
multiply_by_density = false
porepressure = porepressure
biot_coefficient = 0.6
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[]
[p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[]
[p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[]
[p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[]
[p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[]
[p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[]
[p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[]
[p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[]
[p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[]
[p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[]
[p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[]
[xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[]
[ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[]
[total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_basicthm
[csv]
interval = 3
type = CSV
[]
[]
(test/tests/preconditioners/pbp/pbp_test_options.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
# init_unif_refine = 6
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
active = 'PBP'
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'LU LU'
off_diag_row = 'v'
off_diag_column = 'u'
petsc_options = '' # Test petsc options in PBP block
[../]
[]
[Kernels]
active = 'diff_u conv_v diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 100
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
l_max_its = 1
nl_max_its = 1
solve_type = JFNK
[]
[Outputs]
file_base = out_dummy
exodus = true
[]
(test/tests/postprocessors/pps_interval/pps_bad_interval3.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ignore_bad
interval = 2
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard1.i)
# Checking internal-parameter evolution
# A single element is stretched by 1E-6*t in z directions.
#
# Young's modulus = 20 MPa. Tensile strength = 10 Pa
#
# There are two time steps.
# In the first
# trial stress_zz = Youngs Modulus*Strain = 2E7*1E-6 = 20 Pa
# so this returns to stress_zz = 10 Pa, and half of the deformation
# goes to plastic strain, yielding ep_zz_plastic = 0.5E-6
# In the second
# trial stress_zz = 10 + Youngs Modulus*(Strain increment) = 10 + 2E7*1E-6 = 30 Pa
# so this returns to stress_zz = 10 Pa, and all of the deformation
# goes to plastic strain, yielding ep_zz_plastic increment = 1E-6,
# so total plastic strain_zz = 1.5E-6.
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[]
[]
[AuxVariables]
[wpt_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningConstant
value = 10
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(modules/peridynamics/test/tests/plane_stress/conventional_planestress_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1003
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0.001
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputePlaneStressIsotropicElasticityTensor
youngs_modulus = 2.1e8
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
nl_rel_tol = 1e-10
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = conventional_planestress_H1NOSPD
exodus = true
[]
(modules/stochastic_tools/examples/surrogates/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 1
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 2.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Outputs]
[]
(modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/youngs_modulus_poissons_ratio_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/volumetric_eigenstrain/volumetric_eigenstrain.i)
# This tests the ability of the ComputeVolumetricEigenstrain material
# to compute an eigenstrain tensor that results in a solution that exactly
# recovers the specified volumetric expansion.
# This model applies volumetric strain that ramps from 0 to 2 to a unit cube
# and computes the final volume, which should be exactly 3. Note that the default
# TaylorExpansion option for decomposition_method gives a small (~4%) error
# with this very large incremental strain, but decomposition_method=EigenSolution
# gives the exact solution.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./volumetric_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
eigenstrain_names = eigenstrain
decomposition_method = EigenSolution #Necessary for exact solution
[../]
[]
[AuxKernels]
[./volumetric_strain]
type = RankTwoScalarAux
scalar_type = VolumetricStrain
rank_two_tensor = total_strain
variable = volumetric_strain
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./finite_strain_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./volumetric_eigenstrain]
type = ComputeVolumetricEigenstrain
volumetric_materials = volumetric_change
eigenstrain_name = eigenstrain
args = ''
[../]
[./volumetric_change]
type = GenericFunctionMaterial
prop_names = volumetric_change
prop_values = t
[../]
[]
[Postprocessors]
[./vol]
type = VolumePostprocessor
use_displaced_mesh = true
execute_on = 'initial timestep_end'
[../]
[./volumetric_strain]
type = ElementalVariableValue
variable = volumetric_strain
elementid = 0
[../]
[./disp_right]
type = NodalExtremeValue
variable = disp_x
boundary = right
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 2.0
dt = 1.0
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/functions/function_ic/function_ic_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[AuxVariables]
active = 'u_aux'
[./u_aux]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[Functions]
[./initial_cond_func]
type = ParsedFunction
value = x+2
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/outputs/output_dimension/output_dimension.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[./conv_x]
type = Convection
variable = disp_x
velocity = '2 0 0'
[../]
[./conv_y]
type = Convection
variable = disp_y
velocity = '2 0 0'
[../]
[./conv_z]
type = Convection
variable = disp_z
velocity = '2 0 0'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 1
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = 0
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = right
value = 1
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
output_dimension = 3
[../]
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./T]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./power]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
mat_prop = diffusion
offset = 0.0
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./diff_T]
type = Diffusion
variable = T
[../]
[./src_T]
type = CoupledForce
variable = T
v = power
[../]
[]
[AuxKernels]
[./power_ak]
type = NormalizationAux
variable = power
source_variable = u
normalization = unorm
# this coefficient will affect the eigenvalue.
normal_factor = 10
execute_on = linear
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigenU]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[]
[Materials]
[./dc]
type = VarCouplingMaterial
var = T
block = 0
base = 1.0
coef = 1.0
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
[]
[Postprocessors]
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
file_base = ne_coupled
execute_on = 'timestep_end'
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest2.i)
# 3D, concave block
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/check_dynamic_name_block.i)
[Mesh]
file = three_block.e
# These names will be applied on the fly to the
# mesh so they can be used in the input file
# In addition they will show up in the input file
block_id = '1 2 3'
block_name = 'wood steel wood' # Can't have duplicate names
boundary_id = '1 2'
boundary_name = 'left right'
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Materials]
active = empty
[./empty]
type = MTMaterial
block = 'wood steel'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
# Injection of supercritical CO2 into a single brine saturated cell. The CO2 initially fully
# dissolves into the brine, increasing its density slightly. After a few time steps,
# the brine is saturated with CO2, and subsequently a supercritical gas phase of CO2 saturated
# with a small amount of H2O is formed. Salt is included as a nonlinear variable.
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
temperature = 30
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[z]
[]
[xnacl]
initial_condition = 0.1
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
variable = z
point = '0.5 0.5 0'
mass_flux = 2
[]
[]
[BCs]
[left]
type = DirichletBC
value = 20e6
variable = pgas
boundary = left
[]
[right]
type = DirichletBC
value = 20e6
variable = pgas
boundary = right
[]
[]
[AuxVariables]
[pressure_gas]
order = CONSTANT
family = MONOMIAL
[]
[pressure_water]
order = CONSTANT
family = MONOMIAL
[]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[saturation_water]
order = CONSTANT
family = MONOMIAL
[]
[density_water]
order = CONSTANT
family = MONOMIAL
[]
[density_gas]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_water]
order = CONSTANT
family = MONOMIAL
[]
[viscosity_gas]
order = CONSTANT
family = MONOMIAL
[]
[x0_water]
order = CONSTANT
family = MONOMIAL
[]
[x0_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1_water]
order = CONSTANT
family = MONOMIAL
[]
[x1_gas]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pressure_water]
type = PorousFlowPropertyAux
variable = pressure_water
property = pressure
phase = 0
execute_on = 'initial timestep_end'
[]
[pressure_gas]
type = PorousFlowPropertyAux
variable = pressure_gas
property = pressure
phase = 1
execute_on = 'initial timestep_end'
[]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation_water
property = saturation
phase = 0
execute_on = 'initial timestep_end'
[]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'initial timestep_end'
[]
[density_water]
type = PorousFlowPropertyAux
variable = density_water
property = density
phase = 0
execute_on = 'initial timestep_end'
[]
[density_gas]
type = PorousFlowPropertyAux
variable = density_gas
property = density
phase = 1
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = PorousFlowPropertyAux
variable = viscosity_water
property = viscosity
phase = 0
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = PorousFlowPropertyAux
variable = viscosity_gas
property = viscosity
phase = 1
execute_on = 'initial timestep_end'
[]
[x1_water]
type = PorousFlowPropertyAux
variable = x1_water
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = PorousFlowPropertyAux
variable = x1_gas
property = mass_fraction
phase = 1
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[x0_water]
type = PorousFlowPropertyAux
variable = x0_water
property = mass_fraction
phase = 0
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = PorousFlowPropertyAux
variable = x0_gas
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pgas
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = z
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
variable = xnacl
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas z xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = z
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityCorey
n = 3
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 1
end_time = 10
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[density_water]
type = ElementIntegralVariablePostprocessor
variable = density_water
execute_on = 'initial timestep_end'
[]
[density_gas]
type = ElementIntegralVariablePostprocessor
variable = density_gas
execute_on = 'initial timestep_end'
[]
[viscosity_water]
type = ElementIntegralVariablePostprocessor
variable = viscosity_water
execute_on = 'initial timestep_end'
[]
[viscosity_gas]
type = ElementIntegralVariablePostprocessor
variable = viscosity_gas
execute_on = 'initial timestep_end'
[]
[x1_water]
type = ElementIntegralVariablePostprocessor
variable = x1_water
execute_on = 'initial timestep_end'
[]
[x0_water]
type = ElementIntegralVariablePostprocessor
variable = x0_water
execute_on = 'initial timestep_end'
[]
[x1_gas]
type = ElementIntegralVariablePostprocessor
variable = x1_gas
execute_on = 'initial timestep_end'
[]
[x0_gas]
type = ElementIntegralVariablePostprocessor
variable = x0_gas
execute_on = 'initial timestep_end'
[]
[sg]
type = ElementIntegralVariablePostprocessor
variable = saturation_gas
execute_on = 'initial timestep_end'
[]
[sw]
type = ElementIntegralVariablePostprocessor
variable = saturation_water
execute_on = 'initial timestep_end'
[]
[pwater]
type = ElementIntegralVariablePostprocessor
variable = pressure_water
execute_on = 'initial timestep_end'
[]
[pgas]
type = ElementIntegralVariablePostprocessor
variable = pressure_gas
execute_on = 'initial timestep_end'
[]
[xnacl]
type = ElementIntegralVariablePostprocessor
variable = xnacl
execute_on = 'initial timestep_end'
[]
[x0mass]
type = PorousFlowFluidMass
fluid_component = 0
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x1mass]
type = PorousFlowFluidMass
fluid_component = 1
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[x2mass]
type = PorousFlowFluidMass
fluid_component = 2
phase = '0 1'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
file_base = brineco2_2
execute_on = 'initial timestep_end'
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/ld-strain.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
constraint_types = 'strain strain strain strain strain strain strain strain strain'
ndim = 3
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = NINTH
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[hvar]
type = ScalarConstantIC
variable = hvar
value = 0.1
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'strain11 strain21 strain31 strain12 strain22 strain32 strain13 strain23 strain33'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[strain11]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain22]
type = ParsedFunction
value = '-4.0e-2*t'
[]
[strain33]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain23]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain13]
type = ParsedFunction
value = '-7.0e-2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain32]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain31]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain21]
type = ParsedFunction
value = '-1.5e-2*t'
[]
[zero]
type = ConstantFunction
value = 0
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 20
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
[Outputs]
exodus = false
csv = false
[]
(test/tests/meshgenerators/lower_d_block_generator/ids.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./lower_d_block]
type = LowerDBlockFromSidesetGenerator
input = gmg
new_block_id = 10
sidesets = '0 0 1 2 3'
[]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 10
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = 0
[../]
[./srcv]
type = BodyForce
block = 10
variable = v
function = 1
[../]
[./time_v]
type = TimeDerivative
block = 10
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/shell/static/beam_bending_moment_AD.i)
# Test that models bending of a cantilever beam using shell elements
# A cantilever beam of length 10 m (in Y direction) and cross-section
# 1 m x 0.1 m is modeled using 4 shell elements placed along the length
# (Figure 6a from Dvorkin and Bathe, 1984). All displacements and
# X rotations are fixed on the bottom boundary. E = 2100000 and v = 0.0.
# A load of 0.5 N (in the Z direction) is applied at each node on the top
# boundary resulting in a total load of 1 N.
# The analytical solution for displacement at tip using small strain/rotations # is PL^3/3EI + PL/AG = 1.90485714 m
# The FEM solution using 4 shell elements is 1.875095 m with a relative error
# of 1.5%.
# Similarly, the analytical solution for slope at tip is PL^2/2EI = 0.285714286
# The FEM solution is 0.2857143 and the relative error is 5e-6%.
# The stress_yy for the four elements at z = -0.57735 * (t/2) (first qp below mid-surface of shell) are:
# 3031.089 Pa, 2165.064 Pa, 1299.038 Pa and 433.0127 Pa.
# Note the above values are the average stresses in each element.
# Analytically, stress_yy decreases linearly from y = 0 to y = 10 m.
# The maximum value of stress_yy at y = 0 is Mz/I = PL * 0.57735*(t/2)/I = 3464.1 Pa
# Therefore, the analytical value of stress at z = -0.57735 * (t/2) at the mid-point
# of the four elements are:
# 3031.0875 Pa, 2165.0625 Pa, 1299.0375 Pa ,433.0125 Pa
# The relative error in stress_yy is in the order of 5e-5%.
# The stress_yz at z = -0.57735 * (t/2) at all four elements from the simulation is 10 Pa.
# The analytical solution for the shear stress is: V/2/I *((t^2)/4 - z^2), where the shear force (V)
# is 1 N at any y along the length of the beam. Therefore, the analytical shear stress at
# z = -0.57735 * (t/2) is 10 Pa at any location along the length of the beam.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'bottom'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 'bottom'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 'bottom'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_z
boundary = 'top'
rate = 0.5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_max_its = 2
nl_rel_tol = 1e-10
nl_abs_tol = 5e-4
dt = 1
dtmin = 1
end_time = 1
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '1.0 10.0 0.0'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 10.0 0.0'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/shell/static/plate_bending.i)
# Test for simply supported plate under uniform pressure
# One quarter of a 50 m x 50 m x 1m plate is modeled in this test.
# Pressure loading is applied on the top surface using nodal forces
# of magnitude -10 N on all nodes. This corresponds to a pressure (q) of
# -10.816 N/m^2.
# The FEM solution at (0,0), which is at the center of the full plate
# is -2.997084e-03 m.
# The analytical solution for displacement at center of plate obtained
# using a thin plate assumption for a square plate is
# w = 16 q a^4/(D*pi^6) \sum_{m = 1,3,5, ..}^\inf \sum_{n = 1,3,5, ..}^\inf (-1)^{(m+n-2)/2}/(mn*(m^2+n^2)^2)
# The above solution is the Navier's series solution from the "Theory of plates
# and shells" by Timoshenko and Woinowsky-Krieger (1959).
# where a = 50 m, q = -10.816 N/m^2 and D = E/(12(1-v^2))
# The analytical series solution converges to 2.998535904e-03 m
# when the first 16 terms of the series are considered (i.e., until
# m & n = 7).
# The resulting relative error between FEM and analytical solution is
# 0.048%.
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 25
ny = 25
xmin = 0.0
xmax = 25.0
ymin = 0.0
ymax = 25.0
[../]
[./allnodes]
type = BoundingBoxNodeSetGenerator
input = gmg
bottom_left = '0.0 0.0 0.0'
top_right = '25.0 25.0 0.0'
new_boundary = 101
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./symm_left_rot]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./symm_bottom_rot]
type = DirichletBC
variable = rot_x
boundary = bottom
value = 0.0
[../]
[./simply_support_x]
type = DirichletBC
variable = disp_x
boundary = 'right top bottom left'
value = 0.0
[../]
[./simply_support_y]
type = DirichletBC
variable = disp_y
boundary = 'right top bottom left'
value = 0.0
[../]
[./simply_support_z]
type = DirichletBC
variable = disp_z
boundary = 'right top'
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_z
boundary = 101
rate = -10.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 1e9
poissons_ratio = 0.3
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 1.0
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z2]
type = PointValue
point = '0.0 0.0 0.0'
variable = disp_z
[../]
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh14.i)
# unsaturated = true
# gravity = false
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh14
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat1.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 1.0
# Poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.043195
# E_0011 = E_1100 = 0.260799
# E_2222 = 0.02445
# E_0022 = E_1122 = E_2200 = E_2211 = 0.006112
# G = E_0101 = E_0110 = E_1001 = E_1010 = 0.416667
# Gt = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 0.019084
# E_2020 = E_2121 = 0.217875
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.68056E-5
# B_0101 = B_1010 = 7.92021E-4
# B_0110 = B_1001 = -1.584E-4
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = t
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 8*t
# strain_yz = 6*t
# strain_zz = t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = 0.006112*t
# stress_xz = stress_zx = 0.152671*t
# stress_yz = stress_zy = 0.114504*t
# stress_zz = 0.0244499*t
# The moment stress is zero.
# So q = 0.19084*t and p = 0.0244*t.
#
# With large cohesion, but tensile strength = 0.0244499, the
# system is elastic up to t=1. After that time
# stress_zz = 0.0244499 (for t>=1)
# and
# stress_xx = stress_yy = 0.006112 (for t>=1), since the
# elastic trial increment is exactly canelled by the Poisson's
# contribution from the return to the yield surface.
# The plastic strains are zero for t<=1, but for larger times:
# plastic_strain_zz = (t - 1) (for t>=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0.024449878
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.0
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
nl_abs_tol = 1E-14
end_time = 3
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat1
csv = true
[]
(modules/porous_flow/test/tests/dirackernels/injection_production.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 1
xmin = -50
xmax = 50
ymin = -50
ymax = 50
zmin = 0
zmax = 10
[]
[central_nodes]
input = gen
type = ExtraNodesetGenerator
new_boundary = central_nodes
coord = '0 0 0; 0 0 10'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 20E6
[]
[temperature]
initial_condition = 400
scaling = 1E-6 # fluid enthalpy is roughly 1E6
[]
[]
[BCs]
[injection_temperature]
type = DirichletBC
variable = temperature
value = 300
boundary = central_nodes
[]
[]
[DiracKernels]
[fluid_injection]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = injected_mass
point_file = injection.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 21E6
unit_weight = '0 0 0'
use_mobility = true
character = -1
[]
[fluid_production]
type = PorousFlowPeacemanBorehole
variable = porepressure
SumQuantityUO = produced_mass
point_file = production.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
character = 1
[]
[remove_heat_at_production_well]
type = PorousFlowPeacemanBorehole
variable = temperature
SumQuantityUO = produced_heat
point_file = production.bh
function_of = pressure
fluid_phase = 0
bottom_p_or_t = 20E6
unit_weight = '0 0 0'
use_mobility = true
use_enthalpy = true
character = 1
[]
[]
[UserObjects]
[injected_mass]
type = PorousFlowSumQuantity
[]
[produced_mass]
type = PorousFlowSumQuantity
[]
[produced_heat]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[heat_joules_extracted_this_timestep]
type = PorousFlowPlotQuantity
uo = produced_heat
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 2E-4
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 1000
cv = 4000.0
cp = 4000.0
[]
[]
[]
[PorousFlowUnsaturated]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 2E9
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
fluid_coefficient = 5E-6
drained_coefficient = 2E-4
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1 0 0 0 1 0 0 0 1'
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 2E6
dt = 2E5
[]
[Outputs]
exodus = true
[]
(test/tests/scalar_kernels/ad_coupled_scalar/ad_coupled_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[ScalarKernels]
[time]
type = ODETimeDerivative
variable = v
[]
[flux_sink]
type = PostprocessorSinkScalarKernel
variable = v
postprocessor = scale_flux
[]
[]
[BCs]
[right]
type = DirichletBC
value = 0
variable = u
boundary = 'right'
[]
[left]
type = ADMatchedScalarValueBC
variable = u
v = v
boundary = 'left'
[]
[]
[Variables]
[u][]
[v]
family = SCALAR
order = FIRST
initial_condition = 1
[]
[]
[Postprocessors]
[flux]
type = SideDiffusiveFluxIntegral
variable = u
diffusivity = 1
boundary = 'left'
execute_on = 'initial nonlinear linear timestep_end'
[]
[scale_flux]
type = ScalePostprocessor
scaling_factor = -1
value = flux
execute_on = 'initial nonlinear linear timestep_end'
[]
[]
[Executioner]
type = Transient
dt = .1
end_time = 1
solve_type = PJFNK
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/conditional_bc/conditional_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_dirichlet]
type = OnOffDirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_neumann]
type = OnOffNeumannBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/userobjects/solution_user_object/discontinuous_value_solution_uo_p2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./one]
type = DirichletBC
variable = u
boundary = 'right top bottom'
value = 1
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = discontinuous_value_solution_uo_p1.e
system_variables = 'discontinuous_variable continuous_variable'
[../]
[]
[Postprocessors]
[./discontinuous_value_left]
type = TestDiscontinuousValuePP
variable = discontinuous_variable
point = '0.25 0.25 0.0'
solution = soln
[../]
[./discontinuous_value_face]
type = TestDiscontinuousValuePP
variable = discontinuous_variable
point = '0.5 0.25 0.0'
solution = soln
[../]
[./discontinuous_value_right]
type = TestDiscontinuousValuePP
variable = discontinuous_variable
point = '0.75 0.25 0.0'
solution = soln
[../]
[./continuous_gradient_left]
type = TestDiscontinuousValuePP
variable = continuous_variable
evaluate_gradient = true
gradient_component = x
point = '0.25 0.25 0.0'
solution = soln
[../]
[./continuous_gradient_value_face]
type = TestDiscontinuousValuePP
variable = continuous_variable
evaluate_gradient = true
gradient_component = x
point = '0.5 0.25 0.0'
solution = soln
[../]
[./continuous_gradient_right]
type = TestDiscontinuousValuePP
variable = continuous_variable
evaluate_gradient = true
gradient_component = x
point = '0.75 0.25 0.0'
solution = soln
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = discontinuous_value_solution_uo_p2
exodus = false
csv = true
[]
(test/tests/multiapps/sub_cycling/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(test/tests/outputs/recover/recover1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = recover_out
exodus = true
[./recover]
type = Checkpoint
file_base = test_recover_dir
[../]
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/c_integral_2d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SERD]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 0.1 100.0'
y = '0. 1 1'
scale_factor = -68.95 #MPa
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SERD]
type = MaterialRealAux
variable = SERD
property = strain_energy_rate_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[../]
[./Pressure]
[./crack_pressure]
boundary = 700
function = rampConstantUp
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
coefficient = 3.125e-21 # 7.04e-17 #
n_exponent = 2.0
m_exponent = 0.0
activation_energy = 0.0
[../]
[]
[DomainIntegral]
integrals = CIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
incremental = true
inelastic_models = 'powerlawcrp'
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[../]
[]
(test/tests/auxkernels/normalization_aux/normalization_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[../]
[]
[AuxVariables]
[./u_normalized]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./normalization_auxkernel]
type = NormalizationAux
variable = u_normalized
source_variable = u
normal_factor = 2.0
execute_on = timestep_end
# Note: 'normalization' or 'shift' are provided as CLI args
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[../]
[./u_normalized_norm]
type = ElementIntegralVariablePostprocessor
variable = u_normalized
execute_on = 'initial timestep_end'
[../]
[./u0]
type = PointValue
variable = u
point = '0 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/add_side_sets/cylinder_points.i)
[Mesh]
[file]
type = FileMeshGenerator
file = cylinder.e
[]
# Mesh Modifiers
[add_side_sets]
type = SideSetsFromPointsGenerator
input = file
points = '0 0 0.5
0.1 0 0
0 0 -0.5'
new_boundary = 'top side bottom'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = top
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_nobcbc.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[./u_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./v_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
# When the NoBCBC is applied on the outlet boundary then there is nothing
# constraining the pressure. Thus we must pin the pressure somewhere to ensure
# that the problem is not singular. If the below BC is not applied then
# -pc_type svd -pc_svd_monitor reveals a singular value
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/pull_push.i)
# A column of elements has its bottom pulled down, and then pushed up again.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = 'if(t>1,-2.0+t,-t)'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 2E6
value_residual = 1E6
internal_limit = 0.01
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 2E6
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E8
value_residual = 0.0
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
lambda = 6.4e9
shear_modulus = 6.4e9 # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 10
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-2
perfect_guess = false
min_step_size = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 3.0
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_push
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts.i)
[GlobalParams]
integrate_p_by_parts = false
viscous_form = 'traction'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[AuxVariables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
order = SECOND
[]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required because of the no bcs
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./velocity_out]
type = INSADMomentumNoBCBC
boundary = top
variable = velocity
pressure = p
[../]
[./velocity_in]
type = VectorFunctionDirichletBC
boundary = bottom
variable = velocity
function_x = 0
function_y = 'inlet_func'
[../]
[./wall]
type = VectorFunctionDirichletBC
boundary = 'right'
variable = velocity
function_x = 0
function_y = 0
[../]
[./axis]
type = ADVectorFunctionDirichletBC
boundary = 'left'
variable = velocity
set_y_comp = false
function_x = 0
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/tensor_mechanics/test/tests/ad_pressure/pressure_test.i)
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[Mesh]
type = FileMesh
file = pressure_test.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 1.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 1
function = rampConstant
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[./Side2]
boundary = 2
function = zeroRamp
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
factor = 2.0
[../]
[./Side3]
boundary = 3
function = rampUnramp
displacements = 'disp_x disp_y disp_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ADComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ADComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
block = 1
[../]
[./stress]
type = ADComputeLinearElasticStress
block = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(tutorials/tutorial02_multiapps/step03_coupling/02_sub_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = CoupledForce
variable = v
v = ut
coef = 100
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
nl_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(modules/contact/test/tests/normalized_penalty/normalized_penalty.i)
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = normalized_penalty.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Functions]
[./left_x]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.02 0'
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[./m3_s2]
primary = 3
secondary = 2
penalty = 1e10
normalize_penalty = true
formulation = penalty
tangential_tolerance = 1e-3
[../]
[]
[BCs]
[./left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 1
function = left_x
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = '1 2 3 4'
value = 0.0
[../]
[./right]
type = DirichletBC
variable = disp_x
boundary = '3 4'
value = 0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 1000'
youngs_modulus = 3e8
poissons_ratio = 0.0
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3 4 1000'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 5e-8
l_max_its = 100
nl_max_its = 10
dt = 0.5
num_steps = 4
[]
[Outputs]
exodus = true
[]
(tutorials/darcy_thermo_mech/step03_darcy_material/problems/step3b.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables/pressure]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Materials]
[column]
type = PackedColumn
radius = '1 + 2/3.04*x'
outputs = exodus
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(examples/ex11_prec/smp.i)
[Mesh]
file = square.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
# The Preconditioning block
[Preconditioning]
active = 'SMP_jfnk'
[./SMP_jfnk]
type = SMP
off_diag_row = 'forced'
off_diag_column = 'diffused'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[../]
[./SMP_jfnk_full]
type = SMP
full = true
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[../]
[./SMP_n]
type = SMP
off_diag_row = 'forced'
off_diag_column = 'diffused'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[../]
[]
[Kernels]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./conv_forced]
type = CoupledForce
variable = forced
v = diffused
[../]
[./diff_forced]
type = Diffusion
variable = forced
[../]
[]
[BCs]
#Note we have active on and neglect the right_forced BC
active = 'left_diffused right_diffused left_forced'
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 1
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 2
value = 100
[../]
[./left_forced]
type = DirichletBC
variable = forced
boundary = 1
value = 0
[../]
[./right_forced]
type = DirichletBC
variable = forced
boundary = 2
value = 0
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_tm/2d/frictionless_first/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/test/tests/beam/action/2_block_common.i)
# Test for LineElementAction on multiple blocks by placing parameters
# common to all blocks outside of the individual action blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = 2_beam_block.e
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_1]
type = ConstantRate
variable = disp_y
boundary = 2
rate = 1e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Modules/TensorMechanics/LineElementMaster]
# parameters common to all blocks
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
y_orientation = '0.0 1.0 0.0'
[./block_1]
Iy = 1e-5
Iz = 1e-5
block = 1
[../]
[./block_2]
Iy = 2e-5
Iz = 2e-5
block = 2
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2'
[../]
[]
[Postprocessors]
[./disp_y_1]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_y
[../]
[./disp_y_2]
type = PointValue
point = '1.0 1.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
file_base = '2_block_out'
exodus = true
[]
(modules/tensor_mechanics/test/tests/material_limit_time_step/mult_inelastic/no_inelastic_model_timestep_limit.i)
# This is a basic test of the material time step computed by the
# ComputeMultipleInelasticStress model. If no inelastic models
# are defined, the material time step should be the maximum
# value representable by a real number.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[AuxVariables]
[damage_index]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx strain_xx'
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[axial_load]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[]
[]
[Materials]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = ''
[]
[elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.2
youngs_modulus = 10e9
[]
[]
[Postprocessors]
[stress_xx]
type = ElementAverageValue
variable = stress_xx
[]
[strain_xx]
type = ElementAverageValue
variable = strain_xx
[]
[time_step_limit]
type = MaterialTimeStepPostprocessor
[]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-8
dt = 0.1
dtmin = 0.001
end_time = 1.1
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
growth_factor = 2.0
cutback_factor = 0.5
timestep_limiting_postprocessor = time_step_limit
[]
[]
[Outputs]
csv=true
[]
(test/tests/meshgenerators/combiner_generator/combiner_generator.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[cmbn]
type = CombinerGenerator
inputs = 'gen'
positions = '1 0 0 2 2 2 3 0 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest10.i)
# 2D, removal of a block containing a sideset inside it
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[left]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[right]
type = SubdomainBoundingBoxGenerator
input = left
block_id = 2
bottom_left = '3 2 0'
top_right = '4 3 1'
[]
[interior_sideset]
type = SideSetsBetweenSubdomainsGenerator
input = right
primary_block = 1
paired_block = 2
new_boundary = interior_ss
[]
[new_block_number]
type = SubdomainBoundingBoxGenerator
input = interior_sideset
block_id = 3
bottom_left = '0 0 0'
top_right = '4 4 1'
[]
[ed0]
type = BlockDeletionGenerator
input = new_block_number
block = 3
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/action/composite_eigenstrain.i)
# The primary purpose of this test is to verify that the ability to combine
# multiple eigenstrains works correctly. It should behave identically to the
# constant_expansion_coeff.i model in the thermal_expansion directory. Instead
# of having the eigenstrain names passed directly to the TensorMechanics MasterAction,
# the MasterAction should be able to extract the necessary eigenstrains and apply
# to their respective blocks without reduncacy.
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[./c]
[../]
[]
[Problem]
solve = false
[]
[ICs]
[./InitialCondition]
type = ConstantIC
value = 1
variable = c
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./solid]
strain = SMALL
incremental = true
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.0e-5
temperature = temp
eigenstrain_name = eigenstrain1
[../]
[./thermal_expansion_strain2]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 0.3e-5
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[./composite]
type = CompositeEigenstrain
tensors = ' eigenstrain1 eigenstrain2'
weights = 'weight1 weight2'
eigenstrain_name = 'eigenstrain'
args = c
[../]
[./weights]
type = GenericConstantMaterial
prop_names = 'weight1 weight2'
prop_values = '1.0 1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
checkpoint = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 0
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
block = 0
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
block = 0
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
block = 0
[../]
[]
(modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_tr.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
nx = 8
ny = 8
xmin = -82.627
xmax = 82.627
ymin = -82.627
ymax = 82.627
dim = 2
[]
[./extra_nodes_x]
type = ExtraNodesetGenerator
input = 'gen'
new_boundary = 'no_x'
coord = '0 82.627 0'
[../]
[./extra_nodes_y]
type = ExtraNodesetGenerator
input = 'extra_nodes_x'
new_boundary = 'no_y'
coord = '-82.627 0 0'
[../]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
# FINITE strain when strain is large, i.e., visible movement.
# SMALL strain when things are stressed, but may not move.
[./fuel]
add_variables = true
strain = FINITE
temperature = temp
eigenstrain_names = 'thermal_eigenstrain'
generate_output = 'vonmises_stress stress_xx stress_yy hydrostatic_stress max_principal_stress strain_xy elastic_strain_xx stress_xy'
extra_vector_tags = 'ref'
use_finite_deform_jacobian = true
incremental = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'no_x'
value = 0.0
preset = true
[../]
[./no_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = 'no_y'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3e10 # Pa
poissons_ratio = 0.33 # unitless
[../]
[./thermal_strains]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 2e-6 # 1/K
stress_free_temperature = 500 # K
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./stress_finite] # goes with FINITE strain formulation
type = ComputeFiniteStrainElasticStress
[../]
[]
[Postprocessors]
[./avg_temp]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./disp_x_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[./disp_x_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
line_search = 'none'
l_tol = 1e-02
nl_rel_tol = 5e-04
nl_abs_tol = 1e-2
l_max_its = 50
nl_max_its = 25
start_time = 0
end_time = 40
dt = 10
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
[]
(modules/porous_flow/examples/flow_through_fractured_media/coarse_3D.i)
# Flow and solute transport along 2 2D eliptical fractures embedded in a 3D porous matrix
# the model domain has dimensions 1 x 1 x 0.3m and the two fracture have r1 = 0.45 and r2 = 0.2
# The fractures intersect each other and the domain boundaries on two opposite sides
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m
# fracture permeability = 1.8e-11 which is based in k=3e-8 from a**2/12, and k*a = 3e-8*6e-4;
# matrix porosity = 0.1;
# matrix permeanility = 1e-20;
[Mesh]
type = FileMesh
file = coarse_3D.e
block_id = '1 2 3'
block_name = 'matrix f1 f2'
boundary_id = '1 2 3 4'
boundary_name = 'rf2 lf1 right_matrix left_matrix'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[tracer]
[]
[]
[AuxVariables]
[velocity_x]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[]
[velocity_y]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[]
[velocity_z]
family = MONOMIAL
order = CONSTANT
block = 'f1 f2'
[]
[]
[AuxKernels]
[velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[]
[velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[]
[velocity_z]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_z
component = z
aperture = 6E-4
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e6
[]
[tracer]
type = ConstantIC
variable = tracer
value = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0
variable = tracer
boundary = rf2
[]
[bottom]
type = DirichletBC
value = 1
variable = tracer
boundary = lf1
[]
[ptop]
type = DirichletBC
variable = pp
boundary = rf2
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = lf1
value = 1.02e6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = tracer
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = tracer
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = tracer
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'tracer'
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro1]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'f1 f2'
[]
[diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1.e-9 1.e-9'
tortuosity = 1.0
block = 'f1 f2'
[]
[poro2]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix'
[]
[diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1.e-9 1.e-9'
tortuosity = 0.1
block = 'matrix'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability1]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # 1.8e-11 = a * kf
block = 'f1 f2'
[]
[permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 20
dt = 1
[]
[VectorPostprocessors]
[xmass]
type = LineValueSampler
start_point = '-0.5 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 41
variable = tracer
outputs = csv
[]
[]
[Outputs]
[csv]
type = CSV
execute_on = 'final'
[]
[]
(python/peacock/tests/common/transient_heat_test.i)
[Mesh]
file = cube.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./ie]
type = SpecificHeatConductionTimeDerivative
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./constant]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1
specific_heat = 1
[../]
[./density]
type = Density
block = 1
density = 1
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/porous_flow/test/tests/fluidstate/coldwater_injection_radial.i)
# Cold water injection into 1D radial hot reservoir (Avdonin, 1964)
#
# To generate results presented in documentation for this problem,
# set xmax = 1000 and nx = 200 in the Mesh block, and dtmax = 1e4
# and end_time = 1e6 in the Executioner block.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0.1
xmax = 5
bias_x = 1.05
[]
[Problem]
rz_coord_axis = Y
coord_type = RZ
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[temperature]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[temperature]
type = PorousFlowPropertyAux
variable = temperature
property = temperature
execute_on = 'initial timestep_end'
[]
[]
[Variables]
[pliquid]
initial_condition = 5e6
[]
[h]
scaling = 1e-6
[]
[]
[ICs]
[hic]
type = PorousFlowFluidPropertyIC
variable = h
porepressure = pliquid
property = enthalpy
temperature = 170
temperature_unit = Celsius
fp = water
[]
[]
[Functions]
[injection_rate]
type = ParsedFunction
vals = injection_area
vars = area
value = '-0.1/area'
[]
[]
[BCs]
[source]
type = PorousFlowSink
variable = pliquid
flux_function = injection_rate
boundary = left
[]
[pright]
type = DirichletBC
variable = pliquid
value = 5e6
boundary = right
[]
[hleft]
type = DirichletBC
variable = h
value = 678.52e3
boundary = left
[]
[hright]
type = DirichletBC
variable = h
value = 721.4e3
boundary = right
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pliquid
[]
[massflux]
type = PorousFlowAdvectiveFlux
variable = pliquid
[]
[heat]
type = PorousFlowEnergyTimeDerivative
variable = h
[]
[heatflux]
type = PorousFlowHeatAdvection
variable = h
[]
[heatcond]
type = PorousFlowHeatConduction
variable = h
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pliquid h'
number_fluid_phases = 2
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
pc_max = 1e6
sat_lr = 0.1
m = 0.5
alpha = 1e-5
[]
[fs]
type = PorousFlowWaterVapor
water_fp = water
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[watervapor]
type = PorousFlowFluidStateSingleComponent
porepressure = pliquid
enthalpy = h
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
sum_s_res = 0.1
[]
[internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2900
specific_heat_capacity = 740
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '20 0 0 0 20 0 0 0 20'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e3
nl_abs_tol = 1e-8
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
[]
[]
[Postprocessors]
[injection_area]
type = AreaPostprocessor
boundary = left
execute_on = initial
[]
[]
[VectorPostprocessors]
[line]
type = ElementValueSampler
sort_by = x
variable = temperature
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
[csv]
type = CSV
execute_on = final
[]
[]
(modules/heat_conduction/test/tests/gray_lambert_radiator/coupled_heat_conduction.i)
[Problem]
kernel_coverage_check = false
[]
[Mesh]
type = MeshGeneratorMesh
[./cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '1 1 1'
ix = '2 2 2'
dy = '5'
iy = '10'
subdomain_id = '1 2 3'
[../]
[./break_sides]
type = BreakBoundaryOnSubdomainGenerator
boundaries = 'bottom top'
input = cartesian
[../]
[./left_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
new_boundary = left_interior
input = break_sides
[../]
[./right_interior]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 2
new_boundary = right_interior
input = left_interior
[../]
[./rename]
type = RenameBlockGenerator
input = right_interior
old_block = '1 2 3'
new_block = '1 4 3'
[../]
[]
[Variables]
[./temperature]
initial_condition = 300
block = '1 3'
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temperature
diffusion_coefficient = 1
block = '1 3'
[../]
[]
[UserObjects]
[./cavity_radiation]
type = ConstantViewFactorSurfaceRadiation
boundary = 'left_interior right_interior bottom_to_2 top_to_2'
temperature = temperature
emissivity = '0.8 0.8 0.8 0.8'
adiabatic_boundary = 'bottom_to_2 top_to_2'
# these view factors are made up to exactly balance energy
# transfer through the cavity
view_factors = '0 0.8 0.1 0.1;
0.8 0 0.1 0.1;
0.45 0.45 0 0.1;
0.45 0.45 0.1 0'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[../]
[]
[BCs]
[./bottom_left]
type = DirichletBC
preset = false
variable = temperature
boundary = bottom_to_1
value = 1500
[../]
[./top_right]
type = DirichletBC
preset = false
variable = temperature
boundary = top_to_3
value = 300
[../]
[./radiation]
type = GrayLambertNeumannBC
variable = temperature
reconstruct_emission = false
surface_radiation_object_name = cavity_radiation
boundary = 'left_interior right_interior'
[../]
[]
[Postprocessors]
[./qdot_left]
type = GrayLambertSurfaceRadiationPP
boundary = left_interior
surface_radiation_object_name = cavity_radiation
return_type = HEAT_FLUX_DENSITY
[../]
[./qdot_right]
type = GrayLambertSurfaceRadiationPP
boundary = right_interior
surface_radiation_object_name = cavity_radiation
return_type = HEAT_FLUX_DENSITY
[../]
[./qdot_top]
type = GrayLambertSurfaceRadiationPP
boundary = top_to_2
surface_radiation_object_name = cavity_radiation
return_type = HEAT_FLUX_DENSITY
[../]
[./qdot_bottom]
type = GrayLambertSurfaceRadiationPP
boundary = bottom_to_2
surface_radiation_object_name = cavity_radiation
return_type = HEAT_FLUX_DENSITY
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_projection_transfer/fromsub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
ymin = 0
xmax = 3
ymax = 3
nx = 3
ny = 3
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./x]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./x_func]
type = ParsedFunction
value = x
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./x_func_aux]
type = FunctionAux
variable = x
function = x_func
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/axisymmetric_centerline_average_value/axisymmetric_centerline_average_value_test.i)
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 2
ymin = 0
ymax = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'top bottom'
[./top]
type = DirichletBC
variable = u
boundary = top
value = 0
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./average]
type = AxisymmetricCenterlineAverageValue
boundary = left
variable = u
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/test/tests/linear_elasticity/linear_elastic_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./diffused]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
#reading C_11 C_12 C_13 C_22 C_23 C_33 C_44 C_55 C_66
C_ijkl ='1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = '2'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = '0 2'
value = 0.5
[../]
[./disp_x_BC2]
type = DirichletBC
variable = disp_x
boundary = '1 3'
value = 0.01
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = '0 2'
value = 0.8
[../]
[./disp_y_BC2]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.02
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform1.i)
# Elastic deformation.
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = t
# should yield stress:
# stress_xz = 8*t
# stress_xy = 6*t
# stress_zz = 2*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = combined_inelastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = ''
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform1
csv = true
[]
(test/tests/meshgenerators/sidesets_from_normals_generator/sidesets_cylinder_normals_fixed.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = cylinder.e
#parallel_type = replicated
[]
[./sidesets]
type = SideSetsFromNormalsGenerator
input = fmg
normals = '0 1 0
0 -1 0'
fixed_normal = true
new_boundary = 'front back'
variance = 0.5
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./front]
type = DirichletBC
variable = u
boundary = front
value = 0
[../]
[./back]
type = DirichletBC
variable = u
boundary = back
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/dynamics/prescribed_displacement/3D_QStatic_1_Ramped_Displacement.i)
# One 3D element under ramped displacement loading.
#
# loading:
# time : 0.0 0.1 0.2 0.3
# disp : 0.0 0.0 -0.01 -0.01
# This displacement loading is applied using the PresetDisplacement boundary condition.
# Here, the given displacement time history is converted to an acceleration
# time history using Backward Euler time differentiation. Then, the resulting
# acceleration is integrated using Newmark time integration to obtain a
# displacement time history which is then applied to the boundary.
# This is done because if the displacement is applied using Dirichlet BC, the
# resulting acceleration is very noisy.
# Boundaries:
# x = 0 left
# x = 1 right
# y = 0 bottom
# y = 1 top
# z = 0 back
# z = 1 front
# Result: The displacement at the top node in the z direction should match
# the prescribed displacement. Also, the z acceleration should
# be two triangular pulses, one peaking at 0.1 and another peaking at
# 0.2.
[Mesh]
type = GeneratedMesh
dim = 3 # Dimension of the mesh
nx = 1 # Number of elements in the x direction
ny = 1 # Number of elements in the y direction
nz = 1 # Number of elements in the z direction
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 1
allow_renumbering = false # So NodalVariableValue can index by id
[]
[Variables] # variables that are solved
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables] # variables that are calculated for output
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[./accel_z]
[../]
[./vel_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics] # zeta*K*vel + K * disp
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.000025
[../]
[./inertia_x] # M*accel + eta*M*vel
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 19.63
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 19.63
[../]
[]
[AuxKernels]
[./accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./displacement_front]
type = PiecewiseLinear
data_file = 'displacement.csv'
format = columns
[../]
[]
[BCs]
[./Preset_displacement]
type = PresetDisplacement
variable = disp_z
function = displacement_front
boundary = front
beta = 0.25
velocity = vel_z
acceleration = accel_z
[../]
[./anchor_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./anchor_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./anchor_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
youngs_modulus = 325e6 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 0
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2000 #kg/m3
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3.0
l_tol = 1e-6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
dt = 0.1
timestep_tolerance = 1e-6
[]
[Postprocessors] # These quantites are printed to a csv file at every time step
[./_dt]
type = TimestepSize
[../]
[./accel_6x]
type = NodalVariableValue
nodeid = 6
variable = accel_x
[../]
[./accel_6y]
type = NodalVariableValue
nodeid = 6
variable = accel_y
[../]
[./accel_6z]
type = NodalVariableValue
nodeid = 6
variable = accel_z
[../]
[./vel_6x]
type = NodalVariableValue
nodeid = 6
variable = vel_x
[../]
[./vel_6y]
type = NodalVariableValue
nodeid = 6
variable = vel_y
[../]
[./vel_6z]
type = NodalVariableValue
nodeid = 6
variable = vel_z
[../]
[./disp_6x]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_6y]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_6z]
type = NodalVariableValue
nodeid = 6
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/outputs/postprocessor_final/postprocessor_final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./vpp]
type = LineValueSampler
variable = u
start_point = '0 0 0'
end_point = '1 1 0'
outputs = test
num_points = 10
sort_by = id
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./test]
type = CSV
execute_on = final
[../]
[]
(modules/richards/test/tests/buckley_leverett/bl02.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-3
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
active = 'calculate_seff'
[./calculate_seff]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_pressure
[../]
[../]
[]
[BCs]
active = 'left'
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 980000
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Functions]
active = 'initial_pressure'
[./initial_pressure]
type = ParsedFunction
value = max((1000000-x/5*1000000)-20000,-20000)
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 50
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
file_base = bl02
interval = 1000000
exodus = true
[]
(test/tests/outputs/output_interface/indicator.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
[./Indicators]
[./indicator_0]
type = GradientJumpIndicator
variable = u
outputs = indicators
[../]
[./indicator_1]
type = GradientJumpIndicator
variable = u
outputs = indicators
[../]
[../]
[]
[Outputs]
[./indicators]
type = Exodus
[../]
[./no_indicators]
type = Exodus
[../]
[]
(modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i)
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 'zeta_rayleigh'
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[]
[inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
displacements = 'disp_x disp_y disp_z'
factor = 1
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[]
[material_zeta]
type = GenericConstantMaterial
block = 0
prop_names = 'zeta_rayleigh'
prop_values = '0.1'
[]
[material_eta]
type = GenericConstantMaterial
block = 0
prop_names = 'eta_rayleigh'
prop_values = '0.1'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
file_base = 'rayleigh_newmark_out'
exodus = true
perf_graph = true
[]
(modules/contact/test/tests/mortar_tm/2drz/frictionless_second/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = 0
ymax = 10
nx = 2
ny = 33
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = block_right
value = 0
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = GenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 3
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/ics/boundary_ic/boundary_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
block = 0
value = -1
[../]
[./u_ic_bnd]
type = ConstantIC
variable = u
boundary = 'left right'
value = -2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/iteration_adaptive/hit_function_knot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./knot]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0 0'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 2.0
timestep_tolerance = 0.3
verbose = true
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.9
optimal_iterations = 10
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/force_aux_ordering/force_postaux.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 5
ymin = 0
ymax = 1
ny = 5
allow_renumbering = false
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
# spatial_uo_1/2 are executed preaux by default because spatial_uo_aux1/2 depend on them
# We force 1 to be executed postaux, so the auxkernel will use the old value, and the
# corresponding post processor, value2, will get an old value as well
[UserObjects]
[spatial_uo_1]
type = LayeredSideAverage
variable = u
direction = y
num_layers = 3
boundary = 'left'
force_postaux = true
[]
[spatial_uo_2]
type = LayeredSideAverage
variable = u
direction = y
num_layers = 3
boundary = 'left'
[]
[]
[AuxVariables]
[v1]
[]
[v2]
[]
[]
[AuxKernels]
[spatial_uo_aux_1]
type = SpatialUserObjectAux
variable = v1
user_object = 'spatial_uo_1'
[]
[spatial_uo_aux_2]
type = SpatialUserObjectAux
variable = v2
user_object = 'spatial_uo_2'
[]
[]
[Postprocessors]
[value1]
type = NodalVariableValue
variable = v1
nodeid = 3
force_preaux = true
[]
[value2]
type = NodalVariableValue
variable = v2
nodeid = 3
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 2.0
[]
[Outputs]
csv = true
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_missing_sub_object.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/block-restriction/one-mat-two-eqn-sets.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 1
nx = 16
ny = 8
elem_type = QUAD9
[]
[./corner_node_0]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node_0'
coord = '0 0 0'
input = gen
[../]
[./corner_node_1]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node_1'
coord = '1 0 0'
input = corner_node_0
[../]
[./subdomain1]
input = corner_node_1
type = SubdomainBoundingBoxGenerator
bottom_left = '1 0 0'
top_right = '2 1 0'
block_id = 1
[../]
[./break_boundary]
input = subdomain1
type = BreakBoundaryOnSubdomainGenerator
[../]
[./interface0]
type = SideSetsBetweenSubdomainsGenerator
input = break_boundary
primary_block = '0'
paired_block = '1'
new_boundary = 'interface0'
[../]
[./interface1]
type = SideSetsBetweenSubdomainsGenerator
input = interface0
primary_block = '1'
paired_block = '0'
new_boundary = 'interface1'
[../]
[]
[Variables]
[velocity0]
order = SECOND
family = LAGRANGE_VEC
[]
[T0]
order = SECOND
[InitialCondition]
type = ConstantIC
value = 1.0
[]
[]
[p0]
[]
[]
[Kernels]
[./mass0]
type = INSADMass
variable = p0
block = 0
[../]
[./momentum_time0]
type = INSADMomentumTimeDerivative
variable = velocity0
block = 0
[../]
[./momentum_convection0]
type = INSADMomentumAdvection
variable = velocity0
block = 0
[../]
[./momentum_viscous0]
type = INSADMomentumViscous
variable = velocity0
block = 0
[../]
[./momentum_pressure0]
type = INSADMomentumPressure
variable = velocity0
pressure = p0
integrate_p_by_parts = true
block = 0
[../]
[./temperature_time0]
type = INSADHeatConductionTimeDerivative
variable = T0
block = 0
[../]
[./temperature_advection0]
type = INSADEnergyAdvection
variable = T0
block = 0
[../]
[./temperature_conduction0]
type = ADHeatConduction
variable = T0
thermal_conductivity = 'k'
block = 0
[../]
[./mass1]
type = INSADMass
variable = p0
block = 1
[../]
[./momentum_time1]
type = INSADMomentumTimeDerivative
variable = velocity0
block = 1
[../]
[./momentum_convection1]
type = INSADMomentumAdvection
variable = velocity0
block = 1
[../]
[./momentum_viscous1]
type = INSADMomentumViscous
variable = velocity0
block = 1
[../]
[./momentum_pressure1]
type = INSADMomentumPressure
variable = velocity0
pressure = p0
integrate_p_by_parts = true
block = 1
[../]
[./temperature_time1]
type = INSADHeatConductionTimeDerivative
variable = T0
block = 1
[../]
[./temperature_advection1]
type = INSADEnergyAdvection
variable = T0
block = 1
[../]
[./temperature_conduction1]
type = ADHeatConduction
variable = T0
thermal_conductivity = 'k'
block = 1
[../]
[]
[BCs]
[./no_slip0]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'bottom_to_0 interface0 left'
[../]
[./lid0]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'top_to_0'
function_x = 'lid_function0'
[../]
[./T_hot0]
type = DirichletBC
variable = T0
boundary = 'bottom_to_0'
value = 1
[../]
[./T_cold0]
type = DirichletBC
variable = T0
boundary = 'top_to_0'
value = 0
[../]
[./pressure_pin0]
type = DirichletBC
variable = p0
boundary = 'pinned_node_0'
value = 0
[../]
[./no_slip1]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'bottom_to_1 interface1 right'
[../]
[./lid1]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'top_to_1'
function_x = 'lid_function1'
[../]
[./T_hot1]
type = DirichletBC
variable = T0
boundary = 'bottom_to_1'
value = 1
[../]
[./T_cold1]
type = DirichletBC
variable = T0
boundary = 'top_to_1'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat0]
type = INSAD3Eqn
velocity = velocity0
pressure = p0
temperature = T0
block = '0 1'
[]
[]
[Functions]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
[./lid_function0]
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[./lid_function1]
type = ParsedFunction
value = '4*(x-1)*(2-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels -sub_pc_factor_shift_type'
petsc_options_value = 'asm 2 ilu 4 NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/postprocessor_final/execute_pps_on_final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp1]
type = ElementAverageValue
variable = u
[../]
[./pp2]
type = ElementExtremeValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = CSV
execute_postprocessors_on = final
show = 'pp1'
[../]
[]
(modules/combined/test/tests/gravity/gravity_hex20.i)
# Gravity Test
#
# This test is designed to exercise the gravity body force kernel.
#
# The mesh for this problem is a rectangular bar 10 units by 1 unit
# by 1 unit.
#
# The boundary conditions for this problem are as follows. The
# displacement is zero on each of side that faces a negative
# coordinate direction. The acceleration of gravity is 20.
#
# The material has a Young's modulus of 1e6 and a density of 2.
#
# The analytic solution for the displacement along the bar is:
#
# u(x) = -b*x^2/(2*E)+b*L*x/E
#
# The displacement at x=L is b*L^2/(2*E) = 2*20*10*10/(2*1e6) = 0.002.
#
# The analytic solution for the stress along the bar assuming linear
# elasticity is:
#
# S(x) = b*(L-x)
#
# The stress at x=0 is b*L = 2*20*10 = 400.
#
# Note: The simulation does not measure stress at x=0. The stress
# is reported at element centers. The element closest to x=0 sits
# at x = 1/4 and has a stress of 390. This matches the linear
# stress distribution that is expected. The same situation applies
# at x = L where the stress is zero analytically. The nearest
# element is at x=9.75 where the stress is 10.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = gravity_hex20_test.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
generate_output = 'stress_xx'
[]
[Kernels]
[./gravity]
type = Gravity
variable = disp_x
value = 20
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 5
value = 0.0
[../]
[]
[Materials]
[./elasticty_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
bulk_modulus = 0.333333333333333e6
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./density]
type = Density
density = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = gravity_hex20_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/porous_flow/test/tests/energy_conservation/heat03.i)
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow or heat flow.
# Heat energy conservation is checked.
#
# Under these conditions (here L is the height of the sample: L=1 in this case):
# porepressure = porepressure(t=0) - (Fluid bulk modulus)*log(1 - 0.01*t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# Also, the total heat energy must be conserved: this is
# fluid_mass * fluid_heat_cap * temperature + (1 - porosity) * rock_density * rock_heat_cap * temperature * volume
# Since fluid_mass is conserved, and volume = (1 - 0.01*t), this can be solved for temperature:
# temperature = initial_heat_energy / (fluid_mass * fluid_heat_cap + (1 - porosity) * rock_density * rock_heat_cap * (1 - 0.01*t))
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 0.5
# initial porepressure = 0.1
# initial temperature = 10
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.1 - 0.5*log(1-0.01*t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
# t0 = 11.5 / (0.159 + 0.99 * (1 - 0.01*t))
#
# Regarding the "log" - it comes from preserving fluid mass
#
# Note that the PorousFlowMassVolumetricExpansion and PorousFlowHeatVolumetricExpansion Kernels are used
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[pp]
initial_condition = 0.1
[]
[temp]
initial_condition = 10
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
viscosity = 1
thermal_expansion = 0
cv = 1.3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = pp
[]
[t0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '0 0 0'
variable = temp
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
use_displaced_mesh = false
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[rock_heat]
type = PorousFlowHeatEnergy
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 2
end_time = 10
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat03
[csv]
type = CSV
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/special/rotate.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[angles]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0 1.5707963'
[]
[stretch]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.1 0.1'
[]
[move_y]
type = ParsedFunction
value = 'y*cos(theta) - z * (1 + a)*sin(theta) - y'
vars = 'a theta'
vals = 'stretch angles'
[]
[move_z]
type = ParsedFunction
value = 'y*sin(theta) + z*(1+a)*cos(theta) - z'
vars = 'a theta'
vals = 'stretch angles'
[]
[dts]
type = PiecewiseConstant
x = '0 1 2'
y = '0.1 0.001 0.001'
direction = 'LEFT_INCLUSIVE'
[]
[]
[BCs]
[fix]
type = DirichletBC
preset = true
value = 0.0
boundary = left
variable = disp_x
[]
[front_y]
type = FunctionDirichletBC
boundary = front
variable = disp_y
function = move_y
preset = true
[]
[back_y]
type = FunctionDirichletBC
boundary = back
variable = disp_y
function = move_y
preset = true
[]
[front_z]
type = FunctionDirichletBC
boundary = front
variable = disp_z
function = move_z
preset = true
[]
[back_z]
type = FunctionDirichletBC
boundary = back
variable = disp_z
function = move_z
preset = true
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = stress_xx
[]
[syy]
type = ElementAverageValue
variable = stress_yy
[]
[szz]
type = ElementAverageValue
variable = stress_zz
[]
[syz]
type = ElementAverageValue
variable = stress_yz
[]
[sxz]
type = ElementAverageValue
variable = stress_xz
[]
[sxy]
type = ElementAverageValue
variable = stress_xy
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-4
nl_abs_tol = 1e-6
start_time = 0.0
end_time = 2.0
[TimeStepper]
type = FunctionDT
function = dts
interpolate = False
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/thermal_hydraulics/test/tests/auxkernels/weighted_average/weighted_average.i)
# Tests the weighted average aux, which computes a weighted average of an
# arbitrary number of aux variables, using other aux variables as the weights.
# For this example, the values being averaged are
# value1 = 4
# value2 = 9
# and the weights are
# weight1 = 2
# weight2 = 3
# The result should then be
# weighted_average = (weight1 * value1 + weight2 * value2) / (weight1 + weight2)
# = (2 * 4 + 3 * 9) / (2 + 3)
# = 35 / 5
# = 7
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[weighted_average]
family = MONOMIAL
order = CONSTANT
[]
[value1]
family = MONOMIAL
order = CONSTANT
[]
[value2]
family = MONOMIAL
order = CONSTANT
[]
[weight1]
family = MONOMIAL
order = CONSTANT
[]
[weight2]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[weighted_average_auxkernel]
type = WeightedAverageAux
variable = weighted_average
values = 'value1 value2'
weights = 'weight1 weight2'
[]
[value1_kernel]
type = ConstantAux
variable = value1
value = 4
[]
[value2_kernel]
type = ConstantAux
variable = value2
value = 9
[]
[weight1_kernel]
type = ConstantAux
variable = weight1
value = 2
[]
[weight2_kernel]
type = ConstantAux
variable = weight2
value = 3
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[weighted_average_pp]
type = ElementalVariableValue
elementid = 0
variable = weighted_average
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/poro_elasticity/vol_expansion.i)
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 0.3, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 0.3t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 0.3t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 0.3t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[p]
[]
[]
[BCs]
[p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[]
[xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[]
[ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[]
[zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[]
[]
[Kernels]
[p_does_not_really_diffuse]
type = Diffusion
variable = p
[]
[TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Postprocessors]
[corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[]
[corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[]
[corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = p
capillary_pressure = pc
[]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion
exodus = true
[]
(test/tests/postprocessors/pps_interval/pps_interval_mismatch.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
interval = 4
exodus = true
[./console]
type = Console
interval = 3
[../]
[]
(modules/heat_conduction/test/tests/code_verification/spherical_test_no1.i)
# Problem III.1
#
# A spherical shell has a constant thermal conductivity k and internal
# heat generation q. It has inner radius ri and outer radius ro.
# Both surfaces are exposed to constant temperatures: u(ri) = ui and u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'ri ro ui uo'
vals = '0.2 1.0 300 0'
value = '( uo * (1/ri-1/x) - ui * (1/ro-1/x)) / (1/ri-1/ro)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 5.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(python/peacock/tests/common/simple_diffusion.i)
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_fake_plastic.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = '0.01 * t'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
# note there are no plastic_models so this is actually elasticity
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_mouth_dir.i)
#This tests the J-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the J-Integrals using options
#to treat it as 3d.
#Crack direction is defined using the crack mouth coordinates.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackMouth
crack_mouth_boundary = 900
radius_inner = '4.0 5.5'
radius_outer = '5.5 7.0'
output_variable = 'disp_x'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_z
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./disp_x_centercrack]
type = CrackFrontData
crack_front_definition = crackFrontDefinition
variable = disp_x
crack_front_point_index = 1
[../]
[]
[Outputs]
file_base = j_integral_3d_mouth_dir_out
exodus = true
csv = true
[]
(test/tests/auxkernels/flux_average/flux_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./flux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./bc_func]
type = ParsedFunction
value = y+1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./flux_average]
type = FluxAverageAux
variable = flux
coupled = u
diffusivity = 0.1
boundary = right
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = bc_func
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_simple_linear/linear-ad.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_x]
scaling = 1e-10
[../]
[./disp_y]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_x]
type = ADStressDivergenceTensors
component = 0
variable = disp_x
[../]
[./stress_y]
type = ADStressDivergenceTensors
component = 1
variable = disp_y
[../]
[./stress_z]
type = ADStressDivergenceTensors
component = 2
variable = disp_z
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeSmallStrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = "linear-out"
[]
(modules/tensor_mechanics/test/tests/radial_disp_aux/sphere_2d_axisymmetric.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a sphere subjected to uniform thermal
# expansion represented using a 2D axisymmetric model.
[Mesh]
type = FileMesh
file = circle_sector_2d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementSphereAux
variable = rad_disp
origin = '0 0 0'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(test/tests/meshgenerators/plane_deletion/plane_deletion.i)
[Mesh]
[deleter]
type = PlaneDeletionGenerator
point = '0.5 0.5 0'
normal = '-1 0 0'
input = generated
new_boundary = 6
[]
[generated]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/action/beam_action_chk.i)
# Test for checking syntax for line element action input.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = 0.0
xmax = 1.0
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_1]
type = ConstantRate
variable = disp_y
boundary = 2
rate = 1e-2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Modules/TensorMechanics/LineElementMaster]
[./block_1]
add_variables = true
# Geometry parameters
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
block = 1
# dynamic simulation using consistent mass/inertia matrix
dynamic_consistent_inertia=true
#dynamic simulation using nodal mass/inertia matrix
dynamic_nodal_translational_inertia = true
dynamic_nodal_rotational_inertia = true
nodal_Iyy = 1e-1
nodal_Izz = 1e-1
velocities = 'vel_x'
accelerations = 'accel_x'
rotational_accelerations = 'rot_accel_x'
gamma = 0.5 # Newmark time integration parameter
boundary = right # Node set where nodal mass and nodal inertia are applied
# optional parameters for Rayleigh damping
eta = 0.1 # Mass proportional Rayleigh damping
[../]
[./block_all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2'
[../]
[]
[Postprocessors]
[./disp_y_1]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_y
[../]
[./disp_y_2]
type = PointValue
point = '1.0 1.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = false
[]
(test/tests/vectorpostprocessors/element_variables_difference_max/element_variables_difference_max.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_v]
type = ParsedFunction
value = 'x * y * z'
[../]
[]
[Kernels]
[./diffusion_u]
type = Diffusion
variable = u
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diffusion_v]
type = Diffusion
variable = v
[../]
[./forcing_v]
type = BodyForce
variable = v
function = forcing_v
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = 'u'
boundary = 'bottom'
value = 1
[../]
[./top]
type = DirichletBC
variable = 'u'
boundary = 'top'
value = 0
[../]
[]
[VectorPostprocessors]
[./difference]
type = ElementVariablesDifferenceMax
compare_a = u
compare_b = v
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = PJFNK
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/materials/generic_materials/generic_constant_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff1]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./diff2]
type = DiffMKernel
variable = v
mat_prop = diff2
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Materials]
[./dm1]
type = GenericConstantMaterial
prop_names = 'diff1'
prop_values = '2'
[../]
[./dm2]
type = GenericConstantMaterial
prop_names = 'diff2'
prop_values = '4'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/ics/constant_ic/subdomain_constant_ic_test.i)
[Mesh]
file = sq-2blk.e
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./ic_u_1]
type = ConstantIC
variable = u
value = 42
block = '1 2'
[../]
[./ic_u_aux_1]
type = ConstantIC
variable = u_aux
value = 6.25
block = '1'
[../]
[./ic_u_aux_2]
type = ConstantIC
variable = u_aux
value = 9.99
block = '2'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/action/action_multi_eigenstrain.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Problem]
solve = false
[]
[Modules/TensorMechanics/Master]
[./block1]
block = 1
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[./block2]
block = 2
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain1
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/eigenstrain/variable_finite.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./stress11]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigenstrain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./c_IC]
int_width = 0.15
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./strain11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
variable = strain11
[../]
[./stress11]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
variable = stress11
[../]
[./eigenstrain00]
type = RankTwoAux
variable = eigenstrain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.01*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
args = c
prefactor = var_dep
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 0.0005*t
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 3
solve_type = PJFNK
petsc_options_iname = '-pc_type '
petsc_options_value = lu
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-9
reset_dt = true
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/misc/check_error/multi_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
# We can't control perf log output from a subapp
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht.i)
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
hht_alpha = -0.3
stiffness_damping_coefficient = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/contact/test/tests/adaptivity/contact_initial_adaptivity.i)
# This is a test of the usage of initial adaptivity with contact.
# It ensures that contact is enforced on the new nodes that are
# created due to refinement on the secondary side of the interface.
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = 2blocks.e
patch_size = 80
parallel_type = replicated
[]
[AuxVariables]
[./penetration]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./negramp]
type = ParsedFunction
value = -t/10
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = negramp
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+6
normal_smoothing_distance = 0.1
[../]
[]
[Adaptivity]
steps = 0
marker = box
max_h_level = 2
initial_steps = 2
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.5 -2.0 0.0'
top_right = '0.75 2.0 0.0'
inside = refine
outside = do_nothing
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.2
end_time = 1.0
l_tol = 1e-6
nl_rel_tol = 1e-12
nl_abs_tol = 1e-9
[]
[Outputs]
exodus = true
console = true
[]
(modules/porous_flow/examples/tidal/atm_tides_open_hole.i)
# A 100m x 10m "slab" of height 100m is subjected to cyclic pressure at its top
# Assumptions:
# the boundaries are impermeable, except the top boundary
# only vertical displacement is allowed
# the atmospheric pressure sets the total stress at the top of the model
# at the slab left-hand side there is a borehole that taps into the base of the slab.
[Mesh]
[the_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 10
xmin = 0
xmax = 100
ymin = -5
ymax = 5
zmin = -100
zmax = 0
[]
[bh_back]
type = ExtraNodesetGenerator
coord = '0 -5 -100'
input = the_mesh
new_boundary = 11
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.6
multiply_by_density = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
scaling = 1E11
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '-10000*z' # this is only approximately correct
[]
[]
[Functions]
[ini_stress_zz]
type = ParsedFunction
value = '(25000 - 0.6*10000)*z' # remember this is effective stress
[]
[cyclic_porepressure]
type = ParsedFunction
value = 'if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[]
[cyclic_porepressure_at_depth]
type = ParsedFunction
value = '-10000*z + if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[]
[neg_cyclic_porepressure]
type = ParsedFunction
value = '-if(t>0,5000 * sin(2 * pi * t / 3600.0 / 24.0),0)'
[]
[]
[BCs]
# zmin is called 'back'
# zmax is called 'front'
# ymin is called 'bottom'
# ymax is called 'top'
# xmin is called 'left'
# xmax is called 'right'
[no_x_disp]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_x=0 everywhere
[]
[no_y_disp]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top' # because of 1-element meshing, this fixes u_y=0 everywhere
[]
[no_z_disp_at_bottom]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[pp]
type = FunctionDirichletBC
variable = porepressure
function = cyclic_porepressure
boundary = front
[]
[pp_downhole]
type = FunctionDirichletBC
variable = porepressure
function = cyclic_porepressure_at_depth
boundary = 11
[]
[total_stress_at_top]
type = FunctionNeumannBC
variable = disp_z
function = neg_cyclic_porepressure
boundary = front
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 2E9
viscosity = 1E-3
density0 = 1000.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
gravity = '0 0 -10'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 10.0E9 # drained bulk modulus
poissons_ratio = 0.25
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 0 0 0 0 0 0 ini_stress_zz'
eigenstrain_name = ini_stress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 2E9
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500.0
[]
[]
[Postprocessors]
[p0_0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[p100_0]
type = PointValue
outputs = csv
point = '100 0 0'
variable = porepressure
[]
[p0_100]
type = PointValue
outputs = csv
point = '0 0 -100'
variable = porepressure
[]
[p100_100]
type = PointValue
outputs = csv
point = '100 0 -100'
variable = porepressure
[]
[uz0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = disp_z
[]
[uz100]
type = PointValue
outputs = csv
point = '100 0 0'
variable = disp_z
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = -3600
dt = 3600
end_time = 172800
nl_rel_tol = 1E-10
nl_abs_tol = 1E-5
[]
[Outputs]
print_linear_residuals = false
csv = true
[]
(modules/porous_flow/test/tests/gravity/fully_saturated_upwinded_grav01c.i)
# Checking that gravity head is established
# 1phase, 2-component, constant fluid-bulk, constant viscosity, constant permeability
# fully saturated with fully-saturated Kernel with upwinding
# For better agreement with the analytical solution (ana_pp), just increase nx
# NOTE: this test is numerically delicate because the steady-state configuration is independent of the mass fraction, so the frac variable can assume any value as long as mass-fraction is conserved
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[frac]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[Kernels]
[flux1]
type = PorousFlowFullySaturatedAdvectiveFlux
variable = pp
fluid_component = 1
gravity = '-1 0 0'
[]
[flux0]
type = PorousFlowFullySaturatedAdvectiveFlux
variable = frac
fluid_component = 0
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1.2 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp frac'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = frac
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1E-12
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'NONZERO'
nl_max_its = 100
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/mortar_tm/2drz/frictionless_first/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'small'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1.0e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeLinearElasticStress
block = 'plank block'
[]
[swell]
type = ComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = GenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 10
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_02.i)
# unsaturated = true
# gravity = false
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_02
exodus = true
[]
(modules/porous_flow/test/tests/newton_cooling/nc01.i)
# Newton cooling from a bar. 1-phase transient
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1000
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[pressure]
initial_condition = 2E6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
gravity = '0 0 0'
variable = pressure
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e6
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
n = 2
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pressure
boundary = left
value = 2E6
[]
[newton]
type = PorousFlowPiecewiseLinearSink
variable = pressure
boundary = right
pt_vals = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
multipliers = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
use_mobility = false
use_relperm = false
fluid_phase = 0
flux_function = 1
[]
[]
[VectorPostprocessors]
[porepressure]
type = LineValueSampler
variable = pressure
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 20
execute_on = timestep_end
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-15 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E8
dt = 1E6
[]
[Outputs]
file_base = nc01
[along_line]
type = CSV
execute_vector_postprocessors_on = final
[]
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_small.i)
# this test checks the asixymmetric 1D generalized plane strain formulation using incremental small strains
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[./scalar_strain_yy]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-6'
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
[../]
[../]
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetric1DSmallStrain
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_yy
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
(modules/contact/test/tests/non-singular-frictional-mortar/frictional-mortar.i)
offset = 0.0202
vy = 0.15
vx = 0.040
refine = 1
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[./original_file_mesh]
type = FileMeshGenerator
file = long_short_blocks.e
[../]
uniform_refine = ${refine}
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
scaling = 1e-6
[../]
[]
[Functions]
[./horizontal_movement]
type = ParsedFunction
value = 'if(t<1.0,${vx}*t-${offset},${vx}-${offset})'
[../]
[./vertical_movement]
type = ParsedFunction
value = 'if(t<1.0,${offset},${vy}*(t-1.0)+${offset})'
[../]
[]
[BCs]
[./push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 30
function = horizontal_movement
[../]
[./fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./fix_right_y]
type = DirichletBC
variable = disp_y
boundary = '40'
value = 0.0
[../]
[./push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = '30'
function = vertical_movement
[../]
[]
[Materials]
[./elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Contact]
[leftright]
secondary = 10
primary = 20
model = coulomb
formulation = mortar
friction_coefficient = 0.2
c_tangential = 1e3
normal_lm_scaling = 1e-3
tangential_lm_scaling = 1e-3
[../]
[]
[ICs]
[./disp_y]
block = 1
variable = disp_y
value = ${offset}
type = ConstantIC
[../]
[./disp_x]
block = 1
variable = disp_x
value = -${offset}
type = ConstantIC
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_ksp_ew -pc_svd_monitor'
petsc_options_iname = '-pc_type -mat_mffd_err'
petsc_options_value = 'svd 1e-5'
dt = 0.1
dtmin = 0.1
num_steps = 7
end_time = 4
line_search = none
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_basicthm.i)
# Identical to pp_generation_unconfined_fullysat_volume.i but using an Action
#
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/s. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In standard porous_flow, everything is based on mass, eg the source has
# units kg/s/m^3. This is discussed in the other pp_generation_unconfined
# models. In this test, we use the FullySaturated Kernel and set
# multiply_by_density = false
# meaning the fluid Kernel has units of volume, and the source, s, has units 1/time
#
# The ratios are:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[]
[]
[Kernels]
[source]
type = BodyForce
function = 0.1
variable = porepressure
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 3.3333333333
viscosity = 1.0
density0 = 1.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
multiply_by_density = false
porepressure = porepressure
biot_coefficient = 0.3
gravity = '0 0 0'
fp = the_simple_fluid
save_component_rate_in = nodal_m3_per_s
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
PorousFlowDictator = dictator
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
PorousFlowDictator = dictator
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[]
[permeability_irrelevant]
type = PorousFlowPermeabilityConst
PorousFlowDictator = dictator
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[]
[AuxVariables]
[nodal_m3_per_s]
[]
[]
[Postprocessors]
[nodal_m3_per_s]
type = PointValue
outputs = csv
point = '0 0 0'
variable = nodal_m3_per_s
[]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[]
[stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[]
[p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[]
[]
[Functions]
[stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[]
[stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[]
[p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_basicthm
[csv]
type = CSV
[]
[]
(modules/contact/test/tests/mortar_restart/frictional_bouncing_block_action_restart_1.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = long-bottom-block-no-lower-d.e
[]
allow_renumbering = false
uniform_refine = 0 # 1,2
patch_update_strategy = always
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
generate_output = 'stress_xx stress_yy'
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Contact]
[frictional]
primary = 20
secondary = 10
formulation = mortar
model = coulomb
friction_coefficient = 0.4
c_normal = 1.0e1
c_tangential = 1.0e6
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = '40'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = '40'
value = 0.0
[]
[topy]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 20 * t) + ${offset}'
preset = false
[]
[leftx]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 30
function = '2e-2 * t'
# function = '0'
preset = false
[]
[]
[Executioner]
type = Transient
end_time = 5.25 # 70
dt = 0.25 # 0.1 for finer meshes (uniform_refine)
dtmin = .01
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type '
'-pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 '
' 1e-5'
l_max_its = 30
nl_max_its = 40
line_search = 'basic'
snesmf_reuse_base = false
nl_abs_tol = 1e-9
nl_rel_tol = 1e-9
l_tol = 1e-07 # Tightening l_tol can help with friction
[]
[Debug]
show_var_residual_norms = true
[]
[VectorPostprocessors]
[cont_press]
type = NodalValueSampler
variable = frictional_normal_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[friction]
type = NodalValueSampler
variable = frictional_tangential_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[]
[Outputs]
exodus = true
[checkfile]
type = CSV
show = 'cont_press friction'
start_time = 0.0
execute_vector_postprocessors_on = FINAL
[]
[checkpoint]
type = Checkpoint
num_files = 2
interval = 1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative_nli contact cumulative_li num_l'
[num_nl]
type = NumNonlinearIterations
[]
[num_l]
type = NumLinearIterations
[]
[cumulative_nli]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[cumulative_li]
type = CumulativeValuePostprocessor
postprocessor = num_l
[]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = 'frictional_secondary_subdomain'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/auxkernels/solution_aux/build.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 3
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
xda = true
[]
(tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5c_outflow.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[steel]
type = ADGenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '18 466 8000' # W/m*K, J/kg-K, kg/m^3 @ 296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/cartesian_test_no3.i)
# Problem I.3
#
# The thermal conductivity of an infinite plate varies linearly with
# temperature: k = ko(1+beta*u). It has a constant internal heat generation q,
# and has the boundary conditions du/dx = 0 at x= L and u(L) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'q L beta uo ko'
vals = '1200 1 1e-3 0 1'
value = 'uo+(1/beta)*( ( 1 + (1-(x/L)^2) * (beta*q*L^2) / ko )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = NeumannBC
boundary = left
variable = u
value = 0
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
f_name = 'thermal_conductivity'
args = u
function = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform4.i)
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
# using the 'cap' tip_scheme
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[BCs]
[bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
# the following are "random" deformations
# each is O(1E-1) to provide large deformations
[topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E1'
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E1'
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E1'
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[]
[should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[]
[]
[Functions]
[should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.577350269
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tip_scheme = cap
smoother = 100
cap_rate = 0.001
cap_start = 0.0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 100
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[AuxKernels]
[./set_v]
type = FunctionAux
variable = v
function = 't'
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./coupled_force]
type = CoupledForce
variable = u
v = v
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
num_steps = 2
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 1
auto_advance = false
[]
[MultiApps]
[./sub1]
type = TransientMultiApp
positions = '0 0 0'
input_files = picard_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./u_to_v2]
type = MultiAppNearestNodeTransfer
to_multi_app = sub1
source_variable = u
variable = v2
[../]
[time_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = time
to_postprocessor = master_time
to_multi_app = sub1
[]
[dt_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = dt
to_postprocessor = master_dt
to_multi_app = sub1
[]
[]
[Postprocessors]
[time]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform7.i)
# Plastic deformation, tensile with hardening
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_z = t
# should yield trial stress:
# stress_zz = 2*t
# The tensile strength varies as a cubic between 1 (at intnl=0)
# and 2 (at intnl=1). The equation to solve is
# 2 - Ezzzz * ga = -2 * (ga - 1/2)^3 + (3/2) (ga - 1/2) + 3/2
# where the left-hand side comes from p = p_trial - ga * Ezzzz
# and the right-hand side is the cubic tensile strength
# The solution is ga = 0.355416 ( = intnl[1]), and the cubic
# is 1.289168 ( = p) at that point
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1
value_residual = 2
internal_limit = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform7
csv = true
[]
(test/tests/userobjects/threaded_general_user_object/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./l]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[UserObjects]
[./prime_product]
type = PrimeProductUserObject
execute_on = timestep_end
[../]
[]
[Postprocessors]
[./product]
type = PrimeProductPostprocessor
prime_product = prime_product
[../]
[]
[Outputs]
csv = true
[]
(test/tests/problems/eigen_problem/eigensolvers/gipm.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
nx = 64
ny = 64
displacements = 'x_disp y_disp'
[]
#The minimum eigenvalue for this problem is 2*(pi/a)^2 + 2 with a = 100.
#Its inverse will be 0.49950700634518.
[Variables]
[./u]
order = first
family = LAGRANGE
[../]
[]
[AuxVariables]
[./x_disp]
[../]
[./y_disp]
[../]
[]
[AuxKernels]
[./x_disp]
type = FunctionAux
variable = x_disp
function = x_disp_func
[../]
[./y_disp]
type = FunctionAux
variable = y_disp
function = y_disp_func
[../]
[]
[Functions]
[./x_disp_func]
type = ParsedFunction
value = 0
[../]
[./y_disp_func]
type = ParsedFunction
value = 0
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[./rea]
type = CoefReaction
variable = u
coefficient = 2.0
use_displaced_mesh = true
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
use_displaced_mesh = true
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
use_displaced_mesh = true
[../]
[./eigen_bc]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
use_displaced_mesh = true
[../]
[]
[Executioner]
type = Eigenvalue
eigen_problem_type = gen_non_hermitian
which_eigen_pairs = SMALLEST_MAGNITUDE
n_eigen_pairs = 1
n_basis_vectors = 18
solve_type = jacobi_davidson
petsc_options = '-eps_view'
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[./console]
type = Console
outlier_variable_norms = false
[../]
[]
(test/tests/postprocessors/old_older_values/old_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./grow]
type = TestPostprocessor
execute_on = 'initial timestep_end'
test_type = 'grow'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/radial_disp_aux/cylinder_3d_cartesian.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a cylinder subjected to uniform thermal
# expansion represented using a 3D Cartesian model.
[Mesh]
type = FileMesh
file = cylinder_sector_3d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = SECOND
family = LAGRANGE
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementCylinderAux
variable = rad_disp
origin = '0 0 0'
axis_vector = '0 0 1'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = '3 4'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/stvenantkirchhoff.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 67000.0
lambda = 40000.0
[]
[compute_stress]
type = ComputeStVenantKirchhoffStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 3
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
(test/tests/misc/check_error/add_aux_variable_multiple_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./q]
family = MONOMIAL
order = third
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
[MoreAuxVariables]
[./q]
family = MONOMIAL
order = CONSTANT
[../]
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_finite.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
block = 0
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
planar_formulation = GENERALIZED_PLANE_STRAIN
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_zz
temperature = temp
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/csv/csv_restart_part1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
checkpoint = true
[]
(test/tests/outputs/iterative/iterative_vtk.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = VTK
nonlinear_residual_dt_divisor = 100
start_time = 1.8
end_time = 1.85
execute_on = 'nonlinear timestep_end'
[../]
[]
(modules/contact/test/tests/verification/patch_tests/brick_2/brick2_aug.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 100
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
tangential_tolerance = 1e-3
formulation = augmented_lagrange
normalize_penalty = true
penalty = 1e8
model = frictionless
al_penetration_tolerance = 1e-8
[../]
[]
(modules/combined/examples/phase_field-mechanics/poly_grain_growth_2D_eldrforce.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmax = 1000
ymax = 1000
zmax = 0
elem_type = QUAD4
uniform_refine = 2
[]
[GlobalParams]
op_num = 8
var_name_base = gr
grain_num = 36
[]
[Variables]
[./PolycrystalVariables]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[UserObjects]
[./euler_angle_file]
type = EulerAngleFileReader
file_name = grn_36_rand_2D.tex
[../]
[./voronoi]
type = PolycrystalVoronoi
coloring_algorithm = bt
[../]
[./grain_tracker]
type = GrainTrackerElasticity
threshold = 0.2
compute_var_to_feature_map = true
execute_on = 'initial timestep_begin'
flood_entity_type = ELEMENTAL
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
fill_method = symmetric9
euler_angle_provider = euler_angle_file
[../]
[]
[ICs]
[./PolycrystalICs]
[./PolycrystalColoringIC]
polycrystal_ic_uo = voronoi
[../]
[../]
[]
[AuxVariables]
[./bnds]
order = FIRST
family = LAGRANGE
[../]
[./elastic_strain11]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain22]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain12]
order = CONSTANT
family = MONOMIAL
[../]
[./unique_grains]
order = CONSTANT
family = MONOMIAL
[../]
[./var_indices]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./C1111]
order = CONSTANT
family = MONOMIAL
[../]
[./euler_angle]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./PolycrystalKernel]
[../]
[./PolycrystalElasticDrivingForce]
[../]
[./TensorMechanics]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = timestep_end
[../]
[./elastic_strain11]
type = RankTwoAux
variable = elastic_strain11
rank_two_tensor = elastic_strain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain22]
type = RankTwoAux
variable = elastic_strain22
rank_two_tensor = elastic_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain12]
type = RankTwoAux
variable = elastic_strain12
rank_two_tensor = elastic_strain
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = timestep_end
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[../]
[./var_indices]
type = FeatureFloodCountAux
variable = var_indices
execute_on = timestep_end
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[../]
[./C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[../]
[./vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./euler_angle]
type = OutputEulerAngles
variable = euler_angle
euler_angle_provider = euler_angle_file
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./Periodic]
[./All]
auto_direction = 'x'
variable = 'gr0 gr1 gr2 gr3 gr4 gr5 gr6 gr7'
[../]
[../]
[./top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -50.0
[../]
[./x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./Copper]
type = GBEvolution
block = 0
T = 500 # K
wGB = 15 # nm
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
[../]
[./ElasticityTensor]
type = ComputePolycrystalElasticityTensor
grain_tracker = grain_tracker
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[]
[Postprocessors]
[./ngrains]
type = FeatureFloodCount
variable = bnds
threshold = 0.7
[../]
[./dofs]
type = NumDOFs
[../]
[./dt]
type = TimestepSize
[../]
[./run_time]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
coupled_groups = 'disp_x,disp_y'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1.0e-4
l_max_its = 30
nl_max_its = 25
nl_rel_tol = 1.0e-7
start_time = 0.0
num_steps = 50
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1.5
growth_factor = 1.2
cutback_factor = 0.8
optimal_iterations = 8
[../]
[./Adaptivity]
initial_adaptivity = 2
refine_fraction = 0.8
coarsen_fraction = 0.05
max_h_level = 3
[../]
[]
[Outputs]
file_base = poly36_grtracker
exodus = true
[]
(tutorials/tutorial01_app_development/step10_auxkernels/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[from_0]
type = MooseVariableScalar
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 3
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Postprocessors]
[average_1]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(modules/phase_field/test/tests/SoretDiffusion/split_temp.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 60
xmax = 500
elem_type = EDGE
[]
[GlobalParams]
polynomial_order = 8
[]
[Variables]
[./c]
[../]
[./w]
scaling = 1.0e2
[../]
[./T]
initial_condition = 1000.0
scaling = 1.0e5
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 125.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 100.0
variable = c
[../]
[]
[Kernels]
[./c_res]
type = SplitCHParsed
variable = c
kappa_name = kappa
w = w
f_name = F
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./w_res_soret]
type = SoretDiffusion
variable = w
c = c
T = T
diff_name = D
Q_name = Qstar
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[./HtCond]
type = MatDiffusion
variable = T
diffusivity = thermal_conductivity
[../]
[]
[BCs]
[./Left_T]
type = DirichletBC
variable = T
boundary = left
value = 1000.0
[../]
[./Right_T]
type = DirichletBC
variable = T
boundary = right
value = 1015.0
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
block = 0
c = c
T = T # K
int_width = 60.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.708 # Total guess
[../]
[./thcond]
type = ParsedMaterial
block = 0
args = 'c'
function = 'if(c>0.7,1e-8,4e-8)'
f_name = thermal_conductivity
outputs = exodus
[../]
[./free_energy]
type = PolynomialFreeEnergy
block = 0
c = c
derivative_order = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 25
nl_rel_tol = 1.0e-9
num_steps = 60
dt = 20.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/convergence/elastic.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeFiniteStrainElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(test/tests/mesh/nemesis/nemesis_repartitioning_test.i)
[Mesh]
file = cylinder/cylinder.e
nemesis = true
# leaving skip_partitioning off lets us exodiff against a gold
# standard generated with default libMesh settings
# skip_partitioning = true
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-14
[Adaptivity]
steps = 1
refine_fraction = 0.1
coarsen_fraction = 0.1
max_h_level = 2
[]
[]
[Postprocessors]
[sum_sides]
type = StatVector
stat = sum
object = nl_wb_element
vector = num_partition_sides
[]
[min_elems]
type = StatVector
stat = min
object = nl_wb_element
vector = num_elems
[]
[max_elems]
type = StatVector
stat = max
object = nl_wb_element
vector = num_elems
[]
[]
[VectorPostprocessors]
[nl_wb_element]
type = WorkBalance
execute_on = initial
system = nl
balances = 'num_elems num_partition_sides'
outputs = none
[]
[]
[Outputs]
[out]
type = CSV
execute_on = FINAL
[]
[]
(modules/combined/test/tests/generalized_plane_strain_tm_contact/generalized_plane_strain_tm_contact.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
temperature = temp
[]
[Mesh]
file = 2squares.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
use_displaced_mesh = true
[../]
[../]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./tempramp]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./x]
type = DirichletBC
boundary = '4 6'
variable = disp_x
value = 0.0
[../]
[./y]
type = DirichletBC
boundary = '4 6'
variable = disp_y
value = 0.0
[../]
[./t]
type = DirichletBC
boundary = '4'
variable = temp
value = 0.0
[../]
[./tramp]
type = FunctionDirichletBC
variable = temp
boundary = '6'
function = tempramp
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'disp_x disp_y'
off_diag_column = 'disp_y disp_x'
[../]
[]
[Contact]
[./mech]
primary = 8
secondary = 2
penalty = 1e+10
normalize_penalty = true
tangential_tolerance = .1
normal_smoothing_distance = .1
model = frictionless
formulation = kinematic
[../]
[]
[ThermalContact]
[./thermal]
type = GapHeatTransfer
primary = 8
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
variable = temp
tangential_tolerance = .1
normal_smoothing_distance = .1
gap_conductivity = 0.01
min_gap = 0.001
quadrature = true
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain]
type = ComputePlaneSmallStrain
eigenstrain_names = eigenstrain
block = '1 2'
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.0
eigenstrain_name = eigenstrain
block = '1 2'
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[./heatcond]
type = HeatConductionMaterial
thermal_conductivity = 3.0
specific_heat = 300.0
block = '1 2'
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
petsc_options_iname = '-pc_type -ps_sub_type -pc_factor_mat_solver_package'
petsc_options_value = 'asm lu superlu_dist'
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 20
nl_rel_tol = 1e-9
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/materials/material/adv_mat_couple_test.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
# This material is global and uses a coupled property
[./mat_global]
type = CoupledMaterial
mat_prop = 'some_prop'
coupled_mat_prop = 'mp1'
block = '1 2'
[../]
# This material supplies a value for block 1 ONLY
[./mat_0]
type = GenericConstantMaterial
block = 1
prop_names = 'mp1'
prop_values = 2
[../]
# This material supplies a value for block 2 ONLY
[./mat_1]
type = GenericConstantMaterial
block = 2
prop_names = 'mp1'
prop_values = 200
[../]
[]
[Executioner]
type = Steady
# solve_type = 'PJFNK'
# preconditioner = 'ILU'
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out_adv_coupled
exodus = true
[]
[Debug]
show_material_props = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear.i)
# Dynamic problem with plasticity.
# A column of material (not subject to gravity) has the z-displacement
# of its sides fixed, but the centre of its bottom side is pulled
# downwards. This causes failure in the bottom elements.
#
# The problem utilises damping in the following way.
# The DynamicStressDivergenceTensors forms the residual
# integral grad(stress) + zeta*grad(stress-dot)
# = V/L * elasticity * (du/dx + zeta * dv/dx)
# where V is the elemental volume, and L is the length-scale,
# and u is the displacement, and v is the velocity.
# The InertialForce forms the residual
# integral density * (accel + eta * velocity)
# = V * density * (a + eta * v)
# where a is the acceleration.
# So, a damped oscillator description with both these
# kernels looks like
# 0 = V * (density * a + density * eta * v + elasticity * zeta * v / L^2 + elasticity / L^2 * u)
# Critical damping is when the coefficient of v is
# 2 * sqrt(density * elasticity / L^2)
# In the case at hand, density=1E4, elasticity~1E10 (Young is 16GPa),
# L~1 to 10 (in the horizontal or vertical direction), so this coefficient ~ 1E7 to 1E6.
# Choosing eta = 1E3 and zeta = 1E-2 gives approximate critical damping.
# If zeta is high then steady-state is achieved very quickly.
#
# In the case of plasticity, the effective stiffness of the elements
# is significantly less. Therefore, the above parameters give
# overdamping.
#
# This simulation is a nice example of the irreversable and non-uniqueness
# of simulations involving plasticity. The result depends on the damping
# parameters and the time stepping.
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 1
nz = 5
bias_z = 1.5
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -1500 -105'
top_right = '1 1500 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
beta = 0.25 # Newmark time integration
gamma = 0.5 # Newmark time integration
eta = 1E3 #0.3E4 # higher values mean more damping via density
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[DynamicTensorMechanics] # zeta*K*vel + K * disp
stiffness_damping_coefficient = 1E-2 # higher values mean more damping via stiffness
hht_alpha = 0 # better nonlinear convergence than for alpha>0
[]
[inertia_x] # M*accel + eta*M*vel
type = InertialForce
use_displaced_mesh = false
variable = disp_x
velocity = vel_x
acceleration = accel_x
[]
[inertia_y]
type = InertialForce
use_displaced_mesh = false
variable = disp_y
velocity = vel_y
acceleration = accel_y
[]
[inertia_z]
type = InertialForce
use_displaced_mesh = false
variable = disp_z
velocity = vel_z
acceleration = accel_z
[]
[]
[BCs]
[no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[]
[z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[]
[bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = max(-10*t,-10)
[]
[]
[AuxVariables]
[accel_x]
[]
[vel_x]
[]
[accel_y]
[]
[vel_y]
[]
[accel_z]
[]
[vel_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[strainp_xx]
order = CONSTANT
family = MONOMIAL
[]
[strainp_xy]
order = CONSTANT
family = MONOMIAL
[]
[strainp_xz]
order = CONSTANT
family = MONOMIAL
[]
[strainp_yy]
order = CONSTANT
family = MONOMIAL
[]
[strainp_yz]
order = CONSTANT
family = MONOMIAL
[]
[strainp_zz]
order = CONSTANT
family = MONOMIAL
[]
[straint_xx]
order = CONSTANT
family = MONOMIAL
[]
[straint_xy]
order = CONSTANT
family = MONOMIAL
[]
[straint_xz]
order = CONSTANT
family = MONOMIAL
[]
[straint_yy]
order = CONSTANT
family = MONOMIAL
[]
[straint_yz]
order = CONSTANT
family = MONOMIAL
[]
[straint_zz]
order = CONSTANT
family = MONOMIAL
[]
[f_shear]
order = CONSTANT
family = MONOMIAL
[]
[f_tensile]
order = CONSTANT
family = MONOMIAL
[]
[f_compressive]
order = CONSTANT
family = MONOMIAL
[]
[intnl_shear]
order = CONSTANT
family = MONOMIAL
[]
[intnl_tensile]
order = CONSTANT
family = MONOMIAL
[]
[iter]
order = CONSTANT
family = MONOMIAL
[]
[ls]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[accel_x] # Calculates and stores acceleration at the end of time step
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
execute_on = timestep_end
[]
[vel_x] # Calculates and stores velocity at the end of the time step
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[]
[strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[]
[strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[]
[strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[]
[strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[]
[strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[]
[straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[]
[straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[]
[straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[]
[straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[]
[straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[]
[straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[]
[f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[]
[f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[]
[f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[]
[intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[]
[intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[]
[iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[]
[ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[]
[t_strength]
type = TensorMechanicsHardeningConstant
value = 0
[]
[c_strength]
type = TensorMechanicsHardeningConstant
value = 1E80
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[]
[strain]
type = ComputeIncrementalSmallStrain
[]
[admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[]
[stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 1E6
smoothing_tol = 0.5E6
yield_function_tol = 1E-2
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1E4
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
num_steps = 8
dt = 0.1
type = Transient
[]
[Outputs]
file_base = pull_and_shear
exodus = true
csv = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart2.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = cubesource.e
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
variable = nn
solution = soln
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 5
start_time = 2.5
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Problem]
restart_file_base = solution_aux_exodus_interp_restart1_out_cp/0005
[]
(modules/porous_flow/test/tests/jacobian/mass_vol_exp03.i)
# Tests the PorousFlowMassVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, HM porosity, multiply_by_density = false
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[]
[poro]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = porepressure
multiply_by_density = false
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymmetric_gps_small.i)
#
# This test checks the generalized plane strain using small strain formulation.
# The model consists of two sets of line elements. One undergoes a temperature rise of 100 with
# the other seeing a temperature rise of 300. Young's modulus is 3600, and
# Poisson's ratio is 0.2. The thermal expansion coefficient is 1e-8. All
# nodes are constrained against movement.
#
# For plane strain case, i.e., without constraining the strain_yy to be uniform,
# the stress solution would be [-6e-3, -6e-3, -6e-3] and [-18e-3, -18e-3, -18e-3] (xx, yy, zz).
# The generalized plane strain kernels work to balance the force in y direction.
#
# With out of plane strain of 3e-6, the stress solution becomes
# [-3e-3, 6e-3, -3e-3] and [-15e-3, -6e-3, -15e-3] (xx, yy, zz). This gives
# a domain integral of out-of-plane stress to be zero.
#
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = lines.e
[]
[Variables]
[disp_x]
[]
[temp]
initial_condition = 580.0
[]
[scalar_strain_yy]
order = FIRST
family = SCALAR
[]
[]
[Functions]
[temp100]
type = PiecewiseLinear
x = '0 1'
y = '580 680'
[]
[temp300]
type = PiecewiseLinear
x = '0 1'
y = '580 880'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[]
[Modules/TensorMechanics/Master]
[gps]
planar_formulation = GENERALIZED_PLANE_STRAIN
scalar_out_of_plane_strain = scalar_strain_yy
strain = SMALL
generate_output = 'strain_xx strain_yy strain_zz stress_xx stress_yy stress_zz'
eigenstrain_names = eigenstrain
temperature = temp
[]
[]
[BCs]
[no_x]
type = DirichletBC
boundary = 1000
value = 0
variable = disp_x
[]
[temp100]
type = FunctionDirichletBC
variable = temp
function = temp100
boundary = 2
[]
[temp300]
type = FunctionDirichletBC
variable = temp
function = temp300
boundary = 3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[]
[thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-08
nl_max_its = 15
nl_abs_tol = 1e-10
start_time = 0
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
console = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_scale.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 1
xmax = 4
ymin = 1
ymax = 3
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./initial_cond_aux]
type = SolutionAux
solution = xda_soln
execute_on = initial
variable = u_aux
[../]
[]
[UserObjects]
[./xda_soln]
type = SolutionUserObject
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
system_variables = u
scale = '3 2 1'
translation = '1 1 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
xda = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/action/no_action_1D.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[stress_base]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/assign_element_subdomain_id/quad_with_elementid_subdomainid_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[subdomain_id]
type = ElementSubdomainIDGenerator
input = gen
element_ids = '1 2 3'
subdomain_ids = '1 1 1'
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
active = 'left right'
# Mesh Generation produces boundaries in counter-clockwise fashion
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_quad_subdomain_id
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_master_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0 1 0 0 2 0 0'
# positions_file = 04_positions.txt
input_files = '04_sub1_multiple.i'
# input_files = '04_sub1_multiple.i 04_sub2_multiple.i 04_sub3_multiple.i'
# output_in_position = true
[]
[]
(modules/contact/test/tests/ring_contact/ring_contact.i)
#
# A test of contact with quadratic (Hex20) elements
#
# A stiff ring is pushed into a soft base. The base shows a circular impression.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = false
[]
[Mesh]
file = ring_contact.e
[]
[Functions]
[./ring_y]
type = PiecewiseLinear
x = '0 1'
y = '0 1'
scale_factor = -0.2
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[Contact]
[./dummy_name]
primary = 3
secondary = 2
penalty = 1e3
tension_release = -1
[../]
[]
[BCs]
[./plane]
type = DirichletBC
variable = disp_z
boundary = 10
value = 0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./ring_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./ring_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = ring_y
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e3
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[] # Materials
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1.e-10
l_max_its = 100
nl_max_its = 10
dt = 0.1
end_time = 0.5
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/pdass_problems/ironing.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
[input_file]
type = FileMeshGenerator
file = iron.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
new_block_id = 10001
new_block_name = 'secondary_lower'
sidesets = '10'
input = input_file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
new_block_id = 10000
sidesets = '20'
new_block_name = 'primary_lower'
input = secondary
[]
patch_update_strategy = auto
patch_size = 20
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[frictionless_normal_lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
use_dual = true
[]
[tangential_lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
use_dual = true
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[saved_x]
[]
[saved_y]
[]
[diag_saved_x]
[]
[diag_saved_y]
[]
[von_mises]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[disp_ramp_vert]
type = PiecewiseLinear
x = '0. 2. 8.'
y = '0. -1.0 -1.0'
[]
[disp_ramp_horz]
type = PiecewiseLinear
x = '0. 8.' # x = '0. 2. 8.'
y = '0. 8.' # y = '0. 0. 8'
[]
[]
[Kernels]
[TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
block = '1 2'
strain = FINITE
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
block = '1 2'
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
block = '1 2'
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
block = '1 2'
[]
[von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
execute_on = timestep_end
scalar_type = VonMisesStress
block = '1 2'
[]
[]
[Postprocessors]
[bot_react_x]
type = NodalSum
variable = saved_x
boundary = 20
[]
[bot_react_y]
type = NodalSum
variable = saved_y
boundary = 20
[]
[top_react_x]
type = NodalSum
variable = saved_x
boundary = 10
[]
[top_react_y]
type = NodalSum
variable = saved_y
boundary = 10
[]
[_dt]
type = TimestepSize
[]
[contact_pressure]
type = NodalVariableValue
variable = frictionless_normal_lm
nodeid = 805
[]
[]
[BCs]
[bot_x_disp]
type = DirichletBC
variable = disp_x
boundary = '40'
value = 0.0
preset = false
[]
[bot_y_disp]
type = DirichletBC
variable = disp_y
boundary = '40'
value = 0.0
preset = false
[]
[top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = '30'
function = disp_ramp_vert
preset = false
[]
[top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = '30'
function = disp_ramp_horz
preset = false
[]
[]
[Materials]
[stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 6896
poissons_ratio = 0.32
[]
[stuff1_strain]
type = ComputeFiniteStrain
block = '2'
[]
[stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 689.6
poissons_ratio = 0.32
[]
[stuff2_strain]
type = ComputeFiniteStrain
block = '1'
[]
[stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
l_tol = 1e-6
l_max_its = 50
nl_max_its = 30
start_time = 0.0
end_time = 0.1 # 6.5
dt = 0.0125
dtmin = 1e-5
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[cont_press]
type = NodalValueSampler
variable = frictionless_normal_lm
boundary = '10'
sort_by = id
execute_on = FINAL
[]
[friction]
type = NodalValueSampler
variable = tangential_lm
boundary = '10'
sort_by = id
execute_on = FINAL
[]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
exodus = false
csv = true
[chkfile]
type = CSV
show = 'cont_press friction'
start_time = 0.0
execute_vector_postprocessors_on = FINAL
[]
[console]
type = Console
max_rows = 5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Constraints]
# All constraints below for mechanical contact (Mortar)
[weighted_gap_lm]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 10000
secondary_subdomain = 10001
variable = frictionless_normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
friction_lm = tangential_lm
mu = 0.5
c_t = 1.0e1
c = 1.0e3
[]
[x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = '10000'
secondary_subdomain = '10001'
variable = frictionless_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = '10000'
secondary_subdomain = '10001'
variable = frictionless_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = '10000'
secondary_subdomain = '10001'
variable = tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = '10000'
secondary_subdomain = '10001'
variable = tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
(modules/functional_expansion_tools/test/tests/standard_use/multiapp_different_physical_boundaries.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '1.0 9.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/multiapps/detect_steady_state/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 100
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/multilevel_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./sub_average]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = multilevel_sub.i
[../]
[]
[Transfers]
[./sub_average]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = sub
variable = sub_average
postprocessor = sub_average
[../]
[]
(test/tests/dampers/max_increment/max_increment_damper_test.i)
# This model tests the MaxIncrement damper. The converged solution field
# u varies from 0 to 1 across the domain due to the BCs applied. A value
# for the maximum allowed increment to the solution vector for each
# NL iteration is specified. The more restrictive this value is, the
# larger the number of NL iterations will be. This test ensures that a
# minimum number of NL iterations are taken under those conditions.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Dampers]
[./max_inc_damp]
type = MaxIncrement
max_increment = 0.1
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rspherical_finite_elastic.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = ADStressDivergenceRSphericalTensors
component = 0
variable = disp_r
use_displaced_mesh = true
[../]
[]
[BCs]
[./center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeRSphericalFiniteStrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform1.i)
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 1Pa
# Then the final stress should return to the yeild surface and its value should be 1pa.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = front
value = 0E-6
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = front
value = 0E-6
[]
[topz]
type = DirichletBC
variable = disp_z
boundary = front
value = 1E-6
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningConstant
value = 1
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/fvkernels/block-restriction/fv-and-fe-block-restriction.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 80
xmax = 4
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '2.0 0 0'
block_id = 1
top_right = '4.0 1.0 0'
[../]
[./left_right]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'left_right'
[../]
[./right_left]
input = left_right
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'right_left'
[../]
[]
[Variables]
[left_fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
block = 0
[]
[left_fe]
initial_condition = 1
block = 0
[]
[right_fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
block = 1
[]
[right_fe]
initial_condition = 1
block = 1
[]
[]
[FVKernels]
active = 'bad_left_diff left_coupled bad_right_diff right_coupled'
[bad_left_diff]
type = FVDiffusion
variable = left_fv
coeff = fv_prop
block = 0
[]
[good_left_diff]
type = FVDiffusion
variable = left_fv
coeff = left_fv_prop
block = 0
[]
[left_coupled]
type = FVCoupledForce
v = left_fv
variable = left_fv
block = 0
[]
[bad_right_diff]
type = FVDiffusion
variable = right_fv
coeff = fv_prop
block = 1
[]
[good_right_diff]
type = FVDiffusion
variable = right_fv
coeff = right_fv_prop
block = 1
[]
[right_coupled]
type = FVCoupledForce
v = right_fv
variable = right_fv
block = 1
[]
[]
[Kernels]
[left_diff]
type = ADFunctorMatDiffusion
variable = left_fe
diffusivity = fe_prop
[]
[left_coupled]
type = CoupledForce
v = left_fv
variable = left_fe
[]
[right_diff]
type = ADFunctorMatDiffusion
variable = right_fe
diffusivity = fe_prop
[]
[right_coupled]
type = CoupledForce
v = right_fv
variable = right_fe
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = left_fv
boundary = left
value = 0
[]
[left_right]
type = FVDirichletBC
variable = left_fv
boundary = left_right
value = 1
[]
[right_left]
type = FVDirichletBC
variable = right_fv
boundary = right_left
value = 0
[]
[right]
type = FVDirichletBC
variable = right_fv
boundary = right
value = 1
[]
[]
[BCs]
[left]
type = DirichletBC
variable = left_fe
boundary = left
value = 0
[]
[left_right]
type = DirichletBC
variable = left_fe
boundary = left_right
value = 1
[]
[right_left]
type = DirichletBC
variable = right_fe
boundary = right_left
value = 0
[]
[right]
type = DirichletBC
variable = right_fe
boundary = right
value = 1
[]
[]
[Materials]
active = 'fe_mat_left bad_fv_mat_left fe_mat_right bad_fv_mat_right'
[fe_mat_left]
type = FEFVCouplingMaterial
fe_var = left_fe
block = 0
[]
[bad_fv_mat_left]
type = FEFVCouplingMaterial
fv_var = left_fv
block = 0
[]
[good_fv_mat_left]
type = FEFVCouplingMaterial
fv_var = left_fv
fv_prop_name = 'left_fv_prop'
block = 0
[]
[fe_mat_right]
type = FEFVCouplingMaterial
fe_var = right_fe
block = 1
[]
[bad_fv_mat_right]
type = FEFVCouplingMaterial
fv_var = right_fv
block = 1
[]
[good_fv_mat_right]
type = FEFVCouplingMaterial
fv_var = right_fv
fv_prop_name = 'right_fv_prop'
block = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/porous_flow/examples/tutorial/05.i)
# Darcy flow with heat advection and conduction, using Water97 properties
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1E6
[]
[temperature]
initial_condition = 313
scaling = 1E-8
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 2E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 333
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/line_value_sampler/csv_delimiter.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
initial_condition = 1.23456789
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./csv]
type = CSV
delimiter = ' '
precision = 5
[../]
[]
(modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_errors.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1.
[../]
[]
[Modules/TensorMechanics/Master]
[master]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
add_variables = true
[]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top_x]
type = DisplacementAboutAxis
boundary = top
function = rampConstant
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[../]
[./top_y]
type = DisplacementAboutAxis
boundary = top
function = rampConstant
angle_units = degrees
axis_origin = '0. 0. 0.'
variable = disp_y
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-8
start_time = 0.0
dt = 0.1
dtmin = 0.1 # die instead of cutting the timestep
end_time = 0.5
[]
[Outputs]
exodus = true
[]
(test/tests/preconditioners/multi_cycle_hypre/multi_cycle_hypre.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# This option appears to modify the behavior in PETSc 3.6.0
petsc_options = '-pc_hypre_boomeramg_print_statistics'
petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_tol -pc_hypre_boomeramg_max_iter'
petsc_options_value = 'hypre boomeramg 1e-4 20'
[]
[Outputs]
exodus = true
[]
(modules/chemical_reactions/test/tests/solid_kinetics/2species.i)
# Simple reaction-diffusion example to illustrate the use of the SolidKineticReactions
# action.
# In this example, two primary species a and b diffuse towards each other from
# opposite ends of a porous medium, reacting when they meet to form a mineral
# precipitate. The kinetic reaction is specified in the SolidKineticReactions block as:
#
# kin_reactions = '(1.0)a+(1.0)b=mineral'
#
# where a and b are the primary species (reactants), mineral is the precipitate,
# and the values in the parentheses are the stoichiometric coefficients for each
# species in the kinetic reaction.
#
# The SolidKineticReactions action creates all the required kernels and auxkernels
# to compute the reaction given by the above kinetic reaction equation.
#
# Specifically, it adds to following:
# * An AuxVariable named 'mineral' (given in the RHS of the kinetic reaction)
# * A KineticDisPreConcAux AuxKernel for this AuxVariable with all parameters
# * A CoupledBEKinetic Kernel for each primary species with all parameters
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 40
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[./b]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[]
[ReactionNetwork]
[./SolidKineticReactions]
primary_species = 'a b'
secondary_species = mineral
kin_reactions = 'a + b = mineral'
log10_keq = '-6'
specific_reactive_surface_area = '1.0'
kinetic_rate_constant = '1.0e-8'
activation_energy = '1.5e4'
gas_constant = 8.314
reference_temperature = '298.15'
system_temperature = '298.15'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_pd]
type = PrimaryDiffusion
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_pd]
type = PrimaryDiffusion
variable = b
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
preset = false
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = DirichletBC
variable = a
preset = false
boundary = right
value = 0
[../]
[./b_left]
type = DirichletBC
variable = b
preset = false
boundary = left
value = 0
[../]
[./b_right]
type = DirichletBC
variable = b
preset = false
boundary = right
value = 1.0e-2
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '5e-4 4e-3 0.4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 50
dt = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
(test/tests/kernels/2d_diffusion/2d_diffusion_bodyforce_test.i)
###########################################################
# This is a simple test of the Kernel System.
# It solves the Laplacian equation on a small 2x2 grid.
# The "Diffusion" kernel is used to calculate the
# residuals of the weak form of this operator. The
# "BodyForce" kernel is used to apply a time-dependent
# volumetric source.
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./bf]
type = BodyForce
variable = u
postprocessor = ramp
[../]
[]
[Functions]
[./ramp]
type = ParsedFunction
value = 't'
[../]
[]
[Postprocessors]
[./ramp]
type = FunctionValuePostprocessor
function = ramp
execute_on = linear
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 1.0
solve_type = 'NEWTON'
[]
[Outputs]
file_base = bodyforce_out
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_displaced_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
displacements = 'disp_x disp_y'
# Transferring data from a sub application is currently only
# supported with a ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./disp_x]
initial_condition = -0.2
[../]
[./disp_y]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
use_displaced = true
[../]
[]
(modules/contact/test/tests/hertz_spherical/hertz_contact_hex27.i)
# Hertz Contact: Sphere on sphere
# Spheres have the same radius, Young's modulus, and Poisson's ratio.
# Define E:
# 1/E = (1-nu1^2)/E1 + (1-nu2^2)/E2
#
# Effective radius R:
# 1/R = 1/R1 + 1/R2
#
# F is the applied compressive load.
#
# Area of contact a::
# a^3 = 3FR/4E
#
# Depth of indentation d:
# d = a^2/R
#
#
# Let R1 = R2 = 2. Then R = 1.
#
# Let nu1 = nu2 = 0.25, E1 = E2 = 1.40625e7. Then E = 7.5e6.
#
# Let F = 10000. Then a = 0.1, d = 0.01.
#
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]#Comment
file = hertz_contact_hex27.e
allow_renumbering = false
[] # Mesh
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 795.77471545947674 # 10000/pi/2^2
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.01 -0.01'
[../]
[] # Functions
[Variables]
[./disp_x]
order = SECOND
family = LAGRANGE
[../]
[./disp_y]
order = SECOND
family = LAGRANGE
[../]
[./disp_z]
order = SECOND
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
# extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[] # AuxKernels
[BCs]
[./base_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0.0
[../]
[./base_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0.0
[../]
[./base_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0.0
[../]
[./symm_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./symm_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[] # BCs
[Contact]
[./dummy_name]
primary = 1000
secondary = 100
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
[../]
[]
[Materials]
[./tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.40625e7
poissons_ratio = 0.25
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1'
[../]
[./tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '1000'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress_1000]
type = ComputeLinearElasticStress
block = '1000'
[../]
[] # Materials
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.5
end_time = 0.5 # was 2.0
[./Quadrature]
order = FIFTH
[../]
[] # Executioner
[Postprocessors]
[./maxdisp]
type = NodalVariableValue
nodeid = 386 # 387-1 where 387 is the exodus node number of the top-center node
variable = disp_y
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[] # Outputs
(test/tests/kernels/block_kernel/block_vars.i)
[Mesh]
file = rect-2blk.e
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
block = 1
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff_u diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u right_u left_v right_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 6
value = 0
[../]
[./right_u]
type = NeumannBC
variable = u
boundary = 8
value = 4
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 6
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 3
value = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_vars
exodus = true
[]
(test/tests/misc/check_error/missing_material_prop_test.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = DiffMKernel
variable = u
mat_prop = diff1
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = 'diff1'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/porous_flow/test/tests/relperm/corey2.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Corey exponent n = 2 for both phases
# No residual saturation in either phase
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
family = LAGRANGE
order = FIRST
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-8
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_timoshenko_small.i)
# Test for small strain Timoshenko beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2e4
# Shear modulus (G) = 1e4
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 1.0
# Iy = 1.0 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 8
# Therefore, the beam behaves like a Timoshenko beam.
# The FEM solution for this beam with 100 elements give first natural period of 0.2731s with a time step of 0.005.
# The acceleration, velocity and displacement time histories obtained from MOOSE matches with those obtained from ABAQUS.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.005 2.5473249455812e-05 0.010189299782325 4.0757199129299
# 0.01 5.3012872677486e-05 0.00082654950634483 -7.8208200233219
# 0.015 5.8611622914354e-05 0.0014129505884026 8.055380456145
# 0.02 6.766113649781e-05 0.0022068548449798 -7.7378187535141
# 0.025 7.8981810558437e-05 0.0023214147792709 7.7836427272305
# Note that the theoretical first frequency of the beam using Euler-Bernoulli theory is:
# f1 = 1/(2 pi) * (3.5156/L^2) * sqrt(EI/rho) = 4.9455
# This implies that the corresponding time period of this beam (under Euler-Bernoulli assumption) is 0.2022s.
# This shows that Euler-Bernoulli beam theory under-predicts the time period of a thick beam. In other words, the Euler-Bernoulli beam theory predicts a more compliant beam than reality for a thick beam.
[Mesh]
type = GeneratedMesh
xmin = 0
xmax = 4.0
nx = 100
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.005 0.01 1.0'
y = '0.0 1.0 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
start_time = 0.0
dt = 0.005
end_time = 0.5
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25
gamma = 0.5
area = 1.0
Iy = 1.0
Iz = 1.0
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2e4
poissons_ratio = 0.0
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/misc/exception/parallel_exception_jacobian_transient.i)
[Mesh]
file = 2squares.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = jacobian
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.005
solve_type = 'PJFNK'
snesmf_reuse_base = false
[]
[Outputs]
exodus = true
print_nonlinear_converged_reason = false
print_linear_converged_reason = false
[]
(modules/combined/examples/phase_field-mechanics/EBSD_reconstruction_grain_growth_mech.i)
# This example reconstructs the grain structure from an EBSD data file
# Then, an isotropic grain model is run with linear elasticity and an anisotropic
# elasticity tensor that uses the measured EBSD angles.
[Mesh]
[ebsd_mesh]
type = EBSDMeshGenerator
uniform_refine = 2 #Mesh can go two levels coarser than the EBSD grid
filename = IN100_128x128.txt
[]
[]
[GlobalParams]
op_num = 8
var_name_base = gr
displacements = 'disp_x disp_y'
[]
[Variables]
[PolycrystalVariables] #Polycrystal variable generation (30 order parameters)
[]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[bnds]
[]
[gt_indices]
order = CONSTANT
family = MONOMIAL
[]
[unique_grains]
order = CONSTANT
family = MONOMIAL
[]
[vonmises_stress]
order = CONSTANT
family = MONOMIAL
[]
[C1111]
order = CONSTANT
family = MONOMIAL
[]
[phi1]
order = CONSTANT
family = MONOMIAL
[]
[Phi]
order = CONSTANT
family = MONOMIAL
[]
[phi2]
order = CONSTANT
family = MONOMIAL
[]
[EBSD_grain]
family = MONOMIAL
order = CONSTANT
[]
[]
[ICs]
[PolycrystalICs]
[ReconVarIC]
ebsd_reader = ebsd
coloring_algorithm = bt
[]
[]
[]
[Kernels]
[PolycrystalKernel]
[]
[PolycrystalElasticDrivingForce]
[]
[TensorMechanics]
[]
[]
[AuxKernels]
[BndsCalc]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[gt_indices]
type = FeatureFloodCountAux
variable = gt_indices
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = VARIABLE_COLORING
[]
[unique_grains]
type = FeatureFloodCountAux
variable = unique_grains
execute_on = 'initial timestep_end'
flood_counter = grain_tracker
field_display = UNIQUE_REGION
[]
[C1111]
type = RankFourAux
variable = C1111
rank_four_tensor = elasticity_tensor
index_l = 0
index_j = 0
index_k = 0
index_i = 0
execute_on = timestep_end
[]
[vonmises_stress]
type = RankTwoScalarAux
variable = vonmises_stress
rank_two_tensor = stress
scalar_type = VonMisesStress
execute_on = timestep_end
[]
[phi1]
type = OutputEulerAngles
variable = phi1
euler_angle_provider = ebsd
grain_tracker = grain_tracker
output_euler_angle = 'phi1'
execute_on = 'initial'
[]
[Phi]
type = OutputEulerAngles
variable = Phi
euler_angle_provider = ebsd
grain_tracker = grain_tracker
output_euler_angle = 'Phi'
execute_on = 'initial'
[]
[phi2]
type = OutputEulerAngles
variable = phi2
euler_angle_provider = ebsd
grain_tracker = grain_tracker
output_euler_angle = 'phi2'
execute_on = 'initial'
[]
[grain_aux]
type = EBSDReaderPointDataAux
variable = EBSD_grain
ebsd_reader = ebsd
data_name = 'feature_id'
execute_on = 'initial'
[]
[]
[BCs]
[top_displacement]
type = DirichletBC
variable = disp_y
boundary = top
value = -2.0
[]
[x_anchor]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[]
[y_anchor]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[]
[Modules]
[PhaseField]
[EulerAngles2RGB]
crystal_structure = cubic
euler_angle_provider = ebsd
grain_tracker = grain_tracker
[]
[]
[]
[Materials]
[Copper]
# T = 500 # K
type = GBEvolution
block = 0
T = 500
wGB = 0.6 # um
GBmob0 = 2.5e-6 # m^4/(Js) from Schoenfelder 1997
Q = 0.23 # Migration energy in eV
GBenergy = 0.708 # GB energy in J/m^2
molar_volume = 7.11e-6; # Molar volume in m^3/mol
length_scale = 1.0e-6
time_scale = 1.0e-6
[]
[ElasticityTensor]
type = ComputePolycrystalElasticityTensor
grain_tracker = grain_tracker
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[n_elements]
type = NumElems
execute_on = 'initial timestep_end'
[]
[n_nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[]
[DOFs]
type = NumDOFs
[]
[]
[UserObjects]
[ebsd]
type = EBSDReader
[]
[grain_tracker]
type = GrainTrackerElasticity
compute_var_to_feature_map = true
ebsd_reader = ebsd
fill_method = symmetric9
C_ijkl = '1.27e5 0.708e5 0.708e5 1.27e5 0.708e5 1.27e5 0.7355e5 0.7355e5 0.7355e5'
euler_angle_provider = ebsd
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = ' hypre boomeramg 0.7'
l_tol = 1.0e-4
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1.0e-8
start_time = 0.0
num_steps = 30
dt = 10
[Adaptivity]
initial_adaptivity = 0
refine_fraction = 0.7
coarsen_fraction = 0.1
max_h_level = 2
[]
[TimeStepper]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 10.0
growth_factor = 1.1
optimal_iterations = 7
[]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/richards/test/tests/pressure_pulse/pp_fu_21.i)
# investigating pressure pulse in 1D with 2 phase
# steadystate
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardsfgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1.e-10
nl_max_its = 10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_fu_21
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform9.i)
# apply a shear deformation to observe shear hardening.
# Shear gives q_trial = 2*Sqrt(20), p_trial=0
# The solution given by MOOSE correctly satisfies the equations
# 0 = f = q + p*tan(phi) - coh
# 0 = p - p_trial + ga * Ezzzz * dg/dp
# 0 = q - q_trial + ga * Ezxzx * dg/dq
# Here dg/dp = tan(psi), and dg/dq = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 't'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '2*t'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0'
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 2
rate = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1.0
value_residual = 0.5
rate = 2
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.1
value_residual = 0.05
rate = 1
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1E8
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E8
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-3
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform9
[./csv]
type = CSV
[../]
[]
(test/tests/bcs/pp_neumann/pp_neumann.i)
# NOTE: This file is used within the documentation, so please do not change names within the file
# without checking that associated documentation is not affected, see syntax/Postprocessors/index.md.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[aux]
initial_condition = 5
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = PostprocessorNeumannBC
variable = u
boundary = right
postprocessor = right_pp
[]
[]
[Postprocessors]
[right_pp]
type = PointValue
point = '0.5 0.5 0'
variable = aux
execute_on = 'initial'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/mesh/mesh_generation/disc.i)
# Generates a Disc Mesh
# Radius of outside circle=5
# Solves the diffusion equation with u=-5 at origin, and u=0 on outside
[Mesh]
type = AnnularMesh
nr = 10
nt = 12
rmin = 0
rmax = 5
growth_r = 1.3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./inner]
type = DirichletBC
variable = u
value = -5.0
boundary = rmin
[../]
[./outer]
type = DirichletBC
variable = u
value = 0.0
boundary = rmax
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(test/tests/misc/exception/parallel_exception_residual.i)
[Mesh]
file = 2squares.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = residual
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = TestSteady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move_and_reset/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
reset_apps = 0
reset_time = 0.05
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
output_in_position = true
[../]
[]
(modules/tensor_mechanics/test/tests/truss/truss_plastic.i)
[Mesh]
type = GeneratedMesh
dim = 1
elem_type = EDGE
nx = 1
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./hf]
type = PiecewiseLinear
x = '0 0.0001 0.0003 0.0023'
y = '50e6 52e6 54e6 56e6'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./load]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = 't'
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
property = axial_stress
variable = axial_stress
execute_on = 'initial TIMESTEP_END'
[../]
[./e_over_l]
type = MaterialRealAux
property = e_over_l
variable = e_over_l
execute_on = 'initial TIMESTEP_END'
[../]
[./area]
type = ConstantAux
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Postprocessors]
[./s_xx]
type = ElementIntegralMaterialProperty
mat_prop = axial_stress
[../]
[./e_xx]
type = ElementIntegralMaterialProperty
mat_prop = total_stretch
[../]
[./ee_xx]
type = ElementIntegralMaterialProperty
mat_prop = elastic_stretch
[../]
[./ep_xx]
type = ElementIntegralMaterialProperty
mat_prop = plastic_stretch
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-11
l_max_its = 20
dt = 5e-5
num_steps = 10
[]
[Kernels]
[./solid]
type = StressDivergenceTensorsTruss
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[]
[Materials]
[./truss]
type = PlasticTruss
youngs_modulus = 2.0e11
yield_stress = 500e5
outputs = 'exodus'
output_properties = 'elastic_stretch hardening_variable plastic_stretch total_stretch'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/contact/test/tests/tension_release/4ElemTensionRelease.i)
[Mesh]
file = 4ElemTensionRelease.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Functions]
[./up]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0.0001 0 -.0001'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[]
[]
[Contact]
[./dummy_name]
primary = 2
secondary = 3
penalty = 1e6
model = frictionless
tangential_tolerance = 0.01
[../]
[]
[BCs]
[./lateral]
type = DirichletBC
variable = disp_x
boundary = '1 4'
value = 0
[../]
[./bottom_up]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = up
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 0.2
dtmin = 0.2
end_time = 3
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/internal_volume/rz.i)
#
# Internal Volume Test
#
# This test is designed to compute the internal volume of a space considering
# an embedded volume inside.
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total volume
# is 7.
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = meshes/rz.e
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e4
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
volumetric_locking_correction = true
incremental = true
strain = FINITE
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./Pressure]
[./fred]
boundary = 3
function = pressure
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 2
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/examples/coal_mining/coarse.i)
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
value = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '17.0 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '17.0 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5 # this gives min(disp_z)=-4.3, use dt=0.0625 if you want to restrict disp_z>=-3.2
end_time = 17.0
[]
[Outputs]
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(modules/richards/test/tests/gravity_head_1/gh05.i)
# unsaturated = false
# gravity = false
# supg = true
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh05
exodus = true
[]
(test/tests/vectorpostprocessors/sideset_info/sideset_info.i)
[Mesh]
type = MeshGeneratorMesh
[./uniform]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
nx = 8
ymin = -0.4
ymax = 10.4
ny = 5
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[VectorPostprocessors]
[./side_info]
type = SidesetInfoVectorPostprocessor
boundary = 'left right bottom'
meta_data_types = 'centroid min max area'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = out
csv = true
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty_contact_line_search.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2. The gold file is run
# on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[./horizontal_movement]
type = ParsedFunction
value = -0.04*sin(4*t)+0.02
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[./tot_nonlin_it]
type = CumulativeValuePostprocessor
postprocessor = nonlinear_its
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_monitor_true_residual'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'contact'
contact_line_search_ltol = .5
contact_line_search_allowed_lambda_cuts = 0
l_max_its = 100
nl_max_its = 20
dt = 0.1
end_time = 3
# num_steps = 30
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/3D/neumann.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain.i)
# This test is for two layer materials with different youngs modulus with AD
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[XFEM]
output_cut_plane = true
[]
[UserObjects]
[level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[]
[]
[Mesh]
use_displaced_mesh = true
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 5
ymin = 0
ymax = 5
elem_type = QUAD4
[]
[left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0 0'
input = generated_mesh
[]
[left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0 5'
input = left_bottom
[]
[]
[Functions]
[ls_func]
type = ParsedFunction
value = 'y-2.73+t'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[ls]
[]
[a_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[a_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[a_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[b_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[b_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[b_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[ls_function]
type = FunctionAux
variable = ls
function = ls_func
[]
[a_strain_xx]
type = RankTwoAux
variable = a_strain_xx
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
[]
[a_strain_yy]
type = RankTwoAux
variable = a_strain_yy
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
[]
[a_strain_xy]
type = RankTwoAux
variable = a_strain_xy
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
[]
[b_strain_xx]
type = RankTwoAux
variable = b_strain_xx
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
[]
[b_strain_yy]
type = RankTwoAux
variable = b_strain_yy
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
[]
[b_strain_xy]
type = RankTwoAux
variable = b_strain_xy
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
[]
[stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[]
[stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Constraints]
[dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[]
[dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[]
[]
[BCs]
[bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[]
[bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[]
[topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[]
[topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[]
[]
[Materials]
[elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[strain_A]
type = ComputeFiniteStrain
base_name = A
[]
[stress_A]
type = ComputeFiniteStrainElasticStress
base_name = A
[]
[elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e7
poissons_ratio = 0.3
[]
[strain_B]
type = ComputeFiniteStrain
base_name = B
[]
[stress_B]
type = ComputeFiniteStrainElasticStress
base_name = B
[]
[combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[]
[combined_jacob_mult]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[]
[]
[Postprocessors]
[disp_x_norm]
type = ElementL2Norm
variable = disp_x
[]
[disp_y_norm]
type = ElementL2Norm
variable = disp_y
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-13
nl_abs_tol = 1e-50
# time control
start_time = 0.0
dt = 0.1
num_steps = 4
max_xfem_update = 1
[]
[Outputs]
print_linear_residuals = false
exodus = true
[]
(modules/xfem/test/tests/moving_interface/moving_bimaterial.i)
# This test is for two layer materials with different youngs modulus
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
# This case is also meant to test for a bug in moving interfaces on displaced meshes
# It should fail during the healing step of the 2nd timestep if the bug is present.
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Mesh]
displacements = 'disp_x disp_y'
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
[]
[./left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0.0 0.0'
input = generated_mesh
[../]
[./left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0.0 5.'
input = left_bottom
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'y-3.153 + t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
displacements = 'disp_x disp_y'
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
displacements = 'disp_x disp_y'
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'bt'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 0.15
num_steps = 3
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/outputs/iterative/iterative_start_time.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
nonlinear_residual_start_time = 1.8
linear_residual_start_time = 1.8
[../]
[]
(tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/tests/kernels/darcy_advection/darcy_advection.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[pressure]
initial_condition = 10000
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[column]
type = PackedColumn
radius = 1
temperature = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/iterative/output_start_step.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
start_step = 12
[../]
[]
(examples/ex17_dirac/ex17.i)
[Mesh]
file = 3-4-torus.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./example_point_source]
type = ExampleDirac
variable = diffused
value = 1.0
point = '-2.1 -5.08 0.7'
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 0
[../]
[./left]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/multiapps/catch_up/failing_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_step = 2
[../]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/pdass_problems/frictional_bouncing_block.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
uniform_refine = 0 # 1,2
patch_update_strategy = always
allow_renumbering = false
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[frictional_normal_lm]
block = 3
use_dual = true
[]
[frictional_tangential_lm]
block = 3
use_dual = true
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
generate_output = 'stress_xx stress_yy'
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
friction_lm = frictional_tangential_lm
mu = 0.4
c = 1.0e1
c_t = 1.0e1
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = '40'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = '40'
value = 0.0
[]
[topy]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 20 * t) + ${offset}'
preset = false
[]
[leftx]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 30
function = '2e-2 * t'
# function = '0'
preset = false
[]
[]
[Executioner]
type = Transient
end_time = 7 # 70
dt = 0.25 # 0.1 for finer meshes (uniform_refine)
dtmin = .01
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 40
line_search = 'none'
snesmf_reuse_base = false
nl_abs_tol = 1e-9
nl_rel_tol = 1e-9
l_tol = 1e-07 # Tightening l_tol can help with friction
[]
[Debug]
show_var_residual_norms = true
[]
[VectorPostprocessors]
[cont_press]
type = NodalValueSampler
variable = frictional_normal_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[friction]
type = NodalValueSampler
variable = frictional_tangential_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[]
[Outputs]
exodus = false
[checkfile]
type = CSV
show = 'cont_press friction'
start_time = 0.0
execute_vector_postprocessors_on = FINAL
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative_nli contact cumulative_li num_l'
[num_nl]
type = NumNonlinearIterations
[]
[num_l]
type = NumLinearIterations
[]
[cumulative_nli]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[cumulative_li]
type = CumulativeValuePostprocessor
postprocessor = num_l
[]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/interfacekernels/ik_displaced/different_jxw_displaced.i)
[Mesh]
displacements = 'disp_x disp_y'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
xmax = 2
ny = 1
ymax = 1
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 1 0'
block_id = 1
[../]
[./break_boundary]
input = subdomain1
type = BreakMeshByBlockGenerator
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfacialSource
variable = u
neighbor_var = u
boundary = interface
use_displaced_mesh = true
[../]
[]
[BCs]
[./u]
type = DirichletBC
variable = u
boundary = 'left right'
value = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
[Functions]
[./disp_x_func]
type = ParsedFunction
value = 1
[../]
[./disp_y_func]
type = ParsedFunction
value = y
[../]
[]
[ICs]
[./disp_x_ic]
block = 0
function = disp_x_func
variable = disp_x
type = FunctionIC
[../]
[./disp_y_ic]
block = 0
function = disp_y_func
variable = disp_y
type = FunctionIC
[../]
[]
(modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i)
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
use_displaced_mesh = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
hht_alpha = 0.11
newmark_beta = 0.25
newmark_gamma = 0.5
mass_damping_coefficient = 0.1
stiffness_damping_coefficient = 0.1
density = 7750
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
hht_alpha = 0.11
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/combined_twinning_slip_100compression.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_1]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_2]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_4]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_5]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_6]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_7]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_8]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_9]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_10]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_11]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_6]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_7]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_8]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_9]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_11]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = twin_total_volume_fraction_twins
execute_on = timestep_end
[]
[slip_increment_0]
type = MaterialStdVectorAux
variable = slip_increment_0
property = slip_increment
index = 0
execute_on = timestep_end
[]
[slip_increment_1]
type = MaterialStdVectorAux
variable = slip_increment_1
property = slip_increment
index = 1
execute_on = timestep_end
[]
[slip_increment_2]
type = MaterialStdVectorAux
variable = slip_increment_2
property = slip_increment
index = 2
execute_on = timestep_end
[]
[slip_increment_3]
type = MaterialStdVectorAux
variable = slip_increment_3
property = slip_increment
index = 3
execute_on = timestep_end
[]
[slip_increment_4]
type = MaterialStdVectorAux
variable = slip_increment_4
property = slip_increment
index = 4
execute_on = timestep_end
[]
[slip_increment_5]
type = MaterialStdVectorAux
variable = slip_increment_5
property = slip_increment
index = 5
execute_on = timestep_end
[]
[slip_increment_6]
type = MaterialStdVectorAux
variable = slip_increment_6
property = slip_increment
index = 6
execute_on = timestep_end
[]
[slip_increment_7]
type = MaterialStdVectorAux
variable = slip_increment_7
property = slip_increment
index = 7
execute_on = timestep_end
[]
[slip_increment_8]
type = MaterialStdVectorAux
variable = slip_increment_8
property = slip_increment
index = 8
execute_on = timestep_end
[]
[slip_increment_9]
type = MaterialStdVectorAux
variable = slip_increment_9
property = slip_increment
index = 9
execute_on = timestep_end
[]
[slip_increment_10]
type = MaterialStdVectorAux
variable = slip_increment_10
property = slip_increment
index = 10
execute_on = timestep_end
[]
[slip_increment_11]
type = MaterialStdVectorAux
variable = slip_increment_11
property = slip_increment
index = 11
execute_on = timestep_end
[]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_4]
type = MaterialStdVectorAux
variable = twin_volume_fraction_4
property = twin_twin_system_volume_fraction
index = 4
execute_on = timestep_end
[]
[twin_volume_fraction_5]
type = MaterialStdVectorAux
variable = twin_volume_fraction_5
property = twin_twin_system_volume_fraction
index = 5
execute_on = timestep_end
[]
[twin_volume_fraction_6]
type = MaterialStdVectorAux
variable = twin_volume_fraction_6
property = twin_twin_system_volume_fraction
index = 6
execute_on = timestep_end
[]
[twin_volume_fraction_7]
type = MaterialStdVectorAux
variable = twin_volume_fraction_7
property = twin_twin_system_volume_fraction
index = 7
execute_on = timestep_end
[]
[twin_volume_fraction_8]
type = MaterialStdVectorAux
variable = twin_volume_fraction_8
property = twin_twin_system_volume_fraction
index = 8
execute_on = timestep_end
[]
[twin_volume_fraction_9]
type = MaterialStdVectorAux
variable = twin_volume_fraction_9
property = twin_twin_system_volume_fraction
index = 9
execute_on = timestep_end
[]
[twin_volume_fraction_10]
type = MaterialStdVectorAux
variable = twin_volume_fraction_10
property = twin_twin_system_volume_fraction
index = 10
execute_on = timestep_end
[]
[twin_volume_fraction_11]
type = MaterialStdVectorAux
variable = twin_volume_fraction_11
property = twin_twin_system_volume_fraction
index = 11
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '-0.025*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5' # roughly copper
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_xtalpl slip_xtalpl'
tan_mod_type = exact
[]
[twin_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
base_name = twin
number_slip_systems = 12
slip_sys_file_name = 'fcc_input_twinning_systems.txt'
initial_twin_lattice_friction = 60.0
[]
[slip_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
total_twin_volume_fraction = 'twin_total_volume_fraction_twins'
[]
[]
[Postprocessors]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[slip_increment_0]
type = ElementAverageValue
variable = slip_increment_0
[]
[slip_increment_1]
type = ElementAverageValue
variable = slip_increment_1
[]
[slip_increment_2]
type = ElementAverageValue
variable = slip_increment_2
[]
[slip_increment_3]
type = ElementAverageValue
variable = slip_increment_3
[]
[slip_increment_4]
type = ElementAverageValue
variable = slip_increment_4
[]
[slip_increment_5]
type = ElementAverageValue
variable = slip_increment_5
[]
[slip_increment_6]
type = ElementAverageValue
variable = slip_increment_6
[]
[slip_increment_7]
type = ElementAverageValue
variable = slip_increment_7
[]
[slip_increment_8]
type = ElementAverageValue
variable = slip_increment_8
[]
[slip_increment_9]
type = ElementAverageValue
variable = slip_increment_9
[]
[slip_increment_10]
type = ElementAverageValue
variable = slip_increment_10
[]
[slip_increment_11]
type = ElementAverageValue
variable = slip_increment_11
[]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[twin_volume_fraction_4]
type = ElementAverageValue
variable = twin_volume_fraction_4
[]
[twin_volume_fraction_5]
type = ElementAverageValue
variable = twin_volume_fraction_5
[]
[twin_volume_fraction_6]
type = ElementAverageValue
variable = twin_volume_fraction_6
[]
[twin_volume_fraction_7]
type = ElementAverageValue
variable = twin_volume_fraction_7
[]
[twin_volume_fraction_8]
type = ElementAverageValue
variable = twin_volume_fraction_8
[]
[twin_volume_fraction_9]
type = ElementAverageValue
variable = twin_volume_fraction_9
[]
[twin_volume_fraction_10]
type = ElementAverageValue
variable = twin_volume_fraction_10
[]
[twin_volume_fraction_11]
type = ElementAverageValue
variable = twin_volume_fraction_11
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.005
dtmin = 0.01
num_steps = 10
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rspherical_finite_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = StressDivergenceRSphericalTensors
component = 0
variable = disp_r
use_displaced_mesh = true
[../]
[]
[BCs]
[./center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeRSphericalFiniteStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = rspherical_finite_elastic_out
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/planar_xz.i)
# 1-D Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two element blocks in the x-z plane. Each element block
# is a square. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far bottom boundary
# is ramped from 100 to 200 over one time unit. The temperature of the far top
# boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks:
#
# Flux = (T_left - T_right) * (gapK/gap_width)
#
# The gap conductivity is specified as 1, thus
#
# gapK(Tavg) = 1.0*Tavg
#
# The heat flux across the gap at time = 1 is then:
#
# Flux = 100 * (1.0/1.0) = 100
#
# For comparison, see results from the flux post processors. These results
# are the same as for the unit 1-D gap heat transfer between two unit cubes.
[Mesh]
[file]
type = FileMeshGenerator
file = simple_2D.e
[]
[./rotate]
type = TransformGenerator
transform = ROTATE
vector_value = '0 90 0'
input = file
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./temp_far_bottom]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_top]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-12
l_tol = 1e-3
l_max_its = 100
dt = 1e-1
end_time = 1.0
[]
[Postprocessors]
[./temp_bottom]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_top]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_bottom]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./flux_top]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/periodic/periodic_subdomain_restricted_test.i)
[Mesh]
file = rect-2blk.e
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
block = 1
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff_u diff_v'
[./diff_u]
type = Diffusion
variable = u
block = 1
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'Periodic left_u right_u left_v right_v'
[./Periodic]
[./u]
variable = u
primary = 1
secondary = 5
translation = '0 1 0'
[../]
[./v1]
variable = v
primary = 1
secondary = 5
translation = '0 1 0'
[../]
[./v2]
variable = v
primary = 2
secondary = 4
translation = '0 1 0'
[../]
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = 6
value = 0
[../]
[./right_u]
type = NeumannBC
variable = u
boundary = 8
value = 4
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 6
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 3
value = 6
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_restrict
exodus = true
[]
(modules/peridynamics/test/tests/simple_tests/2D_regularD_constH_OSPD.i)
# Test for ordinary state-based peridynamic formulation
# for regular grid from generated mesh with const bond constants
# partial Jacobian
# Jacobian from bond-based formulation is used for preconditioning
# Square plate with Dirichlet boundary conditions applied
# at the left, top and bottom edges
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001 * t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = ORDINARY_STATE
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.0
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialOSPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[]
[Outputs]
file_base = 2D_regularD_constH_OSPD
exodus = true
[]
(test/tests/functions/default_function/default_function.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = FuncCoefDiffusion
variable = u
# No default function supplied
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial01_app_development/step08_test_harness/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/fvkernels/fv-to-fe-coupling/1d.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmax = 2
[]
[]
[Variables]
[fv]
family = MONOMIAL
order = CONSTANT
fv = true
initial_condition = 1
[]
[fe]
initial_condition = 1
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = fv
coeff = fv_prop
[]
[coupled]
type = FVCoupledForce
v = fv
variable = fv
[]
[]
[Kernels]
[diff]
type = ADFunctorMatDiffusion
variable = fe
diffusivity = fe_prop
[]
[coupled]
type = CoupledForce
v = fv
variable = fe
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = fv
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = fv
boundary = right
value = 1
[]
[]
[BCs]
[left]
type = DirichletBC
variable = fe
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = fe
boundary = right
value = 1
[]
[]
[Materials]
active = 'fe_mat fv_mat'
[bad_mat]
type = FEFVCouplingMaterial
fe_var = fe
fv_var = fv
execute_on = 'linear nonlinear'
[]
[fe_mat]
type = FEFVCouplingMaterial
fe_var = fe
execute_on = 'linear nonlinear'
[]
[fv_mat]
type = FEFVCouplingMaterial
fv_var = fv
[]
[fe_mat_bad_dep]
type = FEFVCouplingMaterial
fe_var = fe
declared_prop_name = bad
[]
[fv_mat_bad_dep]
type = FEFVCouplingMaterial
fv_var = fv
retrieved_prop_name = bad
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[]
[Outputs]
exodus = true
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/contact/test/tests/bouncing-block-contact/variational-frictional.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
correct_edge_dropping = true
[]
[Mesh]
[file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[]
[]
[Variables]
[disp_x]
block = '1 2'
scaling = 1e1
[]
[disp_y]
block = '1 2'
scaling = 1e1
[]
[frictional_normal_lm]
block = 4
scaling = 1e3
[]
[frictional_tangential_lm]
block = 4
scaling = 1e2
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[]
[AuxVariables]
[procid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[procid]
type = ProcessorIDAux
variable = procid
[]
[]
[Constraints]
[frictional_normal_lm]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_normal_lm
friction_lm = frictional_tangential_lm
disp_x = disp_x
disp_y = disp_y
mu = 0.1
normalize_c = true
c = 1.0e-2
c_t = 1.0e-1
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu NONZERO 1e-15'
l_max_its = 30
nl_max_its = 25
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_y.i)
# Test for small strain Euler beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is along the Y axis and loading along global X axis
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_y_mesh.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-1.0 0.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 4.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '0.0 4.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/bcs/ad_function_neumann_bc/test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 32
ny = 32
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./exact_func]
type = ParsedFunction
value = x*x
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionNeumannBC
function = x
variable = u
boundary = right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
file_base = neumannbc_out
exodus = true
[]
(test/tests/multiapps/output_in_position/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/master2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub_app]
order = THIRD
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[./point_value_0]
type = ScalarVariable
variable = from_sub_app
component = 0
[../]
[./point_value_1]
type = ScalarVariable
variable = from_sub_app
component = 1
[../]
[./point_value_2]
type = ScalarVariable
variable = from_sub_app
component = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
hide = from_sub_app
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0
0.7 0.7 0
0.8 0.8 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub2.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub
from_postprocessor = point_value
to_aux_scalar = from_sub_app
[../]
[]
(modules/thermal_hydraulics/test/tests/materials/ad_average_wall_temperature_3eqn/ad_average_wall_temperature_3eqn.i)
# Tests the average wall temperature aux for 1-phase flow. With the following
# inputs, the value should be equal to 1.25:
#
# i h_wall T_wall P_hf
# --------------------------
# 1 10 26/10 1
# 2 6 1/2 3
#
# T_fluid = 1/4
#
# With these values,
# P_tot = 1 + 3 = 4
# h_wall_avg = (1 * 10 + 3 * 6) / 4 = 28 / 4 = 7
# denominator = P_tot * h_wall_avg = 4 * 7 = 28
# numerator = 10 * (26/10 - 1/4) * 1 + 6 * (1/2 - 1/4) * 3 = 28
# T_wall_avg = T_fluid + numerator / denominator = 1/4 + 1
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall1]
family = MONOMIAL
order = CONSTANT
[]
[T_wall2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf1]
family = MONOMIAL
order = CONSTANT
[]
[P_hf2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf_total]
family = MONOMIAL
order = CONSTANT
[]
[T_fluid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[T_wall_avg_auxkernel]
type = ADMaterialRealAux
variable = T_wall_avg
property = T_wall
[]
[T_wall1_auxkernel]
type = ConstantAux
variable = T_wall1
value = 2.6
[]
[T_wall2_auxkernel]
type = ConstantAux
variable = T_wall2
value = 0.5
[]
[P_hf_total_auxkernel]
type = SumAux
variable = P_hf_total
values = 'P_hf1 P_hf2'
[]
[P_hf1_auxkernel]
type = ConstantAux
variable = P_hf1
value = 1
[]
[P_hf2_auxkernel]
type = ConstantAux
variable = P_hf2
value = 3
[]
[T_fluid_auxkernel]
type = ConstantAux
variable = T_fluid
value = 0.25
[]
[]
[Materials]
[const_materials]
type = ADGenericConstantMaterial
prop_names = 'Hw1 Hw2'
prop_values = '10 6'
[]
[Hw_avg_material]
type = ADWeightedAverageMaterial
prop_name = Hw_avg
values = 'Hw1 Hw2'
weights = 'P_hf1 P_hf2'
[]
[T_wall_avg_material]
type = ADAverageWallTemperature3EqnMaterial
T_wall_sources = 'T_wall1 T_wall2'
Hw_sources = 'Hw1 Hw2'
P_hf_sources = 'P_hf1 P_hf2'
T_fluid = T_fluid
Hw_average = Hw_avg
P_hf_total = P_hf_total
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[T_wall_avg_pp]
type = ElementalVariableValue
elementid = 0
variable = T_wall_avg
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictional_04_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2 and a friction coefficient
# of 0.4 is used. The gold file is run on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[./horizontal_movement]
type = ParsedFunction
value = -0.04*sin(4*t)+0.02
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-3
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
# csv = true
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 1e+7
friction_coefficient = 0.4
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(modules/tensor_mechanics/examples/uexternaldb_coupling/test.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = 0
[]
[right]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = t
[]
[]
[UserObjects]
[uexternaldb]
type = AbaqusUExternalDB
plugin = umat
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
[]
[Materials]
[umat]
type = AbaqusUMATStress
constant_properties = '1 0.3'
num_state_vars = 0
plugin = umat
# plugin = ../../test/plugins/elastic
use_one_based_indexing = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
dt = 0.01
num_steps = 10
[]
[Outputs]
print_linear_residuals = false
[]
(modules/contact/test/tests/bouncing-block-contact/bouncing-block-ranfs.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
ping_pong_protection = true
[]
[Mesh]
file = long-bottom-block-no-lower-d.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Contact]
[./top_bottom]
secondary = 10
primary = 20
model = frictionless
formulation = ranfs
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = 2.5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type -mat_mffd_err'
petsc_options_value = 'hypre boomeramg 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
checkpoint = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[]
(modules/combined/test/tests/eigenstrain/variable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 0.5
ymax = 0.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[./eigen_strain00]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./eigen_strain00]
type = RankTwoAux
variable = eigen_strain00
rank_two_tensor = eigenstrain
index_j = 0
index_i = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.5*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.01
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 20
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-50
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.25
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
(test/tests/restart/new_dt/new_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
checkpoint = true
[]
(test/tests/scaling/up-to-date-scale-factors/up-to-date-scale-factors.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
[]
[Variables]
[u][]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = FunctionDirichletBC
variable = u
function = '2 * t'
boundary = left
[]
[right]
type = DirichletBC
variable = u
value = 0
boundary = right
[]
[]
[Executioner]
type = Transient
num_steps = 2
automatic_scaling = true
compute_scaling_once = false
solve_type = NEWTON
resid_vs_jac_scaling_param = 1 # Pure residual scaling
verbose = true
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/shape_element_user_object/shape_side_uo_physics_test.i)
u_left = 0.5
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./pot]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./adv_u]
type = PotentialAdvection
variable = u
potential = pot
[../]
[./diff_pot]
type = Diffusion
variable = pot
[../]
[]
[BCs]
[./left]
boundary = left
type = DirichletBC
value = ${u_left}
variable = u
[../]
[./right]
boundary = right
type = DirichletBC
variable = u
value = 0
[../]
[./left_pot]
boundary = left
type = ExampleShapeSideIntegratedBC
variable = pot
num_user_object = num_user_object
denom_user_object = denom_user_object
v = u
Vb = 1
[../]
[./right_pot]
boundary = right
type = DirichletBC
variable = pot
value = 0
[../]
[]
[UserObjects]
[./num_user_object]
type = NumShapeSideUserObject
u = u
boundary = left
execute_on = 'linear nonlinear'
[../]
[./denom_user_object]
type = DenomShapeSideUserObject
u = u
boundary = left
execute_on = 'linear nonlinear'
[../]
[]
[AuxVariables]
[./u_flux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./u_flux]
type = DriftDiffusionFluxAux
variable = u_flux
u = u
potential = pot
component = 0
[../]
[]
[Problem]
type = FEProblem
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -sub_pc_type -sub_ksp_type'
petsc_options_value = 'asm lu preonly'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[ICs]
[./u]
type = FunctionIC
variable = u
function = ic_u
[../]
[./pot]
type = FunctionIC
variable = pot
function = ic_pot
[../]
[]
[Functions]
[./ic_u]
type = ParsedFunction
value = '${u_left} * (1 - x)'
[../]
[./ic_pot]
type = ParsedFunction
value = '1 - x'
[../]
[]
(test/tests/bcs/misc_bcs/vacuum_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right top'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0.0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 1
value = 2.0
[../]
[./top]
type = VacuumBC
variable = u
boundary = 2
alpha = 5.0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test2.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test2.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test2_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/stvenantkirchhoff_small.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 67000.0
lambda = 40000.0
[]
[compute_stress]
type = ComputeStVenantKirchhoffStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 3
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_pipe_bend.i)
# Test for small strain Euler beam bending in y direction
# Modeling a tube with an outer radius of 15 mm and inner radius of 13 mm
# The length of the tube is 1.0 m
# E = 2.068e11 Pa and G = 7.956e10 with nu = 0.3
# A load of 5 N is applied at the end of the beam in the y-dir
# The displacement at the end is given by
# y = - W * L^3 / 3 * E * I
# y = - 5 * 1.0^3 / 3 * 2.068e11 * 1.7329e-8 = 4.65e-4 m
# where I = pi/2 * (r_o^4 - r_i^4)
# I = pi /2 * (0.015^4 - 0.013^4) = 1.7329e-8
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 1.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 5.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.068e11
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.759e-4
Ay = 0.0
Az = 0.0
Iy = 1.7329e-8
Iz = 1.7329e-8
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
outputs = exodus
output_properties = 'forces moments'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_y
[../]
[./forces_y]
type = PointValue
point = '1.0 0.0 0.0'
variable = forces_y
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/contact/test/tests/mortar_dynamics/block-dynamics-friction-creep.i)
starting_point = 1e-1
offset = -0.095
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[normal_lm]
block = 3
use_dual = true
[]
[frictional_lm]
block = 3
use_dual = true
[]
[]
[AuxVariables]
[creep_strain_xx]
order = CONSTANT
family = MONOMIAL
block = '2'
[]
[creep_strain_yy]
order = CONSTANT
family = MONOMIAL
block = '2'
[]
[creep_strain_xy]
order = CONSTANT
family = MONOMIAL
block = '2'
[]
[]
[AuxKernels]
[creep_strain_xx]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xx
index_i = 0
index_j = 0
block = '2'
[]
[creep_strain_yy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_yy
index_i = 1
index_j = 1
block = '2'
[]
[creep_strain_xy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xy
index_i = 0
index_j = 1
block = '2'
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
alpha = 0.0
newmark_beta = 0.25
newmark_gamma = 0.5
mass_damping_coefficient = 0.0
stiffness_damping_coefficient = 0.01
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
block = '1 2'
strain = FINITE
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[multiple_inelastic]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
block = '2'
[]
[creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-23 # 10e-24
n_exponent = 4
activation_energy = 0
block = '2'
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '775'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeDynamicFrictionalForceLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
friction_lm = frictional_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1e4
c_t = 1e4
mu = 0.5
interpolate_normals = false
newmark_beta = 0.25
newmark_gamma = 0.5
capture_tolerance = 1e-04
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 30 # 50
function = '1e-2*t' #'0.1 *sin(2 * pi / 12 * t)'
[]
[]
[Executioner]
type = Transient
end_time = 0.25
dt = 0.05
dtmin = 0.05
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err '
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
nl_max_its = 50
line_search = 'none'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/contact/test/tests/verification/patch_tests/cyl_2/cyl2_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(modules/xfem/test/tests/second_order_elements/square_branch_quad9_2d.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD9
[]
[UserObjects]
[./line_seg_cut_set_uo]
type = LineSegmentCutSetUserObject
cut_data = '-1.0000e-10 6.6340e-01 6.6340e-01 -1.0000e-10 0.0 1.0
3.3120e-01 3.3200e-01 1.0001e+00 3.3200e-01 1.0 2.0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
[../]
[]
[Functions]
[./right_disp_x]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[./top_disp_y]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[]
[BCs]
[./right_x]
type = FunctionDirichletBC
boundary = 1
variable = disp_x
function = right_disp_x
[../]
[./top_y]
type = FunctionDirichletBC
boundary = 2
variable = disp_y
function = top_disp_y
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./left_x]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 2.2
num_steps = 5000
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./v2]
[../]
[./v3]
[../]
[./w]
[../]
[]
[AuxKernels]
[./set_w]
type = NormalizationAux
variable = w
source_variable = v
normal_factor = 0.1
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./coupled_force]
type = CoupledForce
variable = v
v = v2
[../]
[./coupled_force2]
type = CoupledForce
variable = v
v = v3
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = left
function = func
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Functions]
[func]
type = ParsedFunction
value = 'if(t < 2.5, 1, 1 / t)'
[]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[master_time]
type = Receiver
execute_on = 'timestep_end'
[]
[master_dt]
type = Receiver
execute_on = 'timestep_end'
[]
[time]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 2 # deliberately make it fail at 2 to test the time step rejection behavior
nl_rel_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
l_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
fixed_point_rel_tol = 1e-8
num_steps = 2
[]
[MultiApps]
[./sub2]
type = TransientMultiApp
positions = '0 0 0'
input_files = picard_sub2.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./v_to_v3]
type = MultiAppNearestNodeTransfer
from_multi_app = sub2
source_variable = v
variable = v3
[../]
[./w]
type = MultiAppNearestNodeTransfer
to_multi_app = sub2
source_variable = w
variable = w
[../]
[time_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = time
to_postprocessor = sub_time
to_multi_app = sub2
[]
[dt_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = dt
to_postprocessor = sub_dt
to_multi_app = sub2
[]
[matser_time_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = time
to_postprocessor = master_time
to_multi_app = sub2
[]
[master_dt_to_sub]
type = MultiAppPostprocessorTransfer
from_postprocessor = dt
to_postprocessor = master_dt
to_multi_app = sub2
[]
[]
(modules/combined/examples/publications/rapid_dev/fig7b.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Dashed black curve (2)
# Eigenstrain is globally applied. Single global elastic free energies.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
value = '${RADIUS}-pos_c'
vars = pos_c
vals = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Modules/TensorMechanics/Master/all]
add_variables = true
eigenstrain_names = eigenstrain
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
f_name = mask
function = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# eigenstrain as a function of phase
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
prefactor = h
args = eta
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = 'c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(1-c)^2'
args = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./chemical_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fc
fa_name = Fc1
fb_name = Fc2
eta = eta
args = 'c'
W = 4
[../]
# global elastic free energy
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
output_properties = Fe
derivative_order = 2
[../]
# free energy
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'c eta'
derivative_order = 2
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/eigenstrain_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/eigenstrain_vpp
[../]
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_boundary_number.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '0.5 0.5 0'
top_right = '1.9 1.9 0'
[]
[createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
block_id = 0
boundary_id_old = 'left'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.3 0.3 0'
boundary_id_overlap = true
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_aprismatic_capyramidal.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_xx]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_4]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_5]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_6]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_xx]
type = RankTwoAux
variable = fp_xx
rank_two_tensor = plastic_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[tau_3]
type = MaterialStdVectorAux
variable = resolved_shear_stress_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[tau_4]
type = MaterialStdVectorAux
variable = resolved_shear_stress_4
property = applied_shear_stress
index = 4
execute_on = timestep_end
[]
[tau_5]
type = MaterialStdVectorAux
variable = resolved_shear_stress_5
property = applied_shear_stress
index = 5
execute_on = timestep_end
[]
[tau_6]
type = MaterialStdVectorAux
variable = resolved_shear_stress_6
property = applied_shear_stress
index = 6
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_3]
type = MaterialStdVectorAux
variable = slip_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
preset = true
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = hcp_aprismatic_capyramidal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '98 224' #Knezevic et al MSEA 654 (2013)
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1.25e5 2.25e7' #from Beyerlein and Tome 2008 IJP
normalized_slip_activiation_energy_per_mode = '3.73e-3 3.2e-2' #from Beyerlein and Tome 2008 IJP
slip_energy_proportionality_factor_per_mode = '330 100' #from Beyerlein and Tome 2008 IJP
substructure_rate_coefficient_per_mode = '355 0.4' #from Capolungo et al MSEA (2009)
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '0.2 0.2' #Estimated to match graph in Capolungo et al MSEA (2009), Figure 2
grain_size = 20.0e-3 #20 microns, Beyerlein and Tome IJP (2008)
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_xx]
type = ElementAverageValue
variable = fp_xx
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[tau_3]
type = ElementAverageValue
variable = resolved_shear_stress_3
[]
[tau_4]
type = ElementAverageValue
variable = resolved_shear_stress_4
[]
[tau_5]
type = ElementAverageValue
variable = resolved_shear_stress_5
[]
[tau_6]
type = ElementAverageValue
variable = resolved_shear_stress_6
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_3]
type = ElementAverageValue
variable = slip_resistance_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 5
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
elem_type = QUAD8
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./u_elemental]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./fun_aux]
type = FunctionAux
function = 'x + y'
variable = u_elemental
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/subdomain_setup/mat_prop_block.i)
[Mesh]
[./generator]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[./subdomain1]
type = SubdomainBoundingBoxGenerator
input = generator
bottom_left = '0 0 0'
top_right = '0.5 0.5 0'
block_id = 1
[../]
[./subdomain2]
type = SubdomainBoundingBoxGenerator
input = subdomain1
bottom_left = '0.5 0 0'
top_right = '1 0.5 0'
block_id = 2
[../]
[./subdomain3]
type = SubdomainBoundingBoxGenerator
input = subdomain2
bottom_left = '0 0.5 0'
top_right = '0.5 1 0'
block_id = 3
[../]
[./subdomain4]
type = SubdomainBoundingBoxGenerator
input = subdomain3
bottom_left = '0.5 0.5 0'
top_right = '1 1 0'
block_id = 4
[../]
[]
[Debug]
show_material_props = true
[]
[Variables]
[./dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./dummy]
type = Diffusion
variable = dummy
[../]
[]
[BCs]
[./dummy_left]
type = DirichletBC
variable = dummy
boundary = left
value = 0
[../]
[./dummy_right]
type = DirichletBC
variable = dummy
boundary = right
value = 1
[../]
[]
[AuxVariables]
[./var1]
family = MONOMIAL
order = CONSTANT
[../]
[./var2]
family = MONOMIAL
order = CONSTANT
[../]
[./var3]
family = MONOMIAL
order = CONSTANT
[../]
[../]
[AuxKernels]
[./var1]
variable = var1
type = MaterialPropertyBlockAux
mat_prop_name = prop1
[../]
[./var2]
variable = var2
type = MaterialPropertyBlockAux
mat_prop_name = prop2
[../]
[./var3]
variable = var3
type = MaterialRealAux
property = prop3
block = '2 3 4'
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = '1 2 4'
prop_names = 'prop1'
prop_values = '0'
[../]
[./mat2]
type = GenericConstantMaterial
block = '2 3 4'
prop_names = 'prop2'
prop_values = '0'
[../]
[./mat3]
type = SubdomainConstantMaterial
block = '2 3 4'
mat_prop_name = 'prop3'
values = '4 2 1'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_eqaux.i)
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction specified in the AqueousEquilibriumReactions block as:
#
# reactions = '2a = pa2 2
# a + b = pab -2'
#
# where the 2 is the weight of the equilibrium species, the 2 on the RHS of the first reaction
# refers to the equilibrium constant (log10(Keq) = 2), and the -2 on the RHS of the second
# reaction equates to log10(Keq) = -2.
#
# This example is identical to 2species.i, except that it explicitly includes all AuxKernels
# and Kernels that are set up by the action in 2species.i, and that the equilbrium constants
# are provided by AuxVariables
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[./pa2]
[../]
[./pab]
[../]
[./pa2_logk]
initial_condition = 2
[../]
[./pab_logk]
initial_condition = -2
[../]
[]
[AuxKernels]
[./pa2eq]
type = AqueousEquilibriumRxnAux
variable = pa2
v = a
sto_v = 2
log_k = pa2_logk
[../]
[./pabeq]
type = AqueousEquilibriumRxnAux
variable = pab
v = 'a b'
sto_v = '1 1'
log_k = pab_logk
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./a1eq]
type = CoupledBEEquilibriumSub
variable = a
log_k = pa2_logk
weight = 2
sto_u = 2
[../]
[./a1diff]
type = CoupledDiffusionReactionSub
variable = a
log_k = pa2_logk
weight = 2
sto_u = 2
[../]
[./a1conv]
type = CoupledConvectionReactionSub
variable = a
log_k = pa2_logk
weight = 2
sto_u = 2
p = pressure
[../]
[./a2eq]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[./b2eq]
type = CoupledBEEquilibriumSub
variable = b
v = a
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2diff]
type = CoupledDiffusionReactionSub
variable = b
v = a
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2conv]
type = CoupledConvectionReactionSub
variable = b
v = a
log_k = pab_logk
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
hide = 'pa2_logk pab_logk'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(test/tests/scaling/residual-based/residual-based.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '1000 * (1 - x)'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[rxn]
type = PReaction
power = 2
variable = u
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1000
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
verbose = true
automatic_scaling = true
resid_vs_jac_scaling_param = 1
[]
[Outputs]
exodus = true
[]
(test/tests/variables/multiblock_restricted_var/multiblock_restricted_var_test.i)
[Mesh]
file = cake_layers.e
[]
[Variables]
[./v1]
block = 2
[../]
[./v2]
block = 4
[../]
[./w]
[../]
[]
[Kernels]
[./diff_v1]
type = Diffusion
variable = v1
block = 2
[../]
[./diff_v2]
type = Diffusion
variable = v2
block = 4
[../]
[./diff_w]
type = Diffusion
variable = w
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = w
boundary = left
value = 0
[../]
[./right_w]
type = DirichletBC
variable = w
boundary = right
value = 1
[../]
[./left_v1]
type = DirichletBC
variable = v1
boundary = left_bottom
value = 0
[../]
[./right_v1]
type = DirichletBC
variable = v1
boundary = right_bottom
value = 1
[../]
[./left_v2]
type = DirichletBC
variable = v2
boundary = left_top
value = 0
[../]
[./right_v2]
type = DirichletBC
variable = v2
boundary = right_top
value = 1
[../]
[]
[Preconditioning]
[./smp_full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/mass_conservation/mass12.i)
# The sample is an annulus in RZ coordinates.
# Roller BCs are applied to the r_min, r_max and bottom boundaries
# A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
# Fluid mass conservation is checked.
#
# Under these conditions
# fluid_mass = volume0 * rho0 * exp(P0/bulk) = pi*3 * 1 * exp(0.1/0.5) = 11.51145
# volume0 * rho0 * exp(P0/bulk) = volume * rho0 * exp(P/bulk), so
# P - P0 = bulk * log(volume0 / volume) = 0.5 * log(1 / (1 - 0.01*t))
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 1.0
xmax = 2.0
ymin = -0.5
ymax = 0.5
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_r]
[]
[disp_z]
[]
[porepressure]
initial_condition = 0.1
[]
[]
[BCs]
[bottom_roller]
type = DirichletBC
variable = disp_z
value = 0
boundary = bottom
[]
[side_rollers]
type = DirichletBC
variable = disp_r
value = 0
boundary = 'left right'
[]
[top_move]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = top
[]
[]
[Kernels]
[grad_stress_r]
type = StressDivergenceRZTensors
variable = disp_r
component = 0
[]
[grad_stress_z]
type = StressDivergenceRZTensors
variable = disp_z
component = 1
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_r
component = 0
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_z
component = 1
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[]
[AuxVariables]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_rz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_rz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rz
index_i = 0
index_j = 1
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_r disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = porepressure
[]
[rdisp]
type = PointValue
outputs = csv
point = '2 0 0'
use_displaced_mesh = false
variable = disp_r
[]
[stress_rr]
type = PointValue
outputs = csv
point = '1 0 0'
variable = stress_rr
[]
[stress_zz]
type = PointValue
outputs = csv
point = '1 0 0'
variable = stress_zz
[]
[stress_tt]
type = PointValue
outputs = csv
point = '1 0 0'
variable = stress_tt
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 2
[]
[Outputs]
execute_on = 'initial timestep_end'
[csv]
type = CSV
[]
[]
(test/tests/meshgenerators/file_mesh_generator/3d_steady_diffusion_iga.i)
[Mesh]
[cyl2d_iga]
type = FileMeshGenerator
file = Cube_With_Sidesets.e
[]
allow_renumbering = false
parallel_type = replicated
[]
[Variables]
[u]
order = SECOND # Must match mesh order
family = RATIONAL_BERNSTEIN
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
block = 0 # Avoid direct calculations on spline nodes
[]
[null]
type = NullKernel
variable = u
block = 1 # Keep kernel coverage check happy
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
vtk = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/2d-stress.i)
# 2D test with stress controls
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
constraint_types = 'stress stress stress'
ndim = 2
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '2d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0'
fixed_normal = true
new_boundary = 'left right bottom top'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[hvar]
family = SCALAR
order = THIRD
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 stress22 stress12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '400*t'
[]
[stress22]
type = ParsedFunction
value = '-200*t'
[]
[stress12]
type = ParsedFunction
value = '100*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y'
[]
[y]
variable = disp_y
auto_direction = 'x y'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix1"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix1"
variable = disp_y
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix2"
variable = disp_y
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/multiapps/move_and_reset/multilevel_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/postprocessors/coupled_solution_dofs/coupled_solution_dofs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./L2_norm]
type = ElementL2Norm
variable = u
[../]
[./integral]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
[./direct_sum]
type = ElementMomentSum
variable = u
[../]
[./direct_sum_old]
type = ElementMomentSum
variable = u
implicit = false
[../]
[./direct_sum_older]
type = ElementMomentSum
variable = u
use_old = true
implicit = false
[../]
[]
[Executioner]
type = Transient
num_steps = 3
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/thermo_mech/ad-youngs_modulus_function_temp.i)
# ---------------------------------------------------------------------------
# This test is designed to verify the variable elasticity tensor functionality in the
# ADComputeFiniteStrainElasticStress class with the elasticity_tensor_has_changed flag
# by varying the young's modulus with temperature. A constant strain is applied
# to the mesh in this case, and the stress varies with the changing elastic constants.
#
# Geometry: A single element cube in symmetry boundary conditions and pulled
# at a constant displacement to create a constant strain in the x-direction.
#
# Temperature: The temperature varies from 400K to 700K in this simulation by
# 100K each time step. The temperature is held constant in the last
# timestep to ensure that the elasticity tensor components are constant
# under constant temperature.
#
# Results: Because Poisson's ratio is set to zero, only the stress along the x
# axis is non-zero. The stress changes with temperature.
#
# Temperature(K) strain_{xx}(m/m) Young's Modulus(Pa) stress_{xx}(Pa)
# 400 0.001 10.0e6 1.0e4
# 500 0.001 10.0e6 1.0e4
# 600 0.001 9.94e6 9.94e3
# 700 0.001 9.93e6 9.93e3
#
# The tensor mechanics results align exactly with the analytical results above
# when this test is run with ComputeIncrementalSmallStrain. When the test is
# run with ComputeFiniteStrain, a 0.05% discrepancy between the analytical
# strains and the simulation strain results is observed, and this discrepancy
# is carried over into the calculation of the elastic stress.
#-------------------------------------------------------------------------
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 400
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_function]
type = PiecewiseLinear
x = '1 4'
y = '400 700'
[../]
[]
[Kernels]
[./heat]
type = ADDiffusion
variable = temp
[../]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = ADRankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./elastic_strain_xx]
type = ADRankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./u_left_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_back_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./u_pull_right]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.001
[../]
[./temp_bc_1]
type = ADFunctionDirichletBC
variable = temp
preset = false
boundary = '1 2 3 4'
function = temperature_function
[../]
[]
[Materials]
[./youngs_modulus]
type = ADPiecewiseLinearInterpolationMaterial
xy_data = '0 10e+6
599.9999 10e+6
600 9.94e+6
99900 10e3'
property = youngs_modulus
variable = temp
[../]
[./elasticity_tensor]
type = ADComputeVariableIsotropicElasticityTensor
youngs_modulus = youngs_modulus
poissons_ratio = 0.0
[../]
[./strain]
type = ADComputeIncrementalSmallStrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
end_time = 5
[]
[Postprocessors]
[./elastic_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./elastic_stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./temp]
type = AverageNodalVariableValue
variable = temp
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/markers/boundary_marker/distance.i)
###########################################################
# This is a test of the Mesh Marker System. It marks
# elements with flags indicating whether they should be
# refined, coarsened, or left alone. This system
# has the ability to use the Mesh Indicator System.
#
# @Requirement F2.50
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# Mesh Marker System
[Adaptivity]
[Markers]
[boundary]
type = BoundaryMarker
next_to = right
distance = 0.35
mark = refine
[]
[]
initial_marker = boundary
initial_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictional-mortar-fb-lm-mortar-disp.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
# order = SECOND
[../]
[./disp_y]
block = '1 2'
# order = SECOND
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[./tangential_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
secondary_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = fb
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_lm]
type = TangentialMortarLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_x
secondary_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
contact_pressure = normal_lm
friction_coefficient = .1
ncp_function_type = fb
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
# [./Predictor]
# type = SimplePredictor
# scale = 1.0
# [../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
# checkpoint = true
# [./dofmap]
# type = DOFMap
# execute_on = 'initial'
# [../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/problems/custom_fe_problem/custom_fe_problem_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Problem]
type = MooseTestProblem
name = 'MOOSE Test problem'
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/cavity_pressure/3d.i)
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/action/two_block_base_name.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. They
# can be overwritten in the subblocks.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
# base_name can be specified inside or outside a block
base_name = 'block1'
[./block1]
# the `block` parameter is only valid insde a subblock.
block = 1
[../]
[./block2]
block = 2
# the `additional_generate_output` parameter is also only valid inside a
# subblock. Values specified here are appended to the `generate_output`
# parameter values.
additional_generate_output = 'strain_yy'
base_name = 'block2'
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
block = 1
rank_two_tensor = block1_stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
block = 2
rank_two_tensor = block2_total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor_1]
type = ComputeIsotropicElasticityTensor
block = 1
base_name = block1
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./elasticity_tensor_2]
type = ComputeIsotropicElasticityTensor
block = 2
base_name = block2
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
base_name = block1
[../]
[./_elastic_stress2]
type = ComputeFiniteStrainElasticStress
block = 2
base_name = block2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/receiver_default/defaults.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./receiver]
type = Receiver
default = 12345
execute_on = 'timestep_end initial'
[../]
[./report_old]
type = TestPostprocessor
execute_on = 'timestep_end initial'
test_type = report_old
report_name = receiver
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template2.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/combined/test/tests/ad_cavity_pressure/multiple_postprocessors.i)
#
# Cavity Pressure Test (Volume input as a vector of postprocessors)
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# In this test the internal volume is calculated as the sum of two Postprocessors
# internalVolumeInterior and internalVolumeExterior. This sum equals the value
# reported by the internalVolume postprocessor.
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = 'internalVolumeInterior internalVolumeExterior'
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./internalVolumeInterior]
type = InternalVolume
boundary = '1 2 3 4 5 6'
execute_on = 'initial linear'
[../]
[./internalVolumeExterior]
type = InternalVolume
boundary = '13 14 15 16 17 18'
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/element_integral_material_property/element_integral_material_property.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
block = 0
prop_names = prop
prop_values = 2.0
[../]
[]
[Postprocessors]
[./prop_integral]
type = ElementIntegralMaterialProperty
mat_prop = prop
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test2qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test2q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test2qtt_out
exodus = true
[]
(modules/combined/examples/mortar/eigenstrain.i)
#
# Eigenstrain with Mortar gradient periodicity
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[./anode]
input = cnode
type = ExtraNodesetGenerator
coord = '0.0 0.5'
new_boundary = 101
[../]
[secondary_x]
input = anode
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = 10
new_block_name = "secondary_x"
[]
[primary_x]
input = secondary_x
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = 12
new_block_name = "primary_x"
[]
[secondary_y]
input = primary_x
type = LowerDBlockFromSidesetGenerator
sidesets = '0'
new_block_id = 11
new_block_name = "secondary_y"
[]
[primary_y]
input = secondary_y
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = 13
new_block_name = "primary_y"
[]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'disp_x disp_y'
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
block = 0
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = RandomIC
min = 0.49
max = 0.51
[../]
block = 0
[../]
[./w]
block = 0
[../]
# Mesh displacement
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
# Lagrange multipliers for gradient component periodicity
[./lm_left_right_xx]
order = FIRST
family = LAGRANGE
block = secondary_x
[../]
[./lm_left_right_xy]
order = FIRST
family = LAGRANGE
block = secondary_x
[../]
[./lm_left_right_yx]
order = FIRST
family = LAGRANGE
block = secondary_x
[../]
[./lm_left_right_yy]
order = FIRST
family = LAGRANGE
block = secondary_x
[../]
[./lm_up_down_xx]
order = FIRST
family = LAGRANGE
block = secondary_y
[../]
[./lm_up_down_xy]
order = FIRST
family = LAGRANGE
block = secondary_y
[../]
[./lm_up_down_yx]
order = FIRST
family = LAGRANGE
block = secondary_y
[../]
[./lm_up_down_yy]
order = FIRST
family = LAGRANGE
block = secondary_y
[../]
[]
[Constraints]
[./ud_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_xx
component = 0
secondary_variable = disp_x
secondary_boundary = bottom
primary_boundary = top
secondary_subdomain = secondary_y
primary_subdomain = primary_y
periodic = true
[../]
[./ud_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_xy
component = 1
secondary_variable = disp_x
secondary_boundary = bottom
primary_boundary = top
secondary_subdomain = secondary_y
primary_subdomain = primary_y
periodic = true
[../]
[./ud_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_up_down_yx
component = 0
secondary_variable = disp_y
secondary_boundary = bottom
primary_boundary = top
secondary_subdomain = secondary_y
primary_subdomain = primary_y
periodic = true
[../]
[./ud_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_up_down_yy
component = 1
secondary_variable = disp_y
secondary_boundary = bottom
primary_boundary = top
secondary_subdomain = secondary_y
primary_subdomain = primary_y
periodic = true
[../]
[./lr_disp_x_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_xx
component = 0
secondary_variable = disp_x
secondary_boundary = left
primary_boundary = right
secondary_subdomain = secondary_x
primary_subdomain = primary_x
periodic = true
[../]
[./lr_disp_x_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_xy
component = 1
secondary_variable = disp_x
secondary_boundary = left
primary_boundary = right
secondary_subdomain = secondary_x
primary_subdomain = primary_x
periodic = true
[../]
[./lr_disp_y_grad_x]
type = EqualGradientConstraint
variable = lm_left_right_yx
component = 0
secondary_variable = disp_y
secondary_boundary = left
primary_boundary = right
secondary_subdomain = secondary_x
primary_subdomain = primary_x
periodic = true
[../]
[./lr_disp_y_grad_y]
type = EqualGradientConstraint
variable = lm_left_right_yy
component = 1
secondary_variable = disp_y
secondary_boundary = left
primary_boundary = right
secondary_subdomain = secondary_x
primary_subdomain = primary_x
periodic = true
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
block = 0
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = '0 10 11'
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
block = 0
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
block = 0
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
block = 0
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
block = 0
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
# matrix phase
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
block = 0
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[BCs]
[./Periodic]
[./up_down]
primary = top
secondary = bottom
translation = '0 -1 0'
variable = 'c w'
[../]
[./left_right]
primary = left
secondary = right
translation = '1 0 0'
variable = 'c w'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = disp_y
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
block = 0
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
block = 0
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
# mortar currently does not support MPI parallelization
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-10'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
(modules/richards/test/tests/gravity_head_1/gh03.i)
# unsaturated = false
# gravity = true
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh03
exodus = true
[]
(test/tests/misc/check_error/bad_kernel_var_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = foo # Test for missing variable
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/outputs/intervals/intervals.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
interval = 5
[../]
[]
(test/tests/misc/hit_cli/input1.i)
#
# This is not a valid MOOSE input, it is only used for testing the HIT command
# line utility.
#
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
value = 0
[]
[right]
type = NeumannBC
variable = v
value = 0
[]
[]
[PostProcessor]
[min2]
type = Calculation
mode = MIN
value = 0
[]
[]
(test/tests/multiapps/move/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
output_in_position = true
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
[../]
[]
(test/tests/outputs/output_if_base_contains/dt_from_master_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.25
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = dt_from_master_sub.i
[../]
[]
(test/tests/executioners/nullspace/singular.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 10
nx = 8
[]
[Problem]
null_space_dimension = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./eig]
type = MassEigenKernel
variable = u
eigen_postprocessor = 1.0002920196258376e+01
eigen = false
[../]
[./force]
type = CoupledForce
variable = u
v = aux_v
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = eigen_mode
[../]
[../]
[]
[AuxKernels]
[./set_source]
type = FunctionAux
variable = aux_v
function = second_harmonic
execute_on = timestep_begin
[../]
[]
[Functions]
[./eigen_mode]
type = ParsedFunction
value = 'sqrt(2.0 / L) * sin(mode * pi * x / L)'
vars = 'L mode'
vals = '10 1'
[../]
[./second_harmonic]
type = ParsedFunction
value = 'sqrt(2.0 / L) * sin(mode * pi * x / L)'
vars = 'L mode'
vals = '10 2'
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1'
value = 0
[../]
[]
[VectorPostprocessors]
[./sample_solution]
type = LineValueSampler
variable = u
start_point = '0 0 0'
end_point = '10 0 0'
sort_by = x
num_points = 9
execute_on = timestep_end
[../]
[]
[Preconditioning]
[./prec]
type = SMP
full = true
[../]
[]
[Executioner]
type = SteadyWithNull
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_pc_side -snes_type -ksp_norm_type'
petsc_options_value = 'hypre boomeramg left ksponly preconditioned'
nl_rel_tol = 1.0e-14
nl_abs_tol = 1.0e-14
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/chemical_reactions/test/tests/aqueous_equilibrium/2species.i)
# Simple equilibrium reaction example to illustrate the use of the AqueousEquilibriumReactions
# action.
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction specified in the AqueousEquilibriumReactions block as:
#
# reactions = '2a = pa2 2
# a + b = pab -2'
#
# where the 2 is the weight of the equilibrium species, the 2 on the RHS of the first reaction
# refers to the equilibrium constant (log10(Keq) = 2), and the -2 on the RHS of the second
# reaction equates to log10(Keq) = -2.
#
# The AqueousEquilibriumReactions action creates all the required kernels and auxkernels
# to compute the reaction given by the above equilibrium reaction equation.
#
# Specifically, it adds to following:
# * An AuxVariable named 'pa2' (given in the reactions equations)
# * An AuxVariable named 'pab' (given in the reactions equations)
# * A AqueousEquilibriumRxnAux AuxKernel for each AuxVariable with all parameters
# * A CoupledBEEquilibriumSub Kernel for each primary species with all parameters
# * A CoupledDiffusionReactionSub Kernel for each primary species with all parameters
# * A CoupledConvectionReactionSub Kernel for each primary species with all parameters if
# pressure is a coupled variable
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2,
a + b = pab -2'
secondary_species = 'pa2 pab'
pressure = pressure
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/pressure_channel/open_bc_pressure_BC_fieldSplit.i)
# This input file tests Dirichlet pressure in/outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
integrate_p_by_parts = false
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
integrate_p_by_parts = false
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./inlet_p]
type = DirichletBC
variable = p
boundary = left
value = 1.0
[../]
[./outlet_p]
type = DirichletBC
variable = p
boundary = right
value = 0.0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
active = FSP
[./FSP]
type = FSP
# It is the starting point of splitting
topsplit = 'up' # 'up' should match the following block name
[./up]
splitting = 'u p' # 'u' and 'p' are the names of subsolvers
splitting_type = schur
# Splitting type is set as schur, because the pressure part of Stokes-like systems
# is not diagonally dominant. CAN NOT use additive, multiplicative and etc.
# Original system:
# | A B | | u | = | f_u |
# | C 0 | | p | | f_v |
# is factorized into
# |I 0 | | A 0| | I A^{-1}B | | u | = | f_u |
# |CA^{-1} I | | 0 -S| | 0 I | | p | | f_v |
# S = CA^{-1}B
# The preconditioning is accomplished via the following steps
# (1) p^{(0)} = f_v - CA^{-1}f_u,
# (2) pressure = (-S)^{-1} p^{(0)}
# (3) u = A^{-1}(f_u-Bp)
petsc_options_iname = '-pc_fieldsplit_schur_fact_type -pc_fieldsplit_schur_precondition'
petsc_options_value = 'full selfp'
# Factorization type here is full, which means we approximate the original system
# exactly. There are three other options:
# diag:
# | A 0|
# | 0 -S|
# lower:
# |I 0 |
# |CA^{-1} -S |
# upper:
# | I A^{-1}B |
# | 0 -S |
# The preconditioning matrix is set as selfp, which means we explicitly form a
# matrix \hat{S} = C(diag(A))^{-1}B. We do not compute the inverse of A, but instead, we compute
# the inverse of diag(A).
[../]
[./u]
vars = 'vel_x vel_y'
# PETSc options for this subsolver
# A prefix will be applied, so just put the options for this subsolver only
petsc_options_iname = '-pc_type -ksp_type -ksp_rtol'
petsc_options_value = ' hypre gmres 1e-4'
# Specify options to solve A^{-1} in the steps (1), (2) and (3).
# Solvers for A^{-1} could be different in different steps. We could
# choose in the following pressure block.
[../]
[./p]
vars = 'p'
# PETSc options for this subsolver in the step (2)
petsc_options_iname = '-pc_type -ksp_type -ksp_rtol'
petsc_options_value = ' jacobi gmres 1e-4'
# Use -inner_ksp_type and -inner_pc_type to override A^{-1} in the step (2)
# Use -lower_ksp_type and -lower_pc_type to override A^{-1} in the step (1)
[../]
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
file_base = open_bc_out_pressure_BC_fieldSplit
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/convergence/elastic.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = false
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = false
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = false
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeFiniteStrainElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform1.i)
# deformations are applied so that the trial stress is
# shear = 10, normalstress = 2
#
# Cohesion is chosen to be 1, and friction angle = 26.565, so tan(friction_angle) = 1/2
# This means that (shear, normalstress) = (0, 2) is the apex
# of the shear envelope
#
# Poisson's ratio is chosen to be zero, and Lame mu = 1E6,
# so the return must solve
# f = 0
# shear = shear_trial - (1/2)*mu*ga = 10 - 0.5E6*ga
# normalstress = normalstress - mu*tan(dilation)*ga
#
# Finally, tan(dilation) = 2/18 is chosen.
#
# Then the returned value should have
# shear = 1, normalstress = 0
#
# Here shear = sqrt(s_yz^2 + s_xz^2)
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[]
[topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-6
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_topo_q_func.i)
#This tests the J-Integral evaluation capability.
#This is a 2d plane strain model
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
q_function_type = Topology
ring_first = 1
ring_last = 4
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_2d_topo_q_func_out
exodus = true
csv = true
[]
(test/tests/functions/parsed/mms_transient_coupled.i)
###########################################################
# This is a simple test of the Function System. This
# test uses forcing terms produced from analytical
# functions of space and time to verify a solution
# using MMS.
#
# @Requirement F6.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 1.0
nx = 10
ymin = 0.0
ymax = 1.0
ny = 10
uniform_refine = 2
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Functions]
[./v_left_bc]
# Left-side boundary condition for v equation, v(0,y,t) = u(0.5,y,t). This is accomplished using a PointValue postprocessor, which is what this input file was designed to test.
type = ParsedFunction
value = a
vals = u_midpoint
vars = a
[../]
[./u_mms_func]
# MMS Forcing function for the u equation.
type = ParsedFunction
value = ' 20*exp(20*t)*x*x*x-6*exp(20*t)*x-(2-0.125*exp(20*t))*sin(5/2*x*pi)-0.125*exp(20*t)-1
'
[../]
[./v_mms_func]
# MMS forcing function for the v equation.
type = ParsedFunction
value = -2.5*exp(20*t)*sin(5/2*x*pi)+2.5*exp(20*t)+25/4*(2-0.125*exp(20*t))*sin(5/2*x*pi)*pi*pi
[../]
[./u_right_bc]
type = ParsedFunction
value = 3*exp(20*t) # \nabla{u}|_{x=1} = 3\exp(20*t)
[../]
[./u_exact]
# Exact solution for the MMS function for the u variable.
type = ParsedFunction
value = exp(20*t)*pow(x,3)+1
[../]
[./v_exact]
# Exact MMS solution for v.
type = ParsedFunction
value = (2-0.125*exp(20*t))*sin(5/2*pi*x)+0.125*exp(20*t)+1
[../]
[]
[Kernels]
# Strong Form:
# \frac{\partial u}{\partial t} - \nabla \cdot 0.5 \nabla u - v = 0
# \frac{\partial u}{\partial t} - \nabla \cdot \nabla v = 0
#
# BCs:
# u(0,y,t) = 1
# \nabla u |_{x=1} = 3\exp(20*t)
# v(0,y,t) = u(0.5,y,t)
# v(1,y,t) = 3
# \nabla u |_{y=0,1} = 0
# \nabla v |_{y=0,1} = 0
#
[./u_time]
type = TimeDerivative
variable = u
[../]
[./u_diff]
type = Diffusion
variable = u
[../]
[./u_source]
type = CoupledForce
variable = u
v = v
[../]
[./v_diff]
type = Diffusion
variable = v
[../]
[./u_mms]
type = BodyForce
variable = u
function = u_mms_func
[../]
[./v_mms]
type = BodyForce
variable = v
function = v_mms_func
[../]
[./v_time]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./u_left]
type = DirichletBC
variable = u
boundary = left # x=0
value = 1 # u(0,y,t)=1
[../]
[./u_right]
type = FunctionNeumannBC
variable = u
boundary = right # x=1
function = u_right_bc # \nabla{u}|_{x=1}=3\exp(20t)
[../]
[./v_left]
type = FunctionDirichletBC
variable = v
boundary = left # x=0
function = v_left_bc # v(0,y,t) = u(0.5,y,t)
[../]
[./v_right]
type = DirichletBC
variable = v
boundary = right # x=1
value = 3 # v(1,y,t) = 3
[../]
[]
[Postprocessors]
[./u_midpoint]
type = PointValue
variable = u
point = '0.5 0.5 0'
execute_on = 'initial timestep_end'
[../]
[./u_midpoint_exact]
type = FunctionValuePostprocessor
function = u_exact
point = '0.5 0.5 0.0'
execute_on = 'initial timestep_end'
[../]
[./u_error]
type = ElementL2Error
variable = u
function = u_exact
execute_on = 'initial timestep_end'
[../]
[./v_error]
type = ElementL2Error
variable = v
function = v_exact
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = NEWTON
end_time = 0.1
scheme = crank-nicolson
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_initial]
# Use the MMS exact solution to compute the initial conditions.
function = u_exact
variable = u
type = FunctionIC
[../]
[./v_exact]
# Use the MMS exact solution to compute the initial condition.
function = v_exact
variable = v
type = FunctionIC
[../]
[]
(modules/porous_flow/test/tests/thm_rehbinder/fixed_outer_rz.i)
# A version of fixed_outer.i that uses the RZ cylindrical coordinate system
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40 # this is the r direction
ny = 1 # this is the height direction
xmin = 0.1
xmax = 1
bias_x = 1.1
ymin = 0.0
ymax = 1.0
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
biot_coefficient = 1.0
[]
[Variables]
[disp_r]
[]
[disp_z]
[]
[porepressure]
[]
[temperature]
[]
[]
[BCs]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'top bottom'
[]
[cavity_temperature]
type = DirichletBC
variable = temperature
value = 1000
boundary = left
[]
[cavity_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = left
[]
[cavity_zero_effective_stress_x]
type = Pressure
variable = disp_r
function = 1E6
boundary = left
use_displaced_mesh = false
[]
[outer_temperature]
type = DirichletBC
variable = temperature
value = 0
boundary = right
[]
[outer_pressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[]
[fixed_outer_disp]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[]
[AuxVariables]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_pp]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_pp] # hoop stress
type = RankTwoAux
rank_two_tensor = stress
variable = stress_pp
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 1E12
viscosity = 1.0E-3
density0 = 1000.0
cv = 1000.0
cp = 1000.0
porepressure_coefficient = 0.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = ThermoHydroMechanical
multiply_by_density = false
add_stress_aux = true
porepressure = porepressure
temperature = temperature
eigenstrain_names = thermal_contribution
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1E10
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = thermal_contribution
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1E-6
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 1E12
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12' # note this is ordered: rr, zz, angle-angle
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
fluid_coefficient = 1E-6
drained_coefficient = 1E-6
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1E6 0 0 0 1E6 0 0 0 1E6' # note this is ordered: rr, zz, angle-angle
[]
[]
[VectorPostprocessors]
[P]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = porepressure
[]
[T]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = temperature
[]
[U]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = disp_r
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_rtol'
petsc_options_value = 'gmres asm lu 1E-8'
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
file_base = fixed_outer_rz
execute_on = timestep_end
csv = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-reduced-active-set.i)
starting_point = .5
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1
[]
[Mesh]
file = square-blocks-no-offset.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${starting_point}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./disp_x]
type = RANFSNormalMechanicalContact
secondary = 10
primary = 20
variable = disp_x
primary_variable = disp_x
component = x
[../]
[./disp_y]
type = RANFSNormalMechanicalContact
secondary = 10
primary = 20
variable = disp_y
primary_variable = disp_y
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 30
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} - t'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
dtmin = 1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -ksp_monitor_true_residual -snes_view'
petsc_options_iname = '-mat_mffd_err -pc_type -pc_hypre_type'
petsc_options_value = '1e-5 hypre boomeramg'
l_max_its = 30
nl_max_its = 20
line_search = 'project'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
execute_on = 'nonlinear'
[]
print_linear_residuals = false
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[]
(test/tests/adaptivity/interval/adapt_interval.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 1
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
interval = 2
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/unused_param_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
unused_param = 'set_something_important'
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_basal_active.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2_zz]
order = CONSTANT
family = MONOMIAL
[]
[fp_xx]
order = CONSTANT
family = MONOMIAL
[]
[fp_yy]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_xx]
order = CONSTANT
family = MONOMIAL
[]
[e_yy]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_2]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_1]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_2]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[pk2_zz]
type = RankTwoAux
variable = pk2_zz
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_xx]
type = RankTwoAux
variable = fp_xx
rank_two_tensor = plastic_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = plastic_deformation_gradient
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_xx]
type = RankTwoAux
variable = e_xx
rank_two_tensor = total_lagrangian_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = total_lagrangian_strain
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[slip_increment_0]
type = MaterialStdVectorAux
variable = slip_increment_0
property = slip_increment
index = 0
execute_on = timestep_end
[]
[slip_increment_1]
type = MaterialStdVectorAux
variable = slip_increment_1
property = slip_increment
index = 1
execute_on = timestep_end
[]
[tau_0]
type = MaterialStdVectorAux
variable = resolved_shear_stress_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[tau_1]
type = MaterialStdVectorAux
variable = resolved_shear_stress_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[tau_2]
type = MaterialStdVectorAux
variable = resolved_shear_stress_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_1]
type = MaterialStdVectorAux
variable = slip_resistance_1
property = slip_resistance
index = 1
execute_on = timestep_end
[]
[slip_resistance_2]
type = MaterialStdVectorAux
variable = slip_resistance_2
property = slip_resistance
index = 2
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
# orient in approximately [011] to activate the basal slip planes
euler_angle_1 = 120.0
euler_angle_2 = 125.264
euler_angle_3 = 45.0
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 3
slip_sys_file_name = hcp_basal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 1
number_slip_systems_per_mode = '3'
lattice_friction_per_mode = '98' #Knezevic et al MSEA 654 (2013)
effective_shear_modulus_per_mode = '4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '5.7e6' #from Knezevic et al. 2015 AM
normalized_slip_activiation_energy_per_mode = '0.002' #from Knezevic et al. 2015 AM
slip_energy_proportionality_factor_per_mode = '700' ##from Knezevic et al. 2015 AM
substructure_rate_coefficient_per_mode = '355' #from Capolungo et al MSEA (2009)
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '0.2' #Estimated to match graph in Capolungo et al MSEA (2009), Figure 2
grain_size = 20.0e-3 #20 microns, Beyerlein and Tome IJP (2008)
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2_zz]
type = ElementAverageValue
variable = pk2_zz
[]
[fp_xx]
type = ElementAverageValue
variable = fp_xx
[]
[fp_yy]
type = ElementAverageValue
variable = fp_yy
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_xx]
type = ElementAverageValue
variable = e_xx
[]
[e_yy]
type = ElementAverageValue
variable = e_yy
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[slip_increment_0]
type = ElementAverageValue
variable = slip_increment_0
[]
[slip_increment_1]
type = ElementAverageValue
variable = slip_increment_1
[]
[tau_0]
type = ElementAverageValue
variable = resolved_shear_stress_0
[]
[tau_1]
type = ElementAverageValue
variable = resolved_shear_stress_1
[]
[tau_2]
type = ElementAverageValue
variable = resolved_shear_stress_2
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_1]
type = ElementAverageValue
variable = slip_resistance_1
[]
[slip_resistance_2]
type = ElementAverageValue
variable = slip_resistance_2
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 2.5
[]
[Outputs]
csv = true
[]
(test/tests/outputs/error/duplicate_outputs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./exodus]
type = Exodus
[../]
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-mortar-disp.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
secondary = 10
primary = 20
variable = normal_lm
primary_variable = disp_x
disp_y = disp_y
ncp_function_type = 'fb'
[../]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(examples/ex01_inputfile/ex01.i)
[Mesh]
# We use a pre-generated mesh file (in exodus format).
# This mesh file has 'top' and 'bottom' named boundaries defined inside it.
file = mug.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./bottom] # arbitrary user-chosen name
type = DirichletBC
variable = diffused
boundary = 'bottom' # This must match a named boundary in the mesh file
value = 1
[../]
[./top] # arbitrary user-chosen name
type = DirichletBC
variable = diffused
boundary = 'top' # This must match a named boundary in the mesh file
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral_vtest/c_int_surfbreak_ellip_crack_sym_mm.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = c_integral_coarse.e
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./resid_z]
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 0.1 100.0'
y = '0. 1 1'
scale_factor = -68.95 #MPa
[../]
[./dts]
type = PiecewiseLinear
x = '0 1'
y = '1 400000'
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 12
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 5
function = rampConstantUp
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
coefficient = 3.125e-21 # 7.04e-17 #
n_exponent = 4.0
m_exponent = 0.0
activation_energy = 0.0
# max_inelastic_increment = 0.01
[../]
[]
[DomainIntegral]
integrals = CIntegral
boundary = 1001
crack_direction_method = CurvedCrackFront
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '0.0 1.0 0.0'
crack_direction_vector_end_2 = '1.0 0.0 0.0'
radius_inner = '12.5 25.0 37.5'
radius_outer = '25.0 37.5 50.0'
intersecting_boundary = '1 2'
symmetry_plane = 2
incremental = true
inelastic_models = 'powerlawcrp'
[]
[Executioner]
type = Transient
# Two sets of linesearch options are for petsc 3.1 and 3.3 respectively
#Preconditioned JFNK (default)
solve_type = 'NEWTON'
# petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-3
nl_rel_tol = 1e-11
l_tol = 1e-2
start_time = 0.0
end_time = 401
[./TimeStepper]
type = FunctionDT
function = dts
min_dt = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./nl_its]
type = NumNonlinearIterations
[../]
[./lin_its]
type = NumLinearIterations
[../]
[./react_z]
type = NodalSum
variable = resid_z
boundary = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(modules/peridynamics/test/tests/auxkernels/planestrain_thermomechanics_stretch_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 6
ny = 6
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./total_stretch]
order = CONSTANT
family = MONOMIAL
[../]
[./mechanical_stretch]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
eigenstrain_names = thermal_strain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./total_stretch]
type = MaterialRealAux
variable = total_stretch
property = total_stretch
[../]
[./mechanical_stretch]
type = MaterialRealAux
variable = mechanical_stretch
property = mechanical_stretch
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = 'x*x+y*y'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
boundary = 1003
preset = false
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1000
preset = false
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
eigenstrain_names = thermal_strain
plane_strain = true
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.0002
stress_free_temperature = 0.0
eigenstrain_name = thermal_strain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
l_tol = 1e-8
nl_rel_tol = 1e-10
start_time = 0.0
end_time = 1.0
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
exodus = true
file_base = planestrain_thermomechanics_stretch_H1NOSPD
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test10.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 5
ymin = 0
ymax = 5
[]
[./left]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[../]
[./right]
type = SubdomainBoundingBoxGenerator
input = left
block_id = 2
bottom_left = '3 2 0'
top_right = '4 3 1'
[../]
[./interior_sideset]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 2
input = right
new_boundary = interior_ss
[../]
[./new_block_number]
type = SubdomainBoundingBoxGenerator
block_id = 3
bottom_left = '0 0 0'
top_right = '4 4 1'
input = 'interior_sideset'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 3
input = 'new_block_number'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/jacobian_damper/cube_load.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
displacements = 'disp_x disp_y disp_z'
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.025 0.05'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 3
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[]
[Postprocessors]
[./stress_yy_el]
type = ElementalVariableValue
variable = stress_yy
elementid = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 2e5
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Dampers]
[./disp_x_damp]
type = ElementJacobianDamper
max_increment = 0.002
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 2
dt = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/incremental_small_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_x]
scaling = 1e-10
[../]
[./disp_y]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_x]
type = StressDivergenceTensors
component = 0
variable = disp_x
[../]
[./stress_y]
type = StressDivergenceTensors
component = 1
variable = disp_y
[../]
[./stress_z]
type = StressDivergenceTensors
component = 2
variable = disp_z
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = incremental_small_elastic_out
[]
(modules/contact/test/tests/simple_contact/merged.i)
[GlobalParams]
volumetric_locking_correction= false
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = merged.e
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[DiracKernels]
[./primary_x]
type = ContactPrimary
variable = disp_x
component = 0
boundary = 3
secondary = 2
[../]
[./primary_y]
type = ContactPrimary
variable = disp_y
component = 1
boundary = 3
secondary = 2
[../]
[./primary_z]
type = ContactPrimary
variable = disp_z
component = 2
boundary = 3
secondary = 2
[../]
[./secondary_x]
type = SecondaryConstraint
variable = disp_x
component = 0
boundary = 2
primary = 3
[../]
[./secondary_y]
type = SecondaryConstraint
variable = disp_y
component = 1
boundary = 2
primary = 3
[../]
[./secondary_z]
type = SecondaryConstraint
variable = disp_z
component = 2
boundary = 2
primary = 3
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.0001
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu '
line_search = 'none'
nl_abs_tol = 1e-8
l_max_its = 20
dt = 1.0
num_steps = 1
[]
[Outputs]
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/preconditioners/pbp/pbp_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
# init_unif_refine = 6
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'LU LU'
off_diag_row = 'v'
off_diag_column = 'u'
petsc_options = '' # Test petsc options in PBP block
[../]
[]
[Problem]
type = FEProblem
error_on_jacobian_nonzero_reallocation = true
[]
[Kernels]
active = 'diff_u conv_v diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 100
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
l_max_its = 10
nl_max_its = 10
solve_type = JFNK
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_elastic.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - wc_x = 0 at y=0 and y=450.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# This is an elastic simulation, but the weak-plane and Drucker-Prager
# parameters and AuxVariables may be found below. They are irrelevant
# in this simulation. The weak-plane and Drucker-Prager cohesions,
# tensile strengths and compressive strengths have been set very high
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 403.003
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(403.003-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(403.003-z)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[./wp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1E12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str
compressive_strength = wp_compressive_str
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subs_max]
type = PointValue
point = '0 0 403.003'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'Linear'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = cosserat_elastic
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
(test/tests/dirackernels/point_caching/point_caching_moving_mesh.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
# Mesh is dispaced by Aux variables computed by predetermined functions
displacements = 'disp_x disp_y'
[]
[Functions]
[./disp_x_fn]
type = ParsedFunction
value = t
[../]
[./disp_y_fn]
type = ParsedFunction
value = 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./time_derivative]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./disp_x_auxk]
type = FunctionAux
variable = disp_x
function = disp_x_fn
[../]
[./disp_y_auxk]
type = FunctionAux
variable = disp_y
function = disp_y_fn
[../]
[]
[DiracKernels]
[./point_source]
type = CachingPointSource
variable = u
# This is appropriate for this test, since we want the Dirac
# points to be found in elements on the displaced Mesh.
use_displaced_mesh = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 4
dt = .1
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/cutback_factor_at_failure/function_dt_cutback.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
[./dts]
type = PiecewiseLinear
x = '0 0.85 2'
y = '0.2 0.25 0.25'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_step = 3
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./TimeStepper]
type = FunctionDT
function = dts
min_dt = 0.01
cutback_factor_at_failure = 0.75
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/gravity/fully_saturated_grav01b.i)
# Checking that gravity head is established
# 1phase, constant and large fluid-bulk, constant viscosity, constant permeability
# fully saturated with fully-saturated Kernel
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[Kernels]
[flux0]
type = PorousFlowFullySaturatedDarcyBase
variable = pp
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1E3 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e3
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = fully_saturated_grav01b
[csv]
type = CSV
[]
[]
(tutorials/darcy_thermo_mech/step05_heat_conduction/problems/step5b_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = DirichletBC
variable = temperature
boundary = right
value = 300 # (K)
[]
[]
[Materials]
[steel]
type = ADGenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '18 0.466 8000' # W/m*K, J/kg-K, kg/m^3 @ 296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/volumetric_eigenstrain/volumetric_mechanical.i)
# This test ensures that the reported volumetric strain for a cube with
# mechanically imposed displacements (through Dirichlet BCs) exactly
# matches that from a version of this test that experiences the same
# defomation, but due to imposed eigenstrains.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./volumetric_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
decomposition_method = EigenSolution #Necessary for exact solution
[../]
[]
[AuxKernels]
[./volumetric_strain]
type = RankTwoScalarAux
scalar_type = VolumetricStrain
rank_two_tensor = total_strain
variable = volumetric_strain
[../]
[]
[Functions]
[pres_disp]
type = PiecewiseLinear
# These values are taken from the displacements in the eigenstrain
# version of this test. The volume of the cube (which starts out as
# a 1x1x1 cube) is (1 + disp)^3. At time 2, this is
# (1.44224957030741)^3, which is 3.0.
xy_data = '0 0
1 0.25992104989487
2 0.44224957030741'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./right]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = pres_disp
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = pres_disp
[../]
[./front]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = pres_disp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./finite_strain_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./volumetric_change]
type = GenericFunctionMaterial
prop_names = volumetric_change
prop_values = t
[../]
[]
[Postprocessors]
[./vol]
type = VolumePostprocessor
use_displaced_mesh = true
execute_on = 'initial timestep_end'
[../]
[./volumetric_strain]
type = ElementalVariableValue
variable = volumetric_strain
elementid = 0
[../]
[./disp_right]
type = NodalExtremeValue
variable = disp_x
boundary = right
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 2.0
dt = 1.0
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/misc/ad_robustness/ad_two_nl_var_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[v][]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = ADTimeDerivative
variable = u
[../]
[coupled]
type = ADCoupledValueTest
variable = u
v = v
[]
[v_diff]
type = Diffusion
variable = v
[]
[]
[DGKernels]
[dummy]
type = ADDGCoupledTest
variable = u
v = v
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[dof_map]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i)
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.1
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta = 0.1
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 0.1
[]
[inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
displacements = 'disp_x disp_y disp_z'
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/porous_flow/test/tests/capillary_pressure/vangenuchten1.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[p0aux]
family = MONOMIAL
order = CONSTANT
[]
[p1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[p0]
type = PorousFlowPropertyAux
property = pressure
phase = 0
variable = p0aux
[]
[p1]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = p1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.1
log_extension = false
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityVG
phase = 0
m = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
variable = 's0aux s1aux p0aux p1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 500
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-6
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/contact/test/tests/verification/patch_tests/brick_2/brick2_template2.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+7
al_penetration_tolerance = 1e-8
[../]
[]
(test/tests/outputs/perf_graph/multi_app/master_sub_cycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0'
type = TransientMultiApp
input_files = 'sub_sub_cycle.i'
app_type = MooseTestApp
sub_cycling = true
[../]
[]
(test/tests/variables/coupled_scalar/coupled_scalar.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_scalar]
order = SECOND
family = SCALAR
[../]
[./coupled]
[../]
[./coupled_1]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./coupled]
type = CoupledScalarAux
variable = coupled
coupled = aux_scalar
[../]
[./coupled_1]
# Coupling to the "1" component of an aux scalar
type = CoupledScalarAux
variable = coupled_1
component = 1
coupled = aux_scalar
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[ICs]
[./aux_scalar_ic]
variable = aux_scalar
values = '1.2 4.3'
type = ScalarComponentIC
[../]
[]
(modules/heat_conduction/test/tests/parallel_element_pps_test/parallel_element_pps_test.i)
[Mesh]
file = block_map.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'heat ie'
[./heat]
type = HeatConduction
variable = u
[../]
[./ie]
type = SpecificHeatConductionTimeDerivative
variable = u
[../]
[]
[BCs]
active = 'bottom top'
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Postprocessors]
active = 'p_1 p_2 p_3 p_all'
[./p_1]
type = ElementIntegralVariablePostprocessor
variable = u
block = '1'
[../]
[./p_2]
type = ElementIntegralVariablePostprocessor
variable = u
block = '2'
[../]
[./p_3]
type = ElementIntegralVariablePostprocessor
variable = u
block = '3'
[../]
[./p_all]
type = ElementIntegralVariablePostprocessor
variable = u
block = '1 2 3'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
block = 1
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0'
[../]
[./constant2]
type = GenericConstantMaterial
block = 2
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.8 0.8 0.8'
[../]
[./constant3]
type = GenericConstantMaterial
block = 3
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '5 5 5'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/phase_field/test/tests/SoretDiffusion/direct_temp.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 30
xmax = 500
elem_type = EDGE
[]
[GlobalParams]
polynomial_order = 8
[]
[Variables]
[./c]
family = HERMITE
order = THIRD
[../]
[./T]
initial_condition = 1000.0
scaling = 1.0e5
[../]
[]
[ICs]
[./c_IC]
type = SmoothCircleIC
x1 = 125.0
y1 = 0.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 100.0
variable = c
[../]
[]
[Kernels]
[./c_int]
type = CHInterface
variable = c
kappa_name = kappa
mob_name = M
[../]
[./c_bulk]
type = CahnHilliard
variable = c
mob_name = M
f_name = F
[../]
[./c_soret]
type = SoretDiffusion
variable = c
T = T
diff_name = D
Q_name = Qstar
[../]
[./c_dot]
type = TimeDerivative
variable = c
[../]
[./HtCond]
type = MatDiffusion
variable = T
diffusivity = thermal_conductivity
[../]
[]
[BCs]
[./Left_T]
type = DirichletBC
variable = T
boundary = left
value = 1000.0
[../]
[./Right_T]
type = DirichletBC
variable = T
boundary = right
value = 1015.0
[../]
[]
[Materials]
[./Copper]
type = PFParamsPolyFreeEnergy
c = c
T = T # K
int_width = 60.0
length_scale = 1.0e-9
time_scale = 1.0e-9
D0 = 3.1e-5 # m^2/s, from Brown1980
Em = 0.71 # in eV, from Balluffi1978 Table 2
Ef = 1.28 # in eV, from Balluffi1978 Table 2
surface_energy = 0.708 # Total guess
[../]
[./thcond]
type = ParsedMaterial
args = 'c'
function = 'if(c>0.7,1e-8,4e-8)'
f_name = thermal_conductivity
outputs = exodus
[../]
[./free_energy]
type = PolynomialFreeEnergy
c = c
derivative_order = 3
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
l_max_its = 30
l_tol = 1.0e-4
nl_max_its = 25
nl_rel_tol = 1.0e-9
num_steps = 60
dt = 8.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/predef/predef_multiple.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t*10
[]
[right_pull]
type = ParsedFunction
value = -t*0.5
[]
[]
[AuxVariables]
[strain_yy]
family = MONOMIAL
order = FIRST
[]
[strain_xx]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[Pressure]
[bc_presssure_top]
boundary = top
function = top_pull
[]
[bc_presssure_right]
boundary = right
function = right_pull
[]
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[Materials]
# 1. Active for UMAT
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_multiple_predef'
num_state_vars = 0
external_fields = 'strain_xx strain_yy'
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
base_name = 'base'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[strain_dependent_elasticity_tensor]
type = CompositeElasticityTensor
args = 'strain_yy strain_xx'
tensors = 'base'
weights = 'prefactor_material'
[]
[prefactor_material_block]
type = DerivativeParsedMaterial
f_name = prefactor_material
args = 'strain_yy strain_xx'
function = '1.0/(1.0 + strain_yy + strain_xx)'
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 30
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/examples/bridge/bridge.i)
#
# Bridge linear elasticity example
#
# This example models a bridge using linear elasticity.
# It can be either steel or concrete.
# Gravity is applied
# A pressure of 0.5 MPa is also applied
#
[Mesh]
displacements = 'disp_x disp_y disp_z' #Define displacements for deformed mesh
type = FileMesh #Read in mesh from file
file = bridge.e
boundary_id = '1 2 3 4 5 6' #Assign names to boundaries to make things clearer
boundary_name = 'top left right bottom1 bottom2 bottom3'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./gravity_y]
#Gravity is applied to bridge
type = Gravity
variable = disp_y
value = -9.81
[../]
[./TensorMechanics]
#Stress divergence kernels
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./von_mises]
#Dependent variable used to visualize the Von Mises stress
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
execute_on = timestep_end
scalar_type = VonMisesStress
[../]
[]
[BCs]
[./Pressure]
[./load]
#Applies the pressure
boundary = top
factor = 5e5 # Pa
[../]
[../]
[./anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[./anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = 'left right bottom1 bottom2 bottom3'
value = 0.0
[../]
[]
[Materials]
active = 'density_concrete stress strain elasticity_tensor_concrete'
[./elasticity_tensor_steel]
#Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./elasticity_tensor_concrete]
#Creates the elasticity tensor using concrete parameters
youngs_modulus = 16.5e9 #Pa
poissons_ratio = 0.2
type = ComputeIsotropicElasticityTensor
block = 1
[../]
[./strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 1
[../]
[./density_steel]
#Defines the density of steel
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 7850 # kg/m^3
[../]
[./density_concrete]
#Defines the density of concrete
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 2400 # kg/m^3
[../]
[]
[Preconditioning]
[./SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[../]
[]
[Executioner]
#We solve a steady state problem using Newton's iteration
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark.i)
# Wave propogation in 1D using Newmark time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*vel +K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -7.776268399030435152e-02, 1.949967184623528985e-02 and -4.615737877580032046e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.3025
gamma = 0.6
eta=0.1
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.3025
gamma = 0.6
eta = 0.1
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.6
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.3025
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.6
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/misc/check_error/bad_kernel_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
# Test for bad kernel
[./diff]
type = Foo
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/L/small.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/nodalkernels/constraint_enforcement/lower-bound.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[lm]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '${l} - x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = '-1'
[]
[]
[NodalKernels]
[positive_constraint]
type = LowerBoundNodalKernel
variable = lm
v = u
exclude_boundaries = 'left right'
[]
[forces]
type = CoupledForceNodalKernel
variable = u
v = lm
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = ${l}
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 asm 16 basic'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_lm]
type = GreaterThanLessThanPostprocessor
variable = lm
execute_on = 'nonlinear timestep_end'
value = 1e-8
[]
[violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_small_strain_z.i)
# Test for small strain Euler beam bending in z direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poisson's ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 5.78e-2 m
# Using 10 elements to discretize the beam element, the FEM solution is 5.766e-2 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# References:
# Prathap and Bhashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
# Note that the force is scaled by 1e-4 compared to the reference problem.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_z
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/intervals/no_final_repeat.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
execute_on = 'final timestep_end'
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/convergence/sd-stress.i)
# 3D test with stress control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
constraint_types = 'stress stress stress stress stress stress'
ndim = 3
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = SIXTH
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[hvar]
type = ScalarConstantIC
variable = hvar
value = 0.1
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[szz]
family = MONOMIAL
order = CONSTANT
[]
[syz]
family = MONOMIAL
order = CONSTANT
[]
[sxz]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[ezz]
family = MONOMIAL
order = CONSTANT
[]
[eyz]
family = MONOMIAL
order = CONSTANT
[]
[exz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[zz]
type = RankTwoAux
variable = szz
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[syz]
type = RankTwoAux
variable = syz
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[sxz]
type = RankTwoAux
variable = sxz
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[ezz]
type = RankTwoAux
variable = ezz
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
[]
[eyz]
type = RankTwoAux
variable = eyz
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 2
[]
[exz]
type = RankTwoAux
variable = exz
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 stress22 stress33 stress23 stress13 stress12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '4.0e2*t'
[]
[stress22]
type = ParsedFunction
value = '-2.0e2*t'
[]
[stress33]
type = ParsedFunction
value = '8.0e2*t'
[]
[stress23]
type = ParsedFunction
value = '2.0e2*t'
[]
[stress13]
type = ParsedFunction
value = '-7.0e2*t'
[]
[stress12]
type = ParsedFunction
value = '1.0e2*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[szz]
type = ElementAverageValue
variable = szz
execute_on = 'initial timestep_end'
[]
[syz]
type = ElementAverageValue
variable = syz
execute_on = 'initial timestep_end'
[]
[sxz]
type = ElementAverageValue
variable = sxz
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[ezz]
type = ElementAverageValue
variable = ezz
execute_on = 'initial timestep_end'
[]
[eyz]
type = ElementAverageValue
variable = eyz
execute_on = 'initial timestep_end'
[]
[exz]
type = ElementAverageValue
variable = exz
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
[Outputs]
exodus = false
csv = false
[]
(test/tests/misc/check_error/nodal_material_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
# Nodal Auxvariable that tries to access a material property
[AuxVariables]
active = 'mat'
[./mat]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[]
[AuxKernels]
active = 'mat'
[./mat]
type = MaterialRealAux
variable = mat
property = matp
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = MTBC
variable = u
boundary = 1
grad = 8
prop_name = matp
[../]
[]
[Materials]
active = mat
[./mat]
type = MTMaterial
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/constraints/coupled_tied_value_constraint/coupled_tied_value_constraint.i)
[Mesh]
type = FileMesh
file = split_blocks.e
# NearestNodeLocator, which is needed by CoupledTiedValueConstraint,
# only works with ReplicatedMesh currently
parallel_type = replicated
[]
[Variables]
[./u]
block = left
[../]
[./v]
block = right
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
block = left
[../]
[./diff_v]
type = Diffusion
variable = v
block = right
[../]
[]
[BCs]
active = 'right left'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 4
value = 1
[../]
[]
[Constraints]
[./value]
type = CoupledTiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = v
[../]
[]
[Preconditioning]
active = 'SMP'
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
l_max_its = 100
nl_max_its = 2
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/materials/stateful_prop/spatial_adaptivity_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
uniform_refine = 3
# This option is necessary if you have uniform refinement + stateful material properties + adaptivity
skip_partitioning = true
# stateful material properties + adaptivity are not yet compatible
# with distributed meshes
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ssm]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[AuxKernels]
[./ssm]
type = MaterialRealAux
variable = ssm
property = diffusivity
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./ssm]
type = SpatialStatefulMaterial
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 4
dt = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = box
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.2 0.2 0'
top_right = '0.4 0.4 0'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/ghosting_aux/ghosting_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[Partitioner]
type = GridPartitioner
nx = 2
ny = 2
[]
output_ghosting = true
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid]
type = ProcessorIDAux
variable = pid
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
default_ghosting = true
[]
(test/tests/restart/restart_transient_from_steady/steady_with_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./power_density]
[../]
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat_ie]
type = TimeDerivative
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[../]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '0 1 2 3'
value = 450
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 10
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[./temp_fuel_avg]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./pwr_density]
type = ElementIntegralVariablePostprocessor
variable = power_density
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
csv = true
[]
(test/tests/test_harness/good.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/linesearch.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[./uz]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
maximum_substep_iteration = 200
use_line_search = true
min_line_search_step_size = 0.01
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.02
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_scalar_vector.i)
[Mesh]
file = 2squares.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z1]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 1
[../]
[./react_z2]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps1]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = '1'
[../]
[./gps2]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = '2'
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
temperature = temp
save_in = 'saved_x saved_y'
block = '1 2'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./aux_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = aux_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom1x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom1y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom2x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./bottom2y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain1]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
subblock_index_provider = test_subblock_index_provider
scalar_out_of_plane_strain = 'scalar_strain_zz1 scalar_strain_zz2'
block = '1 2'
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
block = '1 2'
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[UserObjects]
[./test_subblock_index_provider]
type = TestSubblockIndexProvider
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/no_mesh_block/no_mesh_block.i)
# No Mesh Block!
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/buckley_leverett/bl20_lumped_fu.i)
# two-phase version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 30
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '0.1 0.5 0.5 1 2 4'
x = '0 0.1 1 5 40 42'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E6
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./w_aux_seff]
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[]
[AuxKernels]
[./w_aux_seff_auxk]
type = RichardsSeffAux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
variable = w_aux_seff
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_water
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_gas
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = pwater
boundary = left
value = 1E6
[../]
[./left_g]
type = DirichletBC
variable = pgas
boundary = left
value = 1000
[../]
[./right_w]
type = DirichletBC
variable = pwater
boundary = right
value = -300000
[../]
[./right_g]
type = DirichletBC
variable = pgas
boundary = right
value = 0
[../]
[]
[Functions]
[./initial_water]
type = ParsedFunction
value = 1000000*(1-min(x/5,1))-if(x<5,0,300000)
[../]
[./initial_gas]
type = ParsedFunction
value = 1000
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
viscosity = '1E-3 1E-6'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'standard'
[./bounded]
# must use --use-petsc-dm command line argument
type = SMP
full = true
petsc_options_iname = '-snes_type -pc_factor_shift_type'
petsc_options_value = 'vinewtonssls nonzero'
[../]
[./standard]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50
nl_rel_tol = 1.e-9
nl_max_its = 10
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bl20_lumped_fu
execute_on = 'initial timestep_end final'
interval = 100000
exodus = true
hide = pgas
[./console_out]
type = Console
interval = 1
[../]
[]
(test/tests/geomsearch/patch_update_strategy/auto.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = auto
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/intervals/no_output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
execute_on = none
[../]
[]
(modules/heat_conduction/test/tests/code_verification/cartesian_test_no2.i)
# Problem I.2
#
# An infinite plate with a thermal conductivity that varies linearly with
# temperature. Each boundary is exposed to a constant temperature.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'L beta ki ko ui uo'
vals = '1 1e-3 5.3 5 300 0'
value = 'uo+(ko/beta)* ( (1 + L*beta*(ki+ko)*(ui-uo)*((L-x)/(ko*L)^2) )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
f_name = 'thermal_conductivity'
args = u
function = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/tutorials/basics/part_2.2.i)
#Tensor Mechanics tutorial: the basics
#Step 2, part 2
#2D axisymmetric RZ simulation of uniaxial tension with finite strain elasticity
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = necking_quad4.e
uniform_refine = 1
second_order = true
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE #change to use finite strain instead of small linearized strain class
add_variables = true #detects the change of the mesh to second order and automatically sets the variables
generate_output = 'stress_zz vonmises_stress'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = '0.0007*t'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
end_time = 5
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 1 101'
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/porous_flow/test/tests/relperm/vangenuchten1.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityVG
phase = 0
m = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityVG
phase = 1
m = 0.5
wetting = false
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-7
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/transfers/multiapp_nearest_node_transfer/parallel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 180
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[]
[AuxVariables]
[./pid]
order = constant
family = monomial
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxKernels]
[./pid]
type = ProcessorIDAux
variable = pid
[../]
[]
(test/tests/meshgenerators/centroid_partitioner/centroid_partitioner_mg.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 100
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
# The centroid partitioner orders elements based on
# the position of their centroids
partitioner = centroid
# This will order the elements based on the y value of
# their centroid. Perfect for meshes predominantly in
# one direction
centroid_partitioner_direction = y
# The centroid partitioner behaves differently depending on
# whether you are using Serial or DistributedMesh, so to get
# repeatable results, we restrict this test to using ReplicatedMesh.
parallel_type = replicated
[]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./proc_id]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./proc_id]
type = ProcessorIDAux
variable = proc_id
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(python/chigger/tests/simple/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
use_problem_dimension = false
[../]
[]
(test/tests/nodalkernels/jac_test/jac_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 1
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/tosub_displaced_master.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_average_value]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./layered_aux]
type = SpatialUserObjectAux
variable = layered_average_value
execute_on = timestep_end
user_object = layered_average
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[UserObjects]
[./layered_average]
type = LayeredAverage
variable = u
direction = y
num_layers = 4
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
execute_on = timestep_end
positions = '0 0 0'
type = TransientMultiApp
input_files = tosub_displaced_sub.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
user_object = layered_average
variable = multi_layered_average
type = MultiAppUserObjectTransfer
to_multi_app = sub_app
displaced_target_mesh = true
[../]
[./element_layered_transfer]
user_object = layered_average
variable = element_multi_layered_average
type = MultiAppUserObjectTransfer
to_multi_app = sub_app
displaced_target_mesh = true
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_traction_steady_stabilized.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = false
gravity = '0 0 0'
supg = true
pspg = true
order = FIRST
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
# Jacobian doesn't appear to be correct for RZ traction form
solve_type = PJFNK
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/heat_conduction/test/tests/sideset_heat_transfer/cfem_gap.i)
[Mesh]
# Build 2-by-2 mesh
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
xmax = 2
ny = 2
ymax = 2
[]
# Create blocs 0, 1, 2, 3
[block_1]
type = SubdomainBoundingBoxGenerator
input = mesh
block_id = 1
bottom_left = '1 0 0'
top_right = '2 1 0'
[]
[block_2]
type = SubdomainBoundingBoxGenerator
input = block_1
block_id = 2
bottom_left = '0 1 0'
top_right = '1 2 0'
[]
[block_3]
type = SubdomainBoundingBoxGenerator
input = block_2
block_id = 3
bottom_left = '1 1 0'
top_right = '2 2 0'
[]
# Create inner sidesets
[interface_01]
type = SideSetsBetweenSubdomainsGenerator
input = block_3
primary_block = 0
paired_block = 1
new_boundary = 'interface_01'
[]
[interface_13]
type = SideSetsBetweenSubdomainsGenerator
input = interface_01
primary_block = 1
paired_block = 3
new_boundary = 'interface_13'
[]
[interface_32]
type = SideSetsBetweenSubdomainsGenerator
input = interface_13
primary_block = 3
paired_block = 2
new_boundary = 'interface_32'
[]
[interface_20]
type = SideSetsBetweenSubdomainsGenerator
input = interface_32
primary_block = 2
paired_block = 0
new_boundary = 'interface_20'
[]
# Create outer boundaries
[boundary_left_0]
type = SideSetsAroundSubdomainGenerator
input = interface_20
block = 0
normal = '-1 0 0'
new_boundary = 'left_0'
[]
[boundary_bot_0]
type = SideSetsAroundSubdomainGenerator
input = boundary_left_0
block = 0
normal = '0 -1 0'
new_boundary = 'bot_0'
[]
[boundary_bot_1]
type = SideSetsAroundSubdomainGenerator
input = boundary_bot_0
block = 1
normal = '0 -1 0'
new_boundary = 'bot_1'
[]
[boundary_right_1]
type = SideSetsAroundSubdomainGenerator
input = boundary_bot_1
block = 1
normal = '1 0 0'
new_boundary = 'right_1'
[]
[boundary_right_3]
type = SideSetsAroundSubdomainGenerator
input = boundary_right_1
block = 3
normal = '1 0 0'
new_boundary = 'right_3'
[]
[boundary_top_3]
type = SideSetsAroundSubdomainGenerator
input = boundary_right_3
block = 3
normal = '0 1 0'
new_boundary = 'top_3'
[]
[boundary_top_2]
type = SideSetsAroundSubdomainGenerator
input = boundary_top_3
block = 2
normal = '0 1 0'
new_boundary = 'top_2'
[]
[boundary_left_2]
type = SideSetsAroundSubdomainGenerator
input = boundary_top_2
block = 2
normal = '-1 0 0'
new_boundary = 'left_2'
[]
uniform_refine = 4
[]
[Variables]
# Need to have variable for each block to allow discontinuity
[T0]
block = 0
[]
[T1]
block = 1
[]
[T2]
block = 2
[]
[T3]
block = 3
[]
[]
[Kernels]
# Diffusion kernel for each block's variable
[diff_0]
type = MatDiffusion
variable = T0
diffusivity = conductivity
block = 0
[]
[diff_1]
type = MatDiffusion
variable = T1
diffusivity = conductivity
block = 1
[]
[diff_2]
type = MatDiffusion
variable = T2
diffusivity = conductivity
block = 2
[]
[diff_3]
type = MatDiffusion
variable = T3
diffusivity = conductivity
block = 3
[]
# Source for two of the blocks
[source_0]
type = BodyForce
variable = T0
value = 5e5
block = '0'
[]
[source_3]
type = BodyForce
variable = T3
value = 5e5
block = '3'
[]
[]
[InterfaceKernels]
# Side set kernel to represent heat transfer across blocks
# Automatically uses the materials defined in SideSetHeatTransferMaterial
[gap_01]
type = SideSetHeatTransferKernel
# This variable defined on a given block must match the primary_block given when the side set was generated
variable = T0
# This variable defined on a given block must match the paired_block given when the side set was generated
neighbor_var = T1
boundary = 'interface_01'
[]
[gap_13]
type = SideSetHeatTransferKernel
variable = T1
neighbor_var = T3
boundary = 'interface_13'
[]
[gap_32]
type = SideSetHeatTransferKernel
variable = T3
neighbor_var = T2
boundary = 'interface_32'
[]
[gap_20]
type = SideSetHeatTransferKernel
variable = T2
neighbor_var = T0
boundary = 'interface_20'
[]
[]
# Creating auxiliary variable to combine block restricted solutions
# Ignores discontinuity though
[AuxVariables]
[T]
[]
[]
[AuxKernels]
[temp_0]
type = NormalizationAux
variable = T
source_variable = T0
block = 0
[]
[temp_1]
type = NormalizationAux
variable = T
source_variable = T1
block = 1
[]
[temp_2]
type = NormalizationAux
variable = T
source_variable = T2
block = 2
[]
[temp_3]
type = NormalizationAux
variable = T
source_variable = T3
block = 3
[]
[]
[BCs]
# Boundary condition for each block's outer surface
[bc_left_2]
type = DirichletBC
boundary = 'left_2'
variable = T2
value = 300.0
[]
[bc_left_0]
type = DirichletBC
boundary = 'left_0'
variable = T0
value = 300.0
[]
[bc_bot_0]
type = DirichletBC
boundary = 'bot_0'
variable = T0
value = 300.0
[]
[bc_bot_1]
type = DirichletBC
boundary = 'bot_1'
variable = T1
value = 300.0
[]
[./bc_top_2]
type = ConvectiveFluxFunction # (Robin BC)
variable = T2
boundary = 'top_2'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[./bc_top_3]
type = ConvectiveFluxFunction # (Robin BC)
variable = T3
boundary = 'top_3'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[./bc_right_3]
type = ConvectiveFluxFunction # (Robin BC)
variable = T3
boundary = 'right_3'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[./bc_right_1]
type = ConvectiveFluxFunction # (Robin BC)
variable = T1
boundary = 'right_1'
coefficient = 1e3 # W/K/m^2
T_infinity = 600.0
[../]
[]
[Materials]
[fuel]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 75
block = '0 3'
[]
[mod]
type = GenericConstantMaterial
prop_names = 'conductivity'
prop_values = 7.5
block = '1 2'
[]
# Interface material used for SideSetHeatTransferKernel
# Heat transfer meachnisms ignored if certain properties are not supplied
[gap_mat]
type = SideSetHeatTransferMaterial
boundary = 'interface_01 interface_13 interface_32 interface_20'
conductivity = 0.41
gap_length = 0.002
Tbulk = 750
h_primary = 3000
h_neighbor = 3000
emissivity_primary = 0.85
emissivity_neighbor = 0.85
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
l_tol = 1e-8
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -ksp_gmres_restart'
petsc_options_value = 'lu superlu_dist 50'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh04.i)
# unsaturated = true
# gravity = true
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh04
exodus = true
[]
(test/tests/misc/exception/2d_diffusion_skip_exception.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
skip_exception_check = true
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/get_transfers_from_feproblem/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./nearest_node]
[../]
[./mesh_function]
[../]
[]
[Kernels]
[./cd]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 1
nl_rel_tol = 1e-10
[]
(modules/stochastic_tools/examples/surrogates/pod_rb/2d_multireg/sub.i)
halfa = 10
fulla = 20
[Problem]
type = FEProblem
extra_tag_vectors = 'diff0 diff1 diff2 diff3 abs0 abs1 abs2 abs3 src0 src1 src2'
[]
[Mesh]
[msh]
type = CartesianMeshGenerator
dim = 2
dx = '10 20 20 20 20 20 20 20 20'
dy = '10 20 20 20 20 20 20 20 20'
ix = '${halfa} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla}'
iy = '${halfa} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla} ${fulla}'
subdomain_id = '1 0 0 0 1 0 0 2 3
0 0 0 0 0 0 0 2 3
0 0 1 0 0 0 2 2 3
0 0 0 0 0 0 2 3 3
1 0 0 0 1 2 2 3 3
0 0 0 0 2 2 3 3 3
0 0 2 2 2 3 3 3 3
2 2 2 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3'
[]
[]
[Variables]
[psi]
[]
[]
[Kernels]
[diff0]
type = MatDiffusion
variable = psi
diffusivity = D0
extra_vector_tags = 'diff0'
block = 0
[]
[diff1]
type = MatDiffusion
variable = psi
diffusivity = D1
extra_vector_tags = 'diff1'
block = 1
[]
[diff2]
type = MatDiffusion
variable = psi
diffusivity = D2
extra_vector_tags = 'diff2'
block = 2
[]
[diff3]
type = MatDiffusion
variable = psi
diffusivity = D3
extra_vector_tags = 'diff3'
block = 3
[]
[abs0]
type = MaterialReaction
variable = psi
coefficient = absxs0
extra_vector_tags = 'abs0'
block = 0
[]
[abs1]
type = MaterialReaction
variable = psi
coefficient = absxs1
extra_vector_tags = 'abs1'
block = 1
[]
[abs2]
type = MaterialReaction
variable = psi
coefficient = absxs2
extra_vector_tags = 'abs2'
block = 2
[]
[abs3]
type = MaterialReaction
variable = psi
coefficient = absxs3
extra_vector_tags = 'abs3'
block = 3
[]
[src0]
type = BodyForce
variable = psi
value = 1
extra_vector_tags = 'src0'
block = 0
[]
[src1]
type = BodyForce
variable = psi
value = 1
extra_vector_tags = 'src1'
block = 1
[]
[src2]
type = BodyForce
variable = psi
value = 1
extra_vector_tags = 'src2'
block = 2
[]
[]
[Materials]
[D0]
type = GenericConstantMaterial
prop_names = D0
prop_values = 1
block = 0
[]
[D1]
type = GenericConstantMaterial
prop_names = D1
prop_values = 1
block = 1
[]
[D2]
type = GenericConstantMaterial
prop_names = D2
prop_values = 1
block = 2
[]
[D3]
type = GenericConstantMaterial
prop_names = D3
prop_values = 1
block = 3
[]
[absxs0]
type = GenericConstantMaterial
prop_names = absxs0
prop_values = 1
block = 0
[]
[absxs1]
type = GenericConstantMaterial
prop_names = absxs1
prop_values = 1
block = 1
[]
[absxs2]
type = GenericConstantMaterial
prop_names = absxs2
prop_values = 1
block = 2
[]
[absxs3]
type = GenericConstantMaterial
prop_names = absxs3
prop_values = 1
block = 3
[]
[]
[BCs]
[left]
type = NeumannBC
variable = psi
boundary = left
value = 0
[]
[bottom]
type = NeumannBC
variable = psi
boundary = bottom
value = 0
[]
[top]
type = DirichletBC
variable = psi
boundary = top
value = 0
[]
[right]
type = DirichletBC
variable = psi
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = linear
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[nodal_l2]
type = NodalL2Norm
variable = psi
[]
[]
[Outputs]
[]
(test/tests/multiapps/secant/transient_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[]
[Kernels]
[time]
type = CoefTimeDerivative
variable = v
Coefficient = 0.1
[]
[diff_v]
type = Diffusion
variable = v
[]
[force_v]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Postprocessors]
[vnorm]
type = ElementL2Norm
variable = v
[]
[]
[Executioner]
type = Transient
end_time = 10
nl_abs_tol = 1e-12
steady_state_detection = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_algorithm = 'secant'
[]
[Outputs]
[csv]
type = CSV
start_step = 6
[]
exodus = false
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_1D_adaptivity.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
# 1D version with mesh adaptivity
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[Adaptivity]
initial_steps = 1
initial_marker = tracer_marker
marker = tracer_marker
max_h_level = 1
[Markers]
[tracer_marker]
type = ValueRangeMarker
variable = tracer
lower_bound = 0.02
upper_bound = 0.98
[]
[]
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
nl_max_its = 500
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_elem_read.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.05*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'input_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 4
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = elastic_strain
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor_with_Euler]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 1
nl_abs_step_tol = 1e-10
[]
[Outputs]
file_base = prop_elem_read_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(modules/tensor_mechanics/test/tests/2D_different_planes/planestrain_yz.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = square_yz_plane.e
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./disp_x]
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_strain]
block = 1
strain = SMALL
out_of_plane_direction = x
planar_formulation = PLANE_STRAIN
eigenstrain_names = 'eigenstrain'
generate_output = 'stress_xx stress_yz stress_yy stress_zz strain_xx strain_yz strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-y)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 4
variable = disp_y
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 4
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elastic_stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[]
[Postprocessors]
[./react_x]
type = MaterialTensorIntegral
use_displaced_mesh = false
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 10
nl_rel_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = planestrain_yz_small_out
exodus = true
[]
(examples/ex02_kernel/ex02.i)
[Mesh]
file = mug.e
[]
[Variables]
[convected]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = convected
[]
[conv]
type = ExampleConvection
variable = convected
velocity = '0.0 0.0 1.0'
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = convected
boundary = 'bottom'
value = 1
[]
[top]
type = DirichletBC
variable = convected
boundary = 'top'
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/porous_flow/test/tests/capillary_pressure/vangenuchten2.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[p0aux]
family = MONOMIAL
order = CONSTANT
[]
[p1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[p0]
type = PorousFlowPropertyAux
property = pressure
phase = 0
variable = p0aux
[]
[p1]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = p1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.1
log_extension = true
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityVG
phase = 0
m = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
variable = 's0aux s1aux p0aux p1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 500
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-6
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat2.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 1.0
# Poisson = 0.2
# layer_thickness = 0.1
# joint_normal_stiffness = 0.25
# joint_shear_stiffness = 0.2
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.043195
# E_0011 = E_1100 = 0.260799
# E_2222 = 0.02445
# E_0022 = E_1122 = E_2200 = E_2211 = 0.006112
# G = E_0101 = E_0110 = E_1001 = E_1010 = 0.416667
# Gt = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 0.019084
# E_2020 = E_2121 = 0.217875
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.68056E-5
# B_0101 = B_1010 = 7.92021E-4
# B_0110 = B_1001 = -1.584E-4
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = -t
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 8*t
# strain_yz = 6*t
# strain_zz = -t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = -0.006112*t
# stress_xz = stress_zx = 0.152671*t
# stress_yz = stress_zy = 0.114504*t
# stress_zz = -0.0244499*t
# The moment stress is zero.
# So q = 0.19084*t and p = -0.0244*t.
#
# With large cohesion, but compressive strength = 0.0244499, the
# system is elastic up to t=1. After that time
# stress_zz = -0.0244499 (for t>=1)
# and
# stress_xx = stress_yy = -0.006112 (for t>=1), since the
# elastic trial increment is exactly canelled by the Poisson's
# contribution from the return to the yield surface.
# The plastic strains are zero for t<=1, but for larger times:
# plastic_strain_zz = - (t - 1) (for t>=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = -t
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 0.024449878
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.0
poisson = 0.2
layer_thickness = 0.1
joint_normal_stiffness = 0.25
joint_shear_stiffness = 0.2
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-5
[../]
[]
[Executioner]
nl_abs_tol = 1E-14
end_time = 3
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat2
csv = true
[]
(test/tests/multiapps/centroid_multiapp/sub_app.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
ymax = 0.1
xmax = 0.1
[]
[Variables]
[./x]
[../]
[./y]
[../]
[]
[Kernels]
[./diff_y]
type = Diffusion
variable = y
[../]
[./diff_x]
type = Diffusion
variable = x
[../]
[]
[BCs]
[./right_x]
type = PostprocessorDirichletBC
variable = x
boundary = 'right'
postprocessor = incoming_x
[../]
[./left_y]
type = DirichletBC
variable = y
boundary = 'left'
value = 0
[../]
[./right_y]
type = PostprocessorDirichletBC
variable = y
boundary = 'right'
postprocessor = incoming_y
[../]
[./left_x]
type = DirichletBC
variable = x
boundary = 'left'
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./incoming_x]
type = Receiver
execute_on = 'TIMESTEP_BEGIN'
[../]
[./incoming_y]
type = Receiver
execute_on = 'TIMESTEP_BEGIN'
[../]
[]
(test/tests/scalar_kernels/ad_scalar_kernel/ad_scalar_kernel.i)
# This input file is used to test the Jacobian of an arbitrary ADScalarKernel.
# A test ADScalarKernel is used that uses values from other scalar variables,
# as well as a quantity computed in an elemental user object using a field
# variable.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Kernels]
[time_w]
type = TimeDerivative
variable = w
[]
[diff_w]
type = Diffusion
variable = w
[]
[]
[ScalarKernels]
[time_u]
type = ADScalarTimeDerivative
variable = u
[]
[test_u]
type = TestADScalarKernel
variable = u
v = v
test_uo = test_uo
[]
[time_v]
type = ADScalarTimeDerivative
variable = v
[]
[]
[UserObjects]
[test_uo]
type = TestADScalarKernelUserObject
variable = w
execute_on = 'LINEAR NONLINEAR'
[]
[]
[BCs]
[left]
type = DirichletBC
value = 0
variable = w
boundary = 'left'
[]
[right]
type = DirichletBC
value = 1
variable = w
boundary = 'right'
[]
[]
[Variables]
[u]
family = SCALAR
order = FIRST
initial_condition = 1.0
[]
[v]
family = SCALAR
order = FIRST
initial_condition = 3.0
[]
[w]
family = LAGRANGE
order = FIRST
initial_condition = 3.0
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
solve_type = NEWTON
[]
(python/chigger/tests/simple/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./aux_kernel]
type = FunctionAux
variable = aux
function = sin(2*pi*x)*sin(2*pi*y)
execute_on = 'initial'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_sub2_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/least_squares_fit/least_squares_fit.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
outputs = none
[../]
[./least_squares_fit_sample]
type = LeastSquaresFit
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
order = 1
num_samples = 20
output = samples
[../]
[./least_squares_fit_coeffs]
type = LeastSquaresFit
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
order = 1
output = coefficients
[../]
[./shift_and_scale_x_least_squares_fit_sample]
type = LeastSquaresFit
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
x_shift = 1
x_scale = 10
order = 1
num_samples = 20
output = samples
[../]
[./shift_and_scale_x_least_squares_fit_coeffs]
type = LeastSquaresFit
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
x_shift = 1
x_scale = 10
order = 1
output = coefficients
[../]
[./shift_and_scale_y_least_squares_fit_sample]
type = LeastSquaresFit
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
y_shift = 1
y_scale = 10
order = 1
num_samples = 20
output = samples
[../]
[./shift_and_scale_y_least_squares_fit_coeffs]
type = LeastSquaresFit
vectorpostprocessor = line_sample
x_name = 'id'
y_name = 'u'
y_shift = 1
y_scale = 10
order = 1
output = coefficients
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
execute_on = 'timestep_end'
csv = true
[]
(test/tests/postprocessors/perf_graph_data/perf_graph.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Postprocessors]
# Getting this information on INITIAL has no practical use, but
# we want to make sure that we can obtain information about
# a section that has not ran yet.
[self]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = CALLS
must_exist = false
execute_on = 'INITIAL TIMESTEP_END'
[]
[children]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = CHILDREN
execute_on = 'TIMESTEP_END'
[]
[total]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = SELF
execute_on = 'TIMESTEP_END'
[]
[self_avg]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = SELF_AVG
execute_on = 'TIMESTEP_END'
[]
[children_avg]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = CHILDREN_AVG
execute_on = 'TIMESTEP_END'
[]
[total_avg]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = TOTAL_AVG
execute_on = 'TIMESTEP_END'
[]
[self_percent]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = SELF_PERCENT
execute_on = 'TIMESTEP_END'
[]
[children_percent]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = CHILDREN_PERCENT
execute_on = 'TIMESTEP_END'
[]
[total_percent]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = TOTAL_PERCENT
execute_on = 'TIMESTEP_END'
[]
[self_memory]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = SELF_MEMORY
execute_on = 'TIMESTEP_END'
[]
[children_memory]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = CHILDREN_MEMORY
execute_on = 'TIMESTEP_END'
[]
[total_memory]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = TOTAL_MEMORY
execute_on = 'TIMESTEP_END'
[]
[calls]
type = PerfGraphData
section_name = FEProblem::computeResidualInternal
data_type = CALLS
execute_on = 'TIMESTEP_END'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/kernels/2d_diffusion/2d_diffusion_neumannbc_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = neumannbc_out
exodus = true
[]
(test/tests/utils/copy_input_parameters/do_not_copy_parameters.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = DoNotCopyParametersKernel
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[]
(test/tests/multiapps/time_offset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/ics/from_exodus_solution/array.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[v]
order = CONSTANT
family = MONOMIAL
components = 2
[]
[]
[Kernels]
[u_time]
type = TimeDerivative
variable = u
[]
[u_diff]
type = Diffusion
variable = u
[]
[v_time]
type = ArrayTimeDerivative
variable = v
time_derivative_coefficient = tc
[]
[v_reaction]
type = ArrayCoupledForce
variable = v
v = u
coef = '1 2'
[]
[]
[Materials/tc]
type = GenericConstantArray
prop_name = tc
prop_value = '2 3'
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_reject_large_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./timestep_fn]
type = PiecewiseConstant
x = '0. 10.0'
y = '10.0 1.0'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 12.0
dtmax = 10.0
dtmin = 0.1
[./TimeStepper]
type = IterationAdaptiveDT
timestep_limiting_postprocessor = timestep_pp
reject_large_step = true
reject_large_step_threshold = 0.5
dt = 3.0
growth_factor = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
# Just use a simple postprocessor to test capability to limit the time step length to the postprocessor value
[./timestep_pp]
type = FunctionValuePostprocessor
function = timestep_fn
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_second/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite_rr'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = 0
ymax = 10
nx = 2
ny = 33
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
extra_vector_tags = 'ref'
[]
[plank]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = block_right
value = 0
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ADComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = ADGenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 3
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-12
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/restart/restart_diffusion/exodus_refined_restart_1_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = exodus_refined_restart_1
exodus = true
[]
(test/tests/materials/boundary_material/elem_aux_bc_on_bnd.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 3
ymin = 0
ymax = 1
ny = 3
[]
[AuxVariables]
[./foo]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Variables]
[./temp]
initial_condition = 1
[../]
[]
[AuxKernels]
[./copy_bar]
type = MaterialRealAux
property = bar
variable = foo
boundary = right
execute_on = timestep_end
[../]
[]
[Kernels]
[./heat]
type = CoefDiffusion
variable = temp
coef = 1
[../]
[]
[BCs]
[./leftt]
type = DirichletBC
boundary = left
value = 2
variable = temp
[../]
[]
[Materials]
[./thermal_cond]
type = GenericConstantMaterial
prop_names = 'bar'
prop_values = '1'
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/ad_coupled_force/fe_test.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff_u]
type = ADDiffusion
variable = u
[]
[force_u]
type = ADCoupledForce
variable = u
v = v
[]
[diff_v]
type = ADDiffusion
variable = v
[]
[]
[BCs]
[left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 5
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
(test/tests/variables/optionally_coupled/optionally_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./optional_coupling]
type = OptionallyCoupledForce
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/markers/box_marker/box_marker_adapt_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 1
marker = box
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/executors/multiple/test.i)
[Problem]
solve = false
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executors]
[my_first_executor]
type = BinaryTestExecutor
inner1 = i1
inner2 = i2
[]
[i1]
type = BinaryTestExecutor
[]
[i2]
type = BinaryTestExecutor
[]
[]
[Outputs]
console = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest3.i)
# 2D, interior
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_projection_transfer/fixed_meshes_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master]
[../]
[./elemental_from_master]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
solve_type = NEWTON
[]
[Outputs]
exodus = true
#
[]
(modules/stochastic_tools/test/tests/vectorpostprocessors/stochastic_results_complete_history/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
[Outputs]
[]
(test/tests/predictors/simple/predictor_test.i)
# The purpose of this test is to test the simple predictor. This is a very
# small, monotonically loaded block of material. If things are working right,
# the predictor should come very close to exactly nailing the solution on steps
# after the first step.
# The main thing to check here is that when the predictor is applied in the
# second step, the initial residual is almost zero.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Functions]
[./ramp1]
type = ParsedFunction
value = 't'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bot]
type = DirichletBC
variable = u
boundary = bottom
value = 0.0
[../]
[./ss2_x]
type = FunctionDirichletBC
variable = u
boundary = top
function = ramp1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-14
start_time = 0.0
dt = 0.5
end_time = 1.0
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./final_residual]
type = Residual
residual_type = final
[../]
[./initial_residual_before]
type = Residual
residual_type = initial_before_preset
[../]
[./initial_residual_after]
type = Residual
residual_type = initial_after_preset
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/auto_diff_auto_scaling/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = 't'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
automatic_scaling = true
verbose = true
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3nstt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test3nstt_out
exodus = true
[]
(test/tests/misc/check_error/function_file_test4.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = dummy #we don't get that far
format = rowls
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/multiapps/catch_up/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_direct.i)
[Mesh]
type = FileMesh
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
solution = soln
variable = nn
scale_factor = 2.0
direct = true
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_smallstrain.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
base_name = uncracked
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./elastic]
type = ComputeLinearElasticStress
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
kdamage = 1e-6
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
# Yes we want a slightly irregular grid
nx = 11
ny = 11
# We will transfer data to the sub app, and that is currently only
# supported from a replicated mesh
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub.i
[]
[]
[Transfers]
[sample_transfer]
source_variable = u
variable = from_master
type = MultiAppVariableValueSampleTransfer
to_multi_app = sub
[]
[]
[Problem]
parallel_barrier_messaging = false
[]
(modules/porous_flow/test/tests/gravity/grav01c_action.i)
# Checking that gravity head is established
# using the Unsaturated Action
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = -1
max = 1
[]
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 2.0
viscosity = 1.0
density0 = 1.0
[]
[]
[]
[PorousFlowUnsaturated]
add_saturation_aux = false
add_darcy_aux = false
porepressure = pp
gravity = '-1 0 0'
fp = the_simple_fluid
van_genuchten_alpha = 1.0
van_genuchten_m = 0.5
relative_permeability_type = Corey
relative_permeability_exponent = 1.0
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 2 -1 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = -1
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = grav01c_action
exodus = true
[csv]
type = CSV
[]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_angle.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
# 2D version with velocity = (0.1, 0.2, 0)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
xmin = 0
xmax = 1
ny = 10
ymin = 0
ymax = 1
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1 | x > 0.3 | y < 0.1 | y > 0.3, 0, 1)'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0.2 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 2
dt = 0.1
[]
[Outputs]
print_linear_residuals = false
[out]
type = Exodus
execute_on = 'initial final'
[]
[]
(examples/ex11_prec/default.i)
[Mesh]
file = square.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./conv_forced]
type = CoupledForce
variable = forced
v = diffused
[../]
[./diff_forced]
type = Diffusion
variable = forced
[../]
[]
[BCs]
#Note we have active on and neglect the right_forced BC
active = 'left_diffused right_diffused left_forced'
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 100
[../]
[./left_forced]
type = DirichletBC
variable = forced
boundary = 'left'
value = 0
[../]
[./right_forced]
type = DirichletBC
variable = forced
boundary = 'right'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/multilevel/dt_from_master_subsub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh11.i)
# unsaturated = false
# gravity = true
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh11
exodus = true
[]
(test/tests/mesh/centroid_partitioner/centroid_partitioner_test.i)
###########################################################
# This test exercises the parallel computation aspect of
# the framework. A Centroid partitioner is used to split
# the mesh into chunks for several processors along a
# vector (y-axis).
#
# @Requirement F2.30
###########################################################
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 100
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
# The centroid partitioner orders elements based on
# the position of their centroids
partitioner = centroid
# This will order the elements based on the y value of
# their centroid. Perfect for meshes predominantly in
# one direction
centroid_partitioner_direction = y
# The centroid partitioner behaves differently depending on
# whether you are using Serial or DistributedMesh, so to get
# repeatable results, we restrict this test to using ReplicatedMesh.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./proc_id]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./proc_id]
type = ProcessorIDAux
variable = proc_id
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/misc/check_error/multi_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[./full_solve]
# not setting app_type to use the same app type of master, i.e. MooseTestApp
type = FullSolveMultiApp
execute_on = initial
positions = '0 0 0'
input_files = multi_sub.i
[../]
[]
(test/tests/executioners/adapt_and_modify/adapt_and_modify_heavy.i)
[Mesh]
# This example uses Adaptivity Indicators, which are written out as
# CONSTANT MONOMIAL variables, which don't currently work correctly
# 2122 for more information.
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
# parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./elem]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./elem]
type = UniqueIDAux
variable = elem
execute_on = timestep_begin
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./rh_uo]
type = RandomHitUserObject
execute_on = timestep_begin
num_hits = 1
[../]
[./rhsm]
type = RandomHitSolutionModifier
execute_on = custom
modify = u
random_hits = rh_uo
amount = 10
[../]
[]
[Executioner]
type = AdaptAndModify
num_steps = 400
dt = 2e-4
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
adapt_cycles = 2
[]
[Adaptivity]
marker = rhm # Switch to combo to get the effect of both
[./Indicators]
[./gji]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./rhm]
type = RandomHitMarker
random_hits = rh_uo
[../]
[./efm]
type = ErrorFractionMarker
coarsen = 0.2
indicator = gji
refine = 0.8
[../]
[./combo]
type = ComboMarker
markers = 'efm rhm'
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_4/brick4_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x59]
type = NodalVariableValue
nodeid = 58
variable = disp_x
[../]
[./disp_x64]
type = NodalVariableValue
nodeid = 63
variable = disp_x
[../]
[./disp_y59]
type = NodalVariableValue
nodeid = 58
variable = disp_y
[../]
[./disp_y64]
type = NodalVariableValue
nodeid = 63
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x59 disp_y59 disp_x64 disp_y64 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+6
[../]
[]
(tutorials/tutorial02_multiapps/step02_transfers/02_sub_nearestnode.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmax = 0.1
ymax = 0.1
zmax = 3
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[tu]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[front]
type = DirichletBC
variable = v
boundary = front
value = 0
[]
[back]
type = DirichletBC
variable = v
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard/picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
clone_master_mesh = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 20.0
n_startup_steps = 2
dtmax = 6.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
dt = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(modules/porous_flow/test/tests/numerical_diffusion/framework.i)
# Using framework objects: no mass lumping or upwinding
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = TimeDerivative
variable = tracer
[]
[flux]
type = ConservativeAdvection
velocity = '0.1 0 0'
variable = tracer
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-1
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/to_multiple_boundaries_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[from_master]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[]
[BCs]
[top]
type = DirichletBC
variable = v
boundary = top
value = 2.0
[]
[bottom]
type = DirichletBC
variable = v
boundary = bottom
value = 1.0
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3qnns.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3qnns_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(test/tests/utils/apply_input_parameters/apply_input_parameters.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[ApplyInputParametersTest]
# Builds CoefDiffusion
coef = 0.1
variable = u
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/NAFEMS/transient/T3/nafems_t3_hex_template.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 0.01
zmin = 0.0
zmax = 0.01
elem_type = HEX8
[]
[Variables]
[./temp]
initial_condition = 0.0
[../]
[]
[BCs]
[./FixedTempLeft]
type = DirichletBC
variable = temp
boundary = left
value = 0.0
[../]
[./FunctionTempRight]
type = FunctionDirichletBC
variable = temp
boundary = right
function = '100.0 * sin(pi*t/40)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '35.0 440.5 7200.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_tol = 1e-5
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
dt = 1
end_time = 32.0
[]
[Postprocessors]
[./target_temp]
type = NodalVariableValue
variable = temp
nodeid = 19
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/capillary_pressure/vangenuchten3.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[p0aux]
family = MONOMIAL
order = CONSTANT
[]
[p1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[p0]
type = PorousFlowPropertyAux
property = pressure
phase = 0
variable = p0aux
[]
[p1]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = p1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.1
s_scale = 0.8
log_extension = false
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityVG
phase = 0
m = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
variable = 's0aux s1aux p0aux p1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 500
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-6
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/stochastic_tools/test/tests/ics/random_ic_distribution_test/random_ic_distribution_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[u_aux]
order = CONSTANT
family = MONOMIAL
[]
[]
[Distributions]
[uniform]
type = Uniform
lower_bound = 1.0
upper_bound = 3.0
[]
[]
[ICs]
[u_aux]
type = RandomIC
legacy_generator = false
variable = u_aux
distribution = uniform
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[VectorPostprocessors]
[histo]
type = VariableValueVolumeHistogram
variable = u_aux
min_value = 0
max_value = 4
bin_number = 80
execute_on = initial
outputs = initial
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[initial]
type = CSV
execute_on = initial
[]
[]
(test/tests/outputs/variables/output_vars_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Postprocessors]
[./x]
type = ScalarVariable
variable = x
execute_on = 'initial timestep_end'
[../]
[./y]
type = ScalarVariable
variable = y
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 1
[]
[Outputs]
show = 'x u nodal elemental'
[./out]
type = Exodus
elemental_as_nodal = true
scalar_as_nodal = true
[../]
[]
(test/tests/vectorpostprocessors/parallel_consistency/parallel_consistency.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# To make this deterministic
[Partitioner]
type = GridPartitioner
nx = 2
ny = 1
nz = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[VectorPostprocessors]
[constant]
type = ConstantVectorPostprocessor
value = '3 4'
execute_on = 'TIMESTEP_END'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
[AuxVariables]
[scattered]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[viewit]
type = VectorPostprocessorVisualizationAux
vpp = 'constant'
vector_name = value
variable = scattered
execute_on = 'TIMESTEP_END'
[]
[]
(test/tests/problems/mixed_coord/mixed_coord_test.i)
[Mesh]
file = rz_xyz.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./one]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_middle]
type = DirichletBC
variable = u
boundary = left_middle
value = 1
[../]
[./right_middle]
type = DirichletBC
variable = u
boundary = right_middle
value = 0
[../]
[]
[Postprocessors]
[./volume]
type = ElementIntegralVariablePostprocessor
variable = one
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
[Problem]
coord_type = 'RZ XYZ'
block = '1 2'
[]
(modules/tensor_mechanics/test/tests/check_error/bulk_modulus.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = -1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_mc_only.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see weak-plane parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400.0
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = mc
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_mc_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/small_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady.i)
[GlobalParams]
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(test/tests/materials/get_material_property_names/get_material_property_block_names.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./add_subdomain]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '1 1 0'
bottom_left = '0 0.5 0'
block_id = 100
block_name = 'top'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./material]
type = GenericConstantMaterial
prop_names = combo
block = 100
prop_values = 12345
[../]
[./top]
type = GenericConstantMaterial
prop_names = combo
block = 0
prop_values = 99999
[../]
[]
[UserObjects]
[./get_material_block_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'top 0'
property_name = combo
test_type = 'block'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/reference_residual/reference_residual.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./saved_t]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
volumetric_locking_correction = true
incremental = true
save_in = 'saved_x saved_y saved_z'
eigenstrain_names = thermal_expansion
strain = FINITE
decomposition_method = EigenSolution
extra_vector_tags = 'ref'
temperature = temp
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
save_in = saved_t
extra_vector_tags = 'ref'
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0 1 2'
y = '0 1 1'
scale_factor = 0.1
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = pull
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[../]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = bottom
value = 10.0
[../]
[./top_temp]
type = DirichletBC
variable = temp
boundary = top
value = 20.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
block = 0
eigenstrain_name = thermal_expansion
temperature = temp
thermal_expansion_coeff = 1e-5
stress_free_temperature = 0.0
[../]
[./heat1]
type = HeatConductionMaterial
block = 0
specific_heat = 1.0
thermal_conductivity = 1e-3 #Tuned to give temperature reference resid close to that of solidmech
[../]
[./density]
type = Density
block = 0
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
l_tol = 1e-3
l_max_its = 100
dt = 1.0
end_time = 2.0
[]
[Postprocessors]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./ref_resid_z]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_z
[../]
[./ref_resid_t]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_t
[../]
[./nonlinear_its]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_diffusion/restart_diffusion_test_transient_new_name.i)
[Mesh]
file = steady_out.e
[]
[Variables]
[./u_new]
order = FIRST
family = LAGRANGE
# Testing that we can load a solution from a different variable name
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u_new
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u_new
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u_new
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u_new
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
exodus = true
[]
(test/tests/partitioners/single_rank_partitioner/single_rank_partitioner.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[Partitioner]
type = SingleRankPartitioner
rank = 2
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Debug]
pid_aux = true
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/terzaghi_basicthm.i)
# Using a BasicTHM action
# Terzaghi's problem of consolodation of a drained medium
# The FullySaturated Kernels are used, with multiply_by_density = false
# so that this becomes a linear problem with constant Biot Modulus
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[]
[topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 8.0
viscosity = 0.96
density0 = 1.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
multiply_by_density = false
porepressure = porepressure
biot_coefficient = 0.6
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
fluid_bulk_modulus = 8
solid_bulk_compliance = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[]
[p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[]
[p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[]
[p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[]
[p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[]
[p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[]
[p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[]
[p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[]
[p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[]
[p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[]
[p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi_basicthm
[csv]
type = CSV
[]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test2q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test2q.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test2q_out
exodus = true
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictionless_lm.i)
[Mesh]
patch_size = 80
[file]
type = FileMeshGenerator
file = sliding_elastic_blocks_2d.e
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
block = '1 2'
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[]
[]
[Materials]
[left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 15
dt = 0.1
dtmin = 0.01
l_max_its = 30
nl_max_its = 20
line_search = 'none'
timestep_tolerance = 1e-6
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
sync_times = '1 2 3 4 5 6 7 8 9 10 11 12 13 14 15'
[out]
type = Exodus
sync_only = true
[]
[dof]
execute_on = 'initial'
type = DOFMap
[]
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[]
[Functions]
[vertical_movement]
type = ParsedFunction
value = -t
[]
[horizontal_movement]
type = ParsedFunction
value = -0.04*sin(4*t)+0.02
[]
[]
[Contact]
[contact]
secondary = 3
primary = 2
model = frictionless
formulation = mortar
[]
[]
[Postprocessors]
[num_nl]
type = NumNonlinearIterations
[]
[lin]
type = NumLinearIterations
[]
[contact]
type = ContactDOFSetSize
variable = contact_normal_lm
subdomain = '30'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/action/action_eigenstrain.i)
# The primary purpose of this test is to verify that the ability to combine
# multiple eigenstrains works correctly. It should behave identically to the
# constant_expansion_coeff.i model in the thermal_expansion directory. Instead
# of having the eigenstrain names passed directly to the TensorMechanics MasterAction,
# the MasterAction should be able to extract the necessary eigenstrains and apply
# to their respective blocks without reduncacy.
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Problem]
solve = false
[]
[AuxVariables]
[./temp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./solid]
strain = SMALL
incremental = true
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.0e-5
temperature = temp
eigenstrain_name = eigenstrain1
[../]
[./thermal_expansion_strain2]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 0.3e-5
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
checkpoint = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 0
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
block = 0
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
block = 0
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
block = 0
[../]
[]
(test/tests/vectorpostprocessors/material_vector_postprocessor/basic.i)
# test that all scalar material properties are properly recorded in basic usage.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[mat]
type = GenericFunctionMaterial
prop_names = 'prop1 prop2 prop3'
prop_values = '1 2 t'
[]
[]
[VectorPostprocessors]
[vpp]
type = MaterialVectorPostprocessor
material = 'mat'
elem_ids = '3 4 7 42 88'
[]
[]
[Executioner]
type = Transient
num_steps = 2
nl_abs_tol = 1e-12
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard_subT_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./T]
order = FIRST
family = LAGRANGE
[../]
[./power]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
mat_prop = diffusion
offset = 0.0
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[AuxKernels]
[./power_ak]
type = NormalizationAux
variable = power
source_variable = u
normalization = unorm
normal_factor = 10
execute_on = timestep_end
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigenU]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Materials]
[./dc]
type = VarCouplingMaterial
var = T
block = 0
base = 1.0
coef = 1.0
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
[]
[Postprocessors]
[./power]
type = ElementIntegralVariablePostprocessor
variable = power
execute_on = timestep_end
[../]
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
exodus = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform5.i)
# Plastic deformation, shear failure
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 8*t
# disp_y = 6*t
# disp_z = 5*t/6
# should yield trial stress:
# stress_zz = 10*t
# stress_zx = 32*t
# stress_zy = 24*t (so q_trial = 40*t)
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = 1/6, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 8*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 5*t/6
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform5
csv = true
[]
(test/tests/misc/check_error/check_dynamic_name_boundary.i)
[Mesh]
file = three_block.e
# These names will be applied on the fly to the
# mesh so they can be used in the input file
# In addition they will show up in the input file
block_id = '1 2 3'
block_name = 'wood steel copper'
boundary_id = '1 2'
boundary_name = 'left left' # Can't have duplicate names
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Materials]
active = empty
[./empty]
type = MTMaterial
block = 'wood steel copper'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/output/output_via_outputs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
output_material_properties = true
[../]
[]
(test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_inside.i)
[Mesh]
uniform_refine = 2
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
[]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = gen
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[]
[inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/adaptivity/initial_marker/initial_marker.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
initial_steps = 4
initial_marker = initial_box
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = dont_mark
type = BoxMarker
[../]
[./initial_box]
type = BoxMarker
bottom_left = '0.8 0.1 0'
top_right = '0.9 0.2 0'
inside = refine
outside = dont_mark
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/vectorpostprocessors/line_function_sampler/line_function_sampler.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./func_vals]
type = LineFunctionSampler
functions = 'x+1 x^2+y^2'
start_point = '0 0 0'
end_point = '1 1 0'
num_points = 10
sort_by = id
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/controls/time_periods/multiapps/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '1. 0. 0.'
input_files = sub.i
execute_on = 'initial timestep_end'
output_in_position = true
[../]
[]
[Controls]
[./multiapp]
type = TimePeriod
disable_objects = 'MultiApps::sub'
start_time = '0'
end_time = '0.25'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/fsi/test/tests/fsi_acoustics/1D_fluid_only/1D_fluid_only.i)
# Test for `AcousticInertia` and `Diffusion` kernels with only the fluid domain. The
# domain is 1D with length 1m and is subjected to an initial condition composed of
# a combination of sine waves. Fluid pressure is recorded at the midpoint of the
# domain. The recorded fluid pressure should match with analytical results. Because
# this implementation is equivalent to solving a 1D wave equation, analytical results
# exist.
#
# Input parameters:
# Dimensions = 1
# Length = 1 meter
# Fluid speed of sound = 1 m/s
# Initial condition = sin(pi*x) + sin(3*pi*x) + sin(5*3.141*x) + sin(7*pi*x) + sin(9*pi*x)
# Fluid domain = true
# Fluid BCs = pressures are zero on both the boundaries
# Structural domain = false
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 500
xmax = 1
[]
[]
[GlobalParams]
[]
[Variables]
[./p]
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = 'p'
[../]
[./inertia]
type = AcousticInertia
variable = p
[../]
[]
[BCs]
[./leftright_pressure]
type = DirichletBC
variable = p
boundary = 'left right'
value = 0
[../]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = 'p'
function = initial_cond
[../]
[]
[Functions]
[./initial_cond]
type = ParsedFunction
value = 'sin(pi*x) + sin(3*pi*x) + sin(5*3.141*x) + sin(7*pi*x) + sin(9*pi*x)'
[../]
[]
[Materials]
[./co_sq]
type = GenericConstantMaterial
prop_names = inv_co_sq
prop_values = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
start_time = 0.0
end_time = 1.0
dt = 0.005
dtmin = 0.00001
nl_abs_tol = 1e-12
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 25
timestep_tolerance = 1e-8
automatic_scaling = true
[TimeIntegrator]
type = NewmarkBeta
[]
[]
[Postprocessors]
[./p1]
type = PointValue
point = '0.5 0.0 0.0'
variable = p
[../]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
print_linear_residuals = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden3.i)
# apply repeated stretches to observe cohesion hardening
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[]
[topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[]
[]
[AuxVariables]
[wps_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 2E3
rate = 0
[]
[tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0.577350269
rate = 4E4
[]
[tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.01745506
value_residual = 0.01745506
rate = 1E8
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/cyl_1/cyl1_template1.i)
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3qnstt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3qtt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3qnstt_out
exodus = true
[]
(test/tests/materials/old_cyclic_dep/test.i)
# This test checks that the usage of an old/older (stateful) material property
# does not create a dependency on that property for the purposes of
# dependency resolution for material property evaluation.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
[./mat1]
type = CoupledMaterial
mat_prop = 'prop-a'
coupled_mat_prop = 'prop-b'
use_old_prop = true
block = 0
[../]
[./mat2]
type = CoupledMaterial
mat_prop = 'prop-b'
coupled_mat_prop = 'prop-a'
use_old_prop = false
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Debug]
show_material_props = true
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/plane_strain_prescribed.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
block = 0
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[AuxVariables]
[./temp]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[]
[AuxScalarKernels]
[./strain_zz]
type = FunctionScalarAux
variable = scalar_strain_zz
function = scalar_strain_zz_func
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[./scalar_strain_zz_func]
type = PiecewiseLinear
xy_data = '0 0
1 7.901e-5
2 1.103021e-2'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
temperature = temp
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
eigenstrain_names = eigenstrain
save_in = 'saved_x saved_y'
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/format/pps_file_out_warn.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./avg_block]
type = ElementAverageValue
variable = u
outputs = gmv
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
gmv = true
[]
(modules/tensor_mechanics/test/tests/volumetric_locking_verification/42_node.i)
# Test for volumetric locking correction
# 2D cook's membrane problem with a trapezoid
# that is fixed at one end and is sheared at
# other end. Poisson's ratio is 0.4999.
# Using Quad4 elements and no volumetric locking,
# vertical displacement at top right corner is 3.78
# due to locking.
# Using Quad4 elements with volumetric locking, vertical
# dispalcement at top right corner is 7.78.
# Results match with Nakshatrala et al., Comp. Mech., 41, 2008.
# Check volumetric locking correction documentation for
# more details about this problem.
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = 42_node_side.e
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
[../]
[../]
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./y_force]
type = ConstantRate
variable = disp_y
boundary = 2
rate = 2.38095238095
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 250.0
poissons_ratio = 0.4999
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
num_steps = 1
[]
[Postprocessors]
[./a_disp_y]
type = PointValue
variable = disp_y
point = '48.0 60.0 0.0'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_cylinder.i)
# This test uses the DisplacementAboutAxis boundary condition to twist the top
# of a cylinder while the bottom face of the cylinder remains fixed. The
# TorqueReaction postprocessor is used to calculate the applied torque acting
# on the cylinder at the top face. This test can be extended, with a new mesh,
# to model a crack in the center of the cylinder face under type III loading.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = cylinder.e
[]
[Problem]
extra_tag_vectors = 'ref'
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[]
[AuxKernels]
[saved_x]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_x'
variable = 'saved_x'
[]
[saved_y]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_y'
variable = 'saved_y'
[]
[saved_z]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_z'
variable = 'saved_z'
[]
[]
[Modules/TensorMechanics/Master]
[master]
strain = FINITE
generate_output = 'stress_xx'
add_variables = true
extra_vector_tags = 'ref'
[]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./top_x]
type = DisplacementAboutAxis
boundary = 2
function = '0.1*t'
angle_units = degrees
axis_origin = '10. 10. 10.'
axis_direction = '0 -1.0 1.0'
component = 0
variable = disp_x
[../]
[./top_y]
type = DisplacementAboutAxis
boundary = 2
function = '0.1*t'
angle_units = degrees
axis_origin = '10. 10. 10.'
axis_direction = '0 -1.0 1.0'
component = 1
variable = disp_y
[../]
[./top_z]
type = DisplacementAboutAxis
boundary = 2
function = '0.1*t'
angle_units = degrees
axis_origin = '10. 10. 10.'
axis_direction = '0 -1.0 1.0'
component = 2
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-12
nl_rel_tol = 1e-11
l_tol = 1e-10
start_time = 0.0
dt = 0.25
end_time = 0.5
[]
[Postprocessors]
[./torque]
type = TorqueReaction
boundary = 2
reaction_force_variables = 'saved_x saved_y saved_z'
axis_origin = '10. 10. 10.'
direction_vector = '0 -1.0 1.0'
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_jacobian/3d_bar.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 10
nx = 10
ny = 2
nz = 2
elem_type = HEX8
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '2 0 0'
input = corner
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[]
[BCs]
[./fix_corner_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0
[../]
[./fix_corner_y]
type = DirichletBC
variable = disp_y
boundary = 101
value = 0
[../]
[./fix_side_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./move_z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
dt = 0.2
dtmin = 0.2
num_steps = 2
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/internal_volume/hex8.i)
#
# Internal Volume Test
#
# This test is designed to compute the internal volume of a space considering
# an embedded volume inside.
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total volume
# is 7.
#
# The internal volume is then adjusted by a piecewise linear time varying
# function. Thus, the total volume is 7 plus the addition at the particular
# time.
#
# Time | Addition | Total volume
# 0 | 0.0 | 7.0
# 1 | 3.0 | 10.0
# 2 | 7.0 | 14.0
# 3 | -3.0 | 4.0
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = meshes/hex8.e
[]
[Functions]
[./step]
type = PiecewiseLinear
x = '0. 1. 2. 3.'
y = '0. 0. 1e-2 0.'
scale_factor = 0.5
[../]
[./addition]
type = PiecewiseLinear
x = '0. 1. 2. 3.'
y = '0. 3. 7. -3.'
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
volumetric_locking_correction = true
incremental = true
strain = FINITE
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./prescribed_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 100
function = step
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
dt = 1.0
end_time = 3.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
addition = addition
execute_on = 'initial timestep_end'
[../]
[./dispZ]
type = ElementAverageValue
block = '1 2'
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/user_object.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/patch/small_patch.i)
[Mesh]
[base]
type = FileMeshGenerator
file = 'patch.xda'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right bottom top back front'
points = ' 0 0.5 0.5
1 0.5 0.5
0.5 0.0 0.5
'
' 0.5 1.0 0.5
0.5 0.5 0.0
0.5 0.5 1.0'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[front]
type = DirichletBC
preset = true
variable = disp_z
boundary = front
value = 0.1
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
dtmin = 1.0
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/second_order_elements/diffusion_2d_tri6.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = TRI6
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.35 1.0 0.35 0.2'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 3
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rz_small_elastic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = ADStressDivergenceRZTensors
component = 0
variable = disp_r
[../]
[./stress_z]
type = ADStressDivergenceRZTensors
component = 1
variable = disp_z
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[./axial]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeAxisymmetricRZSmallStrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_mean_zero_pressure.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./T]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
[../]
[./lambda]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./temperature_time]
type = INSADHeatConductionTimeDerivative
variable = T
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = T
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = T
thermal_conductivity = 'k'
[../]
[./mean_zero_pressure]
type = ScalarLagrangeMultiplier
variable = p
lambda = lambda
[../]
[]
[ScalarKernels]
[./mean_zero_pressure_lm]
type = AverageValueConstraint
variable = lambda
pp_name = pressure_integral
value = 0
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSAD3Eqn
velocity = velocity
pressure = p
temperature = T
[]
[]
[Postprocessors]
[./pressure_integral]
type = ElementIntegralVariablePostprocessor
variable = p
execute_on = linear
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels -sub_pc_factor_shift_type'
petsc_options_value = 'asm 2 ilu 4 NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/mortar/3d-periodic/periodic.i)
[Mesh]
[file]
type = FileMeshGenerator
file = flow_test.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
new_block_id = 11
new_block_name = "secondary"
sidesets = '1'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
new_block_id = 12
new_block_name = "primary"
sidesets = '2'
[]
[]
[Variables]
[u]
block = 'bottom middle top'
[]
[lm]
block = 'secondary'
use_dual = true
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = u
block = 'bottom middle top'
[]
[force]
type = BodyForce
variable = u
block = 'bottom middle top'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
value = 1
boundary = 'around'
[]
[]
[Constraints]
[ev]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = top
secondary_boundary = bottom
primary_subdomain = 12
secondary_subdomain = 11
delta = 0.1
periodic = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_multilevel/2level_picard/sub_level1.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[w]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = v
[]
[diffusion]
type = Diffusion
variable = v
[]
[source]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = v
boundary = '0'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = v
boundary = '2'
value = 100
[]
[]
[Postprocessors]
[avg_u]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_begin timestep_end'
[]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_begin timestep_end'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial timestep_begin timestep_end'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
[]
[MultiApps]
[level2-]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub_level2.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[v_to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = v
variable = v
to_multi_app = level2-
execute_on = 'timestep_end'
[]
[w_from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = w
variable = w
from_multi_app = level2-
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[screen]
type = Console
execute_postprocessors_on= "timestep_end timestep_begin"
[]
[]
(modules/tensor_mechanics/test/tests/central_difference/consistent/1D/1d_consistent_explicit.i)
# Test for central difference integration for a 1D element
# Consistent mass matrix
[Mesh]
type = GeneratedMesh
xmin = 0
xmax = 10
nx = 5
dim = 1
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[]
[NodalKernels]
[./force_x]
type = UserForcingFunctionNodalKernel
variable = disp_x
boundary = right
function = force_x
[../]
[]
[Functions]
[./force_x]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # force
scale_factor = 1e3
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[]
[Executioner]
type = Transient
start_time = -0.005
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
l_tol = 1e-10
[./TimeIntegrator]
type = CentralDifference
[../]
[]
[Postprocessors]
[./disp_x]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./vel_x]
type = NodalVariableValue
nodeid = 1
variable = vel_x
[../]
[./accel_x]
type = NodalVariableValue
nodeid = 1
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
perf_graph = false
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test1.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[../]
[./ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/materials/average_wall_temperature_3eqn/average_wall_temperature_3eqn.i)
# Tests the average wall temperature aux for 1-phase flow. With the following
# inputs, the value should be equal to 1.25:
#
# i h_wall T_wall P_hf
# --------------------------
# 1 10 26/10 1
# 2 6 1/2 3
#
# T_fluid = 1/4
#
# With these values,
# P_tot = 1 + 3 = 4
# h_wall_avg = (1 * 10 + 3 * 6) / 4 = 28 / 4 = 7
# denominator = P_tot * h_wall_avg = 4 * 7 = 28
# numerator = 10 * (26/10 - 1/4) * 1 + 6 * (1/2 - 1/4) * 3 = 28
# T_wall_avg = T_fluid + numerator / denominator = 1/4 + 1
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall1]
family = MONOMIAL
order = CONSTANT
[]
[T_wall2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf1]
family = MONOMIAL
order = CONSTANT
[]
[P_hf2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf_total]
family = MONOMIAL
order = CONSTANT
[]
[T_fluid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[T_wall_avg_auxkernel]
type = MaterialRealAux
variable = T_wall_avg
property = T_wall
[]
[T_wall1_auxkernel]
type = ConstantAux
variable = T_wall1
value = 2.6
[]
[T_wall2_auxkernel]
type = ConstantAux
variable = T_wall2
value = 0.5
[]
[P_hf_total_auxkernel]
type = SumAux
variable = P_hf_total
values = 'P_hf1 P_hf2'
[]
[P_hf1_auxkernel]
type = ConstantAux
variable = P_hf1
value = 1
[]
[P_hf2_auxkernel]
type = ConstantAux
variable = P_hf2
value = 3
[]
[T_fluid_auxkernel]
type = ConstantAux
variable = T_fluid
value = 0.25
[]
[]
[Materials]
[const_materials]
type = GenericConstantMaterial
prop_names = 'Hw1 Hw2'
prop_values = '10 6'
[]
[Hw_avg_material]
type = WeightedAverageMaterial
prop_name = Hw_avg
values = 'Hw1 Hw2'
weights = 'P_hf1 P_hf2'
[]
[T_wall_avg_material]
type = AverageWallTemperature3EqnMaterial
T_wall_sources = 'T_wall1 T_wall2'
Hw_sources = 'Hw1 Hw2'
P_hf_sources = 'P_hf1 P_hf2'
T_fluid = T_fluid
Hw_average = Hw_avg
P_hf_total = P_hf_total
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[T_wall_avg_pp]
type = ElementalVariableValue
elementid = 0
variable = T_wall_avg
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/combined/examples/phase_field-mechanics/Nonconserved.i)
#
# Example 2
# Phase change driven by a mechanical (elastic) driving force.
# An oversized phase inclusion grows under a uniaxial tensile stress.
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 30.0
invalue = 1.0
outvalue = 0.0
int_width = 10.0
[../]
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = 1
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
#
# Try visualizing the stress tensor components as done in Conserved.i
#
[Materials]
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'L'
prop_values = '1'
[../]
# matrix phase
[./stiffness_a]
type = ComputeElasticityTensor
base_name = phasea
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 for symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
[../]
[./strain_a]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phasea
[../]
[./stress_a]
type = ComputeLinearElasticStress
block = 0
base_name = phasea
[../]
[./elastic_free_energy_a]
type = ElasticEnergyMaterial
base_name = phasea
f_name = Fea
block = 0
args = ''
[../]
# oversized precipitate phase (simulated using thermal expansion)
[./stiffness_b]
type = ComputeElasticityTensor
base_name = phaseb
block = 0
# Stiffness tensor lambda, mu values
# Note that the two phases could have different stiffnesses.
# Try reducing the precipitate stiffness (to '1 1') rather than making it oversized
C_ijkl = '7 7'
fill_method = symmetric_isotropic
[../]
[./strain_b]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
base_name = phaseb
eigenstrain_names = eigenstrain
[../]
[./eigenstrain_b]
type = ComputeEigenstrain
base_name = phaseb
eigen_base = '0.1 0.1 0.1'
eigenstrain_name = eigenstrain
[../]
[./stress_b]
type = ComputeLinearElasticStress
block = 0
base_name = phaseb
[../]
[./elastic_free_energy_b]
type = ElasticEnergyMaterial
base_name = phaseb
f_name = Feb
block = 0
args = ''
[../]
# Generate the global free energy from the phase free energies
[./switching]
type = SwitchingFunctionMaterial
block = 0
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
block = 0
eta = eta
g_order = SIMPLE
[../]
[./free_energy]
type = DerivativeTwoPhaseMaterial
block = 0
f_name = F
fa_name = Fea
fb_name = Feb
eta = eta
args = ''
W = 0.1
derivative_order = 2
[../]
# Generate the global stress from the phase stresses
[./global_stress]
type = TwoPhaseStressMaterial
block = 0
base_A = phasea
base_B = phaseb
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
value = 5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/material_limit_time_step/creep/nafems_test5a_lim.i)
[GlobalParams]
temperature = temp
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
group_variables = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./temp]
initial_condition = 1500.0
[../]
[./creep]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./invariant3]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./creep_aux]
type = MaterialRealAux
property = effective_creep_strain
variable = creep
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
[../]
[./invariant3]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = invariant3
scalar_type = ThirdInvariant
[../]
[./creep_strain_xx]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xx
index_i = 0
index_j = 0
[../]
[./creep_strain_yy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_yy
index_i = 1
index_j = 1
[../]
[./creep_strain_zz]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_zz
index_i = 2
index_j = 2
[../]
[./creep_strain_xy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xy
index_i = 0
index_j = 1
[../]
[./elastic_str_xx_aux]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
[../]
[./elastic_str_yy_aux]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
[../]
[./elastic_str_zz_aux]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 3
factor = -100.0
[../]
[./side_press]
type = Pressure
variable = disp_x
boundary = 4
factor = -200.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 200e3
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
block = 1
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
block = 1
coefficient = 3.125e-14
n_exponent = 5.0
m_exponent = 0.0
activation_energy = 0.0
max_inelastic_increment = 0.01
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
line_search = 'none'
l_max_its = 50
nl_max_its = 100
end_time = 1000.0
num_steps = 10000
l_tol = 1e-3
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1e-6
time_t = '1e-6 2e-6 3e-6 5e-6 9e-6 1.7e-5 3.3e-5 6.5e-5 1.29e-4 2.57e-4 5.13e-4 1.025e-3 2.049e-3 4.097e-3 8.193e-3 1.638e-2 3.276e-2 5.734e-2 0.106 0.180 0.291 0.457 0.706 1.08 1.64 2.48 3.74 5.63 8.46 12.7 19.1 28.7 43.0 64.5 108.0 194.0 366.0 710.0 1000.0'
time_dt = '1e-6 1e-6 2e-6 4e-6 8e-6 1.6e-5 3.2e-5 6.4e-5 1.28e-4 2.56e-4 5.12e-4 1.024e-3 2.048e-3 4.096e-3 8.192e-3 1.6384e-2 2.458e-2 4.915e-2 7.40e-2 0.111 0.166 0.249 0.374 0.560 0.840 1.26 1.89 2.83 4.25 6.40 9.6 14.3 21.5 43.0 86.1 172.0 344.0 290.0 290.0'
optimal_iterations = 30
iteration_window = 9
growth_factor = 2.0
cutback_factor = 0.5
timestep_limiting_postprocessor = matl_ts_min
[../]
[]
[Postprocessors]
[./matl_ts_min]
type = MaterialTimeStepPostprocessor
[../]
[./sigma_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./invariant3]
type = ElementAverageValue
variable = invariant3
[../]
[./eps_crp_xx]
type = ElementAverageValue
variable = creep_strain_xx
[../]
[./eps_crp_yy]
type = ElementAverageValue
variable = creep_strain_yy
[../]
[./eps_crp_zz]
type = ElementAverageValue
variable = creep_strain_zz
[../]
[./eps_crp_mag]
type = ElementAverageValue
variable = creep
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x3]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_y3]
type = NodalVariableValue
nodeid = 2
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./elas_str_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./elas_str_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./elas_str_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
csv = true
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 25
[../]
[]
(test/tests/test_harness/csvdiff_comparison.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./x_field]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[./y_field]
type = PointValue
variable = u
point = '0.25 0.25 0'
[../]
[./z_field]
type = PointValue
variable = u
point = '0.75 0.75 0'
[../]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/3d-strain.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
constraint_types = 'strain strain strain strain strain strain strain strain strain'
ndim = 3
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = NINTH
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'strain11 strain21 strain31 strain12 strain22 strain32 strain13 strain23 strain33'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[strain11]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain22]
type = ParsedFunction
value = '-4.0e-2*t'
[]
[strain33]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain23]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain13]
type = ParsedFunction
value = '-7.0e-2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain32]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain31]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain21]
type = ParsedFunction
value = '-1.5e-2*t'
[]
[zero]
type = ConstantFunction
value = 0
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 20
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_c.i)
#This problem from [Wilson 1979] tests the thermal strain term in the
#interaction integral
#
#theta_e = 10 degrees C; a = 252; E = 207000; nu = 0.3; alpha = 1.35e-5
#
#With uniform_refine = 3, KI converges to
#KI = 5.602461e+02 (interaction integral)
#KI = 5.655005e+02 (J-integral)
#
#Both are in good agreement with [Shih 1986]:
#average_value = 0.4857 = KI / (sigma_theta * sqrt(pi * a))
#sigma_theta = E * alpha * theta_e / (1 - nu)
# = 207000 * 1.35e-5 * 10 / (1 - 0.3) = 39.9214
#KI = average_value * sigma_theta * sqrt(pi * a) = 5.656e+02
#
#References:
#W.K. Wilson, I.-W. Yu, Int J Fract 15 (1979) 377-387
#C.F. Shih, B. Moran, T. Nakamura, Int J Fract 30 (1986) 79-102
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = False
[]
[Mesh]
file = crack2d.e
displacements = 'disp_x disp_y'
# uniform_refine = 3
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./SERD]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 0.1 100.0'
y = '0. 1 1'
scale_factor = -68.95 #MPa
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[./SERD]
type = MaterialRealAux
variable = SERD
property = strain_energy_rate_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[../]
[./Pressure]
[./crack_pressure]
boundary = 700
function = rampConstantUp
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
coefficient = 3.125e-21 # 7.04e-17 #
n_exponent = 3.0
m_exponent = 0.0
activation_energy = 0.0
[../]
[]
[DomainIntegral]
integrals = 'CIntegral InteractionIntegralKI'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
symmetry_plane = 1
incremental = true
# interaction integral parameters
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
inelastic_models = 'powerlawcrp'
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
active = 'smp'
[./smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[../]
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/sub0.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/second_order_elements/diffusion_3d_hex27.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 4
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = HEX27
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.35 1.01 -0.001
0.35 0.49 -0.001
0.35 0.49 0.201
0.35 1.01 0.201'
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = left
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/instantaneous.i)
# This test checks the thermal expansion calculated via a instantaneous thermal expansion coefficient.
# The coefficient is selected so as to result in a 1e-4 strain in the x-axis, and to cross over
# from positive to negative strain.
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 3
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = '1 + t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
thermal_expansion_function = 4e-4
stress_free_temperature = 1.5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Postprocessors]
[./disp_x_max]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./temp_avg]
type = ElementAverageValue
variable = temp
[../]
[]
[Executioner]
type = Transient
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/loose_couple_time_adapt/begin.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[MultiApps]
[./dummy]
type = TransientMultiApp
input_files = adaptiveDT.i
execute_on = timestep_begin
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.006
dt = 0.006
nl_abs_tol = 1.0e-8
[]
[Outputs]
exodus = true
file_base = begin
[]
(test/tests/misc/check_error/function_file_test8.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
xy_data = '1 2 3'
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/transfers/multiapp_copy_transfer/second_lagrange_from_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
elem_type = QUAD8
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/thermomechanics/circle_thermal_expansion_stress.i)
# This example problem demonstrates coupling heat conduction with mechanics.
# A circular domain has as uniform heat source that increases with time
# and a fixed temperature on the outer boundary, resulting in a temperature gradient.
# This results in heterogeneous thermal expansion, where it is pinned in the center.
# Looking at the hoop stress demonstrates why fuel pellets have radial cracks
# that extend from the outer boundary to about halfway through the radius.
# The problem is run with length units of microns.
[Mesh]
#Circle mesh has a radius of 1000 units
type = FileMesh
file = circle.e
uniform_refine = 1
[]
[Variables]
# We solve for the temperature and the displacements
[./T]
initial_condition = 800
scaling = 1e7
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./radial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./hoop_stress]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'TensorMechanics htcond Q_function'
[./htcond] #Heat conduction equation
type = HeatConduction
variable = T
[../]
[./TensorMechanics] #Action that creates equations for disp_x and disp_y
displacements = 'disp_x disp_y'
[../]
[./Q_function] #Heat generation term
type = BodyForce
variable = T
value = 1
function = 0.8e-9*t
[../]
[]
[AuxKernels]
[./radial_stress] #Calculates radial stress from cartesian
type = CylindricalRankTwoAux
variable = radial_stress
rank_two_tensor = stress
index_j = 0
index_i = 0
center_point = '0 0 0'
[../]
[./hoop_stress] #Calculates hoop stress from cartesian
type = CylindricalRankTwoAux
variable = hoop_stress
rank_two_tensor = stress
index_j = 1
index_i = 1
center_point = '0 0 0'
[../]
[]
[BCs]
[./outer_T] #Temperature on outer edge is fixed at 800K
type = DirichletBC
variable = T
boundary = 1
value = 800
[../]
[./outer_x] #Displacements in the x-direction are fixed in the center
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./outer_y] #Displacements in the y-direction are fixed in the center
type = DirichletBC
variable = disp_y
boundary = 2
value = 0
[../]
[]
[Materials]
[./thcond] #Thermal conductivity is set to 5 W/mK
type = GenericConstantMaterial
block = 1
prop_names = 'thermal_conductivity'
prop_values = '5e-6'
[../]
[./iso_C] #Sets isotropic elastic constants
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '2.15e5 0.74e5'
block = 1
[../]
[./strain] #We use small deformation mechanics
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
block = 1
eigenstrain_names = eigenstrain
[../]
[./stress] #We use linear elasticity
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 273
block = 1
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 10
nl_abs_tol = 1e-9
l_tol = 1e-04
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_syntax.i)
#
# 1-D Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two element blocks containing one element each. Each
# element is a unit cube. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far left boundary
# is ramped from 100 to 200 over one time unit. The temperature of the far right
# boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks:
#
# Flux = (T_left - T_right) * (gapK/gap_width)
#
# The gap conductivity is specified as 1, thus
#
# gapK(Tavg) = 1.0*Tavg
#
#
# The heat flux across the gap at time = 1 is then:
#
# Flux(2) = 100 * (1.0/1.0) = 100
#
# For comparison, see results from the flux post processors
#
# This test has been augmented with a second scalar field that solves nearly
# the same problem. The conductivity has been changed to 10. Thus, the
# flux for the second field is 1000.
#
[Mesh]
file = gap_heat_transfer_htonly_test.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[Modules/HeatConduction/ThermalContact/BC]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
[../]
[./awesomium_contact]
type = GapHeatTransfer
variable = awesomium
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 10
appended_property_name = _awesomium
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[./awesomium]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[./gap_cond_awesomium]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./awe]
type = HeatConduction
variable = awesomium
[../]
[]
[BCs]
[./temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[./awesomium_far_left]
type = FunctionDirichletBC
boundary = 1
variable = awesomium
function = temp
[../]
[./awesomium_far_right]
type = DirichletBC
boundary = 4
variable = awesomium
value = 100
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 2
[../]
[./conductance_awe]
type = MaterialRealAux
property = gap_conductance_awesomium
variable = gap_cond_awesomium
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-12
l_tol = 1e-3
l_max_its = 100
dt = 1e-1
end_time = 1.0
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./awe_left]
type = SideAverageValue
boundary = 2
variable = awesomium
execute_on = 'initial timestep_end'
[../]
[./awe_right]
type = SideAverageValue
boundary = 3
variable = awesomium
execute_on = 'initial timestep_end'
[../]
[./awe_flux_left]
type = SideDiffusiveFluxIntegral
variable = awesomium
boundary = 2
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./awe_flux_right]
type = SideDiffusiveFluxIntegral
variable = awesomium
boundary = 3
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move/multilevel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
output_in_position = true
[../]
[]
(modules/porous_flow/examples/flow_through_fractured_media/coarse.i)
# Flow and solute transport along a fracture embedded in a porous matrix
# The fracture is represented by lower dimensional elements
# fracture aperture = 6e-4m
# fracture porosity = 6e-4m = phi * a
# fracture permeability = 1.8e-11 which is based on k=3e-8 from a**2/12, and k*a = 3e-8*6e-4
# matrix porosity = 0.1
# matrix permeanility = 1e-20
[Mesh]
type = FileMesh
file = 'coarse.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[massfrac0]
[]
[]
[AuxVariables]
[velocity_x]
family = MONOMIAL
order = CONSTANT
block = 'fracture'
[]
[velocity_y]
family = MONOMIAL
order = CONSTANT
block = 'fracture'
[]
[]
[AuxKernels]
[velocity_x]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_x
component = x
aperture = 6E-4
[]
[velocity_y]
type = PorousFlowDarcyVelocityComponentLowerDimensional
variable = velocity_y
component = y
aperture = 6E-4
[]
[]
[ICs]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[pp_matrix]
type = ConstantIC
variable = pp
value = 1E6
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0
variable = massfrac0
boundary = top
[]
[bottom]
type = DirichletBC
value = 1
variable = massfrac0
boundary = bottom
[]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = pp
disp_trans = 0
disp_long = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = massfrac0
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = massfrac0
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = massfrac0
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro_fracture]
type = PorousFlowPorosityConst
porosity = 6e-4 # = a * phif
block = 'fracture'
[]
[poro_matrix]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix1 matrix2'
[]
[diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 1.0
block = 'fracture'
[]
[diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 0.1
block = 'matrix1 matrix2'
[]
[permeability_fracture]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # 1.8e-11 = a * kf
block = 'fracture'
[]
[permeability_matrix]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 10
dt = 1
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
[]
[VectorPostprocessors]
[xmass]
type = LineValueSampler
start_point = '-0.5 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 41
variable = massfrac0
outputs = csv
[]
[]
[Outputs]
[csv]
type = CSV
execute_on = 'final'
[]
[]
(modules/functional_expansion_tools/examples/2D_interface_different_submesh/sub.i)
# Derived from the example '2D_interface' with the following differences:
#
# 1) The number of y divisions in the sub app is not the same as the master app
# 2) The subapp mesh is skewed in y
# 3) The Functional Expansion order for the flux term was increased to 7
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 23
bias_y = 1.2
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = HeatConduction
variable = s
[../]
[./time_diff_s]
type = HeatConductionTimeDerivative
variable = s
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '7'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/misc/check_error/ic_variable_not_specified.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 1
[../]
[../]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/system_interfaces/input.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/problems/no_material_dependency_check/no_material_coverage_check.i)
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 3
[../]
[]
[Problem]
material_dependency_check = false
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
value = 10
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
prop_names = 'diff1'
prop_values = '1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/cliargs_from_file/cliargs_sub_1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/pressure_bc/edge_2d_pressure.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = False
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 9
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.0 0.5 0.5 0.5'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
generate_output = 'stress_xx stress_yy'
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0 1.0 2.0'
y = '0 500 1000'
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./top_y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[./bottom_x]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[]
[DiracKernels]
[./pressure_x]
type = XFEMPressure
variable = disp_x
component = 0
function = pressure
[../]
[./pressure_y]
type = XFEMPressure
variable = disp_y
component = 1
function = pressure
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1
end_time = 2
[]
[Outputs]
file_base = edge_2d_pressure_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/xfem/test/tests/second_order_elements/square_branch_quad8_2d.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD8
[]
[UserObjects]
[./line_seg_cut_set_uo]
type = LineSegmentCutSetUserObject
cut_data = '-1.0000e-10 6.6340e-01 6.6340e-01 -1.0000e-10 0.0 1.0
3.3120e-01 3.3200e-01 1.0001e+00 3.3200e-01 1.0 2.0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
planar_formulation = PLANE_STRAIN
[../]
[]
[Functions]
[./right_disp_x]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[./top_disp_y]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[]
[BCs]
[./right_x]
type = FunctionDirichletBC
boundary = 1
variable = disp_x
function = right_disp_x
[../]
[./top_y]
type = FunctionDirichletBC
boundary = 2
variable = disp_y
function = top_disp_y
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./left_x]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 2.2
num_steps = 5000
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/contact/test/tests/verification/patch_tests/plane_1/plane1_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/out_of_plane_pressure.i)
# Tests for application of out-of-plane pressure in generalized plane strain.
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
out_of_plane_pressure_function = traction_function
pressure_factor = 1e5
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./traction_function]
type = PiecewiseLinear
x = '0 2'
y = '0 1'
[../]
[]
[BCs]
[./leftx]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./strain]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# This material is not used for anything in the base verison of this test,
# but is used in a variant of the test with cli_args
[./traction_material]
type = GenericFunctionMaterial
prop_names = traction_material
prop_values = traction_function
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-11
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/patch/large_patch.i)
[Mesh]
[base]
type = FileMeshGenerator
file = 'patch.xda'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right bottom top back front'
points = ' 0 0.5 0.5
1 0.5 0.5
0.5 0.0 0.5
'
' 0.5 1.0 0.5
0.5 0.5 0.0
0.5 0.5 1.0'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
use_displaced_mesh = true
large_kinematics = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
use_displaced_mesh = true
large_kinematics = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
use_displaced_mesh = true
large_kinematics = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[front]
type = DirichletBC
preset = true
variable = disp_z
boundary = front
value = 0.1
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
large_kinematics = true
[]
[compute_strain]
type = ComputeLagrangianStrain
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
dtmin = 1.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm_cm.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = ellip_crack_4sym_norad_mm.e
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./resid_z]
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 0.1'
scale_factor = -689.5 #MPa
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 1001
crack_direction_method = CrackMouth
crack_mouth_boundary = 11
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '0.0 1.0 0.0'
crack_direction_vector_end_2 = '1.0 0.0 0.0'
radius_inner = '12.5 25.0 37.5'
radius_outer = '25.0 37.5 50.0'
intersecting_boundary = '1 2'
symmetry_plane = 2
position_type = angle
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 12
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 5
function = rampConstantUp
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
# Two sets of linesearch options are for petsc 3.1 and 3.3 respectively
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
# petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
nl_rel_tol = 1e-11
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./nl_its]
type = NumNonlinearIterations
[../]
[./lin_its]
type = NumLinearIterations
[../]
[./react_z]
type = NodalSum
variable = resid_z
boundary = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = j_int_surfbreak_ellip_crack_sym_mm_cm_out
exodus = true
csv = true
[]
(test/tests/transfers/multiapp_interpolation_transfer/tosub_master.i)
###########################################################
# This is a test of the Transfer System. This test
# uses the Multiapp System to solve independent problems
# related geometrically. Solutions are then interpolated
# and transferred to a non-aligned domain.
#
# @Requirement F7.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = .21
xmax = .79
displacements = 'disp_x disp_y'
# The MultiAppInterpolationTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./disp_x]
initial_condition = 0.4
[../]
[./disp_y]
[../]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./x_func]
type = ParsedFunction
value = x
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./x_func_aux]
type = FunctionAux
variable = elemental
function = x_func
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0.2 0 0'
input_files = tosub_sub.i
[../]
[]
[Transfers]
[./tosub]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = u
variable = from_master
[../]
[./elemental_tosub]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = u
variable = elemental_from_master
[../]
[./radial_tosub]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = u
variable = radial_from_master
interp_type = radial_basis
[../]
[./radial_elemental_tosub]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = u
variable = radial_elemental_from_master
interp_type = radial_basis
[../]
[./displaced_target_tosub]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = u
variable = displaced_target_from_master
displaced_target_mesh = true
[../]
[./displaced_source_tosub]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = u
variable = displaced_source_from_master
displaced_source_mesh = true
[../]
[./elemental_to_sub_elemental]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = elemental
variable = elemental_from_master_elemental
[../]
[./elemental_to_sub_nodal]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = elemental
variable = nodal_from_master_elemental
[../]
[]
(modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/wli01.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1000
ny = 1
xmin = -10000
xmax = 0
ymin = 0
ymax = 0.05
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = pressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureBW
Sn = 0.0
Ss = 1.0
C = 1.5
las = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 4
density0 = 10
thermal_expansion = 0
[]
[]
[]
[Materials]
[massfrac]
type = PorousFlowMassFraction
[]
[temperature]
type = PorousFlowTemperature
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[relperm]
type = PorousFlowRelativePermeabilityBW
Sn = 0.0
Ss = 1.0
Kn = 0
Ks = 1
C = 1.5
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1'
[]
[]
[Variables]
[pressure]
initial_condition = -1E-4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '-0.1 0 0'
[]
[]
[AuxVariables]
[SWater]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[]
[]
[BCs]
[base]
type = DirichletBC
boundary = 'left'
value = -1E-4
variable = pressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10000'
[]
[]
[VectorPostprocessors]
[swater]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = SWater
start_point = '-5000 0 0'
end_point = '0 0 0'
sort_by = x
num_points = 71
execute_on = timestep_end
[]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 1000
dt = 1
[]
[Outputs]
file_base = wli01
sync_times = '100 500 1000'
[exodus]
type = Exodus
sync_only = true
[]
[along_line]
type = CSV
sync_only = true
[]
[]
(test/tests/misc/check_error/missing_var_in_kernel_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
# Test error message for missing variable param.
[./diff]
type = Diffusion
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_2/ring2_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/boundary_tomaster_master.i)
# Master mesh and sub mesh are same with 4x4 quad8 elements.
# master mesh has top boundary fixed at u=2 and bottom fixed at u=0
# sub mesh has top boundary fixed at u = 0 and bottom fixed at u=1
# The u variable at right boundary of sub mesh is transferred to
# from_sub variable of master mesh at left boundary
# Result is from_sub at left boundary has linearly increasing value starting
# with 0 at top and ending with 1 at bottom. from_sub is zero everywhere else
# in the master mesh.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
elem_type = QUAD8
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[AuxVariables]
[./from_sub]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 2.0
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0.0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = boundary_tomaster_sub.i
[../]
[]
[Transfers]
[./from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
source_boundary = right
target_boundary = left
variable = from_sub
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_stab_jac_test.i)
[GlobalParams]
order = SECOND
integrate_p_by_parts = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1.1
ymin = -1.1
ymax = 1.1
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1.1
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
order = FIRST
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 1
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[outlet]
type = INSADMomentumNoBCBC
variable = velocity
pressure = p
boundary = 'top'
[]
# When the NoBCBC is applied on the outlet boundary then there is nothing
# constraining the pressure. Thus we must pin the pressure somewhere to ensure
# that the problem is not singular. If the below BC is not applied then
# -pc_type svd -pc_svd_monitor reveals a singular value
[p_corner]
type = DirichletBC
boundary = pinned_node
value = 0
variable = p
[]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1.1 1.1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
(modules/tensor_mechanics/test/tests/strain_energy_density/rate_model.i)
# Single element test to check the strain energy density calculation
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 2
[]
[AuxVariables]
[./SERD]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress strain_xx strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SERD]
type = MaterialRealAux
variable = SERD
property = strain_energy_rate_density
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./Pressure]
[./top]
boundary = 'top'
function = rampConstantUp
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
coefficient = 3.125e-21 # 7.04e-17 #
n_exponent = 4.0
m_exponent = 0.0
activation_energy = 0.0
# max_inelastic_increment = 0.01
[../]
[./strain_energy_rate_density]
type = StrainEnergyRateDensity
inelastic_models = 'powerlawcrp'
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./epxx]
type = ElementalVariableValue
variable = strain_xx
elementid = 0
[../]
[./epyy]
type = ElementalVariableValue
variable = strain_yy
elementid = 0
[../]
[./epzz]
type = ElementalVariableValue
variable = strain_zz
elementid = 0
[../]
[./sigxx]
type = ElementAverageValue
variable = stress_xx
[../]
[./sigyy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigzz]
type = ElementAverageValue
variable = stress_zz
[../]
[./SERD]
type = ElementAverageValue
variable = SERD
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/central_difference/lumped/2D/2d_lumped_explicit.i)
# Tests for the central difference time integrator for 2D elements
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 2
nx = 1
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[]
[BCs]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./x_bot]
type = FunctionDirichletBC
boundary = bottom
variable = disp_x
function = disp
preset = false
[../]
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1e4
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = CentralDifference
solve_type = lumped
[../]
[]
[Postprocessors]
[./accel_2x]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/multiapps/slow_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = SlowProblem
seconds_to_sleep = 5
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[]
(modules/contact/test/tests/verification/patch_tests/cyl_3/cyl3_template2.i)
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
tangential_tolerance = 1e-3
penalty = 1e+11
al_penetration_tolerance = 1e-8
[../]
[]
(examples/ex02_kernel/ex02_oversample.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmax = 0
elem_type = QUAD9
[]
[Variables]
[./diffused]
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./foo]
variable = diffused
type = ConstantPointSource
value = 1
point = '0.3 0.3 0.0'
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = diffused
boundary = 'bottom left right top'
value = 0.0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./refine_2]
type = Exodus
file_base = oversample_2
refinements = 2
[../]
[./refine_4]
type = Exodus
file_base = oversample_4
refinements = 4
[../]
[]
(modules/richards/test/tests/buckley_leverett/bl01_lumped_fu.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-4
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
active = 'calculate_seff'
[./calculate_seff]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_pressure
[../]
[../]
[]
[BCs]
active = 'left'
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 980000
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Functions]
active = 'initial_pressure'
[./initial_pressure]
type = ParsedFunction
value = max((1000000-x/5*1000000)-20000,-20000)
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20'
[../]
[]
[Executioner]
type = Transient
end_time = 50
dt = 2
snesmf_reuse_base = false
[]
[Outputs]
file_base = bl01_lumped_fu
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(python/peacock/tests/common/fsp_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff_u conv_v diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 2
value = 100
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 0
[../]
[]
[Executioner]
type = Steady
# This is setup automatically in MOOSE (SetupPBPAction.C)
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type'
# petsc_options_value = 'asm'
[]
[Preconditioning]
active = 'FSP'
[./FSP]
type = FSP
# It is the starting point of splitting
topsplit = 'uv' # uv should match the following block name
[./uv]
splitting = 'u v' # u and v are the names of subsolvers
# Generally speaking, there are four types of splitting we could choose
# <additive,multiplicative,symmetric_multiplicative,schur>
splitting_type = additive
# An approximate solution to the original system
# | A_uu A_uv | | u | _ |f_u|
# | 0 A_vv | | v | - |f_v|
# is obtained by solving the following subsystems
# A_uu u = f_u and A_vv v = f_v
# If splitting type is specified as schur, we may also want to set more options to
# control how schur works using PETSc options
# petsc_options_iname = '-pc_fieldsplit_schur_fact_type -pc_fieldsplit_schur_precondition'
# petsc_options_value = 'full selfp'
[../]
[./u]
vars = 'u'
# PETSc options for this subsolver
# A prefix will be applied, so just put the options for this subsolver only
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[../]
[./v]
vars = 'v'
# PETSc options for this subsolver
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[../]
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_action.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.01
Iy = 1e-4
Iz = 1e-4
y_orientation = '0.0 1.0 0.0'
# dynamic simulation using consistent mass/inertia matrix
dynamic_nodal_translational_inertia = true
nodal_mass = 0.01899772
dynamic_nodal_rotational_inertia = true
nodal_Ixx = 2e-1
nodal_Iyy = 1e-1
nodal_Izz = 1e-1
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25 # Newmark time integration parameter
gamma = 0.5 # Newmark time integration parameter
boundary = right # Node set where nodal mass and nodal inertia are applied
# optional parameters for Rayleigh damping
eta = 0.1 # Mass proportional Rayleigh damping
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_added_mass_inertia_damping_out'
exodus = true
csv = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d_mean_ctefunc.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = 10.0*(2*x/504)
[../]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-6'
value = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
temperature = temp
incremental = true
eigenstrain_names = thermal_expansion
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
eigenstrain_names = thermal_expansion
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
block = 1
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
stress_free_temperature = 0.0
thermal_expansion_function_reference_temperature = 0.5
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
[Preconditioning]
[./smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[../]
[]
(test/tests/outputs/oversample/oversample_file.i)
[Mesh]
type = FileMesh
file = square.e
dim = 2
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
refinements = 1
file_base = exodus_oversample_custom_name
[../]
[]
(test/tests/dampers/min_damping/min_elem_damping.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./u_dt]
type = TimeDerivative
variable = u
[../]
[./u_source]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
[./u_left]
type = DirichletBC
boundary = left
variable = u
value = 0.0
[../]
[]
[Dampers]
[./limit]
type = BoundingValueElementDamper
variable = u
max_value = 1.5
min_value = -1.5
min_damping = 0.001
[../]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
[../]
[./dt]
type = TimestepSize
[../]
[]
(test/tests/kernels/ad_2d_diffusion/2d_diffusion_neumannbc_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = ADNeumannBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = neumannbc_out
exodus = true
[]
(test/tests/outputs/transferred_scalar_variable/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/CylindricalRankTwoAux/test.i)
[Mesh]
[file_mesh]
type = FileMeshGenerator
file = circle.e
[]
[cnode]
type = ExtraNodesetGenerator
coord = '1000.0 0.0'
new_boundary = 10
input = file_mesh
[]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./T]
[../]
[./stress_rr]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_tt]
order = CONSTANT
family = MONOMIAL
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '1000-0.7*sqrt(x^2+y^2)'
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./stress_rr]
type = CylindricalRankTwoAux
variable = stress_rr
rank_two_tensor = stress
index_j = 0
index_i = 0
center_point = '0 0 0'
[../]
[./stress_tt]
type = CylindricalRankTwoAux
variable = stress_tt
rank_two_tensor = stress
index_j = 1
index_i = 1
center_point = '0 0 0'
[../]
[]
[BCs]
[./outer_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./outer_y]
type = DirichletBC
variable = disp_y
boundary = '2 10'
value = 0
[../]
[]
[Materials]
[./iso_C]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '2.15e5 0.74e5'
block = 1
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
block = 1
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = T
stress_free_temperature = 273
block = 1
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
l_max_its = 30
nl_max_its = 10
nl_abs_tol = 1e-9
nl_rel_tol = 1e-14
l_tol = 1e-4
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/postprocessors/element_l2_difference/element_l2_difference.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./force_u]
type = BodyForce
variable = u
function = 'x*x*x+y*y*y'
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = BodyForce
variable = v
function = 'x*x*x+y*y*y'
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 'left bottom right top'
value = 0
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 'left bottom right top'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./l2_difference]
type = ElementL2Difference
variable = u
other_variable = v
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/shell/static/large_strain_m_40_AD.i)
# Large strain/rotation test for shell elements
# A cantilever beam that is 40 m long (Y direction) with 1 m x 1 m
# cross-section is modeled using 5 shell elements placed along its
# length. The bottom boundary is fixed in all displacements and
# rotations. A load of 0.140625 N is applied at each node on the top
# boundary, resulting in a total load of 0.28125 N. E = 1800 Pa and
# v = 0.0.
# The reference solution for large deflection of this beam is based on
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics,
# Vol 3, No. # 3, 1945.
# For PL^2/EI = 3, disp_z at tip = 0.6L = 24 m & disp_y at tip = 0.76*L-L = -9.6 m
# The FEM solution at tip of cantilever is:
# disp_z = 24.85069 m; relative error = 3.54 %
# disp_y = -9.125937 m; relative error = 5.19 %
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 40.0
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = bottom
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = bottom
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = top
function = force_y
[../]
[]
[Functions]
[./force_y]
type = PiecewiseLinear
x = '0.0 1.0 3.0'
y = '0.0 1.0 1.0'
scale_factor = 0.140625
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-14
dt = 0.1
dtmin = 0.1
end_time = 3.0
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
large_strain = true
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
large_strain = true
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 1800
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeFiniteShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 1.0
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[]
[Postprocessors]
[./disp_z2]
type = PointValue
point = '1.0 40.0 0.0'
variable = disp_z
[../]
[./disp_y2]
type = PointValue
point = '1.0 40.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/force_aux_ordering/force_preaux.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 2
ymin = 0
ymax = 1
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Postprocessors]
[./total_u]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
# scale1 and scale2 depend on the ElementUO total_u. total_u is executed on
# timestep_end in POST_AUX _before_ the GeneralPostprocessors. scale1 is executed
# at its default location, timestep_end/POST_AUX/after total_u and hence gets
# the most up to date information. scale2 is pushed into PRE_AUX and hence picks
# up the value of total_u from the last timestep.
[./scale1]
type = ScalePostprocessor
value = total_u
scaling_factor = 1
[../]
[./scale2]
type = ScalePostprocessor
value = total_u
scaling_factor = 1
force_preaux = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 2.0
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/cyl_3/cyl3_template1.i)
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/action_3d.i)
# 3D mixed test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = FINITE
add_variables = true
new_system = true
formulation = TOTAL
volumetric_locking_correction = false
constraint_types = 'stress strain strain strain stress strain strain strain strain'
targets = 'stress11 strain21 strain31 strain12 stress22 strain32 strain13 strain23 strain33'
generate_output = 'pk1_stress_xx pk1_stress_xy pk1_stress_xz pk1_stress_yx pk1_stress_yy '
'pk1_stress_yz pk1_stress_zx pk1_stress_zy pk1_stress_zz '
'deformation_gradient_xx deformation_gradient_xy deformation_gradient_xz '
'deformation_gradient_yx deformation_gradient_yy deformation_gradient_yz '
'deformation_gradient_zx deformation_gradient_zy deformation_gradient_zz'
[]
[]
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '120.0*t'
[]
[stress22]
type = ParsedFunction
value = '65*t'
[]
[strain33]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain23]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain13]
type = ParsedFunction
value = '-7.0e-2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain32]
type = ParsedFunction
value = '1.0e-2*t'
[]
[strain31]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain21]
type = ParsedFunction
value = '-1.5e-2*t'
[]
[zero]
type = ConstantFunction
value = 0
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
large_kinematics = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 20
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
[out]
type = Exodus
file_base = '3d'
[]
[]
(python/peacock/tests/common/oversample.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[./refine_2]
type = Exodus
file_base = oversample_2
refinements = 2
[../]
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./power_density]
[../]
[]
[Variables]
[./temp]
# initial_condition = 1000000
[../]
[]
[Kernels]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat_ie]
type = TimeDerivative
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[../]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '0 1 2 3'
value = 450
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 3
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[./temp_fuel_avg]
type = ElementAverageValue
variable = temp
block = '0'
execute_on = 'initial timestep_end'
[../]
[./pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
csv = true
[]
(test/tests/constraints/nodal_constraint/nodal_constraint_displaced_test.i)
[Mesh]
file = 2-lines.e
displacements = 'disp_x'
[]
[AuxVariables]
[./disp_x]
[../]
[]
[AuxKernels]
[./disp_x_ak]
type = ConstantAux
variable = disp_x
value = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 3
[../]
[]
[Constraints]
[./c1]
type = EqualValueNodalConstraint
variable = u
primary = 0
secondary = 4
penalty = 100000
use_displaced_mesh = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rz_incremental_small_elastic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = ADStressDivergenceRZTensors
component = 0
variable = disp_r
[../]
[./stress_z]
type = ADStressDivergenceRZTensors
component = 1
variable = disp_z
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[./axial]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeAxisymmetricRZIncrementalStrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_high_reynolds.i)
[GlobalParams]
gravity = '0 0 0'
laplace = true
transient_term = false
supg = true
pspg = true
family = LAGRANGE
order = FIRST
[]
[Mesh]
file = 'cone_linear_alltri.e'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
# type = Transient
# dt = 0.005
# dtmin = 0.005
# num_steps = 5
# l_max_its = 100
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
# petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
# petsc_options_value = 'bjacobi ilu 4'
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
nl_max_its = 20
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
# [./x_momentum_time]
# type = INSMomentumTimeDerivative
# variable = vel_x
# [../]
# [./y_momentum_time]
# type = INSMomentumTimeDerivative
# variable = vel_y
# [../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1e-3'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(test/tests/multiapps/multilevel/time_dt_from_master_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 100
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./console]
type = Console
output_file = true
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = time_dt_from_master_subsub.i
[../]
[]
(test/tests/meshgenerators/meta_data_store/mesh_meta_data_store.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 12
ny = 10
xmin = 4
xmax = 7
[]
[]
[Debug]
show_mesh_meta_data = true
[]
[Variables]
[./u]
[../]
[]
[AutoLineSamplerTest]
# Add a line sampler on the variable right at the nodes based on the GeneratedMeshGenerator
variable = u
mesh_generator = 'gmg'
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/pp_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./from_master]
type = Receiver
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/eigen_executioners/ne_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./T]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./power]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
mat_prop = diffusion
offset = 0.0
[../]
[./rhs]
type = MassEigenKernel
variable = u
[../]
[./diff_T]
type = Diffusion
variable = T
[../]
[./src_T]
type = CoupledForce
variable = T
v = power
[../]
[]
[AuxKernels]
[./power_ak]
type = NormalizationAux
variable = power
source_variable = u
normalization = unorm
# this coefficient will affect the eigenvalue.
normal_factor = 10
execute_on = linear
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[]
[Materials]
[./dc]
type = VarCouplingMaterial
var = T
block = 0
base = 1.0
coef = 1.0
[../]
[]
[Executioner]
type = NonlinearEigen
bx_norm = 'unorm'
free_power_iterations = 2
nl_abs_tol = 1e-12
nl_rel_tol = 1e-50
k0 = 1.0
output_after_power_iterations = false
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'unorm udiff'
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
# execute on residual is important for nonlinear eigen solver!
execute_on = linear
[../]
[./udiff]
type = ElementL2Diff
variable = u
outputs = console
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ne_coupled
exodus = true
[]
(modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_02_apply_stress.i)
# Beam bending.
# One end is clamped and the other end is subjected to a stress
# and micromechanical moment that will induce bending.
# The stress that will induce bending around the y axis is
# stress_xx = EAz
# This implies a micromechanical moment-stress of
# m_yx = (1/12)EAh^2 for joint_shear_stiffness=0.
# For joint_shear_stiffness!=0, the micromechanical moment-stress
# is
# m_yx = (1/12)EAa^2 G/(ak_s + G)
# All other stresses and moment stresses are assumed to be zero.
# With joint_shear_stiffness=0, and introducing D=-poisson*A, the
# nonzero strains are
# ep_xx = Az
# ep_yy = Dz
# ep_zz = Dz
# kappa_xy = -D
# kappa_yx = A
# This means the displacements are:
# u_x = Axz
# u_y = Dzy
# u_z = -(A/2)x^2 + (D/2)(z^2-y^2)
# wc_x = -Dy
# wc_y = Ax
# wc_z = 0
# This is bending of a bar around the y axis, in plane stress
# (stress_yy=0). Displacements at the left-hand (x=0) are applied
# according to the above formulae; wc_x and wc_y are applied throughout
# the bar; and stress_xx is applied at the right-hand end (x=10).
# The displacements are measured and
# compared with the above formulae.
# The test uses: E=1.2, poisson=0.3, A=1.11E-2, h=2, ks=0.1, so
# stress_xx = 1.332E-2*z
# m_yx = 0.2379E-2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 10
xmin = 0
xmax = 10
ymin = -1
ymax = 1
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
#use_displaced_mesh = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./clamp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = left
function = '-0.3*(z*z-y*y)/2.0*1.11E-2'
[../]
[./clamp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = left
function = '-0.3*z*y*1.11E-2'
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_stress]
type = FunctionNeumannBC
boundary = right
function = z*1.2*1.11E-2
variable = disp_x
[../]
[./fix_wc_x]
type = FunctionDirichletBC
variable = wc_x
boundary = 'left' # right top bottom front back'
function = '0.3*y*1.11E-2'
[../]
[./fix_wc_y]
type = FunctionDirichletBC
variable = wc_y
boundary = 'left' # right top bottom front back'
function = '1.11E-2*x'
[../]
[./end_moment]
type = VectorNeumannBC
boundary = right
variable = wc_y
vector_value = '2.3785714286E-3 0 0'
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
[../]
[./strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yx
index_i = 1
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
[../]
[./strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zx
index_i = 2
index_j = 0
[../]
[./strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zy
index_i = 2
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'disp_x disp_y disp_z stress_xx stress_xy stress_xz stress_yx stress_yy stress_yz stress_zx stress_zy stress_zz wc_x wc_y wc_z couple_stress_xx couple_stress_xy couple_stress_xz couple_stress_yx couple_stress_yy couple_stress_yz couple_stress_zx couple_stress_zy couple_stress_zz'
start_point = '0 0 0.5'
end_point = '10 0 0.5'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 2.0
joint_normal_stiffness = 1E16
joint_shear_stiffness = 0.1
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -ksp_max_it -sub_pc_factor_shift_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'gmres asm lu 1E-11 1E-11 10 1E-15 1E-10 100 NONZERO 2 100'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_02_apply_stress
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/newton_cooling/nc08.i)
# Newton cooling from a bar. 1-phase ideal fluid and heat, steady
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pressure temp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[pressure]
[]
[temp]
[]
[]
[ICs]
# have to start these reasonably close to their steady-state values
[pressure]
type = FunctionIC
variable = pressure
function = '200-0.5*x'
[]
[temperature]
type = FunctionIC
variable = temp
function = 180+0.1*x
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
gravity = '0 0 0'
variable = pressure
[]
[heat_advection]
type = PorousFlowHeatAdvection
gravity = '0 0 0'
variable = temp
[]
[]
[Modules]
[FluidProperties]
[idealgas]
type = IdealGasFluidProperties
molar_mass = 1.4
gamma = 1.2
mu = 1.2
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[dens0]
type = PorousFlowSingleComponentFluid
fp = idealgas
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 1.1 0 0 0 1.1'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey # irrelevant in this fully-saturated situation
n = 2
phase = 0
[]
[]
[BCs]
[leftp]
type = DirichletBC
variable = pressure
boundary = left
value = 200
[]
[leftt]
type = DirichletBC
variable = temp
boundary = left
value = 180
[]
[newtonp]
type = PorousFlowPiecewiseLinearSink
variable = pressure
boundary = right
pt_vals = '-200 0 200'
multipliers = '-200 0 200'
use_mobility = true
use_relperm = true
fluid_phase = 0
flux_function = 0.005 # 1/2/L
[]
[newtont]
type = PorousFlowPiecewiseLinearSink
variable = temp
boundary = right
pt_vals = '-200 0 200'
multipliers = '-200 0 200'
use_mobility = true
use_relperm = true
use_enthalpy = true
fluid_phase = 0
flux_function = 0.005 # 1/2/L
[]
[]
[VectorPostprocessors]
[porepressure]
type = LineValueSampler
variable = pressure
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 11
execute_on = timestep_end
[]
[temperature]
type = LineValueSampler
variable = temp
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 11
execute_on = timestep_end
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1E-10
nl_abs_tol = 1E-15
[]
[Outputs]
file_base = nc08
execute_on = timestep_end
exodus = true
[along_line]
type = CSV
execute_vector_postprocessors_on = timestep_end
[]
[]
(test/tests/misc/check_error/bad_material_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Materials]
active = empty
# Test for bad Material
[./empty]
type = Foo
block = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/examples/periodic_strain/global_strain_pfm_3D.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 20
ny = 20
nz = 20
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*sin(2*z*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = 'c w u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0.5 0.5 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 -0.5 -0.5 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 1 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_wp_only.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a transverse section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 300m deep
# and just the roof is studied (0<=z<=300). The model sits
# between 0<=y<=450. The excavation sits in 0<=y<=150. This
# is a "half model": the boundary conditions are such that
# the model simulates an excavation sitting in -150<=y<=150
# inside a model of the region -450<=y<=450. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3). Mining is simulated by moving the excavation's
# roof down, until disp_z=-3 at t=1.
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=0 and y=450
# - disp_z = 0 for y>150
# - disp_z = -3 at maximum, for 0<=y<=150. See excav function.
# That is, rollers on the sides, free at top, and prescribed at bottom.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Below you will see Drucker-Prager parameters and AuxVariables, etc.
# These are not actally used in this example.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# Weak-plane cohesion = 0.1 MPa
# Weak-plane friction angle = 20 deg
# Weak-plane dilation angle = 10 deg
# Weak-plane tensile strength = 0.1 MPa
# Weak-plane compressive strength = 100 MPa, varying down to 1 MPa when tensile strain = 1
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 30 # make this a multiple of 3, so y=150 is at a node
ymin = 0
ymax = 450
[]
[left]
type = SideSetsAroundSubdomainGenerator
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 150 3'
input = bottom
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
new_boundary = 21
primary_block = 0
paired_block = 1
input = excav
[]
[hole]
type = BlockDeletionGenerator
block = 1
input = roof
[]
[]
[GlobalParams]
block = 0
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./dp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./dp_shear]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_internal_parameter
variable = dp_shear
[../]
[./dp_tensile]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_internal_parameter
variable = dp_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./dp_shear_f]
type = MaterialStdVectorAux
index = 0
property = dp_plastic_yield_function
variable = dp_shear_f
[../]
[./dp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = dp_plastic_yield_function
variable = dp_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12 16 21' # note addition of 16 and 21
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = FunctionDirichletBC
variable = disp_z
boundary = 21
function = excav_sideways
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*max(min((t/end_t*(ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[./excav_downwards]
type = ParsedFunction
vars = 'end_t ymin ymax e_h closure_dist'
vals = '1.0 0 150.0 -3.0 15.0'
value = 'e_h*t/end_t*max(min(((ymax-ymin)+ymin-y)/closure_dist,1),0)'
[../]
[]
[UserObjects]
[./dp_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.9 # MPa
value_residual = 3.1 # MPa
rate = 1.0
[../]
[./dp_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./dp_dil]
type = TensorMechanicsHardeningConstant
value = 0.65
[../]
[./dp_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.4 # MPa
rate = 1.0
[../]
[./dp_compressive_str]
type = TensorMechanicsHardeningConstant
value = 1.0E3 # Large!
[../]
[./drucker_prager_model]
type = TensorMechanicsPlasticDruckerPrager
mc_cohesion = dp_coh_strong_harden
mc_friction_angle = dp_fric
mc_dilation_angle = dp_dil
internal_constraint_tolerance = 1 # irrelevant here
yield_function_tolerance = 1 # irrelevant here
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'wp'
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./dp]
type = CappedDruckerPragerCosseratStressUpdate
block = 0
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = dp
DP_model = drucker_prager_model
tensile_strength = dp_tensile_str_strong_harden
compressive_strength = dp_compressive_str
max_NR_iterations = 100000
tip_smoother = 0.1E1
smoothing_tol = 0.1E1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
block = 0
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2500
[../]
[]
[Postprocessors]
[./subsidence]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.2
end_time = 0.2
[]
[Outputs]
file_base = cosserat_wp_only
interval = 1
print_linear_residuals = false
csv = true
exodus = true
[./console]
type = Console
output_linear = false
[../]
[]
(modules/combined/test/tests/gravity/gravity_qp_select.i)
# Gravity Test
#
# This test is similar to the other gravity tests, but it also tests the
# capability in MaterialTensorAux to return the stress of a single,
# specified integration point, rather than the element average.
# To get the stress at a single integration point, set the parameter
# qp_select to the integration point number (i.e. 0-9 for a quad 8)
# in the AuxKernel
#
# The mesh for this problem is a unit square.
#
# The boundary conditions for this problem are as follows. The
# displacement is zero on each of side that faces a negative
# coordinate direction. The acceleration of gravity is 20.
#
# The material has a Young's modulus of 1e6 and a density of 2.
#
# The analytic solution for the displacement along the bar is:
#
# u(x) = -b*x^2/(2*E)+b*L*x/E
#
# The displacement at x=L is b*L^2/(2*E) = 2*20*1*1/(2*1e6) = 0.00002.
#
# The analytic solution for the stress along the bar assuming linear
# elasticity is:
#
# S(x) = b*(L-x)
#
# The stress at x=0 is b*L = 2*20*1 = 40.
#
# Note: The isoparametric coordinate for a quad8 (fourth order) element
# is: +/- 0.77459667 and 0. For a 1 unit square with the edge of
# the element in the x = 0 plane, there would be an integration point
# at x_coordinate 0.5 - 0.5*0.77459667 (0.11270167), 0.5, and
# 0.50 + 0.5*0.77459667 (0.88729834).
#
# The corresponding stresses are:
#
# S(0.11270167) = 40(1-0.11270167) = 35.491933
# S(0.5) = 40(1-0.5) = 20
# S(0.88729834) = 40(1-0.88729834) = 4.5080664
#
# These stresses are a precise match to the simulation result.
#
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = gravity_2D.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx_qp_0]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_1]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_2]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_3]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_4]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_5]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_6]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_7]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx_qp_8]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
#incremental = true
add_variables = true
generate_output = 'stress_xx'
[]
[Kernels]
[./gravity]
type = Gravity
variable = disp_x
value = 20
[../]
[]
[AuxKernels]
[./stress_xx_qp_0]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_0
index_i = 0
index_j = 0
selected_qp = 0
[../]
[./stress_xx_qp_1]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_1
index_i = 0
index_j = 0
selected_qp = 1
[../]
[./stress_xx_qp_2]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_2
index_i = 0
index_j = 0
selected_qp = 2
[../]
[./stress_xx_qp_3]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_3
index_i = 0
index_j = 0
selected_qp = 3
[../]
[./stress_xx_qp_4]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_4
index_i = 0
index_j = 0
selected_qp = 4
[../]
[./stress_xx_qp_5]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_5
index_i = 0
index_j = 0
selected_qp = 5
[../]
[./stress_xx_qp_6]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_6
index_i = 0
index_j = 0
selected_qp = 6
[../]
[./stress_xx_qp_7]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_7
index_i = 0
index_j = 0
selected_qp = 7
[../]
[./stress_xx_qp_8]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx_qp_8
index_i = 0
index_j = 0
selected_qp = 8
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
bulk_modulus = 0.333333333333333e6
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./density]
type = Density
density = 2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
end_time = 1.0
[]
[Outputs]
file_base = gravity_qp_select_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/contact/test/tests/mortar_dynamics/block-dynamics-action.i)
starting_point = 2e-1
offset = -0.19
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = long-bottom-block-no-lower-d.e
[]
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
stiffness_damping_coefficient = 1.0
hht_alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[]
[Contact]
[mechanical]
primary = 20
secondary = 10
formulation = mortar
model = frictionless
c_normal = 1e4
interpolate_normals = false
capture_tolerance = 1.0e-5
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 75
dt = 0.05
dtmin = .05
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err '
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = ''
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[]
(modules/contact/test/tests/mortar_tm/2d/ad_frictionless_sec/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'small'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeLinearElasticStress
block = 'plank block'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5.0
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/dirackernels/material_point_source/material_point_source.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
[./material_source]
type = MaterialPointSource
variable = u
point = '0.2 0.3 0.0'
material_prop = 'matp'
prop_state = 'current'
[../]
[]
[Materials]
[./xmat]
# MTMaterial provides 'matp', value is the 'shift' added to the x-coordinate
# when computing the Material property value.
type = MTMaterial
block = '0'
value = 0.
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/porous_flow/test/tests/thm_rehbinder/fixed_outer.i)
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 40
nt = 16
rmin = 0.1
rmax = 1
dmin = 0.0
dmax = 90
growth_r = 1.1
[]
[make3D]
input = annular
type = MeshExtruderGenerator
bottom_sideset = bottom
top_sideset = top
extrusion_vector = '0 0 1'
num_layers = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
biot_coefficient = 1.0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[temperature]
[]
[]
[BCs]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'top bottom'
[]
[ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[]
[xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[]
[cavity_temperature]
type = DirichletBC
variable = temperature
value = 1000
boundary = rmin
[]
[cavity_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = rmin
[]
[cavity_zero_effective_stress_x]
type = Pressure
variable = disp_x
function = 1E6
boundary = rmin
use_displaced_mesh = false
[]
[cavity_zero_effective_stress_y]
type = Pressure
variable = disp_y
function = 1E6
boundary = rmin
use_displaced_mesh = false
[]
[outer_temperature]
type = DirichletBC
variable = temperature
value = 0
boundary = rmax
[]
[outer_pressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = rmax
[]
[fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = rmax
[]
[]
[AuxVariables]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_pp]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[stress_rr]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_rr
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[stress_pp]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_pp
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 1E12
viscosity = 1.0E-3
density0 = 1000.0
cv = 1000.0
cp = 1000.0
porepressure_coefficient = 0.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = ThermoHydroMechanical
multiply_by_density = false
add_stress_aux = true
porepressure = porepressure
temperature = temperature
eigenstrain_names = thermal_contribution
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1E10
poissons_ratio = 0.2
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = thermal_contribution
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1E-6
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 1E12
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
fluid_coefficient = 1E-6
drained_coefficient = 1E-6
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1E6 0 0 0 1E6 0 0 0 1E6'
[]
[]
[VectorPostprocessors]
[P]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = porepressure
[]
[T]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = temperature
[]
[U]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = disp_x
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_rtol'
petsc_options_value = 'gmres asm lu 1E-8'
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
file_base = fixed_outer
execute_on = timestep_end
csv = true
[]
(test/tests/multiapps/picard/picard_rel_tol_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-7
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/restart2.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test1.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
dt = 0.05
end_time = 1.0
[]
[Outputs]
exodus = true
[]
[Problem]
restart_file_base = restart_out_cp/0010
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM_action.i)
# This file uses a PorousFlowFullySaturated Action. The equivalent non-Action input file is pp_generation_unconfined_constM.i
#
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source, s, has units m^3/second/m^3. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/second/m^3. The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
biot_coefficient = 0.3
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
gravity = '0 0 0'
fp = simple_fluid
stabilization = Full
[]
[Kernels]
[source]
type = BodyForce
function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
variable = porepressure
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
constant_fluid_bulk_modulus = 3.3333333333
constant_biot_modulus = 10.0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[]
[Functions]
[stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[]
[stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[]
[p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_constM_action
[csv]
type = CSV
[]
[]
(test/tests/mesh/side_list_from_node_list/side_list_from_node_list.i)
[Mesh]
type = FileMesh
file = square_nodesets_only.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/preconditioners/smp/smp_single_test.i)
#
# This is not very strong test since the problem being solved is linear, so the difference between
# full Jacobian and block diagonal preconditioner are not that big
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'u'
off_diag_column = 'v'
[../]
[]
[Kernels]
active = 'diff_u conv_u diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u top_v bottom_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./bottom_v]
type = DirichletBC
variable = v
boundary = 0
value = 5
[../]
[./top_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Steady
# l_max_its = 1
# nl_max_its = 1
# nl_rel_tol = 1e-10
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/variables/optionally_coupled/optionally_coupled_twovar.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./optional_coupling]
type = OptionallyVectorCoupledForce
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/max_procs_per_app/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
max_procs_per_app = 1
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/ref.i)
[Mesh]
file = 3blk.e
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[]
[Materials]
[./left]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[../]
[./right]
type = HeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[../]
[./middle]
type = HeatConductionMaterial
block = 3
thermal_conductivity = 100
specific_heat = 1
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
use_displaced_mesh = false
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-11
l_tol = 1e-11
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/bad_enum_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
error_estimator = PatchRecoveryFooBar # This is a bad error estimator
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/problems/action_custom_fe_problem/action_custom_fe_problem_test.i)
# This test demonstrates that a Problem can be created through an Action (possibly associated with
# special syntax), that may or may not even have a type specified.
# See the custom "TestProblem" block below.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[TestProblem]
# Creates a custom problem through a meta-action.
name = 'MOOSE Action Test problem'
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
[]
(tutorials/tutorial02_multiapps/step02_transfers/01_master_meshfunction.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[tv]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '01_sub_meshfunction.i'
[]
[]
[Transfers]
[pull_v]
type = MultiAppMeshFunctionTransfer
# Transfer from the sub-app to this app
from_multi_app = sub_app
# The name of the variable in the sub-app
source_variable = v
# The name of the auxiliary variable in this app
variable = tv
[]
[push_u]
type = MultiAppMeshFunctionTransfer
# Transfer to the sub-app from this app
to_multi_app = sub_app
# The name of the variable in this app
source_variable = u
# The name of the auxiliary variable in the sub-app
variable = tu
[]
[]
(modules/combined/test/tests/linear_elasticity/extra_stress.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 128
ny = 1
xmax = 3.2
ymax = 0.025
elem_type = QUAD4
[]
[Modules/TensorMechanics/Master/All]
add_variables = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
[]
[AuxVariables]
[./c]
[../]
[]
[ICs]
[./c_IC]
type = BoundingBoxIC
variable = c
x1 = -1
y1 = -1
x2 = 1.6
y2 = 1
inside = 0
outside = 1
block = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '104 74 74 104 74 104 47.65 47.65 47.65'
fill_method = symmetric9
base_name = matrix
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
base_name = matrix
[../]
[./strain]
type = ComputeSmallStrain
block = 0
base_name = matrix
[../]
[./elasticity_tensor_ppt]
type = ComputeElasticityTensor
block = 0
C_ijkl = '0.104 0.074 0.074 0.104 0.074 0.104 0.04765 0.04765 0.04765'
fill_method = symmetric9
base_name = ppt
[../]
[./stress_ppt]
type = ComputeLinearElasticStress
block = 0
base_name = ppt
[../]
[./strain_ppt]
type = ComputeSmallStrain
block = 0
base_name = ppt
[../]
[./const_stress]
type = ComputeExtraStressConstant
block = 0
base_name = ppt
extra_stress_tensor = '-0.288 -0.373 -0.2747 0 0 0'
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = ppt
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = c
[../]
[]
[BCs]
active = 'left_x right_x bottom_y top_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/user_object_011orientation.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./lagrangian_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./lagrangian_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = pk2
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./lagrangian_strain_zz]
type = RankTwoAux
variable = lagrangian_strain_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./lagrangian_strain_yy]
type = RankTwoAux
rank_two_tensor = lage
variable = lagrangian_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_rate_gss
index = 0
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
euler_angle_1 = 120.0
euler_angle_2 = 125.264
euler_angle_3 = 45.0
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./lagrangian_strain_yy]
type = ElementAverageValue
variable = lagrangian_strain_yy
[../]
[./lagrangian_strain_zz]
type = ElementAverageValue
variable = lagrangian_strain_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
[]
(modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./cf]
type = CoupledForce
coef = 10000
variable = u
v=v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
input_files = 'petsc_transient_as_sub.i'
app_type = ExternalPetscSolverApp
library_path = '../../../../external_petsc_solver/lib'
[../]
[]
[Transfers]
[./fromsub]
type = MultiAppMeshFunctionTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[../]
[]
(test/tests/outputs/console/console_no_outputs_block.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/contact/test/tests/verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x226]
type = NodalVariableValue
nodeid = 225
variable = disp_x
[../]
[./disp_y226]
type = NodalVariableValue
nodeid = 225
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-5
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 3.5
l_tol = 1e-3
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x226 disp_y226 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
primary = 2
secondary = 3
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
[../]
[]
(test/tests/kernels/tag_errors/tag_doesnt_exist/bad_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/pre_aux_based_on_exec_flag/pre_post_aux_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
nx = 2
ymin = 0
ymax = 1
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[AuxVariables]
[w1]
order = FIRST
family = LAGRANGE
initial_condition = 2
[]
[w2]
order = FIRST
family = LAGRANGE
[]
[w3]
order = FIRST
family = LAGRANGE
[]
[w4]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# The purpose of this auxkernel is to provide the variable w1
# and the scalepostprocessors included below will either get
# an updated w1 or the previous w1 value depending on whether
# they are forced in preaux or postaux
[NormalizationAuxW1]
type = NormalizationAux
variable = w1
source_variable = u
shift = -100.0
normalization = 1.0
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[]
# This establishes a dependency for scale_initial on exec INITIAL
[NormalizationAuxINITIAL]
type = NormalizationAux
variable = w2
source_variable = u
normalization = scale_initial
execute_on = 'INITIAL'
[]
# This establishes a dependency for scale_initial on exec TIMESTEP_END
[NormalizationAuxTIMESTEP_END]
type = NormalizationAux
variable = w3
source_variable = u
normalization = scale_td_end
execute_on = 'TIMESTEP_END'
[]
# This establishes a dependency for scale_initial on exec FINAL
[NormalizationAuxFINAL]
type = NormalizationAux
variable = w4
source_variable = u
normalization = scale_final
execute_on = 'FINAL'
[]
[]
[Postprocessors]
#
# scalePostAux always gets run post_aux
#
[./total_u1]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scalePostAux]
type = ScalePostprocessor
value = total_u1
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
#
# shoule only run pre_aux on initial
#
[./total_u2]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scale_initial]
type = ScalePostprocessor
value = total_u2
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
#
# shoule be forced into preaux on timestep_end
#
[./total_u3]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scale_td_end]
type = ScalePostprocessor
value = total_u3
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
#
# shoule be forced into preaux on final
#
[./total_u4]
type = ElementIntegralVariablePostprocessor
variable = w1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[./scale_final]
type = ScalePostprocessor
value = total_u4
scaling_factor = 1
execute_on = 'INITIAL TIMESTEP_BEGIN TIMESTEP_END FINAL'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1.0
end_time = 2.0
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform3.i)
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[BCs]
[bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
# the following are "random" deformations
# each is O(1E-5) to keep deformations small
[topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E5'
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E5'
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E5'
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[]
[should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[]
[]
[Functions]
[should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5773503
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.08748866
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 100
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 100
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/mortar_tm/2d/ad_frictionless_fir/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite_rr'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
extra_vector_tags = 'ref'
use_automatic_differentiation = true
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-7
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d_fatigue.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[XFEM]
geometric_cut_userobjects = 'cut_mesh'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = HEX8
[]
[UserObjects]
[./cut_mesh]
type = CrackMeshCut3DUserObject
mesh_file = mesh_edge_crack.xda
growth_dir_method = 'function'
size_control = 1
n_step_growth = 1
growth_speed_method = 'fatigue'
function_x = growth_func_x
function_y = growth_func_y
function_z = growth_func_z
function_v = growth_func_v
crack_front_nodes = '7 6 5 4'
[../]
[]
[Functions]
[./growth_func_x]
type = ParsedFunction
value = 1
[../]
[./growth_func_y]
type = ParsedFunction
value = 0
[../]
[./growth_func_z]
type = ParsedFunction
value = 0
[../]
[./growth_func_v]
type = ParsedFunction
vars = 'dN'
vals = 'fatigue'
value = dN
[../]
[]
[Postprocessors]
[./fatigue]
type = ParisLaw
max_growth_size = 0.1
paris_law_c = 1e-13
paris_law_m = 2.5
[../]
[]
[DomainIntegral]
integrals = 'Jintegral InteractionIntegralKI InteractionIntegralKII'
displacements = 'disp_x disp_y disp_z'
crack_front_points_provider = cut_mesh
number_points_from_provider = 4
crack_direction_method = CurvedCrackFront
radius_inner = '0.15'
radius_outer = '0.45'
poissons_ratio = 0.3
youngs_modulus = 207000
block = 0
incremental = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[Functions]
[./top_trac_y]
type = ConstantFunction
value = 10
[../]
[]
[BCs]
[./top_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = top_trac_y
[../]
[./bottom_x]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = bottom
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
block = 0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 4.0
max_xfem_update = 1
[]
[Outputs]
file_base = edge_crack_3d_fatigue_out
execute_on = 'timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/combined/test/tests/phase_field_fracture_viscoplastic/crack2d.i)
[Mesh]
type = FileMesh
file = crack_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = Finite
additional_generate_output = stress_yy
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
use_displaced_mesh = true
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = '0.0001*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 300
slope = 1000
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 10.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.08 1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = '1.0e-3'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./viscop_damage]
type = HyperElasticPhaseFieldIsoDamage
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
numerical_stiffness = false
damage_stiffness = 1e-8
c = c
F_name = E_el
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/setup_interface_count/internal_side.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = InternalSideSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./timestep] # once per timestep
type = InternalSideSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./subdomain] # 1 on initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./execute] # 4 for initial and 8 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = InternalSideSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/mortar_tm/2d/ad_frictionless_sec/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite_rr'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
extra_vector_tags = 'ref'
use_automatic_differentiation = true
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
preset = false
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5.0
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-7
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/auxkernels/aux_nodal_scalar_kernel/aux_nodal_scalar_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[AuxVariables]
[./bc_sum]
family = SCALAR
order = FIRST
[../]
[]
[AuxScalarKernels]
[./sk]
type = SumNodalValuesAux
variable = bc_sum
nodes = '0 10'
sum_var = u
[../]
[]
[Postprocessors]
[./sum]
type = ScalarVariable
variable = bc_sum
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
hide = bc_sum
[]
(modules/porous_flow/test/tests/poro_elasticity/vol_expansion_poroperm.i)
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion and porosity increase.
# Check that permeability is calculated correctly from porosity.
#
# P = t
# With the Biot coefficient being 1, the effective stresses should be
# stress_xx = stress_yy = stress_zz = t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = t.
#
# With the biot coefficient being 1, the porosity (phi) # at time t is:
# phi = 1 - (1 - phi0) / exp(vol_strain)
# where phi0 is the porosity at t = 0 and P = 0.
#
# The permeability (k) is
# k = k_anisotropic * f * d^2 * phi^n / (1-phi)^m
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[p]
[]
[]
[BCs]
[p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[]
[xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[]
[ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[]
[zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[]
[]
[Kernels]
[p_does_not_really_diffuse]
type = Diffusion
variable = p
[]
[TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[poro]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[poro]
type = PointValue
variable = poro
point = '0 0 0'
[]
[perm_x]
type = PointValue
variable = perm_x
point = '0 0 0'
[]
[perm_y]
type = PointValue
variable = perm_y
point = '0 0 0'
[]
[perm_z]
type = PointValue
variable = perm_z
point = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 1
shear_modulus = 1
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = p
capillary_pressure = pc
[]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
solid_bulk = 1
biot_coefficient = 1
[]
[permeability]
type = PorousFlowPermeabilityKozenyCarman
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = kozeny_carman_fd2
f = 0.1
d = 5
m = 2
n = 7
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion_poroperm
csv = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/isotropicSD_plasticity/powerRuleHardening.i)
# UserObject IsotropicSD test, with power rule hardening with rate 1e2.
# Linear strain is applied in the x and y direction.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.5
zmax = .5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./xdisp]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = '0.005*t'
[../]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top'
function = '0.005*t'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
#boundary = 'bottom top'
boundary = 'bottom'
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./zfix]
type = DirichletBC
variable = disp_z
#boundary = 'front back'
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./sdev]
order = CONSTANT
family = MONOMIAL
[../]
[./sdet]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./plastic_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xx
index_i = 0
index_j = 0
[../]
[./plastic_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xy
index_i = 0
index_j = 1
[../]
[./plastic_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_xz
index_i = 0
index_j = 2
[../]
[./plastic_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yy
index_i = 1
index_j = 1
[../]
[./plastic_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_yz
index_i = 1
index_j = 2
[../]
[./plastic_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_zz
index_i = 2
index_j = 2
[../]
[./f]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = f
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./sdev]
type = RankTwoScalarAux
variable = sdev
rank_two_tensor = stress
scalar_type = VonMisesStress
[../]
[]
[Postprocessors]
[./sdev]
type = PointValue
point = '0 0 0'
variable = sdev
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./p_xx]
type = PointValue
point = '0 0 0'
variable = plastic_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./p_xy]
type = PointValue
point = '0 0 0'
variable = plastic_xy
[../]
[./p_xz]
type = PointValue
point = '0 0 0'
variable = plastic_xz
[../]
[./p_yz]
type = PointValue
point = '0 0 0'
variable = plastic_yz
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./p_yy]
type = PointValue
point = '0 0 0'
variable = plastic_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./p_zz]
type = PointValue
point = '0 0 0'
variable = plastic_zz
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 300
epsilon0 = 1
exponent = 1e2
[../]
[./IsotropicSD]
type = TensorMechanicsPlasticIsotropicSD
b = -0.2
c = -0.779422863
associative = true
yield_strength = str
yield_function_tolerance = 1e-5
internal_constraint_tolerance = 1e-9
use_custom_returnMap = false
use_custom_cto = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '121e3 80e3'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1e-9
plastic_models = IsotropicSD
debug_fspb = crash
tangent_operator = elastic
[../]
[]
[Executioner]
num_steps = 3
dt = .5
type = Transient
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
perf_graph = false
csv = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(modules/tensor_mechanics/test/tests/line_material_rank_two_sampler/rank_two_sampler.i)
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
elem_type = HEX
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e-6
[../]
[]
[Variables]
[./x_disp]
order = FIRST
family = LAGRANGE
[../]
[./y_disp]
order = FIRST
family = LAGRANGE
[../]
[./z_disp]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[]
[VectorPostprocessors]
[./stress_xx]
type = LineMaterialRankTwoSampler
start = '0.1667 0.4 0.45'
end = '0.8333 0.6 0.55'
property = stress
index_i = 0
index_j = 0
sort_by = id
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[BCs]
[./front]
type = FunctionDirichletBC
variable = z_disp
boundary = 5
function = rampConstant
[../]
[./back_x]
type = DirichletBC
variable = x_disp
boundary = 0
value = 0.0
[../]
[./back_y]
type = DirichletBC
variable = y_disp
boundary = 0
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = z_disp
boundary = 0
value = 0.0
[../]
[]
[Materials]
[./elast_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = .3
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
start_time = 0.0
num_steps = 99999
end_time = 1.0
dt = 0.1
[]
[Outputs]
file_base = rank_two_sampler_out
exodus = true
csv = true
[]
(test/tests/parser/cli_multiapp_single/dt_from_master_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_1/ring1_template2.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(test/tests/executioners/executioner/sln-time-adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.1
[../]
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_sta
exodus = true
[]
(test/tests/restart/restart_diffusion/restart_diffusion_test_steady.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = steady_out
exodus = true
checkpoint = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_separate.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[lm_conduction]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
use_displaced_mesh = true
[]
[]
[Constraints]
[ced_radiation]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'radiation'
[]
[ced_conduction]
type = ModularGapConductanceConstraint
variable = lm_conduction
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'conduction'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/combined/test/tests/power_law_creep/power_law_creep_restart2.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
tangent_operator = elastic
[../]
[./power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = Density
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.6
end_time = 1.0
num_steps = 12
dt = 0.1
[]
[Outputs]
file_base = power_law_creep_out
exodus = true
[]
[Problem]
restart_file_base = power_law_creep_restart1_out_cp/0006
[]
(modules/misc/test/tests/coupled_directional_mesh_height_interpolation/coupled_directional_mesh_height_interpolation.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 1
xmax = 2
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./stretch]
[../]
[]
[Functions]
[./stretch_func]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./interpolation]
type = CoupledDirectionalMeshHeightInterpolation
variable = disp_x
direction = x
execute_on = timestep_begin
coupled_var = stretch
[../]
[./stretch_aux]
type = FunctionAux
variable = stretch
function = stretch_func
execute_on = timestep_begin
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
use_displaced_mesh = true
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = 1
use_displaced_mesh = true
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/wrong_displacement_order.i)
[Mesh]
type = GeneratedMesh
dim = 2
# Mesh uses second-order elements
elem_type = QUAD8
displacements = 'disp_x disp_y'
block_name = pore
block_id = 0
[]
[Variables]
[./temperature]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 0.0
[../]
[../]
[]
# We are *not* allowed to use FIRST-order displacement vars!
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[./InitialCondition]
type = FunctionIC
function = displ
[../]
[../]
[]
[Functions]
[./displ]
type = ParsedFunction
value = -1/2*x*(y-0.5)
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = temperature
use_displaced_mesh = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
boundary = left
value = 1
use_displaced_mesh = true
[../]
[./right]
type = DirichletBC
variable = temperature
boundary = right
value = 0
use_displaced_mesh = true
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = PJFNK
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_rel_tol = 1e-6
nl_max_its = 10
l_tol = 1e-8
l_max_its = 50
num_steps = 2 # 200
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
nl_abs_step_tol = 1e-10
[./TimeStepper]
type = ConstantDT
dt = 0.001
[../]
dtmin = .001
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/steffensen/steady_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'steffensen'
fixed_point_max_its = 30
transformed_variables = 'u'
accept_on_max_fixed_point_iteration = true
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'steady_sub.i'
clone_master_mesh = true
transformed_variables = 'v'
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(modules/contact/test/tests/mortar_tm/horizontal_blocks_mortar_TM.i)
offset = 0.01
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[./left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = -1.0
xmax = 0.0
ymin = -0.5
ymax = 0.5
nx = 1
ny = 1
elem_type = QUAD4
boundary_name_prefix = lb
[../]
[./left_block_id]
type = SubdomainIDGenerator
input = left_block
subdomain_id = 1
[../]
[./right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.0
xmax = 1.0
ymin = -0.6
ymax = 0.6
nx = 1
ny = 1
elem_type = QUAD4
boundary_name_prefix = rb
boundary_id_offset = 10
[../]
[./right_block_id]
type = SubdomainIDGenerator
input = right_block
subdomain_id = 2
[../]
[./combined]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[../]
[./block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'left_block right_block'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[../]
[]
[Functions]
[./horizontal_movement]
type = ParsedFunction
value = t/10.0
[../]
[]
[BCs]
[./push_x]
type = FunctionDirichletBC
preset = true
variable = disp_x
boundary = lb_left
function = horizontal_movement
[../]
[./fix_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = rb_right
value = 0.0
[../]
[./fix_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = rb_right
value = 0.0
[../]
[./fix_y_offset]
type = DirichletBC
preset = true
variable = disp_y
boundary = lb_left
value = ${offset}
[../]
[]
[Materials]
[./elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = left_block
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = right_block
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress_right]
type = ComputeFiniteStrainElasticStress
block = right_block
[../]
[]
[Contact]
[./leftright]
secondary = lb_right
primary = rb_left
model = frictionless
formulation = mortar
friction_coefficient = 0.0
normal_smoothing_distance = 0.1
penalty = 1e+8
normalize_penalty = true
[../]
[]
[ICs]
[./disp_x]
type = ConstantIC
block = left_block
variable = disp_x
value = -${offset}
[../]
[./disp_y]
block = left_block
variable = disp_y
value = ${offset}
type = ConstantIC
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount -snes_max_it'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15 20'
dt = 0.1
dtmin = 0.1
end_time = 0.1
l_tol = 1e-4
l_max_its = 100
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
nl_max_its = 100
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/bad_number.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1.2eE
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/loose_couple_time_adapt/end.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[MultiApps]
[./dummy]
type = TransientMultiApp
input_files = adaptiveDT.i
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.006
dt = 0.006
nl_abs_tol = 1.0e-8
[]
[Outputs]
exodus = true
file_base = end
[]
(test/tests/multiapps/steffensen/transient_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[]
[Kernels]
[time]
type = CoefTimeDerivative
variable = v
Coefficient = 0.1
[]
[diff_v]
type = Diffusion
variable = v
[]
[force_v]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[Postprocessors]
[vnorm]
type = ElementL2Norm
variable = v
[]
[]
[Executioner]
type = Transient
end_time = 10
nl_abs_tol = 1e-12
steady_state_detection = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_algorithm = 'steffensen'
[]
[Outputs]
[csv]
type = CSV
start_step = 6
[]
exodus = false
[]
(tutorials/tutorial02_multiapps/step01_multiapps/07_sub_multilevel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[dos]
type = TransientMultiApp
positions = '0 0 0 1 0 0'
input_files = '07_sub_sub_multilevel.i'
[]
[]
(test/tests/adaptivity/max_h_level/max_h_level.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = PJFNK
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
execute_scalars_on = none
[../]
[]
(modules/tensor_mechanics/test/tests/visco/gen_kv_creep.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9 10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
l_tol = 1e-8
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_kv_creep_out
exodus = true
[]
(test/tests/outputs/exodus/exodus_input.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
execute_input_on = final
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/multiapps/petsc_options/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
l_max_its = 4
nl_max_its = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
petsc_options = '-test'
l_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
[../]
[]
(tutorials/darcy_thermo_mech/step08_postprocessors/problems/step8.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 3
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
uniform_refine = 2
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = left
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[column]
type = PackedColumn
radius = 1
temperature = temperature
porosity = '0.25952 + 0.7*y/0.0257'
[]
[]
[Postprocessors]
[average_temperature]
type = ElementAverageValue
variable = temperature
[]
[outlet_heat_flux]
type = ADSideDiffusiveFluxIntegral
variable = temperature
boundary = right
diffusivity = thermal_conductivity
[]
[]
[VectorPostprocessors]
[temperature_sample]
type = LineValueSampler
num_points = 500
start_point = '0.1 0 0'
end_point = '0.1 0.0257 0'
variable = temperature
sort_by = y
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
end_time = 100
dt = 0.25
start_time = -1
steady_state_tolerance = 1e-5
steady_state_detection = true
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/materials/stateful_prop/stateful_prop_spatial_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./prop1]
order = SECOND
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0.0
[../]
[./right]
type = MTBC
variable = u
boundary = 1
grad = 1.0
prop_name = thermal_conductivity
[../]
[]
[Materials]
[./stateful]
type = StatefulSpatialTest
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_spatial
[./out]
type = Exodus
elemental_as_nodal = true
execute_elemental_on = none
[../]
[]
(modules/tensor_mechanics/test/tests/radial_disp_aux/cylinder_2d_axisymmetric.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a cylinder subjected to uniform thermal
# expansion represented using a 2D axisymmetric model.
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
nx = 4
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementCylinderAux
variable = rad_disp
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(test/tests/functions/piecewise_constant_from_csv/piecewise_constant.i)
[Mesh]
allow_renumbering = false
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1.5 2.4 0.1'
dy = '1.3 0.9'
ix = '2 1 1'
iy = '1 3'
subdomain_id = '0 1 1
2 2 2'
[]
[]
[Variables]
[u]
[]
[]
[UserObjects]
[reader_element]
type = PropertyReadFile
prop_file_name = 'data_element.csv'
read_type = 'element'
nprop = 3 # number of columns in CSV
[]
[reader_node]
type = PropertyReadFile
prop_file_name = 'data_node.csv'
read_type = 'node'
nprop = 3 # number of columns in CSV
[]
[reader_nearest]
type = PropertyReadFile
prop_file_name = 'data_nearest.csv'
read_type = 'voronoi'
nprop = 3
nvoronoi = 3
[]
[reader_block]
type = PropertyReadFile
prop_file_name = 'data_nearest.csv'
read_type = 'block'
nprop = 3
nblock = 3
[]
[]
[Functions]
[element]
type = PiecewiseConstantFromCSV
read_prop_user_object = 'reader_element'
read_type = 'element'
column_number = '2'
[]
[node]
type = PiecewiseConstantFromCSV
read_prop_user_object = 'reader_node'
read_type = 'node'
column_number = '2'
[]
[nearest]
type = PiecewiseConstantFromCSV
read_prop_user_object = 'reader_nearest'
read_type = 'voronoi'
column_number = '2'
[]
[block]
type = PiecewiseConstantFromCSV
read_prop_user_object = 'reader_block'
read_type = 'block'
column_number = '2'
[]
[]
[ICs]
active = 'element'
[element]
type = FunctionIC
variable = 'u'
function = 'element'
[]
[node]
type = FunctionIC
variable = 'u'
function = 'node'
[]
[nearest]
type = FunctionIC
variable = 'u'
function = 'nearest'
[]
[block]
type = FunctionIC
variable = 'u'
function = 'block'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[unity]
type = DirichletBC
variable = u
boundary = 'left bottom'
value = 1
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
end_time = 0.1
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/Nucleation/material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 20
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
variable = c
value = 0
[../]
[./right]
type = DirichletBC
boundary = right
variable = c
value = 1
[../]
[./Periodic]
[./all]
auto_direction = y
[../]
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./nucleation]
type = DiscreteNucleation
op_names = c
op_values = 1
map = map
outputs = exodus
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationInserter
hold_time = 1
probability = 0.01
radius = 3.27
[../]
[./map]
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
hide = c
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/wli02.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 1
xmin = -1000
xmax = 0
ymin = 0
ymax = 0.05
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = pressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureBW
Sn = 0.0
Ss = 1.0
C = 1.5
las = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 4
density0 = 10
thermal_expansion = 0
[]
[]
[]
[Materials]
[massfrac]
type = PorousFlowMassFraction
[]
[temperature]
type = PorousFlowTemperature
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[relperm]
type = PorousFlowRelativePermeabilityBW
Sn = 0.0
Ss = 1.0
Kn = 0
Ks = 1
C = 1.5
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1'
[]
[]
[Variables]
[pressure]
initial_condition = -1E-4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '-0.1 0 0'
[]
[]
[AuxVariables]
[SWater]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[]
[]
[BCs]
[base]
type = DirichletBC
boundary = 'left'
value = -1E-4
variable = pressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10000'
[]
[]
[VectorPostprocessors]
[swater]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = SWater
start_point = '-1000 0 0'
end_point = '0 0 0'
sort_by = x
num_points = 71
execute_on = timestep_end
[]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 100
dt = 5
[]
[Outputs]
file_base = wli02
sync_times = '100 500 1000'
[exodus]
type = Exodus
sync_only = true
[]
[along_line]
type = CSV
sync_only = true
[]
[]
(modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform9_cosserat.i)
# Using Cosserat with large layer thickness, so this should reduce to standard
# Using CappedMohrCoulombCosserat with tensile failure only
# A single unit element is stretched in a complicated way that
# the trial stress is
# 1.51515 0.8 0.666667
# 0.8 -3.74545 -1.85037e-17
# 0.7 -1.66533e-17 -1.27273
# with symmetric part
# 1.51515 0.8 0.6833
# 0.8 -3.74545 -1.85037e-17
# 0.6833 -1.66533e-17 -1.27273
#
# This has eigenvalues
# la = {-3.86844, 1.78368, -1.41827}
# and eigenvectors
#
# {0.15183, -0.987598, -0.03997},
# {-0.966321, -0.139815, -0.216044},
# {-0.207777, -0.0714259, 0.975565}}
#
# The tensile strength is 0.5 and Young=1 and Poisson=0.25,
# with E_0000/E_0011 = nu / (1 - nu) = 0.333333
# Using smoothing_tol=0.01, the return-map algorithm should
# return to stress_I = 0.5, which is a reduction of 1.28368, so
# stress_II = -1.41827 - 1.28368 * 0.33333 = -1.846
# stress_III = -3.86844 - 1.28368 * 0.33333 = -4.296
#
# The final stress symmetric stress is
#
# {0.29, 0.69, 0.51},
# {0.69, -4.19, -0.03},
# {0.51, -0.03, -1.74}
#
# and a final unsymmetric stress of
#
# {0.29, 0.69, 0.49},
# {0.69, -4.19, -0.03},
# {0.52, -0.03, -1.74}
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'front back'
function = '3*x-y+z'
[../]
[./y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'front back'
function = '3*x-4*y'
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front back'
function = 'x-2*z'
[../]
[./wc_x]
type = DirichletBC
variable = wc_x
boundary = 'front back'
value = 0.0
[../]
[./wc_y]
type = DirichletBC
variable = wc_y
boundary = 'front back'
value = 0.0
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_I]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_II]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_III]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f0]
order = CONSTANT
family = MONOMIAL
[../]
[./f1]
order = CONSTANT
family = MONOMIAL
[../]
[./f2]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_I]
type = RankTwoScalarAux
scalar_type = MaxPrincipal
rank_two_tensor = stress
variable = stress_I
selected_qp = 0
[../]
[./stress_II]
type = RankTwoScalarAux
scalar_type = MidPrincipal
rank_two_tensor = stress
variable = stress_II
selected_qp = 0
[../]
[./stress_III]
type = RankTwoScalarAux
scalar_type = MinPrincipal
rank_two_tensor = stress
variable = stress_III
selected_qp = 0
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./f0_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f0
[../]
[./f1_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f1
[../]
[./f2_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f2
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./intnl_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl
[../]
[]
[Postprocessors]
[./s_I]
type = PointValue
point = '0 0 0'
variable = stress_I
[../]
[./s_II]
type = PointValue
point = '0 0 0'
variable = stress_II
[../]
[./s_III]
type = PointValue
point = '0 0 0'
variable = stress_III
[../]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./f0]
type = PointValue
point = '0 0 0'
variable = f0
[../]
[./f1]
type = PointValue
point = '0 0 0'
variable = f1
[../]
[./f2]
type = PointValue
point = '0 0 0'
variable = f2
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./intnl]
type = PointValue
point = '0 0 0'
variable = intnl
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E6
[../]
[./ang]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1.0
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./tensile]
type = CappedMohrCoulombCosseratStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = coh
friction_angle = ang
dilation_angle = ang
smoothing_tol = 0.001
yield_function_tol = 1.0E-12
host_youngs_modulus = 1.0
host_poissons_ratio = 0.25
[../]
[./stress]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = tensile
perform_finite_strain_rotations = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
nl_abs_tol = 1E-10
type = Transient
[]
[Outputs]
file_base = small_deform9_cosserat
csv = true
[]
(test/tests/controls/time_periods/multiapps/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.2
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
start_time = 0.3 # set to match start time of MultiApp in master
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/orthotropic_rotation_Cijkl.i)
# This test is designed to test the correct application of the Euler angle
# rotations to the elasticity tensor. The test uses values for the nine C_ijkl
# entries that correspond to the engineering notation placement:
# e.g. C11 = 11e3, c12 = 12e3, c13 = 13e3, c22 = 22e3 ..... c66 = 66e3
#
# A rotation of (0, 90, 0) is applied to the 1x1x1 cube, such that the values of
# c12 and c13 switch, c22 and c33 switch, and c55 and c66 switch. Postprocessors
# are used to verify this switch (made simple with the value convention above)
# and to verify that the unrotated components along the x-axis remain constant.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./lage_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./pk2_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./c11]
order = CONSTANT
family = MONOMIAL
[../]
[./c12]
order = CONSTANT
family = MONOMIAL
[../]
[./c13]
order = CONSTANT
family = MONOMIAL
[../]
[./c22]
order = CONSTANT
family = MONOMIAL
[../]
[./c23]
order = CONSTANT
family = MONOMIAL
[../]
[./c33]
order = CONSTANT
family = MONOMIAL
[../]
[./c44]
order = CONSTANT
family = MONOMIAL
[../]
[./c55]
order = CONSTANT
family = MONOMIAL
[../]
[./c66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[AuxKernels]
[./lage_xx]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./lage_yy]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./pk2_yy]
type = RankTwoAux
variable = pk2_yy
rank_two_tensor = pk2
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./lage_zz]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./c11]
type = RankFourAux
variable = c11
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
execute_on = timestep_end
[../]
[./c12]
type = RankFourAux
variable = c12
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c13]
type = RankFourAux
variable = c13
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c22]
type = RankFourAux
variable = c22
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c23]
type = RankFourAux
variable = c23
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c33]
type = RankFourAux
variable = c33
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c44]
type = RankFourAux
variable = c44
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
execute_on = timestep_end
[../]
[./c55]
type = RankFourAux
variable = c55
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 0
index_k = 2
index_l = 0
execute_on = timestep_end
[../]
[./c66]
type = RankFourAux
variable = c66
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8e3 5 8 60.8e3 9 12 60.8e3'
tan_mod_type = exact
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '11e3 12e3 13e3 22e3 23e3 33e3 44e3 55e3 66e3'
fill_method = symmetric9
euler_angle_1 = 0.0
euler_angle_2 = 90.0
euler_angle_3 = 0.0
[../]
[]
[Postprocessors]
[./lage_xx]
type = ElementAverageValue
variable = lage_xx
[../]
[./pk2_yy]
type = ElementAverageValue
variable = pk2_yy
[../]
[./lage_yy]
type = ElementAverageValue
variable = lage_yy
[../]
[./lage_zz]
type = ElementAverageValue
variable = lage_zz
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./c11]
type = ElementAverageValue
variable = c11
[../]
[./c12]
type = ElementAverageValue
variable = c12
[../]
[./c13]
type = ElementAverageValue
variable = c13
[../]
[./c22]
type = ElementAverageValue
variable = c22
[../]
[./c23]
type = ElementAverageValue
variable = c23
[../]
[./c33]
type = ElementAverageValue
variable = c33
[../]
[./c44]
type = ElementAverageValue
variable = c44
[../]
[./c55]
type = ElementAverageValue
variable = c55
[../]
[./c66]
type = ElementAverageValue
variable = c66
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-3
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 1 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
dtmax = 0.1
dtmin = 1.0e-3
dt = 0.05
end_time = 0.5
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm_cfp.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = ellip_crack_4sym_norad_mm.e
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./resid_z]
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 0.1'
scale_factor = -689.5 #MPa
[../]
[]
[DomainIntegral]
integrals = JIntegral
crack_direction_method = CurvedCrackFront
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '0.0 1.0 0.0'
crack_direction_vector_end_2 = '1.0 0.0 0.0'
crack_front_points = '0 254 0
127.308 248.843 0
249.446 233.581 0
361.455 208.835 0
508.003 152.398 0
602.415 80.3208 0
635 0 0'
radius_inner = '12.5 25.0 37.5'
radius_outer = '25.0 37.5 50.0'
intersecting_boundary = '1 2'
symmetry_plane = 2
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 12
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 5
function = rampConstantUp
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
# Two sets of linesearch options are for petsc 3.1 and 3.3 respectively
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
# petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
nl_rel_tol = 1e-11
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./nl_its]
type = NumNonlinearIterations
[../]
[./lin_its]
type = NumLinearIterations
[../]
[./react_z]
type = NodalSum
variable = resid_z
boundary = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = j_int_surfbreak_ellip_crack_sym_mm_cfp_out
exodus = true
csv = true
[]
(test/tests/controls/time_periods/aux_scalar_kernels/enable_disable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard/function_dt_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
value = t*x
[../]
[./ffn]
type = ParsedFunction
value = x
[../]
[./dts]
type = PiecewiseLinear
x = '0.1 10'
y = '0.1 10'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
dt = 0.1
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
start_time = 0
num_steps = 3
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/dilatation.i)
# This test checks the thermal expansion calculated via an dilatation function.
# The coefficient is selected so as to result in a 1e-4 strain in the x-axis, and to cross over
# from positive to negative strain.
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 3
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = '1 + t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeDilatationThermalExpansionFunctionEigenstrain
dilatation_function = cte_dilatation
stress_free_temperature = 1.5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_dilatation]
type = PiecewiseLinear
x = '1 2'
y = '-1e-4 1e-4'
[../]
[]
[Postprocessors]
[./disp_x_max]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./temp_avg]
type = ElementAverageValue
variable = temp
[../]
[]
[Executioner]
type = Transient
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/peridynamics/test/tests/simple_tests/2D_small_strain_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1003
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 1001
function = '0.001*t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e8
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_small_strain_H1NOSPD
exodus = true
[]
(modules/combined/test/tests/axisymmetric_2d3d_solution_function/2d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = 2d.e
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[temp]
initial_condition = 400
[]
[]
[AuxVariables]
[hoop_stress]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[temp_inner_func]
type = PiecewiseLinear
xy_data = '0 400
1 350'
[]
[temp_outer_func]
type = PiecewiseLinear
xy_data = '0 400
1 400'
[]
[press_func]
type = PiecewiseLinear
xy_data = '0 15
1 15'
[]
[]
[Kernels]
[heat]
type = HeatConduction
variable = temp
[]
[]
[Modules/TensorMechanics/Master]
[all]
volumetric_locking_correction = true
add_variables = true
incremental = true
strain = FINITE
eigenstrain_names = thermal_expansion
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress'
temperature = temp
[]
[]
[AuxKernels]
[hoop_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hoop_stress
scalar_type = HoopStress
execute_on = timestep_end
[]
[]
[BCs]
[no_y]
type = DirichletBC
variable = disp_y
boundary = '1'
value = 0.0
[]
[Pressure]
[internal_pressure]
boundary = '4'
factor = 1.e6
function = press_func
[]
[]
[t_in]
type = FunctionDirichletBC
variable = temp
boundary = '4'
function = temp_inner_func
[]
[t_out]
type = FunctionDirichletBC
variable = temp
boundary = '2'
function = temp_outer_func
[]
[]
[Constraints]
[disp_y]
type = EqualValueBoundaryConstraint
variable = disp_y
primary = '65'
secondary = '3'
penalty = 1e18
[]
[]
[Materials]
[thermal1]
type = HeatConductionMaterial
block = '1'
thermal_conductivity = 25.0
specific_heat = 490.0
temp = temp
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 193.05e9
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 13e-6
stress_free_temperature = 295.00
temperature = temp
eigenstrain_name = thermal_expansion
[]
[density]
type = Density
block = '1'
density = 8000.0
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_snes_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 25
nl_max_its = 20
nl_rel_tol = 1e-9
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
dtmin = 1
[]
[Outputs]
file_base = 2d_out
exodus = true
[console]
type = Console
max_rows = 25
[]
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_transient.i)
# Using a single-dimensional mesh
# Transient flow and solute transport along a fracture in a porous matrix
# advective dominated flow in the fracture and diffusion into the porous matrix
#
# Note that fine_thick_fracture_steady.i must be run to initialise the porepressure properly
[Mesh]
file = 'gold/fine_thick_fracture_steady_out.e'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
initial_from_file_var = pp
initial_from_file_timestep = 1
[]
[massfrac0]
[]
[]
[AuxVariables]
[velocity_x]
family = MONOMIAL
order = CONSTANT
block = fracture
[]
[velocity_y]
family = MONOMIAL
order = CONSTANT
block = fracture
[]
[]
[AuxKernels]
[velocity_x]
type = PorousFlowDarcyVelocityComponent
variable = velocity_x
component = x
[]
[velocity_y]
type = PorousFlowDarcyVelocityComponent
variable = velocity_y
component = y
[]
[]
[ICs]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0
variable = massfrac0
boundary = top
[]
[bottom]
type = DirichletBC
value = 1
variable = massfrac0
boundary = bottom
[]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pp
disp_trans = 0
disp_long = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro_fracture]
type = PorousFlowPorosityConst
porosity = 1.0 # this is the true porosity of the fracture
block = 'fracture'
[]
[poro_matrix]
type = PorousFlowPorosityConst
porosity = 0.1
block = 'matrix1 matrix2'
[]
[diff1]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 1.0
block = 'fracture'
[]
[diff2]
type = PorousFlowDiffusivityConst
diffusion_coeff = '1e-9 1e-9'
tortuosity = 0.1
block = 'matrix1 matrix2'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability1]
type = PorousFlowPermeabilityConst
permeability = '3e-8 0 0 0 3e-8 0 0 0 3e-8' # this is the true permeability of the fracture
block = 'fracture'
[]
[permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[]
[Functions]
[dt_controller]
type = PiecewiseConstant
x = '0 30 40 100 200 83200'
y = '0.01 0.1 1 10 100 32'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 86400
#dt = 0.01
[TimeStepper]
type = FunctionDT
function = dt_controller
[]
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
[]
[VectorPostprocessors]
[xmass]
type = LineValueSampler
start_point = '0.4 0 0'
end_point = '0.5 0 0'
sort_by = x
num_points = 167
variable = massfrac0
[]
[]
[Outputs]
perf_graph = true
console = true
csv = true
exodus = true
[]
(test/tests/misc/exception/parallel_exception_initial_condition.i)
[Mesh]
file = 2squares.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = initial_condition
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = TestSteady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/chemical_reactions/test/tests/equilibrium_const/linear.i)
# Test of EquilibriumConstantAux with three log(K) values.
# The resulting equilibrium constant should be a linear best fit.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[AuxVariables]
[./logk]
[../]
[]
[AuxKernels]
[./logk]
type = EquilibriumConstantAux
temperature = temperature
temperature_points = '200 300 400'
logk_points = '1.8 1.5 1.2'
variable = logk
[../]
[]
[Variables]
[./temperature]
[../]
[]
[Kernels]
[./temperature]
type = Diffusion
variable = temperature
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
value = 150
boundary = left
[../]
[./right]
type = DirichletBC
variable = temperature
value = 400
boundary = right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_cosserat3.i)
# Plastic deformation. Layered Cosserat with parameters:
# Young = 10.0
# Poisson = 0.25
# layer_thickness = 10
# joint_normal_stiffness = 2.5
# joint_shear_stiffness = 2.0
# These give the following nonzero components of the elasticity tensor:
# E_0000 = E_1111 = 1.156756756757E+01
# E_0011 = E_1100 = 3.855855855856E+00
# E_2222 = E_pp = 8.108108108108E+00
# E_0022 = E_1122 = E_2200 = E_2211 = 2.702702702703E+00
# G = E_0101 = E_0110 = E_1001 = E_1010 = 4
# Gt = E_qq = E_0202 = E_0220 = E_2002 = E_1212 = E_1221 = E_2112 = 3.333333333333E+00
# E_2020 = E_2121 = 3.666666666667E+00
# They give the following nonzero components of the bending rigidity tensor:
# D = 8.888888888889E+02
# B_0101 = B_1010 = 8.080808080808E+00
# B_0110 = B_1001 = -2.020202020202E+00
#
# Applying the following deformation to the zmax surface of a unit cube:
# disp_x = 32*t/Gt
# disp_y = 24*t/Gt
# disp_z = 10*t/E_2222
# omega_x = omega_y = omega_z = 0
# yields the following strains:
# strain_xz = 32*t/Gt = 9.6*t
# strain_yz = 24*t/Gt = 7.2*t
# strain_zz = 10*t/E_2222 = 1.23333333*t
# and all other components, and the curvature, are zero.
# The nonzero components of stress are therefore:
# stress_xx = stress_yy = 3.33333*t
# stress_xz = stress_zx = 32*t
# stress_yz = stress_zy = 24*t
# stress_zz = 10*t
# The moment stress is zero.
# So q = 40*t and p = 10*t
#
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = E_qq/Epp/2, and cohesion=20,
# the system should return to p=0, q=20, ie stress_zz=0, stress_xz=16,
# stress_yz=12 on the first time step (t=1)
# and
# stress_xx = stress_yy = 0
# and
# stress_zx = 32, and stress_zy = 24.
# Although this has resulted in a non-symmetric stress tensor, the
# moments generated are cancelled by the boundary conditions on
# omega_x and omega_y. (Removing these boundary conditions results
# in a symmetric stress tensor, and some omega!=0 being generated.)
# No moment stresses are generated because omega=0=curvature.
#
# The total strains are given above (strain_xz = 9.6,
# strain_yz = 7.2 and strain_zz = 1.23333).
# Since q returned from 40 to 20, plastic_strain_xz = strain_xz/2 = 4.8
# and plastic_strain_yz = strain_yz/2 = 3.6.
# Since p returned to zero, all of the total strain_zz is
# plastic, ie plastic_strain_zz = 1.23333
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./bottom_wc_x]
type = DirichletBC
variable = wc_x
boundary = back
value = 0.0
[../]
[./bottom_wc_y]
type = DirichletBC
variable = wc_y
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 32*t/3.333333333333E+00
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 24*t/3.333333333333E+00
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 10*t/8.108108108108E+00
[../]
[./top_wc_x]
type = DirichletBC
variable = wc_x
boundary = front
value = 0.0
[../]
[./top_wc_y]
type = DirichletBC
variable = wc_y
boundary = front
value = 0.0
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yx
index_i = 1
index_j = 0
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zx
index_i = 2
index_j = 0
[../]
[./strainp_zy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zy
index_i = 2
index_j = 1
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yx
index_i = 1
index_j = 0
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zx
index_i = 2
index_j = 0
[../]
[./straint_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zy
index_i = 2
index_j = 1
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yx]
type = PointValue
point = '0 0 0'
variable = stress_yx
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zx]
type = PointValue
point = '0 0 0'
variable = stress_zx
[../]
[./s_zy]
type = PointValue
point = '0 0 0'
variable = stress_zy
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./c_s_xx]
type = PointValue
point = '0 0 0'
variable = couple_stress_xx
[../]
[./c_s_xy]
type = PointValue
point = '0 0 0'
variable = couple_stress_xy
[../]
[./c_s_xz]
type = PointValue
point = '0 0 0'
variable = couple_stress_xz
[../]
[./c_s_yx]
type = PointValue
point = '0 0 0'
variable = couple_stress_yx
[../]
[./c_s_yy]
type = PointValue
point = '0 0 0'
variable = couple_stress_yy
[../]
[./c_s_yz]
type = PointValue
point = '0 0 0'
variable = couple_stress_yz
[../]
[./c_s_zx]
type = PointValue
point = '0 0 0'
variable = couple_stress_zx
[../]
[./c_s_zy]
type = PointValue
point = '0 0 0'
variable = couple_stress_zy
[../]
[./c_s_zz]
type = PointValue
point = '0 0 0'
variable = couple_stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yx]
type = PointValue
point = '0 0 0'
variable = strainp_yx
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zx]
type = PointValue
point = '0 0 0'
variable = strainp_zx
[../]
[./strainp_zy]
type = PointValue
point = '0 0 0'
variable = strainp_zy
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yx]
type = PointValue
point = '0 0 0'
variable = straint_yx
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zx]
type = PointValue
point = '0 0 0'
variable = straint_zx
[../]
[./straint_zy]
type = PointValue
point = '0 0 0'
variable = straint_zy
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 2.055555555556E-01
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 10.0
poisson = 0.25
layer_thickness = 10.0
joint_normal_stiffness = 2.5
joint_shear_stiffness = 2.0
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticCosseratStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneCosseratStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_cosserat3
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fully_saturated.i)
# Pressure pulse in 1D with 1 phase - transient
# using the PorousFlowFullySaturatedDarcyBase Kernel
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowFullySaturatedDarcyBase
variable = pp
gravity = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p005]
type = PointValue
variable = pp
point = '5 0 0'
execute_on = 'initial timestep_end'
[]
[p015]
type = PointValue
variable = pp
point = '15 0 0'
execute_on = 'initial timestep_end'
[]
[p025]
type = PointValue
variable = pp
point = '25 0 0'
execute_on = 'initial timestep_end'
[]
[p035]
type = PointValue
variable = pp
point = '35 0 0'
execute_on = 'initial timestep_end'
[]
[p045]
type = PointValue
variable = pp
point = '45 0 0'
execute_on = 'initial timestep_end'
[]
[p055]
type = PointValue
variable = pp
point = '55 0 0'
execute_on = 'initial timestep_end'
[]
[p065]
type = PointValue
variable = pp
point = '65 0 0'
execute_on = 'initial timestep_end'
[]
[p075]
type = PointValue
variable = pp
point = '75 0 0'
execute_on = 'initial timestep_end'
[]
[p085]
type = PointValue
variable = pp
point = '85 0 0'
execute_on = 'initial timestep_end'
[]
[p095]
type = PointValue
variable = pp
point = '95 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_fully_saturated
print_linear_residuals = false
csv = true
[]
(modules/tensor_mechanics/test/tests/beam/static/timoshenko_small_strain_y.i)
# Test for small strain timoshenko beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.00027846257
# Poisson's ratio (nu) = 0.3
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 204.3734
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = 5.868e-4 m
# Using 10 elements to discretize the beam element, the FEM solution is 5.852e-2m.
# This deflection matches the FEM solution given in Prathap and Bhashyam (1982).
# References:
# Prathap and Bhashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
# Note that the force is scaled by 1e-4 compared to the reference problem.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = 0.3
shear_coefficient = 0.85
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_steady/restart_from_steady.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Problem]
restart_file_base = steady_out_cp/LATEST
skip_additional_restart_data = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# Reset the start_time here
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/pressure_pulse/pp_fu_22.i)
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
nl_rel_tol = 1.e-9
nl_max_its = 20
dt = 1E3
dtmin = 1E3
end_time = 1E4
[]
[Outputs]
file_base = pp_fu_22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/misc/check_error/wrong_moose_object_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
# Test for kernel in BC section
[./left]
type = Diffusion
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/2D/dirichlet.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.01
max = 0.01
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.01
max = 0.01
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.5 * t'
[]
[pully]
type = ParsedFunction
value = '-0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
(test/tests/auxkernels/element_aux_boundary/high_order_boundary_aux.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[real_property]
family = MONOMIAL
order = SECOND
[]
[]
[AuxKernels]
[real_property]
type = MaterialRealAux
variable = real_property
property = real_property
boundary = '0 2'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 0
value = 3
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[]
[Materials]
[boundary_mat]
type = OutputTestMaterial
boundary = '0 1 2 3'
real_factor = 2
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_dynamics/block-dynamics.i)
starting_point = 2e-1
offset = -0.19
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[normal_lm]
block = 3
use_dual = true
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
zeta = 1.0
alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeDynamicWeightedGapLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1e4
interpolate_normals = false
capture_tolerance = 1.0e-5
newmark_beta = 0.25
newmark_gamma = 0.5
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 75
dt = 0.05
dtmin = .05
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err '
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/transfers/multiapp_conservative_transfer/secondary_negative_adjuster.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[var]
family = MONOMIAL
order = CONSTANT
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[to_postprocessor]
type = ElementIntegralVariablePostprocessor
variable = var
execute_on = 'transfer'
[]
[]
[Problem]
type = FEProblem
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/kernels/kernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff0]
type = CoefDiffusion
variable = u
coef = 0.05
[../]
[./diff1]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./diff]
type = TimePeriod
enable_objects = 'Kernel::diff0'
disable_objects = '*::diff1'
start_time = '0'
end_time = '0.49'
[../]
[]
(modules/combined/examples/xfem/xfem_thermomechanics_stress_growth.i)
# This is a demonstration of a simple thermomechanics simulation using
# XFEM in which a single crack propagates based on a principal stress
# criterion.
#
# The top and bottom of the plate are fixed in the y direction, and the
# top of the plate is cooled down over time. The thermal contraction
# causes tensile stresses, which lead to crack propagation. The crack
# propagates in a curved path because of the changinging nature of
# the thermal gradient as a result of the crack. There is no heat
# conduction across the crack as soon as it forms.
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
# Solve for the temperature and the displacements
# Displacements are not specified because the TensorMechanics/Master Action sets them up
[./temp]
initial_condition = 300
[../]
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.8 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./xfem_marker_uo]
type = XFEMRankTwoTensorMarkerUserObject
execute_on = timestep_end
tensor = stress
scalar_type = MaxPrincipal
threshold = 5e+1
average = true
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[Kernels]
[./htcond]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = DirichletBC
boundary = top
variable = disp_y
value = 0.0
[../]
[./topt]
type = FunctionDirichletBC
boundary = top
variable = temp
function = 273-t*27.3
[../]
[./bott]
type = FunctionDirichletBC
boundary = bottom
variable = temp
function = 273
# value = 273.0
[../]
[]
[Materials]
[./thcond]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '5e-6'
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_strain]
type= ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 10e-6
temperature = temp
stress_free_temperature = 273
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 10.0
max_xfem_update = 5
[]
[Outputs]
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
(modules/combined/test/tests/thermo_mech/thermo_mech.i)
#Run with 4 procs
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
volumetric_locking_correction = true
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = 1
value = 10.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 0.0
thermal_expansion_coeff = 1e-5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./heat]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
l_tol = 1e-3
l_max_its = 100
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/mortar/periodic-value/periodic.i)
[Mesh]
[file]
type = FileMeshGenerator
file = square.msh
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
new_block_id = 11
new_block_name = "secondary"
sidesets = '101'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
new_block_id = 12
new_block_name = "primary"
sidesets = '103'
[]
[]
[Variables]
[u]
order = SECOND
block = 'domain'
[]
[lm]
block = 'secondary'
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = u
block = 'domain'
[]
[force]
type = BodyForce
variable = u
block = 'domain'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
value = 1
boundary = 'left'
[]
[]
[Constraints]
[ev]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = 103
secondary_boundary = 101
primary_subdomain = 12
secondary_subdomain = 11
periodic = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/scalar_material_damage/scalar_material_damage_creep.i)
# This is a basic test of the system for continuum damage mechanics
# materials. It uses ScalarMaterialDamage for the damage model,
# which simply gets its damage index from another material. In this
# case, we prescribe the evolution of the damage index using a
# function. A single element has a fixed prescribed displacement
# on one side that puts the element in tension, and then the
# damage index evolves from 0 to 1 over time, and this verifies
# that the stress correspondingly drops to 0.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[AuxVariables]
[damage_index]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx strain_xx creep_strain_xx'
[]
[]
[AuxKernels]
[damage_index]
type = MaterialRealAux
variable = damage_index
property = damage_index_prop
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[axial_load]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[]
[]
[Functions]
[damage_evolution]
type = PiecewiseLinear
xy_data = '0.0 0.0
0.1 0.0
2.1 2.0'
[]
[]
[Materials]
[damage_index]
type = GenericFunctionMaterial
prop_names = damage_index_prop
prop_values = damage_evolution
[]
[damage]
type = ScalarMaterialDamage
damage_index = damage_index_prop
[]
[stress]
type = ComputeMultipleInelasticStress
damage_model = damage
inelastic_models = 'creep'
[]
[kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9 10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[]
[creep]
type = LinearViscoelasticStressUpdate
[]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[stress_xx]
type = ElementAverageValue
variable = stress_xx
[]
[strain_xx]
type = ElementAverageValue
variable = strain_xx
[]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
[../]
[damage_index]
type = ElementAverageValue
variable = damage_index
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 0.1
dtmin = 0.001
end_time = 1.1
[]
[Outputs]
csv=true
exodus = true
[]
(modules/porous_flow/examples/restart/gravityeq.i)
# Initial run to establish gravity equilibrium. As only brine is present (no gas),
# we can use the single phase equation of state and kernels, reducing the computational
# cost. An estimate of the hydrostatic pressure gradient is used as the initial condition
# using an approximate brine density of 1060 kg/m^3.
# The end time is set to a large value (~100 years) to allow the pressure to reach
# equilibrium. Steady state detection is used to halt the run when a steady state is reached.
[Mesh]
type = GeneratedMesh
dim = 2
ny = 10
nx = 10
ymax = 100
xmax = 5000
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[porepressure]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
function = ppic
variable = porepressure
[]
[]
[Functions]
[ppic]
type = ParsedFunction
value = '10e6 + 1060*9.81*(100-y)'
[]
[]
[BCs]
[top]
type = DirichletBC
variable = porepressure
value = 10e6
boundary = top
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[brine_density]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = porepressure
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = porepressure
[]
[]
[AuxKernels]
[brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = porepressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 3e9
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
steady_state_detection = true
steady_state_tolerance = 1e-12
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(modules/combined/test/tests/thermal_strain/thermal_strain.i)
# Patch Test
# This test is designed to compute displacements from a thermal strain.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# The temperature moves 100 degrees, and the coefficient of thermal
# expansion is 1e-6. Therefore, the strain (and the displacement
# since this is a unit cube) is 1e-4.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = thermal_strain_test.e
[]
[Functions]
[./tempFunc]
type = PiecewiseLinear
x = '0. 1.'
y = '117.56 217.56'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 117.56
[../]
[]
[Modules/TensorMechanics/Master]
add_variables = true
strain = SMALL
incremental = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
temperature = temp
[./block1]
eigenstrain_names = eigenstrain1
block = 1
[../]
[./block2]
eigenstrain_names = eigenstrain2
block = 2
[../]
[./block3]
eigenstrain_names = eigenstrain3
block = 3
[../]
[./block4]
eigenstrain_names = eigenstrain4
block = 4
[../]
[./block5]
eigenstrain_names = eigenstrain5
block = 5
[../]
[./block6]
eigenstrain_names = eigenstrain6
block = 6
[../]
[./block7]
eigenstrain_names = eigenstrain7
block = 7
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 10
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 9
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 14
value = 0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
boundary = '10 12'
function = tempFunc
[../]
[]
[Materials]
[./elasticity_tensor1]
type = ComputeIsotropicElasticityTensor
block = 1
bulk_modulus = 0.333333333333e6
poissons_ratio = 0.0
[../]
[./thermal_strain1]
type = ComputeThermalExpansionEigenstrain
block = 1
temperature = temp
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain1
[../]
[./stress1]
type = ComputeStrainIncrementBasedStress
block = 1
[../]
[./elasticity_tensor2]
type = ComputeIsotropicElasticityTensor
block = 2
bulk_modulus = 0.333333333333e6
lambda = 0.0
[../]
[./thermal_strain2]
type = ComputeThermalExpansionEigenstrain
block = 2
temperature = temp
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain2
[../]
[./stress2]
type = ComputeStrainIncrementBasedStress
block = 2
[../]
[./elasticity_tensor3]
type = ComputeIsotropicElasticityTensor
block = 3
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./thermal_strain3]
type = ComputeThermalExpansionEigenstrain
block = 3
temperature = temp
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain3
[../]
[./stress3]
type = ComputeStrainIncrementBasedStress
block = 3
[../]
[./elasticity_tensor4]
type = ComputeIsotropicElasticityTensor
block = 4
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./thermal_strain4]
type = ComputeThermalExpansionEigenstrain
block = 4
temperature = temp
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain4
[../]
[./stress4]
type = ComputeStrainIncrementBasedStress
block = 4
[../]
[./elasticity_tensor5]
type = ComputeIsotropicElasticityTensor
block = 5
youngs_modulus = 1e6
lambda = 0.0
[../]
[./thermal_strain5]
type = ComputeThermalExpansionEigenstrain
block = 5
temperature = temp
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain5
[../]
[./stress5]
type = ComputeStrainIncrementBasedStress
block = 5
[../]
[./elasticity_tensor6]
type = ComputeIsotropicElasticityTensor
block = 6
youngs_modulus = 1e6
shear_modulus = 5e5
[../]
[./thermal_strain6]
type = ComputeThermalExpansionEigenstrain
block = 6
temperature = temp
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain6
[../]
[./stress6]
type = ComputeStrainIncrementBasedStress
block = 6
[../]
[./elasticity_tensor7]
type = ComputeIsotropicElasticityTensor
block = 7
shear_modulus = 5e5
poissons_ratio = 0.0
[../]
[./thermal_strain7]
type = ComputeThermalExpansionEigenstrain
block = 7
temperature = temp
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain7
[../]
[./stress7]
type = ComputeStrainIncrementBasedStress
block = 7
[../]
[./heat]
type = HeatConductionMaterial
block = '1 2 3 4 5 6 7'
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
block = '1 2 3 4 5 6 7'
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 0.5
num_steps = 2
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/dampers/interactions/interacting_node_elem_dampers.i)
# This model tests interactions between nodal and element dampers.
# The test verifies that the minimum of the value of a nodal and
# element damper is always used.
# If run with the nodal1 and elem1 dampers active, the element damper
# will govern. With nodal2 and elem2 dampers, the nodal damper governs.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./source]
type = BodyForce
variable = u
function = 't'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Dampers]
active = 'nodal1 elem1'
[./nodal1]
#gives a damping of 0.3333 on step 6
type = BoundingValueNodalDamper
min_value = 0.0
max_value = 1.0
variable = u
[../]
[./elem1]
#gives a damping of 0.141536 on step 6
type = BoundingValueElementDamper
min_value = 0.0
max_value = 1.012
variable = u
[../]
[./nodal2]
#gives a damping of 0.3333 on step 6
type = BoundingValueNodalDamper
min_value = 0.0
max_value = 1.0
variable = u
[../]
[./elem2]
#gives a damping of 0.743318 on step 6
type = BoundingValueElementDamper
min_value = 0.0
max_value = 1.02
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 3.0
dt = 0.5
dtmin = 0.5
nl_max_its = 5
[]
(test/tests/postprocessors/point_value/point_value.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./subdomain]
input = gen
type = ElementSubdomainIDGenerator
element_ids = '0 1 2 3'
subdomain_ids = '1 2 3 4'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./value]
type = PointValue
variable = u
point = '0.371 .41 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
csv = true
[]
(modules/richards/test/tests/dirac/bh_lumped_07.i)
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
value = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh_lumped_07
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test6.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 2
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 2
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[../]
[./SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./SubdomainBoundingBox3]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox2
block_id = 1
bottom_left = '2 2 1'
top_right = '3 3 2'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox3
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/combined/test/tests/poro_mechanics/borehole_highres.i)
# Poroelastic response of a borehole.
#
# HIGHRES VERSION: this version gives good agreement with the analytical solution, but it takes a while so is a "heavy" test
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_highres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.1
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_highres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_highres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_highres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_highres_t
type = CSV
[../]
[]
(modules/contact/test/tests/3d-mortar-contact/frictionless-mortar-3d-action.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
second_order = false
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[disp_z]
block = '1 2'
[]
[]
[ICs]
[disp_z]
block = 1
variable = disp_z
value = '${fparse offset}'
type = ConstantIC
[]
[disp_x]
block = 1
variable = disp_x
value = 0
type = ConstantIC
[]
[disp_y]
block = 1
variable = disp_y
value = 0
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[disp_z]
type = MatDiffusion
variable = disp_z
[]
[]
[Contact]
[mortar]
primary = 'bottom_top'
secondary = 'top_bottom'
formulation = mortar
model = frictionless
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = .5
dtmin = .01
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 1e-5'
l_max_its = 100
nl_max_its = 30
nl_abs_tol = 1e-12
nl_rel_tol = 1e-9
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'mortar_secondary_subdomain'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = mortar_secondary_subdomain
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[]
(modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_second/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = 0
ymax = 10
nx = 2
ny = 33
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = block_right
value = 0
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ADComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = ADGenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 3
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz_cross_section.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the global YZ plane, at 45 deg. angle; with in-plane loading
# perpendicular to the beam axis. Cross section moment of inertia about
# local z axis has been decreased 3 times to test for correct local section
# orientation.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0047296333
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 0.7071067812e-4
[../]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = -0.7071067812e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_y]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_y
[../]
[./disp_z]
type = PointValue
point = '0 2.8284271 2.8284271'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-weighted-gap-mixed-basis.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
second_order = true
patch_update_strategy = always
[]
[Variables]
[./disp_x]
block = '1 2'
order = SECOND
[../]
[./disp_y]
block = '1 2'
order = SECOND
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./weighted_gap_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1
[../]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
preset = false
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
preset = false
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
preset = false
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
preset = false
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
abort_on_solve_fail = true
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/porous_flow/test/tests/gravity/grav01c.i)
# Checking that gravity head is established
# 1phase, vanGenuchten, constant fluid-bulk, constant viscosity, constant permeability, Corey relative perm
# unsaturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = -1
max = 1
[]
[]
[]
[Kernels]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 2 -1 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = -1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = grav01c
exodus = true
[csv]
type = CSV
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/stabilization/cook_small.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 10.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 250.0
poissons_ratio = 0.4999999
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
l_tol = 1e-10
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/multiapps/picard_multilevel/fullsolve_multilevel/sub_level1.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[w]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = v
[]
[diffusion]
type = Diffusion
variable = v
[]
[source]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = v
boundary = '0'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = v
boundary = '2'
value = 100
[]
[]
[Postprocessors]
[avg_u]
type = ElementAverageValue
variable = u
execute_on = 'initial linear'
[]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial linear'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial linear'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
[]
[MultiApps]
[level2-]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub_level2.i
execute_on = 'timestep_end'
# sub_cycling = true
[]
[]
[Transfers]
[v_to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = v
variable = v
to_multi_app = level2-
execute_on = 'timestep_end'
[]
[w_from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = w
variable = w
from_multi_app = level2-
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
# print_linear_residuals = false
[]
(modules/tensor_mechanics/test/tests/postprocessors/material_tensor_average_test.i)
[Mesh]
[./msh]
type = GeneratedMeshGenerator
dim = 3
xmax = 2
ymax = 2
zmax = 2
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_zz'
[../]
[../]
[../]
[]
[BCs]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./move_front]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/10.'
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.5e6 0.75e6 0.75e6 1.5e6 0.75e6 1.5e6 0.375e6 0.375e6 0.375e6'
[../]
[]
[Postprocessors]
[./szz_avg]
type =MaterialTensorAverage
rank_two_tensor = stress
index_i = 2
index_j = 2
use_displaced_mesh = true
[]
[./szz_int]
type =MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
use_displaced_mesh = true
[]
[./szz_avg_aux]
type =ElementAverageValue
variable = stress_zz
use_displaced_mesh = true
[]
[./szz_int_aux]
type =ElementIntegralVariablePostprocessor
variable = stress_zz
use_displaced_mesh = true
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type '
petsc_options_value = lu
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
l_max_its = 20
start_time = 0.0
dt = 0.2
end_time = 1.0
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/pdass_problems/frictional_bouncing_block_action.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks.e
[]
allow_renumbering = false
uniform_refine = 0 # 1,2
patch_update_strategy = always
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
generate_output = 'stress_xx stress_yy'
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Contact]
[frictional]
primary = 20
secondary = 10
formulation = mortar
model = coulomb
friction_coefficient = 0.4
c_normal = 1.0e1
c_tangential = 1.0e1
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = '40'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = '40'
value = 0.0
[]
[topy]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 20 * t) + ${offset}'
preset = false
[]
[leftx]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 30
function = '2e-2 * t'
# function = '0'
preset = false
[]
[]
[Executioner]
type = Transient
end_time = 7 # 70
dt = 0.25 # 0.1 for finer meshes (uniform_refine)
dtmin = .01
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 40
line_search = 'basic'
snesmf_reuse_base = false
nl_abs_tol = 1e-9
nl_rel_tol = 1e-9
l_tol = 1e-07 # Tightening l_tol can help with friction
[]
[Debug]
show_var_residual_norms = true
[]
[VectorPostprocessors]
[cont_press]
type = NodalValueSampler
variable = frictional_normal_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[friction]
type = NodalValueSampler
variable = frictional_tangential_lm
boundary = '10'
sort_by = x
execute_on = FINAL
[]
[]
[Outputs]
exodus = true
[checkfile]
type = CSV
show = 'cont_press friction'
start_time = 0.0
execute_vector_postprocessors_on = FINAL
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative_nli contact cumulative_li num_l'
[num_nl]
type = NumNonlinearIterations
[]
[num_l]
type = NumLinearIterations
[]
[cumulative_nli]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[cumulative_li]
type = CumulativeValuePostprocessor
postprocessor = num_l
[]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = 'frictional_secondary_subdomain'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler_lump_preconditioned.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.0001
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
solve_type = lump_preconditioned
[../]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step03_coupling/01_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = CoupledForce
variable = v
v = ut
coef = 100
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(modules/heat_conduction/tutorials/introduction/therm_step03a.i)
#
# Single block thermal input with time derivative and volumetric heat source terms
# https://mooseframework.inl.gov/modules/heat_conduction/tutorials/introduction/therm_step03.html
#
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 1
[]
[]
[Variables]
[T]
initial_condition = 300.0
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = T
[]
[time_derivative]
type = HeatConductionTimeDerivative
variable = T
[]
[heat_source]
type = HeatSource
variable = T
value = 1e4
[]
[]
[Materials]
[thermal]
type = HeatConductionMaterial
thermal_conductivity = 45.0
specific_heat = 0.5
[]
[density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = 8000.0
[]
[]
[BCs]
[t_left]
type = DirichletBC
variable = T
value = 300
boundary = 'left'
[]
[t_right]
type = FunctionDirichletBC
variable = T
function = '300+5*t'
boundary = 'right'
[]
[]
[Executioner]
type = Transient
end_time = 5
dt = 1
[]
[VectorPostprocessors]
[t_sampler]
type = LineValueSampler
variable = T
start_point = '0 0.5 0'
end_point = '2 0.5 0'
num_points = 20
sort_by = x
[]
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = therm_step03a_out
execute_on = final
[]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test3.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(examples/ex04_bcs/dirichlet_bc.i)
[Mesh]
file = square.e
uniform_refine = 4
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./conv]
type = ExampleConvection
variable = convected
some_variable = diffused
[../]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
active = 'left_convected right_convected_dirichlet left_diffused right_diffused'
[./left_convected]
type = DirichletBC
variable = convected
boundary = 'left'
value = 0
[../]
[./right_convected_dirichlet]
type = CoupledDirichletBC
variable = convected
boundary = 'right'
alpha = 2
some_var = diffused
[../]
# Note: This BC is not active in this input file
[./right_convected_neumann]
type = CoupledNeumannBC
variable = convected
boundary = 'right'
alpha = 2
some_var = diffused
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/kernels/2d_diffusion/matdiffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 1.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./cres]
type = MatDiffusion
variable = u
diffusivity = Du
[../]
[./ctime]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[./Dc]
type = DerivativeParsedMaterial
f_name = Du
function = '0.01+u^2'
args = 'u'
derivative_order = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
scheme = 'BDF2'
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/action/no_action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
stabilize_strain = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[cauchy_stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[cauchy_stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
exodus = true
csv = false
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden1.i)
# apply repeated stretches to observe cohesion hardening
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = '0'
[]
[topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = '0'
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = '2*t'
[]
[]
[AuxVariables]
[wps_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 2E3
rate = 4E4
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 1.0
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1E-6
dt = 1E-7
type = Transient
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/multiphase_mechanics/simpleeigenstrain.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 25
ny = 25
xmax = 250
ymax = 250
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 125.0
y1 = 125.0
radius = 60.0
invalue = 1.0
outvalue = 0.1
int_width = 50.0
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.
[../]
[./left]
type = DirichletBC
boundary = left
variable = disp_x
value = 0.
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
# This deprecated material is replaced by the materials below
#
#[./eigenstrain]
# type = SimpleEigenStrainMaterial
# block = 0
# epsilon0 = 0.05
# c = c
# disp_y = disp_y
# disp_x = disp_x
# C_ijkl = '3 1 1 3 1 3 1 1 1 '
# fill_method = symmetric9
#[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '3 1 1 3 1 3 1 1 1 '
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./prefactor]
type = DerivativeParsedMaterial
args = c
f_name = prefactor
constant_names = 'epsilon0 c0'
constant_expressions = '0.05 0'
function = '(c - c0) * epsilon0'
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '1'
args = c
prefactor = prefactor
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/Terminator/terminator_message.i)
###########################################################
# This is a test of the UserObject System. The
# Terminator UserObject executes independently after
# each solve and can terminate the solve early due to
# user-defined criteria. (Type: GeneralUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Postprocessors]
[./time]
type = TimePostprocessor
[../]
[]
[UserObjects]
[./arnold1]
type = Terminator
expression = 'time = 1'
execute_on = TIMESTEP_END
message = "This is an info"
fail_mode = SOFT
error_level = INFO
[../]
[./arnold2]
type = Terminator
expression = 'time = 0.5'
execute_on = TIMESTEP_END
message = "This is a warning!"
fail_mode = SOFT
error_level = WARNING
[../]
[./arnold3]
type = Terminator
expression = 'time = 0.25'
execute_on = TIMESTEP_END
message = "This is an error!"
error_level = ERROR
[../]
[]
[Kernels]
[./cres]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./c]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 6
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
print_linear_residuals = false
[]
(test/tests/multiapps/reset/multilevel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub_sub.i
output_in_position = true
[../]
[]
(test/tests/multiapps/catch_up/master.i)
# ##########################################################
# This is a test of the Multiapp System. This test solves
# four independent applications spaced throughout a
# master domain interleaved with a master solve.
#
# @Requirement F7.10
# ##########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
type = TransientMultiApp
positions = '0 0 0 0.5 0.5 0'
input_files = 'sub.i failing_sub.i'
app_type = MooseTestApp
execute_on = 'timestep_end'
max_catch_up_steps = 100
max_failures = 100
catch_up = true
[../]
[]
(modules/tensor_mechanics/test/tests/beam/fric_constraint/2_block_common_cross.i)
# Test for LineElementAction on multiple blocks by placing parameters
# common to all blocks outside of the individual action blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = test_fric_cross.e
#displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '1 3'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = '1 2 3'
value = 0.0
[../]
[./move_z4]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = pull
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0'
y = '0.0 0.0 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 5e-5
l_max_its = 10
dt = 1
dtmin = 1
end_time = 13
[]
[Modules/TensorMechanics/LineElementMaster]
# parameters common to all blocks
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
y_orientation = '0.0 1.0 0.0'
[./block_1]
Iy = 1e-5
Iz = 1e-5
block = 1
[../]
[./block_2]
Iy = 8e-4
Iz = 8e-4
block = '2 3'
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2 3'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2 3'
[../]
[]
[Constraints]
[./tie_z]
type = NodalFrictionalConstraint
normal_force = 0.006
tangential_penalty = 100
friction_coefficient = 0.5
boundary = 6
secondary = 4
variable = disp_z
[../]
[./tie_z2]
type = NodalFrictionalConstraint
normal_force = 0.006
tangential_penalty = 100
friction_coefficient = 0.2
boundary = 6
secondary = 5
variable = disp_z
[../]
[]
[Postprocessors]
[./disp_x_1]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x_2]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_z_1]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[../]
[./disp_z_2]
type = NodalVariableValue
nodeid = 2
variable = disp_z
[../]
[]
[Outputs]
#file_base = '2_block_out'
exodus = true
[]
(test/tests/meshgenerators/combiner_generator/combiner_multi_input_translate.i)
[Mesh]
[gen1]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[gen2]
type = GeneratedMeshGenerator
dim = 2
nx = 12
ny = 12
[]
[gen3]
type = GeneratedMeshGenerator
dim = 2
nx = 14
ny = 14
[]
[cmbn]
type = CombinerGenerator
inputs = 'gen1 gen2 gen3'
positions = '1 0 0 2 2 2 3 0 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard/steady_picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Postprocessors]
[./vnorm]
type = ElementL2Norm
variable = v
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/multiple_boundary_ids_3d.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'left bottom front'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 -0.1'
top_right = '0.1 0.2 0.3'
[]
[createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
block_id = 0
boundary_id_old = 'right top back'
boundary_id_new = 11
bottom_left = '0.6 0.7 0.8'
top_right = '1.1 1.1 1.1'
[]
[createNewSidesetThree]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetTwo
block_id = 0
boundary_id_old = 'left top back'
boundary_id_new = 12
bottom_left = '-0.1 0.9 0.9'
top_right = '0.1 1.1 1.1'
[]
[createNewSidesetFour]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetThree
block_id = 0
boundary_id_old = 'front'
boundary_id_new = 13
bottom_left = '0.4 0.4 0.9'
top_right = '0.6 0.6 1.1'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[firstBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[secondBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[thirdBC]
type = DirichletBC
variable = u
boundary = 12
value = 0
[]
[fourthBC]
type = DirichletBC
variable = u
boundary = 13
value = 0.5
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/discrete/recompute_no_calc.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = '0'
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
compute = false
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = recompute_props
max_iterations = 0
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(test/tests/restrictable/boundary_api_test/boundary_restrictable.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = BndTestDirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
boundary = 1
prop_names = 'a'
prop_values = '1'
[../]
[./mat1]
type = GenericConstantMaterial
boundary = 2
prop_names = 'a b'
prop_values = '10 20'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[../]
[./diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
[../]
[]
[InterfaceKernels]
active = 'interface'
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
D = 'D'
D_neighbor = 'D'
[../]
[./penalty_interface]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
penalty = 1e6
[../]
[]
[BCs]
active = 'left right middle'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[../]
[./middle]
type = MatchedValueBC
variable = v
boundary = 'primary0_interface'
v = u
[../]
[]
[Materials]
[./stateful]
type = StatefulMaterial
initial_diffusivity = 1
boundary = primary0_interface
[../]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/multiapps/move/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/ad_mat_diffusion/ad_2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = ADFunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./k]
type = ADGenericConstantMaterial
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/block-restriction/two-mats-one-eqn-set.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 1
nx = 16
ny = 8
elem_type = QUAD9
[]
[./corner_node_0]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node_0'
coord = '0 0 0'
input = gen
[../]
[./corner_node_1]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node_1'
coord = '1 0 0'
input = corner_node_0
[../]
[./subdomain1]
input = corner_node_1
type = SubdomainBoundingBoxGenerator
bottom_left = '1 0 0'
top_right = '2 1 0'
block_id = 1
[../]
[./break_boundary]
input = subdomain1
type = BreakBoundaryOnSubdomainGenerator
[../]
[./interface0]
type = SideSetsBetweenSubdomainsGenerator
input = break_boundary
primary_block = '0'
paired_block = '1'
new_boundary = 'interface0'
[../]
[./interface1]
type = SideSetsBetweenSubdomainsGenerator
input = interface0
primary_block = '1'
paired_block = '0'
new_boundary = 'interface1'
[../]
[]
[Variables]
[velocity0]
order = SECOND
family = LAGRANGE_VEC
[]
[T0]
order = SECOND
[InitialCondition]
type = ConstantIC
value = 1.0
[]
[]
[p0]
[]
[]
[Kernels]
[./mass0]
type = INSADMass
variable = p0
[../]
[./momentum_time0]
type = INSADMomentumTimeDerivative
variable = velocity0
[../]
[./momentum_convection0]
type = INSADMomentumAdvection
variable = velocity0
[../]
[./momentum_viscous0]
type = INSADMomentumViscous
variable = velocity0
[../]
[./momentum_pressure0]
type = INSADMomentumPressure
variable = velocity0
pressure = p0
integrate_p_by_parts = true
[../]
[./temperature_time0]
type = INSADHeatConductionTimeDerivative
variable = T0
[../]
[./temperature_advection0]
type = INSADEnergyAdvection
variable = T0
[../]
[./temperature_conduction0]
type = ADHeatConduction
variable = T0
thermal_conductivity = 'k'
[../]
[]
[BCs]
[./no_slip0]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'bottom_to_0 interface0 left'
[../]
[./lid0]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'top_to_0'
function_x = 'lid_function0'
[../]
[./T_hot0]
type = DirichletBC
variable = T0
boundary = 'bottom_to_0'
value = 1
[../]
[./T_cold0]
type = DirichletBC
variable = T0
boundary = 'top_to_0'
value = 0
[../]
[./pressure_pin0]
type = DirichletBC
variable = p0
boundary = 'pinned_node_0'
value = 0
[../]
[./no_slip1]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'bottom_to_1 interface1 right'
[../]
[./lid1]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'top_to_1'
function_x = 'lid_function1'
[../]
[./T_hot1]
type = DirichletBC
variable = T0
boundary = 'bottom_to_1'
value = 1
[../]
[./T_cold1]
type = DirichletBC
variable = T0
boundary = 'top_to_1'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat0]
type = INSAD3Eqn
velocity = velocity0
pressure = p0
temperature = T0
block = '0'
[]
[ins_mat1]
type = INSAD3Eqn
velocity = velocity0
pressure = p0
temperature = T0
block = '1'
[]
[]
[Functions]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
[./lid_function0]
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[./lid_function1]
type = ParsedFunction
value = '4*(x-1)*(2-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels -sub_pc_factor_shift_type'
petsc_options_value = 'asm 2 ilu 4 NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
[]
(test/tests/actions/get_actions/test_get_actions.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 4
[]
[TestGetActions]
[]
[Variables]
[./convected]
[../]
[./diffused]
[../]
[]
[Kernels]
# intentionally give a name the same as material names
[./mat1]
type = Diffusion
variable = convected
[../]
[./diff_u]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
active = 'left_convected right_convected left_diffused right_diffused'
[./left_convected]
type = DirichletBC
variable = convected
boundary = '1'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = '2'
value = 1
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = '1'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = '2'
value = 1
[../]
[]
[Materials]
[./mat4]
type = RandomMaterial
block = 0
[../]
[./mat3]
type = MTMaterial
block = 0
[../]
[./mat1]
type = GenericConstantMaterial
prop_names = prop1
prop_values = 1.0
block = 0
[../]
[./mat2]
type = CoupledMaterial
mat_prop = prop2
coupled_mat_prop = prop1
block = 0
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
[]
(test/tests/globalparams/global_param/global_param_test.i)
[GlobalParams]
variable = u
dim = 2
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
# dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
# variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
# variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
# variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_plane_stress.i)
################################################################################
#
# 1x1x1 cube, single element
# simulate plane stress
# pull in +y direction on right surface to produce shear strain
#
#
#
# ____________
# /| /|
# / | 5 / | -X Left 1
# /__________ / | +X Right 4
# | | 3 | | +Y Top 5
# | 1 | | 4 | -Y Bottom 2
# | |_6_____|___| y +Z Front 6
# | / | / ^ -Z Back 3
# | / 2 | / |
# |/__________|/ |
# ----> x
# /
# /
# z
#
#
#
#################################################################################
[Mesh]
file = cube.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 0.1 0.2 0.3 0.4'
y = '0 0.0026 0 -0.0026 0'
[../]
[./pressure]
type = PiecewiseLinear
x = '0 0.1 0.2 0.3 0.4'
y = '0 0 0 0 0'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pull_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = displ
[../]
[./pin_x]
type = DirichletBC
variable = disp_x
boundary = '1 4'
value = 0.0
[../]
[./pin_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = '3'
value = 0.0
[../]
[./front]
type = Pressure
variable = disp_z
boundary = 6
function = pressure
factor = 1.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 200.0e3
poissons_ratio = .3
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 120
shear_retention_factor = 0.1
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ExponentialSoftening
residual_stress = 0.1
beta = 0.1
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type'
petsc_options_value = '101 asm lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-8
l_tol = 1e-5
start_time = 0.0
end_time = 0.4
dt = 0.04
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/sub0.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[from_1]
type = MooseVariableScalar
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average_0]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/subdomain_bounding_box_generator/subdomain_bounding_box_generator_inside.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
#uniform_refine = 2
[]
[./subdomains]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[../]
[./inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/chemical_reactions/test/tests/equilibrium_const/maier_kelly.i)
# Test of EquilibriumConstantAux with eight log10(Keq) values.
# The resulting equilibrium constant should be a Maier-Kelly best fit.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[AuxVariables]
[./logk]
[../]
[]
[AuxKernels]
[./logk]
type = EquilibriumConstantAux
temperature = temperature
temperature_points = '273.16 298.15 333.15 373.15 423.15 473.15 523.15 573.15'
logk_points = '-6.5804 -6.3447 -6.2684 -6.3882 -6.7235 -7.1969 -7.7868 -8.5280'
variable = logk
[../]
[]
[Variables]
[./temperature]
[../]
[]
[Kernels]
[./temperature]
type = Diffusion
variable = temperature
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
value = 300
boundary = left
[../]
[./right]
type = DirichletBC
variable = temperature
value = 573.15
boundary = right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/multiple_thermal_eigenstrains.i)
# The primary purpose of this test is to verify that the ability to combine
# multiple eigenstrains works correctly. It should behave identically to the
# constant_expansion_coeff.i model in this directory. Instead of applying the
# thermal expansion in one eigenstrain, it splits that into two eigenstrains
# that get added together.
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_strain]
type = ComputeIncrementalSmallStrain
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.0e-5
temperature = temp
eigenstrain_name = eigenstrain1
[../]
[./thermal_expansion_strain2]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 0.3e-5
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
checkpoint = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 0
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
block = 0
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
block = 0
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
block = 0
[../]
[]
(modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump_func.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = jump_flux_func
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[Functions]
[./jump_flux_func]
type = ParsedFunction
value = '1'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/mesh/named_entities/name_on_the_fly.i)
[Mesh]
file = three_block.e
# These names will be applied on the fly to the
# mesh so that they can be used in the input file
# In addition they will show up in the output file
block_id = '1 2 3'
block_name = 'wood steel copper'
boundary_id = '1 2'
boundary_name = 'left right'
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Materials]
active = empty
[./empty]
type = MTMaterial
block = 'wood steel copper'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/parser/active_inactive/top_level.i)
#############################################################
# This input file demonstrates the use of inactive at the
# top level.
##############################################################
inactive = 'Executioner' # This will produce an error about missing Executioner
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
active = 'u'
[./u]
[../]
[]
[AuxVariables]
inactive = 'aux1 aux3'
# The parameters in the inactive sections can be invalid because
# they are never parsed.
[./aux1]
type = DoesntExist
flintstones = 'fred wilma'
[../]
[./aux2]
[../]
[./aux3]
order = TENZILLION
[../]
[./aux4]
[../]
[]
[AuxKernels]
active = 'aux2 aux4'
# You can use active or inactive depending on whatever is easier
[./aux1]
type = ConstantAux
value = 1
variable = aux1
[../]
[./aux2]
type = ConstantAux
value = 2
variable = aux2
[../]
[./aux3]
type = ConstantAux
value = 3
variable = aux3
[../]
[./aux4]
type = ConstantAux
value = 4
variable = aux4
[../]
[]
[Kernels]
inactive = ''
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
inactive = ''
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
inactive = Adaptivity
[./Adaptivity]
[../]
[]
# No output so we can override several parameters and test them concurrently
(test/tests/postprocessors/real_parameter_reporter/real_parameter_reporter.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Postprocessors]
[./coef_value]
type = RealControlParameterReporter
parameter = 'Kernels/diff/coef'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/outputs/oversample/ex02_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmax = 0
elem_type = QUAD9
[]
[Variables]
[./diffused]
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./foo]
variable = diffused
type = ConstantPointSource
value = 1
point = '0.3 0.3 0.0'
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = diffused
boundary = 'bottom left right top'
value = 0.0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Adaptivity]
max_h_level = 2
initial_steps = 2
marker = marker
steps = 2
initial_marker = marker
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = diffused
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.5
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./os2]
type = Exodus
refinements = 2
[../]
[./os4]
type = Exodus
refinements = 4
[../]
[]
(test/tests/misc/check_error/check_dynamic_name_boundary_mismatch.i)
[Mesh]
file = three_block.e
# These names will be applied on the fly to the
# mesh so they can be used in the input file
# In addition they will show up in the input file
block_id = '1 2 3'
block_name = 'wood steel copper'
boundary_id = '1'
boundary_name = 'left right'
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Materials]
active = empty
[./empty]
type = MTMaterial
block = 'wood steel copper'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/t_stress/t_stress_crack_infinite_plate_2d.i)
# T-stress test for a through crack in a wide ("infinite") plate.
# For a finer mesh this problem converges to the solution T = -sigma.
# Ref: T.L. Anderson, Fracture Mechanics: Fundamentals and Applications
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack_infinite_plate.e
displacements = 'disp_x disp_y'
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[../]
[]
[DomainIntegral]
integrals = 'JIntegral InteractionIntegralKI InteractionIntegralT'
boundary = 1001
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
radius_inner = '0.06 0.08 0.10'
radius_outer = '0.08 0.10 0.12'
block = 1
youngs_modulus = 30e+6
poissons_ratio = 0.3
2d = true
axis_2d = 2
symmetry_plane = 1
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 300
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./Pressure]
[./top]
boundary = 200
function = rampConstantUp
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 30e+6
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
# petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = t_stress_crack_infinite_plate_out
exodus = true
csv = true
[]
(test/tests/misc/check_error/function_file_test12.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_columns_more_data.csv
format = columns
xy_in_file_only = false
y_index_in_file = 3 #Will generate error because data does not contain 4 columns
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/outputs/format/output_test_sln.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
solution_history = true
[]
(modules/thermal_hydraulics/test/tests/materials/wall_heat_transfer_coefficient_3eqn_dittus_boelter/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[Hw_ak]
type = MaterialRealAux
variable = Hw
property = Hw
[]
[]
[Materials]
[props]
type = GenericConstantMaterial
prop_names = 'rho vel D_h k mu cp T T_wall'
prop_values = '1000 0.1 0.1 0.001 0.1 12 300 310'
[]
[Hw_material]
type = WallHeatTransferCoefficient3EqnDittusBoelterMaterial
rho = rho
vel = vel
D_h = D_h
k = k
mu = mu
cp = cp
T = T
T_wall = T_wall
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[Hw]
type = ElementalVariableValue
elementid = 0
variable = Hw
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/kernels/jxw_grad_test_dep_on_displacements/jxw-spherical.i)
[GlobalParams]
displacements = 'disp_r'
order = SECOND
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
elem_type = EDGE3
[]
[Problem]
coord_type = RSPHERICAL
[]
[Variables]
[./disp_r]
[../]
[./u]
order = FIRST
[../]
[]
[Kernels]
[./disp_r]
type = Diffusion
variable = disp_r
[../]
[./u]
type = ADDiffusion
variable = u
use_displaced_mesh = true
[../]
[]
[BCs]
# BCs cannot be preset due to Jacobian tests
[./u_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = u
[../]
[./u_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = u
[../]
[./disp_r_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = disp_r
[../]
[./disp_r_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = disp_r
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
[./dofmap]
type = DOFMap
execute_on = 'initial'
[../]
exodus = true
[]
[ICs]
[./disp_r]
type = RandomIC
variable = disp_r
min = 0.01
max = 0.09
[../]
[./u]
type = RandomIC
variable = u
min = 0.1
max = 0.9
[../]
[]
(modules/stochastic_tools/examples/surrogates/polynomial_regression/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 1
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 2.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Outputs]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/only_twinning_fcc.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_6]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_7]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_8]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_9]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_11]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_tau_10]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = total_volume_fraction_twins
execute_on = timestep_end
[]
[twin_resistance_4]
type = MaterialStdVectorAux
variable = twin_resistance_4
property = slip_resistance
index = 4
execute_on = timestep_end
[]
[twin_resistance_10]
type = MaterialStdVectorAux
variable = twin_resistance_10
property = slip_resistance
index = 10
execute_on = timestep_end
[]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_4]
type = MaterialStdVectorAux
variable = twin_volume_fraction_4
property = twin_system_volume_fraction
index = 4
execute_on = timestep_end
[]
[twin_volume_fraction_5]
type = MaterialStdVectorAux
variable = twin_volume_fraction_5
property = twin_system_volume_fraction
index = 5
execute_on = timestep_end
[]
[twin_volume_fraction_6]
type = MaterialStdVectorAux
variable = twin_volume_fraction_6
property = twin_system_volume_fraction
index = 6
execute_on = timestep_end
[]
[twin_volume_fraction_7]
type = MaterialStdVectorAux
variable = twin_volume_fraction_7
property = twin_system_volume_fraction
index = 7
execute_on = timestep_end
[]
[twin_volume_fraction_8]
type = MaterialStdVectorAux
variable = twin_volume_fraction_8
property = twin_system_volume_fraction
index = 8
execute_on = timestep_end
[]
[twin_volume_fraction_9]
type = MaterialStdVectorAux
variable = twin_volume_fraction_9
property = twin_system_volume_fraction
index = 9
execute_on = timestep_end
[]
[twin_volume_fraction_10]
type = MaterialStdVectorAux
variable = twin_volume_fraction_10
property = twin_system_volume_fraction
index = 10
execute_on = timestep_end
[]
[twin_volume_fraction_11]
type = MaterialStdVectorAux
variable = twin_volume_fraction_11
property = twin_system_volume_fraction
index = 11
execute_on = timestep_end
[]
[twin_tau_4]
type = MaterialStdVectorAux
variable = twin_tau_4
property = applied_shear_stress
index = 4
execute_on = timestep_end
[]
[twin_tau_10]
type = MaterialStdVectorAux
variable = twin_tau_10
property = applied_shear_stress
index = 10
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '5.0e-4*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.08e5 6.034e4 6.034e4 1.08e5 6.03e4 1.08e5 2.86e4 2.86e4 2.86e4' #Tallon and Wolfenden. J. Phys. Chem. Solids (1979)
fill_method = symmetric9
euler_angle_1 = 54.74
euler_angle_2 = 45.0
euler_angle_3 = 270.0
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_only_xtalpl'
tan_mod_type = exact
maximum_substep_iteration = 2
[]
[twin_only_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = 'fcc_input_twinning_systems.txt'
initial_twin_lattice_friction = 3.0
non_coplanar_coefficient_twin_hardening = 8e5
coplanar_coefficient_twin_hardening = 8e4
[]
[]
[Postprocessors]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[twin_resistance_4]
type = ElementAverageValue
variable = twin_resistance_4
[]
[twin_resistance_10]
type = ElementAverageValue
variable = twin_resistance_10
[]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[twin_volume_fraction_4]
type = ElementAverageValue
variable = twin_volume_fraction_4
[]
[twin_volume_fraction_5]
type = ElementAverageValue
variable = twin_volume_fraction_5
[]
[twin_volume_fraction_6]
type = ElementAverageValue
variable = twin_volume_fraction_6
[]
[twin_volume_fraction_7]
type = ElementAverageValue
variable = twin_volume_fraction_7
[]
[twin_volume_fraction_8]
type = ElementAverageValue
variable = twin_volume_fraction_8
[]
[twin_volume_fraction_9]
type = ElementAverageValue
variable = twin_volume_fraction_9
[]
[twin_volume_fraction_10]
type = ElementAverageValue
variable = twin_volume_fraction_10
[]
[twin_volume_fraction_11]
type = ElementAverageValue
variable = twin_volume_fraction_11
[]
[twin_tau_4]
type = ElementAverageValue
variable = twin_tau_4
[]
[twin_tau_10]
type = ElementAverageValue
variable = twin_tau_10
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.025
dtmin = 0.0125
num_steps = 8
[]
[Outputs]
csv = true
perf_graph = true
[]
(examples/ex10_aux/ex10.i)
[Mesh]
file = car.e
[]
[Variables]
[diffused]
order = FIRST
family = LAGRANGE
[]
[]
# Here is the AuxVariables section where we declare the variables that
# will hold the AuxKernel calcuations. The declaration syntax is very
# similar to that of the regular variables section
[AuxVariables]
[nodal_aux]
order = FIRST
family = LAGRANGE
[]
[element_aux]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = diffused
[]
[]
# Here is the AuxKernels section where we enable the AuxKernels, link
# them to our AuxVariables, set coupling parameters, and set input parameters
[AuxKernels]
[nodal_example]
type = ExampleAux
variable = nodal_aux
value = 3.0
coupled = diffused
[]
[element_example]
type = ExampleAux
variable = element_aux
value = 4.0
coupled = diffused
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 0
[]
[top]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/target_boundary_sub.i)
[Mesh]
[drmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 30
ny = 30
elem_type = QUAD4
partition = square
[]
[]
[Variables]
[u][]
[]
[AuxVariables]
[source][]
[]
[Kernels]
[conduction]
type = Diffusion
variable = u
[]
[]
[BCs]
[flux]
type = CoupledVarNeumannBC
variable = u
boundary = 'right'
v = source
[]
[bdr]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/simple_contact/simple_contact_test.i)
# Note: Run merged.i to generate a solution to compare to that doesn't use contact.
[Mesh]
file = contact.e
# PETSc < 3.5.0 requires the iteration patch_update_strategy to
# avoid PenetrationLocator warnings, which are currently treated as
# errors by the TestHarness.
patch_update_strategy = 'iteration'
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[../]
[]
[Contact]
[./dummy_name]
primary = 3
secondary = 2
penalty = 1e5
formulation = kinematic
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.0001
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
line_search = 'none'
nl_abs_tol = 1e-8
l_max_its = 100
nl_max_its = 10
dt = 1.0
num_steps = 1
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_small_strain.i)
#This tests the J-Integral evaluation capability.
#This is a 2d plane strain model
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
output_q = false
incremental = false
[]
[Modules/TensorMechanics/Master]
[./master]
strain = SMALL
add_variables = true
incremental = false
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_2d_small_strain_out
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_MD.i)
# Pressure pulse in 1D with 1 phase - transient
# Using the "MD" formulation (where primary variable is log(mass-density
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[md]
# initial porepressure = 2E6
# so initial md = log(density_P0) + porepressure/bulk_modulus =
initial_condition = 6.90875527898214
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = md
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = md
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'md'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseMD_Gaussian
mass_density = md
al = 1E-6 # this is irrelevant in this example
density_P0 = 1000
bulk_modulus = 2E9
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
# BC porepressure = 3E6
# so boundary md = log(density_P0) + porepressure/bulk_modulus =
value = 6.90925527898214
variable = md
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[AuxVariables]
[pp]
[]
[]
[AuxKernels]
[pp]
type = ParsedAux
function = '(md-6.9077552789821)*2.0E9'
args = 'md'
variable = pp
[]
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_MD
print_linear_residuals = false
csv = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform6.i)
# Plastic deformation, both tensile and shear failure
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 'if(t<30,0.2*t,6)'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 'if(t<30,if(t<10,0,t),30-0.2*t)'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'if(t<15,3*t,45)+if(t<30,0,45-3*t)'
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
perfect_guess = false
[../]
[]
[Executioner]
end_time = 40
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform6
csv = true
[]
(modules/richards/test/tests/gravity_head_1/gh16.i)
# unsaturated = true
# gravity = true
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
preset = false
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh16
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_linesearch.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
rtol = 1e-6
abs_tol = 1e-8
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
use_line_search = true
min_line_search_step_size = 0.01
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.025
dtmax = 10.0
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = crysp_lsearch_out
exodus = true
[]
(test/tests/meshgenerators/transform_generator/rotate_and_scale.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = cylinder.e
[]
[./rotate]
type = TransformGenerator
input = fmg
transform = ROTATE
vector_value = '0 90 0'
[]
[./scale]
type = TransformGenerator
input = rotate
transform = SCALE
vector_value ='1e2 1e2 1e2'
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/ping-ponging/ranfs-ping-pong.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-no-lower-d.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = false
use_automatic_differentiation = true
strain = SMALL
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e0
poissons_ratio = 0.3
[]
[stress]
type = ADComputeLinearElasticStress
[]
[]
[Constraints]
[./disp_x]
type = RANFSNormalMechanicalContact
secondary = 10
primary = 20
variable = disp_x
primary_variable = disp_x
component = x
[../]
[./disp_y]
type = RANFSNormalMechanicalContact
secondary = 10
primary = 20
variable = disp_y
primary_variable = disp_y
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
num_steps = 19
end_time = 200
dt = 5
dtmin = 5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type -mat_mffd_err'
petsc_options_value = 'hypre boomeramg 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_restart1.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = cubesource.e
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
variable = nn
solution = soln
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
execute_on = 'initial timestep_begin'
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 5
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rz_finite_elastic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = ADStressDivergenceRZTensors
component = 0
variable = disp_r
use_displaced_mesh = true
[../]
[./stress_z]
type = ADStressDivergenceRZTensors
component = 1
variable = disp_z
use_displaced_mesh = true
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[./axial]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeAxisymmetricRZFiniteStrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-wear.i)
starting_point = 0.5e-1
offset = -0.05
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[normal_lm]
block = 3
use_dual = true
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
zeta = 1.0
hht_alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[worn_depth]
block = '3'
[]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[]
[AuxKernels]
[worn_depth]
type = MortarArchardsLawAux
variable = worn_depth
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
displacements = 'disp_x disp_y'
friction_coefficient = 0.5
energy_wear_coefficient = 1.0
normal_pressure = normal_lm
[]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeDynamicWeightedGapLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1e4
interpolate_normals = false
capture_tolerance = 1.0e-5
newmark_beta = 0.25
newmark_gamma = 0.5
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(8.0 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 0.675
dt = 0.075
dtmin = .075
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount '
petsc_options_value = 'lu superlu_dist NONZERO 1e-15'
nl_max_its = 30
line_search = 'l2'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/executioners/nl_forced_its/many_nl_forced_its.i)
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
line_search = none
nl_forced_its = 10
num_steps = 1
[]
(modules/peridynamics/test/tests/failure_tests/2D_stress_failure_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
cracks_start = '0.25 0.5 0'
cracks_end = '0.75 0.5 0'
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./damage]
[../]
[./intact_bonds_num]
[../]
[./critical_stress]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./bond_status]
type = RankTwoBasedFailureCriteriaNOSPD
variable = bond_status
rank_two_tensor = stress
critical_variable = critical_stress
failure_criterion = VonMisesStress
[../]
[]
[UserObjects]
[./damage]
type = NodalDamageIndexPD
variable = damage
[../]
[./intact_bonds]
type = NodalNumIntactBondsPD
variable = intact_bonds_num
[../]
[]
[ICs]
[./critical_stretch]
type = ConstantIC
variable = critical_stress
value = 150
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[./rbm_x]
type = RBMPresetOldValuePD
variable = disp_x
boundary = 999
[../]
[./rbm_y]
type = RBMPresetOldValuePD
variable = disp_y
boundary = 999
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
dt = 0.5
end_time = 1
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_stress_failure_H1NOSPD
exodus = true
[]
(modules/functional_expansion_tools/examples/1D_volumetric_Cartesian/main.i)
# Basic example coupling a master and sub app in a 1D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/materials/stateful_prop/stateful_prop_adaptivity_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
uniform_refine = 2
# This option is necessary if you have uniform refinement + stateful material properties + adaptivity
skip_partitioning = true
# stateful material properties + adaptivity are not yet compatible
# with distributed meshes
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = old # Use the "Old" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./stateful]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 4
dt = .1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = box
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.2 0.2 0.2'
top_right = '0.4 0.4 0.4'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/contact/test/tests/mortar_dynamics/block-dynamics-friction-action.i)
starting_point = 2e-1
offset = -0.19
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = long-bottom-block-no-lower-d.e
[]
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
zeta = 0.05
alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'LINEAR timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'LINEAR timestep_end'
[]
[]
[Contact]
[mechanical]
formulation = mortar
model = coulomb
primary = 20
secondary = 10
friction_coefficient = 0.5
c_normal = 1.0e4
c_tangential = 1.0e4
interpolate_normals = false
mortar_dynamics = true
newmark_beta = 0.25
newmark_gamma = 0.5
capture_tolerance = 1.0e-3
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 30 # 50
function = '0' # '1e-2*t'
[]
[]
[Executioner]
type = Transient
end_time = 75
dt = 0.05
dtmin = .005
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err '
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
nl_max_its = 50
line_search = 'none'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[VectorPostprocessors]
[mechanical_tangential_lm]
type = NodalValueSampler
block = 'mechanical_secondary_subdomain'
variable = mechanical_tangential_lm
sort_by = 'x'
execute_on = TIMESTEP_END
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(test/tests/executioners/nl_divergence_tolerance/nl_abs_divergence_tolerance.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
scaling = 1e-5
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1000
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 100000
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
line_search = 'none'
solve_type = PJFNK
l_max_its = 20
nl_max_its = 20
nl_abs_div_tol = 1e+7
nl_div_tol = 1e+50
dt = 1
num_steps = 2
petsc_options = '-snes_converged_reason -ksp_converged_reason '
petsc_options_iname = '-pc_type -pc_hypre_type '
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/poro_mechanics/terzaghi.i)
# Terzaghi's problem of consolodation of a drained medium
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[../]
[./topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.6
solid_bulk_compliance = 0.25
fluid_bulk_compliance = 0.125
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi
[./csv]
type = CSV
[../]
[]
(modules/tensor_mechanics/test/tests/beam/constraints/glued_constraint.i)
# Test for glued beam constraint.
#
# Using a simple L-shaped geometry with a glued constraint at the
# corner between the two beams. The longer beam properties and loading is
# taken from an earlier beam regression test for static loading. The maximum
# applied load of 50000 lb should result in a displacement of 3.537e-3. Since
# the constraint is glued, the y-dir displacement of the long beam is
# 3.537e-3 and the short beam y-dir displacement is the same. The stiffness of
# the short beam is much less than the longer beam and thus should not
# significantly influence the displacement solution.
[Mesh]
file = beam_cons_patch.e
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '1001 1003'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '1001 1003'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '1001 1003'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '1001 1003'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '1001 1003'
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = '1001 1003'
value = 0.0
[../]
[]
[Constraints]
[./tie_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_y
[../]
[./tie_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_x
[../]
[./tie_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_z
[../]
[./tie_rot_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_y
[../]
[./tie_rot_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_x
[../]
[./tie_rot_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_z
[../]
[]
[Functions]
[./force_loading]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 50000.0'
[../]
[./disp_y_ramp]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 1e-2'
[../]
[]
[NodalKernels]
[./force_x2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = '1004'
function = force_loading
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 5
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity_pipe]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 1
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain_pipe]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[../]
[./stress_pipe]
type = ComputeBeamResultants
block = 1
outputs = exodus
output_properties = 'forces moments'
[../]
[./elasticity_cons]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 10e2
poissons_ratio = 0.3
block = 2
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain_cons]
type = ComputeIncrementalBeamStrain
block = '2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[../]
[./stress_cons]
type = ComputeBeamResultants
block = 2
outputs = exodus
output_properties = 'forces moments'
[../]
[]
[Postprocessors]
[./disp_y_n4]
type = NodalVariableValue
variable = disp_y
nodeid = 3
[../]
[./disp_y_n2]
type = NodalVariableValue
variable = disp_y
nodeid = 1
[../]
[./forces_y]
type = PointValue
point = '10.0 59.9 0.0'
variable = forces_y
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_nobcbc.i)
[GlobalParams]
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[outlet]
type = INSADMomentumNoBCBC
variable = velocity
pressure = p
boundary = 'top'
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_action_lowerd_exists.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[MortarGapHeatTransfer]
[mortar_heat_transfer]
temperature = temp
primary_emissivity = 1.0
secondary_emissivity = 1.0
boundary = 100
use_displaced_mesh = true
gap_conductivity = 0.02
primary_boundary = 100
secondary_boundary = 101
# We already have mortar lower-dimensional domains and do not need the action
# to create them for us. It will reuse those and define variables and constraints on
# the existing appended meshes.
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
gap_flux_options = 'CONDUCTION RADIATION'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
csv = true
[exodus]
type = Exodus
show = 'temp'
[]
[]
(modules/porous_flow/examples/flow_through_fractured_media/diffusion.i)
[Mesh]
file = diffusion_1.e # or diffusion_5.e or diffusion_fine.e
[]
[Variables]
[T]
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = 2
variable = T
value = 1
[]
[]
[Kernels]
[dot]
type = TimeDerivative
variable = T
[]
[fracture_diffusion]
type = AnisotropicDiffusion
block = 1
tensor_coeff = '1 0 0 0 1 0 0 0 1'
variable = T
[]
[matrix_diffusion]
type = AnisotropicDiffusion
block = '2 3'
tensor_coeff = '0 0 0 0 0 0 0 0 0'
variable = T
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 10
end_time = 100
nl_abs_tol = 1E-13
nl_rel_tol = 1E-12
[]
[Outputs]
print_linear_residuals = false
exodus = true
[]
(test/tests/functions/solution_function/solution_function_exodus_interp_test.i)
[Mesh]
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
# [./ne]
# order = FIRST
# family = LAGRANGE
# [../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
# [./ee]
# order = CONSTANT
# family = MONOMIAL
# [../]
[]
[Functions]
[./sourcen]
type = SolutionFunction
solution = cube_soln
[../]
# [./sourcee]
# type = SolutionFunction
# file_type = exodusII
# mesh = cubesource.e
# variable = source_element
# [../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = FunctionAux
variable = nn
function = sourcen
[../]
# [./ne]
# type = FunctionAux
# variable = ne
# function = sourcee
# [../]
[./en]
type = FunctionAux
variable = en
function = sourcen
[../]
# [./ee]
# type = FunctionAux
# variable = ee
# function = sourcee
# [../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[UserObjects]
[./cube_soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
#[Executioner]
# type = Steady
# petsc_options = '-snes'
# l_max_its = 800
# nl_rel_tol = 1e-10
#[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/unit_trip_control/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[Functions]
[fn]
type = ParsedFunction
value = 'sin(pi*t)'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Components]
[]
[Postprocessors]
[a]
type = FunctionValuePostprocessor
function = fn
execute_on = 'timestep_begin'
[]
[trip_state]
type = BoolControlDataValuePostprocessor
control_data_name = trip_ctrl:state
execute_on = 'timestep_end'
[]
[]
[ControlLogic]
[trip_ctrl]
type = UnitTripControl
condition = 'a > 0.6'
vars = 'a'
vals = 'a'
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 10
abort_on_solve_fail = true
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar02.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# when scalar is a FunctionAux.
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[Functions]
[perm_fn]
type = ParsedFunction
value = '2*(x+1)'
[]
[]
[AuxVariables]
[perm_var]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[perm_var]
type = FunctionAux
function = perm_fn
variable = perm_var
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[]
[perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[]
[perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[]
[perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[]
[perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[]
[perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityTensorFromVar
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
perm = perm_var
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(modules/stochastic_tools/test/tests/multiapps/sampler_full_solve_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
# coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rd03.i)
[Mesh]
file = gold/rd02.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '2E4 1E6'
x = '0 1E6'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = pressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.336
alpha = 1.43e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e7
viscosity = 1.01e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[massfrac]
type = PorousFlowMassFraction
[]
[temperature]
type = PorousFlowTemperature
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[relperm]
type = PorousFlowRelativePermeabilityVG
m = 0.336
seff_turnover = 0.99
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.33
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.295E-12 0 0 0 0.295E-12 0 0 0 0.295E-12'
[]
[]
[Variables]
[pressure]
initial_from_file_timestep = LATEST
initial_from_file_var = pressure
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '-10 0 0'
[]
[]
[AuxVariables]
[SWater]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[]
[]
[BCs]
[base]
type = DirichletBC
boundary = left
value = 0.0
variable = pressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10'
[]
[]
[VectorPostprocessors]
[swater]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = SWater
start_point = '0 0 0'
end_point = '6 0 0'
sort_by = x
num_points = 121
execute_on = timestep_end
[]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 8.2944E6
[TimeStepper]
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = rd03
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[along_line]
type = CSV
execute_on = final
[]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/source_boundary_master.i)
[Mesh]
[drmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 30
ny = 30
xmax = 2
elem_type = QUAD4
partition = square
[]
[]
[Variables]
[u][]
[]
[AuxVariables]
[from_sub][]
[]
[Kernels]
[conduction]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 10
[]
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
app_type = MooseTestApp
input_files = 'source_boundary_sub.i'
positions = '-1.0 0.0 0.0
2. 0.0 0.0'
output_in_position = true
cli_args='BCs/right/value="1" BCs/right/value="10"'
[]
[]
[Transfers]
[source_boundary]
type = MultiAppNearestNodeTransfer
source_variable = u
from_multi_app = sub
variable = from_sub
source_boundary = 'right'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = HEX8
[]
[UserObjects]
[./square_cut_uo]
type = RectangleCutUserObject
cut_data = ' -0.001 0.5 -0.001
0.401 0.5 -0.001
0.401 0.5 0.201
-0.001 0.5 0.201'
[../]
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[DomainIntegral]
integrals = 'Jintegral InteractionIntegralKI'
crack_front_points = '0.4 0.5 0.0
0.4 0.5 0.1
0.4 0.5 0.2'
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
radius_inner = '0.2'
radius_outer = '0.4'
poissons_ratio = 0.3
youngs_modulus = 207000
block = 0
incremental = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
block = 0
[../]
[]
[Functions]
[./top_trac_y]
type = ConstantFunction
value = 10
[../]
[]
[BCs]
[./top_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = top_trac_y
[../]
[./bottom_x]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = bottom
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
block = 0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = edge_crack_3d_out
execute_on = 'timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/multiapps/picard/steady_custom_picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./vnorm]
type = ElementL2Norm
variable = v
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = SteadyWithPicardCheck
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
disable_fixed_point_residual_norm_check = true
pp_name = unorm
pp_step_tol = 1e-4
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = steady_picard_sub.i
no_backup_and_restore = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(test/tests/mesh/custom_partitioner/custom_linear_partitioner_test_displacement.i)
[Mesh]
[gen]
dim = 2
type = GeneratedMeshGenerator
nx = 3
ny = 3
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
uniform_refine = 2
displacements = 'u aux_v'
[./Partitioner]
type = LibmeshPartitioner
partitioner = linear
[../]
parallel_type = replicated
[]
[Functions]
[./aux_v_fn]
type = ParsedFunction
value = x*(y-0.5)/5
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./udiff]
type = Diffusion
variable = u
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./uleft]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 2
value = 0.1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 1
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 2
value = 0
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./aux_k_1]
type = FunctionAux
variable = aux_v
function = aux_v_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
file_base = custom_linear_partitioner_test_displacement
[./out]
type = Exodus
use_displaced = true
[../]
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/master2_wrong_order.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub_app]
order = FOURTH
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0
0.7 0.7 0
0.8 0.8 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub2.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub
from_postprocessor = point_value
to_aux_scalar = from_sub_app
[../]
[]
(test/tests/transfers/transfer_on_final/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
initial_condition = 10
[]
[]
[AuxVariables]
[v]
initial_condition = 20
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 10
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 20
[]
[]
[Executioner]
type = Transient
num_steps = 4
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[final]
type = Exodus
execute_on = 'FINAL'
execute_input_on = 'NONE' # This is needed to avoid problems with creating a file w/o data during --recover testing
[]
[]
(test/tests/outputs/format/output_test_xdr.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
xdr = true
[]
(test/tests/markers/error_fraction_marker/error_fraction_marker_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[solution]
type = ParsedFunction
value = (exp(x)-1)/(exp(1)-1)
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[conv]
type = Convection
variable = u
velocity = '1 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
[Indicators]
[error]
type = AnalyticalIndicator
variable = u
function = solution
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
coarsen = 0.1
indicator = error
refine = 0.3
[]
[]
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/xfem/xfem_mechanics_prescribed_growth.i)
# This is a demonstration of a simple mechanics simulation using XFEM
# to represent a single crack that is prescribed to propagate along
# a line over time.
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.1 0.5'
time_start_cut = 0.0
time_end_cut = 8.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 50'
y='0 0.02'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pull
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 10.0
max_xfem_update = 5
[]
[Outputs]
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
(modules/heat_conduction/test/tests/transient_heat/transient_heat.i)
[Mesh]
file = cube.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./ie]
type = SpecificHeatConductionTimeDerivative
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./constant]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1
specific_heat = 1
[../]
[./density]
type = GenericConstantMaterial
block = 1
prop_names = density
prop_values = 1
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_simple_linear/linear-ad-reverse-dependency.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./stress_x]
type = ADStressDivergenceTensors
component = 0
variable = disp_x
[../]
[./stress_y]
type = ADStressDivergenceTensors
component = 1
variable = disp_y
[../]
[./stress_z]
type = ADStressDivergenceTensors
component = 2
variable = disp_z
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./strain]
type = ADComputeSmallStrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = "linear-out"
[]
(modules/tensor_mechanics/test/tests/t_stress/t_stress_ellip_crack_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = ellip_crack_4sym_norad_mm.e
displacements = 'disp_x disp_y disp_z'
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -689.5 #MPa
[../]
[]
[DomainIntegral]
integrals = 'JIntegral InteractionIntegralKI InteractionIntegralT'
boundary = 1001
crack_direction_method = CurvedCrackFront
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '0.0 1.0 0.0'
crack_direction_vector_end_2 = '1.0 0.0 0.0'
radius_inner = '12.5 25.0 37.5'
radius_outer = '25.0 37.5 50.0'
intersecting_boundary = '1 2'
symmetry_plane = 2
youngs_modulus = 206.8e+3 #MPa
poissons_ratio = 0.3
block = 1
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress strain_xx strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 12
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 5
function = rampConstantUp
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206.8e+3
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
#petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
nl_rel_tol = 1e-11
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = t_stress_ellip_crack_out
exodus = true
csv = true
[]
(test/tests/variables/coupled_scalar/coupled_scalar_old.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
[./lin1_fn]
type = ParsedFunction
value = t
[../]
[./lin2_fn]
type = ParsedFunction
value = 't+1'
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_scalar]
order = SECOND
family = SCALAR
[../]
[./coupled]
[../]
[./coupled_1]
[../]
[]
[ICs]
[./aux_scalar_ic]
variable = aux_scalar
values = '1.2 4.3'
type = ScalarComponentIC
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./coupled]
type = CoupledScalarAux
variable = coupled
coupled = aux_scalar
[../]
[./coupled_1]
# Coupling to the "1" component of an aux scalar
type = CoupledScalarAux
variable = coupled_1
component = 1
coupled = aux_scalar
[../]
[]
[AuxScalarKernels]
[./aux_scalar_k]
type = FunctionScalarAux
variable = aux_scalar
function = 'lin1_fn lin2_fn'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 4
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard/pseudo_transient_picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./time]
type = CoefTimeDerivative
variable = v
Coefficient = 0.1
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Postprocessors]
[./vnorm]
type = ElementL2Norm
variable = v
[../]
[]
[Executioner]
type = Transient
end_time = 10
nl_abs_tol = 1e-12
steady_state_detection = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/sidesets_from_normals_generator/sidesets_cylinder_normals.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = cylinder.e
#parallel_type = replicated
[]
[./sidesets]
type = SideSetsFromNormalsGenerator
input = fmg
normals = '0 0 1
0 1 0
0 0 -1'
fixed_normal = false
new_boundary = 'top side bottom'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/tag/2d_diffusion_matrix_tag_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./tag_variable]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
[../]
[./diff1]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag2'
vector_tags = vec_tag1
[../]
[./diff2]
type = Diffusion
variable = u
vector_tags = vec_tag1
[../]
[./diff3]
type = Diffusion
variable = u
vector_tags = vec_tag1
[../]
[]
[AuxKernels]
[./TagMatrixAux]
type = TagMatrixAux
variable = tag_variable
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
extra_matrix_tags = mat_tag1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
extra_matrix_tags = mat_tag1
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'nontime residual'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = matrix_tag_test_out
exodus = true
[]
(test/tests/transfers/multiapp_conservative_transfer/primary_skipped_adjuster.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[var]
family = MONOMIAL
order = THIRD
[]
[]
[ICs]
[var_ic]
type = FunctionIC
variable = var
function = '-exp(x * y)'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
input_files = secondary_negative_adjuster.i
execute_on = timestep_begin
[]
[]
[Postprocessors]
[from_postprocessor]
type = ElementIntegralVariablePostprocessor
variable = var
[]
[]
[Transfers]
[to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = var
variable = var
to_multi_app = sub
from_postprocessors_to_be_preserved = 'from_postprocessor'
to_postprocessors_to_be_preserved = 'to_postprocessor'
allow_skipped_adjustment = true
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_no_action.i)
[Problem]
kernel_coverage_check = false
[]
[Mesh]
type = MeshGeneratorMesh
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1.3 1.9'
ix = '3 3 3'
dy = '2 1.2 0.9'
iy = '3 3 3'
subdomain_id = '0 1 0
4 5 2
0 3 0'
[../]
[./inner_bottom]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 1
paired_block = 5
new_boundary = 'inner_bottom'
[../]
[./inner_left]
type = SideSetsBetweenSubdomainsGenerator
input = inner_bottom
primary_block = 4
paired_block = 5
new_boundary = 'inner_left'
[../]
[./inner_right]
type = SideSetsBetweenSubdomainsGenerator
input = inner_left
primary_block = 2
paired_block = 5
new_boundary = 'inner_right'
[../]
[./inner_top]
type = SideSetsBetweenSubdomainsGenerator
input = inner_right
primary_block = 3
paired_block = 5
new_boundary = 'inner_top'
[../]
[./rename]
type = RenameBlockGenerator
old_block = '1 2 3 4'
new_block = '0 0 0 0'
input = inner_top
[../]
[./split_inner_bottom]
type = PatchSidesetGenerator
boundary = 4
n_patches = 2
partitioner = centroid
centroid_partitioner_direction = x
input = rename
[../]
[./split_inner_left]
type = PatchSidesetGenerator
boundary = 5
n_patches = 2
partitioner = centroid
centroid_partitioner_direction = y
input = split_inner_bottom
[../]
[./split_inner_right]
type = PatchSidesetGenerator
boundary = 6
n_patches = 2
partitioner = centroid
centroid_partitioner_direction = y
input = split_inner_left
[../]
[./split_inner_top]
type = PatchSidesetGenerator
boundary = 7
n_patches = 3
partitioner = centroid
centroid_partitioner_direction = x
input = split_inner_right
[../]
[]
[Variables]
[./temperature]
block = 0
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temperature
block = 0
diffusion_coefficient = 5
[../]
[]
[UserObjects]
[./gray_lambert]
type = ViewFactorObjectSurfaceRadiation
boundary = 'inner_bottom_0 inner_bottom_1
inner_left_0 inner_left_1
inner_right_0 inner_right_1
inner_top_0 inner_top_1 inner_top_2'
fixed_temperature_boundary = 'inner_bottom_0 inner_bottom_1'
fixed_boundary_temperatures = '1200 1200'
adiabatic_boundary = 'inner_top_0 inner_top_1 inner_top_2'
emissivity = '0.9 0.9
0.8 0.8
0.4 0.4
1 1 1'
temperature = temperature
view_factor_object_name = view_factor
execute_on = 'LINEAR TIMESTEP_END'
[../]
[./view_factor]
type = UnobstructedPlanarViewFactor
boundary = 'inner_bottom_0 inner_bottom_1
inner_left_0 inner_left_1
inner_right_0 inner_right_1
inner_top_0 inner_top_1 inner_top_2'
normalize_view_factor = true
execute_on = 'INITIAL'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
boundary = left
value = 600
[../]
[./right]
type = DirichletBC
variable = temperature
boundary = right
value = 300
[../]
[./radiation]
type = GrayLambertNeumannBC
variable = temperature
surface_radiation_object_name = gray_lambert
boundary = 'inner_left_0 inner_left_1
inner_right_0 inner_right_1'
[../]
[]
[Postprocessors]
[./average_T_inner_right]
type = SideAverageValue
variable = temperature
boundary = inner_right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_nobcbc.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[./u_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./v_out]
type = INSMomentumNoBCBCLaplaceForm
boundary = top
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(test/tests/mesh_modifiers/subdomain_bounding_box/subdomain_bounding_box_outside.i)
[Mesh]
uniform_refine = 2
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
ymax = 1
[]
[subdomains]
type = SubdomainBoundingBoxGenerator
input = gen
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
location = OUTSIDE
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = MatCoefDiffusion
variable = u
conductivity = 'k'
block = '0 1'
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[outside]
type = GenericConstantMaterial
block = 0
prop_names = 'k'
prop_values = 1
[]
[inside]
type = GenericConstantMaterial
block = 1
prop_names = 'k'
prop_values = 0.1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4qtt_out
exodus = true
[]
(test/tests/outputs/png/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[png]
type = PNGOutput
resolution = 25
color = RWB
variable = 'u'
[]
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
from_postprocessor = average_0
to_aux_scalar = from_0
[]
[pp_transfer_2]
type = MultiAppPostprocessorToAuxScalarTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
from_postprocessor = average_1
to_aux_scalar = from_1
[]
[]
(test/tests/parser/active_inactive/active_inactive.i)
#############################################################
# This input file demonstrates the use of the active/inactive
# block level parameters that can be used to toggle individual
# blocks on/off for every block in a MOOSE-based input file.
#
# "active" and "inactive" cannot be used within the same block
##############################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
active = 'u'
[./u]
[../]
[]
[AuxVariables]
inactive = 'aux1 aux3'
# The parameters in the inactive sections can be invalid because
# they are never parsed.
[./aux1]
type = DoesntExist
flintstones = 'fred wilma'
[../]
[./aux2]
[../]
[./aux3]
order = TENZILLION
[../]
[./aux4]
[../]
[]
[AuxKernels]
active = 'aux2 aux4'
# You can use active or inactive depending on whatever is easier
[./aux1]
type = ConstantAux
value = 1
variable = aux1
[../]
[./aux2]
type = ConstantAux
value = 2
variable = aux2
[../]
[./aux3]
type = ConstantAux
value = 3
variable = aux3
[../]
[./aux4]
type = ConstantAux
value = 4
variable = aux4
[../]
[]
[Kernels]
inactive = ''
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
inactive = ''
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
inactive = Adaptivity
[./Adaptivity]
[../]
[]
# No output so we can override several parameters and test them concurrently
(modules/xfem/test/tests/solid_mechanics_basic/edge_crack_3d_propagation.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[XFEM]
geometric_cut_userobjects = 'cut_mesh'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = HEX8
[]
[UserObjects]
[./cut_mesh]
type = CrackMeshCut3DUserObject
mesh_file = mesh_edge_crack.xda
growth_dir_method = 'function'
size_control = 0.1
n_step_growth = 1
function_x = growth_func_x
function_y = growth_func_y
function_z = growth_func_z
function_v = growth_func_v
[../]
[]
[Functions]
[./growth_func_x]
type = ParsedFunction
value = 1
[../]
[./growth_func_y]
type = ParsedFunction
value = 0
[../]
[./growth_func_z]
type = ParsedFunction
value = 0
[../]
[./growth_func_v]
type = ParsedFunction
value = 0.15
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[Functions]
[./top_trac_y]
type = ConstantFunction
value = 10
[../]
[]
[BCs]
[./top_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = top_trac_y
[../]
[./bottom_x]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
boundary = bottom
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
block = 0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 3.0
max_xfem_update = 1
[]
[Outputs]
file_base = edge_crack_3d_propagation_out
execute_on = 'timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/tag/tag_neumann.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = LAGRANGE
[../]
[./tag_variable2]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = 2
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/missing_function_test.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = missing_function #should generate error
[../]
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/bcs/1d_neumann/from_cubit.i)
[Mesh]
file = 1d_line.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/bimaterials/inclusion_bimaterials_2d.i)
# This test is for a matrix-inclusion composite materials
# The global stress is determined by switching the stress based on level set values
# The inclusion geometry is marked by a level set function
# The matrix and inclusion are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'sqrt((y-2.5)*(y-2.5) + (x-2.5)*(x-2.5)) - 1.5'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = '0.03*t'
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-7
# time control
start_time = 0.0
dt = 0.5
end_time = 1.0
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/misc/check_error/incomplete_kernel_variable_coverage_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/print_c/print_compare_c.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t/1000
[]
[]
[AuxVariables]
[strain_xy]
family = MONOMIAL
order = FIRST
[]
[strain_yy]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 1
index_j = 0
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[NodalKernels]
[force_x]
type = ConstantRate
variable = disp_x
boundary = top
rate = 1.0e0
[]
[]
[Materials]
# 1. Active for UMAT verification
[umat_c]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_print_c'
num_state_vars = 0
use_one_based_indexing = true
[]
[umat_f]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic'
num_state_vars = 0
use_one_based_indexing = true
[]
[umat_eigen]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_print_eigen'
num_state_vars = 0
use_one_based_indexing = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 10
dt = 10.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_force_yz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the XY plane and the loading is in-plane, perpendicular to the
# beam longitudinal axis.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 0.7071067812e-4
[../]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = -0.7071067812e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_y]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_y
[../]
[./disp_z]
type = PointValue
point = '0 2.8284271 2.8284271'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_pipe_axial_force.i)
# Test for small strain Euler beam axial loading in x direction.
# Modeling a pipe with an OD of 10 inches and ID of 8 inches
# The length of the pipe is 5 feet (60 inches) and E = 30e6
# G = 11.5384615385e6 with nu = 0.3
# The applied axial load is 50000 lb which results in a
# displacement of 3.537e-3 inches at the end
# delta = PL/AE = 50000 * 60 / pi (5^2 - 4^2) * 30e6 = 3.537e-3
# In this analysis the applied force is used as a BC
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 60.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = right
rate = 50000.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 0
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
outputs = exodus
output_properties = 'forces moments'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_y
[../]
[./forces_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = forces_x
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/multiapps/auto_diff_auto_scaling/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = 't'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
automatic_scaling = true
verbose = true
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub.i'
positions = '0 0 0'
[]
[]
(test/tests/userobjects/nearest_point_layered_side_average/nearest_point_layered_side_average.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 10
nz = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./np_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./np_layered_average]
type = SpatialUserObjectAux
variable = np_layered_average
execute_on = timestep_end
user_object = npla
boundary = 'bottom top'
[../]
[]
[UserObjects]
[./npla]
type = NearestPointLayeredSideAverage
direction = x
points='0.25 0 0.25 0.75 0 0.25 0.25 0 0.75 0.75 0 0.75'
num_layers = 10
variable = u
execute_on = linear
boundary = 'bottom top'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2000
bias_x = 1.003
xmin = 0.1
xmax = 5000
ny = 1
ymin = 0
ymax = 11
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
gravity = '0 0 0'
biot_coefficient = 1.0
[]
[Variables]
[pwater]
initial_condition = 18.3e6
[]
[sgas]
initial_condition = 0.0
[]
[temp]
initial_condition = 358
[]
[disp_r]
[]
[]
[AuxVariables]
[rate]
[]
[disp_z]
[]
[massfrac_ph0_sp0]
initial_condition = 1 # all H20 in phase=0
[]
[massfrac_ph1_sp0]
initial_condition = 0 # no H2O in phase=1
[]
[pgas]
family = MONOMIAL
order = FIRST
[]
[swater]
family = MONOMIAL
order = FIRST
[]
[stress_rr]
order = CONSTANT
family = MONOMIAL
[]
[stress_tt]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = sgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = temp
[]
[conduction]
type = PorousFlowExponentialDecay
use_displaced_mesh = false
variable = temp
reference = 358
rate = rate
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = temp
eigenstrain_names = thermal_contribution
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxKernels]
[rate]
type = FunctionAux
variable = rate
execute_on = timestep_begin
function = decay_rate
[]
[pgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pgas
[]
[swater]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = swater
[]
[stress_rr]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_rr
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[]
[Functions]
[decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
type = ParsedFunction
value = 'sqrt(10056886.914/t)/11.0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pwater sgas disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Modules]
[FluidProperties]
[water]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 970.0
viscosity = 0.3394e-3
cv = 4149.0
cp = 4149.0
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[co2]
type = SimpleFluidProperties
bulk_modulus = 2.27e14
density0 = 516.48
viscosity = 0.0393e-3
cv = 2920.5
cp = 2920.5
porepressure_coefficient = 0.0
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = pwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = water
phase = 0
[]
[gas]
type = PorousFlowSingleComponentFluid
fp = co2
phase = 1
[]
[porosity_reservoir]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability_reservoir]
type = PorousFlowPermeabilityConst
permeability = '2e-12 0 0 0 0 0 0 0 0'
[]
[relperm_liquid]
type = PorousFlowRelativePermeabilityCorey
n = 4
phase = 0
s_res = 0.200
sum_s_res = 0.405
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityBC
phase = 1
s_res = 0.205
sum_s_res = 0.405
nw_phase = true
lambda = 2
[]
[thermal_conductivity_reservoir]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 1.320 0 0 0 0'
wet_thermal_conductivity = '0 0 0 0 3.083 0 0 0 0'
[]
[internal_energy_reservoir]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2350.0
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 6.0E9
poissons_ratio = 0.2
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution ini_stress'
[]
[ini_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-12.8E6 0 0 0 -51.3E6 0 0 0 -12.8E6'
eigenstrain_name = ini_stress
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temp
stress_free_temperature = 358
thermal_expansion_coeff = 5E-6
eigenstrain_name = thermal_contribution
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[]
[BCs]
[outer_pressure_fixed]
type = DirichletBC
boundary = right
value = 18.3e6
variable = pwater
[]
[outer_saturation_fixed]
type = DirichletBC
boundary = right
value = 0.0
variable = sgas
[]
[outer_temp_fixed]
type = DirichletBC
boundary = right
value = 358
variable = temp
[]
[fixed_outer_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = right
[]
[co2_injection]
type = PorousFlowSink
boundary = left
variable = sgas
use_mobility = false
use_relperm = false
fluid_phase = 1
flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
[]
[cold_co2]
type = DirichletBC
boundary = left
variable = temp
value = 294
[]
[cavity_pressure_x]
type = Pressure
boundary = left
variable = disp_r
component = 0
postprocessor = p_bh # note, this lags
use_displaced_mesh = false
[]
[]
[Postprocessors]
[p_bh]
type = PointValue
variable = pwater
point = '0.1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[]
[VectorPostprocessors]
[ptsuss]
type = LineValueSampler
use_displaced_mesh = false
start_point = '0.1 0 0'
end_point = '5000 0 0'
sort_by = x
num_points = 50000
outputs = csv
variable = 'pwater temp sgas disp_r stress_rr stress_tt'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
#petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E2 1E-5 500'
[]
[mumps]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
petsc_options_value = 'gmres lu mumps NONZERO 1E-5 1E2 50'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1.5768e8
#dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
[]
[]
[Outputs]
print_linear_residuals = false
sync_times = '3600 86400 2.592E6 1.5768E8'
perf_graph = true
exodus = true
[csv]
type = CSV
sync_only = true
[]
[]
(test/tests/multiapps/sub_cycling/sub_short.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.01
end_time = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1.i)
#
# Test for effective strain calculation.
# Boundary conditions from NAFEMS test NL1
#
# This is not a verification test. The boundary conditions are applied such
# that the first step generates only elastic stresses. The second and third
# steps generate plastic deformation and the effective strain should be
# increasing throughout the run.
#
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = one_elem2.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./eff_plastic_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain_zz]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./tot_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./tot_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./eff_plastic_strain]
type = MaterialRealAux
property = effective_plastic_strain
variable = eff_plastic_strain
[../]
[]
[Functions]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0.0 0.208e-4 0.50e-4 1.00e-4'
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = 1
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 5e6
hardening_constant = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-4
l_max_its = 100
nl_max_its = 20
dt = 1.0
start_time = 0.0
num_steps = 100
end_time = 3.0
[] # Executioner
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./el_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./el_strain_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[./pl_strain_xx]
type = ElementAverageValue
variable = plastic_strain_xx
[../]
[./pl_strain_yy]
type = ElementAverageValue
variable = plastic_strain_yy
[../]
[./pl_strain_zz]
type = ElementAverageValue
variable = plastic_strain_zz
[../]
[./eff_plastic_strain]
type = ElementAverageValue
variable = eff_plastic_strain
[../]
[./tot_strain_xx]
type = ElementAverageValue
variable = tot_strain_xx
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./tot_strain_zz]
type = ElementAverageValue
variable = tot_strain_zz
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
output_linear = true
[../]
[] # Outputs
(modules/tensor_mechanics/test/tests/pressure/ring.i)
#
#
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[MeshGenerator]
type = GeneratedMeshGenerator
dim = 2
nx = 1 #10
ny = 1
xmin = 1.0
xmax = 1.1
[]
[move_nodes]
type = MoveNodeGenerator
input = MeshGenerator
node_id = '0 2'
new_position = '0.9 0.1 0 1.125 1.025 0'
[]
[rotate]
type = TransformGenerator
input = move_nodes
transform = rotate
vector_value = '-20 0 0'
[]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[pressure]
type = ParsedFunction
value = 100*t
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
incremental = false
[]
[]
[]
[]
[BCs]
[no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[Pressure]
[pressure]
boundary = 'right'
function = pressure
[]
[]
# [pull_x]
# type = DirichletBC
# variable = disp_x
# boundary = left
# value = 1e-5
# preset = false
# []
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[]
# [strain]
# type = ComputeSmallStrain
# []
[stress]
type = ComputeLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
petsc_options = '-snes_test_jacobian -snes_test_jacobian_view'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 10
end_time = 2.0
[]
[Outputs]
[out]
type = Exodus
[]
[]
(test/tests/geomsearch/2d_penetration_locator/2d_triangle.i)
[Mesh]
file = nonmatching_tri.e
dim = 2
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./gap_distance]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = leftleft
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = rightright
value = 1
[../]
[]
[AuxKernels]
[./distance]
type = PenetrationAux
variable = gap_distance
boundary = leftright
paired_boundary = rightleft
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_2D_geometries/2D-RZ_test.i)
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 2D axisymmetric geometry.
# This test uses the strain calculators ComputeAxisymmetricRZSmallStrain
# and ComputeAxisymmetricRZIncrementalStrain which are generated by the
# TensorMechanics MasterAction depending on the cli_args given in the tests file.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000, respectively. The resulting compressive tangential
# stress is largest at the inner wall and, from the above equation, has a value
# of -271429.
[Mesh]
file = 2D-RZ_mesh.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_zz'
use_automatic_differentiation = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./stress]
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = xzero
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = yzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = outer
component = 0
constant = 200000
[../]
[./exterior_pressure_z]
type = ADPressure
variable = disp_z
boundary = outer
component = 1
constant = 200000
[../]
[./interior_pressure_r]
type = ADPressure
variable = disp_r
boundary = inner
component = 0
constant = 100000
[../]
[./interior_pressure_z]
type = ADPressure
variable = disp_z
boundary = inner
component = 1
constant = 100000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
# num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/missing_mesh_test.i)
# Test for missing input mesh
[Mesh]
file = foo.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/userobjects/nearest_point_layered_integral/points_from_uo.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 1.5
ymax = 1.5
zmax = 1.2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[np_layered_integral]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[np_layered_integral]
type = SpatialUserObjectAux
variable = np_layered_integral
execute_on = timestep_end
user_object = npla
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 1
[]
[]
[UserObjects]
[npla]
type = NearestPointLayeredIntegral
direction = y
num_layers = 3
variable = u
points = '0.375 0.0 0.3
1.125 0.0 0.3
0.375 0.0 0.9
1.125 0.0 0.9'
[]
[]
[VectorPostprocessors]
# getting the points from the user object itself is here exactly equivalent to the points
# provided in the 'spatial_manually_provided' vector postprocessor
[spatial_from_uo]
type = SpatialUserObjectVectorPostprocessor
userobject = npla
[]
[spatial_manually_provided]
type = SpatialUserObjectVectorPostprocessor
userobject = npla
points = '0.375 0.25 0.3
0.375 0.75 0.3
0.375 1.25 0.3
1.125 0.25 0.3
1.125 0.75 0.3
1.125 1.25 0.3
0.375 0.25 0.9
0.375 0.75 0.9
0.375 1.25 0.9
1.125 0.25 0.9
1.125 0.75 0.9
1.125 1.25 0.9'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
execute_on = 'final'
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test3tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test3tt_out
exodus = true
[]
(modules/stochastic_tools/test/tests/transfers/batch_sampler_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[time]
type = ADTimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.25
solve_type = NEWTON
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_change_restart1.i)
# This is a test designed to evaluate the cabability of the
# IterationAdaptiveDT TimeStepper to adjust time step size according to
# a function. For example, if the power input function for a BISON
# simulation rapidly increases or decreases, the IterationAdaptiveDT
# TimeStepper should take time steps small enough to capture the
# oscillation.
[GlobalParams]
order = FIRST
family = LAGRANGE
block = 1
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 1hex8_10mm_cube.e
[]
[Functions]
[./Fiss_Function]
type = PiecewiseLinear
x = '0 1e6 2e6 2.001e6 2.002e6'
y = '0 3e8 3e8 12e8 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
volumetric_locking_correction = true
eigenstrain_names = thermal_expansion
decomposition_method = EigenSolution
add_variables = true
generate_output = 'vonmises_stress'
temperature = temp
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[./heat_source]
type = HeatSource
variable = temp
value = 1.0
function = Fiss_Function
[../]
[]
[BCs]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = 1
value = 300
[../]
[./top_bottom_disp_x]
type = DirichletBC
variable = disp_x
boundary = '1'
value = 0
[../]
[./top_bottom_disp_y]
type = DirichletBC
variable = disp_y
boundary = '1'
value = 0
[../]
[./top_bottom_disp_z]
type = DirichletBC
variable = disp_z
boundary = '1'
value = 0
[../]
[]
[Materials]
[./thermal]
type = HeatConductionMaterial
temp = temp
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 300e6
poissons_ratio = .3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 5e-6
stress_free_temperature = 300.0
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[./density]
type = Density
density = 10963.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
verbose = true
nl_abs_tol = 1e-10
start_time = 0.0
num_steps = 65
end_time = 2.002e6
[./TimeStepper]
type = IterationAdaptiveDT
timestep_limiting_function = Fiss_Function
max_function_change = 3e7
dt = 1e6
[../]
[]
[Postprocessors]
[./Temperature_of_Block]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./vonMises]
type = ElementAverageValue
variable = vonmises_stress
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 10
[../]
[./checkpoint]
type = Checkpoint
num_files = 1
[../]
[]
(test/tests/materials/material/material_check_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[./block_1]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '0.5 0.5 0'
bottom_left = '0 0 0'
block_id = 1
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./mat]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./mat]
type = MaterialRealAux
variable = mat
property = prop
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 3
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
block = 1
prop_names = prop
prop_values = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
file_base = out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/richards/test/tests/rogers_stallybrass_clements/rsc_lumped_01.i)
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsLumpedMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc_lumped_01
interval = 100000
execute_on = 'initial final'
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test12.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./mark]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0.9 0.9 0'
top_right = '3.1 3.1 0'
[../]
[./delete]
type = BlockDeletionGenerator
block = 1
input = mark
new_boundary = cut_surface
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./outer]
type = DirichletBC
variable = u
boundary = 'top bottom left right'
value = 1
[../]
[./inner]
type = DirichletBC
variable = u
boundary = cut_surface
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_var_test.i)
###########################################################
# This is a simple test of the AuxKernel System.
# Several explicit calculations are being done
# using spatial variables.
# This simulation demonstrates coupling, and dependency
# resolution. For simplicity all AuxVariables in this
# simulation are constant.
#
# @Requirement F5.30
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
active = 'one five coupled'
[./one]
order = FIRST
family = LAGRANGE
[../]
[./five]
order = FIRST
family = LAGRANGE
[../]
[./coupled]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff force'
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = one
[../]
[]
# AuxKernel System
[AuxKernels]
#Simple Aux Kernel
[./constant]
variable = one
type = ConstantAux
value = 1
[../]
#Shows coupling of Aux to nonlinear
[./coupled]
variable = coupled
type = CoupledAux
value = 2
coupled = u
[../]
[./five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4ns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test4ns_out
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[Materials]
[./left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[../]
[./right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[../]
[]
[Kernels]
[./hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[../]
[./hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[../]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[simple]
type = GapFluxModelSimple
k = 100
temperature = temp
boundary = 100
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = simple
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[../]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
[]
[Outputs]
exodus = true
show = 'temp disp_x disp_y'
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
(test/tests/multiapps/reset/multilevel_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub.i
output_in_position = true
reset_apps = 0
reset_time = 0.05
[../]
[]
(modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_newmark_action.i)
# Wave propogation in 1D using Newmark time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*vel +K*disp = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -7.776268399030435152e-02, 1.949967184623528985e-02 and -4.615737877580032046e-03, respectively
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
stiffness_damping_coefficient = 0.1
mass_damping_coefficient = 0.1
newmark_beta = 0.3025
newmark_gamma = 0.6
strain = SMALL
density = 1
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[right_z]
type = DirichletBC
variable = disp_z
boundary = right
value = 0.0
[]
[left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[left_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[]
[front_x]
type = DirichletBC
variable = disp_x
boundary = front
value = 0.0
[]
[front_z]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[back_x]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[back_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[]
[disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[]
[disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[]
[disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/cross_material/correctness/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = false
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = false
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = false
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 0.1
exponent = 2.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[./strain]
type = ElementAverageValue
variable = strain_xx
[]
[./stress]
type = ElementAverageValue
variable = stress_xx
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.001
dtmin = 0.001
end_time = 0.05
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/misc/should_execute/should_execute.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/adaptivity/tri3_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
elem_type = TRI3
dim = 2
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'asm'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic_anisotropy/3d_bar_orthotropic_full_rotation.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 10
zmin = 0
zmax = 2
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '2 0 0'
input = corner
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_xz'
[]
[]
[Materials]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = orthotropic
C_ijkl = '2.0e3 2.0e5 2.0e3 0.71428571e3 0.71428571e3 0.71428571e3 0.4 0.2 0.004 0.004 0.2 0.4'
[]
[]
[BCs]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[rot_y]
type = DisplacementAboutAxis
boundary = bottom
function = t
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
[]
#
[rot_x]
type = DisplacementAboutAxis
boundary = bottom
function = t
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[]
[rot_y90]
type = DisplacementAboutAxis
boundary = bottom
function = 360
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
[]
#
[rot_x90]
type = DisplacementAboutAxis
boundary = bottom
function = 360
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[]
[press]
boundary = top
function = '-1.0*(t-360)*10.0'
use_displaced_mesh = true
displacements = 'disp_x disp_y disp_z'
type = Pressure
variable = disp_y
[]
[]
[Controls]
[c1]
type = TimePeriod
enable_objects = 'BCs::rot_x BCs::rot_y'
disable_objects = 'BCs::rot_x90 BCs::rot_y90 BCs::press'
start_time = '0'
end_time = '360'
[]
[c190plus]
type = TimePeriod
enable_objects = 'BCs::rot_x90 BCs::rot_y90 BCs::press'
disable_objects = 'BCs::rot_x BCs::rot_y '
start_time = '360'
end_time = '660'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-08
nl_max_its = 50
l_tol = 1e-4
l_max_its = 50
start_time = 0.0
dt = 5
dtmin = 5
num_steps = 132
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/recompute_radial_return/affine_plasticity.i)
# Affine Plasticity Test for Transient Stress Eigenvalues with Stationary Eigenvectors
# This test is taken from K. Jamojjala, R. Brannon, A. Sadeghirad, J. Guilkey,
# "Verification tests in solid mechanics," Engineering with Computers, Vol 31.,
# p. 193-213.
# The test involves applying particular strains and expecting particular stresses.
# The material properties are:
# Yield in shear 165 MPa
# Shear modulus 79 GPa
# Poisson's ratio 1/3
# The strains are:
# Time e11 e22 e33
# 0 0 0 0
# 1 -0.003 -0.003 0.006
# 2 -0.0103923 0 0.0103923
# The expected stresses are:
# sigma11:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# (189.4+0.1704*sqrt(a)-0.003242*a)
# --------------------------------- 1 < t <= 2
# 1+0.00001712*a
# -189.4 t > 2 (paper erroneously gives a positive value)
#
# sigma22:
# -474*t 0 < t <= 0.201
# -95.26 0.201 < t <= 1
# -(76.87+1.443*sqrt(a)-0.001316*a)
# --------------------------------- 1 < t <= 2 (paper gives opposite sign)
# 1+0.00001712*a
# 76.87 t > 2
#
# sigma33:
# 948*t 0 < t <= 0.201
# 190.5 0.201 < t <= 1
# -(112.5-1.272*sqrt(a)-0.001926*a)
# --------------------------------- 1 < t <= 2 (paper has two sign errors here)
# 1+0.00001712*a
# 112.5 t > 2
#
# where a = exp(12.33*t).
#
# Note: If planning to run this case with strain type ComputeFiniteStrain, the
# displacement function must be adjusted. Instead of
# strain = (l - l0)/l0 = (u+l0 - l0)/l0 = u/l0
# with l0=1.0, we would have
# strain = log(l/l0) = log((u+l0)/l0)
# with l0=1.0. So, for strain = -0.003,
# -0.003 = log((u+l0)/l0) ->
# u = exp(-0.003)*l0 - l0 = -0.0029955044966269995.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '0'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[./disp_x]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 -0.0103923'
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.003 0.'
[../]
[./disp_z]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.006 0.0103923'
[../]
[./stress_xx]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# The paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# 189.409039923814000, 0.170423791206825, -0.003242011311945, 1.711645501845780E-05 - exact values
vars = 'timeAtYield stressAtYield expFac a b c d'
vals = '0.20097635952803425 -95.26279441628823 12.332921390339125 189.409039923814000 0.170423791206825 -0.003242011311945 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[./stress_yy]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives -95.26 MPa as the stress at yield, but -95.26279441628823 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -76.867432297315000, -1.442488120272900, 0.001315697947301, 1.711645501845780E-05 - exact values
vars = 'timeAtYield stressAtYield expFac a b c d'
vals = '0.20097635952803425 -95.26279441628823 12.332921390339125 -76.867432297315000 -1.442488120272900 0.001315697947301 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, -474*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[./stress_zz]
type = ParsedFunction
# The paper gives 0.201 as the time at initial yield, but 0.20097635952803425 is the exact value.
# the paper gives 190.5 MPa as the stress at yield, but 190.52558883257645 is the exact value.
# The paper gives 12.33 as the factor in the exponential, but 12.332921390339125 is the exact value.
# -112.541607626499000, 1.272064329066080, 0.001926313364644, 1.711645501845780E-05 - exact values
vars = 'timeAtYield stressAtYield expFac a b c d'
vals = '0.20097635952803425 190.52558883257645 12.332921390339125 -112.541607626499000 1.272064329066080 0.001926313364644 1.711645501845780E-05'
value = '1e6*
if(t<=timeAtYield, 948*t,
if(t<=1, stressAtYield,
(a+b*sqrt(exp(expFac*t))+c*exp(expFac*t))/(1.0+d*exp(expFac*t))))' # tends to -a
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
execute_on = 'timestep_end'
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = 'timestep_end'
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = 'timestep_end'
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = 'timestep_end'
[../]
[]
[BCs]
[./fixed_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixed_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./fixed_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./disp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = disp_x
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = disp_y
[../]
[./disp_z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 210666666666.666667
poissons_ratio = 0.3333333333333333
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 285788383.2488647 # = sqrt(3)*165e6 = sqrt(3) * yield in shear
hardening_constant = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 0.01 # use 0.0001 for a nearly exact match
end_time = 2.0
[]
[Postprocessors]
[./analytic_xx]
type = FunctionValuePostprocessor
function = stress_xx
[../]
[./analytic_yy]
type = FunctionValuePostprocessor
function = stress_yy
[../]
[./analytic_zz]
type = FunctionValuePostprocessor
function = stress_zz
[../]
[./stress_xx]
type = ElementalVariableValue
variable = stress_xx
elementid = 0
[../]
[./stress_yy]
type = ElementalVariableValue
variable = stress_yy
elementid = 0
[../]
[./stress_zz]
type = ElementalVariableValue
variable = stress_zz
elementid = 0
[../]
[./stress_xx_l2_error]
type = ElementL2Error
variable = stress_xx
function = stress_xx
[../]
[./stress_yy_l2_error]
type = ElementL2Error
variable = stress_yy
function = stress_yy
[../]
[./stress_zz_l2_error]
type = ElementL2Error
variable = stress_zz
function = stress_zz
[../]
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/surrogates/pod_rb/internal/sub.i)
[Problem]
type = FEProblem
extra_tag_vectors = 'diff react bodyf'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 15
xmax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = k
extra_vector_tags = 'diff'
[]
[reaction]
type = MaterialReaction
variable = u
coefficient = alpha
extra_vector_tags = 'react'
[]
[source]
type = BodyForce
variable = u
value = 1.0
extra_vector_tags = 'bodyf'
[]
[]
[Materials]
[k]
type = GenericConstantMaterial
prop_names = k
prop_values = 1.0
[]
[alpha]
type = GenericConstantMaterial
prop_names = alpha
prop_values = 1.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform3.i)
# Plastic deformation, tensile failure
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = 4*t
# disp_y = 3*t
# disp_z = t
# should yield trial stress:
# stress_zz = 12*t
# stress_zx = 16*t
# stress_zy = 12*t
# Use tensile strength = 6, we should return to stress_zz = 6,
# and stress_xx = stress_yy = 2*t up to t=1 when the system is completely
# plastic, so these stress components will not change
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 4*t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 3*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 80
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 6
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform3
csv = true
[]
(test/tests/misc/check_error/double_restrict_uo.i)
[Mesh]
file = sq-2blk.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = 1
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 6
value = 0
[../]
[./right_u]
type = NeumannBC
variable = u
boundary = 8
value = 4
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 6
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 3
value = 6
[../]
[]
[Postprocessors]
# This test demonstrates that you can have a block restricted NodalPostprocessor
[./restricted_max]
type = NodalExtremeValue
variable = v
block = 1 # Block restricted
boundary = 1 # Boundary restricted
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(examples/ex15_actions/ex15.i)
[Mesh]
file = square.e
uniform_refine = 4
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
#This is our new custom Convection Diffusion "Meta" block
#that adds multiple kernels into our simulation
#Convection and Diffusion kernels on the first variable
#Diffusion kernel on the second variable
#The Convection kernel is coupled to the Diffusion kernel on the second variable
[ConvectionDiffusion]
variables = 'convected diffused'
[]
[BCs]
[./left_convected]
type = DirichletBC
variable = convected
boundary = 'left'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = 'right'
value = 1
some_var = diffused
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/stochastic_tools/test/tests/vectorpostprocessors/multiple_stochastic_results/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[max]
type = NodalExtremeValue
value_type = MAX
variable = u
[]
[]
[Outputs]
[]
(examples/ex01_inputfile/diffusion_pathological.i)
[Mesh]
file = square.e
uniform_refine = 4
[]
# Note: This output block is out of its normal place (should be at the bottom)
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
# Note: The executioner is out of its normal place (should be just about the output block)
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Variables]
active = 'diffused' # Note the active list here
[./diffused]
order = FIRST
family = LAGRANGE
[../]
# This variable is not active in the list above
# therefore it is not used in the simulation
[./convected]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
# This example applies DirichletBCs to all four sides of our square domain
[BCs]
[./left]
type = DirichletBC
variable = diffused
boundary = '1'
value = 0
[../]
[./right]
type = DirichletBC
variable = diffused
boundary = '2'
value = 1
[../]
[]
(modules/contact/test/tests/fieldsplit/frictional_mortar_FS.i)
offset = 0.021
vy = 0.15
vx = 0.04
refine = 1
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[original_file_mesh]
type = FileMeshGenerator
file = long_short_blocks.e
[]
uniform_refine = ${refine}
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[]
[]
[Functions]
[horizontal_movement]
type = ParsedFunction
value = 'if(t<0.5,${vx}*t-${offset},${vx}-${offset})'
[]
[vertical_movement]
type = ParsedFunction
value = 'if(t<0.5,${offset},${vy}*(t-0.5)+${offset})'
[]
[]
[BCs]
[push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 30
function = horizontal_movement
[]
[fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[fix_right_y]
type = DirichletBC
variable = disp_y
boundary = '40'
value = 0.0
[]
[push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = '30'
function = vertical_movement
[]
[]
[Materials]
[elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[]
[]
[Contact]
[leftright]
secondary = 10
primary = 20
model = coulomb
formulation = mortar
friction_coefficient = 0.2
c_normal = 1e0
[]
[]
[ICs]
[disp_y]
block = 1
variable = disp_y
value = ${offset}
type = ConstantIC
[]
[disp_x]
block = 1
variable = disp_x
value = -${offset}
type = ConstantIC
[]
[]
[Preconditioning]
[FSP]
type = FSP
# It is the starting point of splitting
topsplit = 'contact_interior' # 'contact_interior' should match the following block name
[contact_interior]
splitting = 'contact interior'
splitting_type = multiplicative
[]
[interior]
type = ContactSplit
vars = 'disp_x disp_y'
uncontact_primary = '20'
uncontact_secondary = '10'
uncontact_displaced = '30'
blocks = '1 2'
include_all_contact_nodes = 1
petsc_options_iname = '-ksp_type -pc_type -pc_hypre_type '
petsc_options_value = ' preonly hypre boomeramg'
[]
[contact]
type = ContactSplit
vars = 'disp_x disp_y leftright_normal_lm leftright_tangential_lm'
contact_primary = '20'
contact_secondary = '10'
contact_displaced = '30'
include_all_contact_nodes = 1
blocks = '4'
petsc_options_iname = '-ksp_type -pc_sub_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' preonly lu NONZERO 1e-15'
[]
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
dt = 0.1
dtmin = 1e-4
end_time = 1
l_tol = 1e-8
l_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 10
[]
[Outputs]
file_base = frictional_mortar_FS_out
[exodus]
type = Exodus
[]
[console]
type = Console
max_rows = 5
[]
[]
(test/tests/multiapps/transient_multiapp/dt_from_multi.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_multi_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/combined/test/tests/poro_mechanics/mandel.i)
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[./xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[../]
[]
[Functions]
[./top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_force]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1.5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_compliance = 0.125
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[../]
[./p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[../]
[./p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[../]
[./p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[../]
[./p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[../]
[./p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[../]
[./p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[../]
[./p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[../]
[./p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[../]
[./p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[../]
[./p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[../]
[./xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[../]
[./ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[../]
[./total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[./TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel
[./csv]
interval = 3
type = CSV
[../]
[]
(test/tests/materials/material/material_test.i)
###########################################################
# This is a simple test of the Material System. A
# user-defined Material (MTMaterial) is providing a
# Real property named "matp" that varies spatially
# throughout the domain. This property is used as a
# coefficient by MatDiffusionTest. It is also output
# by MaterialRealAux for visualization purposes.
#
# @Requirement F4.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./mat]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[]
[AuxKernels]
[./mat]
type = MaterialRealAux
variable = mat
property = matp
execute_on = timestep_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = MTBC
variable = u
boundary = 1
grad = 8
prop_name = matp
[../]
[]
# Materials System
[Materials]
[./mat]
type = MTMaterial
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain_esm_using_cut_mesh.i)
# This test is for two layer materials with different youngs modulus with AD
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[XFEM]
output_cut_plane = true
[]
[UserObjects]
[cut]
type = InterfaceMeshCut2DUserObject
mesh_file = line.e
interface_velocity_function = 1
heal_always = true
[]
[esm]
type = CutElementSubdomainModifier
geometric_cut_userobject = cut
apply_initial_conditions = false
[]
[]
[Mesh]
use_displaced_mesh = true
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 5
ymin = 0
ymax = 5
elem_type = QUAD4
[]
[bottom]
type = SubdomainBoundingBoxGenerator
input = generated_mesh
block_id = 0
bottom_left = '0 0 0'
top_right = '5 2.5 0'
[]
[top]
type = SubdomainBoundingBoxGenerator
input = bottom
block_id = 1
bottom_left = '0 2.5 0'
top_right = '5 5 0'
[]
[]
[Functions]
[ls_func]
type = ParsedFunction
value = 'y-2.73+t'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[ls]
[]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[ls_function]
type = FunctionAux
variable = ls
function = ls_func
[]
[strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[]
[strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[]
[strain_xy]
type = RankTwoAux
variable = strain_xy
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[]
[stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[]
[stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Constraints]
[dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'cut'
[]
[dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'cut'
[]
[]
[BCs]
[bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[]
[bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[]
[topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[]
[topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[]
[]
[Materials]
[elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[strain_A]
type = ComputeFiniteStrain
block = 1
[]
[stress_A]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 1e7
poissons_ratio = 0.3
[]
[strain_B]
type = ComputeFiniteStrain
block = 0
[]
[stress_B]
type = ComputeFiniteStrainElasticStress
block = 0
[]
[]
[Postprocessors]
[disp_x_norm]
type = ElementL2Norm
variable = disp_x
[]
[disp_y_norm]
type = ElementL2Norm
variable = disp_y
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-13
nl_abs_tol = 1e-50
# time control
start_time = 0.0
dt = 0.1
num_steps = 4
max_xfem_update = 1
[]
[Outputs]
print_linear_residuals = false
exodus = true
[]
(modules/heat_conduction/test/tests/multiple_contact_pairs/multiple_contact_pairs.i)
[Mesh]
file = 3blk.e
[]
[Functions]
[temperature]
type = PiecewiseLinear
x = '0 1 2'
y = '100 300 300'
[]
[]
[ThermalContact]
[thermal_contact]
type = GapHeatTransfer
variable = temperature
primary = '101 201'
secondary = '100 200'
emissivity_primary = 0
emissivity_secondary = 0
gap_conductance = 1.0e9
[]
[]
[Variables]
[temperature]
order = FIRST
family = LAGRANGE
initial_condition = 100
[]
[]
[AuxVariables]
[gap_cond]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[heat]
type = HeatConduction
variable = temperature
[]
[]
[BCs]
[temp_far_left]
type = FunctionDirichletBC
boundary = '101 201'
variable = temperature
function = temperature
[]
[temp_far_right]
type = DirichletBC
boundary = 'left right'
variable = temperature
value = 100
[]
[]
[AuxKernels]
[conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 100
[]
[]
[Materials]
[heat1]
type = HeatConductionMaterial
block = '1 2 3'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[]
[density]
type = GenericConstantMaterial
block = '1 2 3'
prop_names = 'density'
prop_values = '1.0'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-8
l_tol = 1e-3
l_max_its = 100
dt = 1e-1
end_time = 1.0
[]
[Postprocessors]
[temp_left]
type = SideAverageValue
boundary = 100
variable = temperature
execute_on = 'initial timestep_end'
[]
[temp_right]
type = SideAverageValue
boundary = 200
variable = temperature
execute_on = 'initial timestep_end'
[]
[flux_left]
type = SideDiffusiveFluxIntegral
variable = temperature
boundary = 100
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[]
[flux_right]
type = SideDiffusiveFluxIntegral
variable = temperature
boundary = 200
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_3/brick3_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x28]
type = NodalVariableValue
nodeid = 27
variable = disp_x
[../]
[./disp_x33]
type = NodalVariableValue
nodeid = 32
variable = disp_x
[../]
[./disp_y28]
type = NodalVariableValue
nodeid = 27
variable = disp_y
[../]
[./disp_y33]
type = NodalVariableValue
nodeid = 32
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x28 disp_y28 disp_x33 disp_y33 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/combined/examples/effective_properties/effective_th_cond.i)
# This example calculates the effective thermal conductivity across a microstructure
# with circular second phase precipitates. Two methods are used to calculate the effective thermal conductivity,
# the direct method that applies a temperature to one side and a heat flux to the other,
# and the AEH method.
[Mesh] #Sets mesh size to 10 microns by 10 microns
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
xmax = 10
ymax = 10
[]
[./new_nodeset]
input = gen
type = ExtraNodesetGenerator
coord = '5 5'
new_boundary = 100
[../]
[]
[Variables] #Adds variables needed for two ways of calculating effective thermal cond.
[./T] #Temperature used for the direct calculation
initial_condition = 800
[../]
[./Tx_AEH] #Temperature used for the x-component of the AEH solve
initial_condition = 800
scaling = 1.0e4 #Scales residual to improve convergence
[../]
[./Ty_AEH] #Temperature used for the y-component of the AEH solve
initial_condition = 800
scaling = 1.0e4 #Scales residual to improve convergence
[../]
[]
[AuxVariables] #Creates second constant phase
[./phase2]
[../]
[]
[ICs] #Sets the IC for the second constant phase
[./phase2_IC] #Creates circles with smooth interfaces at random locations
variable = phase2
type = MultiSmoothCircleIC
int_width = 0.3
numbub = 20
bubspac = 1.5
radius = 0.5
outvalue = 0
invalue = 1
block = 0
[../]
[]
[Kernels]
[./HtCond] #Kernel for direct calculation of thermal cond
type = HeatConduction
variable = T
[../]
[./heat_x] #All other kernels are for AEH approach to calculate thermal cond.
type = HeatConduction
variable = Tx_AEH
[../]
[./heat_rhs_x]
type = HomogenizedHeatConduction
variable = Tx_AEH
component = 0
[../]
[./heat_y]
type = HeatConduction
variable = Ty_AEH
[../]
[./heat_rhs_y]
type = HomogenizedHeatConduction
variable = Ty_AEH
component = 1
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
variable = 'Tx_AEH Ty_AEH'
[../]
[../]
[./left_T] #Fix temperature on the left side
type = DirichletBC
variable = T
boundary = left
value = 800
[../]
[./right_flux] #Set heat flux on the right side
type = NeumannBC
variable = T
boundary = right
value = 5e-6
[../]
[./fix_x] #Fix Tx_AEH at a single point
type = DirichletBC
variable = Tx_AEH
value = 800
boundary = 100
[../]
[./fix_y] #Fix Ty_AEH at a single point
type = DirichletBC
variable = Ty_AEH
value = 800
boundary = 100
[../]
[]
[Materials]
[./thcond] #The equation defining the thermal conductivity is defined here, using two ifs
# The k in the bulk is k_b, in the precipitate k_p2, and across the interaface k_int
type = ParsedMaterial
block = 0
constant_names = 'length_scale k_b k_p2 k_int'
constant_expressions = '1e-6 5 1 0.1'
function = 'sk_b:= length_scale*k_b; sk_p2:= length_scale*k_p2; sk_int:= k_int*length_scale; if(phase2>0.1,if(phase2>0.95,sk_p2,sk_int),sk_b)'
outputs = exodus
f_name = thermal_conductivity
args = phase2
[../]
[]
[Postprocessors]
[./right_T]
type = SideAverageValue
variable = T
boundary = right
[../]
[./k_x_direct] #Effective thermal conductivity from direct method
# This value is lower than the AEH value because it is impacted by second phase
# on the right boundary
type = ThermalConductivity
variable = T
flux = 5e-6
length_scale = 1e-06
T_hot = 800
dx = 10
boundary = right
[../]
[./k_x_AEH] #Effective thermal conductivity in x-direction from AEH
type = HomogenizedThermalConductivity
variable = Tx_AEH
temp_x = Tx_AEH
temp_y = Ty_AEH
component = 0
scale_factor = 1e6 #Scale due to length scale of problem
[../]
[./k_y_AEH] #Effective thermal conductivity in x-direction from AEH
type = HomogenizedThermalConductivity
variable = Ty_AEH
temp_x = Tx_AEH
temp_y = Ty_AEH
component = 1
scale_factor = 1e6 #Scale due to length scale of problem
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'Tx_AEH Ty_AEH'
off_diag_column = 'Ty_AEH Tx_AEH'
[../]
[]
[Executioner]
type = Steady
l_max_its = 15
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold'
petsc_options_value = 'hypre boomeramg 31 0.7'
l_tol = 1e-04
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
csv = true
[]
(test/tests/variables/coupled_scalar/coupled_scalar_from_ic.i)
# This makes sure that aux kernels using coupled scalar variables that are
# executed on initial will use the initial condition set on the scalar variable
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux_scalar]
order = FIRST
family = SCALAR
[../]
[./coupled]
[../]
[]
[ICs]
[./aux_scalar_ic]
type = ScalarConstantIC
variable = aux_scalar
value = 123
[../]
[]
[AuxKernels]
[./coupled]
type = CoupledScalarAux
variable = coupled
coupled = aux_scalar
execute_on = 'initial linear'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/coupled_time_derivative/coupled_time_derivative_test.i)
###########################################################
# This is a simple test of the CoupledTimeDerivative kernel.
# The expected solution for the variable v is
# v(x) = 1/2 * (x^2 + x)
###########################################################
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./fn_u]
type = BodyForce
variable = u
function = 1
[../]
[./time_v]
type = CoupledTimeDerivative
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/L/small.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/multiapps/picard_catch_up/sub_failing_problem.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = FunctionDirichletBC
variable = v
boundary = right
function = 't + 1'
[../]
[]
[Problem]
type = FailingProblem
fail_step = 2
[../]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/initial_intactive/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/newton_cooling/nc01.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1000
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 1.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 2E6
[../]
[./newton]
type = RichardsPiecewiseLinearSink
variable = pressure
boundary = right
pressures = '0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000'
bare_fluxes = '0. 5.6677197748570516e-6 0.000011931518841831313 0.00001885408740732065 0.000026504708864284114 0.000034959953203725676 0.000044304443352900224 0.00005463170211001232 0.00006604508815181467 0.00007865883048198513 0.00009259917167338928 0.00010800563134618119 0.00012503240252705603 0.00014384989486488752 0.00016464644014777016 0.00018763017719085535 0.0002130311349595711 0.00024110353477682344 0.00027212833465544285 0.00030641604122040985 0.00034430981736352295'
use_mobility = false
use_relperm = false
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-15 10000'
[../]
[]
[Executioner]
type = Transient
end_time = 1E8
dt = 1E6
[]
[Outputs]
file_base = nc01
interval = 100000
execute_on = 'initial final'
exodus = true
[]
(test/tests/misc/no_exodiff_map/no_exodiff_map.i)
[Mesh]
type = FileMesh
file = double_square.e
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left1]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right1]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[./left2]
type = DirichletBC
variable = u
boundary = 3
value = 3
[../]
[./right2]
type = DirichletBC
variable = u
boundary = 4
value = 4
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/intervals/output_final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 6
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
interval = 5
execute_on = 'final timestep_end'
[../]
[]
(test/tests/restart/start_time_override/transient.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Postprocessors]
[u_norm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 5
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
checkpoint = true
csv = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_twinning/demonstration_combined_hcp_slip_twins.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[single_xtal]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_xx]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_9]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_9]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_9]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_xx]
type = RankTwoAux
variable = fp_xx
rank_two_tensor = plastic_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = twin_total_volume_fraction_twins
execute_on = timestep_end
[]
[slip_increment_0]
type = MaterialStdVectorAux
variable = slip_increment_0
property = slip_increment
index = 0
execute_on = timestep_end
[]
[slip_increment_3]
type = MaterialStdVectorAux
variable = slip_increment_3
property = slip_increment
index = 3
execute_on = timestep_end
[]
[slip_increment_9]
type = MaterialStdVectorAux
variable = slip_increment_9
property = slip_increment
index = 9
execute_on = timestep_end
[]
[tau_3]
type = MaterialStdVectorAux
variable = resolved_shear_stress_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[tau_9]
type = MaterialStdVectorAux
variable = resolved_shear_stress_9
property = applied_shear_stress
index = 9
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_3]
type = MaterialStdVectorAux
variable = slip_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[slip_resistance_9]
type = MaterialStdVectorAux
variable = slip_resistance_9
property = slip_resistance
index = 9
execute_on = timestep_end
[]
[twin_tau_0]
type = MaterialStdVectorAux
variable = resolved_twin_stress_0
property = twin_applied_shear_stress
index = 0
execute_on = timestep_end
[]
[twin_resistance_0]
type = MaterialStdVectorAux
variable = twin_resistance_0
property = twin_slip_resistance
index = 0
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
preset = true
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.005*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'slip_xtalpl twin_xtalpl'
tan_mod_type = exact
[]
[slip_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = 'hcp_aprismatic_capyramidal_slip_sys.txt'
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
zero_tol = 5e-10
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '98 224' #Knezevic et al MSEA 654 (2013)
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1.25e5 2.25e7' #from Beyerlein and Tome 2008 IJP
normalized_slip_activiation_energy_per_mode = '3.73e-3 3.2e-2' #from Beyerlein and Tome 2008 IJP
slip_energy_proportionality_factor_per_mode = '330 100' #from Beyerlein and Tome 2008 IJP
substructure_rate_coefficient_per_mode = '355 0.4' #from Capolungo et al MSEA (2009)
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '0.2 0.2' #Estimated to match graph in Capolungo et al MSEA (2009), Figure 2
grain_size = 20.0e-3 #20 microns, Beyerlein and Tome IJP (2008)
total_twin_volume_fraction = twin_total_volume_fraction_twins
[]
[twin_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
base_name = twin
crystal_lattice_type = HCP
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
number_slip_systems = 6
slip_sys_file_name = 'hcp_tensile_twin_systems.txt'
initial_twin_lattice_friction = 1140.0
non_coplanar_coefficient_twin_hardening = 10000
coplanar_coefficient_twin_hardening = 1000
characteristic_twin_shear = 0.167
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_xx]
type = ElementAverageValue
variable = fp_xx
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[slip_increment_0]
type = ElementAverageValue
variable = slip_increment_0
[]
[slip_increment_3]
type = ElementAverageValue
variable = slip_increment_3
[]
[slip_increment_9]
type = ElementAverageValue
variable = slip_increment_9
[]
[tau_3]
type = ElementAverageValue
variable = resolved_shear_stress_3
[]
[tau_9]
type = ElementAverageValue
variable = resolved_shear_stress_9
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_3]
type = ElementAverageValue
variable = slip_resistance_3
[]
[slip_resistance_9]
type = ElementAverageValue
variable = slip_resistance_9
[]
[twin_tau_0]
type = ElementAverageValue
variable = resolved_twin_stress_0
[]
[twin_resistance_0]
type = ElementAverageValue
variable = twin_resistance_0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_rel_tol = 1e-12
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 2.25
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/combined/test/tests/j2_plasticity_vs_LSH/necking/j2_hard1_necking.i)
#
[Mesh]
file = necking_quad4.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
# save_in_disp_x = force_x
save_in_disp_y = force_y
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
# [./force_x]
# order = FIRST
# family = LAGRANGE
# [../]
[./force_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./y_top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't/5'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#changed to SM values using E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = j2
[../]
[]
[Executioner]
end_time = 0.2
dt = 0.005
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./disp_y]
type = NodalSum
variable = disp_y
boundary = top
[../]
[./force_y]
type = NodalSum
variable = force_y
boundary = top
[../]
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/transfers/multiapp_copy_transfer/multivariable_copy/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[./left_v]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_no_parts_steady_stabilized_second_order.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = SECOND
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(test/tests/materials/interface_material/interface_value_material_split_mesh.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
xmax = 2
ny = 2
ymax = 2
elem_type = QUAD4
[]
[./subdomain_id]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1 0 0'
top_right = '2 2 0'
block_id = 1
[../]
[./split]
type = BreakMeshByBlockGenerator
input = subdomain_id
[../]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 1
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = 'diffusivity'
block = 0
[../]
[./diff_v]
type = MatDiffusion
variable = v
diffusivity = 'diffusivity'
block = 1
[../]
[]
[InterfaceKernels]
[tied]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
jump_prop_name = "average_jump"
penalty = 1e6
boundary = 'interface'
[]
[]
[BCs]
[u_left]
type = DirichletBC
boundary = 'left'
variable = u
value = 1
[]
[v_right]
type = DirichletBC
boundary = 'right'
variable = v
value = 0
[]
[]
[Materials]
[./stateful1]
type = StatefulMaterial
block = 0
initial_diffusivity = 1
# outputs = all
[../]
[./stateful2]
type = StatefulMaterial
block = 1
initial_diffusivity = 2
# outputs = all
[../]
[./interface_material_avg]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = average
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_primary_minus_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_primary_minus_secondary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_secondary_minus_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_secondary_minus_primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_abs]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_abs
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
mat_prop_var_out_basename = diff_var
boundary = interface
interface_value_type = secondary
nl_var_primary = u
nl_var_secondary = v
[../]
[]
[AuxKernels]
[./interface_material_avg]
type = MaterialRealAux
property = diff_average
variable = diffusivity_average
boundary = interface
[]
[./interface_material_jump_primary_minus_secondary]
type = MaterialRealAux
property = diff_jump_primary_minus_secondary
variable = diffusivity_jump_primary_minus_secondary
boundary = interface
[]
[./interface_material_jump_secondary_minus_primary]
type = MaterialRealAux
property = diff_jump_secondary_minus_primary
variable = diffusivity_jump_secondary_minus_primary
boundary = interface
[]
[./interface_material_jump_abs]
type = MaterialRealAux
property = diff_jump_abs
variable = diffusivity_jump_abs
boundary = interface
[]
[./interface_material_primary]
type = MaterialRealAux
property = diff_primary
variable = diffusivity_primary
boundary = interface
[]
[./interface_material_secondary]
type = MaterialRealAux
property = diff_secondary
variable = diffusivity_secondary
boundary = interface
[]
[diffusivity_var]
type = MaterialRealAux
property = diffusivity
variable = diffusivity_var
[]
[]
[AuxVariables]
[diffusivity_var]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_average]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_primary_minus_secondary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_secondary_minus_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_abs]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_secondary]
family = MONOMIAL
order = CONSTANT
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/linear_interp_not_increasing.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Materials]
[./linear_interp]
type = LinearInterpolationMaterial
prop_name = 'diffusivity'
independent_vals = '0 0.2 0.2 0.4 0.6 0.8 1.0'
dependent_vals = '16 8 4 2 1 0.5 1'
# Note the following line gets enabled by the tester
#use_poly_fit = true
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
gmv = true
[]
(test/tests/multiapps/full_solve_multiapp/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[full_solve]
type = FullSolveMultiApp
# not setting app_type to use the same app type of master, i.e. MooseTestApp
execute_on = initial
positions = '0 0 0'
input_files = sub.i
[]
[]
(test/tests/ics/lagrange_ic/3d_second_order.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
elem_type = HEX27
[]
[Variables]
[./u]
order = SECOND
[../]
[]
[Functions]
[./afunc]
type = ParsedFunction
value = x^2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[ICs]
[./func_ic]
function = afunc
variable = u
type = FunctionIC
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_rz_test.i)
#
# 2-D RZ Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two element blocks containing one element each. Each
# element is a unit cube. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far left boundary
# is ramped from 100 to 200 over one time unit, and then held fixed for an additional
# time unit. The temperature of the far right boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks, or cylinders in the case of RZ.:
#
# Flux = (T_left - T_right) * (gapK/(r*ln(r2/r1)))
#
# For gapK = 1 (default value)
#
# The integrated heat flux across the gap at time 2 is then:
#
# 2*pi*h*k*delta_T/(ln(r2/r1))
# 2*pi*1*1*100/(ln(2/1)) = 906.5 watts
#
# For comparison, see results from the flux post processors.
#
# As a second test, use the rectilinear (parallel plate) form of the gap heat transfer.
#
# Flux = (T_left - T_right) * (gapK/gapL)
#
# For gapK = 1 (default value)
#
# The integrated heat flux across the gap at time 2 is then:
#
# 2*pi*h*k*delta_T/(1)
# 2*pi*1*1*100/(1) = 628.3 watts
#
# For comparison, see results from the flux post processors.
#
[Problem]
coord_type = RZ
rz_coord_axis = Y # this is modified through CLI args to test Z-R as opposed to R-Z
[]
[Mesh]
active = 'file'
[file]
type = FileMeshGenerator
file = gap_heat_transfer_htonly_rz_test.e
[]
[rotate]
type = TransformGenerator
transform = ROTATE
vector_value = '90 0 0'
input = file
[]
[]
[Functions]
[./ramp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
[../]
[./thermal_contact2]
type = GapHeatTransfer
variable = temp2
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_geometry_type = PLATE
appended_property_name = 2
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[./temp2]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[./gap_cond2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat2]
type = HeatConduction
variable = temp2
[../]
[]
[BCs]
[./temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = ramp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[./temp_far_left2]
type = FunctionDirichletBC
boundary = 1
variable = temp2
function = ramp
[../]
[./temp_far_right2]
type = DirichletBC
boundary = 4
variable = temp2
value = 100
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 2
[../]
[./conductance2]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond2
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1e6
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
# petsc_options = '-snes_mf_operator -ksp_monitor -snes_ksp_ew'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
# petsc_options_iname = '-snes_type -snes_ls -snes_linesearch_type -ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
# petsc_options_value = 'ls basic basic 201 hypre boomeramg 4'
# petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
# petsc_options_value = '201 hypre boomeramg 4'
nl_abs_tol = 1e-3
nl_rel_tol = 1e-8
l_tol = 1e-6
l_max_its = 100
start_time = 0.0
dt = 1e-1
dtmin = 1e-1
end_time = 2.0
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[./temp_left2]
type = SideAverageValue
boundary = 2
variable = temp2
execute_on = 'initial timestep_end'
[../]
[./temp_right2]
type = SideAverageValue
boundary = 3
variable = temp2
execute_on = 'initial timestep_end'
[../]
[./flux_left2]
type = SideDiffusiveFluxIntegral
variable = temp2
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right2]
type = SideDiffusiveFluxIntegral
variable = temp2
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/solution_aux/solution_aux.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./initial_cond_aux]
type = SolutionAux
solution = xda_soln
execute_on = initial
variable = u_aux
[../]
[]
[UserObjects]
[./xda_soln]
type = SolutionUserObject
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
system_variables = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[./xda]
type = XDA
[../]
[]
(modules/heat_conduction/test/tests/code_verification/cartesian_test_no1.i)
# Problem I.1
#
# An infinite plate with constant thermal conductivity k and
# internal heat generation q. It is exposed on each boundary
# to a constant temperature: u(0) = ui and u(L) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 1
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'q L k ui uo'
vals = '1200 1 12 100 0'
value = 'ui + (uo-ui)*x/L + (q/k) * x * (L-x) / 2'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 100
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 12.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/positions_from_file/dt_from_multi_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/gravity/fully_saturated_grav01c.i)
# Checking that gravity head is established
# 1phase, 2-component, constant fluid-bulk, constant viscosity, constant permeability
# fully saturated with fully-saturated Kernel
# For better agreement with the analytical solution (ana_pp), just increase nx
# NOTE: the numerics described by this input file is quite delicate. Firstly, the steady-state solution does not depend on the mass-fraction distribution, so the mass-fraction variable can assume any values (with the constraint that its integral is the same as the initial condition). Secondly, because the PorousFlowFullySaturatedDarcyFlow does no upwinding, the steady-state porepressure distribution can contain non-physical oscillations. The solver choice and mesh choice used below mean the result is as expected, but changing these can produce different results.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[frac]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[Kernels]
[flux1]
type = PorousFlowFullySaturatedDarcyFlow
variable = pp
fluid_component = 0
gravity = '-1 0 0'
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = frac
fluid_component = 1
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1.2 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp frac'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = frac
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1E-12
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'NONZERO'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = fully_saturated_grav01c
[csv]
type = CSV
[]
[]
(modules/xfem/test/tests/single_var_constraint_3d/stationary_fluxjump_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 1
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark_action.i)
# Test for Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
# The residual due to Pressure is evaluated using Pressure boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 0.1
ymax = 1.0
zmax = 0.1
use_displaced_mesh = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
newmark_beta = 0.25
newmark_gamma = 0.5
strain = SMALL
density = 7750
generate_output = 'stress_yy strain_yy'
[]
[]
[BCs]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210 0'
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.2 1.0 5.0'
y = '0.0 0.2 1.0 1.0'
scale_factor = 1e3
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test2.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[./SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/tutorials/basics/part_3_1.i)
#Tensor Mechanics tutorial: the basics
#Step 3, part 1
#3D simulation of uniaxial tension with J2 plasticity
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[file_mesh]
type = FileMeshGenerator
file = necking_quad4.e
[]
[extrude]
type = MeshExtruderGenerator
extrusion_vector = '0 0 0.5'
num_layers = 2
bottom_sideset = 'back'
top_sideset = 'front'
input = file_mesh
[]
uniform_refine = 0
second_order = true
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE
add_variables = true
generate_output = 'stress_yy strain_yy'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1e-9
plastic_models = J2
[../]
[]
[UserObjects]
[./hardening]
type = TensorMechanicsHardeningCubic
value_0 = 2.4e2
value_residual = 3.0e2
internal_0 = 0
internal_limit = 0.005
[../]
[./J2]
type = TensorMechanicsPlasticJ2
yield_strength = hardening
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x #change the variable to reflect the new displacement names
boundary = 1
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z #change the variable to reflect the new displacement names
boundary = back
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y #change the variable to reflect the new displacement names
boundary = 3
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y #change the variable to reflect the new displacement names
boundary = 4
function = '0.0007*t'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.25
end_time = 16
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 1 101'
[]
[Postprocessors]
[./ave_stress_bottom]
type = SideAverageValue
variable = stress_yy
boundary = 3
[../]
[./ave_strain_bottom]
type = SideAverageValue
variable = strain_yy
boundary = 3
[../]
[]
[Outputs]
exodus = true
perf_graph = true
csv = true
print_linear_residuals = false
[]
(modules/navier_stokes/test/tests/finite_element/ins/coupled-force/steady.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[u]
family = LAGRANGE_VEC
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[momentum_coupled_force]
type = INSADMomentumCoupledForce
variable = velocity
coupled_vector_var = u
[]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[u_diff]
type = VectorDiffusion
variable = u
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left top'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[u_left]
type = VectorFunctionDirichletBC
variable = u
boundary = 'left'
function_x = 1
function_y = 1
[]
[u_right]
type = VectorFunctionDirichletBC
variable = u
boundary = 'right'
function_x = -1
function_y = -1
[]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_action.i)
# Same as pp_generation.i, but using an Action
#
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = kg/m^3/second)
#
# Expect:
# fluid_mass = mass0 + s*t
# stress = 0 (remember this is effective stress)
# Porepressure = fluid_bulk*log(fluid_mass_density/density_P0), where fluid_mass_density = fluid_mass*porosity
# porosity = biot+(phi0-biot)*exp(pp(biot-1)/solid_bulk)
#
# Parameters:
# Biot coefficient = 0.3
# Phi0 = 0.1
# Solid Bulk modulus = 2
# fluid_bulk = 13
# density_P0 = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 13.0
viscosity = 1.0
density0 = 1.0
[]
[]
[]
[PorousFlowUnsaturated]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
biot_coefficient = 0.3
gravity = '0 0 0'
fp = the_simple_fluid
van_genuchten_alpha = 1.0
van_genuchten_m = 0.8
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
save_component_rate_in = nodal_kg_per_s
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[source]
type = BodyForce
function = 0.1
variable = porepressure
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[nodal_kg_per_s]
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[]
[]
[Functions]
[porosity_analytic]
type = ParsedFunction
value = 'biot+(phi0-biot)*exp(pp*(biot-1)/bulk)'
vars = 'biot phi0 pp bulk'
vals = '0.3 0.1 p0 2'
[]
[]
[Postprocessors]
[nodal_kg_per_s]
type = PointValue
outputs = csv
point = '0 0 0'
variable = nodal_kg_per_s
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[porosity]
type = PointValue
outputs = 'console csv'
point = '0 0 0'
variable = porosity
[]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[porosity_analytic]
type = FunctionValuePostprocessor
function = porosity_analytic
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_action
csv = true
[]
(test/tests/predictors/simple/predictor_reference_residual_test.i)
# The purpose of this test is to ensure the SimplePredictor resets the std::precision
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
extra_vector_tags = 'ref'
[../]
[]
[BCs]
[./bot]
type = DirichletBC
variable = u
boundary = bottom
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = u
boundary = top
function = 't'
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
dt = 0.5
end_time = 1.0
[./Predictor]
type = SimplePredictor
scale = 1.0e-10
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test2.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test2.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test2_out
exodus = true
[]
(test/tests/vectorpostprocessors/intersection_points_along_line/1d.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
# Ray tracing code is not yet compatible with DistributedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./intersections]
type = IntersectionPointsAlongLine
start = '0.05 0 0'
end = '0.405 0 0'
[../]
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[Outputs]
csv = true
[]
(test/tests/controls/error/tid_warehouse_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'tid_warehouse_error'
parameter = 'coef'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/restart/duplicate_node/duplicate_node.i)
[Mesh]
type = FileMesh
# Contains multiple nodes in the same positions
file = duplicate_nodes.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 20
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/dofmap/simple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./w]
[../]
[]
[Kernels]
[./diffu]
type = Diffusion
variable = u
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
dofmap = true
[]
(test/tests/postprocessors/nodal_sum/nodal_sum_block_non_unique.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./left]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 100
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./nodal_sum]
type = NodalSum
variable = u
execute_on = 'initial timestep_end'
block = '0 100'
unique_node_execute = false
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_no_side_sets_found.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '-0.1 -0.1 0'
top_right = '0.9 0.9 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[leftBC]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_ss.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
nx = 8
ny = 8
xmin = -82.627
xmax = 82.627
ymin = -82.627
ymax = 82.627
dim = 2
[]
[./extra_nodes_x]
type = ExtraNodesetGenerator
input = 'gen'
new_boundary = 'no_x'
coord = '0 82.627 0'
[../]
[./extra_nodes_y]
type = ExtraNodesetGenerator
input = 'extra_nodes_x'
new_boundary = 'no_y'
coord = '-82.627 0 0'
[../]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
# FINITE strain when strain is large, i.e., visible movement.
# SMALL strain when things are stressed, but may not move.
[./fuel]
add_variables = true
strain = FINITE
temperature = temp
eigenstrain_names = 'thermal_eigenstrain'
generate_output = 'vonmises_stress stress_xx stress_yy hydrostatic_stress max_principal_stress strain_xy elastic_strain_xx stress_xy'
extra_vector_tags = 'ref'
use_finite_deform_jacobian = true
incremental = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'no_x'
value = 0.0
preset = true
[../]
[./no_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = 'no_y'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3e10 # Pa
poissons_ratio = 0.33 # unitless
[../]
[./thermal_strains]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 2e-6 # 1/K
stress_free_temperature = 500 # K
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./stress_finite] # goes with FINITE strain formulation
type = ComputeFiniteStrainElasticStress
[../]
[]
[Postprocessors]
[./avg_temp]
type = ElementAverageValue
variable = temp
[../]
[./disp_x_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[./disp_x_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
line_search = 'none'
l_tol = 1e-02
nl_rel_tol = 5e-04
nl_abs_tol = 1e-2
l_max_its = 50
nl_max_its = 25
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test2qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test2qtt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.06
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test2qtt_out
exodus = true
[]
(test/tests/kernels/jxw_grad_test_dep_on_displacements/not-handling-jxw.i)
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD9
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./u]
order = FIRST
[../]
[./v]
[../]
[]
[Kernels]
[./disp_x]
type = Diffusion
variable = disp_x
[../]
[./disp_y]
type = Diffusion
variable = disp_y
[../]
[./u]
type = ADDiffusion
variable = u
use_displaced_mesh = true
[../]
[./v]
type = ADDiffusion
variable = v
use_displaced_mesh = true
[../]
[]
[BCs]
# BCs cannot be preset due to Jacobian test
[./u_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = u
[../]
[./u_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = u
[../]
[./v_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = v
[../]
[./v_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = v
[../]
[./disp_x_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = disp_x
[../]
[./disp_x_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = disp_x
[../]
[./disp_y_left]
type = DirichletBC
preset = false
value = 0
boundary = 'bottom'
variable = disp_y
[../]
[./disp_y_right]
type = DirichletBC
preset = false
value = 1
boundary = 'top'
variable = disp_y
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
[./dofmap]
type = DOFMap
execute_on = 'initial'
[../]
exodus = true
[]
[ICs]
[./disp_x]
type = RandomIC
variable = disp_x
min = 0.01
max = 0.09
[../]
[./disp_y]
type = RandomIC
variable = disp_y
min = 0.01
max = 0.09
[../]
[./u]
type = RandomIC
variable = u
min = 0.1
max = 0.9
[../]
[./v]
type = RandomIC
variable = v
min = 0.1
max = 0.9
[../]
[]
(modules/xfem/test/tests/moving_interface/phase_transition_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 11
ny = 1
nz = 1
xmin = 0.0
xmax = 20.0
ymin = 0.0
ymax = 5.0
zmin = 0.0
zmax = 5.0
elem_type = HEX8
[]
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[velocity]
type = XFEMPhaseTransitionMovingInterfaceVelocity
diffusivity_at_positive_level_set = 5
diffusivity_at_negative_level_set = 1
equilibrium_concentration_jump = 1
value_at_interface_uo = value_uo
[]
[value_uo]
type = NodeValueAtXFEMInterface
variable = 'u'
interface_mesh_cut_userobject = 'cut_mesh'
execute_on = TIMESTEP_END
level_set_var = ls
[]
[cut_mesh]
type = InterfaceMeshCut3DUserObject
mesh_file = flat_interface_2d.e
interface_velocity_uo = velocity
heal_always = true
[]
[]
[Variables]
[u]
[]
[]
[ICs]
[ic_u]
type = FunctionIC
variable = u
function = 'if(x<5.01, 2, 1)'
[]
[]
[AuxVariables]
[ls]
order = FIRST
family = LAGRANGE
[]
[]
[Constraints]
[u_constraint]
type = XFEMEqualValueAtInterface
geometric_cut_userobject = 'cut_mesh'
use_displaced_mesh = false
variable = u
value = 2
alpha = 1e6
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[ls]
type = MeshCutLevelSetAux
mesh_cut_user_object = cut_mesh
variable = ls
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Materials]
[diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[]
[diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 1
[]
[diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[]
[]
[BCs]
# Define boundary conditions
[left_u]
type = DirichletBC
variable = u
value = 2
boundary = left
[]
[right_u]
type = NeumannBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
start_time = 0.0
dt = 1
num_steps = 5
max_xfem_update = 1
[]
[Outputs]
execute_on = timestep_end
exodus = true
perf_graph = true
csv = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4qnstt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4qtt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4qnstt_out
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master_app]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./from_master]
type = ScalarVariable
variable = from_master_app
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 1
dt = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
hide = from_master_app
[]
(test/tests/multiapps/cliargs_from_file/cliargs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/tecplot/tecplot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
tecplot = true
[]
(modules/contact/test/tests/verification/patch_tests/automatic_patch_update/sliding_update.i)
[Mesh]
file = sliding_update.e
displacements = 'disp_x disp_y'
patch_size = 5
patch_update_strategy = 'iteration'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+4
model = frictionless
formulation = penalty
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0
end_time = 10.0
l_tol = 1e-8
nl_rel_tol = 1e-6
nl_abs_tol = 1e-4
dt = 2.0
line_search = 'none'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
timestep_tolerance = 1e-1
[]
[BCs]
[./fixed_1_2x]
type = DirichletBC
boundary = '1'
value = 0.0
variable = disp_x
[../]
[./fixed_1_2y]
type = DirichletBC
boundary = '1'
value = 0.0
variable = disp_y
[../]
[./sliding_1]
type = FunctionDirichletBC
function = sliding_fn
variable = disp_x
boundary = '4'
[../]
[./normal_y]
type = DirichletBC
variable = disp_y
boundary = '4'
value = -0.01
[../]
# [./Pressure]
# [./normal_pressure]
# disp_x = disp_x
# disp_y = disp_y
# factor = 100.0
# boundary = 4
# [../]
# [../]
[]
[Functions]
[./sliding_fn]
type = ParsedFunction
value = 't'
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/transfers/multiapp_userobject_transfer/tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./axial_force]
type = ParsedFunction
value = 1000*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = axial_force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
coord_type = rz
type = FEProblem
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic_anisotropy/3d_bar_orthotropic_90deg_rotation.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 10
zmin = 0
zmax = 2
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '2 0 0'
input = corner
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_xz'
[]
[]
[Materials]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = orthotropic
C_ijkl = '2.0e3 2.0e5 2.0e3 0.71428571e3 0.71428571e3 0.71428571e3 0.4 0.2 0.004 0.004 0.2 0.4'
[]
[]
[BCs]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[rot_y]
type = DisplacementAboutAxis
boundary = bottom
function = t
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
[]
#
[rot_x]
type = DisplacementAboutAxis
boundary = bottom
function = t
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[]
[rot_y90]
type = DisplacementAboutAxis
boundary = bottom
function = 90
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
[]
#
[rot_x90]
type = DisplacementAboutAxis
boundary = bottom
function = 90
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[]
[press]
boundary = top
function = '-1.0*(t-90)*10.0'
use_displaced_mesh = true
displacements = 'disp_x disp_y disp_z'
type = Pressure
variable = disp_x
[]
[]
[Controls]
[c1]
type = TimePeriod
enable_objects = 'BCs::rot_x BCs::rot_y'
disable_objects = 'BCs::rot_x90 BCs::rot_y90 BCs::press'
start_time = '0'
end_time = '90'
[]
[c190plus]
type = TimePeriod
enable_objects = 'BCs::rot_x90 BCs::rot_y90 BCs::press'
disable_objects = 'BCs::rot_x BCs::rot_y '
start_time = '90'
end_time = '390'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-08
nl_max_its = 50
l_tol = 1e-4
l_max_its = 50
start_time = 0.0
dt = 5
dtmin = 5
num_steps = 78
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(test/tests/postprocessors/change_over_fixed_point/change_over_fixed_point.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = PostprocessorDirichletBC
variable = u
boundary = right
postprocessor = 'num_coupling'
[]
[]
[Executioner]
type = Steady
fixed_point_min_its = 10
fixed_point_max_its = 10
[]
[Postprocessors]
[num_coupling]
type = NumFixedPointIterations
execute_on = 'initial timestep_begin timestep_end'
[]
[norm]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_begin timestep_end'
[]
[change_over_fixed_point]
type = ChangeOverFixedPointPostprocessor
postprocessor = norm
change_with_respect_to_initial = false
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = 'change_over_fixed_point_previous'
csv = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/large_deform_harden3.i)
# apply a number of "random" configurations and
# check that the algorithm returns to the yield surface
#
# must be careful here - we cannot put in arbitrary values of C_ijkl, otherwise the condition
# df/dsigma * C * flow_dirn < 0 for some stresses
# The important features that must be obeyed are:
# 0 = C_0222 = C_1222 (holds for transversely isotropic, for instance)
# C_0212 < C_0202 = C_1212 (holds for transversely isotropic)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[BCs]
[bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
# the following are "random" deformations
# each is O(1E-5) to keep deformations small
[topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.1*t)+x)/1E1'
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(t)+x*y)/1E1'
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 'sin(0.4321*t)*x*y*z/1E1'
[]
[]
[AuxVariables]
[wps_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[int]
type = PointValue
point = '0 0 0'
variable = wps_internal
outputs = 'console'
[]
[yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[]
[should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[]
[]
[Functions]
[should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningExponential
value_0 = 1E3
value_residual = 0
rate = 0.01
[]
[tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0.577350269
rate = 0.01
[]
[tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.08748866
value_residual = 0.03492077
rate = 0.01
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 100
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
# the following is transversely isotropic, i think.
fill_method = symmetric9
C_ijkl = '3E9 1E9 3E9 3E9 3E9 6E9 1E9 1E9 9E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
max_NR_iterations = 1000
ep_plastic_tolerance = 1E-3
debug_fspb = crash
[]
[]
[Executioner]
end_time = 1E4
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/materials/output/output_boundary.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./block]
type = OutputTestMaterial
block = '1 2'
output_properties = tensor_property
variable = u
outputs = exodus
[../]
[./boundary_1]
type = OutputTestMaterial
boundary = 1
output_properties = real_property
outputs = exodus
variable = u
real_factor = 2
[../]
[./boundary_2]
type = OutputTestMaterial
boundary = 2
output_properties = 'real_property vector_property'
real_factor = 2
variable = u
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/restart_subapp_ic/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
value = t*x
[../]
[./ffn]
type = ParsedFunction
value = x
[../]
[]
[Variables]
[./u]
initial_condition = 4.2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/nodal_var_value/pps_output_test.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
outputs = exodus
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
outputs = console
[../]
[./avg_v]
type = AverageElementSize
outputs = none
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_mouth_dir_end_dir_vec.i)
#This tests the J-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the J-Integrals using options
#to treat it as 3d.
#Crack direction is defined using the crack mouth coordinates.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackMouth
crack_mouth_boundary = 900
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '1.0 0.0 0.0'
crack_direction_vector_end_2 = '1.0 0.0 0.0'
radius_inner = '4.0 5.5'
radius_outer = '5.5 7.0'
output_variable = 'disp_x'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_z
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./disp_x_centercrack]
type = CrackFrontData
crack_front_definition = crackFrontDefinition
variable = disp_x
crack_front_point_index = 1
[../]
[]
[Outputs]
file_base = j_integral_3d_mouth_dir_end_dir_vec_out
exodus = true
csv = true
[]
(test/tests/preconditioners/pbp/pbp_adapt_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = -4
[../]
[./exact_fn]
type = ParsedFunction
value = ((x*x)+(y*y))
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 0
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Preconditioning]
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'AMG ASM'
off_diag_row = 'v'
off_diag_column = 'u'
[../]
[]
[Executioner]
type = Steady
solve_type = JFNK
[./Adaptivity]
steps = 3
coarsen_fraction = 0.1
refine_fraction = 0.2
max_h_level = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_pbp_adapt
print_mesh_changed_info = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/gravity/ad_gravity_test.i)
#
# Gravity Test
#
# This test is designed to apply a gravity body force.
#
# The mesh is composed of one block with a single element.
# The bottom is fixed in all three directions. Poisson's ratio
# is zero and the density is 20/9.81
# which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
use_automatic_differentiation = true
[]
[]
[Kernels]
[gravity_y]
type = ADGravity
variable = disp_y
value = -9.81
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[Materials]
[Elasticity_tensor]
type = ADComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[]
[stress]
type = ADComputeLinearElasticStress
[]
[density]
type = ADGenericConstantMaterial
prop_names = density
prop_values = 2.0387
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-10
l_max_its = 20
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/porous_flow/test/tests/energy_conservation/heat03_rz.i)
# The sample is a single unit element in RZ coordinates
# A constant velocity is applied to the outer boundary: disp_r = -0.01*t.
# There is no fluid flow or heat flow.
# Heat energy conservation is checked.
# Mass conservation is checked
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 1
xmax = 2
ymin = -0.5
ymax = 0.5
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.3
[]
[Variables]
[disp_r]
[]
[disp_z]
[]
[pp]
initial_condition = 0.1
[]
[temp]
initial_condition = 10
[]
[]
[BCs]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'bottom top'
[]
[rmin_fixed]
type = DirichletBC
variable = disp_r
value = 0
boundary = left
[]
[contract]
type = FunctionDirichletBC
variable = disp_r
function = -0.01*t
boundary = right
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydroMechanical
porepressure = pp
temperature = temp
fp = simple_fluid
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
viscosity = 1
thermal_expansion = 0
cv = 1.3
[]
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[]
[thermal_cond]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1 0 0 0 1 0 0 0 1'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = pp
[]
[t0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = temp
[]
[rdisp]
type = PointValue
outputs = 'csv console'
point = '2 0 0'
use_displaced_mesh = false
variable = disp_r
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[rock_heat]
type = PorousFlowHeatEnergy
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 2
end_time = 10
[]
[Outputs]
execute_on = 'initial timestep_end'
[csv]
type = CSV
[]
[]
(modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm_cfp_cm.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = ellip_crack_4sym_norad_mm.e
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./resid_z]
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 0.1'
scale_factor = -689.5 #MPa
[../]
[]
[DomainIntegral]
integrals = JIntegral
crack_direction_method = CrackMouth
crack_mouth_boundary = 11
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '0.0 1.0 0.0'
crack_direction_vector_end_2 = '1.0 0.0 0.0'
crack_front_points = '0 254 0
127.308 248.843 0
249.446 233.581 0
361.455 208.835 0
508.003 152.398 0
602.415 80.3208 0
635 0 0'
radius_inner = '12.5 25.0 37.5'
radius_outer = '25.0 37.5 50.0'
intersecting_boundary = '1 2'
symmetry_plane = 2
position_type = angle
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 12
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 5
function = rampConstantUp
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
# Two sets of linesearch options are for petsc 3.1 and 3.3 respectively
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
# petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
nl_rel_tol = 1e-11
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./nl_its]
type = NumNonlinearIterations
[../]
[./lin_its]
type = NumLinearIterations
[../]
[./react_z]
type = NodalSum
variable = resid_z
boundary = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = j_int_surfbreak_ellip_crack_sym_mm_cfp_cm_out
exodus = true
csv = true
[]
(test/tests/auxkernels/element_aux_var/elemental_sort_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./one]
order = CONSTANT
family = MONOMIAL
initial_condition = 0
[../]
[./two]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# Intentionally out of order to test sorting capabiilties
active = 'one two'
[./two]
variable = two
type = CoupledAux
value = 2
operator = '/'
coupled = one
[../]
[./one]
variable = one
type = ConstantAux
value = 1
[../]
[./five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/auxkernels/hardware_id_aux/hardware_id_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./hardware_id]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./hardware_id]
type = HardwareIDAux
variable = hardware_id
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/position/position.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
position = '1 1 0'
[../]
[]
(test/tests/controls/moose_base_naming_access/base_object_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'DiracKernel::test_object/point'
execute_on = 'initial'
[../]
[]
(modules/combined/test/tests/beam_eigenstrain_transfer/master_uo_transfer.i)
# Test for multi app vector postprocessor to aux variable transfer
# Master App contains 2 beams, one starting at (1.5, 2.0, 2.0) and
# another starting at (2.5, 0.0, 3.0). Both beams extend for
# 0.150080 m along the y direction.
# Each subApp contains a 2D model of width 0.5 m and height 0.150080 m.
# A time varying temperature profile is assigned to each 2D model and
# the resulting yy strain along the right boundary (x = 0.5) is
# transferred to the beam model using the multi app transfer. The subApps
# are positioned in the [MultiApp] block such that the origin of the beams
# coincides with the origin of the subApp.
# For each master beam node/element, the MultiAppUserObjectTransfer finds
# the subApp where this node belongs, projects this node to the right
# boundary of the subApp and assigns the value corresponding to the
# projected point.
# Result: The y displacement of the beam should equal the y
# displacement along the right boundary of the 2D model.
[Mesh]
type = FileMesh
file = 2_beams_new.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e9
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.5
Ay = 0.0
Az = 0.0
Iy = 0.01
Iz = 0.01
y_orientation = '0.0 0.0 1.0'
eigenstrain_names = 'thermal'
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[./thermal]
type = ComputeEigenstrainBeamFromVariable
displacement_eigenstrain_variables = 'zero1 to_var zero2'
eigenstrain_name = thermal
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[AuxVariables]
[./to_var]
[../]
[./zero1]
[../]
[./zero2]
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = CombinedApp
positions = '1.5 2.0 2.0 2.5 0.0 3.0'
input_files = 'subapp1_uo_transfer.i subapp2_uo_transfer.i'
[../]
[]
[Transfers]
[./fromsub]
type = MultiAppUserObjectTransfer
user_object = axial_str
from_multi_app = sub
variable = to_var
all_master_nodes_contained_in_sub_app = true
[../]
[]
[Postprocessors]
[./pos1]
type = PointValue
variable = disp_y
point = '1.5 2.150080 2.0'
[../]
[./pos2]
type = PointValue
variable = disp_y
point = '2.5 0.150080 3.0'
[../]
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/terminate/terminate.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[dt_pp]
type = TimestepSize
[]
[]
[Components]
[]
[ControlLogic]
[threshold]
type = UnitTripControl
condition = 'dt_pp > 3'
vars = 'dt_pp'
vals = 'dt_pp'
[]
[terminate]
type = TerminateControl
input = threshold:state
termination_message = 'Threshold exceeded'
[]
[]
[Functions]
[dt_fn]
type = ParsedFunction
value = '1 + t'
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = FunctionDT
function = dt_fn
[]
num_steps = 10
abort_on_solve_fail = true
[]
(modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction.i)
# Scalar torque reaction
# This test computes the sum of the torques acting on a ten element 2D bar mesh
# and is intended to replicate the classical wrench problem from statics.
# A displacement in the y along the right face is applied to the bar end to create
# a shear force along the bar end. The rotation origin default (the global origin)
# and the axis of rotation direction vector used to compute the torque reaction
# is set to (0, 0, 1) out of the plane.
# Torque is calculated for the two nodes on the left of the bar. For the bottom
# node on the right, the torque/ moment lever is the x coordinate value, and for
# the top node on the right the torque lever is the hypotenuse of the x and y
# coordinates. The expected sum of the torque reaction is just over 37.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 1
[]
[Problem]
extra_tag_vectors = 'ref'
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[AuxKernels]
[saved_x]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_x'
variable = 'saved_x'
[]
[saved_y]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_y'
variable = 'saved_y'
[]
[]
[Modules/TensorMechanics/Master]
[master]
strain = SMALL
generate_output = 'stress_xx stress_yy'
add_variables = true
extra_vector_tags = 'ref'
[]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./right_shear_y]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = '0.001*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_abs_tol = 1e-12
nl_rel_tol = 1e-10
l_tol = 1e-8
start_time = 0.0
dt = 0.5
end_time = 1
num_steps = 2
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./torque]
type = TorqueReaction
boundary = right
reaction_force_variables = 'saved_x saved_y'
direction_vector = '0. 0. 1.'
[../]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/sliding_block/sliding/frictionless_aug.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the augmented lagrangian method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./contact_traction]
[../]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
dt = 0.1
end_time = 15
num_steps = 200
l_tol = 1e-6
nl_rel_tol = 1e-7
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Problem]
type = AugmentedLagrangianContactProblem
solution_variables = 'disp_x disp_y'
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 25
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
normalize_penalty = true
formulation = augmented_lagrange
tangential_tolerance = 1e-3
normal_smoothing_distance = 0.1
al_penetration_tolerance = 1e-9
[../]
[]
(modules/combined/test/tests/surface_tension_KKS/surface_tension_VDWgas.i)
# Test for ComputeExtraStressVDWGas
# Gas bubble with r = 15 nm in a solid matrix
# The gas pressure is counterbalanced by the surface tension of the solid-gas interface,
# which is included with ComputeSurfaceTensionKKS
[Mesh]
type = GeneratedMesh
dim = 1
nx = 300
xmin = 0
xmax = 30
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
[../]
# gas concentration
[./cg]
order = FIRST
family = LAGRANGE
[../]
# vacancy concentration
[./cv]
order = FIRST
family = LAGRANGE
[../]
# gas chemical potential
[./wg]
order = FIRST
family = LAGRANGE
[../]
# vacancy chemical potential
[./wv]
order = FIRST
family = LAGRANGE
[../]
# Matrix phase gas concentration
[./cgm]
order = FIRST
family = LAGRANGE
initial_condition = 1.01e-31
[../]
# Matrix phase vacancy concentration
[./cvm]
order = FIRST
family = LAGRANGE
initial_condition = 2.25e-11
[../]
# Bubble phase gas concentration
[./cgb]
order = FIRST
family = LAGRANGE
initial_condition = 0.2714
[../]
# Bubble phase vacancy concentration
[./cvb]
order = FIRST
family = LAGRANGE
initial_condition = 0.7286
[../]
[]
[ICs]
[./eta_ic]
variable = eta
type = FunctionIC
function = ic_func_eta
[../]
[./cv_ic]
variable = cv
type = FunctionIC
function = ic_func_cv
[../]
[./cg_ic]
variable = cg
type = FunctionIC
function = ic_func_cg
[../]
[]
[Functions]
[./ic_func_eta]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);0.5*(1.0-tanh((r-r0)/delta_eta/sqrt(2.0)))'
vars = 'delta_eta r0'
vals = '0.321 15'
[../]
[./ic_func_cv]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cvbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cvmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cvbubinit cvmatrixinit'
vals = '0.321 15 0.7286 2.25e-11'
[../]
[./ic_func_cg]
type = ParsedFunction
value = 'r:=sqrt(x^2+y^2+z^2);eta_an:=0.5*(1.0-tanh((r-r0)/delta/sqrt(2.0)));cgbubinit*eta_an^3*(6*eta_an^2-15*eta_an+10)+cgmatrixinit*(1-eta_an^3*(6*eta_an^2-15*eta_an+10))'
vars = 'delta r0 cgbubinit cgmatrixinit'
vals = '0.321 15 0.2714 1.01e-31'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'hydrostatic_stress stress_xx stress_yy stress_zz'
[../]
[]
[Kernels]
# enforce cg = (1-h(eta))*cgm + h(eta)*cgb
[./PhaseConc_g]
type = KKSPhaseConcentration
ca = cgm
variable = cgb
c = cg
eta = eta
[../]
# enforce cv = (1-h(eta))*cvm + h(eta)*cvb
[./PhaseConc_v]
type = KKSPhaseConcentration
ca = cvm
variable = cvb
c = cv
eta = eta
[../]
# enforce pointwise equality of chemical potentials
[./ChemPotVacancies]
type = KKSPhaseChemicalPotential
variable = cvm
cb = cvb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cgm'
args_b = 'cgb'
[../]
[./ChemPotGas]
type = KKSPhaseChemicalPotential
variable = cgm
cb = cgb
fa_name = f_total_matrix
fb_name = f_total_bub
args_a = 'cvm'
args_b = 'cvb'
[../]
#
# Cahn-Hilliard Equations
#
[./CHBulk_g]
type = KKSSplitCHCRes
variable = cg
ca = cgm
fa_name = f_total_matrix
w = wg
args_a = 'cvm'
[../]
[./CHBulk_v]
type = KKSSplitCHCRes
variable = cv
ca = cvm
fa_name = f_total_matrix
w = wv
args_a = 'cgm'
[../]
[./dcgdt]
type = CoupledTimeDerivative
variable = wg
v = cg
[../]
[./dcvdt]
type = CoupledTimeDerivative
variable = wv
v = cv
[../]
[./wgkernel]
type = SplitCHWRes
mob_name = M
variable = wg
[../]
[./wvkernel]
type = SplitCHWRes
mob_name = M
variable = wv
[../]
#
# Allen-Cahn Equation
#
[./ACBulkF]
type = KKSACBulkF
variable = eta
fa_name = f_total_matrix
fb_name = f_total_bub
w = 0.356
args = 'cvm cvb cgm cgb'
[../]
[./ACBulkCv]
type = KKSACBulkC
variable = eta
ca = cvm
cb = cvb
fa_name = f_total_matrix
args = 'cgm'
[../]
[./ACBulkCg]
type = KKSACBulkC
variable = eta
ca = cgm
cb = cgb
fa_name = f_total_matrix
args = 'cvm'
[../]
[./ACInterface]
type = ACInterface
variable = eta
kappa_name = kappa
[../]
[./detadt]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
# Chemical free energy of the matrix
[./fm]
type = DerivativeParsedMaterial
f_name = fm
args = 'cvm cgm'
material_property_names = 'kvmatrix kgmatrix cvmatrixeq cgmatrixeq'
function = '0.5*kvmatrix*(cvm-cvmatrixeq)^2 + 0.5*kgmatrix*(cgm-cgmatrixeq)^2'
[../]
# Elastic energy of the matrix
[./elastic_free_energy_m]
type = ElasticEnergyMaterial
base_name = matrix
f_name = fe_m
args = ' '
[../]
# Total free energy of the matrix
[./Total_energy_matrix]
type = DerivativeSumMaterial
f_name = f_total_matrix
sum_materials = 'fm fe_m'
args = 'cvm cgm'
[../]
# Free energy of the bubble phase
[./fb]
type = DerivativeParsedMaterial
f_name = fb
args = 'cvb cgb'
material_property_names = 'kToverV nQ Va b f0 kpen kgbub kvbub cvbubeq cgbubeq'
function = '0.5*kgbub*(cvb-cvbubeq)^2 + 0.5*kvbub*(cgb-cgbubeq)^2'
[../]
# Elastic energy of the bubble
[./elastic_free_energy_p]
type = ElasticEnergyMaterial
base_name = bub
f_name = fe_b
args = ' '
[../]
# Total free energy of the bubble
[./Total_energy_bub]
type = DerivativeSumMaterial
f_name = f_total_bub
sum_materials = 'fb fe_b'
# sum_materials = 'fb'
args = 'cvb cgb'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
[../]
# g(eta)
[./g_eta]
type = BarrierFunctionMaterial
g_order = SIMPLE
eta = eta
[../]
# constant properties
[./constants]
type = GenericConstantMaterial
prop_names = 'M L kappa Va kvmatrix kgmatrix kgbub kvbub f0 kpen cvbubeq cgbubeq b T'
prop_values = '0.7 0.7 0.0368 0.03629 223.16 223.16 2.23 2.23 0.0224 1.0 0.6076 0.3924 0.085 800'
[../]
[./cvmatrixeq]
type = ParsedMaterial
f_name = cvmatrixeq
material_property_names = 'T'
constant_names = 'kB Efv'
constant_expressions = '8.6173324e-5 1.69'
function = 'exp(-Efv/(kB*T))'
[../]
[./cgmatrixeq]
type = ParsedMaterial
f_name = cgmatrixeq
material_property_names = 'T'
constant_names = 'kB Efg'
constant_expressions = '8.6173324e-5 4.92'
function = 'exp(-Efg/(kB*T))'
[../]
[./kToverV]
type = ParsedMaterial
f_name = kToverV
material_property_names = 'T Va'
constant_names = 'k C44dim' #k in J/K and dimensional C44 in J/m^3
constant_expressions = '1.38e-23 63e9'
function = 'k*T*1e27/Va/C44dim'
[../]
[./nQ]
type = ParsedMaterial
f_name = nQ
material_property_names = 'T'
constant_names = 'k Pi M hbar' #k in J/K, M is Xe atomic mass in kg, hbar in J s
constant_expressions = '1.38e-23 3.14159 2.18e-25 1.05459e-34'
function = '(M*k*T/2/Pi/hbar^2)^1.5 * 1e-27' #1e-27 converts from #/m^3 to #/nm^3
[../]
#Mechanical properties
[./Stiffness_matrix]
type = ComputeElasticityTensor
C_ijkl = '0.778 0.7935'
fill_method = symmetric_isotropic
base_name = matrix
[../]
[./Stiffness_bub]
type = ComputeElasticityTensor
C_ijkl = '0.0778 0.07935'
fill_method = symmetric_isotropic
base_name = bub
[../]
[./strain_matrix]
type = ComputeRSphericalSmallStrain
base_name = matrix
[../]
[./strain_bub]
type = ComputeRSphericalSmallStrain
base_name = bub
[../]
[./stress_matrix]
type = ComputeLinearElasticStress
base_name = matrix
[../]
[./stress_bub]
type = ComputeLinearElasticStress
base_name = bub
[../]
[./global_stress]
type = TwoPhaseStressMaterial
base_A = matrix
base_B = bub
[../]
[./surface_tension]
type = ComputeSurfaceTensionKKS
v = eta
kappa_name = kappa
w = 0.356
[../]
[./gas_pressure]
type = ComputeExtraStressVDWGas
T = T
b = b
cg = cgb
Va = Va
nondim_factor = 63e9
base_name = bub
outputs = exodus
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm lu nonzero'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-10
nl_abs_tol = 1e-11
num_steps = 2
dt = 0.5
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/buckley_leverett/bl01_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 15
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-4
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
active = 'calculate_seff'
[./calculate_seff]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_pressure
[../]
[../]
[]
[BCs]
active = 'left'
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 980000
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Functions]
active = 'initial_pressure'
[./initial_pressure]
type = ParsedFunction
value = max((1000000-x/5*1000000)-20000,-20000)
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Adaptivity]
marker = errorfrac
max_h_level = 3
[./Indicators]
[./error]
type = RichardsFluxJumpIndicator
variable = pressure
[../]
[../]
[./Markers]
[./errorfrac]
type = ErrorFractionMarker
refine = 0.5
coarsen = 0.3
indicator = error
[../]
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20'
[../]
[]
[Executioner]
type = Transient
end_time = 50
[./TimeStepper]
type = FunctionControlledDT
functions = ''
maximums = ''
minimums = ''
dt = 0.3
increment = 1.1
decrement = 1.1
maxDt = 0.3
minDt = 1E-5
adapt_log = false
percent_change = 0.1
[../]
[]
[Outputs]
file_base = bl01_adapt
interval = 10000
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/restart.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test1.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 0.5
[]
[Outputs]
exodus = true
checkpoint = true
[]
(modules/tensor_mechanics/test/tests/beam/constraints/frictional_constraint.i)
# Test for frictional beam constraint.
#
# Using a simple L-shaped geometry with a frictional constraint at the
# corner between the two beams. The longer beam properties and loading is
# taken from an earlier beam regression test for static loading. The maximum
# applied load of 50000 lb should result in a displacement of 3.537e-3. Since
# the constraint is frictional with a low normal force (1.0) and coefficient
# of friction (0.05) and the short beam is much less stiff, the
# y-dir displacement of the long beam is still 3.537e-3. However, the y-dir
# displacement of the short beam increases until the force exceeds the
# frictional capacity which in this case is 0.05 and then remains constant
# after that point.
[Mesh]
file = beam_cons_patch.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '1001 1003'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '1001 1003'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '1001 1003'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '1001 1003'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '1001 1003'
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = '1001 1003'
value = 0.0
[../]
[]
[Constraints]
[./tie_y_fuel]
type = NodalFrictionalConstraint
normal_force = 1.0
tangential_penalty = 1.2e5
friction_coefficient = 0.05
boundary = 1005
secondary = 1004
variable = disp_y
[../]
[./tie_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_x
[../]
[./tie_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_z
[../]
[./tie_rot_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_y
[../]
[./tie_rot_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_x
[../]
[./tie_rot_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_z
[../]
[]
[Functions]
[./force_loading]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 50000.0'
[../]
[]
[NodalKernels]
[./force_x2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = '1004'
function = force_loading
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 5
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity_pipe]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 1
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain_pipe]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[../]
[./stress_pipe]
type = ComputeBeamResultants
block = 1
outputs = exodus
output_properties = 'forces moments'
[../]
[./elasticity_cons]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 10e2
poissons_ratio = 0.3
block = 2
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain_cons]
type = ComputeIncrementalBeamStrain
block = '2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[../]
[./stress_cons]
type = ComputeBeamResultants
block = 2
outputs = exodus
output_properties = 'forces moments'
[../]
[]
[Postprocessors]
[./disp_y_n4]
type = NodalVariableValue
variable = disp_y
nodeid = 3
[../]
[./disp_y_n2]
type = NodalVariableValue
variable = disp_y
nodeid = 1
[../]
[./horz_forces_y]
type = PointValue
point = '9.9 60.0 0.0'
variable = forces_y
[../]
[./forces_y]
type = PointValue
point = '10.0 59.9 0.0'
variable = forces_y
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/mesh_modifiers/smooth_mesh/mesh_smoother.i)
[Mesh]
[file]
type = FileMeshGenerator
file = concentric_circle_mesh_in.e
[]
[smooth]
type = SmoothMeshGenerator
input = file
iterations = 5
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/cavity_pressure/multiple_postprocessors.i)
#
# Cavity Pressure Test (Volume input as a vector of postprocessors)
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# In this test the internal volume is calculated as the sum of two Postprocessors
# internalVolumeInterior and internalVolumeExterior. This sum equals the value
# reported by the internalVolume postprocessor.
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = 'internalVolumeInterior internalVolumeExterior'
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./internalVolumeInterior]
type = InternalVolume
boundary = '1 2 3 4 5 6'
execute_on = 'initial linear'
[../]
[./internalVolumeExterior]
type = InternalVolume
boundary = '13 14 15 16 17 18'
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/phase_field-mechanics/SimplePhaseTrans.i)
#
# Martensitic transformation
# One structural order parameter (SOP) governed by AllenCahn Eqn.
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
# Eigenstrain as a function of SOP
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 50
y1 = 50
radius = 10.0
invalue = 1.0
outvalue = 0.0
int_width = 5.0
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain'
[../]
[]
[Kernels]
[./eta_bulk]
type = AllenCahn
variable = eta
f_name = F
[../]
[./eta_interface]
type = ACInterface
variable = eta
kappa_name = kappa_eta
[../]
[./time]
type = TimeDerivative
variable = eta
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = A2/2*eta^2+A3/3*eta^3+A4/4*eta^4
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '70 30 30 70 30 70 30 30 30'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence]
type = DerivativeParsedMaterial
function = eta
args = 'eta'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
eigen_base = '0.1 0.1 0 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'eta'
eigenstrain_name = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta'
derivative_order = 2
[../]
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/pp_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = pp_sub.i
[../]
[]
[Transfers]
[./sample_pp_transfer]
source_variable = u
postprocessor = from_master
type = MultiAppVariableValueSamplePostprocessorTransfer
to_multi_app = pp_sub
[../]
[]
(test/tests/outputs/csv_final_and_latest/latest.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# Vector Postprocessor System
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
execute_on = 'timestep_end'
variable = 'u'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = 'TIMESTEP_END'
create_latest_symlink = true
[../]
[]
(test/tests/controls/time_periods/aux_scalar_kernels/control_different.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
family = SCALAR
[../]
[./aux1]
family = SCALAR
[../]
[]
[Functions]
[./func]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./scalar_aux0]
type = FunctionScalarAux
variable = aux0
function = func
[../]
[./scalar_aux1]
type = FunctionScalarAux
variable = aux1
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'AuxScalarKernels/scalar_aux0 */scalar_aux1'
start_time = '0.25 0.45'
end_time = '0.55 0.75'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_coeff.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
checkpoint = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
[../]
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/nonad_verification.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[temp_aux]
type = FunctionAux
variable = temperature
function = temp_fcn
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[rhom_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 1
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[rhoi_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 2
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[vmJ2_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 3
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[evm_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 4
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[temp_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 5
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[rhom_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 7
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[rhoi_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 8
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[creep_rate_soln_fcn]
type = PiecewiseConstant
data_file = ss316_verification_data.csv
x_index_in_file = 0
y_index_in_file = 10
format = columns
xy_in_file_only = false
direction = LEFT_INCLUSIVE
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pull_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 1e-5 # This is required to make a non-zero effective trial stress so radial return is engaged
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 1e13
poissons_ratio = 0.3
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
effective_inelastic_strain_name = effective_creep_strain
internal_solve_full_iteration_history = true
apply_strain = false
outputs = all
wall_dislocation_density_forcing_function = rhoi_fcn
cell_dislocation_density_forcing_function = rhom_fcn
old_creep_strain_forcing_function = evm_fcn
wall_input_window_low_failure = ERROR
wall_input_window_high_failure = ERROR
cell_input_window_low_failure = ERROR
cell_input_window_high_failure = ERROR
temperature_input_window_low_failure = ERROR
temperature_input_window_high_failure = ERROR
stress_input_window_low_failure = ERROR
stress_input_window_high_failure = ERROR
old_strain_input_window_low_failure = ERROR
old_strain_input_window_high_failure = ERROR
environment_input_window_low_failure = ERROR
environment_input_window_high_failure = ERROR
effective_stress_forcing_function = vmJ2_fcn
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-1 # Nothing is really being solved here, so loose tolerances are okay
dt = 1e-3
end_time = 1e-2
timestep_tolerance = 1e-3
[]
[Postprocessors]
[extrapolation]
type = ElementAverageValue
variable = ROM_extrapolation
outputs = console
[]
[old_strain_in]
type = FunctionValuePostprocessor
function = evm_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[temperature]
type = ElementAverageValue
variable = temperature
outputs = console
[]
[rhom]
type = ElementAverageValue
variable = cell_dislocations
[]
[rhoi]
type = ElementAverageValue
variable = wall_dislocations
[]
[creep_rate]
type = ElementAverageValue
variable = creep_rate
[]
[rhom_in]
type = FunctionValuePostprocessor
function = rhom_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[rhoi_in]
type = FunctionValuePostprocessor
function = rhoi_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[vmJ2_in]
type = FunctionValuePostprocessor
function = vmJ2_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[rhom_soln]
type = FunctionValuePostprocessor
function = rhom_soln_fcn
outputs = console
[]
[rhoi_soln]
type = FunctionValuePostprocessor
function = rhoi_soln_fcn
outputs = console
[]
[creep_rate_soln]
type = FunctionValuePostprocessor
function = creep_rate_soln_fcn
[]
[rhom_diff]
type = ParsedPostprocessor
pp_names = 'rhom_soln rhom'
function = '(rhom_soln - rhom) / rhom_soln'
outputs = console
[]
[rhoi_diff]
type = ParsedPostprocessor
pp_names = 'rhoi_soln rhoi'
function = '(rhoi_soln - rhoi) / rhoi_soln'
outputs = console
[]
[creep_rate_diff]
type = ParsedPostprocessor
pp_names = 'creep_rate creep_rate_soln'
function = '(creep_rate_soln - creep_rate) / creep_rate_soln'
outputs = console
[]
[z_rhom_max_diff]
type = TimeExtremeValue
postprocessor = rhom_diff
value_type = abs_max
[]
[z_rhoi_max_diff]
type = TimeExtremeValue
postprocessor = rhoi_diff
value_type = abs_max
[]
[z_creep_rate_max_diff]
type = TimeExtremeValue
postprocessor = creep_rate_diff
value_type = abs_max
[]
[]
[Outputs]
csv = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
(test/tests/outputs/postprocessor/postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'ALL'
outputs = 'exodus2 console'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
outputs = 'exodus'
[../]
[./num_nonlinear]
type = NumVars
system = 'NL'
outputs = 'all'
[../]
[./num_dofs]
type = NumDOFs
outputs = 'none'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
[../]
[./exodus2]
type = Exodus
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/misc/check_error/missing_executioner.i)
[Mesh]
type = GeneratedMesh
nx = 10
ny = 10
dim = 2
[]
[Variables]
[temp]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = temp
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 1
[]
[]
# No Executioner block
(test/tests/misc/check_error/function_file_test6.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
x = '1'
y = '2'
xy_data = '1 2'
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/2D_different_planes/planestrain_xy.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = square_xy_plane.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_strain]
block = 1
strain = SMALL
out_of_plane_direction = z
planar_formulation = PLANE_STRAIN
eigenstrain_names = 'eigenstrain'
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 3
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 10
nl_rel_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = planestrain_xy_small_out
[./exodus]
type = Exodus
[../]
[]
(modules/porous_flow/test/tests/adaptivity/hex_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(modules/richards/test/tests/gravity_head_1/gh01.i)
# unsaturated = false
# gravity = false
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
richardsVarNames_UO = PPNames
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh01
exodus = true
[]
(test/tests/vectorpostprocessors/csv_reader/transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/nodalkernels/jac_test/block_jacobian_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[]
[Kernels]
[./diff_x]
type = CoefDiffusion
variable = u_x
coef = 0.1
[../]
[./diff_y]
type = CoefDiffusion
variable = u_y
coef = 0.1
[../]
[]
[NodalKernels]
[./test_y]
type = JacobianCheck
variable = u_y
[../]
[./test_x]
type = JacobianCheck
variable = u_x
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = u_x
preset = false
boundary = left
value = 0
[../]
[./right_x]
type = DirichletBC
variable = u_x
preset = false
boundary = right
value = 1
[../]
[./left_y]
type = DirichletBC
variable = u_y
preset = false
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
solve_type = NEWTON
# petsc_options = '-snes_check_jacobian -snes_check_jacobian_view'
nl_max_its = 1
nl_abs_tol = 1e0
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/ad_mat_diffusion/2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = T
diffusivity = 1
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'left right bottom'
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
outputs = console
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial2.i)
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.01E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-9
nl_rel_tol = 1E-11
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial2
exodus = true
[./csv]
type = CSV
[../]
[]
(modules/porous_flow/test/tests/dirackernels/bh07.i)
# Comparison with analytical solution for cylindrically-symmetric situation
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[]
[]
[Variables]
[pp]
initial_condition = 1E7
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[fflux]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[fix_outer]
type = DirichletBC
boundary = perimeter
variable = pp
value = 1E7
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[borehole_total_outflow_mass]
type = PorousFlowSumQuantity
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
[]
[relperm]
type = PorousFlowRelativePermeabilityFLAC
m = 2
phase = 0
[]
[]
[DiracKernels]
[bh]
type = PorousFlowPeacemanBorehole
variable = pp
SumQuantityUO = borehole_total_outflow_mass
point_file = bh07.bh
fluid_phase = 0
bottom_p_or_t = 0
unit_weight = '0 0 0'
use_mobility = true
re_constant = 0.1594 # use Chen and Zhang version
character = 2 # double the strength because bh07.bh only fills half the mesh
[]
[]
[Postprocessors]
[bh_report]
type = PorousFlowPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[]
[fluid_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
variable = pp
start_point = '0 0 0'
end_point = '300 0 0'
sort_by = x
num_points = 300
execute_on = timestep_end
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[]
[]
[Executioner]
type = Transient
end_time = 1E3
solve_type = NEWTON
[TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = bh07
[along_line]
type = CSV
execute_on = final
[]
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(test/tests/test_harness/output_csv_and_exodus.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./x_field]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[./y_field]
type = PointValue
variable = u
point = '0.25 0.25 0'
[../]
[./z_field]
type = PointValue
variable = u
point = '0.75 0.75 0'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/transfers/multiapp_scalar_to_auxscalar_transfer/between_multiapp/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[base_1]
family = SCALAR
order = FOURTH
initial_condition = 14
[]
[from_0]
type = MooseVariableScalar
order = FIRST
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 3
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/combiner_generator/combiner_multi_input.i)
[Mesh]
[gen1]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin=0
xmax=1
ymin=0
ymax=1
[]
[gen2]
type = GeneratedMeshGenerator
dim = 2
nx = 12
ny = 12
xmin=2
xmax=3
ymin=2
ymax=3
[]
[gen3]
type = GeneratedMeshGenerator
dim = 2
nx = 14
ny = 14
xmin=3.5
xmax=5
ymin=3
ymax=4
[]
[cmbn]
type = CombinerGenerator
inputs = 'gen1 gen2 gen3'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/gravity/grav02b.i)
# Checking that gravity head is established in the steady-state situation when 0<saturation<1 (note the strictly less-than).
# 2phase (PP), 2components, vanGenuchten, constant fluid bulk-moduli for each phase, constant viscosity, constant permeability, Corey relative perm
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
initial_condition = -1.0
[]
[ppgas]
initial_condition = 0
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[]
[Kernels]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = ppwater
gravity = '-1 0 0'
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = ppgas
gravity = '-1 0 0'
[]
[]
[BCs]
[ppwater]
type = DirichletBC
boundary = right
variable = ppwater
value = -1
[]
[ppgas]
type = DirichletBC
boundary = right
variable = ppgas
value = 0
[]
[]
[Functions]
[ana_ppwater]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 2 pp_water_top 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[ana_ppgas]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1 pp_gas_top 0.1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater ppgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
viscosity = 0.5
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[Postprocessors]
[pp_water_top]
type = PointValue
variable = ppwater
point = '0 0 0'
[]
[pp_water_base]
type = PointValue
variable = ppwater
point = '-1 0 0'
[]
[pp_water_analytical]
type = FunctionValuePostprocessor
function = ana_ppwater
point = '-1 0 0'
[]
[pp_gas_top]
type = PointValue
variable = ppgas
point = '0 0 0'
[]
[pp_gas_base]
type = PointValue
variable = ppgas
point = '-1 0 0'
[]
[pp_gas_analytical]
type = FunctionValuePostprocessor
function = ana_ppgas
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
file_base = grav02b
[csv]
type = CSV
[]
exodus = false
[]
(modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/porous_flow/test/tests/sinks/s13.i)
# Apply a PorousFlowOutflowBC to the right-hand side and watch fluid flow to it
#
# This test has a single phase with two components. The test initialises with
# the porous material fully filled with component=1. The left-hand side is fixed
# at porepressure=1 and mass-fraction of the zeroth component being unity.
# The right-hand side has
# - porepressure fixed at zero via a DirichletBC: physically this removes component=1
# to ensure that porepressure remains fixed
# - a PorousFlowOutflowBC for the component=0 to allow that component to exit the boundary freely
#
# Therefore, the zeroth fluid component will flow from left to right (down the
# pressure gradient).
#
# The important DE is
# porosity * dc/dt = (perm / visc) * grad(P) * grad(c)
# which is true for c = mass-fraction, and very large bulk modulus of the fluid.
# For grad(P) constant in time and space (as in this example) this is just the
# advection equation for c, with velocity = perm / visc / porosity. The parameters
# are chosen to velocity = 1 m/s.
# In the numerical world, and especially with full upwinding, the advection equation
# suffers from diffusion. In this example, the diffusion is obvious when plotting
# the mass-fraction along the line, but the average velocity of the front is still
# correct at 1 m/s.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[frac]
[]
[]
[PorousFlowFullySaturated]
fp = simple_fluid
porepressure = pp
mass_fraction_vars = frac
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = 1-x
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e10 # need large in order for constant-velocity advection
density0 = 1 # irrelevant
thermal_expansion = 0
viscosity = 11
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 1.1 0 0 0 1.1'
[]
[]
[BCs]
[lhs_fixed_b]
type = DirichletBC
boundary = left
variable = pp
value = 1
[]
[rhs_fixed_b]
type = DirichletBC
boundary = right
variable = pp
value = 0
[]
[lhs_fixed_a]
type = DirichletBC
boundary = left
variable = frac
value = 1
[]
[outflow_a]
type = PorousFlowOutflowBC
boundary = right
include_relperm = false # no need for relperm in this fully-saturated simulation
mass_fraction_component = 0
variable = frac
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-2
end_time = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
[]
[VectorPostprocessors]
[mf]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 100
sort_by = x
variable = frac
[]
[]
[Outputs]
[console]
type = Console
execute_on = 'nonlinear linear'
[]
[csv]
type = CSV
sync_times = '0.1 0.5 1'
sync_only = true
[]
interval = 10
[]
(modules/tensor_mechanics/test/tests/truss/truss_3d_action.i)
[Mesh]
type = FileMesh
file = truss_3d.e
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0.0
[../]
[./fixx2]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 2
function = x2
[../]
[./fixx3]
type = DirichletBC
variable = disp_x
preset = false
boundary = 3
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./fixy2]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = y2
[../]
[./fixy3]
type = DirichletBC
variable = disp_y
preset = false
boundary = 3
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[./fixz3]
type = DirichletBC
variable = disp_z
preset = false
boundary = 3
value = 0
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = '1 2'
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
dt = 1
num_steps = 3
end_time = 3
[]
[Modules/TensorMechanics/LineElementMaster]
[./block]
truss = true
add_variables = true
displacements = 'disp_x disp_y disp_z'
area = area
block = '1 2'
save_in = 'react_x react_y react_z'
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = '1 2'
youngs_modulus = 1e6
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Outputs]
file_base = 'truss_3d_out'
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is inclined on the YZ plane at 45 deg.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_x
[../]
# [./disp_y]
# type = PointValue
# point = '2.8284271 2.8284271 0.0'
# variable = disp_y
# [../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_04.i)
# unsaturated = true
# gravity = true
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_04
exodus = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/04_sub_multiscale.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(modules/porous_flow/examples/tutorial/04.i)
# Darcy flow with heat advection and conduction, and elasticity
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
biot_coefficient = 1.0
[]
[Variables]
[porepressure]
[]
[temperature]
initial_condition = 293
scaling = 1E-8
[]
[disp_x]
scaling = 1E-10
[]
[disp_y]
scaling = 1E-10
[]
[disp_z]
scaling = 1E-10
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydroMechanical
gravity = '0 0 0'
fp = the_simple_fluid
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 313
boundary = injection_area
[]
[roller_tmax]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[]
[roller_tmin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[]
[roller_top_bottom]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_x]
type = Pressure
boundary = injection_area
variable = disp_x
component = 0
factor = 1E6
use_displaced_mesh = false
[]
[cavity_pressure_y]
type = Pressure
boundary = injection_area
variable = disp_y
component = 1
factor = 1E6
use_displaced_mesh = false
[]
[]
[AuxVariables]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_pp]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[stress_rr]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_rr
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[stress_pp]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_pp
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
thermal_expansion = 0.0002
cp = 4194
cv = 4186
porepressure_coefficient = 0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = thermal_contribution
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 0.001 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 293
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-15
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/internal_volume/rz_cone.i)
#
# Internal Volume Test
#
# This test is designed to compute the internal volume of a cone.
#
# The mesh is composed of one block (1). The height is 3/pi, and the radius
# is 1. Thus, the volume is 1/3*pi*r^2*h = 1.
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = meshes/rz_cone.e
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e4
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
volumetric_locking_correction = true
incremental = true
strain = FINITE
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./Pressure]
[./fred]
boundary = 1
function = pressure
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-9
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 1
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01_slippery.i)
# Beam bending. One end is clamped and the other end is subjected to
# a constant surface traction.
# The beam thickness is 1, and the Cosserat layer thickness is 0.5,
# so the beam contains 2 Cosserat layers.
# The joint normal stiffness is set very large and the shear stiffness very small
# so that the situation should be very close to a single beam of thickness
# 0.5.
# The deflection should be described by
# u_z = 2sx/G + 2s(1-nu^2)x^2(3L-x)/(Eh^2)
# wc_y = sx(x-2L)/(2B)
# Here
# s = applied shear stress = -2E-4
# x = coordinate along bar (0<=x<=10)
# G = shear modulus = E/2/(1+nu) = 0.4615
# nu = Poisson = 0.3
# L = length of bar = 10
# E = Young = 1.2
# h = Cosserat layer thickness = 0.5
[Mesh]
type = GeneratedMesh
dim = 3
nx = 80
xmax = 10
ny = 1
nz = 1
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'left'
value = 0.0
[../]
[./clamp_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_traction]
type = VectorNeumannBC
variable = disp_z
vector_value = '-2E-4 0 0'
boundary = right
[../]
[]
[AuxVariables]
[./wc_x]
[../]
[./wc_z]
[../]
[./strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./strain_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
[../]
[./strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yx
index_i = 1
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
[../]
[./strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zx
index_i = 2
index_j = 0
[../]
[./strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zy
index_i = 2
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'disp_x disp_z stress_xx stress_xz stress_zx stress_zz wc_y couple_stress_xx couple_stress_xz couple_stress_zx couple_stress_zz'
start_point = '0 0 0'
end_point = '10 0 0'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 0.5
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E-6
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_01_slippery
csv = true
exodus = true
[]
(test/tests/tag/2d_diffusion_tag_matrix.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[tag_variable1]
order = FIRST
family = LAGRANGE
[]
[tag_variable2]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
[]
[]
[AuxKernels]
[TagMatrixAux1]
type = TagMatrixAux
variable = tag_variable1
v = u
matrix_tag = mat_tag1
[]
[TagMatrixAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
extra_matrix_tags = mat_tag1
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
extra_matrix_tags = mat_tag2
[]
[]
[Problem]
type = FEProblem
extra_tag_matrices = 'mat_tag1 mat_tag2'
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = tag_matrix_out
exodus = true
[]
(test/tests/multiapps/picard_sub_cycling/picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
sub_cycling = true
interpolate_transfers = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(test/tests/test_harness/long_running.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 5
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(test/tests/vectorpostprocessors/line_value_sampler/line_value_sampler.i)
###########################################################
# This is a simple test of the Vector Postprocessor
# System. A LineValueSampler is placed inside of a 2D
# domain to sample solution points uniformly along a line.
#
# @Requirement F6.30
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[]
# Vector Postprocessor System
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/xfem/test/tests/second_order_elements/diffusion_3d_tet10.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = TET10
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.35 1.01 -0.001
0.35 0.49 -0.001
0.35 0.49 0.201
0.35 1.01 0.201'
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = left
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/overlapping_sidesets.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'bottom back left'
boundary_id_new = 10
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
boundary_id_overlap = true
[]
[createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
block_id = 0
boundary_id_old = 'right bottom'
boundary_id_new = 11
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
boundary_id_overlap = true
[]
[createNewSidesetThree]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetTwo
block_id = 0
boundary_id_old = 'top front'
boundary_id_new = 12
bottom_left = '-1.1 -1.1 -1.1'
top_right = '1.1 1.1 1.1'
boundary_id_overlap = true
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[BCone]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[BCtwo]
type = DirichletBC
variable = u
boundary = 11
value = 1
[]
[BCthree]
type = DirichletBC
variable = u
boundary = 12
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/planar_xy.i)
# 1-D Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two element blocks in the x-y plane. Each element block
# is a square. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far bottom boundary
# is ramped from 100 to 200 over one time unit. The temperature of the far top
# boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks:
#
# Flux = (T_left - T_right) * (gapK/gap_width)
#
# The gap conductivity is specified as 1, thus
#
# gapK(Tavg) = 1.0*Tavg
#
# The heat flux across the gap at time = 1 is then:
#
# Flux = 100 * (1.0/1.0) = 100
#
# For comparison, see results from the flux post processors. These results
# are the same as for the unit 1-D gap heat transfer between two unit cubes.
[Mesh]
file = simple_2D.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./temp_far_bottom]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_top]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-14
l_tol = 1e-3
l_max_its = 100
dt = 1e-1
end_time = 1.0
[]
[Postprocessors]
[./temp_bottom]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_top]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_bottom]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./flux_top]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_3/ring3_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring3_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
petsc_options = '-mat_superlu_dist_iterrefine -mat_superlu_dist_replacetinypivot'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/controls/moose_base_naming_access/base_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'Postprocessor::*/point'
execute_on = 'initial'
[../]
[]
(test/tests/mesh_modifiers/transform/rotate_and_scale.i)
[Mesh]
[file]
type = FileMeshGenerator
file = cylinder.e
[]
[rotate]
type = TransformGenerator
input = file
transform = ROTATE
vector_value = '0 90 0'
[]
[scale]
type = TransformGenerator
input = rotate
transform = SCALE
vector_value = '1e2 1e2 1e2'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/stabilization/cook_large.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 0.1
[]
[]
[Materials]
[compute_stress]
type = ComputeNeoHookeanStress
lambda = 416666611.0991259
mu = 8300.33333888888926
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_max_its = 500
nl_abs_tol = 1e-5
nl_rel_tol = 1e-6
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/adaptivity/quad_adaptivity.i)
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[]
[Adaptivity]
marker = marker
max_h_level = 1
[Markers]
[marker]
type = UniformMarker
mark = REFINE
[]
[]
[]
[GlobalParams]
PorousFlowDictator = 'dictator'
[]
[Variables]
[pp]
initial_condition = '0'
[]
[]
[Kernels]
[mass]
type = PorousFlowMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = pp
boundary = 'right'
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = 'pp'
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = '0.1'
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-3 0 0 0 1e-3 0 0 0 1e-3'
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Postprocessors]
[numdofs]
type = NumDOFs
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 4
dt = 1
solve_type = Newton
nl_abs_tol = 1e-12
[]
[Outputs]
execute_on = 'final'
exodus = true
perf_graph = true
show = pp
[]
(modules/rdg/test/tests/advection_1d/block_restrictable.i)
############################################################
[GlobalParams]
order = CONSTANT
family = MONOMIAL
u = u
slope_limiting = lslope
implicit = false
[]
############################################################
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
xmin = 0
xmax = 1
nx = 100
[]
[./subdomain1]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0 0'
block_id = 1
top_right = '1.0 1.0 0'
input = gen
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
input = subdomain1
[../]
[./interface_again]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'primary1_interface'
input = interface
[../]
[]
############################################################
[Functions]
[./ic_u]
type = PiecewiseConstant
axis = x
direction = right
xy_data = '0.1 0.5
0.4 1.0
0.5 0.5'
[../]
[]
############################################################
[UserObjects]
[./lslope]
type = AEFVSlopeLimitingOneD
execute_on = 'linear'
scheme = 'superbee' #none | minmod | mc | superbee
block = 0
[../]
[./internal_side_flux]
type = AEFVUpwindInternalSideFlux
execute_on = 'linear'
[../]
[./free_outflow_bc]
type = AEFVFreeOutflowBoundaryFlux
execute_on = 'linear'
[../]
[]
############################################################
[Variables]
[./u]
block = 0
[../]
[./v]
block = 1
family = LAGRANGE
order = FIRST
[../]
[]
############################################################
[ICs]
[./u_ic]
type = FunctionIC
variable = 'u'
function = ic_u
[../]
[]
############################################################
[Kernels]
[./time_u]
implicit = true
type = TimeDerivative
variable = u
block = 0
[../]
[./diff_v]
implicit = true
type = Diffusion
variable = v
block = 1
[../]
[./time_v]
implicit = true
type = TimeDerivative
variable = v
block = 1
[../]
[]
############################################################
[DGKernels]
[./concentration]
type = AEFVKernel
variable = u
component = 'concentration'
flux = internal_side_flux
block = 0
[../]
[]
############################################################
[BCs]
[./concentration]
type = AEFVBC
boundary = 'left primary0_interface'
variable = u
component = 'concentration'
flux = free_outflow_bc
[../]
[./v_left]
type = DirichletBC
boundary = 'primary1_interface'
variable = v
value = 1
[../]
[./v_right]
type = DirichletBC
boundary = 'right'
variable = v
value = 0
[../]
[]
############################################################
[Materials]
[./aefv]
type = AEFVMaterial
block = 0
[../]
[./dummy_1]
type = GenericConstantMaterial
block = 1
prop_names = ''
prop_values = ''
[../]
[]
############################################################
[Executioner]
type = Transient
[./TimeIntegrator]
type = ExplicitMidpoint
[../]
solve_type = 'LINEAR'
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
start_time = 0.0
num_steps = 4 # 4 | 400 for complete run
dt = 5e-4
dtmin = 1e-6
[]
[Outputs]
[./out]
type = Exodus
interval = 2
[../]
perf_graph = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4nnstt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test4nnstt_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(test/tests/multiapps/initial_failure/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
execute_on = initial
input_files = sub.i
[../]
[]
(modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_hht.i)
# Wave propogation in 1D using HHT time integration
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*((1+alpha)*disp-alpha*disp_old) = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the second, third and fourth node at t = 0.1 are
# -8.097405701570538350e-02, 2.113131879547342634e-02 and -5.182787688751439893e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
use_displaced_mesh = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
hht_alpha = -0.3
newmark_beta = 0.3025
newmark_gamma = 0.6
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[right_z]
type = DirichletBC
variable = disp_z
boundary = right
value = 0.0
[]
[left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[left_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[]
[front_x]
type = DirichletBC
variable = disp_x
boundary = front
value = 0.0
[]
[front_z]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[back_x]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[]
[back_z]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[]
[stress]
type = ComputeLinearElasticStress
[]
[density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '1'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp_1]
type = NodalVariableValue
nodeid = 1
variable = vel_y
[]
[disp_2]
type = NodalVariableValue
nodeid = 3
variable = vel_y
[]
[disp_3]
type = NodalVariableValue
nodeid = 10
variable = vel_y
[]
[disp_4]
type = NodalVariableValue
nodeid = 14
variable = vel_y
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_z.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is along the z axis
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_z_mesh.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 0.0 4.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '0.0 0.0 4.0'
variable = disp_y
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(modules/richards/test/tests/dirac/bh07.i)
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh07.bh
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
value = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh07
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/correctness/cauchy-elastic.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[strain]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[boty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = strain
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[szz]
type = ElementAverageValue
variable = szz
execute_on = 'initial timestep_end'
[]
[syz]
type = ElementAverageValue
variable = syz
execute_on = 'initial timestep_end'
[]
[sxz]
type = ElementAverageValue
variable = sxz
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[ezz]
type = ElementAverageValue
variable = ezz
execute_on = 'initial timestep_end'
[]
[eyz]
type = ElementAverageValue
variable = eyz
execute_on = 'initial timestep_end'
[]
[exz]
type = ElementAverageValue
variable = exz
execute_on = 'initial timestep_end'
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[szz]
family = MONOMIAL
order = CONSTANT
[]
[syz]
family = MONOMIAL
order = CONSTANT
[]
[sxz]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[ezz]
family = MONOMIAL
order = CONSTANT
[]
[eyz]
family = MONOMIAL
order = CONSTANT
[]
[exz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = cauchy_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = cauchy_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = cauchy_stress
index_i = 0
index_j = 1
[]
[zz]
type = RankTwoAux
variable = szz
rank_two_tensor = cauchy_stress
index_i = 2
index_j = 2
[]
[syz]
type = RankTwoAux
variable = syz
rank_two_tensor = cauchy_stress
index_i = 1
index_j = 2
[]
[sxz]
type = RankTwoAux
variable = sxz
rank_two_tensor = cauchy_stress
index_i = 0
index_j = 2
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[ezz]
type = RankTwoAux
variable = ezz
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
[]
[eyz]
type = RankTwoAux
variable = eyz
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 2
[]
[exz]
type = RankTwoAux
variable = exz
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 2
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 5
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.1
dtmin = 0.1
end_time = 0.1
[]
[Outputs]
exodus = false
csv = true
[]
(tutorials/darcy_thermo_mech/step04_velocity_aux/problems/step4.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables/pressure]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Materials]
[column]
type = PackedColumn
radius = 1
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
#nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mortar/displaced-gap-conductance-2d-bnd-coupling/gap-conductance-bnd-aux-kernel.i)
[Mesh]
displacements = 'disp_x disp_y'
[file]
type = FileMeshGenerator
file = nodal_normals_test_offset_nonmatching_gap.e
# block 1: left
# block 2: right
[]
[./primary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = '20'
[../]
[./secondary]
input = primary
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = '10'
[../]
[]
[AuxVariables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[aux_var]
[]
[]
[AuxKernels]
[function_x]
type = FunctionAux
function = '.05 * t'
variable = 'disp_x'
block = '2'
[]
[function_y]
type = FunctionAux
function = '.05 * t'
variable = 'disp_y'
block = '2'
[]
[flux_modifier]
type = StatefulAuxLowerD
variable = 'aux_var'
coupled_variable = 'lambda'
boundary = '1'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./T]
block = '1 2'
[../]
[./lambda]
block = '10'
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = T
boundary = '5'
value = 0
[../]
[./right]
type = DirichletBC
variable = T
boundary = '8'
value = 1
[../]
[]
[Kernels]
[./conduction]
type = Diffusion
variable = T
block = '1 2'
[../]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[./mortar]
type = GapHeatConductanceAuxKernel
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = 20
secondary_subdomain = 10
variable = lambda
secondary_variable = T
use_displaced_mesh = true
auxkernel_variable = 'aux_var'
correct_edge_dropping = true
[../]
[]
[Materials]
[constant]
type = ADGenericConstantMaterial
prop_names = 'gap_conductance'
prop_values = '.03'
block = '1 2'
use_displaced_mesh = true
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 5
petsc_options_iname = '-pc_type -snes_linesearch_type'
petsc_options_value = 'lu basic'
[]
[Outputs]
exodus = true
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/tensor_mechanics/test/tests/power_law_creep/nonad_exception.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[Modules/TensorMechanics/Master]
[finite]
add_variables = true
strain = FINITE
use_automatic_differentiation = true
[]
[]
[BCs]
[no_x]
type = ADDirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[top]
type = ADDirichletBC
variable = disp_x
boundary = 'top'
value = 1e-4
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[]
[elastic_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'creep'
outputs = all
[]
[creep]
type = ADPowerLawCreepTest
coefficient = 10e-22
n_exponent = 2
activation_energy = 0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
snesmf_reuse_base = false # prevents segfault on mac in dbg
line_search = none
num_steps = 2
[]
[Outputs]
[]
(test/tests/transfers/transfer_with_reset/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# This test currently diffs when run in parallel with DistributedMesh enabled,
# most likely due to the fact that it uses some geometric search stuff.
# For more information, see #2121.
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./t]
[../]
[./u_from_sub]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
reset_apps = 0
reset_time = 0.05
[../]
[]
[Transfers]
[./t_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = t
variable = t
[../]
[./u_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = u_from_sub
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u_from_master
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/action_2d.i)
# 2D with mixed conditions on stress/strain
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '2d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0'
fixed_normal = true
new_boundary = 'left right bottom top'
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = SMALL
add_variables = true
new_system = true
formulation = TOTAL
volumetric_locking_correction = false
constraint_types = 'stress strain stress'
targets = 'stress11 strain22 stress12'
generate_output = 'pk1_stress_xx pk1_stress_xy pk1_stress_xz pk1_stress_yx pk1_stress_yy '
'pk1_stress_yz pk1_stress_zx pk1_stress_zy pk1_stress_zz '
'deformation_gradient_xx deformation_gradient_xy deformation_gradient_xz '
'deformation_gradient_yx deformation_gradient_yy deformation_gradient_yz '
'deformation_gradient_zx deformation_gradient_zy deformation_gradient_zz'
[]
[]
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '400*t'
[]
[strain22]
type = ParsedFunction
value = '-2.0e-2*t'
[]
[stress12]
type = ParsedFunction
value = '100*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y'
[]
[y]
variable = disp_y
auto_direction = 'x y'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix1"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix1"
variable = disp_y
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix2"
variable = disp_y
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
[out]
type = Exodus
file_base = '2d'
[]
[]
(test/tests/multiapps/multiple_position_files/multiple_position_files.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./multi]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub1.i sub2.i'
positions_file = 'position1.txt position2.txt'
output_in_position = true
[../]
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/master2_quad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./pp_aux]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./quad]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.1 0.1 0 0.9 0.1 0 0.1 0.9 0 0.9 0.9 0'
input_files = 'quad_sub1.i'
[../]
[]
[Transfers]
[./sub_to_master_pp]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = quad
variable = pp_aux
postprocessor = pp
[../]
[]
(test/tests/controls/time_periods/kernels/adkernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff0]
type = ADMatDiffusionTest
variable = u
ad_mat_prop = 0.05
regular_mat_prop = 0.05
[]
[diff1]
type = ADMatDiffusionTest
variable = u
ad_mat_prop = 0.5
regular_mat_prop = 0.5
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[diff]
type = TimePeriod
enable_objects = 'Kernel::diff0'
disable_objects = '*::diff1'
start_time = '0'
end_time = '0.49'
[]
[]
(test/tests/controls/error/non_controllable_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./test_control]
type = TestControl
test_type = 'real'
parameter = 'Kernels/diff/non_controllable'
execute_on = 'initial'
[../]
[]
(modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart1.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = ADHeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 6
dt = 0.1
[]
[Outputs]
exodus = true
csv = true
[./out]
type = Checkpoint
num_files = 1
[../]
[]
(test/tests/outputs/error/none_reserved.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./none]
type = Exodus
[../]
[]
(test/tests/ics/constant_ic/constant_ic_test.i)
###########################################################
# This is a simple test demonstrating the use of the
# user-defined initial condition system.
#
# @Requirement F3.20
# @Requirement F5.20
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
# Initial Condition on Nonlinear variable
[./InitialCondition]
type = ConstantIC
value = 6.2
[../]
[../]
[]
[AuxVariables]
active = 'u_aux'
[./u_aux]
order = FIRST
family = LAGRANGE
# Initial Condition on Auxiliary variable
[./InitialCondition]
type = ConstantIC
value = 9.3
[../]
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/peridynamics/test/tests/auxkernels/planestrain_thermomechanics_ranktwotensor_OSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
poissons_ratio = 0.3
youngs_modulus = 1e6
thermal_expansion_coeff = 0.0002
stress_free_temperature = 0.0
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./tstrain_xx]
order = FIRST
family = LAGRANGE
[../]
[./tstrain_yy]
order = FIRST
family = LAGRANGE
[../]
[./tstrain_zz]
order = FIRST
family = LAGRANGE
[../]
[./tstrain_xy]
order = FIRST
family = LAGRANGE
[../]
[./mstrain_xx]
order = FIRST
family = LAGRANGE
[../]
[./mstrain_yy]
order = FIRST
family = LAGRANGE
[../]
[./mstrain_zz]
order = FIRST
family = LAGRANGE
[../]
[./mstrain_xy]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = FIRST
family = LAGRANGE
[../]
[./stress_yy]
order = FIRST
family = LAGRANGE
[../]
[./stress_zz]
order = FIRST
family = LAGRANGE
[../]
[./stress_xy]
order = FIRST
family = LAGRANGE
[../]
[./von_mises]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = ORDINARY_STATE
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./tstrain_xx]
type = NodalRankTwoPD
variable = tstrain_xx
rank_two_tensor = total_strain
output_type = component
index_i = 0
index_j = 0
[../]
[./tstrain_yy]
type = NodalRankTwoPD
variable = tstrain_yy
rank_two_tensor = total_strain
output_type = component
index_i = 1
index_j = 1
[../]
[./tstrain_zz]
type = NodalRankTwoPD
variable = tstrain_zz
rank_two_tensor = total_strain
output_type = component
index_i = 2
index_j = 2
[../]
[./tstrain_xy]
type = NodalRankTwoPD
variable = tstrain_xy
rank_two_tensor = total_strain
output_type = component
index_i = 0
index_j = 1
[../]
[./mstrain_xx]
type = NodalRankTwoPD
variable = mstrain_xx
rank_two_tensor = mechanical_strain
output_type = component
index_i = 0
index_j = 0
[../]
[./mstrain_yy]
type = NodalRankTwoPD
variable = mstrain_yy
rank_two_tensor = mechanical_strain
output_type = component
index_i = 1
index_j = 1
[../]
[./mstrain_zz]
type = NodalRankTwoPD
variable = mstrain_zz
rank_two_tensor = mechanical_strain
output_type = component
index_i = 2
index_j = 2
[../]
[./mstrain_xy]
type = NodalRankTwoPD
variable = mstrain_xy
rank_two_tensor = mechanical_strain
output_type = component
index_i = 0
index_j = 1
[../]
[./stress_xx]
type = NodalRankTwoPD
variable = stress_xx
rank_two_tensor = stress
output_type = component
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = NodalRankTwoPD
variable = stress_yy
rank_two_tensor = stress
output_type = component
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = NodalRankTwoPD
variable = stress_zz
rank_two_tensor = stress
output_type = component
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = NodalRankTwoPD
variable = stress_xy
rank_two_tensor = stress
output_type = component
index_i = 0
index_j = 1
[../]
[./vonmises]
type = NodalRankTwoPD
variable = von_mises
rank_two_tensor = stress
output_type = scalar
scalar_type = VonMisesStress
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = 'x*x+y*y'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
boundary = 1003
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1000
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialOSPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0.0
end_time = 1.0
[]
[Outputs]
exodus = true
file_base = planestrain_thermomechanics_ranktwotensor_OSPD
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_plane_strain_small.i)
#
# This test checks elastic stress calculations with mechanical and thermal
# strain using small strain formulation. Young's modulus is 3600, and Poisson's ratio is 0.2.
# The axisymmetric, plane strain 1D mesh is pulled with 1e-6 strain. Thus,
# the strain is [1e-6, 0, 1e-6] (xx, yy, zz). This gives stress of
# [5e-3, 2e-3, 5e-3]. After a temperature increase of 100 with alpha of
# 1e-8, the stress becomes [-1e-3, -4e-3, -1e-3].
#
[GlobalParams]
displacements = disp_x
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-6'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./ps]
planar_formulation = PLANE_STRAIN
strain = SMALL
generate_output = 'strain_xx strain_zz stress_xx stress_yy stress_zz'
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/upper_twin_fraction_limit.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
elem_type = HEX8
[]
[]
[AuxVariables]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_4]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_10]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = total_volume_fraction_twins
execute_on = timestep_end
[]
[slip_increment_4]
type = MaterialStdVectorAux
variable = slip_increment_4
property = slip_increment
index = 4
execute_on = timestep_end
[]
[slip_increment_10]
type = MaterialStdVectorAux
variable = slip_increment_10
property = slip_increment
index = 10
execute_on = timestep_end
[]
[twin_volume_fraction_4]
type = MaterialStdVectorAux
variable = twin_volume_fraction_4
property = twin_system_volume_fraction
index = 4
execute_on = timestep_end
[]
[twin_volume_fraction_10]
type = MaterialStdVectorAux
variable = twin_volume_fraction_10
property = twin_system_volume_fraction
index = 10
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '5.0e-4*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.08e5 6.034e4 6.034e4 1.08e5 6.03e4 1.08e5 2.86e4 2.86e4 2.86e4' #Tallon and Wolfenden. J. Phys. Chem. Solids (1979)
fill_method = symmetric9
euler_angle_1 = 54.74
euler_angle_2 = 45.0
euler_angle_3 = 270.0
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_only_xtalpl'
tan_mod_type = exact
[]
[twin_only_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = 'fcc_input_twinning_systems.txt'
initial_twin_lattice_friction = 1.5
upper_limit_twin_volume_fraction = 1e-7
stol = 0.01
print_state_variable_convergence_error_messages = true
[]
[]
[Postprocessors]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[slip_increment_4]
type = ElementAverageValue
variable = slip_increment_4
[]
[slip_increment_10]
type = ElementAverageValue
variable = slip_increment_10
[]
[twin_volume_fraction_4]
type = ElementAverageValue
variable = twin_volume_fraction_4
[]
[twin_volume_fraction_10]
type = ElementAverageValue
variable = twin_volume_fraction_10
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.05
dtmin = 1e-5
end_time = 0.18
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/outputs/perf_graph/multi_app/sub_full.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph = true
[]
(test/tests/multiapps/initial_failure/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
# time_step is set to two if there is no AMR by Steady at the end of its execute.
fail_step = 1
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/prop_block_read.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[./subdomain_id]
input = gen
type = ElementSubdomainIDGenerator
subdomain_ids = '0 1
0 1'
[../]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = block
nblock= 2
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(test/tests/outputs/csv/csv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(modules/xfem/test/tests/second_order_elements/diffusion_quad9_levelsetcut.i)
# A simple diffusion problem with quad9 elements
# The mesh is cut using levle set based cutter
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD9
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '3 5'
[../]
[./ls_func]
type = ParsedFunction
value = 'x-0.53'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 3
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/porous_flow/test/tests/jacobian/mass_vol_exp01.i)
# Tests the PorousFlowMassVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, constant porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[]
[poro]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = porepressure
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[simple1]
type = TensorMechanicsPlasticSimpleTester
a = 0
b = 1
strength = 1E20
yield_function_tolerance = 1.0E-9
internal_constraint_tolerance = 1.0E-9
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
(test/tests/vectorpostprocessors/late_declaration_vector_postprocessor/late_declaration_vector_postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./constant]
type = LateDeclarationVectorPostprocessor
value = '1.5 2.7'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(modules/contact/tutorials/introduction/step01.i)
#
# A first attempt at mechanical contact
# https://mooseframework.inl.gov/modules/contact/tutorials/introduction/step01.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[generated1]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 15
xmin = -0.6
xmax = -0.1
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar1
[]
[generated2]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 15
xmin = 0.1
xmax = 0.6
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar2
boundary_id_offset = 4
[]
[collect_meshes]
type = MeshCollectionGenerator
inputs = 'generated1 generated2'
[]
patch_update_strategy = iteration
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'vonmises_stress'
[]
[]
[Contact]
[pillars]
primary = pillar1_right
secondary = pillar2_left
model = frictionless
formulation = penalty
penalty = 1e9
normalize_penalty = true
[]
[]
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[Pressure]
[sides]
boundary = 'pillar1_left pillar2_right'
# we square time here to get a more progressive loading curve
# (more pressure later on once contact is established)
function = 1e4*t^2
[]
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 0.5
[Predictor]
type = SimplePredictor
scale = 1
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/kernels/ad_max_dofs_per_elem_error/ad_max_dofs_per_elem.i)
[Mesh]
type = GeneratedMesh
elem_type = HEX27
dim = 3
[]
[Variables]
[u]
order = SECOND
[]
[v]
order = SECOND
[]
[]
[Kernels]
[u_diff]
type = ADDiffusion
variable = u
[]
[v_diff]
type = ADDiffusion
variable = v
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
(test/tests/auxkernels/element_aux_var/element_aux_var_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[one]
order = CONSTANT
family = MONOMIAL
[]
[five]
order = FIRST
family = LAGRANGE
[]
[three]
order = CONSTANT
family = MONOMIAL
[]
[coupled_nine]
order = CONSTANT
family = MONOMIAL
[]
[coupled_fifteen]
order = CONSTANT
family = MONOMIAL
[]
[coupled]
order = CONSTANT
family = MONOMIAL
[]
[coupled_nl]
order = CONSTANT
family = MONOMIAL
[]
[coupled_grad_nl]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
# Coupling of nonlinear to Aux
[diff]
type = Diffusion
variable = u
[]
[force]
type = CoupledForce
variable = u
v = one
[]
[]
[AuxKernels]
# Simple Aux Kernel
# Shows coupling of Element to Nodal
# Shows coupling of Element to non-linear
# Shows coupling of Element to non-linear grad
[constant]
variable = one
type = ConstantAux
value = 1
[]
[coupled_nine]
variable = coupled_nine
type = CoupledAux
value = 3
operator = *
coupled = three
[]
[coupled_three]
variable = three
type = CoupledAux
value = 2
operator = +
coupled = one
[]
[coupled_fifteen]
variable = coupled_fifteen
type = CoupledAux
value = 5
operator = *
coupled = three
[]
[coupled]
variable = coupled
type = CoupledAux
value = 2
coupled = five
[]
[coupled_nl]
variable = coupled_nl
type = CoupledAux
value = 2
coupled = u
[]
[coupled_grad_nl]
variable = coupled_grad_nl
type = CoupledGradAux
grad = '2 0 0'
coupled = u
[]
[five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[exodus]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read_3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
nx = 30
ny = 30
nz = 30
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.05*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'input_file.txt'
nprop = 4
read_type = grain
ngrain = 4
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = elastic_strain
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor_with_Euler]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 2
nl_abs_step_tol = 1e-10
[]
[Outputs]
file_base = prop_grain_read_3d_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_3D.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
# 3D version
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
xmin = 0
xmax = 1
ny = 4
ymin = 0
ymax = 0.5
nz = 3
zmin = 0
zmax = 2
[]
[Variables]
[tracer]
[]
[]
[Problem]
error_on_jacobian_nonzero_reallocation=true
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.5 2'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
nl_max_its = 500
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/combined/test/tests/eigenstrain/composite.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./c]
[./InitialCondition]
type = FunctionIC
function = x
[../]
[../]
[./s11]
family = MONOMIAL
order = CONSTANT
[../]
[./s22]
family = MONOMIAL
order = CONSTANT
[../]
[./ds11]
family = MONOMIAL
order = CONSTANT
[../]
[./ds22]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./s22]
type = RankTwoAux
variable = s22
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./ds11]
type = RankTwoAux
variable = ds11
rank_two_tensor = delastic_strain/dc
index_i = 0
index_j = 0
[../]
[./ds22]
type = RankTwoAux
variable = ds22
rank_two_tensor = delastic_strain/dc
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = 'eigenstrain'
[../]
[./eigen1]
type = GenericConstantRankTwoTensor
tensor_values = '1 -1 0 0 0 0'
tensor_name = eigen1
[../]
[./eigen2]
type = GenericConstantRankTwoTensor
tensor_values = '-1 1 0 0 0 0'
tensor_name = eigen2
[../]
[./weight1]
type = DerivativeParsedMaterial
function = 0.02*c^2
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = 0.02*(1-c)^2
f_name = weight2
args = c
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'eigen1 eigen2'
weights = 'weight1 weight2'
args = c
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
execute_on = final
[]
(test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 3
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Postprocessors]
[average_1]
type = ElementAverageValue
variable = u
[]
[from_0]
type = Receiver
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = none
nl_abs_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_userobject_transfer/3d_1d_master.i)
# This does a dummy diffusion solve in 3D space, then computes a layered average
# in the z direction. Those values are transferred into a sub-app that has 1D mesh
# in the z-direction (the mesh was displaced so that it is aligned in such a way).
# The sub-app also does a dummy diffusion solve and then computes layered average
# in the z-direction. Those value are transferred back to the master app.
#
# Physically the 1D sub-app is placed in the center of the 3D mesh and is oriented
# in the z-direction. The bounding box of the sub-app is expanded such that it
# contains the 4 central elements of the 3D mesh (i.e. the values are transferred
# only into a part of master mesh)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 10
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[AuxVariables]
[./from_sub_app_var]
order = CONSTANT
family = MONOMIAL
[../]
[]
[UserObjects]
[master_uo]
type = LayeredAverage
direction = z
num_layers = 10
variable = u
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = front
value = -1
[]
[right]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 5
solve_type = 'NEWTON'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = final
[]
[MultiApps]
[sub_app]
positions = '0.5 0.5 0.0'
type = TransientMultiApp
input_files = 3d_1d_sub.i
app_type = MooseTestApp
bounding_box_padding = '0.25 0.25 0'
bounding_box_inflation = 0
use_displaced_mesh = true
execute_on = TIMESTEP_END
[]
[]
[Transfers]
[layered_transfer_to_sub_app]
type = MultiAppUserObjectTransfer
user_object = master_uo
variable = sub_app_var
to_multi_app = sub_app
displaced_target_mesh = true
[]
[layered_transfer_from_sub_app]
type = MultiAppUserObjectTransfer
user_object = sub_app_uo
variable = from_sub_app_var
from_multi_app = sub_app
displaced_source_mesh = true
[]
[]
(test/tests/dirackernels/point_caching/point_caching_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
active = 'point_source'
[./point_source]
type = BadCachingPointSource
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/2D_different_planes/planestrain_xz.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = square_xz_plane.e
[]
[Variables]
[./disp_x]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_strain]
block = 1
strain = SMALL
out_of_plane_direction = y
planar_formulation = PLANE_STRAIN
eigenstrain_names = 'eigenstrain'
generate_output = 'stress_xx stress_xz stress_yy stress_zz strain_xx strain_xz strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 3
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elastic_stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[]
[Postprocessors]
[./react_y]
type = MaterialTensorIntegral
use_displaced_mesh = false
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 10
nl_rel_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = planestrain_xz_small_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/1D/neumann.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '200 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionNeumannBC
boundary = left
variable = disp_x
function = pull
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/gravity/fully_saturated_upwinded_nodens_grav01c_action.i)
# Checking that gravity head is established
# 1phase, 2-component, constant fluid-bulk, constant viscosity, constant permeability
# fully saturated with fully-saturated Kernel with upwinding
# For better agreement with the analytical solution (ana_pp), just increase nx
# This is the Action version of fully_saturated_upwinded_grav01c.i but with multiply_by_density=false
# NOTE: this test is numerically delicate because the steady-state configuration is independent of the mass fraction, so the frac variable can assume any value as long as mass-fraction is conserved
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[frac]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[PorousFlowFullySaturated]
porepressure = pp
mass_fraction_vars = frac
fp = simple_fluid
gravity = '-1 0 0'
multiply_by_density = false
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1.2 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityConst
PorousFlowDictator = dictator
permeability = '1 0 0 0 2 0 0 0 3'
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1E-12
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'NONZERO'
nl_max_its = 100
[]
[Outputs]
csv = true
[]
(modules/combined/examples/publications/rapid_dev/fig7a.i)
#
# Fig. 7 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Solid gray curve (1)
# Eigenstrain and elastic energies ar computed per phase and then interpolated.
# Supply the RADIUS parameter (10-35) on the command line to generate data
# for all curves in the plot.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 32
xmin = 0
xmax = 100
second_order = true
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Functions]
[./diff]
type = ParsedFunction
value = '${RADIUS}-pos_c'
vars = pos_c
vals = pos_c
[../]
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
[./w]
[../]
# Phase order parameter
[./eta]
[./InitialCondition]
type = SmoothCircleIC
invalue = 1
outvalue = 0
x1 = 0
y1 = 0
radius = ${RADIUS}
int_width = 3
[../]
[../]
# Mesh displacement
[./disp_r]
order = SECOND
[../]
[./Fe_fit]
order = SECOND
[../]
[]
[Kernels]
# Set up stress divergence kernels
[./TensorMechanics]
[../]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./detadt]
type = TimeDerivative
variable = eta
[../]
[./ACBulk1]
type = AllenCahn
variable = eta
args = 'c'
mob_name = L
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = eta
mob_name = L
kappa_name = kappa_eta
[../]
[./Fe]
type = MaterialPropertyValue
prop_name = Fe
variable = Fe_fit
[../]
[./autoadjust]
type = MaskedBodyForce
variable = w
function = diff
mask = mask
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
prop_names = 'M L kappa_c kappa_eta'
prop_values = '1.0 1.0 0.5 1'
[../]
# forcing function mask
[./mask]
type = ParsedMaterial
f_name = mask
function = grad/dt
material_property_names = 'grad dt'
[../]
[./grad]
type = VariableGradientMaterial
variable = c
prop = grad
[../]
[./time]
type = TimeStepMaterial
[../]
# global mechanical properties
[./elasticity_tensor_1]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase1
fill_method = symmetric_isotropic
[../]
[./elasticity_tensor_2]
type = ComputeElasticityTensor
C_ijkl = '1 1'
base_name = phase2
fill_method = symmetric_isotropic
[../]
[./strain_1]
type = ComputeRSphericalSmallStrain
base_name = phase1
[../]
[./strain_2]
type = ComputeRSphericalSmallStrain
base_name = phase2
eigenstrain_names = eigenstrain
[../]
[./stress_1]
type = ComputeLinearElasticStress
base_name = phase1
[../]
[./stress_2]
type = ComputeLinearElasticStress
base_name = phase2
[../]
# eigenstrain per phase
[./eigenstrain2]
type = ComputeEigenstrain
eigen_base = '0.05 0.05 0.05 0 0 0'
base_name = phase2
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching]
type = SwitchingFunctionMaterial
function_name = h
eta = eta
h_order = SIMPLE
[../]
[./barrier]
type = BarrierFunctionMaterial
eta = eta
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = 'c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(1-c)^2'
args = 'c'
derivative_order = 2
[../]
# elastic free energies
[./elastic_free_energy_1]
type = ElasticEnergyMaterial
f_name = Fe1
args = ''
base_name = phase1
derivative_order = 2
[../]
[./elastic_free_energy_2]
type = ElasticEnergyMaterial
f_name = Fe2
args = ''
base_name = phase2
derivative_order = 2
[../]
# per phase free energies
[./free_energy_1]
type = DerivativeSumMaterial
f_name = F1
sum_materials = 'Fc1 Fe1'
args = 'c'
derivative_order = 2
[../]
[./free_energy_2]
type = DerivativeSumMaterial
f_name = F2
sum_materials = 'Fc2 Fe2'
args = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./global_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = F
fa_name = F1
fb_name = F2
eta = eta
args = 'c'
W = 4
[../]
# global stress
[./global_stress]
type = TwoPhaseStressMaterial
base_A = phase1
base_B = phase2
[../]
[./elastic_free_energy]
type = DerivativeTwoPhaseMaterial
f_name = Fe
fa_name = Fe1
fb_name = Fe2
eta = eta
args = 'c'
W = 0
[../]
[]
[BCs]
[./left_r]
type = DirichletBC
variable = disp_r
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_c]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = c
target = 0.582
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./pos_eta]
type = FindValueOnLine
start_point = '0 0 0'
end_point = '100 0 0'
v = eta
target = 0.5
tol = 1e-8
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[./c_min]
type = ElementExtremeValue
value_type = min
variable = c
execute_on = 'INITIAL TIMESTEP_END'
outputs = 'table console'
[../]
[]
[VectorPostprocessors]
[./line]
type = LineValueSampler
variable = 'Fe_fit c w'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 5000
sort_by = x
outputs = vpp
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 15
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 2.0e-9
start_time = 0.0
end_time = 100000.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
iteration_window = 1
dt = 1
[../]
[./Adaptivity]
initial_adaptivity = 5
interval = 10
max_h_level = 5
refine_fraction = 0.9
coarsen_fraction = 0.1
[../]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
execute_on = 'INITIAL TIMESTEP_END'
[./table]
type = CSV
delimiter = ' '
file_base = radius_${RADIUS}/energy_pp
[../]
[./vpp]
type = CSV
delimiter = ' '
sync_times = '10 50 100 500 1000 5000 10000 50000 100000'
sync_only = true
time_data = true
file_base = radius_${RADIUS}/energy_vpp
[../]
[]
(tutorials/darcy_thermo_mech/step05_heat_conduction/tests/bcs/outflow/outflow.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 5
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[Kernels]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[]
[BCs]
[inlet_temperature]
type = DirichletBC
variable = temperature
boundary = left
value = 350 # (K)
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[steel]
type = ADGenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '18 466 8000' # W/m*K, J/kg-K, kg/m^3 @ 296K
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mortar/displaced-gap-conductance-2d-bnd-coupling/gap-conductance.i)
[Mesh]
displacements = 'disp_x disp_y'
[file]
type = FileMeshGenerator
file = nodal_normals_test_offset_nonmatching_gap.e
# block 1: left
# block 2: right
[]
[./primary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = '20'
[../]
[./secondary]
input = primary
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = '10'
[../]
[]
[AuxVariables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[aux_var]
[]
[]
[AuxKernels]
[function_x]
type = FunctionAux
function = '.05 * t'
variable = 'disp_x'
block = '2'
[]
[function_y]
type = FunctionAux
function = '.05 * t'
variable = 'disp_y'
block = '2'
[]
[flux_modifier]
type = StatefulAuxLowerD
variable = 'aux_var'
coupled_variable = 'lambda'
boundary = '1'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./T]
block = '1 2'
[../]
[./lambda]
block = '10'
family = MONOMIAL
order = CONSTANT
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = T
boundary = '5'
value = 0
[../]
[./right]
type = DirichletBC
variable = T
boundary = '8'
value = 1
[../]
[]
[Kernels]
[./conduction]
type = Diffusion
variable = T
block = '1 2'
[../]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[./mortar]
type = GapHeatConductanceAuxKernel
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = 20
secondary_subdomain = 10
variable = lambda
secondary_variable = T
use_displaced_mesh = true
auxkernel_variable = 'aux_var'
correct_edge_dropping = true
[../]
[]
[Materials]
[constant]
type = ADGenericConstantMaterial
prop_names = 'gap_conductance'
prop_values = '.03'
block = '1 2'
use_displaced_mesh = true
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 5
petsc_options_iname = '-pc_type -snes_linesearch_type'
petsc_options_value = 'lu basic'
[]
[Outputs]
exodus = true
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
(test/tests/misc/check_error/missing_req_par_moose_obj_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
# Test missing required param (type in this case)
[./diff]
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/mesh_modifiers/mesh_extruder/extruder_quad.i)
[Mesh]
[file]
type = FileMeshGenerator
file = chimney_quad.e
[]
[extrude]
type = MeshExtruderGenerator
input = file
num_layers = 20
extrusion_vector = '0 1e-2 0'
bottom_sideset = 'new_bottom'
top_sideset = 'new_top'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = 'new_bottom'
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = 'new_top'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_quad
exodus = true
[]
(test/tests/controls/pid_control/pid_pp_control.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
inactive = 'exception'
[diff]
type = CoefDiffusion
variable = u
coef = 1
[]
[exception]
type = NanKernel
variable = 'u'
timestep_to_nan = 2
[]
[]
[BCs]
[left]
type = PostprocessorDirichletBC
variable = u
boundary = 3
postprocessor = received_bc
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Functions]
[conditional_function]
type = ParsedFunction
value = 't >= 1.9 & t < 2.1'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 20
dt = 1
nl_abs_tol = 1e-10
line_search = 'none'
# For picard tests
picard_abs_tol = 1e-3
[]
[Postprocessors]
[integral]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[]
[received_bc]
type = Receiver
default = 0
[]
[]
[Controls]
inactive = 'make_crash'
[integral_value]
type = PIDTransientControl
postprocessor = integral
target = 1.5
parameter_pp = 'received_bc'
K_integral = -1
K_proportional = -1
K_derivative = -0.1
execute_on = 'initial timestep_begin'
[]
[make_crash]
type = ConditionalFunctionEnableControl
enable_objects = 'Kernels::exception'
conditional_function = 'conditional_function'
execute_on = 'timestep_begin'
[]
[]
[MultiApps]
inactive = 'shortest_app'
[shortest_app]
type = TransientMultiApp
input_files = 'pid_pp_control_subapp.i'
[]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/vectorpostprocessors/elements_along_line/1d.i)
[Mesh]
type = GeneratedMesh
parallel_type = replicated # Until RayTracing.C is fixed
dim = 1
nx = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./elems]
type = ElementsAlongLine
start = '0.05 0 0'
end = '0.405 0 0'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/finite_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/large-tests/2d-stress.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
constraint_types = 'stress stress stress strain'
ndim = 2
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '2d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0'
fixed_normal = true
new_boundary = 'left right bottom top'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[hvar]
family = SCALAR
order = FOURTH
[]
[]
[ICs]
[init_scalar]
variable = hvar
values = '0 0 0 0'
type = ScalarComponentIC
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 stress22 stress21 zero'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '4.0e2*t'
[]
[stress22]
type = ParsedFunction
value = '-2.0e2*t'
[]
[stress12]
type = ParsedFunction
value = '1.0e2*t'
[]
[stress21]
type = ParsedFunction
value = '-1.5e2*t'
[]
[zero]
type = ConstantFunction
value = 0
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y'
[]
[y]
variable = disp_y
auto_direction = 'x y'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix1"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix1"
variable = disp_y
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix2"
variable = disp_y
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/preconditioners/vcp/vcp_test.i)
[Mesh]
[original_file_mesh]
type = FileMeshGenerator
file = non_conform_2blocks.e
[]
[secondary_side]
input = original_file_mesh
type = LowerDBlockFromSidesetGenerator
sidesets = '10'
new_block_id = '100'
new_block_name = 'secondary_side'
[]
[primary_side]
input = secondary_side
type = LowerDBlockFromSidesetGenerator
sidesets = '20'
new_block_id = '200'
new_block_name = 'primary_side'
[]
[]
[Functions]
[exact_sln]
type = ParsedFunction
value = sin(2*pi*x)*sin(2*pi*y)
[]
[ffn]
type = ParsedFunction
value = 8*pi*pi*sin(2*pi*x)*sin(2*pi*y)
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = secondary_side
use_dual = true
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = ffn
[]
[]
[Constraints]
[ced]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = 20
primary_subdomain = 200
secondary_boundary = 10
secondary_subdomain = 100
[]
[]
[BCs]
[all]
type = DirichletBC
variable = u
boundary = '30 40'
value = 0.0
[]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_sln
variable = u
boundary = '50 60'
[]
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[vcp]
type = VCP
full = true
lm_variable = 'lm'
primary_variable = 'u'
preconditioner = 'AMG'
is_lm_coupling_diagonal = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
l_max_its = 100
nl_rel_tol = 1e-6
[]
[Outputs]
csv = true
[]
(modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/moving.i)
[Mesh]
file = nonmatching.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./temp]
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./disp_y]
type = ParsedFunction
value = 0.1*t
[../]
[./left_temp]
type = ParsedFunction
value = 1000+t
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./disp_y]
type = FunctionAux
variable = disp_y
function = disp_y
block = left
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = temp
boundary = leftleft
function = left_temp
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
emissivity_primary = 0
emissivity_secondary = 0
variable = temp
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
use_displaced_mesh = true
[../]
[]
[Postprocessors]
[./left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = leftright
diffusivity = thermal_conductivity
[../]
[./right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = rightleft
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 9
dt = 1
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/displaced_mesh_coupling/nonad.i)
[GlobalParams]
displacements = 'u'
[]
[Mesh]
type = GeneratedMesh
dim = 1
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./u]
type = Diffusion
use_displaced_mesh = true
variable = u
[../]
[./v]
type = Diffusion
use_displaced_mesh = false
variable = v
[../]
[]
[BCs]
[./no_x]
type = NeumannBC
variable = u
boundary = left
value = 1.0e-3
use_displaced_mesh = true
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./lright]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh09.i)
# unsaturated = false
# gravity = false
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh09
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_no_parts.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = false
laplace = false
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required, because pressure term is *not* integrated by parts.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./u_out]
type = INSMomentumNoBCBCTractionForm
boundary = top
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./v_out]
type = INSMomentumNoBCBCTractionForm
boundary = top
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumTractionFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-pdass-tangential-lm-mortar-action.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
[original_file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[]
# These sidesets need to be deleted because the contact action adds them automatically. For this
# particular mesh, the new IDs will be identical to the deleted ones and will conflict if we don't
# remove the original ones.
[delete_3]
type = BlockDeletionGenerator
input = original_file_mesh
block = 3
[]
[revised_file_mesh]
type = BlockDeletionGenerator
input = delete_3
block = 4
[]
[]
[Variables]
[disp_x]
block = '1 2'
# order = SECOND
[]
[disp_y]
block = '1 2'
# order = SECOND
[]
[]
[Contact]
[frictional]
primary = 20
secondary = 10
formulation = mortar
model = coulomb
friction_coefficient = 0.1
c_normal = 1.0e-2
c_tangential = 1.0e-1
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
hide = 'contact_pressure nodal_area_frictional penetration'
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = frictional_secondary_subdomain
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/stickyBC/push_down.i)
# Testing StickyBC
#
# Push the top of an element downward until the bottom hits an (invisible) obstruction.
# 10 timesteps are used. In each timestep disp_y is decreased by 0.1. The
# StickyBC has a min_value of -0.49, so at timestep 5 this bound will be violated
# and the bottom boundary will be fixed forever after.
#
# This test also illustrates that StickyBC is only ever meant to be used in
# special situations:
# - if, after the simulation ends, the top is moved upward again, the StickyBC
# will keep the bottom fixed. Ie, the StickyBC is truly "sticky".
# - setting min_value = -0.5 in this test illustrates the "approximate" nature
# of StickyBC, in that some nodes will be fixed at disp_y=-0.5, while others
# will be fixed at disp_y=-0.6, due to the timestepping and roundoff errors
# in MOOSE's solution.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
[../]
[]
[BCs]
[./obstruction]
type = StickyBC
variable = disp_y
boundary = bottom
min_value = -0.49
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = -t
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./front]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Linear
dt = 0.1
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/inelastic_strain/creep/creep_nl1.i)
#
# Test for effective strain calculation.
# Boundary conditions from NAFEMS test NL1
#
# This is not a verification test. This is the creep analog of the same test
# in the elas_plas directory. Instead of using the IsotropicPlasticity
# material model this test uses the PowerLawCreep material model.
#
[GlobalParams]
temperature = temp
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = one_elem2.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
initial_condition = 600.0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./eff_creep_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
decomposition_method = EigenSolution
[../]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain_zz]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./creep_strain_yy]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./creep_strain_zz]
type = RankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./tot_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_xx
index_i = 0
index_j = 0
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
[../]
[./tot_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_zz
index_i = 2
index_j = 2
[../]
[./eff_creep_strain]
type = MaterialRealAux
property = effective_creep_strain
variable = eff_creep_strain
[../]
[]
[Functions]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0'
y = '0.0 0.25e-4 0.50e-4'
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = '1 2'
value = 600.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
block = 1
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
block = 1
coefficient = 3.125e-14
n_exponent = 5.0
m_exponent = 0.0
activation_energy = 0.0
[../]
[./thermal]
type = HeatConductionMaterial
block = 1
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = Density
block = 1
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-6
l_max_its = 100
nl_max_its = 20
dt = 1.0
start_time = 0.0
num_steps = 100
end_time = 2.0
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./el_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./el_strain_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[./crp_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
[../]
[./crp_strain_yy]
type = ElementAverageValue
variable = creep_strain_yy
[../]
[./crp_strain_zz]
type = ElementAverageValue
variable = creep_strain_zz
[../]
[./eff_creep_strain]
type = ElementAverageValue
variable = eff_creep_strain
[../]
[./tot_strain_xx]
type = ElementAverageValue
variable = tot_strain_xx
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./tot_strain_zz]
type = ElementAverageValue
variable = tot_strain_zz
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/xfem/test/tests/moment_fitting/diffusion_moment_fitting_four_points.i)
# Test for a diffusion problem which uses four points moment_fitting approach.
# See this paper (https://doi.org/10.1007/s00466-018-1544-2) for more details about moment_fitting approach.
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 6
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 3
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test3tt_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_2d_points.i)
#This tests the J-Integral evaluation capability.
#This is a 2d plane strain model
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
crack_front_points = '0 -10 0'
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_2d_points_out
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/1D/neumann.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '200 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionNeumannBC
boundary = left
variable = disp_x
function = pull
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[stress_base]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/auxkernels/element_aux_var/block_global_depend_elem_aux.i)
[Mesh]
file = rectangle.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./coupled_left]
order = CONSTANT
family = MONOMIAL
block = 1
[../]
[./coupled_right]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[./two]
order = CONSTANT
family = MONOMIAL
initial_condition = 0
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[AuxKernels]
[./coupled_left]
variable = coupled_left
type = CoupledAux
value = 8
operator = /
coupled = two
[../]
[./coupled_right]
variable = coupled_right
type = CoupledAux
value = 8
operator = /
coupled = two
[../]
[./two]
type = ConstantAux
variable = two
value = 2
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/hertz_cyl/half_symm_q4/hertz_cyl_half_1deg_template3.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
extra_vector_tags = 'ref'
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x226]
type = NodalVariableValue
nodeid = 225
variable = disp_x
[../]
[./disp_y226]
type = NodalVariableValue
nodeid = 225
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 2.0
l_tol = 5e-4
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x226 disp_y226 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
primary = 2
secondary = 3
model = coulomb
friction_coefficient = 0.0
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '2'
secondary = '3'
[../]
[]
(modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-fb-tangential-lm-mortar-disp.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
[./file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[../]
[]
[Variables]
[./disp_x]
block = '1 2'
# order = SECOND
[../]
[./disp_y]
block = '1 2'
# order = SECOND
[../]
[./frictional_normal_lm]
block = 3
# family = MONOMIAL
# order = CONSTANT
[../]
[./frictional_tangential_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[frictional_normal_lm]
type = NormalNodalLMMechanicalContact
secondary = 10
primary = 20
variable = frictional_normal_lm
primary_variable = disp_x
disp_y = disp_y
ncp_function_type = min
[../]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[frictional_tangential_lm]
type = TangentialMortarLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_tangential_lm
secondary_variable = disp_x
secondary_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
contact_pressure = frictional_normal_lm
friction_coefficient = .1
ncp_function_type = fb
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
# [./Predictor]
# type = SimplePredictor
# scale = 1.0
# [../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
# checkpoint = true
# [./dofmap]
# type = DOFMap
# execute_on = 'initial'
# [../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = frictional_normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_xz_force_xz.i)
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# The beam centerline is positioned on the global XZ plane at a 45deg. angle.
# Loading is along on the XZ plane perpendicular to beam centerline.
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_xz.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 0.70710678e-4
[../]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = 1
rate = -0.70710678e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '2.8284271 0.0 2.8284271'
variable = disp_x
[../]
[./disp_z]
type = PointValue
point = '2.8284271 0.0 2.8284271'
variable = disp_z
[../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_kernel]
type = FunctionAux
function = x*y
variable = u_aux
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Adaptivity]
marker = error_frac
steps = 3
[./Indicators]
[./jump_indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./error_frac]
type = ErrorFractionMarker
indicator = jump_indicator
refine = 0.7
[../]
[../]
[]
[Outputs]
xda = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion_function/mean.i)
# This test checks the thermal expansion calculated via a mean thermal expansion coefficient.
# The coefficient is selected so as to result in a 1e-4 strain in the x-axis, and to cross over
# from positive to negative strain.
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 3
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = '1 + t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeMeanThermalExpansionFunctionEigenstrain
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 1.2
stress_free_temperature = 1.5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'T T_stress_free T_ref end_strain'
vals = '2 1.5 1.2 1e-4'
value = 'end_strain / (T - T_stress_free - end_strain * (T_stress_free - T_ref))'
[../]
[]
[Postprocessors]
[./disp_x_max]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./temp_avg]
type = ElementAverageValue
variable = temp
[../]
[]
[Executioner]
type = Transient
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/dynamics/acceleration_bc/AccelerationBC_test_ti.i)
# Test for Acceleration boundary condition
# This test contains one brick element which is fixed in the y and z direction.
# Base acceleration is applied in the x direction to all nodes on the bottom surface (y=0).
# The PresetAcceleration converts the given acceleration to a displacement
# using Newmark time integration. This displacement is then prescribed on the boundary.
#
# Result: The acceleration at the bottom node should be same as the input acceleration
# which is a triangular function with peak at t = 0.2 in this case. Width of the triangular function
# is 0.2 s.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[Functions]
[./acceleration_bottom]
type = PiecewiseLinear
data_file = acceleration.csv
format = columns
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./preset_accelertion]
type = PresetAcceleration
boundary = bottom
function = acceleration_bottom
variable = disp_x
beta = 0.25
acceleration = accel_x
velocity = vel_x
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
start_time = 0
end_time = 2.0
dt = 0.01
dtmin = 0.01
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
l_tol = 1e-8
timestep_tolerance = 1e-8
# Time integrator scheme
schem = "newmark-beta"
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalVariableValue
variable = disp_x
nodeid = 1
[../]
[./vel]
type = NodalVariableValue
variable = vel_x
nodeid = 1
[../]
[./accel]
type = NodalVariableValue
variable = accel_x
nodeid = 1
[../]
[]
[Outputs]
file_base = "AccelerationBC_test_out"
csv = true
exodus = true
perf_graph = true
[]
(modules/richards/test/tests/pressure_pulse/pp_lumped_22.i)
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
dtmin = 1E3
nl_rel_tol = 1.e-9
nl_max_its = 10
end_time = 1E4
[]
[Outputs]
file_base = pp_lumped_22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(modules/contact/test/tests/mortar_tm/2drz/frictionless_first/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite_rr'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
extra_vector_tags = 'ref'
[]
[plank]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = GenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-12
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/dirackernels/block_restriction/skip.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[left]
type = SubdomainBoundingBoxGenerator
input = square
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
[]
[right]
type = SubdomainBoundingBoxGenerator
input = left
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[VectorPostprocessors]
[source]
type = CSVReader
csv_file = point_value_file.csv
[]
[]
[DiracKernels]
[point_source]
type = ReporterPointSource
variable = u
block = 1
value_name = source/value
x_coord_name = source/x
y_coord_name = source/y
z_coord_name = source/z
# The VPP contains the following information
# x,y,z,value
# 0.25,0.25,0.0,1
# 0.50,0.50,0.0,2
# 0.75,0.75,0.0,3
# The first point is in block 1.
# The second point is on the interface between blocks 1 and 2.
# The third point is in block 2.
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
# 2D version
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
xmin = 0
xmax = 1
ny = 4
ymin = 0
ymax = 0.5
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
nl_max_its = 500
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub_missing_control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_incremental.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
incremental = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_incremental_out'
exodus = true
[]
(test/tests/vectorpostprocessors/material_vector_postprocessor/block-restrict-err.i)
# check that the simulation terminates with an error when you try to use this
# on an element that isn't available/computed on a particular block.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'prop1 prop2 prop3'
prop_values = '1 2 42'
[../]
[]
[VectorPostprocessors]
[./vpp]
type = MaterialVectorPostprocessor
material = 'mat'
elem_ids = '2112'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(modules/contact/test/tests/nodal_area/nodal_area_Hex27.i)
[Mesh]
file = nodal_area_Hex27.e
[]
[GlobalParams]
order = SECOND
displacements = 'displ_x displ_y displ_z'
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0 1'
y = '0 20e-6'
[../]
[]
[Variables]
[./displ_x]
[../]
[./displ_y]
[../]
[./displ_z]
[../]
[]
[AuxVariables]
[./react_x]
[../]
[./react_y]
[../]
[./react_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
incremental = true
save_in = 'react_x react_y react_z'
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[../]
[]
[BCs]
[./move_right]
type = FunctionDirichletBC
boundary = '1'
variable = displ_x
function = disp
[../]
[./fixed_x]
type = DirichletBC
boundary = '3 4'
variable = displ_x
value = 0
[../]
[./fixed_y]
type = DirichletBC
boundary = 10
variable = displ_y
value = 0
[../]
[./fixed_z]
type = DirichletBC
boundary = 11
variable = displ_z
value = 0
[../]
[]
[Contact]
[./dummy_name]
primary = 3
secondary = 2
penalty = 1e8
tangential_tolerance = 1e-4
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
#petsc_options_iname = '-snes_type -snes_ls -snes_linesearch_type -ksp_gmres_restart -pc_type'
#petsc_options_value = 'ls basic basic 201 lu'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_tol = 1e-4
l_max_its = 40
start_time = 0.0
dt = 1.0
end_time = 1.0
num_steps = 100
[./Quadrature]
order = THIRD
[../]
[]
[Postprocessors]
[./react_x]
type = NodalSum
variable = react_x
boundary = 1
[../]
[./total_area]
type = NodalSum
variable = nodal_area_dummy_name
boundary = 2
[../]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/ad_heat_conduction/test.i)
# This test solves a 1D transient heat equation with a complicated thermal
# conductivity in order to verify jacobian calculation via AD
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 0.001
ymax = 0.001
[]
[Variables]
[./T]
initial_condition = 1.5
[../]
[./c]
initial_condition = 1.5
[../]
[]
[Kernels]
[./HeatDiff]
type = ADHeatConduction
variable = T
thermal_conductivity = thermal_conductivity
[../]
[./heat_dt]
type = ADHeatConductionTimeDerivative
variable = T
specific_heat = thermal_conductivity
density_name = thermal_conductivity
[../]
[./c]
type = ADDiffusion
variable = c
[../]
[]
[Kernels]
[./c_dt]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./left_c]
type = DirichletBC
variable = c
boundary = left
value = 2
[../]
[./right_c]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[./left_T]
type = DirichletBC
variable = T
boundary = top
value = 1
[../]
[./right_T]
type = DirichletBC
variable = T
boundary = bottom
value = 2
[../]
[]
[Materials]
[./k]
type = ADThermalConductivityTest
c = c
temperature = T
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/06.i)
# Darcy flow with a tracer
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[tracer_concentration]
[]
[]
[ICs]
[tracer_concentration]
type = FunctionIC
function = '0.5*if(x*x+y*y<1.01,1,0)'
variable = tracer_concentration
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
mass_fraction_vars = tracer_concentration
stabilization = none # Note to reader: 06_KT.i uses KT stabilization - compare the results
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[constant_outer_porepressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[injected_tracer]
type = DirichletBC
variable = tracer_concentration
value = 0.5
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(test/tests/constraints/nodal_constraint/nodal_constraint_test.i)
[Mesh]
file = 2-lines.e
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 3
[../]
[]
[Constraints]
[./c1]
type = EqualValueNodalConstraint
variable = u
primary = 0
secondary = 4
penalty = 100000
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/2D/dirichlet.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.5 * t'
[]
[pully]
type = ParsedFunction
value = '-0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/transfers/multiapp_conservative_transfer/master_conservative_transfer.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = sub_conservative_transfer.i
execute_on = timestep_end
[../]
[]
[Postprocessors]
[./from_postprocessor]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = u
variable = aux_u
to_multi_app = sub
from_postprocessors_to_be_preserved = 'from_postprocessor'
to_postprocessors_to_be_preserved = 'to_postprocessor'
[../]
[]
[Outputs]
exodus = true
[./console]
type = Console
execute_postprocessors_on = 'INITIAL nonlinear TIMESTEP_END'
[../]
[]
(modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/second_order.i)
[Mesh]
file = nonmatching.e
second_order = true
[]
[Variables]
[./temp]
order = SECOND
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 1000
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
emissivity_primary = 0
emissivity_secondary = 0
secondary = leftright
quadrature = true
primary = rightleft
variable = temp
type = GapHeatTransfer
order = SECOND
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Postprocessors]
[./left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = leftright
diffusivity = thermal_conductivity
[../]
[./right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = rightleft
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free.i)
# Test to verify the fundamental natural frequency of a one element ADComputeShellStress
# BCs: Clamped on one end, free on others.
# Initial perturbation applied to edge of the beam. After that, the shell vibrates freely.
#
# Results have been compared for various thicknesses with the following approximate Results
# (Moose results were obtained with 8 elements along the length)
# Thickness = 0.1. Reference freq: 10.785 Hz, Moose freq: 10.612 Hz
# Thickness = 0.05. Reference freq: 5.393 Hz, Moose freq: 5.335 Hz
# Thickness = 0.025. Reference freq: 2.696 Hz, Moose freq: 2.660 Hz
#
# Reference values have been obtained from Robert Blevins, "Formulas for Dynamics, Acoustics and Vibration",
# Table 5.3 case 11. Formula looks like: f = lambda^2/(2*pi*a^2) * sqrt(E*h^2/(12*(1-nu*nu))), where lambda
# changes as a function of shell dimensions.
# This test uses one single element for speed reasons.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1 # 1
ny = 1# 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./rot_x]
[../]
[./rot_y]
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
# aux variables for dynamics
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
[./rot_vel_x]
[../]
[./rot_vel_y]
[../]
[./rot_accel_x]
[../]
[./rot_accel_y]
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
# Kernels for dynamics
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'bottom'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 'bottom'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 'bottom'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0.0
[../]
[]
[Functions]
[./force_function]
type = PiecewiseLinear
x = '0.0 0.01 0.15 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[NodalKernels]
[./force_z2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 'top'
function = force_function
[../]
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[./inertial_force_x]
type = ADInertialForceShell
# use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 0
variable = disp_x
thickness = 0.1
[../]
[./inertial_force_y]
type = ADInertialForceShell
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 1
variable = disp_y
thickness = 0.1
[../]
[./inertial_force_z]
type = ADInertialForceShell
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 2
variable = disp_z
thickness = 0.1
[../]
[./inertial_force_rot_x]
type = ADInertialForceShell
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 3
variable = rot_x
thickness = 0.1
[../]
[./inertial_force_rot_y]
type = ADInertialForceShell
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 4
variable = rot_y
thickness = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.3
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '1.0 1.0 0.0'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 1.0 0.0'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.005
dtmin = 0.005
timestep_tolerance = 2e-13
end_time = 0.5
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Outputs]
perf_graph = true
exodus = true
csv = true
[]
(modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/simple_diffusion_line_source.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 5
ymax = 5
[]
[]
[Variables/u]
[]
[Kernels/diff]
type = Diffusion
variable = u
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[UserObjects/study]
type = RepeatableRayStudy
names = 'line_source_ray'
start_points = '1 1 0'
end_points = '5 2 0'
execute_on = PRE_KERNELS # must be set for line sources!
[]
[RayKernels/line_source]
type = LineSourceRayKernel
variable = u
value = 5
[]
# This isn't used in the test but can be enabled
# for pretty pictures as is used in an example!
[Adaptivity]
steps = 0 # 5
marker = marker
initial_marker = marker
max_h_level = 5
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.5
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized_second_order.i)
[GlobalParams]
order = SECOND
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
order = FIRST
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/combined/tutorials/introduction/thermal_mechanical_contact/thermomech_cont_step01.i)
#
# A first attempt at thermo mechanical contact
# https://mooseframework.inl.gov/modules/combined/tutorials/introduction/step01.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
block = 0
[]
[Mesh]
[generated1]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 15
xmin = -0.6
xmax = -0.1
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar1
[]
[generated2]
type = GeneratedMeshGenerator
dim = 2
nx = 6
ny = 15
xmin = 0.1
xmax = 0.6
ymax = 4.999
bias_y = 0.9
boundary_name_prefix = pillar2
boundary_id_offset = 4
[]
[collect_meshes]
type = MeshCollectionGenerator
inputs = 'generated1 generated2'
[]
patch_update_strategy = iteration
[]
[Variables]
# temperature field variable
[T]
# initialize to an average temperature
initial_condition = 50
order = FIRST
family = LAGRANGE
[]
# temperature lagrange multiplier
[Tlm]
block = 'pillars_secondary_subdomain'
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = T
[]
[dTdt]
type = HeatConductionTimeDerivative
variable = T
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'vonmises_stress'
[]
[]
[Contact]
[pillars]
primary = pillar1_right
secondary = pillar2_left
model = frictionless
formulation = mortar
[]
[]
[Constraints]
# thermal contact constraint
[Tlm]
type = GapConductanceConstraint
variable = Tlm
secondary_variable = T
use_displaced_mesh = true
k = 1e-1
primary_boundary = pillar1_right
primary_subdomain = pillars_primary_subdomain
secondary_boundary = pillar2_left
secondary_subdomain = pillars_secondary_subdomain
[]
[]
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[Pressure]
[sides]
boundary = 'pillar1_left pillar2_right'
function = 1e4*t^2
[]
[]
# thermal boundary conditions (pillars are heated/cooled from the bottom)
[heat_left]
type = DirichletBC
variable = T
boundary = pillar1_bottom
value = 100
[]
[cool_right]
type = DirichletBC
variable = T
boundary = pillar2_bottom
value = 0
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
# thermal properties
[thermal_conductivity]
type = HeatConductionMaterial
thermal_conductivity = 100
specific_heat = 1
[]
[density]
type = Density
density = 1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = none
# we deal with the saddle point structure of the system by adding a small shift
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu nonzero'
end_time = 5
dt = 0.1
[Predictor]
type = SimplePredictor
scale = 1
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/outputs/csv/csv_no_time.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[./aux_sum]
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./sum_nodal_aux]
type = SumNodalValuesAux
variable = aux_sum
sum_var = u
nodes = '1 2 3 4 5'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid_point]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
[./out]
type = CSV
time_column = false
[../]
[]
(test/tests/outputs/output_if_base_contains/dt_from_master_subsub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
output_if_base_contains = 'sub1_sub1 sub0_sub1'
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/3d-stress.i)
# 3D test with stress control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
constraint_types = 'stress stress stress stress stress stress'
ndim = 3
large_kinematics = false
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = SIXTH
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[szz]
family = MONOMIAL
order = CONSTANT
[]
[syz]
family = MONOMIAL
order = CONSTANT
[]
[sxz]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[ezz]
family = MONOMIAL
order = CONSTANT
[]
[eyz]
family = MONOMIAL
order = CONSTANT
[]
[exz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[zz]
type = RankTwoAux
variable = szz
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[syz]
type = RankTwoAux
variable = syz
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[sxz]
type = RankTwoAux
variable = sxz
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[ezz]
type = RankTwoAux
variable = ezz
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
[]
[eyz]
type = RankTwoAux
variable = eyz
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 2
[]
[exz]
type = RankTwoAux
variable = exz
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 stress22 stress33 stress23 stress13 stress12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '4.0e2*t'
[]
[stress22]
type = ParsedFunction
value = '-2.0e2*t'
[]
[stress33]
type = ParsedFunction
value = '8.0e2*t'
[]
[stress23]
type = ParsedFunction
value = '2.0e2*t'
[]
[stress13]
type = ParsedFunction
value = '-7.0e2*t'
[]
[stress12]
type = ParsedFunction
value = '1.0e2*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[szz]
type = ElementAverageValue
variable = szz
execute_on = 'initial timestep_end'
[]
[syz]
type = ElementAverageValue
variable = syz
execute_on = 'initial timestep_end'
[]
[sxz]
type = ElementAverageValue
variable = sxz
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[ezz]
type = ElementAverageValue
variable = ezz
execute_on = 'initial timestep_end'
[]
[eyz]
type = ElementAverageValue
variable = eyz
execute_on = 'initial timestep_end'
[]
[exz]
type = ElementAverageValue
variable = exz
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/combined/test/tests/beam_eigenstrain_transfer/subapp1_uo_transfer.i)
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = 'axial_strain'
num_points = 21
sort_by = 'id'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
(test/tests/userobjects/layered_average/block_restricted.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
nx = 10
ny = 10
dim = 2
[]
[middle]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
top_right = '0.6 0.6 0'
bottom_left = '0.4 0.4 0'
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[master_app_var]
order = CONSTANT
family = MONOMIAL
block = '1'
[]
[]
[AuxKernels]
[layered_aux]
type = SpatialUserObjectAux
variable = master_app_var
execute_on = 'timestep_end'
user_object = master_uo
block = '1'
[]
[]
[UserObjects]
[master_uo]
type = LayeredAverage
direction = x
variable = 'u'
block = '1'
# Note: 'bounds' or 'num_layers' are provided as CLI args
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 100
[]
[]
[Executioner]
type = Transient
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
petsc_options_iname = '-pc_type -pc_hypre_type'
num_steps = 1
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
[]
[Postprocessors]
[u_avg]
type = ElementAverageValue
variable = 'u'
execute_on = 'initial timestep_end'
[]
[final_avg]
type = ElementAverageValue
variable = 'master_app_var'
execute_on = 'initial timestep_end'
block = '1'
[]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/relperm/corey3.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
family = LAGRANGE
order = FIRST
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.2
sum_s_res = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.3
sum_s_res = 0.5
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-8
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/misc/check_error/function_file_test17.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_rows_more_data.csv
xy_in_file_only = false
x_index_in_file = 0
y_index_in_file = 0 # will generate an error because x and y index are equal
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain_pressure_3D.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[./Pressure]
[./top]
boundary = top
function = 0.3
[../]
[./bottom]
boundary = bottom
function = 0.3
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/mixed-transient-steady/mixed.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[temperature]
[InitialCondition]
type = ConstantIC
value = 1.0
[]
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = temperature
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'k'
[../]
[temperature_supg]
type = INSADEnergySUPG
variable = temperature
velocity = velocity
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[./temperature_hot]
type = DirichletBC
variable = temperature
boundary = 'bottom'
value = 1
[../]
[./temperature_cold]
type = DirichletBC
variable = temperature
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temperature
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/nodal_var_value/nodal_var_value.i)
[Mesh]
file = square-2x2-nodeids.e
# NodalVariableValue is not safe on renumbered meshes
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 scalednode1 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./scalednode1]
type = NodalVariableValue
variable = u
nodeid = 15
scale_factor = 2
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_nodal_var_value
exodus = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/creep_ramp_sub_true.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
initial_condition = 889
[]
[effective_inelastic_strain]
order = FIRST
family = MONOMIAL
[]
[cell_dislocations]
order = FIRST
family = MONOMIAL
[]
[wall_dislocations]
order = FIRST
family = MONOMIAL
[]
[number_of_substeps]
order = FIRST
family = MONOMIAL
[]
[]
[AuxKernels]
[effective_inelastic_strain]
type = MaterialRealAux
variable = effective_inelastic_strain
property = effective_creep_strain
[]
[cell_dislocations]
type = MaterialRealAux
variable = cell_dislocations
property = cell_dislocations
[]
[wall_dislocations]
type = MaterialRealAux
variable = wall_dislocations
property = wall_dislocations
[]
[number_of_substeps]
type = MaterialRealAux
variable = number_of_substeps
property = number_of_substeps
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pressure_x]
type = Pressure
variable = disp_x
boundary = right
factor = -0.5
function = shear_function
[]
[pressure_y]
type = Pressure
variable = disp_y
boundary = top
factor = -0.5
function = shear_function
[]
[pressure_z]
type = Pressure
variable = disp_z
boundary = front
factor = 0.5
function = shear_function
[]
[]
[Functions]
[shear_function]
type = ParsedFunction
value = 'timeToDoubleInHours := 10;
if(t<=28*60*60, 15.0e6, '
'15.0e6*(t-28*3600)/3600/timeToDoubleInHours+15.0e6)'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.68e11
poissons_ratio = 0.31
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[mx_phase_fraction]
type = GenericConstantMaterial
prop_names = mx_phase_fraction
prop_values = 5.13e-2 #precipitation bounds: 6e-3, 1e-1
outputs = all
[]
[rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
# outputs = all
use_substep = true
substep_strain_tolerance = 1.0e-5
use_substep_integration_error = true
stress_input_window_low_failure = WARN
stress_input_window_high_failure = ERROR
cell_input_window_high_failure = ERROR
cell_input_window_low_failure = ERROR
wall_input_window_low_failure = ERROR
wall_input_window_high_failure = ERROR
temperature_input_window_high_failure = ERROR
temperature_input_window_low_failure = ERROR
environment_input_window_high_failure = ERROR
environment_input_window_low_failure = ERROR
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
nl_rel_tol = 1e-4
automatic_scaling = true
compute_scaling_once = false
dtmin = 0.1
dtmax = 1e5
end_time = 136800
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1 ## This model requires a tiny timestep at the onset for the first 10s
iteration_window = 4
optimal_iterations = 12
time_t = '100800'
time_dt = '1e5'
[]
[]
[Postprocessors]
[effective_strain_avg]
type = ElementAverageValue
variable = effective_inelastic_strain
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[cell_dislocations]
type = ElementAverageValue
variable = cell_dislocations
[]
[wall_disloactions]
type = ElementAverageValue
variable = wall_dislocations
[]
[max_vonmises_stress]
type = ElementExtremeValue
variable = vonmises_stress
value_type = max
[]
[number_of_substeps]
type = ElementAverageValue
variable = number_of_substeps
[]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_rotation.i)
# This test is to ensure that the smeared cracking model correctly handles finite
# rotation of cracked elements.
# This consists of a single element that is first subjected to tensile loading
# in the y-direction via a prescribed displacement. This loading is sufficiently
# high to crack the material in that direction, but not completely unload. The
# prescribed displacement is then reversed so that the element is returned to its
# original configuration.
# In the next phase of the analysis, this element is then rotated 90 degrees by
# prescribing the displacement of the bottom of the element. The prescribed
# displacement BC used to crack the element in the first phase is deactivated.
# Once the element is fully rotated, a new BC is activated on what was originally
# the top surface (but is now the surface on the right hand side) to pull in
# the x-direction.
# If everything is working correctly, the model should re-load on the original
# crack (which should be rotated along with the elemnent) up to the peak stress
# in the first phase of the analysis, and then continue the unloading process
# as the crack strains continue to increase. Throughout this analysis, there should
# only be a single crack, as manifested in the crack_flags variables.
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[AuxVariables]
[./crack_flags1]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags2]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./crack_flags1]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags1
component = 0
[../]
[./crack_flags2]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags2
component = 1
[../]
[./crack_flags3]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags3
component = 2
[../]
[]
[BCs]
[./x_pin]
type = DirichletBC
variable = disp_x
boundary = '15 16'
value = 0.0
[../]
[./y_pin]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./z_all]
type = DirichletBC
variable = disp_z
boundary = '11 12 13 14 15 16 17 18'
value = 0.0
[../]
[./x_lb]
type = FunctionDirichletBC
variable = disp_x
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,1-cos((t-10)*pi/180)))'
[../]
[./y_lb]
type = FunctionDirichletBC
variable = disp_y
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,sin((t-10)*pi/180)))'
[../]
[./x_lt]
type = FunctionDirichletBC
variable = disp_x
boundary = '13 14'
function = '2+(t-100)*0.01'
[../]
[./x_rt]
type = FunctionDirichletBC
variable = disp_x
boundary = '17 18'
function = '1+(t-100)*0.01'
[../]
[./top_pull]
type = FunctionDirichletBC
variable = disp_y
boundary = '13 14 17 18'
function = 'if(t<5,t*0.01,0.05-(t-5)*0.01)'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100.e9
poissons_ratio = 0.
[../]
[./cracking_stress]
type = ComputeSmearedCrackingStress
shear_retention_factor = 0.1
cracking_stress = 3.e9
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ExponentialSoftening
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-5
nl_max_its = 100
nl_abs_tol = 1e-5
nl_rel_tol = 1e-12
start_time = 0
end_time = 110
dt = 1
[]
[Controls]
[./p1]
type = TimePeriod
start_time = 0.0
end_time = 10.0
disable_objects = 'BCs/x_lt BCs/x_rt'
enable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p2]
type = TimePeriod
start_time = 10.0
end_time = 101.0
disable_objects = 'BCs/x_lt BCs/x_rt BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p3]
type = TimePeriod
start_time = 101.0
end_time = 110.0
enable_objects = 'BCs/x_lt BCs/x_rt'
disable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/iterative/output_step_window.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
start_step = 2
end_step = 5
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/cp_slip_rate_integ/crysp.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCPSlipRateRes
gtol = 1e-2
rtol = 1e-8
abs_tol = 1e-15
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
slip_incr_tol = 1
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
dt = 0.2
dtmin = 0.05
dtmax = 10.0
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
end_time = 1
[]
[Outputs]
file_base = out
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(modules/stochastic_tools/test/tests/samplers/AdaptiveImportanceSampler/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = ElementAverageValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
(test/tests/materials/stateful_coupling/stateful_aux.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
# This material couples to an aux variable and
# uses it in stateful property initialization
[./stateful_mat]
type = StatefulTest
coupled = aux
prop_names = thermal_conductivity
prop_values = -1 # ignored
output_properties = thermal_conductivity
outputs = exodus
[../]
[]
[Executioner]
type = Transient
num_steps = 4
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test4qns.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4q.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.025
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4qns_out
exodus = true
[]
(modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod_optimised.i)
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl]
order = CONSTANT
family = MONOMIAL
[../]
[./vm_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./eq_pl_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[../]
[./eq_pl_strain]
type = RankTwoScalarAux
rank_two_tensor = plastic_strain
scalar_type = EffectiveStrain
variable = eq_pl_strain
[../]
[./vm_stress]
type = RankTwoScalarAux
rank_two_tensor = stress
scalar_type = VonMisesStress
variable = vm_stress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-9
plastic_models = j2
perform_finite_strain_rotations = false
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = NEWTON
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
#line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.5
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./intnl]
type = ElementAverageValue
variable = intnl
[../]
[./eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = eq_pl_strain
[../]
[./vm_stress]
type = PointValue
point = '0 0 0'
variable = vm_stress
[../]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
(examples/ex19_dampers/ex19.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 1.0
nx = 10
ymin = 0.0
ymax = 1.0
ny = 10
[]
[Variables]
[./diffusion]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffusion
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = diffusion
boundary = 3
value = 3
[../]
[./right]
type = DirichletBC
variable = diffusion
boundary = 1
value = 1
[../]
[]
[Dampers]
# Use a constant damping parameter
[./diffusion_damp]
type = ConstantDamper
variable = diffusion
damping = 0.9
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/verify_against_analytical/ad_2d_steady_state.i)
# This test solves a 2D steady state heat equation
# The error is found by comparing to the analytical solution
# Note that the thermal conductivity, specific heat, and density in this problem
# Are set to 1, and need to be changed to the constants of the material being
# Analyzed
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
xmax = 2
ymax = 2
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatDiff]
type = ADHeatConduction
variable = T
[../]
[]
[BCs]
[./zero]
type = DirichletBC
variable = T
boundary = 'right bottom left'
value = 0
[../]
[./top]
type = ADFunctionDirichletBC
variable = T
boundary = top
function = '10*sin(pi*x*0.5)'
[../]
[]
[Materials]
[./properties]
type = ADGenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1 1 1'
[../]
[]
[Postprocessors]
[./nodal_error]
type = NodalL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[./elemental_error]
type = ElementL2Error
function = '10/(sinh(pi))*sin(pi*x*0.5)*sinh(pi*y*0.5)'
variable = T
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/element_h1_error_pps/element_h1_error_pp_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func u_func'
[./forcing_func]
type = ParsedFunction
#value = alpha*alpha*pi*pi*(y*y*sin(alpha*pi*x*y)+y*y*sin(alpha*pi*x*y))
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[./u_func]
type = ParsedGradFunction
#value = sin(alpha*pi*x*y)
#grad_x = alpha*pi*y*cos(alpha*pi*x*y)
#grad_y = alpha*pi*x*cos(alpha*pi*x*y)
value = sin(alpha*pi*x)
grad_x = alpha*pi*cos(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[../]
[]
[Executioner]
type = Steady
[./Adaptivity]
refine_fraction = 1.0
coarsen_fraction = 0.0
max_h_level = 10
steps = 4
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
execute_on = 'initial timestep_end'
[../]
[./h1_error]
type = ElementH1Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[./h1_semi]
type = ElementH1SemiError
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[./l2_error]
type = ElementL2Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/auxkernels/execute_on_cyclic/execute_on_cyclic.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux0]
[../]
[./aux1]
[../]
[]
[AuxKernels]
[./aux0]
type = CoupledAux
variable = aux0
coupled = aux1
execute_on = linear
[../]
[./aux1]
type = CoupledAux
variable = aux1
coupled = aux0
execute_on = timestep_end
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/csv/csv_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[./aux_sum]
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxScalarKernels]
[./sum_nodal_aux]
type = SumNodalValuesAux
variable = aux_sum
sum_var = u
nodes = '1 2 3 4 5'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid_point]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
csv = true
[]
(test/tests/outputs/oversample/oversample.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
refinements = 2
position = '1 1 0'
[../]
[]
(test/tests/multiapps/cliargs_from_file/cliargs_sub_2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/multiapps/sampler_transient_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
# coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/mesh_extruder_generator/extrude_quad.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = chimney_quad.e
[]
[./extrude]
type = MeshExtruderGenerator
input = fmg
num_layers = 20
extrusion_vector = '0 1e-2 0'
bottom_sideset = 'new_bottom'
top_sideset = 'new_top'
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 'new_bottom'
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 'new_top'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_quad
exodus = true
[]
(modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action.i)
[Problem]
kernel_coverage_check = false
[]
[Mesh]
type = MeshGeneratorMesh
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1.3 1.9'
ix = '3 3 3'
dy = '2 1.2 0.9'
iy = '3 3 3'
subdomain_id = '0 1 0
4 5 2
0 3 0'
[../]
[./inner_bottom]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 1
paired_block = 5
new_boundary = 'inner_bottom'
[../]
[./inner_left]
type = SideSetsBetweenSubdomainsGenerator
input = inner_bottom
primary_block = 4
paired_block = 5
new_boundary = 'inner_left'
[../]
[./inner_right]
type = SideSetsBetweenSubdomainsGenerator
input = inner_left
primary_block = 2
paired_block = 5
new_boundary = 'inner_right'
[../]
[./inner_top]
type = SideSetsBetweenSubdomainsGenerator
input = inner_right
primary_block = 3
paired_block = 5
new_boundary = 'inner_top'
[../]
[./rename]
type = RenameBlockGenerator
old_block = '1 2 3 4'
new_block = '0 0 0 0'
input = inner_top
[../]
[]
[Variables]
[./temperature]
block = 0
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temperature
block = 0
diffusion_coefficient = 5
[../]
[]
[GrayDiffuseRadiation]
[./cavity]
boundary = '4 5 6 7'
emissivity = '0.9 0.8 0.4 1'
n_patches = '2 2 2 3'
partitioners = 'centroid centroid centroid centroid'
centroid_partitioner_directions = 'x y y x'
temperature = temperature
adiabatic_boundary = '7'
fixed_temperature_boundary = '4'
fixed_boundary_temperatures = '1200'
view_factor_calculator = analytical
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
boundary = left
value = 600
[../]
[./right]
type = DirichletBC
variable = temperature
boundary = right
value = 300
[../]
[]
[Postprocessors]
[./average_T_inner_right]
type = SideAverageValue
variable = temperature
boundary = inner_right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/action/noaction_2d.i)
# 2D with mixed conditions on stress/strain
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
constraint_types = 'stress strain stress'
ndim = 2
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '2d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0'
fixed_normal = true
new_boundary = 'left right bottom top'
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 strain22 stress12'
execute_on = 'initial linear'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[hvar]
family = SCALAR
order = THIRD
[]
[]
[AuxVariables]
[pk1_stress_xx]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_yx]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_zx]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_xy]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_yy]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_zy]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_xz]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_yz]
family = MONOMIAL
order = CONSTANT
[]
[pk1_stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_xx]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_yx]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_zx]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_xy]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_yy]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_zy]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_xz]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_yz]
family = MONOMIAL
order = CONSTANT
[]
[deformation_gradient_zz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pk1_stress_xx]
type = RankTwoAux
variable = pk1_stress_xx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[pk1_stress_yx]
type = RankTwoAux
variable = pk1_stress_yx
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[pk1_stress_zx]
type = RankTwoAux
variable = pk1_stress_zx
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[pk1_stress_xy]
type = RankTwoAux
variable = pk1_stress_xy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[pk1_stress_yy]
type = RankTwoAux
variable = pk1_stress_yy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[pk1_stress_zy]
type = RankTwoAux
variable = pk1_stress_zy
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[pk1_stress_xz]
type = RankTwoAux
variable = pk1_stress_xz
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[pk1_stress_yz]
type = RankTwoAux
variable = pk1_stress_yz
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[pk1_stress_zz]
type = RankTwoAux
variable = pk1_stress_zz
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[deformation_gradient_xx]
type = RankTwoAux
variable = deformation_gradient_xx
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[deformation_gradient_yx]
type = RankTwoAux
variable = deformation_gradient_yx
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[deformation_gradient_zx]
type = RankTwoAux
variable = deformation_gradient_zx
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[deformation_gradient_xy]
type = RankTwoAux
variable = deformation_gradient_xy
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[deformation_gradient_yy]
type = RankTwoAux
variable = deformation_gradient_yy
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[deformation_gradient_zy]
type = RankTwoAux
variable = deformation_gradient_zy
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[deformation_gradient_xz]
type = RankTwoAux
variable = deformation_gradient_xz
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[deformation_gradient_yz]
type = RankTwoAux
variable = deformation_gradient_yz
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[deformation_gradient_zz]
type = RankTwoAux
variable = deformation_gradient_zz
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '400*t'
[]
[strain22]
type = ParsedFunction
value = '-2.0e-2*t'
[]
[stress12]
type = ParsedFunction
value = '100*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y'
[]
[y]
variable = disp_y
auto_direction = 'x y'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix1"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix1"
variable = disp_y
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix2"
variable = disp_y
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_tm/2d/ad_frictionless_fir/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/test/tests/accumulate_aux/accumulate_aux.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[../]
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./node_accum]
[../]
[./elem_accum]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./na]
type = AccumulateAux
variable = node_accum
accumulate_from_variable = v
execute_on = timestep_end
[../]
[./ea]
type = AccumulateAux
variable = elem_accum
accumulate_from_variable = v
execute_on = timestep_end
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = v
boundary = 0
value = 0
[../]
[./b2x]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = accumulate_aux_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/3D/dirichlet.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.4 * t'
[]
[pully]
type = ParsedFunction
value = '-0.2 * t'
[]
[pullz]
type = ParsedFunction
value = '0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[pull_z]
type = FunctionDirichletBC
boundary = right
variable = disp_z
function = pullz
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/misc/check_error/check_syntax_ok.i)
[Mesh]
file = 2-lines.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ScalarKernels]
[./ced]
type = NodalEqualValueConstraint
variable = lm
var = u
boundary = '100 101'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = '2'
value = 3
[../]
[./evc1]
type = OneDEqualValueConstraintBC
variable = u
boundary = '100'
lambda = lm
component = 0
vg = 1
[../]
[./evc2]
type = OneDEqualValueConstraintBC
variable = u
boundary = '101'
lambda = lm
component = 0
vg = -1
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
[]
(modules/combined/test/tests/internal_volume/rz_quad8.i)
#
# Internal Volume Test
#
# This test is designed to compute the internal volume of a space considering
# an embedded volume inside.
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total volume
# is 7.
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = meshes/rz_quad8.e
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e4
[../]
[]
[Variables]
[./disp_x]
order = SECOND
family = LAGRANGE
[../]
[./disp_y]
order = SECOND
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
incremental = true
strain = FINITE
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./Pressure]
[./the_pressure]
boundary = 3
function = pressure
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0.0
dt = 1.0
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 2
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/multiapps/sub_cycling/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/variable_residual_norm/variable_residual.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = -1
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[Functions]
[./leg1]
type = ParsedFunction
value = 'x'
[../]
[./leg2]
type = ParsedFunction
value = '0.5*(3.0*x*x-1.0)'
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
preset = false
boundary = 2
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
preset = false
boundary = 1
value = 200
[../]
[./right_v]
type = DirichletBC
variable = v
preset = false
boundary = 2
value = 100
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# this is large on purpose so we don't reduce the variable residual to machine zero
# and so that we can compare to larger numbers. This also means this test can run only
# in serial, since parallel runs yield different convergence history.
nl_rel_tol = 1e-4
[]
[Postprocessors]
[./u_res_l2]
type = VariableResidual
variable = u
[../]
[./v_res_l2]
type = VariableResidual
variable = v
[../]
[]
[Outputs]
csv = true
[./console]
type = Console
# turn this on, so we can visually compare the postprocessor value with what is computed by the Console object
all_variable_norms = true
[../]
[]
(test/tests/dirackernels/point_caching/point_caching_adaptive_refinement.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
active = 'point_source'
[./point_source]
type = CachingPointSource
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 3
marker = 'combo'
[./Markers]
[./combo]
# In a real problem you would want to mark based on an error
# indicator, but we want this test to run consistently in
# parallel, so we just mark elements within a box for
# refinement. The boxes here are based on the 8x8
# uniformly-refined initial grid.
type = ComboMarker
markers = 'box1 box2 box3'
[../]
[./box1]
type = BoxMarker
bottom_left = '0.125 0.625 0'
top_right = '0.375 0.875 0'
inside = refine
outside = dont_mark
[../]
[./box2]
type = BoxMarker
bottom_left = '0.625 0.625 0'
top_right = '0.875 0.875 0'
inside = refine
outside = dont_mark
[../]
[./box3]
type = BoxMarker
bottom_left = '0.625 0.125 0'
top_right = '0.875 0.375 0'
inside = refine
outside = dont_mark
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_09.i)
# unsaturated = false
# gravity = false
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_09
exodus = true
[]
(modules/combined/test/tests/poro_mechanics/pp_generation_unconfined.i)
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# Source = s (units = 1/second)
#
# Expect:
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_xx = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# s = 0.1
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined
[./csv]
type = CSV
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized_with_temp_transient.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[temperature]
[InitialCondition]
type = ConstantIC
value = 1.0
[]
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = temperature
[../]
[temperature_time]
type = INSADHeatConductionTimeDerivative
variable = temperature
[]
[./temperature_conduction]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'k'
[../]
[temperature_supg]
type = INSADEnergySUPG
variable = temperature
velocity = velocity
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[./temperature_hot]
type = DirichletBC
variable = temperature
boundary = 'bottom'
value = 1
[../]
[./temperature_cold]
type = DirichletBC
variable = temperature
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temperature
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/normalized_penalty/normalized_penalty_Q8.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = normalized_penalty_Q8.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Functions]
[./left_x]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.02 0'
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[./m3_s2]
primary = 3
secondary = 2
penalty = 1e10
normalize_penalty = true
formulation = penalty
tangential_tolerance = 1e-3
[../]
[]
[BCs]
[./left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 1
function = left_x
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = '1 2 3 4'
value = 0.0
[../]
[./right]
type = DirichletBC
variable = disp_x
boundary = '3 4'
value = 0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 1000'
youngs_modulus = 3e8
poissons_ratio = 0.0
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3 4 1000'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 5e-8
l_max_its = 100
nl_max_its = 10
dt = 0.5
num_steps = 4
[]
[Outputs]
exodus = true
[]
(test/tests/functions/solution_function/solution_function_grad_p2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./test_variable_x]
order = FIRST
family = LAGRANGE
[../]
[./test_variable_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./test_variable_x_aux]
type = FunctionDerivativeAux
variable = test_variable_x
component = x
function = solution_function
[../]
[./test_variable_y_aux]
type = FunctionDerivativeAux
variable = test_variable_y
component = y
function = solution_function
[../]
[]
[UserObjects]
[./ex_soln]
type = SolutionUserObject
system_variables = test_variable
mesh = solution_function_grad_p1.e
[../]
[]
[Functions]
[./solution_function]
type = SolutionFunction
solution = ex_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = solution_function_grad_p2
exodus = true
[]
(modules/heat_conduction/tutorials/introduction/therm_step03.i)
#
# Single block thermal input with time derivative term
# https://mooseframework.inl.gov/modules/heat_conduction/tutorials/introduction/therm_step03.html
#
[Mesh]
[generated]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 1
[]
[]
[Variables]
[T]
initial_condition = 300.0
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = T
[]
[time_derivative]
type = HeatConductionTimeDerivative
variable = T
[]
[]
[Materials]
[thermal]
type = HeatConductionMaterial
thermal_conductivity = 45.0
specific_heat = 0.5
[]
[density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = 8000.0
[]
[]
[BCs]
[t_left]
type = DirichletBC
variable = T
value = 300
boundary = 'left'
[]
[t_right]
type = FunctionDirichletBC
variable = T
function = '300+5*t'
boundary = 'right'
[]
[]
[Executioner]
type = Transient
end_time = 5
dt = 1
[]
[VectorPostprocessors]
[t_sampler]
type = LineValueSampler
variable = T
start_point = '0 0.5 0'
end_point = '2 0.5 0'
num_points = 20
sort_by = x
[]
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = therm_step03_out
execute_on = final
[]
[]
(modules/porous_flow/test/tests/poroperm/PermFromPoro02.i)
# Testing permeability from porosity
# Trivial test, checking calculated permeability is correct
# k = k_anisotropic * k0 * (1-phi0)^m/phi0^n * phi^n/(1-phi)^m
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[poro]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[poro]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_bottom]
type = PointValue
variable = perm_x
point = '0 0 0'
[]
[perm_y_bottom]
type = PointValue
variable = perm_y
point = '0 0 0'
[]
[perm_z_bottom]
type = PointValue
variable = perm_z
point = '0 0 0'
[]
[perm_x_top]
type = PointValue
variable = perm_x
point = '3 0 0'
[]
[perm_y_top]
type = PointValue
variable = perm_y
point = '3 0 0'
[]
[perm_z_top]
type = PointValue
variable = perm_z
point = '3 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2.2e9
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityKozenyCarman
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = kozeny_carman_phi0
k0 = 1e-10
phi0 = 0.05
m = 2
n = 7
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(modules/combined/test/tests/poro_mechanics/unconsolidated_undrained.i)
# An unconsolidated-undrained test is performed.
# A sample's boundaries are impermeable. The sample is
# squeezed by a uniform mechanical pressure, and the
# rise in porepressure is observed.
#
# Expect:
# volumetricstrain = -MechanicalPressure/UndrainedBulk
# porepressure = SkemptonCoefficient*MechanicalPressure
# stress_zz = -MechanicalPresure + BiotCoefficient*porepressure
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
# Undrained Bulk modulus = 2 + 0.3^2*10 = 2.9
# Skempton coefficient = 0.3*10/2.9 = 1.034483
#
# The mechanical pressure is applied using Neumann BCs,
# since the Neumann BCs are setting stressTOTAL.
#
# MechanicalPressure = 0.1*t (ie, totalstress_zz = total_stress_xx = totalstress_yy = -0.1*t)
#
# Expect:
# disp_z = volumetricstrain/3 = -MechanicalPressure/3/2.9 = -0.1149*0.1*t
# prorepressure = 1.034483*0.1*t
# stress_zz = -0.1*t + 0.3*1.034483*0.1*t = -0.68966*0.1*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./pressure_x]
type = FunctionNeumannBC
variable = disp_x
function = -0.1*t
boundary = 'right'
[../]
[./pressure_y]
type = FunctionNeumannBC
variable = disp_y
function = -0.1*t
boundary = 'top'
[../]
[./pressure_z]
type = FunctionNeumannBC
variable = disp_z
function = -0.1*t
boundary = 'front'
[../]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = unconsolidated_undrained
[./csv]
type = CSV
[../]
[]
(test/tests/auxkernels/build_array_variable_aux/build_array_variable_aux.i)
[Mesh]
[meshgen]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[a]
order = FIRST
family = LAGRANGE
[]
[b]
order = FIRST
family = LAGRANGE
[]
[c]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[d]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[Kernels]
[diff_a]
type = Diffusion
variable = a
[]
[diff_b]
type = Diffusion
variable = b
[]
[]
[FVKernels]
[diff_c]
type = FVDiffusion
variable = c
coeff = 1
[]
[diff_d]
type = FVDiffusion
variable = d
coeff = 1
[]
[]
[BCs]
[a1]
type = DirichletBC
variable = a
boundary = left
value = 0
[]
[a2]
type = DirichletBC
variable = a
boundary = right
value = 1
[]
[b1]
type = DirichletBC
variable = b
boundary = bottom
value = 0
[]
[b2]
type = DirichletBC
variable = b
boundary = top
value = 1
[]
[]
[FVBCs]
[c1]
type = FVDirichletBC
variable = c
boundary = left
value = 0
[]
[c2]
type = FVDirichletBC
variable = c
boundary = right
value = 1
[]
[d1]
type = FVDirichletBC
variable = d
boundary = bottom
value = 0
[]
[d2]
type = FVDirichletBC
variable = d
boundary = top
value = 1
[]
[]
[Problem]
kernel_coverage_check = off
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[AuxVariables]
[ab]
order = FIRST
family = LAGRANGE
components = 2
[]
[cd]
order = CONSTANT
family = MONOMIAL
components = 2
[]
[]
[AuxKernels]
[build_ab]
type = BuildArrayVariableAux
variable = ab
component_variables = 'a b'
[]
[build_cd]
type = BuildArrayVariableAux
variable = cd
component_variables = 'c d'
[]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/central_difference/consistent/1D/1d_consistent_implicit.i)
# Test for Newmark Beta integration for a 1D element
# Consistent mass matrix
[Mesh]
type = GeneratedMesh
xmin = 0
xmax = 10
nx = 5
dim = 1
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[]
[NodalKernels]
[./force_x]
type = UserForcingFunctionNodalKernel
variable = disp_x
boundary = right
function = force_x
[../]
[]
[Functions]
[./force_x]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # force
scale_factor = 1e3
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x'
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 1e-4
timestep_tolerance = 1e-6
start_time = -0.005
end_time = 0.1
dt = 0.005
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Postprocessors]
[./disp_x]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./vel_x]
type = NodalVariableValue
nodeid = 1
variable = vel_x
[../]
[./accel_x]
type = NodalVariableValue
nodeid = 1
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
perf_graph = false
[]
(modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_test.i)
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 2D axisymmetric geometry.
# This test uses the strain calculators ComputeAxisymmetricRZSmallStrain
# and ComputeAxisymmetricRZIncrementalStrain which are generated by the
# TensorMechanics MasterAction depending on the cli_args given in the tests file.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000, respectively. The resulting compressive tangential
# stress is largest at the inner wall and, from the above equation, has a value
# of -271429.
[Mesh]
file = 2D-RZ_mesh.e
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_zz'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./stress]
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = xzero
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = yzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = Pressure
variable = disp_r
boundary = outer
factor = 200000
[../]
[./exterior_pressure_z]
type = Pressure
variable = disp_z
boundary = outer
factor = 200000
[../]
[./interior_pressure_r]
type = Pressure
variable = disp_r
boundary = inner
factor = 100000
[../]
[./interior_pressure_z]
type = Pressure
variable = disp_z
boundary = inner
factor = 100000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
# num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/deprecated_block_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[DeprecatedBlock]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/L/large.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/03_sub_subcycle.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/mesh_pointer_error_check.i)
[Mesh]
file = mesh_pointer.e
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[AuxVariables]
[mortar_tangent_x]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_y]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_z]
family = LAGRANGE
order = FIRST
[]
[]
[AuxKernels]
[friction_x_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_x
component = 0
boundary = 'top_bottom'
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_y
component = 1
boundary = 'top_bottom'
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_z
component = 2
boundary = 'top_bottom'
[]
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
uniform_refine = 0
allow_renumbering = false
[]
[Variables]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_3d_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
[]
[]
[Materials]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e4
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Constraints]
[friction]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
mu = 0.4
c = 1e4
c_t = 1.0e4
friction_lm = mortar_tangential_lm
friction_lm_dir = mortar_tangential_3d_lm
interpolate_normals = false
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = .025
dt = .025
dtmin = .001
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-14 1e-5'
l_max_its = 15
nl_max_its = 30
nl_rel_tol = 1e-11
nl_abs_tol = 1e-12
line_search = 'basic'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[frictional-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[frictional-pressure-3d]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_3d_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[tangent_x]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_x
sort_by = 'id'
execute_on = NONLINEAR
[]
[tangent_y]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_y
sort_by = 'id'
execute_on = NONLINEAR
[]
[]
(modules/tensor_mechanics/test/tests/elem_prop_read_user_object/prop_grain_read.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 10
ny = 10
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.05*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'input_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 4
read_type = voronoi
nvoronoi = 3
use_random_voronoi = true
rand_seed = 25346
rve_type = periodic
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = elastic_strain
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor_with_Euler]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 1
nl_abs_step_tol = 1e-10
[]
[Outputs]
file_base = prop_grain_read_out
exodus = true
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(test/tests/controls/time_periods/bcs/bcs_enable_disable.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./right2]
type = FunctionDirichletBC
variable = u
boundary = right
function = (y*(t-1))+1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./period0]
type = TimePeriod
enable_objects = 'BCs::right'
disable_objects = 'BCs::right2'
start_time = '0'
end_time = '0.5'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_xyz.i)
#
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displx]
type = PiecewiseLinear
x = '0 1'
y = '0 0.00175'
[../]
[./velocity_y]
type = ParsedFunction
value = 'if(t < 2, 0.00175, 0)'
[../]
[./velocity_z]
type = ParsedFunction
value = 0.00175
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./move_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = displx
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./move_y]
type = PresetVelocity
variable = disp_y
boundary = 5
function = velocity_y
# time_periods = 'p2 p3'
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[./move_z]
type = PresetVelocity
variable = disp_z
boundary = 6
function = velocity_z
# time_periods = 'p3'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 186.5e9
poissons_ratio = .316
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 119.3e6
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ExponentialSoftening
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-5
nl_max_its = 100
nl_abs_tol = 1e-4
#nl_rel_tol = 1e-4
nl_rel_tol = 1e-6
start_time = 0.0
end_time = 3.0
dt = 0.01
[]
[Controls]
[./p1]
type = TimePeriod
start_time = 0.0
end_time = 1.0
disable_objects = 'BCs/move_y BCs/move_z'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p2]
type = TimePeriod
start_time = 1.0
end_time = 2.0
disable_objects = 'BCs/move_z'
enable_objects = 'BCs/move_y'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p3]
type = TimePeriod
start_time = 2.0
end_time = 3.0
enable_objects = 'BCs/move_y BCs/move_z'
reverse_on_false = false
execute_on = 'initial timestep_begin'
set_sync_times = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ne-coupled-resid-scaling.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[u]
initial_condition = 1
[]
[T]
initial_condition = 1
[]
[]
[AuxVariables]
[power][]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
mat_prop = diffusion
offset = 0.0
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./diff_T]
type = CoefDiffusion
variable = T
coef = 1e30
[../]
[./src_T]
type = CoupledForce
variable = T
v = power
coef = 1e30
[../]
[]
[AuxKernels]
[./power_ak]
type = NormalizationAux
variable = power
source_variable = u
normalization = unorm
# this coefficient will affect the eigenvalue.
normal_factor = 10
execute_on = linear
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigenU]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[./eigenT]
type = EigenDirichletBC
variable = T
boundary = '0 1 2 3'
[../]
[]
[Materials]
[./dc]
type = VarCouplingMaterial
var = T
block = 0
base = 1.0
coef = 1.0
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
automatic_scaling = true
petsc_options = '-pc_svd_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'svd'
verbose = true
resid_vs_jac_scaling_param = 1
[]
[Postprocessors]
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
execute_on = 'timestep_end'
[]
(modules/stochastic_tools/examples/paper/sub.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[receiver]
type = SamplerReceiver
[]
[]
[Outputs]
console = false
[]
(test/tests/misc/check_error/nan_test_transient.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./nan]
type = NanKernel
variable = u
timestep_to_nan = 2
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 1
num_steps = 2
[]
(test/tests/meshgenerators/sidesets_from_points_generator/sidesets_from_points.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = cylinder.e
#parallel_type = replicated
[]
[./sidesets]
type = SideSetsFromPointsGenerator
input = fmg
points = '0 0 0.5
0.1 0 0
0 0 -0.5'
new_boundary = 'top side bottom'
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_multilevel/multilevel_dt_rejection/picard_sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./w]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
l_tol = 1e-5 # loose enough to force multiple Picard iterations on this example
num_steps = 2
[]
[Postprocessors]
[master_time]
type = Receiver
execute_on = 'timestep_end'
[]
[master_dt]
type = Receiver
execute_on = 'timestep_end'
[]
[sub_time]
type = Receiver
execute_on = 'timestep_end'
[]
[sub_dt]
type = Receiver
execute_on = 'timestep_end'
[]
[time]
type = TimePostprocessor
execute_on = 'timestep_end'
[]
[dt]
type = TimestepSize
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/ad_constant_expansion_coeff.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./temp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Kernels]
[./tempfuncaux]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temperature_load
boundary = 'left right'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
[../]
[]
(modules/heat_conduction/test/tests/radiation_transfer_action/radiative_transfer_action_external_boundary_ray_tracing.i)
[Problem]
kernel_coverage_check = false
[]
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 2
dx = '1 1.3 1.9'
ix = '3 3 3'
dy = '6'
iy = '9'
subdomain_id = '0 1 2'
[]
[inner_left]
type = SideSetsBetweenSubdomainsGenerator
input = cmg
primary_block = 0
paired_block = 1
new_boundary = 'inner_left'
[]
[inner_right]
type = SideSetsBetweenSubdomainsGenerator
input = inner_left
primary_block = 2
paired_block = 1
new_boundary = 'inner_right'
[]
[inner_top]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y - 6) < 1e-10'
normal = '0 1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_top'
input = 'inner_right'
[]
[inner_bottom]
type = ParsedGenerateSideset
combinatorial_geometry = 'abs(y) < 1e-10'
normal = '0 -1 0'
included_subdomain_ids = 1
new_sideset_name = 'inner_bottom'
input = 'inner_top'
[]
[rename]
type = RenameBlockGenerator
old_block = '2'
new_block = '0'
input = inner_bottom
[]
[]
[Variables]
[temperature]
block = 0
[]
[]
[Kernels]
[heat_conduction]
type = HeatConduction
variable = temperature
block = 0
diffusion_coefficient = 5
[]
[]
[GrayDiffuseRadiation]
[cavity]
boundary = '4 5 6 7'
emissivity = '0.9 0.8 0.4 1'
n_patches = '2 2 2 3'
partitioners = 'centroid centroid centroid centroid'
centroid_partitioner_directions = 'x y y x'
temperature = temperature
adiabatic_boundary = '7'
fixed_temperature_boundary = '6'
fixed_boundary_temperatures = '800'
view_factor_calculator = ray_tracing
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temperature
boundary = left
value = 1000
[]
[right]
type = DirichletBC
variable = temperature
boundary = right
value = 300
[]
[]
[Postprocessors]
[average_T_inner_right]
type = SideAverageValue
variable = temperature
boundary = inner_right
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/actions/basicthm_h.i)
# PorousFlowBasicTHM action with coupling_type = HydroGenerator
# (no thermal or mechanical effects)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 3
xmax = 10
ymax = 3
[]
[aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 1 0'
top_right = '10 2 0'
[]
[injection_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'injection_area'
normal = '-1 0 0'
input = 'aquifer'
[]
[outflow_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'outflow_area'
normal = '1 0 0'
input = 'injection_area'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caprock aquifer'
input = 'outflow_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1e6
[]
[]
[AuxVariables]
[temperature]
initial_condition = 293
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = Hydro
gravity = '0 0 0'
fp = simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1.5e6
boundary = injection_area
[]
[constant_outflow_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = outflow_area
pt_vals = '0 1e9'
multipliers = '0 1e9'
flux_function = 1e-6
PT_shift = 1e6
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2e-7
fluid_bulk_modulus = 1e7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[permeability_caprock]
type = PorousFlowPermeabilityConst
block = caprock
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e4
dt = 1e3
nl_abs_tol = 1e-15
nl_rel_tol = 1E-14
[]
[Outputs]
exodus = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_hmg.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[./rhsv]
type = CoefReaction
variable = v
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigen]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./homogeneousv]
type = DirichletBC
variable = v
boundary = '0 1 2 3'
value = 0
[../]
[./eigenv]
type = EigenDirichletBC
variable = v
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
petsc_options_iname = '-pc_type
-pc_hmg_use_subspace_coarsening'
petsc_options_value = 'hmg true'
petsc_options = '-eps_view'
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
file_base = monolith_newton
execute_on = 'timestep_end'
[]
(modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_3.i)
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = axial_strain
num_points = 21
sort_by = 'y'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y_action.i)
# Large strain/large rotation cantilever beam tese
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# shear coefficient (k) = 1.0
# Area (A) = 1.0
# Iy = Iz = 0.16
# The non-dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha is quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in y
# large rotations + small strain = -0.92 m in x and 2.38 m in y
# large rotations + large strain = -0.954 m in x and 2.37 m in y (exact -1.0 m in x and 2.4 m in y)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = 2
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
strain_type = FINITE
rotation_type = FINITE
# Geometry parameters
area = 1.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_z
[../]
[]
[Outputs]
file_base = 'euler_finite_rot_y_out'
exodus = true
perf_graph = true
[]
(framework/contrib/hit/test/output.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[SolidMechanics]
[./solid]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[left]
type = FunctionDirichletBC
variable = disp_x
function = 0.02*t
boundary = 3
[]
[back]
type = FunctionDirichletBC
variable = disp_z
function = 0.01*t
boundary = 1
[]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./mean_alpha]
type = Elastic
block = 1
youngs_modulus = 1e6
poissons_ratio = .3
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
temp = temp
thermal_expansion_function = cte_func_mean
stress_free_temperature = 0.0
thermal_expansion_reference_temperature = 0.5
thermal_expansion_function_type = mean
[../]
[./inst_alpha]
type = Elastic
block = 2
youngs_modulus = 1e6
poissons_ratio = .3
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
temp = temp
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
thermal_expansion_function_type = instantaneous
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalMaxValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalMaxValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
file_base = const_alpha_out
exodus = true
csv = true
[]
(modules/combined/test/tests/thermal_elastic/thermal_elastic.i)
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and xz
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components. This displacement is again applied in the second
# step.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore, for the mechanical strain,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
# Young's modulus is a function of temperature for this test. The
# temperature changes from 100 to 500. The Young's modulus drops
# due to that temperature change from 1e6 to 6e5.
# Poisson's ratio also is a function of temperature and changes from
# 0 to 0.25.
# At the end of the temperature ramp, E=6e5 and nu=0.25. This gives
# G=2.4e=5. lambda=E*nu/(1+nu)/(1-2*nu)=2.4E5. The final stress
# is therefore
# stress xx = 2.4e5 * 12e-6 + 2*2.4e5*2e-6 = 3.84
# stress yy = 2.4e5 * 12e-6 + 2*2.4e5*4e-6 = 4.80
# stress zz = 2.4e5 * 12e-6 + 2*2.4e5*6e-6 = 5.76
# stress xy = 2 * 2.4e5 * 2e-6 / 2 = 0.48
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 2.4e5 * 4e-6 / 2 = 0.96
# stress xz = 2 * 2.4e5 * 6e-6 / 2 = 1.44
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = thermal_elastic.e
[]
[Functions]
[./ramp1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 1e-6
[../]
[./ramp2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 2e-6
[../]
[./ramp3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 3e-6
[../]
[./ramp4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 4e-6
[../]
[./ramp6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 6e-6
[../]
[./tempFunc]
type = PiecewiseLinear
x = '0 1 2'
y = '100.0 100.0 500.0'
[../]
[]
[Variables]
[./temp]
initial_condition = 100.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_xz stress_yz'
strain = FINITE
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = ramp2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = ramp3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = ramp1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = ramp2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = ramp6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = ramp1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = ramp3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = ramp1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = ramp4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = ramp3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = ramp2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = ramp4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = ramp6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = ramp2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = ramp2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = ramp3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = ramp1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = ramp2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
boundary = '10 12'
function = tempFunc
[../]
[]
[Materials]
[./youngs_modulus]
type = PiecewiseLinearInterpolationMaterial
x = '100 500'
y = '1e6 6e5'
property = youngs_modulus
variable = temp
[../]
[./poissons_ratio]
type = PiecewiseLinearInterpolationMaterial
x = '100 500'
y = '0 0.25'
property = poissons_ratio
variable = temp
[../]
[./elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
args = temp
youngs_modulus = youngs_modulus
poissons_ratio = poissons_ratio
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
l_max_its = 20
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/dynamics/time_integration/newmark.i)
# Test for Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
# The residual due to Pressure is evaluated using Pressure boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 0.1
ymax = 1.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[]
[inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
displacements = 'disp_x disp_y disp_z'
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210 0'
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.2 1.0 5.0'
y = '0.0 0.2 1.0 1.0'
scale_factor = 1e3
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/cmc_smooth.i)
# Uses a multi-smoothed version of capped-Mohr-Coulomb (via CappedMohrCoulombStressUpdate and ComputeMultipleInelasticStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # max_num_iters is the maximum number of NR iterations encountered in the element during the whole simulation
type = ElementExtremeValue
variable = max_num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./max_num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./max_num_iters_auxk]
type = MaterialRealAux
property = max_plastic_NR_iterations
variable = max_num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./ts]
type = TensorMechanicsHardeningConstant
value = 3E6
[../]
[./cs]
type = TensorMechanicsHardeningConstant
value = 1E16
[../]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = CappedMohrCoulombStressUpdate
tensile_strength = ts
compressive_strength = cs
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
smoothing_tol = 0.2E6
yield_function_tol = 1E-5
perfect_guess = false # this is so we can observe some Newton-Raphson iterations, for comparison with other models, and it is not optimal in any real-life simulations
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = mc
perform_finite_strain_rotations = false
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '2.5E6 0 0 0 2.5E6 0 0 0 2.5E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = cmc_smooth
perf_graph = true
exodus = false
csv = true
[]
(test/tests/adaptivity/cycles_per_step/cycles_per_step.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
cycles_per_step = 2
marker = marker
initial_marker = marker
max_h_level = 2
[Indicators/indicator]
type = GradientJumpIndicator
variable = u
[]
[Markers/marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step03_coupling/03_sub_subcycling_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[ut]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[force]
type = CoupledForce
variable = v
v = ut
coef = 100
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.05
nl_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[average_v]
type = ElementAverageValue
variable = v
[]
[]
(modules/tensor_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_explicit.i)
# Test for central difference integration for 1D elements
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
xmin = 0
xmax = 10
nx = 5
dim = 1
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '10 0 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x'
[../]
[]
[NodalKernels]
[./force_x]
type = UserForcingFunctionNodalKernel
variable = disp_x
boundary = right
function = force_x
[../]
[./nodal_masses]
type = NodalTranslationalInertia
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_x'
boundary = 'all'
[../]
[]
[Functions]
[./force_x]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # force
scale_factor = 1e3
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 2e-10
[./TimeIntegrator]
type = CentralDifference
[../]
[]
[Postprocessors]
[./accel_x]
type = PointValue
point = '10.0 0.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/restart/restartable_types/restartable_types2.i)
###########################################################
# This is a simple test of the restart/recover capability.
# The test object "RestartableTypesChecker" is used
# to reload data from a previous simulation written out
# with the object "RestartableTypes".
#
# See "restartable_types.i"
#
# @Requirement F1.60
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./restartable_types]
type = RestartableTypesChecker
[../]
[]
[Problem]
type = FEProblem
solve = false
restart_file_base = restartable_types_out_cp/LATEST
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/nodalkernels/penalty_dirichlet/nodal_penalty_dirichlet.i)
#In order to compare the solution generated using preset BC, the penalty was set to 1e10.
#Large penalty number should be used with caution.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
value = -2*(x*x+y*y-2)
[../]
[./solution]
type = ParsedGradFunction
value = (1-x*x)*(1-y*y)
grad_x = 2*(x*y*y-x)
grad_y = 2*(x*x*y-y)
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[NodalKernels]
[./bc_all]
type = PenaltyDirichletNodalKernel
variable = u
value = 0
boundary = 'top left right bottom'
penalty = 1e10
[../]
[]
# [BCs]
# [./fix]
# type = DirichletBC
# preset = true
# variable = u
# value = 0
# boundary = 'top left right bottom'
# [../]
# []
[Postprocessors]
[./L2error]
type = ElementL2Error
variable = u
function = solution
[../]
[./H1error]
type = ElementH1Error
variable = u
function = solution
[../]
[./H1Semierror]
type = ElementH1SemiError
variable = u
function = solution
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
[]
[Outputs]
file_base = nodal_preset_bc_out
exodus = true
[]
(test/tests/meshgenerators/concentric_circle_mesh_generator/concentric_circle_mesh2.i)
[Mesh]
[ccmg]
type = ConcentricCircleMeshGenerator
num_sectors = 6
radii = '0.2546 0.3368 0.3600 0.3818 0.3923 0.4025 0.4110 0.4750'
rings = '5 3 2 1 1 1 1 3 5'
has_outer_square = on
pitch = 1.42063
#portion = left_half
preserve_volumes = off
smoothing_max_it = 3
[]
[]
[AuxVariables]
[winding_order]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[winding_order]
type = WindingOrder
variable = winding_order
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[min_winding_order]
type = ElementExtremeValue
value_type = min
variable = winding_order
[]
[max_winding_order]
type = ElementExtremeValue
value_type = max
variable = winding_order
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
csv = true
hide = winding_order
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/3D/neumann.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(python/chigger/tests/simple/mug_blocks.i)
[Mesh]
type = FileMesh
file = mug.e
[]
[MeshModifiers]
[./subdomains]
type = SubdomainBoundingBox
top_right = '3 3 3'
bottom_left = '0 -3 -2.1'
block_id = '76'
[../]
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux_elem]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./conv]
# Couple a variable into the convection kernel using local_name = simulationg_name syntax
type = Convection
variable = convected
velocity = '1 1 1'
[../]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./diff_t]
type = TimeDerivative
variable = diffused
[../]
[./conv_t]
type = TimeDerivative
variable = convected
block = '76'
[../]
[]
[BCs]
[./bottom_convected]
type = DirichletBC
variable = convected
boundary = bottom
value = 1
[../]
[./top_convected]
type = DirichletBC
variable = convected
boundary = top
value = 0
[../]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = bottom
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = top
value = 0
[../]
[]
[Postprocessors]
[./func_pp]
type = FunctionValuePostprocessor
function = 2*t
[../]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
num_steps = 20
solve_type = PJFNK
dt = 0.1
[]
[Outputs]
exodus = true
[]
[ICs]
[./aux_ic]
variable = aux_elem
max = 10
seed = 2
type = RandomIC
[../]
[]
(modules/tensor_mechanics/test/tests/ad_elastic/green-lagrange.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 4
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./stress_x]
type = ADStressDivergenceTensors
component = 0
variable = disp_x
[../]
[./stress_y]
type = ADStressDivergenceTensors
component = 1
variable = disp_y
[../]
[./stress_z]
type = ADStressDivergenceTensors
component = 2
variable = disp_z
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.3
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.45
youngs_modulus = 1
[../]
[]
[Materials]
[./strain]
type = ADComputeGreenLagrangeStrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'FINAL'
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_aprismatic_active.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[center_node]
type = BoundingBoxNodeSetGenerator
input = cube
new_boundary = 'center_point'
top_right = '0.51 0.51 0'
bottom_left = '0.49 0.49 0'
[]
[back_edge_y]
type = BoundingBoxNodeSetGenerator
input = center_node
new_boundary = 'back_edge_y'
bottom_left = '0.9 0.5 0'
top_right = '1.1 0.5 0'
[]
[back_edge_x]
type = BoundingBoxNodeSetGenerator
input = back_edge_y
new_boundary = back_edge_x
bottom_left = '0.5 0.9 0'
top_right = '0.5 1.0 0'
[]
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_2]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_12]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_13]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_0]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_1]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_2]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_12]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_13]
order = CONSTANT
family = MONOMIAL
[]
[substructure_density]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_1]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_2]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_12]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_13]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[tau_0]
type = MaterialStdVectorAux
variable = resolved_shear_stress_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[tau_1]
type = MaterialStdVectorAux
variable = resolved_shear_stress_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[tau_2]
type = MaterialStdVectorAux
variable = resolved_shear_stress_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[tau_12]
type = MaterialStdVectorAux
variable = resolved_shear_stress_12
property = applied_shear_stress
index = 12
execute_on = timestep_end
[]
[tau_13]
type = MaterialStdVectorAux
variable = resolved_shear_stress_13
property = applied_shear_stress
index = 13
execute_on = timestep_end
[]
[forest_dislocations_0]
type = MaterialStdVectorAux
variable = forest_dislocations_0
property = forest_dislocation_density
index = 0
execute_on = timestep_end
[]
[forest_dislocations_1]
type = MaterialStdVectorAux
variable = forest_dislocations_1
property = forest_dislocation_density
index = 1
execute_on = timestep_end
[]
[forest_dislocations_2]
type = MaterialStdVectorAux
variable = forest_dislocations_2
property = forest_dislocation_density
index = 2
execute_on = timestep_end
[]
[forest_dislocations_12]
type = MaterialStdVectorAux
variable = forest_dislocations_12
property = forest_dislocation_density
index = 12
execute_on = timestep_end
[]
[forest_dislocations_13]
type = MaterialStdVectorAux
variable = forest_dislocations_13
property = forest_dislocation_density
index = 13
execute_on = timestep_end
[]
[substructure_density]
type = MaterialRealAux
variable = substructure_density
property = total_substructure_density
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_1]
type = MaterialStdVectorAux
variable = slip_resistance_1
property = slip_resistance
index = 1
execute_on = timestep_end
[]
[slip_resistance_2]
type = MaterialStdVectorAux
variable = slip_resistance_2
property = slip_resistance
index = 2
execute_on = timestep_end
[]
[slip_resistance_12]
type = MaterialStdVectorAux
variable = slip_resistance_12
property = slip_resistance
index = 12
execute_on = timestep_end
[]
[slip_resistance_13]
type = MaterialStdVectorAux
variable = slip_resistance_13
property = slip_resistance
index = 13
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'center_point back_edge_y'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'center_point back_edge_x'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
euler_angle_1 = 164.5
euler_angle_2 = 90.0
euler_angle_3 = 15.3
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = hcp_aprismatic_capyramidal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '0.5 5'
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1e5 2e7'
normalized_slip_activiation_energy_per_mode = '4e-3 3e-2'
slip_energy_proportionality_factor_per_mode = '330 100'
substructure_rate_coefficient_per_mode = '400 100'
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '2e-3 2e-3' #minimize impact
grain_size = 20.0e-3 #20 microns
[]
[]
[Postprocessors]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[tau_0]
type = ElementAverageValue
variable = resolved_shear_stress_0
[]
[tau_1]
type = ElementAverageValue
variable = resolved_shear_stress_1
[]
[tau_2]
type = ElementAverageValue
variable = resolved_shear_stress_2
[]
[tau_12]
type = ElementAverageValue
variable = resolved_shear_stress_12
[]
[tau_13]
type = ElementAverageValue
variable = resolved_shear_stress_13
[]
[forest_dislocation_0]
type = ElementAverageValue
variable = forest_dislocations_0
[]
[forest_dislocation_1]
type = ElementAverageValue
variable = forest_dislocations_1
[]
[forest_dislocation_2]
type = ElementAverageValue
variable = forest_dislocations_2
[]
[forest_dislocation_12]
type = ElementAverageValue
variable = forest_dislocations_12
[]
[forest_dislocation_13]
type = ElementAverageValue
variable = forest_dislocations_13
[]
[substructure_density]
type = ElementAverageValue
variable = substructure_density
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_1]
type = ElementAverageValue
variable = slip_resistance_1
[]
[slip_resistance_2]
type = ElementAverageValue
variable = slip_resistance_2
[]
[slip_resistance_12]
type = ElementAverageValue
variable = slip_resistance_12
[]
[slip_resistance_13]
type = ElementAverageValue
variable = slip_resistance_13
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
nl_max_its = 20
l_max_its = 50
dt = 0.005
dtmin = 1.0e-4
dtmax = 0.1
end_time = 0.09
[]
[Outputs]
csv = true
[]
(test/tests/transfers/transfer_interpolation/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./nearest_node]
[../]
[./mesh_function]
[../]
[./user_object]
order = CONSTANT
family = MONOMIAL
[../]
[./interpolation]
[../]
[]
[Kernels]
[./cd]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
dt = 0.01
nl_rel_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/nearest_point_integral/nearest_point_integral.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[np_layered_average]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[np_layered_average]
type = SpatialUserObjectAux
variable = np_layered_average
execute_on = timestep_end
user_object = npi
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 1.5
[]
[one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 1
[]
[]
[VectorPostprocessors]
[npi]
type = NearestPointIntegralVariablePostprocessor
variable = u
points = '0.25 0.25 0.25
0.75 0.25 0.25
0.25 0.75 0.75
0.75 0.75 0.75'
[]
# getting the points from the user object itself is here exactly equivalent to the points
# provided in the 'spatial_manually_provided' vector postprocessor
[spatial_from_uo]
type = SpatialUserObjectVectorPostprocessor
userobject = npi
[]
[spatial_manually_provided]
type = SpatialUserObjectVectorPostprocessor
userobject = npi
points = '0.25 0.25 0.25
0.75 0.25 0.25
0.25 0.75 0.75
0.75 0.75 0.75'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
execute_on = final
[]
(modules/combined/test/tests/poro_mechanics/undrained_oedometer.i)
# An undrained oedometer test on a saturated poroelastic sample.
#
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
#
# Under these conditions
# porepressure = -(Biot coefficient)*(Biot modulus)*disp_z/L
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# Desired output:
# zdisp = -0.01*t
# p0 = 0.03*t
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[../]
[./top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = undrained_oedometer
[./csv]
type = CSV
[../]
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rz_small_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = StressDivergenceRZTensors
component = 0
variable = disp_r
[../]
[./stress_z]
type = StressDivergenceRZTensors
component = 1
variable = disp_z
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[./axial]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeAxisymmetricRZSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = rz_small_elastic_out
[]
(test/tests/nodalkernels/constraint_enforcement/upper-bound.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[lm]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '${l} - x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = '1'
[]
[]
[NodalKernels]
[positive_constraint]
type = UpperBoundNodalKernel
variable = lm
v = u
exclude_boundaries = 'left right'
upper_bound = 10
[]
[forces]
type = CoupledForceNodalKernel
variable = u
v = lm
coef = -1
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = ${l}
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 asm 16 basic'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_lm]
type = GreaterThanLessThanPostprocessor
variable = lm
execute_on = 'nonlinear timestep_end'
value = 1e-8
[]
[violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[]
(test/tests/multiapps/relaxation/sub_relaxed_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
initial_condition = 1
[../]
[./inverse_v]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = inverse_v
[../]
[]
[AuxKernels]
[./invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = sub_relaxed_sub.i
transformed_variables = v
relaxation_factor = 0.94
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(test/tests/transfers/multiapp_projection_transfer/tosub_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 9
ymin = 0
ymax = 9
nx = 9
ny = 9
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[x]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[x_func]
type = ParsedFunction
value = x
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[x_func_aux]
type = FunctionAux
variable = x
function = x_func
execute_on = initial
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
[Debug]
# show_actions = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0 5 5 0'
input_files = tosub_sub.i
[]
[]
[Transfers]
[tosub]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = u
variable = u_nodal
[]
[elemental_tosub]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = u
variable = u_elemental
[]
[elemental_to_sub_elemental]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = x
variable = x_elemental
[]
[elemental_to_sub_nodal]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = x
variable = x_nodal
[]
[]
(modules/tensor_mechanics/test/tests/strain_energy_density/incr_model_elas_plas.i)
# Single element test to check the strain energy density calculation
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 2
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[../]
[./ramp_disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 6.8e-6 1.36e-5'
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = SMALL
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress elastic_strain_xx elastic_strain_yy elastic_strain_zz plastic_strain_xx plastic_strain_yy plastic_strain_zz strain_xx strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 'left'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 'bottom'
value = 0.0
[../]
[./top_disp]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 'top'
function = ramp_disp_y
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 30e+6
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 1e2
hardening_constant = 0.0
[../]
[./strain_energy_density]
type = StrainEnergyDensity
incremental = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 2
num_steps = 2
[]
[Postprocessors]
[./epxx]
type = ElementalVariableValue
variable = elastic_strain_xx
elementid = 0
[../]
[./epyy]
type = ElementalVariableValue
variable = elastic_strain_yy
elementid = 0
[../]
[./epzz]
type = ElementalVariableValue
variable = elastic_strain_zz
elementid = 0
[../]
[./eplxx]
type = ElementalVariableValue
variable = plastic_strain_xx
elementid = 0
[../]
[./eplyy]
type = ElementalVariableValue
variable = plastic_strain_yy
elementid = 0
[../]
[./eplzz]
type = ElementalVariableValue
variable = plastic_strain_zz
elementid = 0
[../]
[./etxx]
type = ElementalVariableValue
variable = strain_xx
elementid = 0
[../]
[./etyy]
type = ElementalVariableValue
variable = strain_yy
elementid = 0
[../]
[./etzz]
type = ElementalVariableValue
variable = strain_zz
elementid = 0
[../]
[./sigxx]
type = ElementAverageValue
variable = stress_xx
[../]
[./sigyy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigzz]
type = ElementAverageValue
variable = stress_zz
[../]
[./SED]
type = ElementAverageValue
variable = SED
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/functions/image_function/image.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Adaptivity]
max_h_level = 5
initial_steps = 5
initial_marker = marker
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = u
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.9
[]
[]
[]
[Variables]
[u]
[]
[]
[Functions]
[image_func]
type = ImageFunction
file = stack/test_00.png
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[ICs]
[u_ic]
type = FunctionIC
function = image_func
variable = u
[]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-fretting-wear-test.i)
starting_point = 0.5e-1
offset = -0.045
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[normal_lm]
block = 3
use_dual = true
# scaling = 1.0e-5
[]
[frictional_lm]
block = 3
use_dual = true
# scaling = 1.0e-5
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
zeta = 1.0
hht_alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[worn_depth]
block = '3'
[]
[gap_vel]
block = '3'
[]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[]
[AuxKernels]
[gap_vel]
type = WeightedGapVelAux
variable = gap_vel
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
disp_x = disp_x
disp_y = disp_y
[]
[worn_depth]
type = MortarArchardsLawAux
variable = worn_depth
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
displacements = 'disp_x disp_y'
friction_coefficient = 0.5
energy_wear_coefficient = 1.0e-6
normal_pressure = normal_lm
execute_on = 'LINEAR NONLINEAR'
[]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeDynamicFrictionalForceLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
wear_depth = worn_depth
c = 1e6
c_t = 1e6
normalize_c = true
mu = 0.5
friction_lm = frictional_lm
interpolate_normals = false
capture_tolerance = 1.0e-5
newmark_beta = 0.25
newmark_gamma = 0.5
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(4.0 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * (cos(32.0 * pi / 4 * t) - 1.0)'
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 0.05
dtmin = .002
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15'
nl_max_its = 40
l_max_its = 15
line_search = 'l2'
snesmf_reuse_base = true
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(tutorials/darcy_thermo_mech/step11_action/problems/step11.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 2
ny = 200
nx = 10
ymax = 0.304 # Length of test chamber
xmax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[DarcyThermoMech]
[]
[Modules/TensorMechanics/Master]
[all]
# This block adds all of the proper Kernels, strain calculators, and Variables
# for TensorMechanics in the correct coordinate system (autodetected)
add_variables = true
strain = FINITE
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
generate_output = 'vonmises_stress elastic_strain_xx elastic_strain_yy strain_xx strain_yy'
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = bottom
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = top
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = bottom
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = top
[]
[hold_inlet]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[hold_center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[]
[hold_outside]
type = DirichletBC
variable = disp_r
boundary = right
value = 0
[]
[]
[Materials]
viscosity_file = data/water_viscosity.csv
density_file = data/water_density.csv
thermal_conductivity_file = data/water_thermal_conductivity.csv
specific_heat_file = data/water_specific_heat.csv
thermal_expansion_file = data/water_thermal_expansion.csv
[column]
type = PackedColumn
block = 0
temperature = temperature
radius = 1.15
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_thermal_conductivity_file = ${thermal_conductivity_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200e9 # (Pa) from wikipedia
poissons_ratio = .3 # from wikipedia
[]
[elastic_stress]
type = ADComputeFiniteStrainElasticStress
[]
[thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 300
eigenstrain_name = eigenstrain
temperature = temperature
thermal_expansion_coeff = 1e-5
[]
[]
[Postprocessors]
[average_temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Transient
start_time = -1
end_time = 200
steady_state_tolerance = 1e-7
steady_state_detection = true
dt = 0.25
solve_type = PJFNK
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 500'
line_search = none
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(test/tests/transfers/multiapp_userobject_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[AuxVariables]
[./layered_average_value]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./axial_force]
type = ParsedFunction
value = 1000*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = axial_force
[../]
[]
[AuxKernels]
[./layered_aux]
type = SpatialUserObjectAux
variable = layered_average_value
execute_on = timestep_end
user_object = layered_average
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./layered_average]
type = LayeredAverage
variable = u
direction = y
num_layers = 4
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
coord_type = rz
type = FEProblem
[]
(modules/contact/test/tests/simple_contact/two_block_compress/two_equal_blocks_compress_3d.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1.0
xmax = 0.0
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
elem_type = HEX8
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'left_bottom left_back left_right left_front left_left left_top'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 1.0
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
elem_type = HEX8
[]
[right_block_sidesets]
type = RenameBoundaryGenerator
input = right_block
old_boundary = '0 1 2 3 4 5'
# new_boundary = 'right_bottom right_back right_right right_front right_left right_top'
new_boundary = '100 101 102 103 104 105'
[]
[right_block_sidesets_rename]
type = RenameBoundaryGenerator
input = right_block_sidesets
old_boundary = '100 101 102 103 104 105'
new_boundary = 'right_bottom right_back right_right right_front right_left right_top'
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block_sidesets_rename
subdomain_id = 2
[]
[combined_mesh]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[]
[left_lower]
type = LowerDBlockFromSidesetGenerator
input = combined_mesh
sidesets = 'left_right'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[right_lower]
type = LowerDBlockFromSidesetGenerator
input = left_lower
sidesets = 'right_left'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[]
[]
[Functions]
[horizontal_movement]
type = PiecewiseLinear
x = '0 0.5'
y = '0 0.2'
[]
[vertical_movement]
type = PiecewiseLinear
x = '0 1.0'
y = '0 0'
[]
[]
[BCs]
[push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left_left'
function = horizontal_movement
[]
[push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'left_left'
function = vertical_movement
[]
[fix_left_z]
type = DirichletBC
variable = disp_z
boundary = 'left_left'
value = 0.0
[]
[fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 'right_right'
value = 0.0
[]
[fix_right_y]
type = DirichletBC
variable = disp_y
boundary = 'right_right'
value = 0.0
[]
[fix_right_z]
type = DirichletBC
variable = disp_z
boundary = 'right_right'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[]
[]
[Constraints]
[normal_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
correct_edge_dropping = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu superlu_dist nonzero 1e-10'
line_search = 'none'
dt = 0.1
dtmin = 0.01
end_time = 0.4
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
snesmf_reuse_base = false
[]
[Outputs]
csv = true
execute_on = 'FINAL'
[]
[Postprocessors]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = 'secondary_lower'
[]
[normal_lm]
type = ElementAverageValue
variable = normal_lm
block = 'secondary_lower'
[]
[avg_disp_x]
type = ElementAverageValue
variable = disp_x
block = '1 2'
[]
[avg_disp_y]
type = ElementAverageValue
variable = disp_y
block = '1 2'
[]
[max_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
[]
[max_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
[]
[min_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
value_type = min
[]
[min_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
value_type = min
[]
[]
(modules/misc/test/tests/dynamic_loading/dynamic_load_multiapp/misc_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0.5 0.5 0'
type = TransientMultiApp
input_files = 'phase_field_sub.i'
# Here we'll attempt to load a different module that's not compiled into this module
app_type = PhaseFieldApp
# Here we set an input file specific relative library path instead of using MOOSE_LIBRARY_PATH
library_path = '../../../../../phase_field/lib'
[../]
[]
(modules/combined/test/tests/internal_volume/rz_displaced_quad8.i)
#
# Volume Test
#
# This test is designed to compute the volume of a space when displacements
# are imposed.
#
# The mesh is composed of one block (1) with two elements. The mesh is
# such that the initial volume is 1. One element face is displaced to
# produce a final volume of 2.
#
# r1
# +----+ -
# | | |
# +----+ h V1 = pi * h * r1^2
# | | |
# +----+ -
#
# becomes
#
# +----+
# | \
# +------+ v2 = pi * h/2 * ( r2^2 + 1/3 * ( r2^2 + r2*r1 + r1^2 ) )
# | |
# +------+
# r2
#
# r1 = 1
# r2 = 1.5380168369562588
# h = 1/pi
#
# Note: Because the InternalVolume PP computes cavity volumes as positive,
# the volumes reported are negative.
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = meshes/rz_displaced_quad8.e
displacements = 'disp_x disp_y'
[]
[Functions]
[./disp_x]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 0.5380168369562588'
[../]
[./disp_x2]
type = PiecewiseLinear
scale_factor = 0.5
x = '0. 1.'
y = '0. 0.5380168369562588'
[../]
[]
[Variables]
[./disp_x]
order = SECOND
family = LAGRANGE
[../]
[./disp_y]
order = SECOND
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
volumetric_locking_correction = false
decomposition_method = EigenSolution
incremental = true
strain = FINITE
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./x]
type = FunctionDirichletBC
boundary = 3
variable = disp_x
function = disp_x
[../]
[./x2]
type = FunctionDirichletBC
boundary = 4
variable = disp_x
function = disp_x2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0.0
dt = 1.0
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 2
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/multilevel_subsub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./subsub_average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/mesh_extruder_generator/gen_extrude.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 6
ny = 6
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[./extrude]
type = MeshExtruderGenerator
input = gmg
num_layers = 6
extrusion_vector = '1 0 1'
bottom_sideset = 'new_front'
top_sideset = 'new_back'
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./first]
type = DirichletBC
variable = u
boundary = 'new_front'
value = 0
[../]
[./second]
type = DirichletBC
variable = u
boundary = 'new_back'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/single_var_constraint_2d/stationary_fluxjump.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 1
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/combined/test/tests/ad_cavity_pressure/3d.i)
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = - (0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 3d.e
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 240.54443866068704
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
use_automatic_differentiation = true
[../]
[./heat]
type = ADDiffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = ADDiffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = ADFunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = ADFunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
use_automatic_differentiation = true
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e1
poissons_ratio = 0
block = 1
[../]
[./strain1]
type = ADComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
block = 2
[../]
[./strain2]
type = ADComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/action/two_block.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE
add_variables = true
#block = 1
[../]
[./block2]
strain = SMALL
add_variables = true
block = 2
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ComputeLinearElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(modules/external_petsc_solver/test/tests/external_petsc_problem/moose_as_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./cf]
type = CoupledForce
coef = 10000
variable = u
v=v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/ics/dependency/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./a]
[../]
[./b]
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = -1
[../]
[./v_ic]
type = MTICSum
variable = v
var1 = u
var2 = a
[../]
[./a_ic]
type = ConstantIC
variable = a
value = 10
[../]
[./b_ic]
type = MTICMult
variable = b
var1 = v
factor = 2
[../]
[]
[AuxKernels]
[./a_ak]
type = ConstantAux
variable = a
value = 256
[../]
[./b_ak]
type = ConstantAux
variable = b
value = 42
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/distributed_rectilinear/dmg_displaced_mesh/adaptivity.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 20
ny = 20
[]
[]
[Variables]
[./u]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = -0.01
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.01
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = -0.01
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = right
value = 0.01
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/buckley_leverett/bl20_lumped.i)
# two-phase version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 30
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '0.1 0.5 0.5 1 2 4'
x = '0 0.1 1 5 40 42'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E6
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./w_aux_seff]
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[]
[AuxKernels]
[./w_aux_seff_auxk]
type = RichardsSeffAux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
variable = w_aux_seff
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_water
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_gas
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = pwater
boundary = left
value = 1E6
[../]
[./left_g]
type = DirichletBC
variable = pgas
boundary = left
value = 1000
[../]
[./right_w]
type = DirichletBC
variable = pwater
boundary = right
value = -300000
[../]
[./right_g]
type = DirichletBC
variable = pgas
boundary = right
value = 0
[../]
[]
[Functions]
[./initial_water]
type = ParsedFunction
value = 1000000*(1-min(x/5,1))-if(x<5,0,300000)
[../]
[./initial_gas]
type = ParsedFunction
value = 1000
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
viscosity = '1E-3 1E-6'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'standard'
[./bounded]
# must use --use-petsc-dm command line argument
type = SMP
full = true
petsc_options_iname = '-snes_type -pc_factor_shift_type'
petsc_options_value = 'vinewtonssls nonzero'
[../]
[./standard]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50
nl_rel_tol = 1.e-9
nl_max_its = 10
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bl20_lumped
execute_on = 'initial timestep_end final'
interval = 100000
exodus = true
hide = pgas
[./console_out]
type = Console
interval = 1
[../]
[]
(test/tests/outputs/xda/xda.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
xda = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_fully_saturated_2.i)
# Pressure pulse in 1D with 1 phase - transient
# using the PorousFlowFullySaturatedDarcyBase Kernel
# and the PorousFlowFullySaturatedMassTimeDerivative Kernel
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[]
[Kernels]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = pp
[]
[flux]
type = PorousFlowFullySaturatedDarcyBase
variable = pp
gravity = '0 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature_qp]
type = PorousFlowTemperature
[]
[ppss_qp]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
fluid_bulk_modulus = 2E9
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p005]
type = PointValue
variable = pp
point = '5 0 0'
execute_on = 'initial timestep_end'
[]
[p015]
type = PointValue
variable = pp
point = '15 0 0'
execute_on = 'initial timestep_end'
[]
[p025]
type = PointValue
variable = pp
point = '25 0 0'
execute_on = 'initial timestep_end'
[]
[p035]
type = PointValue
variable = pp
point = '35 0 0'
execute_on = 'initial timestep_end'
[]
[p045]
type = PointValue
variable = pp
point = '45 0 0'
execute_on = 'initial timestep_end'
[]
[p055]
type = PointValue
variable = pp
point = '55 0 0'
execute_on = 'initial timestep_end'
[]
[p065]
type = PointValue
variable = pp
point = '65 0 0'
execute_on = 'initial timestep_end'
[]
[p075]
type = PointValue
variable = pp
point = '75 0 0'
execute_on = 'initial timestep_end'
[]
[p085]
type = PointValue
variable = pp
point = '85 0 0'
execute_on = 'initial timestep_end'
[]
[p095]
type = PointValue
variable = pp
point = '95 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_fully_saturated_2
print_linear_residuals = false
csv = true
[]
(test/tests/controls/syntax_based_naming_access/param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
(test/tests/transfers/multiapp_high_order_variable_transfer/sub_L2_Lagrange.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
[]
[AuxVariables]
[./power_density]
family = L2_LAGRANGE
order = FIRST
[../]
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[../]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '0 1 2 3'
value = 450
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[./temp_fuel_avg]
type = ElementAverageValue
variable = temp
block = '0'
execute_on = 'initial timestep_end'
[../]
[./pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
[]
(modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_ti.i)
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
hht_alpha = -0.3
stiffness_damping_coefficient = 0.1
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.422
gamma = 0.8
[../]
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
file_base = 'wave_rayleigh_hht_out'
exodus = true
perf_graph = true
[]
(examples/ex11_prec/fdp.i)
[Mesh]
file = square.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
# The Preconditioning block
[Preconditioning]
active = 'FDP_jfnk'
[./FDP_jfnk]
type = FDP
off_diag_row = 'forced'
off_diag_column = 'diffused'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -mat_fd_coloring_err -mat_fd_type'
petsc_options_value = 'lu 1e-6 ds'
[../]
[./FDP_n]
type = FDP
off_diag_row = 'forced'
off_diag_column = 'diffused'
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -mat_fd_coloring_err -mat_fd_type'
petsc_options_value = 'lu 1e-6 ds'
[../]
[./FDP_n_full]
type = FDP
full = true
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -mat_fd_coloring_err -mat_fd_type'
petsc_options_value = 'lu 1e-6 ds'
[../]
[]
[Kernels]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./conv_forced]
type = CoupledForce
variable = forced
v = diffused
[../]
[./diff_forced]
type = Diffusion
variable = forced
[../]
[]
[BCs]
#Note we have active on, and neglect the right_forced BC
active = 'left_diffused right_diffused left_forced'
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 100
[../]
[./left_forced]
type = DirichletBC
variable = forced
boundary = 'left'
value = 0
[../]
[./right_forced]
type = DirichletBC
variable = forced
boundary = 'right'
value = 0
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/predictors/simple/predictor_skip_test.i)
# The purpose of this test is to test the simple predictor. This is a very
# small, monotonically loaded block of material. If things are working right,
# the predictor should come very close to exactly nailing the solution on steps
# after the first step.
#This test checks to see that the predictor is skipped in the last step.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Functions]
[./ramp1]
type = ParsedFunction
value = 't'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bot]
type = DirichletBC
variable = u
boundary = bottom
value = 0.0
[../]
[./ss2_x]
type = FunctionDirichletBC
variable = u
boundary = top
function = ramp1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-14
start_time = 0.0
dt = 0.5
end_time = 1.0
[./Predictor]
type = SimplePredictor
scale = 1.0
skip_times = '1.0'
[../]
[]
[Postprocessors]
[./final_residual]
type = Residual
residual_type = final
[../]
[./initial_residual_before]
type = Residual
residual_type = initial_before_preset
[../]
[./initial_residual_after]
type = Residual
residual_type = initial_after_preset
[../]
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/dual_mortar/dm_mechanical_contact.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = -1.05
xmax = -0.05
ymin = -1
ymax = 0
nx = 4
ny = 8
elem_type = QUAD4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = '10 11 12 13'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 8
elem_type = QUAD4
[]
[right_block_sidesets]
type = RenameBoundaryGenerator
input = right_block
old_boundary = '0 1 2 3'
new_boundary = '20 21 22 23'
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block_sidesets
subdomain_id = 2
[]
[combined_mesh]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[]
[]
[Functions]
[horizontal_movement]
type = PiecewiseLinear
x ='0 0.5 2'
y = '0 0.1 0.1'
[]
[vertical_movement]
type = PiecewiseLinear
x ='0 0.5 2'
y = '0.001 0.001 0.2'
[]
[]
[BCs]
[push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = horizontal_movement
[]
[fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 21
value = 0.0
[]
[fix_right_y]
type = DirichletBC
variable = disp_y
boundary = 21
value = 0.0
[]
[push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 13
function = vertical_movement
[]
[]
[Materials]
[elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[]
[]
[Contact]
[leftright]
secondary = '11'
primary = '23'
formulation = mortar
model = frictionless
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu NONZERO 1e-10'
dt = 0.2
dtmin = 0.2
end_time = 1.0
l_max_its = 20
nl_max_its = 8
nl_rel_tol = 1e-6
snesmf_reuse_base = false
[]
[Outputs]
file_base = ./dm_contact_gmesh_out
[comp]
type = CSV
show = 'contact normal_lm avg_disp_x avg_disp_y max_disp_x max_disp_y min_disp_x min_disp_y'
execute_on = 'FINAL'
[]
[]
[Postprocessors]
[contact]
type = ContactDOFSetSize
variable = leftright_normal_lm
subdomain = leftright_secondary_subdomain
[]
[normal_lm]
type = ElementAverageValue
variable = leftright_normal_lm
block = leftright_secondary_subdomain
[]
[avg_disp_x]
type = ElementAverageValue
variable = disp_x
block = '1 2'
[]
[avg_disp_y]
type = ElementAverageValue
variable = disp_y
block = '1 2'
[]
[max_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
[]
[max_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
[]
[min_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
value_type = min
[]
[min_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
value_type = min
[]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/planar_yz.i)
# 1-D Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two element blocks in the y-z plane. Each element block
# is a square. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far bottom boundary
# is ramped from 100 to 200 over one time unit. The temperature of the far top
# boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks:
#
# Flux = (T_left - T_right) * (gapK/gap_width)
#
# The gap conductivity is specified as 1, thus
#
# gapK(Tavg) = 1.0*Tavg
#
# The heat flux across the gap at time = 1 is then:
#
# Flux = 100 * (1.0/1.0) = 100
#
# For comparison, see results from the flux post processors. These results
# are the same as for the unit 1-D gap heat transfer between two unit cubes.
[Mesh]
[file]
type = FileMeshGenerator
file = simple_2D.e
[]
[./rotate]
type = TransformGenerator
transform = ROTATE
vector_value = '0 90 90'
input = file
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./temp_far_bottom]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_top]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-12
l_tol = 1e-3
l_max_its = 100
dt = 1e-1
end_time = 1.0
[]
[Postprocessors]
[./temp_bottom]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_top]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_bottom]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./flux_top]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_incremental.i)
# this test checks the asixymmetric 1D generalized plane strain formulation using incremental small strains
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[./scalar_strain_yy]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-6'
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
[../]
[../]
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetric1DIncrementalStrain
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_yy
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
(modules/porous_flow/test/tests/relperm/vangenuchten2.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.4 for both phases
# Phase 0 residual saturation s0r = 0.1
# Phase 1 residual saturation s1r = 0.2
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityVG
phase = 0
m = 0.4
s_res = 0.1
sum_s_res = 0.3
[]
[kr1]
type = PorousFlowRelativePermeabilityVG
phase = 1
m = 0.4
s_res = 0.2
sum_s_res = 0.3
wetting = false
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-7
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/reporters/perf_graph_reporter/perf_graph_reporter.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 1
[]
[]
[Variables/u]
[]
[Kernels/diff]
type = Diffusion
variable = u
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Reporters/perf_graph]
type = PerfGraphReporter
execute_on = FINAL
[]
[Outputs/json]
type = JSON
execute_on = 'INITIAL FINAL'
[]
(modules/richards/test/tests/pressure_pulse/pp_lumped_02.i)
# investigating pressure pulse in 1D with 1 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsLumpedMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Outputs]
file_base = pp_lumped_02
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/postprocessors/scalar_coupled_postprocessor/scalar_coupled_postprocessor_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 1
ymax = 1
elem_type = QUAD4
[]
[Variables]
[./u]
initial_condition = 1
[../]
[./scalar_variable]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = scalar_variable
[../]
[]
[BCs]
[./leftDirichlet]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./rightDirichlet]
type = DirichletBC
variable = u
boundary = 'right'
value = 0
[../]
[]
[Postprocessors]
[./totalFlux]
type = ScalarCoupledPostprocessor
variable = u
coupled_scalar = scalar_variable
boundary = left
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
solve_type = JFNK
l_max_its = 30
l_tol = 1e-6
nl_max_its = 20
nl_rel_tol = 1e-5
[]
[Outputs]
csv = true
[]
(test/tests/outputs/debug/show_top_residuals_debug.i)
[Mesh]
block_id = '0 1'
block_name = 'block_zero block_one'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./subdomain_id]
input = gen
type = SubdomainIDGenerator
subdomain_id = 1
[../]
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[./v]
family = MONOMIAL
order = CONSTANT
[../]
[./w]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./u_kernel]
type = Diffusion
variable = u
[../]
[./v_kernel]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./u_bc]
type = DirichletBC
variable = u
value = 100
boundary = left
[../]
[./v_bc]
type = NeumannBC
variable = v
value = 100
boundary = left
[../]
[]
[ScalarKernels]
[./w_kernel]
type = AlphaCED
variable = w
value = 100
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# For this test, we don't actually want the solution to converge because we
# want nonzero nonlinear residual entries at the end of the time step.
nl_abs_tol = 0.999
nl_rel_tol = 0.999
l_max_its = 1
petsc_options_iname = '-pc_type'
petsc_options_value = 'none'
[]
[Debug]
show_top_residuals = 10
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/creep_ramp_sub_false_more_steps.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
initial_condition = 889
[]
[effective_inelastic_strain]
order = FIRST
family = MONOMIAL
[]
[cell_dislocations]
order = FIRST
family = MONOMIAL
[]
[wall_dislocations]
order = FIRST
family = MONOMIAL
[]
[number_of_substeps]
order = FIRST
family = MONOMIAL
[]
[]
[AuxKernels]
[effective_inelastic_strain]
type = MaterialRealAux
variable = effective_inelastic_strain
property = effective_creep_strain
[]
[cell_dislocations]
type = MaterialRealAux
variable = cell_dislocations
property = cell_dislocations
[]
[wall_dislocations]
type = MaterialRealAux
variable = wall_dislocations
property = wall_dislocations
[]
[number_of_substeps]
type = MaterialRealAux
variable = number_of_substeps
property = number_of_substeps
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pressure_x]
type = Pressure
variable = disp_x
boundary = right
factor = -0.5
function = shear_function
[]
[pressure_y]
type = Pressure
variable = disp_y
boundary = top
factor = -0.5
function = shear_function
[]
[pressure_z]
type = Pressure
variable = disp_z
boundary = front
factor = 0.5
function = shear_function
[]
[]
[Functions]
[shear_function]
type = ParsedFunction
value = 'timeToDoubleInHours := 10;
if(t<=28*60*60, 15.0e6, '
'15.0e6*(t-28*3600)/3600/timeToDoubleInHours+15.0e6)'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.68e11
poissons_ratio = 0.31
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[mx_phase_fraction]
type = GenericConstantMaterial
prop_names = mx_phase_fraction
prop_values = 5.13e-2 #precipitation bounds: 6e-3, 1e-1
outputs = all
[]
[rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
use_substep = false
max_inelastic_increment = 0.0001
stress_input_window_low_failure = WARN
stress_input_window_high_failure = ERROR
cell_input_window_high_failure = ERROR
cell_input_window_low_failure = ERROR
wall_input_window_low_failure = ERROR
wall_input_window_high_failure = ERROR
temperature_input_window_high_failure = ERROR
temperature_input_window_low_failure = ERROR
environment_input_window_high_failure = ERROR
environment_input_window_low_failure = ERROR
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
nl_rel_tol = 1e-4
automatic_scaling = true
compute_scaling_once = false
dtmin = 0.1
dtmax = 1e3
end_time = 136800
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1 ## This model requires a tiny timestep at the onset for the first 10s
iteration_window = 4
optimal_iterations = 12
time_t = '100800'
time_dt = '1e3'
[]
[]
[Postprocessors]
[effective_strain_avg]
type = ElementAverageValue
variable = effective_inelastic_strain
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[cell_dislocations]
type = ElementAverageValue
variable = cell_dislocations
[]
[wall_disloactions]
type = ElementAverageValue
variable = wall_dislocations
[]
[max_vonmises_stress]
type = ElementExtremeValue
variable = vonmises_stress
value_type = max
[]
[number_of_substeps]
type = ElementAverageValue
variable = number_of_substeps
[]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rz_incremental_small_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = StressDivergenceRZTensors
component = 0
variable = disp_r
[../]
[./stress_z]
type = StressDivergenceRZTensors
component = 1
variable = disp_z
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[./axial]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeAxisymmetricRZIncrementalStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = rz_incremental_small_elastic_out
[]
(modules/porous_flow/test/tests/actions/fullsat_brine_except1.i)
# Check error when using PorousFlowFullySaturated action,
# attempting to create a Brine material without any mass
# fraction variables.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
block = '0'
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = pp
temperature = temp
fluid_properties_type = PorousFlowBrine
dictator_name = dictator
[]
[Variables]
[pp]
initial_condition = 20E6
[]
[temp]
initial_condition = 323.15
[]
[nacl]
initial_condition = 0.1047
[]
[]
[Kernels]
# All provided by PorousFlowFullySaturated action
[]
[BCs]
[t_bdy]
type = DirichletBC
variable = temp
boundary = 'left right'
value = 323.15
[]
[p_bdy]
type = DirichletBC
variable = pp
boundary = 'left right'
value = 20E6
[]
[nacl_bdy]
type = DirichletBC
variable = nacl
boundary = 'left right'
value = 0.1047
[]
[]
[Materials]
# Thermal conductivity
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
wet_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
[]
# Specific heat capacity
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 850
density = 2700
[]
# Permeability
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-13 0 0 0 1E-13 0 0 0 1E-13'
[]
# Porosity
[porosity]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = fullsat_brine_except1
[]
(modules/navier_stokes/test/tests/finite_element/ins/velocity_channel/velocity_inletBC_no_parts.i)
# This input file tests outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
integrate_p_by_parts = false
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = top_right
coord = '3 1'
input = gen
[../]
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'left'
function = 'inlet_func'
[../]
[./p_corner]
# Since the pressure is not integrated by parts in this example,
# it is only specified up to a constant by the natural outflow BC.
# Therefore, we need to pin its value at a single location.
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * (y - 0.5)^2 + 1'
[../]
[]
(test/tests/multiapps/steffensen/steady_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u]
[]
[]
[Kernels]
[diff_v]
type = Diffusion
variable = v
[]
[force_v]
type = CoupledForce
variable = v
v = u
[]
[]
[BCs]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[Postprocessors]
[vnorm]
type = ElementL2Norm
variable = v
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'steffensen'
[]
[Outputs]
csv = true
exodus = false
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_exponential_deprecated.i)
#
# Test to exercise the exponential stress release
#
# Stress vs. strain should show a linear relationship until cracking,
# an exponential stress release, a linear relationship back to zero
# strain, a linear relationship with the original stiffness in
# compression and then back to zero strain, a linear relationship
# back to the exponential curve, and finally further exponential
# stress release.
#
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displx]
type = PiecewiseLinear
x = '0 1 2 3 4 5 6'
y = '0 0.00175 0 -0.0001 0 0.00175 0.0035'
[../]
[./disply]
type = PiecewiseLinear
x = '0 5 6'
y = '0 0 .00175'
[../]
[./displz]
type = PiecewiseLinear
x = '0 2 3'
y = '0 0 .0035'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pullx]
type = FunctionDirichletBC
#type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = displx
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./move_y]
type = FunctionDirichletBC
variable = disp_y
boundary = '15 16'
function = disply
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = '3'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 186.5e9
poissons_ratio = .316
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 119.3e6
cracking_release = exponential
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-6
nl_max_its = 10
nl_rel_tol = 1e-12
nl_abs_tol = 1.e-4
start_time = 0.0
dt = 0.02
dtmin = 0.02
num_steps = 300
[]
[Outputs]
exodus = true
file_base = cracking_exponential_out
[]
(modules/tensor_mechanics/test/tests/torque_reaction/torque_reaction_3D.i)
# Scalar torque reaction
# This test computes the sum of the torques acting on a single element cube mesh.
# Equal displacements in the x and the z are applied along the cube top to
# create a shear force along the (1, 0, 1) direction. The rotation origin is
# set to the middle of the bottom face of the cube (0.5, 0, 0.5), and the axis of
# rotation direction vector used to compute the torque reaction is set to (-1, 0, 1).
# Torque is calculated for the four nodes on the top of the cube. The projection
# of the node coordinates is zero for nodes 3 and 6, +1 for node 7, and -1 for
# node 2 from the selection of the direction vector and the rotation axis origin.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Problem]
extra_tag_vectors = 'ref'
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[]
[AuxKernels]
[saved_x]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_x'
variable = 'saved_x'
[]
[saved_y]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_y'
variable = 'saved_y'
[]
[saved_z]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_z'
variable = 'saved_z'
[]
[]
[Modules/TensorMechanics/Master]
[master]
strain = SMALL
generate_output = 'stress_xx stress_yy stress_zz'
add_variables = true
extra_vector_tags = 'ref'
[]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top_shear_z]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = '0.01*t'
[../]
[./top_shear_x]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = '0.01*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_abs_tol = 1e-14
nl_rel_tol = 1e-12
l_tol = 1e-8
start_time = 0.0
dt = 0.5
end_time = 1
num_steps = 2
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./torque]
type = TorqueReaction
boundary = top
reaction_force_variables = 'saved_x saved_y saved_z'
axis_origin = '0.5 0. 0.5'
direction_vector = '-1. 0. 1.'
[../]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/code_verification/spherical_test_no2.i)
# Problem III.2
#
# A spherical shell has a thermal conductivity that varies linearly
# with temperature. The inside and outside surfaces of the shell are
# exposed to constant temperatures.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'ri ro beta ki ko ui uo'
vals = '0.2 1.0 1e-3 5.3 5 300 0'
value = 'uo+(ko/beta)* ( ( 1 + beta*(ki+ko)*(ui-uo)*( (1/x-1/ro) / (1/ri-1/ro) )/(ko^2))^0.5 -1 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
f_name = 'thermal_conductivity'
args = u
function = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/phase_field/test/tests/Nucleation/marker.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 20
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
variable = c
value = 0
[../]
[./right]
type = DirichletBC
boundary = right
variable = c
value = 1
[../]
[./Periodic]
[./all]
auto_direction = y
[../]
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./nucleation]
type = DiscreteNucleation
op_names = c
op_values = 1
map = map
outputs = exodus
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationInserter
hold_time = 1
probability = 0.01
radius = 3.27
[../]
[./map]
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Adaptivity]
[./Markers]
[./nuc]
type = DiscreteNucleationMarker
map = map
[../]
[../]
marker = nuc
cycles_per_step = 3
recompute_markers_during_cycles = true
max_h_level = 3
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 10
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
hide = c
[]
(test/tests/postprocessors/num_nodes/num_nodes.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
nz = 0
zmax = 0
elem_type = QUAD4
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[./v_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 1
solve_type = PJFNK
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 3
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./num_nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/boussinesq/boussinesq_stabilized.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmax = .05
ymax = .05
nx = 20
ny = 20
elem_type = QUAD9
[]
[./bottom_left]
type = ExtraNodesetGenerator
new_boundary = corner
coord = '0 0'
input = gen
[../]
[]
[Preconditioning]
[./Newton_SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'bjacobi lu NONZERO 200'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
[]
[p][]
[temp]
initial_condition = 340
scaling = 1e-4
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[BCs]
[./velocity_dirichlet]
type = VectorDirichletBC
boundary = 'left right bottom top'
variable = velocity
# The third entry is to satisfy RealVectorValue
values = '0 0 0'
[../]
# Even though we are integrating by parts, because there are no integrated
# boundary conditions on the velocity p doesn't appear in the system of
# equations. Thus we must pin the pressure somewhere in order to ensure a
# unique solution
[./p_zero]
type = DirichletBC
boundary = corner
variable = p
value = 0
[../]
[./cold]
type = DirichletBC
variable = temp
boundary = left
value = 300
[../]
[./hot]
type = DirichletBC
variable = temp
boundary = right
value = 400
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[]
[./buoyancy]
type = INSADBoussinesqBodyForce
variable = velocity
temperature = temp
gravity = '0 -9.81 0'
[../]
[./gravity]
type = INSADGravityForce
variable = velocity
gravity = '0 -9.81 0'
[../]
[supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[temp_advection]
type = INSADEnergyAdvection
variable = temp
[]
[temp_conduction]
type = ADHeatConduction
variable = temp
thermal_conductivity = 'k'
[../]
[temp_supg]
type = INSADEnergySUPG
variable = temp
velocity = velocity
[]
[]
[Materials]
[./ad_const]
type = ADGenericConstantMaterial
# alpha = coefficient of thermal expansion where rho = rho0 -alpha * rho0 * delta T
prop_names = 'mu rho alpha k cp'
prop_values = '30.74e-6 .5757 2.9e-3 46.38e-3 1054'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'temp_ref'
prop_values = '900'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temp
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/boussinesq/boussinesq_square.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmax = .05
ymax = .05
nx = 20
ny = 20
elem_type = QUAD9
[]
[./bottom_left]
type = ExtraNodesetGenerator
new_boundary = corner
coord = '0 0'
input = gen
[../]
[]
[Preconditioning]
[./Newton_SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'bjacobi lu NONZERO 200'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
order = SECOND
[]
[p][]
[./temp]
order = SECOND
initial_condition = 340
scaling = 1e-4
[../]
[]
[BCs]
[./velocity_dirichlet]
type = VectorDirichletBC
boundary = 'left right bottom top'
variable = velocity
# The third entry is to satisfy RealVectorValue
values = '0 0 0'
[../]
# Even though we are integrating by parts, because there are no integrated
# boundary conditions on the velocity p doesn't appear in the system of
# equations. Thus we must pin the pressure somewhere in order to ensure a
# unique solution
[./p_zero]
type = DirichletBC
boundary = corner
variable = p
value = 0
[../]
[./cold]
type = DirichletBC
variable = temp
boundary = left
value = 300
[../]
[./hot]
type = DirichletBC
variable = temp
boundary = right
value = 400
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[]
[temp_advection]
type = INSADEnergyAdvection
variable = temp
[]
[temp_conduction]
type = ADHeatConduction
variable = temp
thermal_conductivity = 'k'
[../]
[./buoyancy]
type = INSADBoussinesqBodyForce
variable = velocity
temperature = temp
gravity = '0 -9.81 0'
[../]
[./gravity]
type = INSADGravityForce
variable = velocity
gravity = '0 -9.81 0'
[../]
[]
[Materials]
[./ad_const]
type = ADGenericConstantMaterial
# alpha = coefficient of thermal expansion where rho = rho0 -alpha * rho0 * delta T
prop_names = 'mu rho alpha k cp'
prop_values = '30.74e-6 .5757 2.9e-3 46.38e-3 1054'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'temp_ref'
prop_values = '900'
[../]
[ins_mat]
type = INSAD3Eqn
velocity = velocity
pressure = p
temperature = temp
[]
[]
(test/tests/misc/check_error/bc_with_aux_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/test/tests/linear_elasticity/applied_strain.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
eigenstrain_names = eigenstrain
add_variables = true
generate_output = 'strain_xx strain_yy strain_xy'
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./eigenstrain]
type = ComputeEigenstrain
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/04_sub1_multiple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/sub0.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_abbo.i)
# Uses an Abbo et al smoothed version of Mohr-Coulomb (via TensorMechanicsPlasticMohrCoulomb and ComputeMultiPlasticityStress) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[../]
[]
[Postprocessors]
[./uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[../]
[./s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[../]
[./num_res]
type = NumResidualEvaluations
[../]
[./nr_its] # num_iters is the average number of NR iterations encountered per element in this timestep
type = ElementAverageValue
variable = num_iters
[../]
[./max_nr_its] # num_iters is the average number of NR iterations encountered in the element in this timestep, so we must get max(max_nr_its) to obtain the max number of iterations
type = ElementExtremeValue
variable = num_iters
[../]
[./runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[../]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[../]
[]
[AuxVariables]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./num_iters]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./num_iters_auxk]
type = MaterialRealAux
property = plastic_NR_iterations
variable = num_iters
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0.02E6
mc_edge_smoother = 29
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[../]
[./mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = biaxial_abbo
perf_graph = true
exodus = false
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/pressure_channel/open_bc_pressure_BC.i)
# This input file tests Dirichlet pressure in/outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
integrate_p_by_parts = false
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
integrate_p_by_parts = false
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./inlet_p]
type = DirichletBC
variable = p
boundary = left
value = 1.0
[../]
[./outlet_p]
type = DirichletBC
variable = p
boundary = right
value = 0.0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = PJFNK
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
file_base = open_bc_out_pressure_BC
exodus = true
[]
(modules/richards/test/tests/buckley_leverett/bl21.i)
# two-phase version
# sharp front version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-3 1E-2 3E-2 4E-2 0.5 0.5 1'
x = '0 1E-2 1E-1 1 5 40 41'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E6
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 3E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 3E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[./bounds_dummy]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./richardsppenalty]
type = RichardsPPenalty
variable = pgas
a = 1E-18
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Bounds]
[./pwater_upper_bounds]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = pwater
bound_type = upper
bound_value = 1E7
[../]
[./pwater_lower_bounds]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = pwater
bound_type = lower
bound_value = -110000
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_water
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_gas
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = pwater
boundary = left
value = 1E6
[../]
[./left_g]
type = DirichletBC
variable = pgas
boundary = left
value = 1E6+1000
[../]
[./right_w]
type = DirichletBC
variable = pwater
boundary = right
value = -100000
[../]
[./right_g]
type = DirichletBC
variable = pgas
boundary = right
value = 0+1000
[../]
[]
[Functions]
[./initial_water]
type = ParsedFunction
value = 1000000*(1-min(x/5,1))-100000*(max(x-5,0)/max(abs(x-5),1E-10))
[../]
[./initial_gas]
type = ParsedFunction
value = max(1000000*(1-x/5),0)+1000
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-6'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'standard'
[./bounded]
# must use --use-petsc-dm command line argument
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type -ksp_rtol -ksp_atol'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 50 vinewtonssls 1E-20 1E-20'
[../]
[./standard]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20 1E-20 1E-20'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bl21
interval = 10000
exodus = true
[]
(modules/phase_field/test/tests/Nucleation/timestep.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
xmin = 0
xmax = 20
ymin = 0
ymax = 20
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
variable = c
value = 0
[../]
[./right]
type = DirichletBC
boundary = right
variable = c
value = 1
[../]
[./Periodic]
[./all]
auto_direction = y
[../]
[../]
[]
[Kernels]
[./c]
type = Diffusion
variable = c
[../]
[./dt]
type = TimeDerivative
variable = c
[../]
[]
[UserObjects]
[./inserter]
type = DiscreteNucleationInserter
hold_time = 1
probability = 0.0005
radius = 3.27
[../]
[./map]
type = DiscreteNucleationMap
periodic = c
inserter = inserter
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[./dtnuc]
type = DiscreteNucleationTimeStep
inserter = inserter
p2nucleus = 0.1
dt_max = 0.5
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
num_steps = 20
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 2
timestep_limiting_postprocessor = dtnuc
dt = 1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(test/tests/materials/material/three_coupled_mat_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = a
[../]
[./conv]
type = MatConvection
variable = u
x = 1
y = 0
mat_prop = b
[../]
[]
[BCs]
[./right]
type = NeumannBC
variable = u
boundary = 1
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[]
[Materials]
[./matA]
type = CoupledMaterial
block = 0
mat_prop = 'a'
coupled_mat_prop = 'b'
[../]
[./matB]
type = CoupledMaterial
block = 0
mat_prop = 'b'
coupled_mat_prop = 'c'
[../]
[./matC]
type = CoupledMaterial
block = 0
mat_prop = 'c'
coupled_mat_prop = 'd'
[../]
[./matD]
type = GenericConstantMaterial
block = 0
prop_names = 'd'
prop_values = '2'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_three
exodus = true
[]
(modules/chemical_reactions/examples/calcium_bicarbonate/calcium_bicarbonate.i)
# Example of reactive transport model with precipitation and dissolution.
# Calcium (ca2) and bicarbonate (hco3) reaction to form calcite (CaCO3).
# Models bicarbonate injection following calcium injection, so that a
# moving reaction front forms a calcite precipitation zone. As the front moves,
# the upstream side of the front continues to form calcite via precipitation,
# while at the downstream side, dissolution of the solid calcite occurs.
#
# The reaction network considered is as follows:
# Aqueous equilibrium reactions:
# a) h+ + hco3- = CO2(aq), Keq = 10^(6.341)
# b) hco3- = h+ + CO23-, Keq = 10^(-10.325)
# c) ca2+ + hco3- = h+ + CaCO3(aq), Keq = 10^(-7.009)
# d) ca2+ + hco3- = cahco3+, Keq = 10^(-0.653)
# e) ca2+ = h+ + CaOh+, Keq = 10^(-12.85)
# f) - h+ = oh-, Keq = 10^(-13.991)
#
# Kinetic reactions
# g) ca2+ + hco3- = h+ + CaCO3(s), A = 0.461 m^2/L, k = 6.456542e-2 mol/m^2 s,
# Keq = 10^(1.8487)
#
# The primary chemical species are h+, hco3- and ca2+. The pressure gradient is fixed,
# and a conservative tracer is also included.
#
# This example is taken from:
# Guo et al, A parallel, fully coupled, fully implicit solution to reactive
# transport in porous media using the preconditioned Jacobian-Free Newton-Krylov
# Method, Advances in Water Resources, 53, 101-108 (2013).
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
xmax = 1
ymax = 0.25
[]
[Variables]
[./tracer]
[../]
[./ca2+]
[../]
[./h+]
initial_condition = 1.0e-7
scaling = 1e6
[../]
[./hco3-]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./pressure_ic]
type = FunctionIC
variable = pressure
function = pic
[../]
[./hco3_ic]
type = BoundingBoxIC
variable = hco3-
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 5.0e-2
outside = 1.0e-6
[../]
[./ca2_ic]
type = BoundingBoxIC
variable = ca2+
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 1.0e-6
outside = 5.0e-2
[../]
[./tracer_ic]
type = BoundingBoxIC
variable = tracer
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 1.0
outside = 0.0
[../]
[]
[Functions]
[./pic]
type = ParsedFunction
value = 60-50*x
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'ca2+ hco3- h+'
secondary_species = 'co2_aq co32- caco3_aq cahco3+ caoh+ oh-'
pressure = pressure
reactions = 'h+ + hco3- = co2_aq 6.341,
hco3- - h+ = co32- -10.325,
ca2+ + hco3- - h+ = caco3_aq -7.009,
ca2+ + hco3- = cahco3+ -0.653,
ca2+ - h+ = caoh+ -12.85,
- h+ = oh- -13.991'
[../]
[./SolidKineticReactions]
primary_species = 'ca2+ hco3- h+'
kin_reactions = 'ca2+ + hco3- - h+ = caco3_s'
secondary_species = caco3_s
log10_keq = 1.8487
reference_temperature = 298.15
system_temperature = 298.15
gas_constant = 8.314
specific_reactive_surface_area = 4.61e-4
kinetic_rate_constant = 6.456542e-7
activation_energy = 1.5e4
[../]
[]
[Kernels]
[./tracer_ie]
type = PrimaryTimeDerivative
variable = tracer
[../]
[./tracer_pd]
type = PrimaryDiffusion
variable = tracer
[../]
[./tracer_conv]
type = PrimaryConvection
variable = tracer
p = pressure
[../]
[./ca2+_ie]
type = PrimaryTimeDerivative
variable = ca2+
[../]
[./ca2+_pd]
type = PrimaryDiffusion
variable = ca2+
[../]
[./ca2+_conv]
type = PrimaryConvection
variable = ca2+
p = pressure
[../]
[./h+_ie]
type = PrimaryTimeDerivative
variable = h+
[../]
[./h+_pd]
type = PrimaryDiffusion
variable = h+
[../]
[./h+_conv]
type = PrimaryConvection
variable = h+
p = pressure
[../]
[./hco3-_ie]
type = PrimaryTimeDerivative
variable = hco3-
[../]
[./hco3-_pd]
type = PrimaryDiffusion
variable = hco3-
[../]
[./hco3-_conv]
type = PrimaryConvection
variable = hco3-
p = pressure
[../]
[]
[BCs]
[./tracer_left]
type = DirichletBC
variable = tracer
boundary = left
value = 1.0
[../]
[./tracer_right]
type = ChemicalOutFlowBC
variable = tracer
boundary = right
[../]
[./ca2+_left]
type = SinDirichletBC
variable = ca2+
boundary = left
initial = 5.0e-2
final = 1.0e-6
duration = 1
[../]
[./ca2+_right]
type = ChemicalOutFlowBC
variable = ca2+
boundary = right
[../]
[./hco3-_left]
type = SinDirichletBC
variable = hco3-
boundary = left
initial = 1.0e-6
final = 5.0e-2
duration = 1
[../]
[./hco3-_right]
type = ChemicalOutFlowBC
variable = hco3-
boundary = right
[../]
[./h+_left]
type = DirichletBC
variable = h+
boundary = left
value = 1.0e-7
[../]
[./h+_right]
type = ChemicalOutFlowBC
variable = h+
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-7 2e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 50
l_tol = 1e-5
nl_max_its = 10
nl_rel_tol = 1e-5
end_time = 10
[./TimeStepper]
type = ConstantDT
dt = 0.1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
perf_graph = true
exodus = true
[]
(test/tests/restart/new_dt/new_dt_restart.i)
[Mesh]
file = new_dt_out_cp/0010_mesh.cpr
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
# Here we are supplying a different dt
dt = 0.25
start_time = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./exodus]
type = Exodus
execute_on = 'timestep_end final'
[../]
[]
[Problem]
restart_file_base = new_dt_out_cp/0010
[]
(modules/tensor_mechanics/test/tests/scalar_material_damage/combined_scalar_damage.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[AuxVariables]
[damage_index]
order = CONSTANT
family = MONOMIAL
[]
[damage_index_a]
order = CONSTANT
family = MONOMIAL
[]
[damage_index_b]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx strain_xx'
[]
[]
[AuxKernels]
[damage_index]
type = MaterialRealAux
variable = damage_index
property = damage_index
execute_on = timestep_end
[]
[damage_index_a]
type = MaterialRealAux
variable = damage_index_a
property = damage_index_a
execute_on = timestep_end
[]
[damage_index_b]
type = MaterialRealAux
variable = damage_index_b
property = damage_index_b
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[axial_load]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[]
[]
[Functions]
[damage_evolution_a]
type = PiecewiseLinear
xy_data = '0.0 0.0
0.1 0.0
2.1 2.0'
[]
[damage_evolution_b]
type = PiecewiseLinear
xy_data = '0.0 0.2
0.1 0.2
2.1 0.7'
[]
[]
[Materials]
[damage_index_a]
type = GenericFunctionMaterial
prop_names = damage_index_prop_a
prop_values = damage_evolution_a
[]
[damage_index_b]
type = GenericFunctionMaterial
prop_names = damage_index_prop_b
prop_values = damage_evolution_b
[]
[damage_a]
type = ScalarMaterialDamage
damage_index = damage_index_prop_a
damage_index_name = damage_index_a
[]
[damage_b]
type = ScalarMaterialDamage
damage_index = damage_index_prop_b
damage_index_name = damage_index_b
[]
[damage]
type = CombinedScalarDamage
damage_models = 'damage_a damage_b'
[]
[stress]
type = ComputeDamageStress
damage_model = damage
[]
[elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.2
youngs_modulus = 10e9
[]
[]
[Postprocessors]
[stress_xx]
type = ElementAverageValue
variable = stress_xx
[]
[strain_xx]
type = ElementAverageValue
variable = strain_xx
[]
[damage_index]
type = ElementAverageValue
variable = damage_index
[]
[damage_index_a]
type = ElementAverageValue
variable = damage_index_a
[]
[damage_index_b]
type = ElementAverageValue
variable = damage_index_b
[]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-8
dt = 0.1
dtmin = 0.1
end_time = 1.1
[]
[Outputs]
csv=true
[]
(test/tests/transfers/multiapp_mesh_function_transfer/fromsub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = -.01
xmax = 0.21
ymin = -.01
ymax = 0.21
displacements = 'x_disp y_disp'
[]
[Variables]
[./sub_u]
[../]
[]
[AuxVariables]
[./x_disp]
initial_condition = 0.2
[../]
[./y_disp]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = sub_u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = sub_u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = sub_u
boundary = right
value = 4
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_3d.i)
#This tests the J-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the J-Integrals using options
#to treat it as 3d.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
radius_inner = '4.0 5.5'
radius_outer = '5.5 7.0'
output_variable = 'disp_x'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_z
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./disp_x_centercrack]
type = CrackFrontData
crack_front_definition = crackFrontDefinition
variable = disp_x
crack_front_point_index = 1
[../]
[]
[Outputs]
file_base = j_integral_3d_out
exodus = true
csv = true
[]
(test/tests/partitioners/custom_partition_generated_mesh/custom_partition_generated_mesh.i)
[Mesh]
[generate_2d]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[extrude]
type = MeshExtruderGenerator
input = generate_2d
extrusion_vector = '0 0 1'
num_layers = 5
[]
[Partitioner]
type = GridPartitioner
nx = 1
ny = 1
nz = 4
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid]
type = ProcessorIDAux
variable = pid
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/parser/cli_multiapp_single/dt_from_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_master_sub.i'
app_type = MooseTestApp
[../]
[]
(examples/ex04_bcs/neumann_bc.i)
[Mesh]
file = square.e
uniform_refine = 4
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./conv]
type = ExampleConvection
variable = convected
some_variable = diffused
[../]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
active = 'left_convected right_convected_neumann left_diffused right_diffused'
[./left_convected]
type = DirichletBC
variable = convected
boundary = 'left'
value = 0
[../]
# Note: This BC is not active in this input file
[./right_convected_dirichlet]
type = CoupledDirichletBC
variable = convected
boundary = 'right'
alpha = 2
some_var = diffused
[../]
[./right_convected_neumann]
type = CoupledNeumannBC
variable = convected
boundary = 'right'
alpha = 2
some_var = diffused
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/2D/neumann.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.01
max = 0.01
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.01
max = 0.01
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '50000 * t'
[]
[pully]
type = ParsedFunction
value = '-30000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(test/tests/auxkernels/bounds/constant_bounds.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./bounds_dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 1
[../]
[]
[Bounds]
[./u_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = u
bound_type = upper
bound_value = 1
[../]
[./u_lower_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[./v_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = v
bound_type = upper
bound_value = 3
[../]
[./v_lower_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = v
bound_type = lower
bound_value = -1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_multilevel/2level_picard/sub_level2.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[w]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[time_derivative]
type = TimeDerivative
variable = w
[]
[diffusion]
type = Diffusion
variable = w
[]
[source]
type = CoupledForce
variable = w
v = v
[]
[]
[BCs]
[dirichlet0]
type = DirichletBC
variable = w
boundary = '3'
value = 0
[]
[dirichlet]
type = DirichletBC
variable = w
boundary = '1'
value = 100
[]
[]
[Postprocessors]
[avg_v]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_begin timestep_end'
[]
[avg_w]
type = ElementAverageValue
variable = w
execute_on = 'initial timestep_begin timestep_end'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
end_time = 0.1
dt = 0.02
[]
[Outputs]
exodus = true
csv = true
[screen]
type = Console
execute_postprocessors_on= "timestep_end timestep_begin"
[]
[]
(modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated_volume.i)
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedFullySaturatedMassTimeDerivative kernels
# with multiply_by_density = false, so that this problem becomes linear
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[]
[]
[Functions]
[top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[]
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[tot_force]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
biot_coefficient = 0.6
multiply_by_density = false
coupling_type = HydroMechanical
variable = porepressure
[]
[flux]
type = PorousFlowFullySaturatedDarcyBase
multiply_by_density = false
variable = porepressure
gravity = '0 0 0'
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[]
[p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[]
[p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[]
[p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[]
[p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[]
[p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[]
[p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[]
[p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[]
[p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[]
[p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[]
[p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[]
[xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[]
[ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[]
[total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_fully_saturated_volume
[csv]
interval = 3
type = CSV
[]
[]
(test/tests/misc/check_error/kernel_with_aux_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/initial_stress/gravity_with_aux.i)
# Apply an initial stress, using AuxVariables, that should be
# exactly that caused by gravity, and then
# do a transient step to check that nothing
# happens
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -10
zmax = 0
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./weight]
type = BodyForce
variable = disp_z
value = -0.5 # this is density*gravity
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./x]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_equals_1]
initial_condition = 1
[../]
[./aux_equals_2]
initial_condition = 2
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./half_weight]
type = ParsedFunction
value = '0.25*z' # half of the initial stress that should result from the weight force
[../]
[./kxx]
type = ParsedFunction
value = '0.4*z' # some arbitrary xx and yy stress that should not affect the result
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.25
[../]
[./strain]
type = ComputeSmallStrain
eigenstrain_names = ini_stress
[../]
[./strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'kxx 0 0 0 kxx 0 0 0 half_weight'
initial_stress_aux = 'aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_1 aux_equals_2'
eigenstrain_name = ini_stress
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.0
dt = 1.0
solve_type = NEWTON
type = Transient
nl_abs_tol = 1E-8
nl_rel_tol = 1E-12
l_tol = 1E-3
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = gravity_with_aux
exodus = true
[]
(test/tests/executioners/executioner/transient.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_transient
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform11.i)
# use an initial stress, then apply a shear deformation and tensile stretch to observe all hardening.
# Here p_trial=12, q_trial=2*Sqrt(20)
# MOOSE yields:
# q_returned = 1.696
# p_returned = 0.100
# intnl_shear = 1.81
# intnl_tens = 0.886
# These give, at the returned point
# cohesion = 1.84
# tanphi = 0.513
# tanpsi = 0.058
# tensile = 0.412
# This means that
# f_shear = -0.0895
# f_tensile = -0.312
# Note that these are within smoothing_tol (=1) of each other
# Hence, smoothing must be used:
# ismoother = 0.0895
# (which gives the yield function value = 0)
# smoother = 0.328
# This latter gives dg/dq = 0.671, dg/dp = 0.368
# for the flow directions. Finally ga = 2.70, and
# the returned point satisfies the normality conditions.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
eigenstrain_names = ini_stress
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '0.5*t'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 't'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.5*t'
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 2
rate = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1.0
value_residual = 0.5
rate = 2
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.1
value_residual = 0.05
rate = 1
[../]
[./t_strength]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0
rate = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E8
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
lambda = 4.0
shear_modulus = 4.0
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '0 0 2 0 0 4 2 4 6'
eigenstrain_name = ini_stress
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-3
perfect_guess = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform11
[./csv]
type = CSV
[../]
[]
(test/tests/multiapps/sub_cycling/main_negative.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = -1.0
end_time = 0
dt = 0.5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(python/chigger/tests/input/mug_blocks.i)
[Mesh]
type = FileMesh
file = mug.e
[]
[MeshModifiers]
[./subdomains]
type = SubdomainBoundingBox
top_right = '3 3 3'
bottom_left = '0 -3 -2.1'
block_id = '76'
[../]
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux_elem]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./conv]
# Couple a variable into the convection kernel using local_name = simulationg_name syntax
type = Convection
variable = convected
velocity = '1 1 1'
[../]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[./diff_t]
type = TimeDerivative
variable = diffused
[../]
[./conv_t]
type = TimeDerivative
variable = convected
block = '76'
[../]
[]
[BCs]
[./bottom_convected]
type = DirichletBC
variable = convected
boundary = bottom
value = 1
[../]
[./top_convected]
type = DirichletBC
variable = convected
boundary = top
value = 0
[../]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = bottom
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = top
value = 0
[../]
[]
[Postprocessors]
[./func_pp]
type = FunctionValuePostprocessor
function = 2*t
[../]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Transient
num_steps = 20
solve_type = PJFNK
dt = 0.1
[]
[Outputs]
exodus = true
[]
[ICs]
[./aux_ic]
variable = aux_elem
max = 10
seed = 2
type = RandomIC
[../]
[]
(test/tests/restart/restart_transient_from_steady/steady_with_2subs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmax = 0.3
ymax = 0.3
[]
[AuxVariables]
[power_density]
[]
[]
[Variables]
[temp]
[]
[]
[Kernels]
[heat_conduction]
type = Diffusion
variable = temp
[]
[heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '1 3'
value = 100
[]
[bc2]
type = NeumannBC
variable = temp
boundary = '0 2'
value = 10.0
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[temp_fuel_avg]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[]
[pwr_density]
type = ElementIntegralVariablePostprocessor
variable = power_density
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
csv = true
[]
(test/tests/transfers/get_transfers_from_feproblem/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# This test currently diffs when run in parallel with DistributedMesh enabled,
# most likely due to the fact that it uses some geometric search stuff.
# For more information, see #2121.
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./layered_average]
type = GetTransferUserObject
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
nl_rel_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
[../]
[]
[Transfers]
[./nearest_node]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = nearest_node
[../]
[./mesh_function]
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
source_variable = u
variable = mesh_function
[../]
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_4/ring4_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test4tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test4tt_out
exodus = true
[]
(modules/stochastic_tools/test/tests/transfers/sobol/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/stagnation/stagnation.i)
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 2.0
ymin = 0
ymax = 2.0
nx = 20
ny = 20
elem_type = QUAD9
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 1.0
dtmin = 1.e-6
num_steps = 5
l_max_its = 100
nl_max_its = 15
nl_rel_tol = 1.e-9
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm 2 lu NONZERO 1000'
line_search = none
[]
[Variables]
[./vel_x]
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = FunctionDirichletBC
boundary = 'top'
variable = vel_x
function = vel_x_inlet
[../]
[./v_in]
type = FunctionDirichletBC
boundary = 'top'
variable = vel_y
function = vel_y_inlet
[../]
[./vel_x_no_slip]
type = DirichletBC
boundary = 'left bottom'
variable = vel_x
value = 0
[../]
[./vel_y_no_slip]
type = DirichletBC
boundary = 'bottom'
variable = vel_y
value = 0
[../]
# Note: setting INSMomentumNoBCBC on the outlet boundary causes the
# matrix to be singular. The natural BC, on the other hand, is
# sufficient to specify the value of the pressure without requiring
# a pressure pin.
[]
[Functions]
[./vel_x_inlet]
type = ParsedFunction
value = 'k*x'
vars = 'k'
vals = '1'
[../]
[./vel_y_inlet]
type = ParsedFunction
value = '-k*y'
vars = 'k'
vals = '1'
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 .01389' # 2/144
[../]
[]
[Outputs]
exodus = true
[./out]
type = CSV
execute_on = 'final'
[../]
[]
[VectorPostprocessors]
[./nodal_sample]
# Pick off the wall pressure values.
type = NodalValueSampler
variable = p
boundary = 'bottom'
sort_by = x
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/sphere3D.i)
#
# 3D Spherical Gap Heat Transfer Test.
#
# This test exercises 3D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of an inner solid sphere of radius = 1 unit, and outer
# hollow sphere with an inner radius of 2. In other words, the gap between
# them is 1 radial unit in length.
#
# The conductivity of both spheres is set very large to achieve a uniform
# temperature in each sphere. The temperature of the center node of the
# inner sphere is ramped from 100 to 200 over one time unit. The
# temperature of the outside of the outer, hollow sphere is held fixed
# at 100.
#
# A simple analytical solution is possible for the integrated heat flux
# between the inner and outer spheres:
#
# Integrated Flux = (T_left - T_right) * (gapK/(r^2*((1/r1)-(1/r2)))) * Area
#
# For gapK = 1 (default value)
#
# The area is taken as the area of the secondary (inner) surface:
#
# Area = 4 * pi * 1^2 (4*pi*r^2)
#
# The integrated heat flux across the gap at time 1 is then:
#
# 4*pi*k*delta_T/((1/r1)-(1/r2))
# 4*pi*1*100/((1/1) - (1/2)) = 2513.3 watts
#
# For comparison, see results from the integrated flux post processors.
# This simulation makes use of symmetry, so only 1/8 of the spheres is meshed
# As such, the integrated flux from the post processors is 1/8 of the total,
# or 314.159 watts... i.e. 100*pi.
# The value coming from the post processor is slightly less than this
# but converges as mesh refinement increases.
#
# Simulating contact is challenging. Regression tests that exercise
# contact features can be difficult to solve consistently across multiple
# platforms. While designing these tests, we felt it worth while to note
# some aspects of these tests. The following applies to:
# sphere3D.i, sphere2DRZ.i, cyl2D.i, and cyl3D.i.
# 1. We decided that to perform consistently across multiple platforms we
# would use very small convergence tolerance. In this test we chose an
# nl_rel_tol of 1e-12.
# 2. Due to such a high value for thermal conductivity (used here so that the
# domains come to a uniform temperature) the integrated flux at time = 0
# was relatively large (the value coming from SideIntegralFlux =
# -_diffusion_coef[_qp]*_grad_u[_qp]*_normals[_qp] where the diffusion coefficient
# here is thermal conductivity).
# Even though _grad_u[_qp] is small, in this case the diffusion coefficient
# is large. The result is a number that isn't exactly zero and tends to
# fail exodiff. For this reason the parameter execute_on = initial should not
# be used. That parameter is left to default settings in these regression tests.
#
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = sphere3D.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[../]
[]
[Variables]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_conductance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./gap_cond]
type = MaterialRealAux
property = gap_conductance
variable = gap_conductance
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1
quadrature = true
gap_geometry_type = SPHERE
sphere_origin = '0 0 0'
[../]
[]
[BCs]
[./mid]
type = FunctionDirichletBC
boundary = 5
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[./Quadrature]
order = fifth
side_order = seventh
[../]
[]
[Outputs]
exodus = true
[./Console]
type = Console
[../]
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
(test/tests/auxkernels/nearest_node_value/nearest_node_value.i)
[Mesh]
file = nonmatching.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./nearest_node_value]
block = left
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 'leftbottom rightbottom'
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 'lefttop righttop'
value = 1
[../]
[]
[AuxKernels]
[./nearest_node_value]
type = NearestNodeValueAux
variable = nearest_node_value
boundary = leftright
paired_variable = u
paired_boundary = rightleft
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/boundingbox_nodeset/boundingbox_nodeset_inside_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[middle_node]
type = BoundingBoxNodeSetGenerator
input = gen
new_boundary = middle_node
top_right = '1.1 1.1 0'
bottom_left = '0.49 0.49 0'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[middle]
type = DirichletBC
variable = u
boundary = middle_node
value = -1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
file_base = boundingbox_nodeset_inside_out
exodus = true
[]
(modules/stochastic_tools/test/tests/surrogates/load_store/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = D
[]
[absorption]
type = MaterialReaction
variable = u
coefficient = sig
[]
[source]
type = BodyForce
variable = u
value = 1.0
[]
[]
[Materials]
[diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 2.0
[]
[xs]
type = GenericConstantMaterial
prop_names = sig
prop_values = 2.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[max]
type = NodalExtremeValue
variable = u
value_type = max
[]
[]
[Outputs]
[]
(test/tests/transfers/multiapp_interpolation_transfer/fromrestrictedsub_sub.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2subdomains.e
[]
[boundary_fuel_side]
input = file
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.2 0 0'
top_right = '0.3 1 0'
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[elemental]
block = '2'
order = CONSTANT
family = MONOMIAL
[]
[nodal]
block = '2'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxKernels]
[elemaux]
type = CoupledAux
variable = elemental
coupled = u
block = '2'
[]
[nodaux]
type = CoupledAux
variable = nodal
coupled = u
block = '2'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3nnstt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
normal_smoothing_method = nodal_normal_based
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test3nnstt_out
exodus = true
[]
[NodalNormals]
boundary = 11
corner_boundary = 20
[]
(modules/tensor_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i)
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.1
hht_alpha = 0.11
[]
[inertia_x]
type = InertialForce
variable = disp_x
eta = 0.1
alpha = 0.11
[]
[inertia_y]
type = InertialForce
variable = disp_y
eta = 0.1
alpha = 0.11
[]
[inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = 0.11
[]
[]
[AuxKernels]
[accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[]
[accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[]
[accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[]
[vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[]
[vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[]
[vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
displacements = 'disp_x disp_y disp_z'
factor = 1
hht_alpha = 0.11
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integrator scheme
scheme = "newmark-beta"
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
file_base = 'rayleigh_hht_out'
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/test_jacobian/jacobian_test_RZ.i)
# This test is designed to test the jacobian for a single
# element with/without volumetric locking correction.
# Result: The hand coded jacobian matches well with the finite
# difference jacobian with an error norm in the order of 1e-15
# for total and incremental small strain and with an error norm
# in the order of 1e-8 for finite strain.
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 1
xmax = 1.75
ymin = 0
ymax = 1.5
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[]
[Modules/TensorMechanics/Master]
[all]
[]
[]
[BCs]
[left]
type = DirichletBC
variable = disp_x
preset = false
boundary = left
value = 1.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[]
[stress]
block = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient #Transient
solve_type = NEWTON
petsc_options = '-snes_test_jacobian -snes_test_jacobian_view'
l_max_its = 1
nl_abs_tol = 1e-4
nl_rel_tol = 1e-6
l_tol = 1e-6
start_time = 0.0
num_steps = 1
dt = 0.005
dtmin = 0.005
end_time = 0.005
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinear.i)
#
# This test checks whether the ComputeReducedOrderEigenstrain is functioning properly.
#
# If instead of 'reduced_eigenstrain', 'thermal_eigenstrain' is given to
# eigenstrain_names in the Modules/TensorMechanics/Master/all block, the output will be
# quite different.
#
# Open the reducedOrderRZLinear_out_hydro_0001.csv file and plot the hydro variables as
# a function of x. For the reduced order case, the values are smooth across each of the
# two elements with a jump upward from the left element to the right element. However,
# when not using 'reduced_order_eigenstrain', a jump downward appears from the left
# element to the right element.
#
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
xmax = 3
xmin = 1
ymax = 1
ymin = 0
#second_order = true
[]
[Functions]
[./tempLinear]
type = ParsedFunction
value = '715-5*x'
[../]
[./tempQuadratic]
type = ParsedFunction
value = '2.5*x*x-15*x+722.5'
[../]
[./tempCubic]
type = ParsedFunction
value = '-1.25*x*x*x+11.25*x*x-33.75*x+733.75'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[AuxVariables]
[./hydro_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./hydro_first]
order = FIRST
family = MONOMIAL
[../]
[./hydro_second]
order = SECOND
family = MONOMIAL
[../]
[./sxx_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./sxx_first]
order = FIRST
family = MONOMIAL
[../]
[./sxx_second]
order = SECOND
family = MONOMIAL
[../]
[./szz_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./szz_first]
order = FIRST
family = MONOMIAL
[../]
[./szz_second]
order = SECOND
family = MONOMIAL
[../]
[./temp2]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
temperature = temp2
eigenstrain_names = 'reduced_eigenstrain' #'thermal_eigenstrain'
[../]
[../]
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./hydro_constant_aux]
type = RankTwoScalarAux
variable = hydro_constant
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_first_aux]
type = RankTwoScalarAux
variable = hydro_first
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_second_aux]
type = RankTwoScalarAux
variable = hydro_second
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./sxx_constant_aux]
type = RankTwoAux
variable = sxx_constant
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_first_aux]
type = RankTwoAux
variable = sxx_first
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_second_aux]
type = RankTwoAux
variable = sxx_second
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./szz_constant_aux]
type = RankTwoAux
variable = szz_constant
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_first_aux]
type = RankTwoAux
variable = szz_first
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_second_aux]
type = RankTwoAux
variable = szz_second
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./temp2]
type = FunctionAux
variable = temp2
function = tempLinear
execute_on = timestep_begin
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./temp_right]
type = DirichletBC
variable = temp
boundary = right
value = 700
[../]
[./temp_left]
type = DirichletBC
variable = temp
boundary = left
value = 710
[../]
[]
[Materials]
[./fuel_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0
[../]
[./fuel_thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1
temperature = temp2
stress_free_temperature = 700.0
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./reduced_order_eigenstrain]
type = ComputeReducedOrderEigenstrain
input_eigenstrain_names = 'thermal_eigenstrain'
eigenstrain_name = 'reduced_eigenstrain'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
num_steps = 1
nl_rel_tol = 1e-8 #1e-12
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[VectorPostprocessors]
[./hydro]
type = LineValueSampler
warn_discontinuous_face_values = false
num_points = 100
start_point = '1 0.07e-3 0'
end_point = '3 0.07e-3 0'
sort_by = x
variable = 'hydro_constant hydro_first hydro_second temp2 disp_x disp_y'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/meshgenerators/sidesets_bounding_box_generator/error_no_side_sets_found.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
#parallel_type = replicated
[]
[./createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gmg
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '-0.1 -0.1 0'
top_right = '0.9 0.9 0'
block_id = 0
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./leftBC]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmax = 0.3
ymax = 0.3
[]
[AuxVariables]
[power_density]
[]
[]
[Variables]
[temp]
[]
[]
[Kernels]
[heat_conduction]
type = Diffusion
variable = temp
[]
[heat_ie]
type = TimeDerivative
variable = temp
[]
[heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '1 3'
value = 100
[]
[bc2]
type = NeumannBC
variable = temp
boundary = '0 2'
value = 10.0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
start_time = 0
end_time = 3
dt = 1.0
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[temp_fuel_avg]
type = ElementAverageValue
variable = temp
block = '0'
execute_on = 'initial timestep_end'
[]
[pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
csv = true
[]
(test/tests/dampers/min_damping/min_nodal_damping.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./u_dt]
type = TimeDerivative
variable = u
[../]
[./u_source]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
[./u_left]
type = DirichletBC
boundary = left
variable = u
value = 0.0
[../]
[]
[Dampers]
[./limit]
type = BoundingValueNodalDamper
variable = u
max_value = 1.5
min_value = -1.5
min_damping = 0.001
[../]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
[../]
[./dt]
type = TimestepSize
[../]
[]
(test/tests/misc/check_error/scalar_kernel_with_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = u
[../]
[]
[ScalarKernels]
[./nope]
type = ODETimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/controls/time_periods/bcs/adbcs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 1
[]
[right2]
type = ADFunctionDirichletBC
variable = u
boundary = right
function = (y*(t-1))+1
[]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[period0]
type = TimePeriod
disable_objects = 'BoundaryCondition::right2'
start_time = '0'
end_time = '0.95'
execute_on = 'initial timestep_begin'
[]
[period2]
type = TimePeriod
disable_objects = 'BCs/right'
start_time = '1'
execute_on = 'initial timestep_begin'
[]
[]
(test/tests/outputs/displacement/displacement_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
displacements = 'u u'
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_displaced
[./exodus]
type = Exodus
use_displaced = true
[../]
[]
(modules/richards/test/tests/pressure_pulse/pp_fu_02.i)
# investigating pressure pulse in 1D with 1 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Outputs]
file_base = pp_fu_02
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/misc/check_error/3D_RZ_error_check.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
zmin = 0
zmax = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
# Try to specify an RZ problem with a 3D mesh
[Problem]
coord_type = 'RZ'
block = '0'
[]
(test/tests/time_steppers/cutback_factor_at_failure/constant_dt_cutback.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FailingProblem
fail_step = 3
[]
[Executioner]
type = Transient
num_steps = 10
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./TimeStepper]
type = ConstantDT
dt = 0.1
cutback_factor_at_failure = 0.8
[../]
[]
[Outputs]
exodus = true
[]
(modules/peridynamics/test/tests/simple_tests/2D_finite_strain_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 6
ny = 6
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1003
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 1001
function = '0.01*t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
strain = FINITE
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e8
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneFiniteStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_finite_strain_H1NOSPD
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test2tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test2tt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test2tt_out
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/single_pnt_2d/single_point_2d_frictional.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = single_point_2d.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./appl_disp]
type = PiecewiseLinear
x = '0 0.001 0.101'
y = '0 0.0 -0.10'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./incslip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./incslip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = appl_disp
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 4
value = -0.002001
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputePlaneFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputePlaneFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x]
type = NodalVariableValue
nodeid = 5
variable = disp_x
[../]
[./disp_y]
type = NodalVariableValue
nodeid = 5
variable = disp_y
[../]
[./inc_slip_x]
type = NodalVariableValue
nodeid = 5
variable = inc_slip_x
[../]
[./inc_slip_y]
type = NodalVariableValue
nodeid = 5
variable = inc_slip_y
[../]
[./accum_slip_x]
type = NodalVariableValue
nodeid = 5
variable = accum_slip_x
[../]
[./accum_slip_y]
type = NodalVariableValue
nodeid = 5
variable = accum_slip_y
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 200
dt = 0.001
end_time = 0.001
num_steps = 10000
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
dtmin = 0.001
l_tol = 1e-3
[]
[Outputs]
file_base = single_point_2d_out_frictional_0_2_kin
exodus = true
print_linear_residuals = true
perf_graph = true
csv = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = coulomb
formulation = kinematic
penalty = 1e12
normalize_penalty = true
friction_coefficient = '0.2'
tangential_tolerance = 1e-3
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '2'
secondary = '3'
[../]
[]
(modules/richards/test/tests/warrick_lomen_islas/wli01.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1000
ny = 1
xmin = -10000
xmax = 0
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./SeffBW]
type = RichardsSeff1BWsmall
Sn = 0.0
Ss = 1.0
C = 1.5
las = 2
[../]
[./RelPermBW]
type = RichardsRelPermBW
Sn = 0.0
Ss = 1.0
Kn = 0
Ks = 1
C = 1.5
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E2
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = -1E-4
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffBW
pressure_vars = pressure
[../]
[]
[BCs]
active = 'base'
[./base]
type = DirichletBC
variable = pressure
boundary = 'left'
value = -1E-4
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1 0 0 0 1 0 0 0 1'
density_UO = DensityConstBulk
relperm_UO = RelPermBW
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffBW
viscosity = 4
gravity = '-0.1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -ksp_rtol -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 1000
dt = 1
[]
[Outputs]
file_base = wli01
interval = 10000
execute_on = 'timestep_end final'
exodus = true
[]
(test/tests/postprocessors/difference_pps/difference_pps.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./v]
[../]
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[AuxKernels]
[./one]
type = ConstantAux
variable = v
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[./v_avg]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_end'
[../]
[./diff]
type = DifferencePostprocessor
value1 = v_avg
value2 = u_avg
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/materials/declare_overlap/error.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./all]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '2 2.5 2.468'
block = ANY_BLOCK_ID
outputs = all
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(test/tests/vectorpostprocessors/work_balance/work_balance.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
partitioner = linear
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./someaux]
[../]
[./otheraux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[VectorPostprocessors]
[./nl_wb]
type = WorkBalance
execute_on = initial
system = nl
[]
[./aux_wb]
type = WorkBalance
execute_on = initial
system = aux
[]
[./all_wb]
type = WorkBalance
execute_on = initial
system = all
[]
[]
[Outputs]
csv = true
[]
(test/tests/userobjects/layered_average/layered_average_bounds_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./layered_average]
type = SpatialUserObjectAux
variable = layered_average
execute_on = timestep_end
user_object = average
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[]
[UserObjects]
[./average]
type = LayeredAverage
variable = u
direction = y
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/basic_advection/1phase.i)
# Basic advection of u in a 1-phase situation
#
# grad(P) = -2
# density * gravity = 4 * 0.25
# grad(P) - density * gravity = -3
# permeability = 5
# viscosity = 150
# so Darcy velocity = 0.1
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P]
[]
[]
[ICs]
[P]
type = FunctionIC
variable = P
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = P
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined.i)
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/time. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/s/m^3 and the
# Biot Modulus is not held fixed. This means that disp_z, porepressure,
# etc are not linear functions of t. Nevertheless, the ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[]
[source]
type = BodyForce
function = 0.1
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = none
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = none
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = none
point = '0 0 0'
variable = stress_zz
[]
[stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[]
[stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[]
[p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[]
[]
[Functions]
[stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[]
[stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[]
[p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined
[csv]
type = CSV
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/thermal_expansion/free.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
eigenstrain_names = "thermal_contribution"
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[control_temperature]
type = FunctionAux
variable = temperature
function = temperature_control
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[]
[Functions]
[temperature_control]
type = ParsedFunction
value = '100*t'
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = SMALL
new_system = true
formulation = UPDATED
volumetric_locking_correction = false
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[thermal_expansion]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1.0e-3
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
end_time = 1
dt = 1
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/02_master_sublimit.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '02_sub_sublimit.i'
[]
[]
(test/tests/interfacekernels/1d_interface/coupled_value_coupled_flux_with_jump_material.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
input = gen
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain1
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[../]
[./diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
[../]
[]
[InterfaceKernels]
[./penalty_interface]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
penalty = 1e6
jump_prop_name = jump
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[../]
[]
[Materials]
[./jump]
type = JumpInterfaceMaterial
var = u
neighbor_var = v
boundary = primary0_interface
[../]
[./stateful]
type = StatefulMaterial
initial_diffusivity = 1
boundary = primary0_interface
[../]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/multiapps/picard/steady_picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./vnorm]
type = ElementL2Norm
variable = v
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
nl_abs_tol = 1e-14
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-6
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = steady_picard_sub.i
no_backup_and_restore = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated.i)
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/time. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/s/m^3. The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = porepressure
coupling_type = HydroMechanical
biot_coefficient = 0.3
[]
[source]
type = BodyForce
function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature_qp]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[]
[stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[]
[p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[]
[]
[Functions]
[stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[]
[stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[]
[p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_fully_saturated
[csv]
type = CSV
[]
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_aniso.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = 'strain_yy stress_yy'
planar_formulation = PLANE_STRAIN
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 1e-6'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '127.0 70.8 70.8 127.0 70.8 127.0 73.55 73.55 73.55'
fill_method = symmetric9
euler_angle_1 = 30
euler_angle_2 = 0
euler_angle_3 = 0
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = stress_spectral
use_current_history_variable = true
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '1.0e-6'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 5e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/lid_driven_stabilized.i)
[GlobalParams]
gravity = '0 0 0'
laplace = true
integrate_p_by_parts = true
family = LAGRANGE
order = FIRST
# There are multiple types of stabilization possible in incompressible
# Navier Stokes. The user can specify supg = true to apply streamline
# upwind petrov-galerkin stabilization to the momentum equations. This
# is most useful for high Reynolds numbers, e.g. when inertial effects
# dominate over viscous effects. The user can also specify pspg = true
# to apply pressure stabilized petrov-galerkin stabilization to the mass
# equation. PSPG is a form of Galerkin Least Squares. This stabilization
# allows equal order interpolations to be used for pressure and velocity.
# Finally, the alpha parameter controls the amount of stabilization.
# For PSPG, decreasing alpha leads to increased accuracy but may induce
# spurious oscillations in the pressure field. Some numerical experiments
# suggest that alpha between .1 and 1 may be optimal for accuracy and
# robustness.
supg = true
pspg = true
alpha = 1e-1
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 64
ny = 64
elem_type = QUAD4
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./p]
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
print_linear_converged_reason = false
print_nonlinear_converged_reason = false
[]
[Postprocessors]
[lin]
type = NumLinearIterations
[]
[nl]
type = NumNonlinearIterations
[]
[lin_tot]
type = CumulativeValuePostprocessor
postprocessor = 'lin'
[]
[nl_tot]
type = CumulativeValuePostprocessor
postprocessor = 'nl'
[]
[]
(test/tests/transfers/multiapp_mesh_function_transfer/fromsub_source_displaced.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./transferred_u]
[../]
[./elemental_transferred_u]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '.099 .099 0 .599 .599 0 0.599 0.099 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = fromsub_sub.i
[../]
[]
[Transfers]
[./from_sub]
source_variable = sub_u
variable = transferred_u
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
displaced_source_mesh = true
[../]
[./elemental_from_sub]
source_variable = sub_u
variable = elemental_transferred_u
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
displaced_source_mesh = true
[../]
[]
(modules/heat_conduction/test/tests/heat_source_bar/heat_source_bar.i)
# This is a simple 1D test of the volumetric heat source with material properties
# of a representative ceramic material. A bar is uniformly heated, and a temperature
# boundary condition is applied to the left side of the bar.
# Important properties of problem:
# Length: 0.01 m
# Thermal conductivity = 3.0 W/(mK)
# Specific heat = 300.0 J/K
# density = 10431.0 kg/m^3
# Prescribed temperature on left side: 600 K
# When it has reached steady state, the temperature as a function of position is:
# T = -q/(2*k) (x^2 - 2*x*length) + 600
# or
# T = -6.3333e+7 * (x^2 - 0.02*x) + 600
# on left side: T=600, on right side, T=6933.3
[Mesh]
type = GeneratedMesh
dim = 1
xmax = 0.01
nx = 20
[]
[Variables]
[./temp]
initial_condition = 300.0
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = temp
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = temp
value = 600
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'density thermal_conductivity'
prop_values = '10431.0 3.0'
[../]
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
value = 3.8e+8
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./right]
type = SideAverageValue
variable = temp
boundary = right
[../]
[./error]
type = NodalL2Error
function = '-3.8e+8/(2*3) * (x^2 - 2*x*0.01) + 600'
variable = temp
[../]
[]
[Outputs]
execute_on = FINAL
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-normal-lm-mortar-pdass-tangential-lm-mortar-disp.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
[file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[]
[]
[Variables]
[disp_x]
block = '1 2'
# order = SECOND
[]
[disp_y]
block = '1 2'
# order = SECOND
[]
[frictional_normal_lm]
block = 3
use_dual = true
[]
[frictional_tangential_lm]
block = 3
use_dual = true
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[]
[Constraints]
[frictional_normal_lm]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
friction_lm = frictional_tangential_lm
disp_x = disp_x
disp_y = disp_y
mu = 0.1
c = 1.0e-2
c_t = 1.0e-1
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = frictional_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[]
(modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i)
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
hht_alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernls are only for checking output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
displacements = 'disp_x disp_y disp_z'
factor = 1
alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integration scheme
scheme = 'newmark-beta'
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'hht_test_out'
exodus = true
perf_graph = true
[]
(modules/phase_field/test/tests/flood_counter_aux_test/simple.i)
[Mesh]
file = square_nodes.e
uniform_refine = 0
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./bubble_map0]
order = FIRST
family = LAGRANGE
[../]
[./bubble_map1]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./mapper0]
type = FeatureFloodCountAux
variable = bubble_map0
execute_on = timestep_end
flood_counter = bubbles
map_index = 0
[../]
[./mapper1]
type = FeatureFloodCountAux
variable = bubble_map1
execute_on = timestep_end
flood_counter = bubbles
map_index = 1
[../]
[]
[BCs]
[./bott_left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./bott_right]
type = DirichletBC
variable = v
boundary = 2
value = 1
[../]
[./up_right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./up_left]
type = DirichletBC
variable = v
boundary = 4
value = 1
[../]
[./the_rest_u]
type = DirichletBC
variable = u
boundary = '5 6 7 8'
value = 0
[../]
[./the_rest_v]
type = DirichletBC
variable = v
boundary = '5 6 7 8'
value = 0
[../]
[]
[UserObjects]
[./bubbles]
use_single_map = false
type = FeatureFloodCount
variable = 'u v'
threshold = 0.3
execute_on = timestep_end
outputs = none
flood_entity_type = NODAL
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/richards/test/tests/rogers_stallybrass_clements/rsc02.i)
# RSC test with low-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-2 5E-1 8E-1'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc02
interval = 100000
execute_on = 'initial timestep_end final'
exodus = true
[]
(modules/peridynamics/test/tests/failure_tests/2D_stretch_failure_BPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
cracks_start = '0.25 0.5 0'
cracks_end = '0.75 0.5 0'
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./damage]
[../]
[./intact_bonds_num]
[../]
[./critical_stretch]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./bond_status]
type = StretchBasedFailureCriterionPD
critical_variable = critical_stretch
variable = bond_status
[../]
[]
[UserObjects]
[./damage]
type = NodalDamageIndexPD
variable = damage
[../]
[./intact_bonds]
type = NodalNumIntactBondsPD
variable = intact_bonds_num
[../]
[]
[ICs]
[./critical_stretch]
type = ConstantIC
variable = critical_stretch
value = 0.001
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.001*t'
[../]
[./rbm_x]
type = RBMPresetOldValuePD
variable = disp_x
boundary = 999
[../]
[./rbm_y]
type = RBMPresetOldValuePD
variable = disp_y
boundary = 999
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialBPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
dt = 0.5
end_time = 1
[]
[Outputs]
file_base = 2D_stretch_failure_BPD
exodus = true
[]
(modules/contact/test/tests/verification/overclosure_removal/overclosure.i)
# ---------------------------------------------------------------------------------------------------------
# REGRESSION TEST FOR OVERCLOSURE REMOVAL
# =======================================
# THIS TEST DEMONSTRATES THAT THE CODE IS CAPABLE OF REMOVING A SIZEABLE OVERCLOSURE IN A SINGLE TIME-STEP
# --------------------------------------------------------------------------------------------------------
[Mesh]
file = oc_mesh.e
[]
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./penetration]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
use_finite_deform_jacobian = true
[../]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side1_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = 1001 #nodeset 1001 top central node
value = 0.0
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
decomposition_method = EigenSolution
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
decomposition_method = EigenSolution
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
dtmin = 1.0
l_tol = 1e-3
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 4
primary = 3
model = frictionless
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictional_02_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2 and a friction coefficient
# of 0.2 is used. The gold file is run on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[./horizontal_movement]
type = ParsedFunction
value = -0.04*sin(4*t)+0.02
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-3
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 1e+7
friction_coefficient = 0.2
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(test/tests/outputs/overwrite/overwrite.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
overwrite = true # testing this
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/jeffery_hamel/wedge_natural.i)
# This input file solves the Jeffery-Hamel problem with the exact
# solution's outlet BC replaced by a natural BC. This problem does
# not converge to the analytical solution, although the flow at the
# outlet still "looks" reasonable.
[GlobalParams]
gravity = '0 0 0'
# Params used by the WedgeFunction for computing the exact solution.
# The value of K is only required for comparing the pressure to the
# exact solution, and is computed by the associated jeffery_hamel.py
# script.
alpha_degrees = 15
Re = 30
K = -9.78221333616
f = f_theta
[]
[Mesh]
file = wedge_8x12.e
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[BCs]
[./vel_x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'top_wall bottom_wall'
value = 0.0
[../]
[./vel_x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'inlet'
function = 'vel_x_exact'
[../]
[./vel_y_inlet]
type = FunctionDirichletBC
variable = vel_y
boundary = 'inlet'
function = 'vel_y_exact'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 1
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_NEWTON]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
num_steps = 5
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-13
nl_abs_tol = 1e-11
nl_max_its = 10
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
[]
[Functions]
[./f_theta]
# Non-dimensional solution values f(eta), 0 <= eta <= 1 for
# alpha=15deg, Re=30. Note: this introduces an input file
# ordering dependency: this Function must appear *before* the two
# function below which use it since apparently proper dependency
# resolution is not done in this scenario.
type = PiecewiseLinear
data_file = 'f.csv'
format = 'columns'
[../]
[./vel_x_exact]
type = WedgeFunction
var_num = 0
mu = 1
rho = 1
[../]
[./vel_y_exact]
type = WedgeFunction
var_num = 1
mu = 1
rho = 1
[../]
[]
(test/tests/multiapps/relaxation/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/console/console.i)
###########################################################
# This test exercises console Output control. Various
# controls are implemented using this input file including
# turning off color, changing Postprocessor output,
# toggling the performance logging, and verifying
# simulation information on the console.
#
# @Requirement U1.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
color = false
[./screen]
type = Console
fit_mode = 40
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./T]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./power]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_T]
type = Diffusion
variable = T
[../]
[./src_T]
type = CoupledForce
variable = T
v = power
[../]
[]
[BCs]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
(test/tests/materials/output/limited_via_outputs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
output_material_properties = true
show_material_properties = 'real_property vector_property'
[../]
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_iso_wo_time.i)
#This input does not add time derivative kernel for phase field equation
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./ACBulk]
type = AllenCahn
variable = c
f_name = F
[../]
[./ACInterface]
type = ACInterface
variable = c
kappa_name = kappa_op
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1_small_strain.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = '0'
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '-1E-3*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./mc_int]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.6981317 # 40deg
rate = 10000
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-10
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '5.77E10 3.85E10' # young = 100Gpa, poisson = 0.3
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.05
solve_type = NEWTON
type = Transient
line_search = 'none'
nl_rel_tol = 1E-10
l_tol = 1E-3
l_max_its = 200
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial1_small_strain
exodus = true
[./csv]
type = CSV
[../]
[]
(test/tests/outputs/console/multiapp/picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(test/tests/misc/serialized_solution/serialized_solution.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./lag]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./aux]
type = TestSerializedSolution
system = aux
execute_on = 'initial timestep_end'
[../]
[./nl]
type = TestSerializedSolution
system = nl
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/finite_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/userobjects/layered_average/layered_average_1d_displaced.i)
# This tests that Layered user objects work with displaced meshes. Originally,
# the mesh is aligned with x-axis. Then we displace the mesh to be aligned with
# z-axis and sample along the z-direction.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./left_fn]
type = ParsedFunction
value = 't + 1'
[../]
[./disp_x_fn]
type = ParsedFunction
value = '-x'
[../]
[./disp_z_fn]
type = ParsedFunction
value = 'x'
[../]
[]
[AuxVariables]
[./la]
family = MONOMIAL
order = CONSTANT
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./la_ak]
type = SpatialUserObjectAux
variable = la
user_object = la_uo
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[./disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[./disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[../]
[]
[UserObjects]
[./la_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 5
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = left_fn
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 2
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/checkpoint/checkpoint_block.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 11
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./out]
type = Checkpoint
[../]
[]
(test/tests/materials/get_material_property_names/get_material_property_boundary_names.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./material]
type = GenericConstantMaterial
prop_names = combo
boundary = 'left right'
prop_values = 12345
[../]
[]
[UserObjects]
[./get_material_boundary_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'left right'
property_name = combo
test_type = 'boundary'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_ts_test.i)
#
# Testing nodal aux variables that are computed only at the end of the time step
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
active = 'aux1 aux2'
[./aux1]
order = FIRST
family = LAGRANGE
[../]
[./aux2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff force'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = aux2
[../]
[]
[AuxKernels]
active = 'constant field'
#Simple Aux Kernel
[./constant]
variable = aux1
type = ConstantAux
value = 1
[../]
#Shows coupling of Aux to nonlinear
[./field]
variable = aux2
type = CoupledAux
value = 2
coupled = u
execute_on = timestep_end
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 2
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_ts
exodus = true
[]
(modules/combined/test/tests/multiphase_mechanics/twophasestress.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmin = 0
xmax = 2
ymin = 0
ymax = 2
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./eta]
[./InitialCondition]
type = FunctionIC
function = 'x/2'
[../]
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = e11_aux
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeElasticityTensor
base_name = A
fill_method = symmetric9
C_ijkl = '1e6 1e5 1e5 1e6 0 1e6 .4e6 .2e6 .5e6'
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
eigenstrain_names = eigenstrain
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./eigenstrain_A]
type = ComputeEigenstrain
base_name = A
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor_B]
type = ComputeElasticityTensor
base_name = B
fill_method = symmetric9
C_ijkl = '1e6 0 0 1e6 0 1e6 .5e6 .5e6 .5e6'
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
eigenstrain_names = 'B_eigenstrain'
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./eigenstrain_B]
type = ComputeEigenstrain
base_name = B
eigen_base = '0.1 0.05 0 0 0 0.01'
prefactor = -1
eigenstrain_name = 'B_eigenstrain'
[../]
[./switching]
type = SwitchingFunctionMaterial
eta = eta
[../]
[./combined]
type = TwoPhaseStressMaterial
base_A = A
base_B = B
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/outputs/postprocessor/postprocessor_invalid.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
outputs = 'exodus2 console'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
outputs = 'exodus'
[../]
[./num_nonlinear]
type = NumVars
system = 'NL'
outputs = 'all'
[../]
[./num_dofs]
type = NumDOFs
outputs = 'none'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
[../]
[./exodus2]
type = Exodus
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_force_step.i)
# This is a test designed to evaluate the cabability of the
# IterationAdaptiveDT TimeStepper to adjust time step size according to
# a function. For example, if the power input function for a BISON
# simulation rapidly increases or decreases, the IterationAdaptiveDT
# TimeStepper should take time steps small enough to capture the
# oscillation.
[GlobalParams]
order = FIRST
family = LAGRANGE
block = 1
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 1hex8_10mm_cube.e
[]
[Functions]
[./Fiss_Function]
type = PiecewiseLinear
data_file = blip.csv
format = columns
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
eigenstrain_names = thermal_expansion
add_variables = true
generate_output = 'vonmises_stress'
temperature = temp
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[./heat_source]
type = HeatSource
variable = temp
value = 1.0
function = Fiss_Function
[../]
[]
[BCs]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = 1
value = 300
[../]
[./top_bottom_disp_x]
type = DirichletBC
variable = disp_x
boundary = '1'
value = 0
[../]
[./top_bottom_disp_y]
type = DirichletBC
variable = disp_y
boundary = '1'
value = 0
[../]
[./top_bottom_disp_z]
type = DirichletBC
variable = disp_z
boundary = '1'
value = 0
[../]
[]
[Materials]
[./thermal]
type = HeatConductionMaterial
temp = temp
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 300e6
poissons_ratio = .3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 5e-6
stress_free_temperature = 300.0
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[./density]
type = Density
density = 10963.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
verbose = true
nl_abs_tol = 1e-10
start_time = 0.0
num_steps = 50000
end_time = 5.1e3
[./TimeStepper]
type = IterationAdaptiveDT
timestep_limiting_function = Fiss_Function
max_function_change = 3e20
force_step_every_function_point = true
dt = 1e2
[../]
[]
[Postprocessors]
[./Temperature_of_Block]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./vonMises]
type = ElementAverageValue
variable = vonmises_stress
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 10
[../]
[]
(test/tests/mesh/mesh_generation/mesh_generation_test.i)
###########################################################
# This is a simple test of the Mesh System. This
# test demonstrates the usage of GeneratedMesh. It
# builds a square domain on demand.
#
# @Requirement F2.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
# Mesh Generation produces boundaries in counter-clockwise fashion
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/test.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = pk2
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_rate_gss
index = 0
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/function_file_test3.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_mixed_lengths.csv #Will generate error because length of data doesn't match on all rows
format = rows
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion_function/finite_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/geomsearch/fake_block_to_boundary/fake_block_to_boundary.i)
[Mesh]
type = FileMesh
file = fake_geom_search.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./distance_to_left_nodes]
[../]
[./penetration_to_left]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nodal_distance_aux]
type = NearestNodeDistanceAux
variable = distance_to_left_nodes
boundary = 100
paired_boundary = left
[../]
[./penetration_aux]
type = PenetrationAux
variable = penetration_to_left
boundary = 100
paired_boundary = left
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/chemistry/2species_equilibrium.i)
# PorousFlow analogy of chemical_reactions/test/tests/aqueous_equilibrium/2species.i
#
# Simple equilibrium reaction example to illustrate the use of PorousFlowMassFractionAqueousEquilibriumChemistry
#
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction:
#
# reactions = '2a = pa2 rate = 10^2
# a + b = pab rate = 10^-2'
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[a]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[]
[]
[b]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[]
[]
[]
[AuxVariables]
[eqm_k0]
initial_condition = 1E2
[]
[eqm_k1]
initial_condition = 1E-2
[]
[pressure]
[]
[pa2]
family = MONOMIAL
order = CONSTANT
[]
[pab]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pa2]
type = PorousFlowPropertyAux
property = secondary_concentration
secondary_species = 0
variable = pa2
[]
[pab]
type = PorousFlowPropertyAux
property = secondary_concentration
secondary_species = 1
variable = pab
[]
[]
[ICs]
[pressure]
type = FunctionIC
variable = pressure
function = 2-x
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Kernels]
[mass_a]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = a
[]
[flux_a]
type = PorousFlowFullySaturatedDarcyFlow
variable = a
fluid_component = 0
[]
[diff_a]
type = PorousFlowDispersiveFlux
variable = a
fluid_component = 0
disp_trans = 0
disp_long = 0
[]
[mass_b]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = b
[]
[flux_b]
type = PorousFlowFullySaturatedDarcyFlow
variable = b
fluid_component = 1
[]
[diff_b]
type = PorousFlowDispersiveFlux
variable = b
fluid_component = 1
disp_trans = 0
disp_long = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'a b'
number_fluid_phases = 1
number_fluid_components = 3
number_aqueous_equilibrium = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9 # huge, so mimic chemical_reactions
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pressure
[]
[massfrac]
type = PorousFlowMassFractionAqueousEquilibriumChemistry
mass_fraction_vars = 'a b'
num_reactions = 2
equilibrium_constants = 'eqm_k0 eqm_k1'
primary_activity_coefficients = '1 1'
secondary_activity_coefficients = '1 1'
reactions = '2 0
1 1'
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
# porous_flow permeability / porous_flow viscosity = chemical_reactions conductivity = 1E-4
permeability = '1E-7 0 0 0 1E-7 0 0 0 1E-7'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[diff]
type = PorousFlowDiffusivityConst
# porous_flow diffusion_coeff * tortuousity * porosity = chemical_reactions diffusivity = 1E-4
diffusion_coeff = '5E-4 5E-4 5E-4'
tortuosity = 1.0
[]
[]
[BCs]
[a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[]
[b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 10
end_time = 100
[]
[Outputs]
print_linear_residuals = true
exodus = true
perf_graph = true
[]
(test/tests/outputs/append_date/append_date.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
append_date = true
[./date]
type = Exodus
append_date_format = '%m-%d-%Y'
[../]
[]
(modules/stochastic_tools/test/tests/surrogates/pod_rb/errors/sub.i)
[Problem]
type = FEProblem
extra_tag_vectors = 'diff react bodyf'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 15
xmax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = k
extra_vector_tags = 'diff'
[]
[reaction]
type = MaterialReaction
variable = u
coefficient = alpha
extra_vector_tags = 'react'
[]
[source]
type = BodyForce
variable = u
value = 1.0
extra_vector_tags = 'bodyf'
[]
[]
[Materials]
[k]
type = GenericConstantMaterial
prop_names = k
prop_values = 1.0
[]
[alpha]
type = GenericConstantMaterial
prop_names = alpha
prop_values = 1.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(test/tests/materials/stateful_prop/stateful_prop_copy_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 4
ny = 4
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 3
value = 0.0
[../]
[./top]
type = MTBC
variable = u
boundary = 1
grad = 1.0
prop_name = thermal_conductivity
[../]
[]
[Materials]
[./stateful]
type = StatefulSpatialTest
block = 0
[../]
[]
[UserObjects]
[./copy]
type = MaterialCopyUserObject
copy_times = 0.3
copy_from_element = 0
copy_to_element = 15
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = out_stateful_copy
exodus = true
[]
(test/tests/performance/input.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/debug/show_top_residuals_nonlinear_only.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./debug] # This is only a test, this should be turned on via the [Debug] block
type = TopResidualDebugOutput
num_residuals = 1
execute_on = nonlinear
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/stabilization/cook_small.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = false
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 10.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 250.0
poissons_ratio = 0.4999999
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-6
l_tol = 1e-10
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/thermal_hydraulics/test/tests/vectorpostprocessors/sampler_1d_real/sampler_1d_real.i)
# Tests the Sampler1DReal vector post-processor, which samples a scalar-valued
# material on a block of a 1-D mesh. This test solves a diffusion problem and
# sets up a constant material to sample.
[Mesh]
type = GeneratedMesh
xmax = 10
dim = 1
nx = 5
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[mat]
type = ConstantMaterial
property_name = test_property
value = 7
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[VectorPostprocessors]
[test_property_vpp]
type = Sampler1DReal
block = 0
property = test_property
sort_by = x
[]
[]
[Outputs]
[out]
type = CSV
file_base = out
execute_vector_postprocessors_on = timestep_end
show = 'test_property_vpp'
[]
[]
(test/tests/transfers/multiapp_postprocessor_transfer/master_from_multiapp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./sub_average]
type = Receiver
[../]
[./sub_sum]
type = Receiver
[../]
[./sub_maximum]
type = Receiver
[../]
[./sub_minimum]
type = Receiver
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '0.2 0.2 0 0.7 0.7 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub0.i sub1.i'
[../]
[]
[Transfers]
[./pp_transfer_ave]
type = MultiAppPostprocessorTransfer
reduction_type = average
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_average
[../]
[./pp_transfer_sum]
type = MultiAppPostprocessorTransfer
reduction_type = sum
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_sum
[../]
[./pp_transfer_min]
type = MultiAppPostprocessorTransfer
reduction_type = minimum
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_minimum
[../]
[./pp_transfer_max]
type = MultiAppPostprocessorTransfer
reduction_type = maximum
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_maximum
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_no_substructure.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[substructure_density]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[tau_3]
type = MaterialStdVectorAux
variable = resolved_shear_stress_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[slip_resistance_3]
type = MaterialStdVectorAux
variable = slip_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[substructure_density]
type = MaterialRealAux
variable = substructure_density
property = total_substructure_density
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
preset = true
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = hcp_aprismatic_capyramidal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7'
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0 #artifically low for specific test
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '100 200'
effective_shear_modulus_per_mode = '5e4 5e4'
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1e5 2e7'
normalized_slip_activiation_energy_per_mode = '4e-3 3e-2'
slip_energy_proportionality_factor_per_mode = '300 100'
substructure_rate_coefficient_per_mode = '-355 -0.4' #artifical, non-physical values for testing purposes
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '1 1'
grain_size = 20.0e-3 #20 microns
[]
[]
[Postprocessors]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[tau_3]
type = ElementAverageValue
variable = resolved_shear_stress_3
[]
[slip_resistance_3]
type = ElementAverageValue
variable = slip_resistance_3
[]
[substructure_density]
type = ElementAverageValue
variable = substructure_density
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 2.5
[]
[Outputs]
csv = true
[]
(modules/heat_conduction/test/tests/heat_conduction/min_gap/min_gap.i)
[Mesh]
type = MeshGeneratorMesh
displacements = 'disp_x disp_y'
[./left_gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 3
xmin = -3
xmax = 0
ymin = -5
ymax = 5
[../]
[./right_gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 3
xmin = 3
xmax = 6
ymin = -5
ymax = 5
[../]
[./left_and_right]
type = MeshCollectionGenerator
inputs = 'left_gen right_gen'
[../]
[./leftleft]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = leftleft
normal = '-1 0 0'
input = left_and_right
[../]
[./leftright]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = leftright
normal = '1 0 0'
input = leftleft
[../]
[./right]
type = SubdomainBoundingBoxGenerator
top_right = '6 5 0'
bottom_left = '3 -5 0'
block_id = 1
input = leftright
[../]
[./rightleft]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = rightleft
normal = '-1 0 0'
input = right
[../]
[./rightright]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = rightright
normal = '1 0 0'
input = rightleft
[../]
[]
[Variables]
[./temp]
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./gap_conductance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./disp_x]
type = ParsedFunction
value = -3+t
[../]
[./left_temp]
type = ParsedFunction
value = 1000+t
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./disp_x]
type = FunctionAux
block = 1
variable = disp_x
function = disp_x
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./gap_conductivity]
type = MaterialRealAux
boundary = leftright
property = gap_conductance
variable = gap_conductance
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = temp
boundary = leftleft
function = left_temp
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
variable = temp
min_gap = 1
min_gap_order = 1
emissivity_primary = 0
emissivity_secondary = 0
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = '0 1'
specific_heat = 1
thermal_conductivity = 1
use_displaced_mesh = true
[../]
[]
[Postprocessors]
[./gap_conductance]
type = PointValue
point = '0 0 0'
variable = gap_conductance
[../]
[]
[Executioner]
type = Transient
dt = 0.25
end_time = 3.0
solve_type = 'PJFNK'
[]
[Outputs]
csv = true
execute_on = 'TIMESTEP_END'
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./rot_x_inertial]
type = NodalRotationalInertia
variable = rot_x
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 0
[../]
[./rot_y_inertial]
type = NodalRotationalInertia
variable = rot_y
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 1
[../]
[./rot_z_inertial]
type = NodalRotationalInertia
variable = rot_z
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 2
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/misc/line_source/line_source.i)
[Mesh]
type = FileMesh
file = line_source_cube.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = bulk
[../]
[./heating]
type = BodyForce
variable = u
function = 1
block = heater
[../]
[]
[BCs]
[./outside]
type = DirichletBC
variable = u
boundary = outside
value = 0
[../]
[]
[Materials]
[./diffusivity]
type = GenericConstantMaterial
block = 'bulk heater'
prop_names = diffusivity
prop_values = 1
[../]
[]
[Postprocessors]
[./total_flux]
type = SideDiffusiveFluxIntegral
variable = u
boundary = outside
diffusivity = diffusivity
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/ad_simple_diffusion/ad_simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
# Preconditioned JFNK (default)
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-10
nl_rel_tol = 1e-9
nl_max_its = 1
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/poro_elasticity/mandel_constM.i)
# Mandel's problem of consolodation of a drained medium
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[]
[]
[Functions]
[top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[]
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[tot_force]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.6
solid_bulk = 1
constant_fluid_bulk_modulus = 8
constant_biot_modulus = 4.7058823529
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[]
[p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[]
[p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[]
[p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[]
[p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[]
[p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[]
[p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[]
[p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[]
[p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[]
[p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[]
[p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[]
[xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[]
[ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[]
[total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_constM
[csv]
interval = 3
type = CSV
[]
[]
(test/tests/postprocessors/side_diffusive_flux_integral/vector_functor_prop.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./right_bc]
# Flux BC for computing the analytical solution in the postprocessor
type = ParsedFunction
value = exp(y)+1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = right
function = right_bc
[../]
[]
[Materials]
[./mat_props_vector_functor]
type = ADGenericVectorFunctorMaterial
prop_names = diffusivity_vec
prop_values = '1 1.5 1'
[../]
[conversion]
type = PropFromFunctorProp
vector_functor = diffusivity_vec
vector_prop = diffusivity_vec
[]
[]
[Postprocessors]
[./avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = ADSideVectorDiffusivityFluxIntegral
variable = u
boundary = right
diffusivity = diffusivity_vec
[../]
[./avg_flux_top]
type = ADSideVectorDiffusivityFluxIntegral
variable = u
boundary = top
diffusivity = diffusivity_vec
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/3D/dirichlet.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.4 * t'
[]
[pully]
type = ParsedFunction
value = '-0.2 * t'
[]
[pullz]
type = ParsedFunction
value = '0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[pull_z]
type = FunctionDirichletBC
boundary = right
variable = disp_z
function = pullz
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/error_no_nodes_found.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '0.5 0.5 0'
top_right = '1.9 1.9 0'
[]
[createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
block_id = 0
boundary_id_old = 'top right'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.7 0.3 0'
boundary_id_overlap = true
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/diffusion_xfem/levelsetcut3d.i)
# 3D: Mesh is cut by level set based cutter
# The level set is a MOOSE auxvariable
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[./ls_func]
type = ParsedFunction
value = 'sqrt(x*x + y*y + z*z) - 0.5'
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/scalar_material_damage/scalar_material_damage_creep_power.i)
# This is a basic test of the system for continuum damage mechanics
# materials. It uses ScalarMaterialDamage for the damage model,
# which simply gets its damage index from another material. In this
# case, we prescribe the evolution of the damage index using a
# function. A single element has a fixed prescribed displacement
# on one side that puts the element in tension, and then the
# damage index evolves from 0 to 1 over time, and this verifies
# that the stress correspondingly drops to 0.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[AuxVariables]
[damage_index]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx strain_xx creep_strain_xx'
[]
[]
[AuxKernels]
[damage_index]
type = MaterialRealAux
variable = damage_index
property = damage_index_prop
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[axial_load]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[]
[]
[Functions]
[damage_evolution]
type = PiecewiseLinear
xy_data = '0.0 0.0
0.1 0.0
2.1 2.0'
[]
[]
[Materials]
[damage_index]
type = GenericFunctionMaterial
prop_names = damage_index_prop
prop_values = damage_evolution
[]
[damage]
type = ScalarMaterialDamage
damage_index = damage_index_prop
[]
[stress]
type = ComputeMultipleInelasticStress
damage_model = damage
inelastic_models = 'creep'
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 140000
poissons_ratio = 0.3
[]
[creep]
type = PowerLawCreepStressUpdate
coefficient = 1.1e-12 #
n_exponent = 8.7
m_exponent = 0
activation_energy = 0.0
[]
[]
[Postprocessors]
[stress_xx]
type = ElementAverageValue
variable = stress_xx
[]
[strain_xx]
type = ElementAverageValue
variable = strain_xx
[]
[creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
[]
[damage_index]
type = ElementAverageValue
variable = damage_index
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 0.1
dtmin = 0.001
end_time = 1.1
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/outputs/debug/show_material_props.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./subdomains]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.1 0.1 0'
block_id = 1
top_right = '0.9 0.9 0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./block]
type = GenericConstantMaterial
block = '0 1'
prop_names = 'property0 property1 property2 property3 property4 property5 property6 property7 property8 property9 property10'
prop_values = '0 1 2 3 4 5 6 7 8 9 10'
[../]
[./boundary]
type = GenericConstantMaterial
prop_names = bnd_prop
boundary = top
prop_values = 12345
[../]
[./restricted]
type = GenericConstantMaterial
block = 1
prop_names = 'restricted0 restricted1'
prop_values = '10 11'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./debug] # This is only a test, you should turn this on via [Debug] block
type = MaterialPropertyDebugOutput
[../]
[]
(test/tests/vectorpostprocessors/dynamic_point_sampler/dynamic_point_sampler.i)
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[u]
[]
[]
[Functions]
[forcing_func]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[]
[u_func]
type = ParsedGradFunction
value = sin(alpha*pi*x)
grad_x = alpha*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[forcing]
type = BodyForce
variable = u
function = forcing_func
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = 'u'
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = 'u'
boundary = 'right'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 7
dt = 0.1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = u_func
[]
[dofs]
type = NumDOFs
[]
[]
[Adaptivity]
max_h_level = 3
marker = error
[Indicators]
[jump]
type = GradientJumpIndicator
variable = u
[]
[]
[Markers]
[error]
type = ErrorFractionMarker
indicator = jump
coarsen = 0.1
refine = 0.3
[]
[]
[]
[VectorPostprocessors]
[dynamic_line_sampler]
type = DynamicPointValueSampler
variable = u
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 6
sort_by = x
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/kernels/ad_mat_diffusion/1D_transient.i)
# This test solves a 1D transient heat equation
# The error is calculated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 1
nx = 160
xmax = 80
[]
[Variables]
[./T]
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '100*sin(pi*x/80)'
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = T
diffusivity = 0.95
[../]
[./dt]
type = CoefTimeDerivative
variable = T
Coefficient = 0.82064
[../]
[]
[BCs]
[./sides]
type = DirichletBC
variable = T
boundary = 'left right'
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1e-2
end_time = 1
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(pi*x/80)*exp(-0.95/(0.092*8.92)*pi^2/80^2*t)'
variable = T
outputs = console
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/static_orientation/euler_small_strain_orientation_yz_cross_section.i)
# Test for small strain Euler beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.0e4
# Poissons ratio (nu) = -0.9998699638
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 2.04e6
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = PL^3/3EI = 578 m
# Using 10 elements to discretize the beam element, the FEM solution is 576.866 m.
# The ratio beam FEM solution and analytical solution is 0.998.
# Beam is on the global YZ plane at a 45 deg. angle. The cross section geometry
# is non-symmetric
# References:
# Prathap and Bashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
[Mesh]
type = FileMesh
file = euler_small_strain_orientation_inclined_yz.e
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0047296333
y_orientation = '-1.0 0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = -0.9998699638
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 0
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 0
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 0
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 0
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 0
value = 0.0
[../]
[]
[NodalKernels]
[./force_x2]
type = ConstantRate
variable = disp_x
boundary = 1
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '0.0 2.8284271 2.8284271'
variable = disp_x
[../]
# [./disp_y]
# type = PointValue
# point = '2.8284271 2.8284271 0.0'
# variable = disp_y
# [../]
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/functions/parsed/vector_function.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./conductivity]
type = ParsedVectorFunction
value_y = 0.1
value_x = 0.8
[../]
[]
[Kernels]
[./diff]
type = DiffTensorKernel
variable = u
conductivity = conductivity
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/time_integrator_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
# Don't allow multiple TimeIntegrators
scheme = 'implicit-euler'
[./TimeIntegrator]
type = 'ImplicitEuler'
[../]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mortar_aux_kernels/block-dynamics-aux-vel.i)
starting_point = 2e-1
offset = -0.19
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[normal_lm]
block = 3
use_dual = true
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
strain = FINITE
block = '1 2'
zeta = 1.0
alpha = 0.0
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
alpha = 0
eta = 0.0
block = '1 2'
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e8
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[strain]
type = ComputeFiniteStrain
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[AuxVariables]
[gap_vel]
block = '3'
[]
[vel_x]
block = '1 2'
[]
[accel_x]
block = '1 2'
[]
[vel_y]
block = '1 2'
[]
[accel_y]
block = '1 2'
[]
[vel_z]
block = '1 2'
[]
[accel_z]
block = '1 2'
[]
[]
[AuxKernels]
[gap_vel]
type = WeightedGapVelAux
variable = gap_vel
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
disp_x = disp_x
disp_y = disp_y
[]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = 'linear timestep_end'
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = 'linear timestep_end'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeDynamicWeightedGapLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
c = 1e4
interpolate_normals = false
capture_tolerance = 1.0e-5
newmark_beta = 0.25
newmark_gamma = 0.5
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 4 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 0.1
dt = 0.05
dtmin = 0.05
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err '
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 1e-5'
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rspherical_small_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = StressDivergenceRSphericalTensors
component = 0
variable = disp_r
[../]
[]
[BCs]
[./center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeRSphericalSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
nl_max_its = 200
[]
[Outputs]
exodus = true
file_base = rspherical_small_elastic_out
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test3qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3qtt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3qtt_out
exodus = true
[]
(tutorials/tutorial02_multiapps/step03_coupling/02_master_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
f_name = D
args = 'vt'
function = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
picard_max_its = 10
nl_abs_tol = 1e-10
picard_rel_tol = 1e-6
picard_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '02_sub_picard.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(test/tests/executioners/nullspace/singular_contaminated.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 10
nx = 8
[]
[Problem]
null_space_dimension = 1
transpose_null_space_dimension = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./eig]
type = MassEigenKernel
variable = u
eigen_postprocessor = 1.0002920196258376e+01
eigen = false
[../]
[./force]
type = CoupledForce
variable = u
v = aux_v
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = eigen_mode
[../]
[../]
[]
[AuxKernels]
[./set_source]
type = FunctionAux
variable = aux_v
function = contaminated_second_harmonic
execute_on = timestep_begin
[../]
[]
[Functions]
[./eigen_mode]
type = ParsedFunction
value = 'sqrt(2.0 / L) * sin(mode * pi * x / L)'
vars = 'L mode'
vals = '10 1'
[../]
[./contaminated_second_harmonic]
type = ParsedFunction
value = 'sqrt(2.0 / L) * sin(mode * pi * x / L) + a * sqrt(2.0 / L) * sin(pi * x / L)'
vars = 'L mode a'
vals = '10 2 1'
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1'
value = 0
[../]
[]
[VectorPostprocessors]
[./sample_solution]
type = LineValueSampler
variable = u
start_point = '0 0 0'
end_point = '10 0 0'
sort_by = x
num_points = 9
execute_on = timestep_end
[../]
[]
[Preconditioning]
[./prec]
type = SMP
full = true
[../]
[]
[Executioner]
type = SteadyWithNull
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_pc_side -snes_type -ksp_norm_type'
petsc_options_value = 'hypre boomeramg left ksponly preconditioned'
nl_rel_tol = 1.0e-14
nl_abs_tol = 1.0e-14
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(test/tests/userobjects/element_quality_check/failure_warning.i)
[Mesh]
file = Quad.e
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[UserObjects]
[./elem_quality_check]
type = ElementQualityChecker
metric_type = STRETCH
failure_type = WARNING
upper_bound = 1.0
lower_bound = 0.5
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_axial_motion.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction=true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Modules/TensorMechanics/Master]
[master]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
add_variables = true
decomposition_method = EigenSolution
use_finite_deform_jacobian = true
[]
[]
[BCs]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# Because rotation is prescribed about the z axis, the
# DisplacementAboutAxis BC is only needed for the x and y
# displacements.
[./top_x]
type = DisplacementAboutAxis
boundary = top
function = 't'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[../]
[./top_y]
type = DisplacementAboutAxis
boundary = top
function = 't'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Postprocessors]
[./disp_x_5]
type = NodalVariableValue
variable = disp_x
nodeid = 5
[../]
[./disp_y_5]
type = NodalVariableValue
variable = disp_y
nodeid = 5
[../]
[./disp_x_6]
type = NodalVariableValue
variable = disp_x
nodeid = 6
[../]
[./disp_y_6]
type = NodalVariableValue
variable = disp_y
nodeid = 6
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-9
l_tol = 1e-8
start_time = 0.0
dt = 2
dtmin = 2 # die instead of cutting the timestep
end_time = 90
[]
[Outputs]
file_base = disp_about_axis_axial_motion_out
csv = true
[]
(python/peacock/tests/input_tab/InputTreeWriter/gold/simple_diffusion_no_diff.i)
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
inactive = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/ref-displaced.i)
[Mesh]
file = 3blk.e
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./disp_x]
block = 1
[../]
[./disp_y]
block = 1
[../]
[]
[AuxKernels]
[./disp_x_kernel]
type = ConstantAux
variable = disp_x
value = 0.1
[../]
[./disp_y_kernel]
type = ConstantAux
variable = disp_y
value = 0
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[]
[Materials]
[./left]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[../]
[./right]
type = HeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[../]
[./middle]
type = HeatConductionMaterial
block = 3
thermal_conductivity = 100
specific_heat = 1
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
use_displaced_mesh = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-11
l_tol = 1e-11
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_copy_transfer/errors/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
source_variable = u
variable = u
to_multi_app = sub
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_eigen_sol.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = '0.01 * t'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
decomposition_method = EigenSolution
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
nl_rel_tol = 1e-10
dt = 0.05
dtmin = 0.05
nl_abs_step_tol = 1e-10
num_steps = 10
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_4/ring4_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/postprocessors/nodal_var_value/screen_output_test.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[./console]
type = Console
max_rows = 2
[../]
[]
(test/tests/kernels/forcing_function/forcing_function_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func'
[./forcing_func]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '16'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/multiapps/secant/transient_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'secant'
fixed_point_max_its = 30
transformed_variables = 'u'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'transient_sub.i'
clone_master_mesh = true
execute_on = 'timestep_begin'
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
execute_on = 'timestep_begin'
[]
[u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
execute_on = 'timestep_begin'
[]
[]
(test/tests/bcs/periodic/wedge_sys.i)
[Mesh]
file = wedge.e
[]
[Functions]
active = 'tr_x tr_y'
[./tr_x]
type = ParsedFunction
value = -x
[../]
[./tr_y]
type = ParsedFunction
value = y
[../]
[]
[Variables]
active = 'u temp'
# active = 'temp'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff forcing dot dot_T diff_T'
# active = 'dot_T diff_T'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = -0.5
y_center = 3.0
x_spread = 0.2
y_spread = 0.2
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[./dot_T]
type = TimeDerivative
variable = temp
[../]
[./diff_T]
type = Diffusion
variable = temp
[../]
[]
[BCs]
#active = ' '
[./Periodic]
[./x]
primary = 1
secondary = 2
transform_func = 'tr_x tr_y'
inv_transform_func = 'tr_x tr_y'
variable = u
[../]
[../]
[./left_temp]
type = DirichletBC
value = 0
boundary = 1
variable = temp
[../]
[./right_temp]
type = DirichletBC
value = 1
boundary = 2
variable = temp
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_wedge_sys
exodus = true
[]
(modules/combined/test/tests/gap_heat_transfer_convex/gap_heat_transfer_convex.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
[]
[Mesh]
file = gap_heat_transfer_convex.e
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0 2.0'
y = '0 1.0'
[../]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '200 200'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 100
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 2
secondary = 3
emissivity_primary = 0
emissivity_secondary = 0
[../]
[]
[Modules/TensorMechanics/Master/All]
volumetric_locking_correction = true
strain = FINITE
eigenstrain_names = eigenstrain
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./move_right]
type = FunctionDirichletBC
boundary = '3'
variable = disp_x
function = disp
[../]
[./fixed_x]
type = DirichletBC
boundary = '1'
variable = disp_x
value = 0
[../]
[./fixed_y]
type = DirichletBC
boundary = '1 2 3 4'
variable = disp_y
value = 0
[../]
[./fixed_z]
type = DirichletBC
boundary = '1 2 3 4'
variable = disp_z
value = 0
[../]
[./temp_bottom]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_top]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 100
thermal_expansion_coeff = 0
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./heat1]
type = HeatConductionMaterial
block = 1
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./heat2]
type = HeatConductionMaterial
block = 2
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
block = '1 2'
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
dt = 0.1
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test5.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[../]
[./SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox2
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/quadrature_nearest_node_locator/quadrature_nearest_node_locator.i)
[Mesh]
file = 2dcontact_collide.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./distance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./distance]
type = NearestNodeDistanceAux
variable = distance
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/action/action_1D.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = FINITE
add_variables = true
new_system = true
formulation = UPDATED
volumetric_locking_correction = false
[]
[]
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[stress_base]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d_inst_ctefunc.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = 10.0*(2*x/504)
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '-10 -10
10 10'
scale_factor = 1e-6
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
temperature = temp
incremental = true
eigenstrain_names = thermal_expansion
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
eigenstrain_names = thermal_expansion
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
block = 1
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
[Preconditioning]
[./smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[../]
[]
(test/tests/userobjects/nearest_point_layered_average/nearest_point_layered_average.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./np_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./np_layered_average]
type = SpatialUserObjectAux
variable = np_layered_average
execute_on = timestep_end
user_object = npla
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 1
[../]
[]
[UserObjects]
[./npla]
type = NearestPointLayeredAverage
direction = y
num_layers = 10
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mortar/continuity-2d-conforming/conforming_two_var.i)
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-conf.e
[]
[secondary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Functions]
[./exact_sln]
type = ParsedFunction
value = y
[../]
[./ffn]
type = ParsedFunction
value = 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm_u]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm_v]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = ffn
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./coupled_u]
type = CoupledForce
variable = v
v = u
[../]
[]
[Constraints]
[./ced_u]
type = EqualValueConstraint
variable = lm_u
secondary_variable = u
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
[../]
[./ced_v]
type = EqualValueConstraint
variable = lm_v
secondary_variable = v
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '1 2 3 4'
function = exact_sln
[../]
[./allv]
type = DirichletBC
variable = v
boundary = '1 2 3 4'
value = 0
[../]
[]
[Postprocessors]
[./l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[../]
[./l2_v]
type = ElementL2Norm
variable = v
block = '1 2'
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
l_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_topo_q_func.i)
#This tests the J-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the J-Integrals using options
#to treat it as 3d.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
q_function_type = Topology
ring_first = 1
ring_last = 3
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_z
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_3d_topo_q_func_out
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/auxkernels/principalstress.i)
[Mesh]
type = GeneratedMesh
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin=0.0
xmax=1.0
ymin=0.0
ymax=1.0
zmin=0.0
zmax=1.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block = 0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./front]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[./right]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = '-0.5*t'
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_max]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_mid]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_min]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_max]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_max
scalar_type = MaxPrincipal
[../]
[./stress_mid]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_mid
scalar_type = MidPrincipal
[../]
[./stress_min]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_min
scalar_type = MinPrincipal
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./stress_max]
type = ElementAverageValue
variable = stress_max
[../]
[./stress_mid]
type = ElementAverageValue
variable = stress_mid
[../]
[./stress_min]
type = ElementAverageValue
variable = stress_min
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmin=0.1
dtmax=1
end_time=1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
(modules/xfem/test/tests/bimaterials/glued_bimaterials_2d.i)
# This test is for two layer materials with different youngs modulus
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Mesh]
displacements = 'disp_x disp_y'
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 5.
ymin = 0.0
ymax = 5.
elem_type = QUAD4
[]
[./left_bottom]
type = ExtraNodesetGenerator
new_boundary = 'left_bottom'
coord = '0.0 0.0'
input = gen
[../]
[./left_top]
type = ExtraNodesetGenerator
new_boundary = 'left_top'
coord = '0.0 5.'
input = left_bottom
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'y-2.5'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./a_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./b_strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./a_strain_xx]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 0
variable = a_strain_xx
[../]
[./a_strain_yy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 1
index_j = 1
variable = a_strain_yy
[../]
[./a_strain_xy]
type = RankTwoAux
rank_two_tensor = A_total_strain
index_i = 0
index_j = 1
variable = a_strain_xy
[../]
[./b_strain_xx]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 0
variable = b_strain_xx
[../]
[./b_strain_yy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 1
index_j = 1
variable = b_strain_yy
[../]
[./b_strain_xy]
type = RankTwoAux
rank_two_tensor = B_total_strain
index_i = 0
index_j = 1
variable = b_strain_xy
[../]
[]
[Constraints]
[./dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[./dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[../]
[]
[Materials]
[./elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
base_name = A
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./strain_A]
type = ComputeSmallStrain
base_name = A
[../]
[./stress_A]
type = ComputeLinearElasticStress
base_name = A
[../]
[./elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
base_name = B
youngs_modulus = 1e5
poissons_ratio = 0.3
[../]
[./strain_B]
type = ComputeSmallStrain
base_name = B
[../]
[./stress_B]
type = ComputeLinearElasticStress
base_name = B
[../]
[./combined_stress]
type = LevelSetBiMaterialRankTwo
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = stress
[../]
[./combined_dstressdstrain]
type = LevelSetBiMaterialRankFour
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = Jacobian_mult
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'bt'
# controls for linear iterations
l_max_its = 20
l_tol = 1e-3
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-7
# time control
start_time = 0.0
dt = 0.1
num_steps = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
(examples/ex20_user_objects/ex20.i)
[Mesh]
file = two_squares.e
dim = 2
[]
[Variables]
[./u]
initial_condition = 0.01
[../]
[]
[Kernels]
[./diff]
type = ExampleDiffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = leftleft
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = rightright
value = 1
[../]
[]
[Materials]
[./badm]
type = BlockAverageDiffusionMaterial
block = 'left right'
block_average_userobject = bav
[../]
[]
[UserObjects]
[./bav]
type = BlockAverageValue
variable = u
execute_on = timestep_begin
outputs = none
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest7.i)
# 2D, removal of a union of disjoint pieces
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '1 1 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox2
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/output/output_block_displaced.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
displacements = 'disp disp'
[]
[Functions]
[./disp_fn]
type = ParsedFunction
value = x
[../]
[]
[AuxVariables]
[./disp]
[../]
[]
[AuxKernels]
[./disp_ak]
type = FunctionAux
variable = disp
function = disp_fn
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[Materials]
[./block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property tensor_property'
outputs = exodus
variable = u
[../]
[./block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property tensor_property'
outputs = exodus
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./exodus]
type = Exodus
use_displaced = true
sequence = false
[../]
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform10.i)
# apply a shear deformation and tensile stretch to observe all hardening.
# Here p_trial=12, q_trial=2*Sqrt(20)
# MOOSE yields:
# q_returned = 1.696
# p_returned = 0.100
# intnl_shear = 1.81
# intnl_tens = 0.886
# These give, at the returned point
# cohesion = 1.84
# tanphi = 0.513
# tanpsi = 0.058
# tensile = 0.412
# This means that
# f_shear = -0.0895
# f_tensile = -0.312
# Note that these are within smoothing_tol (=1) of each other
# Hence, smoothing must be used:
# ismoother = 0.0895
# (which gives the yield function value = 0)
# smoother = 0.328
# This latter gives dg/dq = 0.671, dg/dp = 0.368
# for the flow directions. Finally ga = 2.70, and
# the returned point satisfies the normality conditions.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 't'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '2*t'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't'
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 2
rate = 1
[../]
[./tanphi]
type = TensorMechanicsHardeningExponential
value_0 = 1.0
value_residual = 0.5
rate = 2
[../]
[./tanpsi]
type = TensorMechanicsHardeningExponential
value_0 = 0.1
value_residual = 0.05
rate = 1
[../]
[./t_strength]
type = TensorMechanicsHardeningExponential
value_0 = 1
value_residual = 0
rate = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 1E8
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 0
smoothing_tol = 1
yield_function_tol = 1E-3
perfect_guess = false
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform10
[./csv]
type = CSV
[../]
[]
(modules/contact/test/tests/mortar_tm/2drz/frictionless_second/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'small'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = 0
ymax = 10
nx = 2
ny = 33
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeLinearElasticStress
block = 'plank block'
[]
[swell]
type = ComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = GenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 3
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_representative_slip_systems.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_2]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_4]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[tau_0]
type = MaterialStdVectorAux
variable = resolved_shear_stress_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[tau_1]
type = MaterialStdVectorAux
variable = resolved_shear_stress_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[tau_2]
type = MaterialStdVectorAux
variable = resolved_shear_stress_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[tau_3]
type = MaterialStdVectorAux
variable = resolved_shear_stress_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[tau_4]
type = MaterialStdVectorAux
variable = resolved_shear_stress_4
property = applied_shear_stress
index = 4
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.1*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
euler_angle_1 = 45
euler_angle_2 = 60
euler_angle_3 = 30
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 5
slip_sys_file_name = select_input_slip_sys_hcp.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 4
number_slip_systems_per_mode = '1 1 2 1'
lattice_friction_per_mode = '10 10 15 30'
effective_shear_modulus_per_mode = '47e3 47e3 47e3 47e3'
burgers_vector_per_mode = '2.934e-7 2.934e-7 2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '2e7 1e5 2e7 2e7'
normalized_slip_activiation_energy_per_mode = '3e-2 4e-3 3e-2 3e-2'
slip_energy_proportionality_factor_per_mode = '100 330 100 100'
substructure_rate_coefficient_per_mode = '100 400 1 1'
applied_strain_rate = 0.001
gamma_o = 1.0e-3
strain_rate_sensitivity_exponent = 0.05
Hall_Petch_like_constant_per_mode = '10 10 10 10'
grain_size = 20.0e-3 #20 microns,
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[tau_0]
type = ElementAverageValue
variable = resolved_shear_stress_0
[]
[tau_1]
type = ElementAverageValue
variable = resolved_shear_stress_1
[]
[tau_2]
type = ElementAverageValue
variable = resolved_shear_stress_2
[]
[tau_3]
type = ElementAverageValue
variable = resolved_shear_stress_3
[]
[tau_4]
type = ElementAverageValue
variable = resolved_shear_stress_4
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.05
dtmin = 0.01
dtmax = 0.1
end_time = 0.4
[]
[Outputs]
csv = true
[]
(modules/porous_flow/examples/multiapp_fracture_flow/fracture_diffusion/no_multiapp.i)
# A fracture, which is a 1D line of elements, is embedded in a matrix, which is a 2D surface of elements.
# The meshes conform: all fracture nodes are also matrix nodes (the fracture elements are sides of matrix elements).
# The overall mesh has two blocks, named "matrix" and "fracture".
#
# Two variables are defined:
# - frac_T, which is the temperature inside the fracture;
# - matrix_T, which is the temperature in the matrix.
# frac_T is governed by a diffusion equation along the 1D fracture.
# matrix_T is governed by a diffusion equation in the 2D matrix, with small diffusion coefficient.
# Heat is exchanged between the two systems via a heat-transfer coefficient, defined on the fracture subdomain, using two PorousFlowHeatMassTransfer Kernels
#
# If the mesh is too coarse, overshoots and undershoots in matrix_T can be observed.
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 20
xmin = 0
xmax = 10.0
ny = 20 # anything less than this produces over/under-shoots
ymin = -2
ymax = 2
[]
[matrix_subdomain]
type = RenameBlockGenerator
input = generate
old_block = 0
new_block = matrix
[]
[fracture_sideset]
type = ParsedGenerateSideset
input = matrix_subdomain
combinatorial_geometry = 'y>-1E-6 & y<1E-6'
normal = '0 1 0'
new_sideset_name = fracture_sideset
[]
[fracture_subdomain]
type = LowerDBlockFromSidesetGenerator
input = fracture_sideset
new_block_id = 1
new_block_name = fracture
sidesets = fracture_sideset
[]
[]
[Variables]
[frac_T]
block = fracture
[]
[matrix_T]
# Needs to be defined on both blocks, so PorousFlowHeatMassTransfer works appropriately
# Kernels for diffusion are on block=matrix only
[]
[]
[BCs]
[frac_T]
type = DirichletBC
variable = frac_T
boundary = left
value = 1
[]
[]
[Kernels]
[dot_frac_T]
type = CoefTimeDerivative
Coefficient = 1E-2
variable = frac_T
block = fracture
[]
[fracture_diffusion]
type = AnisotropicDiffusion
variable = frac_T
tensor_coeff = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
block = fracture
[]
[toMatrix]
type = PorousFlowHeatMassTransfer
block = fracture
variable = frac_T
v = matrix_T
transfer_coefficient = 0.02
[]
[dot_matrix_T]
type = TimeDerivative
variable = matrix_T
block = matrix
[]
[matrix_diffusion]
type = AnisotropicDiffusion
variable = matrix_T
tensor_coeff = '1E-3 0 0 0 1E-3 0 0 0 1E-3'
block = matrix
[]
[fromFracture]
type = PorousFlowHeatMassTransfer
block = fracture
variable = matrix_T
v = frac_T
transfer_coefficient = 0.02
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 100
end_time = 100
[]
[VectorPostprocessors]
[frac_T]
type = NodalValueSampler
block = fracture
outputs = frac_T
sort_by = x
variable = frac_T
[]
[]
[Outputs]
print_linear_residuals = false
exodus = false
[frac_T]
type = CSV
execute_on = FINAL
[]
[]
(modules/tensor_mechanics/test/tests/beam/static/torsion_2.i)
# Torsion test with user provided Ix
# A beam of length 1 m is fixed at one end and a moment of 5 Nm
# is applied along the axis of the beam.
# G = 7.69e9
# Ix = 1e-5
# The axial twist at the free end of the beam is:
# phi = TL/GIx = 6.5e-4
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 1.0
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./block_all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
Iy = 1e-5
Iz = 1e-5
Ix = 1e-5
y_orientation = '0.0 1.0 0.0'
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = rot_x
boundary = right
rate = 5.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.0e9
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '1.0 0.0 0.0'
variable = rot_x
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/action/two_coord.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 16
ny = 8
xmin = -1
xmax = 1
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-1 0 0'
top_right = '0 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[Problem]
coord_type = 'XYZ RZ'
block = '1 2'
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
active = 'block1 block2'
[./error]
strain = SMALL
add_variables = true
[../]
[./block1]
strain = SMALL
add_variables = true
block = 1
[../]
[./block2]
strain = SMALL
add_variables = true
block = 2
[../]
[]
[AuxVariables]
[./vmstress]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./vmstress]
type = RankTwoScalarAux
rank_two_tensor = total_strain
variable = vmstress
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[BCs]
[./topx]
type = DirichletBC
boundary = 'top'
variable = disp_x
value = 0.0
[../]
[./topy]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./bottomx]
type = DirichletBC
boundary = 'bottom'
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.05
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/output_on/postprocessors.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./sum]
type = PerfGraphData
section_name = "Root"
data_type = total
execute_on = 'initial nonlinear timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = false
[./console]
type = Console
execute_postprocessors_on = 'initial nonlinear timestep_end'
[../]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest4.i)
# 3D, interior
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 1
xmin = 0
xmax = 4
ymin = 0
ymax = 4
zmin = 0
zmax = 1
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/grid-sequencing/grid-sequencing.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarsest mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
[]
[Mesh]
[File]
type = FileMeshGenerator
file = level0.e
[]
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[]
[Contact]
[contact]
secondary = 10
primary = 20
formulation = mortar
model = coulomb
friction_coefficient = 0.4
c_normal = 1e+02
c_tangential = 1.0e2
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 200
num_steps = 3
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-6'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
nl_abs_tol = 5e-10
num_grids = 5
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
sync_times = '15'
sync_only = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = contact_normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/materials/output/output_block.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.5
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[]
[]
[Materials]
[block_1]
type = OutputTestMaterial
block = 1
output_properties = 'real_property tensor_property'
outputs = exodus
variable = u
[]
[block_2]
type = OutputTestMaterial
block = 2
output_properties = 'vector_property tensor_property'
outputs = exodus
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/tag_based_naming_access/param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
control_tags = 'tag'
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
control_tags = 'tag'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag/*/point'
execute_on = 'initial'
[../]
[]
(test/tests/materials/discrete/recompute.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = 0
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
compute = false # make this material "discrete"
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(test/tests/geomsearch/penetration_locator/penetration_locator_test.i)
###########################################################
# This is a test of the Geometric Search System. This test
# uses the penetration location object through the
# PenetrationAux Auxilary Kernel to detect overlaps of
# specified interfaces (boundaries) in the domain.
#
# @Requirement F6.50
###########################################################
[Mesh]
file = 2dcontact_collide.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./penetration]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
active = 'penetrate'
[./penetrate]
type = PenetrationAux
variable = penetration
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
active = 'block1_left block1_right block2_left block2_right'
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_2d.i)
#This tests the Interaction Integral evaluation capability.
#This is a 2d nonlinear plane strain model
[GlobalParams]
order = FIRST
# order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
displacements = 'disp_x disp_y'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI InteractionIntegralKII InteractionIntegralKIII'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
output_q = false
incremental = true
equivalent_k = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = interaction_integral_2d_out
exodus = true
csv = true
[]
(test/tests/misc/check_error/kernel_with_empty_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = ''
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/heat_conduction/test/tests/meshed_gap_thermal_contact/meshed_annulus_thermal_contact.i)
[Mesh]
[fmesh]
type = FileMeshGenerator
file = meshed_annulus.e
[]
[rename]
type = RenameBlockGenerator
input = fmesh
old_block = '1 2 3'
new_block = '1 4 3'
[]
[]
[Variables]
[./temp]
block = '1 3'
initial_condition = 1.0
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
block = '1 3'
[../]
[./source]
type = HeatSource
variable = temp
block = 3
value = 10.0
[../]
[]
[BCs]
[./outside]
type = DirichletBC
variable = temp
boundary = 1
value = 1.0
[../]
[]
[ThermalContact]
[./gap_conductivity]
type = GapHeatTransfer
variable = temp
primary = 2
secondary = 3
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 0.5
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = '1 3'
temp = temp
thermal_conductivity = 1
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
material_coverage_check = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/thermal_eigenstrain_test.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[temperature]
order = FIRST
family = LAGRANGE
[]
[eth_xx]
order = CONSTANT
family = MONOMIAL
[]
[eth_yy]
order = CONSTANT
family = MONOMIAL
[]
[eth_zz]
order = CONSTANT
family = MONOMIAL
[]
[fth_xx]
order = CONSTANT
family = MONOMIAL
[]
[fth_yy]
order = CONSTANT
family = MONOMIAL
[]
[fth_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[temperature]
type = FunctionAux
variable = temperature
function = '300+400*t' # temperature increases at a constant rate
execute_on = timestep_begin
[]
[eth_xx]
type = RankTwoAux
variable = eth_xx
rank_two_tensor = thermal_eigenstrain
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[eth_yy]
type = RankTwoAux
variable = eth_yy
rank_two_tensor = thermal_eigenstrain
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[eth_zz]
type = RankTwoAux
variable = eth_zz
rank_two_tensor = thermal_eigenstrain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fth_xx]
type = RankTwoAux
variable = fth_xx
rank_two_tensor = thermal_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fth_yy]
type = RankTwoAux
variable = fth_yy
rank_two_tensor = thermal_deformation_gradient
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[fth_zz]
type = RankTwoAux
variable = fth_zz
rank_two_tensor = thermal_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
eigenstrain_names = thermal_eigenstrain
tan_mod_type = exact
maximum_substep_iteration = 5
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[thermal_eigenstrain]
type = ComputeCrystalPlasticityThermalEigenstrain
eigenstrain_name = thermal_eigenstrain
deformation_gradient_name = thermal_deformation_gradient
temperature = temperature
thermal_expansion_coefficients = '1e-05 2e-05 4e-05' # thermal expansion coefficients along three directions
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[eth_xx]
type = ElementAverageValue
variable = eth_xx
[]
[eth_yy]
type = ElementAverageValue
variable = eth_yy
[]
[eth_zz]
type = ElementAverageValue
variable = eth_zz
[]
[fth_xx]
type = ElementAverageValue
variable = fth_xx
[]
[fth_yy]
type = ElementAverageValue
variable = fth_yy
[]
[fth_zz]
type = ElementAverageValue
variable = fth_zz
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.1
dtmin = 1e-4
end_time = 10
[]
[Outputs]
csv = true
[console]
type = Console
max_rows = 5
[]
[]
(test/tests/mesh/nemesis/nemesis_test.i)
###########################################################
# This test exercises the parallel computation aspect of
# the framework. Seperate input mesh files are read on
# different processors and separate output files are
# produced on different processors.
#
# @Requirement P1.10
###########################################################
[Mesh]
file = cylinder/cylinder.e
nemesis = true
# This option lets us exodiff against a gold standard generated
# without repartitioning
skip_partitioning = true
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux_elem]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_nodal]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./aux_elem]
type = CoupledAux
variable = aux_elem
operator = '*'
value = 1
coupled = u
[../]
[./aux_nodal]
type = CoupledAux
variable = aux_nodal
operator = '*'
value = 1
coupled = u
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Postprocessors]
[./elem_avg]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
nemesis = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/coupled-force/gravity-object.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[u]
family = LAGRANGE_VEC
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[momentum_coupled_force]
type = INSADMomentumCoupledForce
variable = velocity
coupled_vector_var = u
[]
[gravity]
type = INSADGravityForce
variable = velocity
gravity = '0 -9.81 0'
[]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[u_diff]
type = VectorDiffusion
variable = u
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left top'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[u_left]
type = VectorFunctionDirichletBC
variable = u
boundary = 'left'
function_x = 1
function_y = 1
[]
[u_right]
type = VectorFunctionDirichletBC
variable = u
boundary = 'right'
function_x = -1
function_y = -1
[]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_transient/restart_trans_with_2subs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = 'replicated'
[]
[Problem]
restart_file_base = pseudo_trans_with_2subs_out_cp/LATEST
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2' # increase this function to drive transient
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 50
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3
dt = 1.0
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
line_search = none
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0
0.5 0 0'
input_files = restart_trans_with_2subs_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[p_to_sub]
type = MultiAppProjectionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppInterpolationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/nodalkernels/high_order_time_integration/high_order_time_integration.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./exact_solution]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = v
[../]
[./f]
type = UserForcingFunctionNodalKernel
variable = v
function = t*t*t+4
[../]
[]
[AuxKernels]
[./exact]
type = FunctionAux
variable = exact_solution
function = exact_solution_function
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Functions]
[./exact_solution_function]
type = ParsedFunction
value = (1.0/4.0)*(16*t+t*t*t*t)
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
variable = v
function = exact_solution_function
[../]
[]
[Executioner]
type = Transient
end_time = 10
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
scheme = 'crank-nicolson'
[]
[Outputs]
exodus = true
csv = true
[]
(modules/porous_flow/examples/tutorial/11_2D.i)
# Two-phase borehole injection problem in RZ coordinates
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
xmin = 1.0
xmax = 10
bias_x = 1.4
ny = 3
ymin = -6
ymax = 6
[]
[aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 -2 0'
top_right = '10 2 0'
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x<1.0001'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[Problem]
coord_type = RZ
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pwater pgas T disp_r'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1E-6
m = 0.6
[]
[]
[GlobalParams]
displacements = 'disp_r disp_z'
gravity = '0 0 0'
biot_coefficient = 1.0
PorousFlowDictator = dictator
[]
[Variables]
[pwater]
initial_condition = 20E6
[]
[pgas]
initial_condition = 20.1E6
[]
[T]
initial_condition = 330
scaling = 1E-5
[]
[disp_r]
scaling = 1E-5
[]
[]
[Kernels]
[mass_water_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pwater
[]
[flux_water]
type = PorousFlowAdvectiveFlux
fluid_component = 0
use_displaced_mesh = false
variable = pwater
[]
[vol_strain_rate_water]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = pwater
[]
[mass_co2_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pgas
[]
[flux_co2]
type = PorousFlowAdvectiveFlux
fluid_component = 1
use_displaced_mesh = false
variable = pgas
[]
[vol_strain_rate_co2]
type = PorousFlowMassVolumetricExpansion
fluid_component = 1
variable = pgas
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = T
[]
[advection]
type = PorousFlowHeatAdvection
use_displaced_mesh = false
variable = T
[]
[conduction]
type = PorousFlowHeatConduction
use_displaced_mesh = false
variable = T
[]
[vol_strain_rate_heat]
type = PorousFlowHeatVolumetricExpansion
variable = T
[]
[grad_stress_r]
type = StressDivergenceRZTensors
temperature = T
variable = disp_r
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
component = 0
[]
[poro_r]
type = PorousFlowEffectiveStressCoupling
variable = disp_r
use_displaced_mesh = false
component = 0
[]
[]
[AuxVariables]
[disp_z]
[]
[effective_fluid_pressure]
family = MONOMIAL
order = CONSTANT
[]
[mass_frac_phase0_species0]
initial_condition = 1 # all water in phase=0
[]
[mass_frac_phase1_species0]
initial_condition = 0 # no water in phase=1
[]
[sgas]
family = MONOMIAL
order = CONSTANT
[]
[swater]
family = MONOMIAL
order = CONSTANT
[]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_tt]
family = MONOMIAL
order = CONSTANT
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[effective_fluid_pressure]
type = ParsedAux
args = 'pwater pgas swater sgas'
function = 'pwater * swater + pgas * sgas'
variable = effective_fluid_pressure
[]
[swater]
type = PorousFlowPropertyAux
variable = swater
property = saturation
phase = 0
execute_on = timestep_end
[]
[sgas]
type = PorousFlowPropertyAux
variable = sgas
property = saturation
phase = 1
execute_on = timestep_end
[]
[stress_rr_aux]
type = RankTwoAux
variable = stress_rr
rank_two_tensor = stress
index_i = 0
index_j = 0
[]
[stress_tt]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_tt
index_i = 2
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 1
index_j = 1
[]
[porosity]
type = PorousFlowPropertyAux
variable = porosity
property = porosity
execute_on = timestep_end
[]
[]
[BCs]
[pinned_top_bottom_r]
type = DirichletBC
variable = disp_r
value = 0
boundary = 'top bottom'
[]
[cavity_pressure_r]
type = Pressure
boundary = injection_area
variable = disp_r
postprocessor = constrained_effective_fluid_pressure_at_wellbore
use_displaced_mesh = false
[]
[cold_co2]
type = DirichletBC
boundary = injection_area
variable = T
value = 290 # injection temperature
use_displaced_mesh = false
[]
[constant_co2_injection]
type = PorousFlowSink
boundary = injection_area
variable = pgas
fluid_phase = 1
flux_function = -1E-4
use_displaced_mesh = false
[]
[outer_water_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pwater
fluid_phase = 0
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[outer_co2_removal]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pgas
fluid_phase = 1
pt_vals = '0 1E9'
multipliers = '0 1E8'
PT_shift = 20.1E6
use_mobility = true
use_relperm = true
use_displaced_mesh = false
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
pressure_max = 1E8
fluid_property_file = water97_tabulated_11.csv
[]
[true_co2]
type = CO2FluidProperties
[]
[tabulated_co2]
type = TabulatedFluidProperties
fp = true_co2
temperature_min = 275
pressure_max = 1E8
fluid_property_file = co2_tabulated_11.csv
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = T
[]
[saturation_calculator]
type = PorousFlow2PhasePP
phase0_porepressure = pwater
phase1_porepressure = pgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'mass_frac_phase0_species0 mass_frac_phase1_species0'
[]
[water]
type = PorousFlowSingleComponentFluid
fp = tabulated_water
phase = 0
[]
[co2]
type = PorousFlowSingleComponentFluid
fp = tabulated_co2
phase = 1
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.1
sum_s_res = 0.2
phase = 0
[]
[relperm_co2]
type = PorousFlowRelativePermeabilityBC
nw_phase = true
lambda = 2
s_res = 0.1
sum_s_res = 0.2
phase = 1
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
reference_temperature = 330
reference_porepressure = 20E6
thermal_expansion_coeff = 15E-6 # volumetric
solid_bulk = 8E9 # unimportant since biot = 1
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-12
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
poroperm_function = kozeny_carman_phi0
phi0 = 0.1
n = 2
m = 2
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '2 0 0 0 2 0 0 0 2'
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1100
density = 2300
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5E9
poissons_ratio = 0.0
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
eigenstrain_names = 'thermal_contribution initial_stress'
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = T
thermal_expansion_coeff = 5E-6 # this is the linear thermal expansion coefficient
eigenstrain_name = thermal_contribution
stress_free_temperature = 330
[]
[initial_strain]
type = ComputeEigenstrainFromInitialStress
initial_stress = '20E6 0 0 0 20E6 0 0 0 20E6'
eigenstrain_name = initial_stress
[]
[stress]
type = ComputeLinearElasticStress
[]
[effective_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[volumetric_strain]
type = PorousFlowVolumetricStrain
[]
[]
[Postprocessors]
[effective_fluid_pressure_at_wellbore]
type = PointValue
variable = effective_fluid_pressure
point = '1 0 0'
execute_on = timestep_begin
use_displaced_mesh = false
[]
[constrained_effective_fluid_pressure_at_wellbore]
type = FunctionValuePostprocessor
function = constrain_effective_fluid_pressure
execute_on = timestep_begin
[]
[]
[Functions]
[constrain_effective_fluid_pressure]
type = ParsedFunction
vars = effective_fluid_pressure_at_wellbore
vals = effective_fluid_pressure_at_wellbore
value = 'max(effective_fluid_pressure_at_wellbore, 20E6)'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E3
[TimeStepper]
type = IterationAdaptiveDT
dt = 1E3
growth_factor = 1.2
optimal_iterations = 10
[]
nl_abs_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/aux_kernel_with_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = u
[../]
[]
[AuxKernels]
[./nope]
type = SelfAux
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/constraints/equal_value_embedded_constraint/embedded_constraint.i)
###########################################################
# This is a test that demonstrates a user-defined
# constraint. It forces variables in overlapping portion of
# two blocks to have the same value
###########################################################
[Mesh]
[]
[Variables]
[phi]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = phi
[]
[]
[BCs]
[top]
type = DirichletBC
variable = phi
boundary = 1
value = 10.0
[]
[bottom]
type = DirichletBC
variable = phi
boundary = 2
value = 0.0
[]
[left]
type = DirichletBC
variable = phi
boundary = 3
value = 10.0
[]
[right]
type = DirichletBC
variable = phi
boundary = 4
value = 0.0
[]
[]
[Constraints]
[equal]
type = EqualValueEmbeddedConstraint
secondary = 2
primary = 1
penalty = 1e3
primary_variable = phi
variable = phi
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
nl_rel_tol = 1e-15
nl_abs_tol = 1e-8
l_max_its = 100
nl_max_its = 10
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(tutorials/tutorial02_multiapps/step02_transfers/01_sub_meshfunction.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 9
ny = 9
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[tu]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(examples/ex05_amr/ex05.i)
[Mesh]
file = cube-hole.e
[]
# This is where mesh adaptivity magic happens:
[Adaptivity]
marker = errorfrac # this specifies which marker from 'Markers' subsection to use
steps = 2 # run adaptivity 2 times, recomputing solution, indicators, and markers each time
# Use an indicator to compute an error-estimate for each element:
[./Indicators]
# create an indicator computing an error metric for the convected variable
[./error] # arbitrary, use-chosen name
type = GradientJumpIndicator
variable = convected
outputs = none
[../]
[../]
# Create a marker that determines which elements to refine/coarsen based on error estimates
# from an indicator:
[./Markers]
[./errorfrac] # arbitrary, use-chosen name (must match 'marker=...' name above
type = ErrorFractionMarker
indicator = error # use the 'error' indicator specified above
refine = 0.5 # split/refine elements in the upper half of the indicator error range
coarsen = 0 # don't do any coarsening
outputs = none
[../]
[../]
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./example_diff]
type = ExampleCoefDiffusion
variable = convected
coef = 0.125
[../]
[./conv]
type = ExampleConvection
variable = convected
some_variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
# convected=0 on all vertical sides except the right (x-max)
[./cylinder_convected]
type = DirichletBC
variable = convected
boundary = inside
value = 1
[../]
[./exterior_convected]
type = DirichletBC
variable = convected
boundary = 'left top bottom'
value = 0
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = left
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = right
value = 10
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
l_tol = 1e-3
nl_rel_tol = 1e-12
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/preconditioners/vcp/no_condense_test.i)
[Mesh]
[original_file_mesh]
type = FileMeshGenerator
file = non_conform_2blocks.e
[]
[secondary_side]
input = original_file_mesh
type = LowerDBlockFromSidesetGenerator
sidesets = '10'
new_block_id = '100'
new_block_name = 'secondary_side'
[]
[primary_side]
input = secondary_side
type = LowerDBlockFromSidesetGenerator
sidesets = '20'
new_block_id = '200'
new_block_name = 'primary_side'
[]
[]
[Functions]
[exact_sln]
type = ParsedFunction
value = sin(2*pi*x)*sin(2*pi*y)
[]
[ffn]
type = ParsedFunction
value = 8*pi*pi*sin(2*pi*x)*sin(2*pi*y)
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = secondary_side
use_dual = false
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = ffn
[]
[]
[Constraints]
[ced]
type = EqualValueConstraint
variable = lm
secondary_variable = u
primary_boundary = 20
primary_subdomain = 200
secondary_boundary = 10
secondary_subdomain = 100
[]
[]
[BCs]
[all]
type = DirichletBC
variable = u
boundary = '30 40'
value = 0.0
[]
[neumann]
type = FunctionGradientNeumannBC
exact_solution = exact_sln
variable = u
boundary = '50 60'
[]
[]
[Postprocessors]
[l2_error]
type = ElementL2Error
variable = u
function = exact_sln
block = '1 2'
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_view'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = ' lu NONZERO 1e-12'
l_max_its = 100
nl_rel_tol = 1e-6
[]
[Outputs]
csv = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_radiation_conduction.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
use_displaced_mesh = true
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = 'radiation conduction'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_conduction/test/tests/code_verification/spherical_test_no5.i)
# Problem III.5
#
# A solid sphere has a spatially dependent internal heating. It has a constant thermal
# conductivity. It is exposed to a constant temperature on its boundary.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Functions]
[./volumetric_heat]
type = ParsedFunction
vars = 'q ro beta'
vals = '1200 1 0.1'
value = 'q * (1-beta*(x/ro)^2)'
[../]
[./exact]
type = ParsedFunction
vars = 'uf q k ro beta'
vals = '300 1200 1 1 0.1'
value = 'uf + (q*ro^2/(6*k)) * ( (1-(x/ro)^2) - 0.3*beta*(1-(x/ro)^4) )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = volumetric_heat
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'right'
variable = u
value = 300
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1.0 1.0 1.0'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/heat_conduction/test/tests/code_verification/cylindrical_test_no2.i)
# Problem II.2
#
# The thermal conductivity of an infinitely long hollow tube varies
# linearly with temperature. It is exposed on the inner
# and outer surfaces to constant temperatures.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'ri ro beta ki ko ui uo'
vals = '0.2 1.0 1e-3 5.3 5 300 0'
value = 'uo+(ko/beta)* ( ( 1 + beta*(ki+ko)*(ui-uo)*( log(x/ro) / log(ri/ro) )/(ko^2))^0.5 -1 )'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[]
[BCs]
[./ui]
type = DirichletBC
boundary = left
variable = u
value = 300
[../]
[./uo]
type = DirichletBC
boundary = right
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
f_name = 'thermal_conductivity'
args = u
function = '5 + 1e-3 * (u-0)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/detect_steady_state/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 10
ymax = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
steady_state_tol = 1e-5
detect_steady_state = true
[../]
[]
(modules/contact/test/tests/fieldsplit/2blocks3d.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = 2blocks3d.e
patch_size = 5
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
[../]
[]
[AuxVariables]
[./penetration]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./horizontal_movement]
type = ParsedFunction
value = t/10.0
[../]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 2
paired_boundary = 3
order = FIRST
[../]
[]
[BCs]
[./push_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 1
function = horizontal_movement
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = '1 4'
value = 0.0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = '1 4'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Contact]
[./leftright]
secondary = 2
primary = 3
model = frictionless
penalty = 1e+6
normalize_penalty = true
formulation = kinematic
normal_smoothing_distance = 0.1
[../]
[]
[Preconditioning]
[./FSP]
type = FSP
# It is the starting point of splitting
topsplit = 'contact_interior' # 'contact_interior' should match the following block name
[./contact_interior]
splitting = 'contact interior'
splitting_type = multiplicative
[../]
[./interior]
type = ContactSplit
vars = 'disp_x disp_y disp_z'
uncontact_primary = '3'
uncontact_secondary = '2'
uncontact_displaced = '1'
blocks = '1 2'
include_all_contact_nodes = 1
petsc_options_iname = '-ksp_type -ksp_max_it -ksp_rtol -ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter -pc_hypre_strong_threshold'
petsc_options_value = ' preonly 10 1e-4 201 hypre boomeramg 1 0.25'
[../]
[./contact]
type = ContactSplit
vars = 'disp_x disp_y disp_z'
contact_primary = '3'
contact_secondary = '2'
contact_displaced = '1'
include_all_contact_nodes = 1
petsc_options_iname = '-ksp_type -ksp_max_it -pc_type -pc_asm_overlap -sub_pc_type -pc_factor_levels'
petsc_options_value = ' preonly 10 asm 1 lu 0'
[../]
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
dtmin = 0.1
end_time = 0.1
l_tol = 1e-4
l_max_its = 100
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
nl_max_its = 100
[]
[Outputs]
file_base = 2blocks3d_out
[./exodus]
type = Exodus
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
(examples/ex08_materials/ex08.i)
[Mesh]
file = reactor.e
# Let's assign human friendly names to the blocks on the fly
block_id = '1 2'
block_name = 'fuel deflector'
boundary_id = '4 5'
boundary_name = 'bottom top'
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
initial_condition = 0.5 # shortcut/convenience for setting constant initial condition
[../]
[./convected]
order = FIRST
family = LAGRANGE
initial_condition = 0.0 # shortcut/convenience for setting constant initial condition
[../]
[]
[Kernels]
# This Kernel consumes a real-gradient material property from the active material
[./convection]
type = ExampleConvection
variable = convected
[../]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./example_diff]
# This Kernel uses "diffusivity" from the active material
type = ExampleDiffusion
variable = diffused
[../]
[./time_deriv_diffused]
type = TimeDerivative
variable = diffused
[../]
[./time_deriv_convected]
type = TimeDerivative
variable = convected
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 0
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 5
[../]
[./bottom_convected]
type = DirichletBC
variable = convected
boundary = 'bottom'
value = 0
[../]
[./top_convected]
type = NeumannBC
variable = convected
boundary = 'top'
value = 1
[../]
[]
[Materials]
[./example]
type = ExampleMaterial
block = 'fuel'
diffusion_gradient = 'diffused'
# Approximate Parabolic Diffusivity
independent_vals = '0 0.25 0.5 0.75 1.0'
dependent_vals = '1e-2 5e-3 1e-3 5e-3 1e-2'
[../]
[./example1]
type = ExampleMaterial
block = 'deflector'
diffusion_gradient = 'diffused'
# Constant Diffusivity
independent_vals = '0 1.0'
dependent_vals = '1e-1 1e-1'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/meshgenerators/distributed_rectilinear/generator/distributed_rectilinear_mesh_generator_adaptivity.i)
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
initial_steps = 2
steps = 1
marker = marker
initial_marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
indicator = indicator
coarsen = 0.1
refine = 0.7
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/single_var_constraint_2d/stationary_jump_fluxjump.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 1
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/contact/test/tests/verification/patch_tests/brick_1/brick1_template2.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 5e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D_adaptivity.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 1D version with adaptivity
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[Adaptivity]
initial_steps = 1
initial_marker = tracer_marker
marker = tracer_marker
max_h_level = 1
[Markers]
[tracer_marker]
type = ValueRangeMarker
variable = tracer
lower_bound = 0.02
upper_bound = 0.98
[]
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/multiapps/positions_from_file/dt_from_multi.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions_file = positions.txt
type = TransientMultiApp
input_files = 'dt_from_multi_sub.i'
app_type = MooseTestApp
[../]
[]
(modules/porous_flow/test/tests/newton_cooling/nc04.i)
# Newton cooling from a bar. Heat conduction
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 1
xmin = 0
xmax = 100
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp'
number_fluid_phases = 0
number_fluid_components = 0
[]
[]
[Variables]
[temp]
[]
[]
[ICs]
[temp]
type = FunctionIC
variable = temp
function = '2-x/100'
[]
[]
[Kernels]
[conduction]
type = PorousFlowHeatConduction
variable = temp
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[thermal_conductivity_irrelevant]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1E2 0 0 0 1E2 0 0 0 1E2'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = left
value = 2
[]
[newton]
type = PorousFlowPiecewiseLinearSink
variable = temp
boundary = right
pt_vals = '0 1 2'
multipliers = '-1 0 1'
flux_function = 1
[]
[]
[VectorPostprocessors]
[temp]
type = LineValueSampler
variable = temp
start_point = '0 0.5 0'
end_point = '100 0.5 0'
sort_by = x
num_points = 11
execute_on = timestep_end
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol '
petsc_options_value = 'gmres asm lu 100 NONZERO 2 1E-14 1E-12'
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = nc04
execute_on = timestep_end
exodus = false
[along_line]
type = CSV
execute_vector_postprocessors_on = timestep_end
[]
[]
(modules/xfem/test/tests/corner_nodes_cut/corner_edge_cut.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo1]
type = LineSegmentCutUserObject
cut_data = '-0.0 0.5 0.5 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./line_seg_cut_uo2]
type = LineSegmentCutUserObject
cut_data = '0.5 0.5 1.0 0.7'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
[../]
[]
[BCs]
[./top_x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./top_y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.1
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = -0.1
[../]
[./bottom_x]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/misc/test/tests/kernels/thermo_diffusion/thermo_diffusion.i)
# Steady-state test for the ThermoDiffusion kernel.
#
# This test applies a constant temperature gradient to drive thermo-diffusion
# in the variable u. At steady state, the thermo-diffusion is balanced by
# diffusion due to Fick's Law, so the total flux is
#
# J = -D ( grad(u) - ( Qstar u / R ) grad(1/T) )
#
# If there are no fluxes at the boundaries, then there is no background flux and
# these two terms must balance each other everywhere:
#
# grad(u) = ( Qstar u / R ) grad(1/T)
#
# The dx can be eliminated to give
#
# d(ln u) / d(1/T) = Qstar / R
#
# This can be solved to give the profile for u as a function of temperature:
#
# u = A exp( Qstar / R T )
#
# Here, we are using simple heat conduction with Dirichlet boundaries on 0 <= x <= 1
# to give a linear profile for temperature: T = x + 1. We also need to apply one
# boundary condition on u, which is u(x=0) = 1. These conditions give:
#
# u = exp( -(Qstar/R) (x/(x+1)) )
#
# This analytical result is tracked by the aux variable "correct_u".
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
[]
[Variables]
[./u]
initial_condition = 1
[../]
[./temp]
initial_condition = 1
[../]
[]
[Kernels]
[./soret]
type = ThermoDiffusion
variable = u
temp = temp
gas_constant = 1
[../]
[./diffC]
type = Diffusion
variable = u
[../]
# Heat diffusion gives a linear temperature profile to drive the Soret diffusion.
[./diffT]
type = Diffusion
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 1
[../]
[./leftt]
type = DirichletBC
variable = temp
preset = false
boundary = left
value = 1
[../]
[./rightt]
type = DirichletBC
variable = temp
preset = false
boundary = right
value = 2
[../]
[]
[Materials]
[./fake_material]
type = GenericConstantMaterial
block = 0
prop_names = 'mass_diffusivity heat_of_transport'
prop_values = '1 1'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = NodalL2Error
variable = u
function = 'exp(-x/(x+1))'
[../]
[]
[Outputs]
execute_on = FINAL
exodus = true
[]
(modules/heat_conduction/test/tests/meshed_gap_thermal_contact/meshed_gap_thermal_contact.i)
[Mesh]
[fmesh]
type = FileMeshGenerator
file = meshed_gap.e
[]
[block0]
type = SubdomainBoundingBoxGenerator
input = fmesh
bottom_left = '.5 -.5 0'
top_right = '.7 .5 0'
block_id = 4
[]
[]
[Variables]
[./temp]
block = '1 3'
initial_condition = 1.0
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
block = '1 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 4
value = 2
[../]
[]
[ThermalContact]
[./gap_conductivity]
type = GapHeatTransfer
variable = temp
primary = 2
secondary = 3
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 0.5
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = '1 3'
temp = temp
thermal_conductivity = 1
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
material_coverage_check = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/action/no_action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[cauchy_stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[cauchy_stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[cauchy_stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[cauchy_stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[cauchy_stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = cauchy_stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
exodus = true
csv = false
[]
(modules/thermal_hydraulics/test/tests/materials/ad_wall_heat_transfer_coefficient_3eqn_dittus_boelter/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[Hw_ak]
type = ADMaterialRealAux
variable = Hw
property = Hw
[]
[]
[Materials]
[props]
type = ADGenericConstantMaterial
prop_names = 'rho vel k mu cp T T_wall D_h'
prop_values = '1000 0.1 0.001 0.1 12 300 310 0.1'
[]
[Hw_material]
type = ADWallHeatTransferCoefficient3EqnDittusBoelterMaterial
rho = rho
vel = vel
D_h = D_h
k = k
mu = mu
cp = cp
T = T
T_wall = T_wall
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[Hw]
type = ElementalVariableValue
elementid = 0
variable = Hw
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/porous_flow/test/tests/gravity/grav02d.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PP), 2components, vanGenuchten, constant fluid bulk-moduli for each phase, constant viscosity, constant permeability, Corey relative perm.
# A boundary condition enforces porepressures at the right boundary
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
x = '1E-3 1E-2 1E-1 2E-1'
y = '1E-3 1E-2 0.2E-1 1E-1'
[]
[]
[Variables]
[ppwater]
initial_condition = 0
[]
[ppgas]
initial_condition = 0.5
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[]
[BCs]
[ppwater]
type = DirichletBC
boundary = right
variable = ppwater
value = 0
[]
[ppgas]
type = DirichletBC
boundary = right
variable = ppgas
value = 0.5
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = ppwater
gravity = '-1 0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = ppgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = ppgas
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_ppwater]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 2 pp_water_top 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater ppgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 0.1
viscosity = 0.5
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[Postprocessors]
[pp_water_top]
type = PointValue
variable = ppwater
point = '0 0 0'
[]
[pp_water_base]
type = PointValue
variable = ppwater
point = '-1 0 0'
[]
[pp_water_analytical]
type = FunctionValuePostprocessor
function = ana_ppwater
point = '-1 0 0'
[]
[ppwater_00]
type = PointValue
variable = ppwater
point = '0 0 0'
[]
[ppwater_01]
type = PointValue
variable = ppwater
point = '-0.1 0 0'
[]
[ppwater_02]
type = PointValue
variable = ppwater
point = '-0.2 0 0'
[]
[ppwater_03]
type = PointValue
variable = ppwater
point = '-0.3 0 0'
[]
[ppwater_04]
type = PointValue
variable = ppwater
point = '-0.4 0 0'
[]
[ppwater_05]
type = PointValue
variable = ppwater
point = '-0.5 0 0'
[]
[ppwater_06]
type = PointValue
variable = ppwater
point = '-0.6 0 0'
[]
[ppwater_07]
type = PointValue
variable = ppwater
point = '-0.7 0 0'
[]
[ppwater_08]
type = PointValue
variable = ppwater
point = '-0.8 0 0'
[]
[ppwater_09]
type = PointValue
variable = ppwater
point = '-0.9 0 0'
[]
[ppwater_10]
type = PointValue
variable = ppwater
point = '-1 0 0'
[]
[ppgas_00]
type = PointValue
variable = ppgas
point = '0 0 0'
[]
[ppgas_01]
type = PointValue
variable = ppgas
point = '-0.1 0 0'
[]
[ppgas_02]
type = PointValue
variable = ppgas
point = '-0.2 0 0'
[]
[ppgas_03]
type = PointValue
variable = ppgas
point = '-0.3 0 0'
[]
[ppgas_04]
type = PointValue
variable = ppgas
point = '-0.4 0 0'
[]
[ppgas_05]
type = PointValue
variable = ppgas
point = '-0.5 0 0'
[]
[ppgas_06]
type = PointValue
variable = ppgas
point = '-0.6 0 0'
[]
[ppgas_07]
type = PointValue
variable = ppgas
point = '-0.7 0 0'
[]
[ppgas_08]
type = PointValue
variable = ppgas
point = '-0.8 0 0'
[]
[ppgas_09]
type = PointValue
variable = ppgas
point = '-0.9 0 0'
[]
[ppgas_10]
type = PointValue
variable = ppgas
point = '-1 0 0'
[]
[]
[Preconditioning]
active = andy
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000'
[]
[check]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-12 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
[TimeStepper]
type = FunctionDT
function = dts
[]
end_time = 1.0
[]
[Outputs]
[csv]
type = CSV
execute_on = 'initial final'
file_base = grav02d
[]
[]
(modules/contact/test/tests/normalized_penalty/normalized_penalty_kin_Q8.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = normalized_penalty_Q8.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Functions]
[./left_x]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.02 0'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[./m3_s2]
primary = 3
secondary = 2
penalty = 1e10
normalize_penalty = true
tangential_tolerance = 1e-3
[../]
[]
[BCs]
[./left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 1
function = left_x
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = '1 2 3 4'
value = 0.0
[../]
[./right]
type = DirichletBC
variable = disp_x
boundary = '3 4'
value = 0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 1000'
youngs_modulus = 3e8
poissons_ratio = 0.0
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3 4 1000'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 5e-8
l_max_its = 100
nl_max_its = 20
dt = 0.5
num_steps = 4
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_elemental.i)
[Mesh]
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
solution = soln
variable = nn
scale_factor = 2.0
from_variable = source_nodal
[../]
[./en]
type = SolutionAux
solution = soln
variable = en
scale_factor = 2.0
from_variable = source_element
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = 'source_nodal source_element'
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/ray_tracing/test/tests/coord_type/rspherical_line_integral.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 5
[]
[]
[Variables/u]
[]
[BCs]
[fixed]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = u
[]
[source]
type = BodyForce
variable = u
value = 10
[]
[]
[UserObjects]
[study]
type = RepeatableRayStudy
names = 'ray0'
start_points = '0 0 0'
end_points = '1 0 0'
[]
[]
[RayKernels]
[variable_integral]
type = VariableIntegralRayKernel
study = study
variable = u
[]
[]
[Postprocessors]
[value]
type = RayIntegralValue
ray_kernel = variable_integral
ray = ray0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/vectorpostprocessors/elements_along_line/2d.i)
[Mesh]
type = GeneratedMesh
parallel_type = replicated # Until RayTracing.C is fixed
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./elems]
type = ElementsAlongLine
start = '0.05 0.05 0'
end = '0.05 0.405 0'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(modules/contact/test/tests/frictional/sliding_elastic_blocks_2d/sliding_elastic_blocks_2d_tp.i)
[Mesh]
file = sliding_elastic_blocks_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
diag_save_in = 'diag_saved_x diag_saved_y'
[../]
[]
[AuxKernels]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip]
type = PenetrationAux
variable = accum_slip
execute_on = timestep_end
quantity = accumulated_slip
boundary = 3
paired_boundary = 2
[../]
[./tangential_force_x]
type = PenetrationAux
variable = tang_force_x
execute_on = timestep_end
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tangential_force_y]
type = PenetrationAux
variable = tang_force_y
execute_on = timestep_end
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.005
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.05
num_steps = 1000
nl_rel_tol = 1e-16
nl_abs_tol = 1e-09
dtmin = 0.01
l_tol = 1e-3
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
formulation = tangential_penalty
friction_coefficient = '0.25'
penalty = 1e6
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
secondary = 3
primary = 2
[../]
[]
(test/tests/mortar/displaced-gap-conductance-2d-non-conforming/gap-conductance.i)
[Mesh]
displacements = 'disp_x disp_y'
[file]
type = FileMeshGenerator
file = nodal_normals_test_offset_nonmatching_gap.e
# block 1: left
# block 2: right
[]
[./primary]
input = file
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = '20'
[../]
[./secondary]
input = primary
type = LowerDBlockFromSidesetGenerator
sidesets = '1'
new_block_id = '10'
[../]
[]
[AuxVariables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[AuxKernels]
[function_x]
type = FunctionAux
function = '.05 * t'
variable = 'disp_x'
block = '2'
[]
[function_y]
type = FunctionAux
function = '.05 * t'
variable = 'disp_y'
block = '2'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./T]
block = '1 2'
[../]
[./lambda]
block = '10'
family = MONOMIAL
order = CONSTANT
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = T
boundary = '5'
value = 0
[../]
[./right]
type = DirichletBC
variable = T
boundary = '8'
value = 1
[../]
[]
[Kernels]
[./conduction]
type = Diffusion
variable = T
block = '1 2'
[../]
[]
[Debug]
show_var_residual_norms = 1
[]
[Constraints]
[./mortar]
type = GapHeatConductanceTest
primary_boundary = 2
secondary_boundary = 1
primary_subdomain = 20
secondary_subdomain = 10
variable = lambda
secondary_variable = T
use_displaced_mesh = true
correct_edge_dropping = true
[../]
[]
[Materials]
[constant]
type = ADGenericConstantMaterial
prop_names = 'gap_conductance'
prop_values = '.03'
block = '1 2'
use_displaced_mesh = true
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 5
petsc_options_iname = '-pc_type -snes_linesearch_type'
petsc_options_value = 'lu basic'
[]
[Outputs]
exodus = true
[dofmap]
type = DOFMap
execute_on = 'initial'
[]
[]
(modules/xfem/test/tests/corner_nodes_cut/notch.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '-0.26 0.0 0.0 0.1'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Mesh]
file = notch.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
[../]
[]
[BCs]
[./top_x]
type = DirichletBC
boundary = 102
variable = disp_x
value = 0.0
[../]
[./top_y]
type = DirichletBC
boundary = 102
variable = disp_y
value = 0.1
[../]
[./bottom_y]
type = DirichletBC
boundary = 101
variable = disp_y
value = -0.1
[../]
[./bottom_x]
type = DirichletBC
boundary = 101
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/meshgenerators/sidesets_bounding_box_generator/multiple_boundary_ids.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gmg
boundary_id_old = 'left bottom'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.2 0.9 0'
block_id = 0
[../]
[./createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '0.5 0.5 0'
top_right = '1.1 1.1 0'
block_id = 0
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[../]
[./rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/element_aux_var/l2_element_aux_var_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
second_order = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./l2_lagrange]
order = FIRST
family = L2_LAGRANGE
[../]
[./l2_hierarchic]
order = FIRST
family = L2_HIERARCHIC
[../]
[./one]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
# Coupling of nonlinear to Aux
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = CoupledForce
variable = u
v = one
[../]
[]
[AuxKernels]
[./coupled_l2_lagrange]
variable = l2_lagrange
type = CoupledAux
value = 2
operator = +
coupled = u
execute_on = 'initial timestep_end'
[../]
[./coupled_l2_hierarchic]
variable = l2_hierarchic
type = CoupledAux
value = 2
operator = +
coupled = u
execute_on = 'initial timestep_end'
[../]
[./constant]
variable = one
type = ConstantAux
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./int2_u]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./int2_l2_lagrange]
type = ElementL2Norm
variable = l2_lagrange
execute_on = 'initial timestep_end'
[../]
[./int2_l2_hierarchic]
type = ElementL2Norm
variable = l2_hierarchic
execute_on = 'initial timestep_end'
[../]
[./int_u]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[../]
[./int_l2_lagrange]
type = ElementIntegralVariablePostprocessor
variable = l2_lagrange
execute_on = 'initial timestep_end'
[../]
[./int_l2_hierarchic]
type = ElementIntegralVariablePostprocessor
variable = l2_hierarchic
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
[./ex_out]
type = Exodus
file_base = l2elemaux
elemental_as_nodal = true
[../]
[]
(test/tests/outputs/format/output_test_gnuplot_gif.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Postprocessors]
[./dofs]
type = NumDOFs
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Gnuplot
extension = gif
[../]
[]
(test/tests/misc/check_error/function_file_test13.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_columns_more_data.csv
format = columns
xy_in_file_only = false
x_index_in_file = 3 #Will generate error because data does not contain 4 columns
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/materials/output/block_via_outputs.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./block_1]
type = OutputTestMaterial
block = 1
variable = u
[../]
[./block_2]
type = OutputTestMaterial
block = 2
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
output_material_properties = true
show_material_properties = real_property
[../]
[]
(modules/contact/test/tests/mortar_tm/2d/frictionless_first/small.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'small'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeLinearElasticStress
block = 'plank block'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/dirackernels/front_tracking/front_tracking.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 30
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./v_all_around]
type = DirichletBC
variable = v
boundary = 'bottom left right top'
value = 0
[../]
[]
[UserObjects]
[./tdf]
type = TrackDiracFront
var = u
execute_on = timestep_begin
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[DiracKernels]
[./front_source]
front_uo = tdf
variable = v
type = FrontSource
[../]
[]
(modules/tensor_mechanics/examples/coal_mining/cosserat_mc_wp_sticky_longitudinal.i)
# Strata deformation and fracturing around a coal mine
#
# A 2D geometry is used that simulates a longitudinal section of
# the coal mine. The model is actually 3D, but the "x"
# dimension is only 10m long, meshed with 1 element, and
# there is no "x" displacement. The mine is 400m deep
# and just the roof is studied (0<=z<=400). The model sits
# between -300<=y<=1800. The excavation sits in 0<=y<=1500. The
# excavation height is 3m (ie, the excavation lies within
# 0<=z<=3).
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this elastic simulation are:
# - disp_x = 0 everywhere
# - disp_y = 0 at y=-300 and y=1800
# - disp_z = 0 at z=0, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=300 and y=1800.
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = -0.025*(300-z) MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
#
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = -5
xmax = 5
nz = 40
zmin = 0
zmax = 400
bias_z = 1.1
ny = 140 # 15m elements
ymin = -300
ymax = 1800
[]
[left]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 11
normal = '0 -1 0'
input = generated_mesh
[]
[right]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 12
normal = '0 1 0'
input = left
[]
[front]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 13
normal = '-1 0 0'
input = right
[]
[back]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 14
normal = '1 0 0'
input = front
[]
[top]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 15
normal = '0 0 1'
input = back
[]
[bottom]
type = SideSetsAroundSubdomainGenerator
block = 0
new_boundary = 16
normal = '0 0 -1'
input = top
[]
[excav]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-5 0 0'
top_right = '5 1500 3'
input = bottom
[]
[roof]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 18
normal = '0 0 1'
input = excav
[]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[]
[Kernels]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '16'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = '11 12'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = '18'
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
value = '-0.8*2500*10E-6*(400-z)'
[../]
[./ini_zz]
type = ParsedFunction
value = '-2500*10E-6*(400-z)'
[../]
[./excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '1.0 0 1500.0 1E-9 1 15'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '1.0 0 1500.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1.0
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = 0
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = 0
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
# this is needed so as to correctly apply the initial stress
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Postprocessors]
[./subs]
type = PointValue
point = '0 0 400'
variable = disp_z
use_displaced_mesh = false
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 100
start_time = 0.0
dt = 0.01 # 1 element per step
end_time = 1.0
[]
[Outputs]
file_base = cosserat_mc_wp_sticky_longitudinal
interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
#[./console]
# type = Console
# output_linear = false
#[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test4_out
exodus = true
[]
(modules/combined/test/tests/internal_volume/rz_displaced.i)
#
# Volume Test
#
# This test is designed to compute the volume of a space when displacements
# are imposed.
#
# The mesh is composed of one block (1) with two elements. The mesh is
# such that the initial volume is 1. One element face is displaced to
# produce a final volume of 2.
#
# r1
# +----+ -
# | | |
# +----+ h V1 = pi * h * r1^2
# | | |
# +----+ -
#
# becomes
#
# +----+
# | \
# +------+ v2 = pi * h/2 * ( r2^2 + 1/3 * ( r2^2 + r2*r1 + r1^2 ) )
# | |
# +------+
# r2
#
# r1 = 1
# r2 = 1.5380168369562588
# h = 1/pi
#
# Note: Because the InternalVolume PP computes cavity volumes as positive,
# the volumes reported are negative.
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = meshes/rz_displaced.e
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[Functions]
[./disp_x]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 0.5380168369562588'
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./volumetric_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
volumetric_locking_correction = false
decomposition_method = EigenSolution
incremental = true
strain = FINITE
[../]
[]
[AuxKernels]
[./fred]
type = RankTwoScalarAux
rank_two_tensor = total_strain
variable = volumetric_strain
scalar_type = VolumetricStrain
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./x]
type = FunctionDirichletBC
boundary = 3
variable = disp_x
function = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 2
execute_on = 'initial timestep_end'
[../]
[./volStrain0]
type = ElementalVariableValue
elementid = 0
variable = volumetric_strain
[../]
[./volStrain1]
type = ElementalVariableValue
elementid = 1
variable = volumetric_strain
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_jacobian/bending_jacobian.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
nx = 10
ny = 2
elem_type = QUAD4
[]
[corner]
type = ExtraNodesetGenerator
new_boundary = 101
coord = '0 0'
input = generated_mesh
[]
[side]
type = ExtraNodesetGenerator
new_boundary = 102
coord = '10 0'
input = corner
[]
[mid]
type = ExtraNodesetGenerator
new_boundary = 103
coord = '5 2'
input = side
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
volumetric_locking_correction = false
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[]
[BCs]
[./fix_corner_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0
[../]
[./fix_corner_y]
type = DirichletBC
variable = disp_y
boundary = 101
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0
[../]
[./move_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 103
function = '-t'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_max_its = 10
l_tol = 1e-4
l_max_its = 50
dt = 0.1
dtmin = 0.1
num_steps = 2
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/2D_geometries/3D-RZ_finiteStrain_test.i)
# Considers the mechanics solution for a thick spherical shell that is uniformly
# pressurized on the inner and outer surfaces, using 3D geometry.
#
# From Roark (Formulas for Stress and Strain, McGraw-Hill, 1975), the radially-dependent
# circumferential stress in a uniformly pressurized thick spherical shell is given by:
#
# S(r) = [ Pi[ri^3(2r^3+ro^3)] - Po[ro^3(2r^3+ri^3)] ] / [2r^3(ro^3-ri^3)]
#
# where:
# Pi = inner pressure
# Po = outer pressure
# ri = inner radius
# ro = outer radius
#
# The tests assume an inner and outer radii of 5 and 10, with internal and external
# pressures of 100000 and 200000 at t = 1.0, respectively. The resulting compressive
# tangential stress is largest at the inner wall and, from the above equation, has a
# value of -271429.
#
# RESULTS are below. Since stresses are average element values, values for the
# edge element and one-element-in are used to extrapolate the stress to the
# inner surface. The vesrion of the tests that are checked use the coarsest meshes.
#
# Mesh Radial elem S(edge elem) S(one elem in) S(extrap to surf)
# 1D-SPH
# 2D-RZ 12 (x10) -265004 -254665 -270174
# 3D 12 (6x6) -261880 -252811 -266415
#
# 1D-SPH
# 2D-RZ 48 (x10) -269853 -266710 -271425
# 3D 48 (10x10) -268522 -265653 -269957
#
# The numerical solution converges to the analytical solution as the mesh is
# refined.
[Mesh]
file = 3D_mesh.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
block = 1
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
block = 1
[../]
[./elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_x]
type = DirichletBC
variable = disp_x
boundary = xzero
value = 0.0
[../]
[./no_disp_y]
type = DirichletBC
variable = disp_y
boundary = yzero
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = zzero
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_x]
type = Pressure
variable = disp_x
boundary = outer
function = '200000*t'
[../]
[./exterior_pressure_y]
type = Pressure
variable = disp_y
boundary = outer
function = '200000*t'
[../]
[./exterior_pressure_z]
type = Pressure
variable = disp_z
boundary = outer
function = '200000*t'
[../]
[./interior_pressure_x]
type = Pressure
variable = disp_x
boundary = inner
function = '100000*t'
[../]
[./interior_pressure_y]
type = Pressure
variable = disp_y
boundary = inner
function = '100000*t'
[../]
[./interior_pressure_z]
type = Pressure
variable = disp_z
boundary = inner
function = '100000*t'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
[Postprocessors]
[./strainTheta]
type = ElementAverageValue
variable = strain_theta
[../]
[./stressTheta]
type = ElementAverageValue
variable = stress_theta
[../]
[./stressTheta_pt]
type = PointValue
point = '5.0 0.0 0.0'
#bottom inside edge for comparison to theory; use csv = true
variable = stress_theta
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/orthotropic_rotation_Cijkl.i)
# This test is designed to test the correct application of the Euler angle
# rotations to the elasticity tensor. The test uses values for the nine C_ijkl
# entries that correspond to the engineering notation placement:
# e.g. C11 = 11e3, c12 = 12e3, c13 = 13e3, c22 = 22e3 ..... c66 = 66e3
#
# A rotation of (0, 90, 0) is applied to the 1x1x1 cube, such that the values of
# c12 and c13 switch, c22 and c33 switch, and c55 and c66 switch. Postprocessors
# are used to verify this switch (made simple with the value convention above)
# and to verify that the unrotated components along the x-axis remain constant.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./lage_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./pk2_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./c11]
order = CONSTANT
family = MONOMIAL
[../]
[./c12]
order = CONSTANT
family = MONOMIAL
[../]
[./c13]
order = CONSTANT
family = MONOMIAL
[../]
[./c22]
order = CONSTANT
family = MONOMIAL
[../]
[./c23]
order = CONSTANT
family = MONOMIAL
[../]
[./c33]
order = CONSTANT
family = MONOMIAL
[../]
[./c44]
order = CONSTANT
family = MONOMIAL
[../]
[./c55]
order = CONSTANT
family = MONOMIAL
[../]
[./c66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[AuxKernels]
[./lage_xx]
type = RankTwoAux
rank_two_tensor = total_lagrangian_strain
variable = lage_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./lage_yy]
type = RankTwoAux
rank_two_tensor = total_lagrangian_strain
variable = lage_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./pk2_yy]
type = RankTwoAux
variable = pk2_yy
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./lage_zz]
type = RankTwoAux
rank_two_tensor = total_lagrangian_strain
variable = lage_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = plastic_deformation_gradient
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./c11]
type = RankFourAux
variable = c11
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
execute_on = timestep_end
[../]
[./c12]
type = RankFourAux
variable = c12
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c13]
type = RankFourAux
variable = c13
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c22]
type = RankFourAux
variable = c22
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c23]
type = RankFourAux
variable = c23
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c33]
type = RankFourAux
variable = c33
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c44]
type = RankFourAux
variable = c44
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
execute_on = timestep_end
[../]
[./c55]
type = RankFourAux
variable = c55
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 0
index_k = 2
index_l = 0
execute_on = timestep_end
[../]
[./c66]
type = RankFourAux
variable = c66
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '11e3 12e3 13e3 22e3 23e3 33e3 44e3 55e3 66e3'
fill_method = symmetric9
euler_angle_1 = 0.0
euler_angle_2 = 45.0
euler_angle_3 = 45.0
[../]
[./stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[../]
[./trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[../]
[]
[Postprocessors]
[./lage_xx]
type = ElementAverageValue
variable = lage_xx
[../]
[./pk2_yy]
type = ElementAverageValue
variable = pk2_yy
[../]
[./lage_yy]
type = ElementAverageValue
variable = lage_yy
[../]
[./lage_zz]
type = ElementAverageValue
variable = lage_zz
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./c11]
type = ElementAverageValue
variable = c11
[../]
[./c12]
type = ElementAverageValue
variable = c12
[../]
[./c13]
type = ElementAverageValue
variable = c13
[../]
[./c22]
type = ElementAverageValue
variable = c22
[../]
[./c23]
type = ElementAverageValue
variable = c23
[../]
[./c33]
type = ElementAverageValue
variable = c33
[../]
[./c44]
type = ElementAverageValue
variable = c44
[../]
[./c55]
type = ElementAverageValue
variable = c55
[../]
[./c66]
type = ElementAverageValue
variable = c66
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-3
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 1 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
dtmax = 0.1
dtmin = 1.0e-3
dt = 0.05
end_time = 0.5
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/postprocessors/nodal_var_value/nodal_aux_var_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'v'
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
active = 'v1'
[./v1]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'left_bc'
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = 'time_v diff_v'
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
active = 'ak1'
[./ak1]
type = CoupledAux
variable = v1
coupled = v
value = 1
operator = '+'
[../]
[]
[BCs]
active = 'left_v right_v'
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 1
[../]
[]
[Postprocessors]
active = 'node4v node4v1'
[./node4v]
type = NodalVariableValue
variable = v
nodeid = 3
[../]
[./node4v1]
type = NodalVariableValue
variable = v1
nodeid = 3
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_nodal_aux_var_value
exodus = true
[]
(test/tests/postprocessors/function_value_pps/function_value_pps.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./v]
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./constant_func]
type = ConstantFunction
value = 2.798
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[AuxKernels]
[./one]
type = ConstantAux
variable = v
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./value1]
type = FunctionValuePostprocessor
function = constant_func
execute_on = 'initial timestep_end'
[../]
[./value2]
type = FunctionValuePostprocessor
function = 2*t
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
csv = true
[]
[Problem]
solve = false
[]
(test/tests/mesh/mesh_generation/annulus.i)
# Generates an Annular Mesh
# Radius of inside circle=1
# Radius of outside circle=5
# Solves the diffusion equation with
# u=0 on inside
# u=log(5) on outside
[Mesh]
type = AnnularMesh
nr = 10
nt = 12
rmin = 1
rmax = 5
growth_r = 1.3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./inner]
type = DirichletBC
variable = u
value = 0.0
boundary = rmin
[../]
[./outer]
type = FunctionDirichletBC
variable = u
function = log(5)
boundary = rmax
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(test/tests/markers/value_range_marker/value_range_marker_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
[./Markers]
[./marker]
type = ValueRangeMarker
lower_bound = 0.3
upper_bound = 0.6
buffer_size = 0.1
variable = u
third_state = DO_NOTHING
[../]
[./inverted_marker]
type = ValueRangeMarker
invert = true
lower_bound = 0.3
upper_bound = 0.6
buffer_size = 0.1
variable = u
third_state = DO_NOTHING
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/test_jacobian/jacobian_spherical.i)
[GlobalParams]
displacements = 'disp_x'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmin = 1
xmax = 2
[]
[]
[Problem]
coord_type = RSPHERICAL
[]
[Variables]
[disp_x]
[]
[]
[Modules/TensorMechanics/Master]
[all]
incremental = false
strain = SMALL
[]
[]
[BCs]
[disp_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 1e-2
[]
[]
[Materials]
[stress]
type = ComputeLinearElasticStress
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.7e11
poissons_ratio = 0.345
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
petsc_options = '-snes_test_jacobian -snes_test_jacobian_view'
line_search = 'none'
solve_type = NEWTON
nl_rel_tol = 5e-6
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
dt = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/2D_different_planes/gps_yz.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = square_yz_plane.e
[]
[Variables]
[./disp_y]
[../]
[./disp_z]
[../]
[./scalar_strain_xx]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
[../]
[./disp_x]
[../]
[]
[Modules/TensorMechanics/Master]
[./generalized_plane_strain]
block = 1
strain = SMALL
scalar_out_of_plane_strain = scalar_strain_xx
out_of_plane_direction = x
planar_formulation = GENERALIZED_PLANE_STRAIN
eigenstrain_names = 'eigenstrain'
generate_output = 'stress_xx stress_yz stress_yy stress_zz strain_xx strain_yz strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-y)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 4
variable = disp_y
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 4
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elastic_stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[]
[Postprocessors]
[./react_x]
type = MaterialTensorIntegral
use_displaced_mesh = false
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 10
nl_rel_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = gps_yz_small_out
exodus = true
[]
(modules/combined/test/tests/combined_plasticity_temperature/ad_plasticity_temperature_dep_yield.i)
#
# This is a test of the piece-wise linear strain hardening model using the
# small strain formulation. This test exercises the temperature-dependent
# yield stress.
#
# Test procedure:
# 1. The element is pulled to and then beyond the yield stress for a given
# temperature.
# 2. The displacement is then constant while the temperature increases and
# the yield stress decreases. This results in a lower stress with more
# plastic strain.
# 3. The temperature decreases beyond its original value giving a higher
# yield stress. The displacement increases, causing increases stress to
# the new yield stress.
# 4. The temperature and yield stress are constant with increasing
# displacement giving a constant stress and more plastic strain.
#
# Plotting total_strain_yy on the x axis and stress_yy on the y axis shows
# the stress history in a clear way.
#
# s |
# t | *****
# r | *
# e | ***** *
# s | * * *
# s | * *
# |*
# +------------------
# total strain
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy plastic_strain_xx plastic_strain_yy plastic_strain_zz'
use_automatic_differentiation = true
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1 2 4 5 6'
y = '0 0.025 0.05 0.05 0.06 0.085'
[../]
[./yield]
type = PiecewiseLinear
x = '400 500 600'
y = '6e3 5e3 4e3'
[../]
[./temp]
type = PiecewiseLinear
x = '0 1 2 3 4'
y = '500 500 500 600 400'
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temp
boundary = left
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 2.0e5
poissons_ratio = 0.3
[../]
[./creep_plas]
type = ADComputeMultipleInelasticStress
block = 0
inelastic_models = 'plasticity'
max_iterations = 50
absolute_tolerance = 1e-05
[../]
[./plasticity]
type = ADIsotropicPlasticityStressUpdate
block = 0
hardening_constant = 0
yield_stress_function = yield
temperature = temp
[../]
[./heat_conduction]
type = ADHeatConductionMaterial
block = 0
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 6
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rspherical_incremental_small_elastic.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Problem]
coord_type = RSPHERICAL
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = ADStressDivergenceRSphericalTensors
component = 0
variable = disp_r
[../]
[]
[BCs]
[./center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeRSphericalIncrementalStrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/errors/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
[Outputs]
[]
(modules/navier_stokes/test/tests/finite_element/ins/boussinesq/benchmark/benchmark.i)
rayleigh=1e3
hot_temp=${rayleigh}
temp_ref=${fparse hot_temp / 2.}
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 100
ny = 100
[]
[./bottom_left]
type = ExtraNodesetGenerator
new_boundary = corner
coord = '0 0'
input = gen
[../]
[]
[Preconditioning]
[./Newton_SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'bjacobi lu NONZERO 200'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[out]
type = Exodus
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
[]
[p][]
[temp]
initial_condition = 340
scaling = 1e-4
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[BCs]
[./velocity_dirichlet]
type = VectorDirichletBC
boundary = 'left right bottom top'
variable = velocity
# The third entry is to satisfy RealVectorValue
values = '0 0 0'
[../]
# Even though we are integrating by parts, because there are no integrated
# boundary conditions on the velocity p doesn't appear in the system of
# equations. Thus we must pin the pressure somewhere in order to ensure a
# unique solution
[./p_zero]
type = DirichletBC
boundary = corner
variable = p
value = 0
[../]
[./hot]
type = DirichletBC
variable = temp
boundary = left
value = ${hot_temp}
[../]
[./cold]
type = DirichletBC
variable = temp
boundary = right
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[]
[./buoyancy]
type = INSADBoussinesqBodyForce
variable = velocity
temperature = temp
gravity = '0 -1 0'
[../]
[./gravity]
type = INSADGravityForce
variable = velocity
gravity = '0 -1 0'
[../]
[supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[temp_advection]
type = INSADEnergyAdvection
variable = temp
[]
[temp_conduction]
type = ADHeatConduction
variable = temp
thermal_conductivity = 'k'
[../]
[temp_supg]
type = INSADEnergySUPG
variable = temp
velocity = velocity
[]
[]
[Materials]
[./ad_const]
type = ADGenericConstantMaterial
# alpha = coefficient of thermal expansion where rho = rho0 -alpha * rho0 * delta T
prop_names = 'mu rho alpha k cp'
prop_values = '1 1 1 1 1'
[../]
[./const]
type = GenericConstantMaterial
prop_names = 'temp_ref'
prop_values = '${temp_ref}'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temp
[]
[]
(modules/tensor_mechanics/test/tests/gravity/block-gravity-kinetic-energy.i)
starting_point = 2e-1
offset = 1.0
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[]
[AuxVariables]
[pid]
order = CONSTANT
family = MONOMIAL
[]
[kinetic_energy]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[pid]
type = ProcessorIDAux
variable = pid
execute_on = 'initial timestep_end'
[]
[kinetic_energy]
type = KineticEnergyAux
block = '1 2'
variable = kinetic_energy
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = 0.0
density = density
[]
[]
[ICs]
[disp_y]
type = ConstantIC
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
hht_alpha = 0.0
beta = 0.25
gamma = 0.5
mass_damping_coefficient = 0.0
stiffness_damping_coefficient = 0.0
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_yy'
block = '1 2'
strain = FINITE
[]
[]
[Kernels]
[gravity]
type = Gravity
value = -9.81
variable = disp_y
[]
[]
[Materials]
[elasticity_2]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e4
poissons_ratio = 0.3
[]
[elasticity_1]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '7750'
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[]
[Executioner]
type = Transient
end_time = 0.5
dt = 0.01
dtmin = .05
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err '
'-ksp_gmres_restart'
petsc_options_value = 'lu NONZERO 1e-15 1e-5 100'
l_max_its = 100
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = false
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'total_kinetic_energy'
[total_kinetic_energy]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy
block = '1 2'
[]
[]
(test/tests/problems/eigen_problem/jfnk_mo/ne_coupled_mo.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./T]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./diff_T]
type = Diffusion
variable = T
[../]
[./src_T]
type = CoupledForce
variable = T
v = u
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigenU]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNKMO
nl_rel_tol = 1e-6
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
file_base = ne_coupled
execute_on = 'timestep_end'
[]
(test/tests/mesh_modifiers/add_extra_nodeset/extra_nodeset_test.i)
[Mesh]
[file]
type = FileMeshGenerator
file = square.e
[]
[middle_node]
type = ExtraNodesetGenerator
input = file
new_boundary = 'middle_node'
nodes = '2'
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
active = 'left right middle'
[left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[]
[middle]
type = DirichletBC
variable = u
boundary = 'middle_node'
value = -1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d-dynamics.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[AuxVariables]
[mortar_tangent_x]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_y]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_z]
family = LAGRANGE
order = FIRST
[]
[]
[AuxKernels]
[friction_x_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_x
component = 0
boundary = 'top_bottom'
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_y
component = 1
boundary = 'top_bottom'
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_z
component = 2
boundary = 'top_bottom'
[]
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
uniform_refine = 0
allow_renumbering = false
[]
[Variables]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_3d_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
hht_alpha = 0.0
newmark_beta = 0.25
newmark_gamma = 0.5
mass_damping_coefficient = 0.0
stiffness_damping_coefficient = 0.1
displacements = 'disp_x disp_y disp_z'
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
block = '1 2'
strain = FINITE
density = density
[]
[]
[Materials]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e4
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Constraints]
[friction]
type = ComputeDynamicFrictionalForceLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
friction_lm = mortar_tangential_lm
friction_lm_dir = mortar_tangential_3d_lm
mu = 0.4
c = 1e4
c_t = 1.0e4
newmark_gamma = 0.5
newmark_beta = 0.25
interpolate_normals = false
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = .025
dt = .025
dtmin = .001
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu NONZERO 1e-14'
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
line_search = 'basic'
[TimeIntegrator]
type = NewmarkBeta
gamma = 0.5
beta = 0.25
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[frictional-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[frictional-pressure-3d]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_3d_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_x]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_x
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_y]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_y
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[]
(test/tests/userobjects/setup_interface_count/element.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = ElementSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./timestep] # once per timestep
type = ElementSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./subdomain] # 2 on initial and 4 for each timestep
type = ElementSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = ElementSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = ElementSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./execute] # 4 for initial and 8 for each timestep
type = ElementSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = ElementSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/restart_multilevel/subsub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
value = t*x
[../]
[./ffn]
type = ParsedFunction
value = x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/piecewise_linear_interpolation_material/piecewise_linear_interpolation_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
nz = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff1]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./m1]
type = PiecewiseLinearInterpolationMaterial
property = m1
variable = u
xy_data = '0 0
1 1'
block = 0
outputs = all
[../]
[./m2]
type = PiecewiseLinearInterpolationMaterial
property = m2
variable = u
x = '0 1'
y = '0 1'
block = 0
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/05_tabulated.i)
# Darcy flow with heat advection and conduction, using Water97 properties
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1E6
[]
[temperature]
initial_condition = 313
scaling = 1E-8
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = tabulated_water
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 2E6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 333
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[tabulated_water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated.csv
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caps aquifer'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/variables/output_vars_nonexistent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Postprocessors]
[./x]
type = ScalarVariable
variable = x
execute_on = timestep_end
[../]
[./y]
type = ScalarVariable
variable = y
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 10
[]
[Outputs]
file_base = out_nonexistent
exodus = true
show = 'u elemental nodal x foo1 foo2'
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain_direction.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./left-right]
auto_direction = 'x'
variable = 'u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = bottom
variable = u_y
value = 0
[../]
[./appl_y]
type = DirichletBC
boundary = top
variable = u_y
value = -0.1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/scaling/remove-singularity/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v][]
[w][]
[]
[Kernels]
[diff_v]
type = ADMatDiffusion
variable = v
diffusivity = 1e-20
[]
[diff_w]
type = MatDiffusion
variable = w
diffusivity = 1e-40
[]
[]
[BCs]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[left_w]
type = DirichletBC
variable = w
boundary = left
value = 0
[]
[right_w]
type = DirichletBC
variable = w
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options = '-pc_svd_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'svd'
automatic_scaling = true
verbose = true
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/solution_scalar_aux/solution_scalar_aux.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = GeneratedMesh
dim = 1
nx = 1
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./a]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxScalarKernels]
[./a_sk]
type = SolutionScalarAux
variable = a
solution = solution_uo
from_variable = a
execute_on = 'initial timestep_begin'
[../]
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = build_out.e
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
dt = 1
num_steps = 3
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/action/action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = SMALL
add_variables = true
new_system = true
formulation = UPDATED
volumetric_locking_correction = true
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
[out]
type = Exodus
file_base = 'blah'
[]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest1.i)
# 2D, concave block
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '3 3 3'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/pressure_pulse/pp01.i)
# investigating pressure pulse in 1D with 1 phase
# steadystate
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp01
exodus = true
[]
(tutorials/darcy_thermo_mech/step07_adaptivity/problems/step7c_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 3
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
uniform_refine = 3
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = left
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[column]
type = PackedColumn
radius = 1
temperature = temperature
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
end_time = 100
dt = 0.25
start_time = -1
steady_state_tolerance = 1e-5
steady_state_detection = true
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
exodus = true
[]
[Adaptivity]
marker = error_frac
max_h_level = 3
[Indicators]
[temperature_jump]
type = GradientJumpIndicator
variable = temperature
scale_by_flux_faces = true
[]
[]
[Markers]
[error_frac]
type = ErrorFractionMarker
coarsen = 0.15
indicator = temperature_jump
refine = 0.7
[]
[]
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test9.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '3 4 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = 'SubdomainBoundingBox1'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmax = 0.3
ymax = 0.3
[]
[AuxVariables]
[power_density]
[]
[]
[Variables]
[temp]
[]
[]
[Kernels]
[heat_timedt]
type = TimeDerivative
variable = temp
[]
[heat_conduction]
type = Diffusion
variable = temp
[]
[heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '1 3'
value = 100
[]
[bc2]
type = NeumannBC
variable = temp
boundary = '0 2'
value = 10.0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
end_time = 20
dt = 2.0
[]
[Postprocessors]
[temp_fuel_avg]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[]
[pwr_density]
type = ElementIntegralVariablePostprocessor
variable = power_density
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
csv = true
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer/errors/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/tan-pen-and-scaling/bouncing-block-tan-pen.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-no-lower-d-coarse.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = false
use_automatic_differentiation = true
strain = SMALL
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e3
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[stress]
type = ADComputeLinearElasticStress
[]
[]
[Contact]
[leftright]
secondary = 10
primary = 20
model = coulomb
formulation = tangential_penalty
penalty = 1e3
friction_coefficient = 0.4
normal_smoothing_distance = 0.2
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 100
dt = 5
dtmin = 5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type -mat_mffd_err -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 1e-5 200'
l_max_its = 200
nl_max_its = 20
line_search = 'none'
automatic_scaling = true
verbose = true
scaling_group_variables = 'disp_x disp_y'
resid_vs_jac_scaling_param = 1
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[nl]
type = NumNonlinearIterations
[]
[lin]
type = NumLinearIterations
[]
[tot_nl]
type = CumulativeValuePostprocessor
postprocessor = nl
[]
[tot_lin]
type = CumulativeValuePostprocessor
postprocessor = lin
[]
[]
(modules/combined/test/tests/heat_convection/heat_convection_function.i)
[Mesh] # Mesh Start
file = patch_3d.e
#
[] # Mesh END
[Functions]
[./t_infinity]
type = ParsedFunction
value = '300'
[../]
[./htc]
type = ParsedFunction
value = 10.0*5.7 # convective heat transfer coefficient (w/m^2-K)[50 BTU/hr-ft^2-F]
[../]
[]
[Variables] # Variables Start
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 294.26
[../]
[] # Variables END
[Kernels] # Kernels Start
[./heat]
type = HeatConduction
variable = temp
[../]
[] # Kernels END
[BCs] # Boundary Conditions Start
# Heat transfer coefficient on outer parallelpiped radius and ends
[./convective_clad_surface] # Convective Start
type = ConvectiveFluxFunction # Convective flux, e.g. q'' = h*(Tw - Tf)
boundary = 12
variable = temp
coefficient = htc
T_infinity = t_infinity
[../] # Convective End
[./fixed]
type = DirichletBC
variable = temp
boundary = 10
value = 100
[../]
[] # BCs END
[Materials] # Materials Start
[./thermal]
type = HeatConductionMaterial
block = '1 2 3 4 5 6 7'
specific_heat = 826.4
thermal_conductivity = 57
[../]
[./density]
type = Density
block = '1 2 3 4 5 6 7'
density = 2405.28
[../]
[] # Materials END
[Executioner] # Executioner Start
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
l_max_its = 60
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
l_tol = 1e-5
start_time = 0.0
dt = 1
num_steps = 1
[] # Executioner END
[Outputs] # Output Start
# Output Start
exodus = true
[] # Output END
# # Input file END
(modules/tensor_mechanics/test/tests/umat/print/print_shear.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t/1000
[]
[]
[AuxVariables]
[strain_xy]
family = MONOMIAL
order = SECOND
[]
[strain_yy]
family = MONOMIAL
order = SECOND
[]
[]
[AuxKernels]
[strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 1
index_j = 0
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[NodalKernels]
[force_x]
type = ConstantRate
variable = disp_x
boundary = top
rate = 1.0e0
[]
[]
[Materials]
# 1. Active for UMAT verification
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_print_multiple_fields'
num_state_vars = 0
external_fields = 'strain_yy strain_xy'
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
base_name = 'base'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[strain_dependent_elasticity_tensor]
type = CompositeElasticityTensor
args = 'strain_yy strain_xy'
tensors = 'base'
weights = 'prefactor_material'
[]
[prefactor_material_block]
type = DerivativeParsedMaterial
f_name = prefactor_material
args = 'strain_yy strain_xy'
function = '1.0/(1.0 + strain_yy + strain_xy)'
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 10
dt = 10.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl3D.i)
#
# 3D Cylindrical Gap Heat Transfer Test.
#
# This test exercises 3D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of an inner solid cylinder of radius = 1 unit, and outer
# hollow cylinder with an inner radius of 2. In other words, the gap between
# them is 1 radial unit in length.
#
# The conductivity of both cylinders is set very large to achieve a uniform
# temperature in each cylinder. The temperature of the center node of the
# inner cylinder is ramped from 100 to 200 over one time unit. The temperature
# of the outside of the outer, hollow cylinder is held fixed at 100.
#
# A simple analytical solution is possible for the integrated heat flux
# between the inner and outer cylinders:
#
# Integrated Flux = (T_left - T_right) * (gapK/(r*ln(r2/r1))) * Area
#
# For gapK = 1 (default value)
#
# The area is taken as the area of the secondary (inner) surface:
#
# Area = 2 * pi * h * r, where h is the height of the cylinder.
#
# The integrated heat flux across the gap at time 1 is then:
#
# 2*pi*h*k*delta_T/(ln(r2/r1))
# 2*pi*1*1*100/(ln(2/1)) = 906.5 watts
#
# For comparison, see results from the integrated flux post processors.
# This simulation makes use of symmetry, so only 1/4 of the cylinders is meshed
# As such, the integrated flux from the post processors is 1/4 of the total,
# or 226.6 watts.
# The value coming from the post processor is slightly less than this
# but converges as mesh refinement increases.
#
# Simulating contact is challenging. Regression tests that exercise
# contact features can be difficult to solve consistently across multiple
# platforms. While designing these tests, we felt it worth while to note
# some aspects of these tests. The following applies to:
# sphere3D.i, sphere2DRZ.i, cyl2D.i, and cyl3D.i.
# 1. We decided that to perform consistently across multiple platforms we
# would use very small convergence tolerance. In this test we chose an
# nl_rel_tol of 1e-12.
# 2. Due to such a high value for thermal conductivity (used here so that the
# domains come to a uniform temperature) the integrated flux at time = 0
# was relatively large (the value coming from SideIntegralFlux =
# -_diffusion_coef[_qp]*_grad_u[_qp]*_normals[_qp] where the diffusion coefficient
# here is thermal conductivity).
# Even though _grad_u[_qp] is small, in this case the diffusion coefficient
# is large. The result is a number that isn't exactly zero and tends to
# fail exodiff. For this reason the parameter execute_on = initial should not
# be used. That parameter is left to default settings in these regression tests.
#
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = cyl3D.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[../]
[]
[Variables]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_conductance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./gap_cond]
type = MaterialRealAux
property = gap_conductance
variable = gap_conductance
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1000000.0
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1
quadrature = true
gap_geometry_type = CYLINDER
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '0 1 0'
[../]
[]
[BCs]
[./mid]
type = FunctionDirichletBC
boundary = 5
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[./Quadrature]
order = fifth
side_order = seventh
[../]
[]
[Outputs]
exodus = true
[./Console]
type = Console
[../]
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/combined_twinning_slip_111tension.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_1]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_2]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_4]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_5]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_6]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_7]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_8]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_9]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_10]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_11]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_6]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_7]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_8]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_9]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_11]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = twin_total_volume_fraction_twins
execute_on = timestep_end
[]
[slip_increment_0]
type = MaterialStdVectorAux
variable = slip_increment_0
property = slip_increment
index = 0
execute_on = timestep_end
[]
[slip_increment_1]
type = MaterialStdVectorAux
variable = slip_increment_1
property = slip_increment
index = 1
execute_on = timestep_end
[]
[slip_increment_2]
type = MaterialStdVectorAux
variable = slip_increment_2
property = slip_increment
index = 2
execute_on = timestep_end
[]
[slip_increment_3]
type = MaterialStdVectorAux
variable = slip_increment_3
property = slip_increment
index = 3
execute_on = timestep_end
[]
[slip_increment_4]
type = MaterialStdVectorAux
variable = slip_increment_4
property = slip_increment
index = 4
execute_on = timestep_end
[]
[slip_increment_5]
type = MaterialStdVectorAux
variable = slip_increment_5
property = slip_increment
index = 5
execute_on = timestep_end
[]
[slip_increment_6]
type = MaterialStdVectorAux
variable = slip_increment_6
property = slip_increment
index = 6
execute_on = timestep_end
[]
[slip_increment_7]
type = MaterialStdVectorAux
variable = slip_increment_7
property = slip_increment
index = 7
execute_on = timestep_end
[]
[slip_increment_8]
type = MaterialStdVectorAux
variable = slip_increment_8
property = slip_increment
index = 8
execute_on = timestep_end
[]
[slip_increment_9]
type = MaterialStdVectorAux
variable = slip_increment_9
property = slip_increment
index = 9
execute_on = timestep_end
[]
[slip_increment_10]
type = MaterialStdVectorAux
variable = slip_increment_10
property = slip_increment
index = 10
execute_on = timestep_end
[]
[slip_increment_11]
type = MaterialStdVectorAux
variable = slip_increment_11
property = slip_increment
index = 11
execute_on = timestep_end
[]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_4]
type = MaterialStdVectorAux
variable = twin_volume_fraction_4
property = twin_twin_system_volume_fraction
index = 4
execute_on = timestep_end
[]
[twin_volume_fraction_5]
type = MaterialStdVectorAux
variable = twin_volume_fraction_5
property = twin_twin_system_volume_fraction
index = 5
execute_on = timestep_end
[]
[twin_volume_fraction_6]
type = MaterialStdVectorAux
variable = twin_volume_fraction_6
property = twin_twin_system_volume_fraction
index = 6
execute_on = timestep_end
[]
[twin_volume_fraction_7]
type = MaterialStdVectorAux
variable = twin_volume_fraction_7
property = twin_twin_system_volume_fraction
index = 7
execute_on = timestep_end
[]
[twin_volume_fraction_8]
type = MaterialStdVectorAux
variable = twin_volume_fraction_8
property = twin_twin_system_volume_fraction
index = 8
execute_on = timestep_end
[]
[twin_volume_fraction_9]
type = MaterialStdVectorAux
variable = twin_volume_fraction_9
property = twin_twin_system_volume_fraction
index = 9
execute_on = timestep_end
[]
[twin_volume_fraction_10]
type = MaterialStdVectorAux
variable = twin_volume_fraction_10
property = twin_twin_system_volume_fraction
index = 10
execute_on = timestep_end
[]
[twin_volume_fraction_11]
type = MaterialStdVectorAux
variable = twin_volume_fraction_11
property = twin_twin_system_volume_fraction
index = 11
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.02*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5' # roughly copper
fill_method = symmetric9
euler_angle_1 = 54.74
euler_angle_2 = 45.0
euler_angle_3 = 270.0
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_xtalpl slip_xtalpl'
tan_mod_type = exact
[]
[twin_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
base_name = twin
number_slip_systems = 12
slip_sys_file_name = 'fcc_input_twinning_systems.txt'
initial_twin_lattice_friction = 60.0
[]
[slip_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
total_twin_volume_fraction = 'twin_total_volume_fraction_twins'
[]
[]
[Postprocessors]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[slip_increment_0]
type = ElementAverageValue
variable = slip_increment_0
[]
[slip_increment_1]
type = ElementAverageValue
variable = slip_increment_1
[]
[slip_increment_2]
type = ElementAverageValue
variable = slip_increment_2
[]
[slip_increment_3]
type = ElementAverageValue
variable = slip_increment_3
[]
[slip_increment_4]
type = ElementAverageValue
variable = slip_increment_4
[]
[slip_increment_5]
type = ElementAverageValue
variable = slip_increment_5
[]
[slip_increment_6]
type = ElementAverageValue
variable = slip_increment_6
[]
[slip_increment_7]
type = ElementAverageValue
variable = slip_increment_7
[]
[slip_increment_8]
type = ElementAverageValue
variable = slip_increment_8
[]
[slip_increment_9]
type = ElementAverageValue
variable = slip_increment_9
[]
[slip_increment_10]
type = ElementAverageValue
variable = slip_increment_10
[]
[slip_increment_11]
type = ElementAverageValue
variable = slip_increment_11
[]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[twin_volume_fraction_4]
type = ElementAverageValue
variable = twin_volume_fraction_4
[]
[twin_volume_fraction_5]
type = ElementAverageValue
variable = twin_volume_fraction_5
[]
[twin_volume_fraction_6]
type = ElementAverageValue
variable = twin_volume_fraction_6
[]
[twin_volume_fraction_7]
type = ElementAverageValue
variable = twin_volume_fraction_7
[]
[twin_volume_fraction_8]
type = ElementAverageValue
variable = twin_volume_fraction_8
[]
[twin_volume_fraction_9]
type = ElementAverageValue
variable = twin_volume_fraction_9
[]
[twin_volume_fraction_10]
type = ElementAverageValue
variable = twin_volume_fraction_10
[]
[twin_volume_fraction_11]
type = ElementAverageValue
variable = twin_volume_fraction_11
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.005
dtmin = 0.01
num_steps = 6
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/thermal_hydraulics/test/tests/jacobians/materials/ad_solid_material.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
allow_renumbering = false
[]
[Variables]
[T]
[]
[]
[Functions]
[k_fn]
type = ParsedFunction
value = 't*t + 2*t'
[]
[cp_fn]
type = ParsedFunction
value = 't*t*t + 3*t'
[]
[rho_fn]
type = ParsedFunction
value = 't*t*t*t + 4*t'
[]
[]
[HeatStructureMaterials]
[prop_uo]
type = SolidMaterialProperties
k = k_fn
cp = cp_fn
rho = rho_fn
[]
[]
[Components]
[]
[Materials]
[solid_mat]
type = ADSolidMaterial
T = T
properties = prop_uo
[]
[]
[Kernels]
[td]
type = ADHeatConductionTimeDerivative
variable = T
specific_heat = specific_heat
density_name = density
[]
[diff]
type = ADHeatConduction
variable = T
thermal_conductivity = thermal_conductivity
[]
[forcing_fn]
type = BodyForce
variable = T
value = -4
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
variable = T
value = 0
[]
[right]
type = DirichletBC
boundary = right
variable = T
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
[]
(modules/contact/test/tests/simple_contact/simple_contact_rz_test.i)
#
# The analytic solution is:
# disp_x = -7e-5 * x
# disp_y = 6e-5 * y
# stress_xx = stress_zz = -100
# stress_yy = stress_xy = 0
#
# Note: Run merged_rz.i to generate a solution to compare to that doesn't use contact.
[Mesh]
file = contact_rz.e
# PETSc < 3.5.0 requires the iteration patch_update_strategy to
# avoid PenetrationLocator warnings, which are currently treated as
# errors by the TestHarness.
patch_update_strategy = 'iteration'
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0 1'
y = '0 1'
scale_factor = 100
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
strain = FINITE
generate_output = 'stress_xx stress_xy stress_zx stress_yy stress_zz stress_yz'
[../]
[]
[Contact]
[./dummy_name]
primary = 3
secondary = 2
penalty = 1e5
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 10
value = 0.0
[../]
[./Pressure]
[./right_pressure]
boundary = 4
function = pressure
[../]
[../]
[]
[Materials]
[./stiffStuff]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stiffStuff_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu '
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-9
l_max_its = 20
dt = 1.0
end_time = 1.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/tensor_mechanics/test/tests/torque/torque_small.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
origin = '0 0 2'
direction = '0 0 1'
polar_moment_of_inertia = pmi
factor = t
[]
[Mesh]
[ring]
type = AnnularMeshGenerator
nr = 1
nt = 30
rmin = 0.95
rmax = 1
[]
[extrude]
type = MeshExtruderGenerator
input = ring
extrusion_vector = '0 0 2'
bottom_sideset = 'bottom'
top_sideset = 'top'
num_layers = 5
[]
[]
[AuxVariables]
[alpha_var]
[]
[shear_stress_var]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[alpha]
type = RotationAngle
variable = alpha_var
[]
[shear_stress]
type = ParsedAux
variable = shear_stress_var
args = 'stress_yz stress_xz'
function = 'sqrt(stress_yz^2 + stress_xz^2)'
[]
[]
[BCs]
# fix bottom
[fix_x]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0
[]
[fix_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[]
[fix_z]
type = DirichletBC
boundary = bottom
variable = disp_z
value = 0
[]
# twist top
[twist_x]
type = Torque
boundary = top
variable = disp_x
[]
[twist_y]
type = Torque
boundary = top
variable = disp_y
[]
[twist_z]
type = Torque
boundary = top
variable = disp_z
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = SMALL
generate_output = 'vonmises_stress stress_yz stress_xz'
[]
[]
[Postprocessors]
[pmi]
type = PolarMomentOfInertia
boundary = top
# execute_on = 'INITIAL NONLINEAR'
execute_on = 'INITIAL'
[]
[alpha]
type = SideAverageValue
variable = alpha_var
boundary = top
[]
[shear_stress]
type = ElementAverageValue
variable = shear_stress_var
[]
[]
[Materials]
[stress]
type = ComputeLinearElasticStress
[]
[elastic]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 0.3
shear_modulus = 100
[]
[]
[Executioner]
# type = Steady
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pctype'
petsc_options_value = 'lu'
nl_max_its = 150
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/quad_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.01
ymax = 0.01
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.00001
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = Receiver
default = -1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_multilevel/picard_sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/darcy/ss.i)
# Test to show that DarcyFlux produces the correct steadystate
[GlobalParams]
variable = pressure
fluid_weight = '0 0 -1E4'
fluid_viscosity = 2
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 2
nz = 3
zmax = 0
zmin = -10
[]
[Variables]
[./pressure]
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
[./darcy]
type = DarcyFlux
variable = pressure
[../]
[]
[AuxVariables]
[./f_0]
order = CONSTANT
family = MONOMIAL
[../]
[./f_1]
order = CONSTANT
family = MONOMIAL
[../]
[./f_2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_0]
type = DarcyFluxComponent
component = x
variable = f_0
porepressure = pressure
[../]
[./f_1]
type = DarcyFluxComponent
component = y
variable = f_1
porepressure = pressure
[../]
[./f_2]
type = DarcyFluxComponent
component = z
variable = f_2
porepressure = pressure
[../]
[]
[BCs]
[./zmax]
type = DirichletBC
boundary = front
value = 0
variable = pressure
[../]
[]
[Materials]
[./solid]
type = DarcyMaterial
block = 0
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ss
exodus = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG2.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[ppwater]
initial_condition = 2e6
[]
[sgas]
initial_condition = 0.3
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[ppgas]
family = MONOMIAL
order = FIRST
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = ppwater
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sgas
fluid_component = 1
[]
[]
[AuxKernels]
[ppgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = ppgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater sgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-4
sat_lr = 0.3
pc_max = 1e9
log_extension = true
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e7
density0 = 1
thermal_expansion = 0
viscosity = 1e-5
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = ppwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[BCs]
[leftwater]
type = DirichletBC
boundary = left
value = 3e6
variable = ppwater
[]
[rightwater]
type = DirichletBC
boundary = right
value = 2e6
variable = ppwater
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1e3
end_time = 1e4
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'ppwater ppgas'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 11
[]
[]
[Outputs]
file_base = pressure_pulse_1d_2phasePSVG2
print_linear_residuals = false
[csv]
type = CSV
execute_on = final
[]
[]
(modules/phase_field/test/tests/electrochem_sintering/ElectrochemicalSintering_test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 800
xmin = 0
xmax = 80
[]
[GlobalParams]
op_num = 2
var_name_base = gr
int_width = 4
[]
[Variables]
[wvy]
[]
[wvo]
[]
[phi]
[]
[PolycrystalVariables]
[]
[V]
[]
[]
[AuxVariables]
[bnds]
[]
[negative_V]
[]
[E_x]
order = CONSTANT
family = MONOMIAL
[]
[E_y]
order = CONSTANT
family = MONOMIAL
[]
[ns_cat_aux]
order = CONSTANT
family = MONOMIAL
[]
[ns_an_aux]
order = CONSTANT
family = MONOMIAL
[]
[T]
[]
[]
[Functions]
[ic_func_gr0]
type = ParsedFunction
value = '0.5*(1.0-tanh((x)/sqrt(2.0*2.0)))'
[]
[ic_func_gr1]
type = ParsedFunction
value = '0.5*(1.0+tanh((x)/sqrt(2.0*2.0)))'
[]
[]
[ICs]
[gr0_IC]
type = FunctionIC
variable = gr0
function = ic_func_gr0
[]
[gr1_IC]
type = FunctionIC
variable = gr1
function = ic_func_gr1
[]
[wvy_IC]
type = ConstantIC
variable = wvy
value = 2.7827
[]
[wvo_IC]
type = ConstantIC
variable = wvo
value = 2.7827
[]
[T_IC]
type = ConstantIC
variable = T
value = 1600
[]
[]
[BCs]
[v_left]
type = DirichletBC
preset = true
variable = V
boundary = left
value = 1e-2
[]
[v_right]
type = DirichletBC
preset = true
variable = V
boundary = right
value = 0
[]
[gr0_left]
type = DirichletBC
preset = true
variable = gr0
boundary = left
value = 0.5 #Grain boundary at left hand side of domain
[]
[gr1_left]
type = DirichletBC
preset = true
variable = gr1
boundary = left
value = 0.5 #Grain boundary at left hand side of domain
[]
[wvo_right]
type = DirichletBC
preset = true
variable = wvo
boundary = right
value = 2.7827
[]
[wvy_right]
type = DirichletBC
preset = true
variable = wvy
boundary = right
value = 2.7827
[]
[]
[Materials]
# Free energy coefficients for parabolic curves
[ks_cat]
type = ParsedMaterial
f_name = ks_cat
args = 'T'
constant_names = 'a b Va'
constant_expressions = '-0.0017 140.44 0.03726'
function = '(a*T + b) * Va^2'
[]
[ks_an]
type = ParsedMaterial
f_name = ks_an
args = 'T'
constant_names = 'a b Va'
constant_expressions = '-0.0017 140.44 0.03726'
function = '(a*T + b) * Va^2'
[]
[kv_cat]
type = ParsedMaterial
f_name = kv_cat
material_property_names = 'ks_cat'
function = '10*ks_cat'
[]
[kv_an]
type = ParsedMaterial
f_name = kv_an
material_property_names = 'ks_cat'
function = '10*ks_cat'
[]
# Diffusivity and mobilities
[chiDy]
type = GrandPotentialTensorMaterial
f_name = chiDy
diffusivity_name = Dvy
solid_mobility = L
void_mobility = Lv
chi = chi_cat
surface_energy = 6.24
c = phi
T = T
D0 = 5.9e11
GBmob0 = 1.60e12
Q = 4.14
Em = 4.25
bulkindex = 1
gbindex = 1
surfindex = 1
[]
[chiDo]
type = GrandPotentialTensorMaterial
f_name = chiDo
diffusivity_name = Dvo
solid_mobility = Lo
void_mobility = Lvo
chi = chi_an
surface_energy = 6.24
c = phi
T = T
D0 = 5.9e11
GBmob0 = 1.60e12
Q = 4.14
Em = 4.25
bulkindex = 1
gbindex = 1
surfindex = 1
[]
# Everything else
[ns_y_min]
type = DerivativeParsedMaterial
f_name = ns_y_min
args = 'gr0 gr1 T'
constant_names = 'Ef_B Ef_GB kB Va_Y'
constant_expressions = '4.37 4.37 8.617343e-5 0.03726'
derivative_order = 2
function = 'bnds:=gr0^2 + gr1^2; Ef:=Ef_B + 4.0 * (Ef_GB - Ef_B) * (1.0 - bnds)^2;
'
' exp(-Ef/kB/T) / Va_Y'
[]
[ns_o_min]
type = DerivativeParsedMaterial
f_name = ns_o_min
args = 'gr0 gr1 T'
constant_names = 'Ef_B Ef_GB kB Va_O'
constant_expressions = '4.37 4.37 8.617343e-5 0.02484'
derivative_order = 2
function = 'bnds:=gr0^2 + gr1^2; Ef:=Ef_B + 4.0 * (Ef_GB - Ef_B) * (1.0 - bnds)^2;
'
' exp(-Ef/kB/T) / Va_O'
[]
[sintering]
type = ElectrochemicalSinteringMaterial
chemical_potentials = 'wvy wvo'
electric_potential = V
void_op = phi
Temperature = T
surface_energy = 6.24
grainboundary_energy = 5.18
solid_energy_coefficients = 'kv_cat kv_cat'
void_energy_coefficients = 'kv_cat kv_an'
min_vacancy_concentrations_solid = 'ns_y_min ns_o_min'
min_vacancy_concentrations_void = '26.837 40.256'
defect_charges = '-3 2'
solid_relative_permittivity = 30
solid_energy_model = DILUTE
[]
[density_chi_y]
type = ElectrochemicalDefectMaterial
chemical_potential = wvy
void_op = phi
Temperature = T
electric_potential = V
void_density_name = nv_cat
solid_density_name = ns_cat
chi_name = chi_cat
void_energy_coefficient = kv_cat
min_vacancy_concentration_solid = ns_y_min
min_vacancy_concentration_void = 26.837
solid_energy_model = DILUTE
defect_charge = -3
solid_relative_permittivity = 30
[]
[density_chi_o]
type = ElectrochemicalDefectMaterial
chemical_potential = wvo
void_op = phi
Temperature = T
electric_potential = V
void_density_name = nv_an
solid_density_name = ns_an
chi_name = chi_an
void_energy_coefficient = kv_an
min_vacancy_concentration_solid = ns_o_min
min_vacancy_concentration_void = 40.256
solid_energy_model = DILUTE
defect_charge = 2
solid_relative_permittivity = 30
[]
[permittivity]
type = DerivativeParsedMaterial
f_name = permittivity
args = 'phi'
material_property_names = 'hs hv'
constant_names = 'eps_rel_solid eps_void_over_e'
constant_expressions = '30 5.52e-2' #eps_void_over_e in 1/V/nm
derivative_order = 2
function = '-hs * eps_rel_solid * eps_void_over_e - hv * eps_void_over_e'
[]
[void_pre]
type = DerivativeParsedMaterial
f_name = void_pre
material_property_names = 'hv'
constant_names = 'Z_cat Z_an nv_y_min nv_o_min'
constant_expressions = '-3 2 26.837 40.256'
derivative_order = 2
function = '-hv * (Z_cat * nv_y_min + Z_an * nv_o_min)'
[]
[cat_mu_pre]
type = DerivativeParsedMaterial
f_name = cat_mu_pre
material_property_names = 'hv kv_cat'
constant_names = 'Z_cat'
constant_expressions = '-3'
derivative_order = 2
function = '-hv * Z_cat / kv_cat'
[]
[an_mu_pre]
type = DerivativeParsedMaterial
f_name = an_mu_pre
material_property_names = 'hv kv_an'
constant_names = 'Z_an'
constant_expressions = '2'
derivative_order = 2
function = '-hv * Z_an / kv_an'
[]
[cat_V_pre]
type = DerivativeParsedMaterial
f_name = cat_V_pre
material_property_names = 'hv kv_cat'
constant_names = 'Z_cat v_scale e '
constant_expressions = '-3 1 1'
derivative_order = 2
function = 'hv * Z_cat^2 * e * v_scale / kv_cat'
[]
[an_V_pre]
type = DerivativeParsedMaterial
f_name = an_V_pre
material_property_names = 'hv kv_an'
constant_names = 'Z_an v_scale e '
constant_expressions = '2 1 1'
derivative_order = 2
function = 'hv * Z_an^2 * e * v_scale / kv_an'
[]
[]
#This action adds most kernels needed for grand potential model
[Modules]
[PhaseField]
[GrandPotential]
switching_function_names = 'hv hs'
anisotropic = 'true true'
chemical_potentials = 'wvy wvo'
mobilities = 'chiDy chiDo'
susceptibilities = 'chi_cat chi_an'
free_energies_w = 'nv_cat ns_cat nv_an ns_an'
gamma_gr = gamma
mobility_name_gr = L
kappa_gr = kappa
free_energies_gr = 'omegav omegas'
additional_ops = 'phi'
gamma_grxop = gamma
mobility_name_op = Lv
kappa_op = kappa
free_energies_op = 'omegav omegas'
[]
[]
[]
[Kernels]
[barrier_phi]
type = ACBarrierFunction
variable = phi
v = 'gr0 gr1'
gamma = gamma
mob_name = Lv
[]
[kappa_phi]
type = ACKappaFunction
variable = phi
mob_name = Lv
kappa_name = kappa
[]
[Laplace]
type = MatDiffusion
variable = V
diffusivity = permittivity
args = 'phi'
[]
[potential_void_constants]
type = MaskedBodyForce
variable = V
args = 'phi'
mask = void_pre
[]
[potential_cat_mu]
type = MatReaction
variable = V
v = wvy
mob_name = cat_mu_pre
[]
[potential_an_mu]
type = MatReaction
variable = V
v = wvo
mob_name = an_mu_pre
[]
[potential_cat_V]
type = MatReaction
variable = V
mob_name = cat_V_pre
[]
[potential_an_V]
type = MatReaction
variable = V
mob_name = an_V_pre
[]
[potential_solid_cat]
type = MaskedExponential
variable = V
w = wvy
T = T
args = 'phi gr0 gr1'
mask = hs
species_charge = -3
n_eq = ns_y_min
[]
[potential_solid_an]
type = MaskedExponential
variable = V
w = wvo
T = T
args = 'phi gr0 gr1'
mask = hs
species_charge = 2
n_eq = ns_o_min
[]
[]
[AuxKernels]
[bnds_aux]
type = BndsCalcAux
variable = bnds
execute_on = 'initial timestep_end'
[]
[negative_V]
type = ParsedAux
variable = negative_V
args = V
function = '-V'
[]
[E_x]
type = VariableGradientComponent
variable = E_x
gradient_variable = negative_V
component = x
[]
[E_y]
type = VariableGradientComponent
variable = E_y
gradient_variable = negative_V
component = y
[]
[ns_cat_aux]
type = MaterialRealAux
variable = ns_cat_aux
property = ns_cat
[]
[ns_an_aux]
type = MaterialRealAux
variable = ns_an_aux
property = ns_an
[]
[]
[Postprocessors]
[ns_cat_total]
type = ElementIntegralMaterialProperty
mat_prop = ns_cat
[]
[ns_an_total]
type = ElementIntegralMaterialProperty
mat_prop = ns_an
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart -sub_ksp_type'
petsc_options_value = ' asm lu 1 31 preonly'
nl_max_its = 40
l_max_its = 30
l_tol = 1e-4
nl_rel_tol = 1e-8
nl_abs_tol = 1e-13
start_time = 0
num_steps = 2
automatic_scaling = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 8
iteration_window = 2
[]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/stateful_prop/implicit_stateful.i)
# This test checks that material properties are correctly implicitly be
# promoted to "stateful" when a stateful old or older value is requested for
# them even when the properties were never explicitly declared with old/older
# support. So the ImplicitStateful material simply requests stateful
# old/older values from a generic constant material that doesn't declare its
# material property with old/older support. This material adds the current
# simulation time to that to calculate its own material property. A second
# implicit stateful material requests the older value of the firsts stateful
# material - also not declared to support old/older as its material property
# value. The sequence of material properties generated by the second implicit
# stateful material should be delayed by the first's by one time step.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[./prop2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = s1
[../]
[./prop2_output]
type = MaterialRealAux
variable = prop2
property = s2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1.0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1.0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'a'
prop_values = '.42'
[../]
[./stateful1]
type = ImplicitStateful
prop_name = 's1'
coupled_prop_name = 'a'
add_time = true
older = false
[../]
[./stateful2]
type = ImplicitStateful
prop_name = 's2'
coupled_prop_name = 's1'
add_time = false
older = false
[../]
[]
[Postprocessors]
[./integ1]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[./integ2]
type = ElementAverageValue
variable = prop2
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0
num_steps = 10
dt = 1
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_userobject_transfer/master.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
user_object = layered_average
variable = multi_layered_average
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
[../]
[./element_layered_transfer]
user_object = layered_average
variable = element_multi_layered_average
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
[../]
[]
(test/tests/kernels/tag_errors/tag_doesnt_exist/bad_tag.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_convergence_issue_flag.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[center_node]
type = BoundingBoxNodeSetGenerator
input = cube
new_boundary = 'center_point'
top_right = '0.51 0.51 0'
bottom_left = '0.49 0.49 0'
[]
[back_edge_y]
type = BoundingBoxNodeSetGenerator
input = center_node
new_boundary = 'back_edge_y'
bottom_left = '0.9 0.5 0'
top_right = '1.1 0.5 0'
[]
[back_edge_x]
type = BoundingBoxNodeSetGenerator
input = back_edge_y
new_boundary = back_edge_x
bottom_left = '0.5 0.9 0'
top_right = '0.5 1.0 0'
[]
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'center_point back_edge_y'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'center_point back_edge_x'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
euler_angle_1 = 164.5
euler_angle_2 = 90.0
euler_angle_3 = 15.3
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
print_state_variable_convergence_error_messages = true
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = hcp_aprismatic_capyramidal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '0.5 5'
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1e5 2e7'
normalized_slip_activiation_energy_per_mode = '4e-3 3e-2'
slip_energy_proportionality_factor_per_mode = '330 100'
substructure_rate_coefficient_per_mode = '400 100'
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '2e-3 2e-3' #minimize impact
grain_size = 20.0e-3 #20 microns
print_state_variable_convergence_error_messages = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
nl_max_its = 20
l_max_its = 50
dt = 0.3
dtmin = 1.0e-4
dtmax = 0.1
num_steps = 1
[]
[Outputs]
[]
(test/tests/postprocessors/element_time_derivative/element_time_derivative_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./forcing_fn2]
# dudt = 3*t^2*(x^2 + y^2)
type = ParsedFunction
value = t*x*y
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn2
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./elementAvgTimeDerivative]
type = ElementAverageTimeDerivative
variable = u
[../]
[./elementAvgValue]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
scheme = implicit-euler
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_elm_time_deriv
csv = true
[]
(test/tests/transfers/multiapp_high_order_variable_transfer/sub_L2_Lagrange_conservative.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
xmax = 0.5
ymax = 0.5
[]
[AuxVariables]
[./power_density]
family = L2_LAGRANGE
order = FIRST
[../]
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./heat_conduction]
type = Diffusion
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = power_density
[../]
[]
[BCs]
[bc]
type = DirichletBC
variable = temp
boundary = '0 1 2 3'
value = 450
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-7
[]
[Postprocessors]
[./temp_fuel_avg]
type = ElementAverageValue
variable = temp
[../]
[./pwr_density]
type = ElementIntegralVariablePostprocessor
block = '0'
variable = power_density
execute_on = 'transfer'
[../]
[]
[Outputs]
perf_graph = true
exodus = true
color = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/energy_source/steady-var.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[u]
initial_condition = 1
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[temperature][]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = temperature
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'k'
[../]
[temperature_source]
type = INSADEnergySource
variable = temperature
source_variable = u
[]
[temperature_supg]
type = INSADEnergySUPG
variable = temperature
velocity = velocity
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[./temperature_hot]
type = DirichletBC
variable = temperature
boundary = 'bottom'
value = 1
[../]
[./temperature_cold]
type = DirichletBC
variable = temperature
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temperature
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
[out]
type = Exodus
hide = 'u'
[]
[]
(modules/combined/test/tests/poro_mechanics/pp_generation_unconfined_action.i)
# This is identical to pp_generation_unconfined.i but it uses
# and action instead of explicitly writing all the Kernels out
#
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# Source = s (units = 1/second)
#
# Expect:
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_xx = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
#
# s = 0.1
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[../]
[]
[Kernels]
[./PoroMechanics]
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_action
[./csv]
type = CSV
[../]
[]
(modules/contact/test/tests/bouncing-block-contact/tied-nodes.i)
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
[]
[Mesh]
file = long-bottom-block-symmetric-single-element.e
[]
[Variables]
[./disp_x]
scaling = 2
[../]
[./disp_y]
scaling = 3
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./disp_x]
type = RANFSTieNode
secondary = 10
primary = 20
variable = disp_x
primary_variable = disp_x
component = x
[../]
[./disp_y]
type = RANFSTieNode
secondary = 10
primary = 20
variable = disp_y
primary_variable = disp_y
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 30
value = 0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = 30
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dtmin = 1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[]
(test/tests/multiapps/picard_multilevel/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./v2]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./coupled_force]
type = CoupledForce
variable = v
v = v2
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Postprocessors]
# Accumulate the number of times 'timestep_end' is reached
# (which is an indicator of the number of Picard iterations)
[./cumulative_picard_its_pp]
type = TestPostprocessor
test_type = custom_execute_on
execute_on = 'timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub2]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub2.i
sub_cycling = true
execute_on = timestep_end
[../]
[]
[Transfers]
[./v2]
type = MultiAppNearestNodeTransfer
from_multi_app = sub2
source_variable = v
variable = v2
[../]
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/2drz.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temperature]
initial_condition = 900.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = vonmises_stress
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./pressure_x]
type = Pressure
variable = disp_x
boundary = right
function = t
factor = 3.1675e5
[../]
[./pressure_y]
type = Pressure
variable = disp_y
boundary = top
function = t
factor = 6.336e5
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.30e11
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
outputs = all
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
automatic_scaling = true
compute_scaling_once = false
num_steps = 5
dt = 2
[]
[Postprocessors]
[./effective_strain_avg]
type = ElementAverageValue
variable = effective_creep_strain
[../]
[./temperature]
type = ElementAverageValue
variable = temperature
[../]
[./cell_dislocations]
type = ElementAverageValue
variable = cell_dislocations
[../]
[./wall_disloactions]
type = ElementAverageValue
variable = wall_dislocations
[../]
[./vonmises_stress]
type = ElementAverageValue
variable = vonmises_stress
[../]
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_1/ring1_template1.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/porous_flow/test/tests/poro_elasticity/undrained_oedometer.i)
# An undrained oedometer test on a saturated poroelastic sample.
#
# The sample is a single unit element, with roller BCs on the sides
# and bottom. A constant displacement is applied to the top: disp_z = -0.01*t.
# There is no fluid flow.
#
# Under these conditions
# porepressure = -(Fluid bulk modulus)*log(1 - 0.01t)
# stress_xx = (bulk - 2*shear/3)*disp_z/L (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*disp_z/L (remember this is effective stress)
# where L is the height of the sample (L=1 in this test)
#
# Parameters:
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1
#
# Desired output:
# zdisp = -0.01*t
# p0 = 1*log(1-0.01t)
# stress_xx = stress_yy = -0.01*t
# stress_zz = -0.04*t
#
# Regarding the "log" - it just comes from conserving fluid mass
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = front
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1
density0 = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1
[]
[]
[Postprocessors]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-8 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = undrained_oedometer
[csv]
type = CSV
[]
[]
(modules/porous_flow/test/tests/actions/fullsat_brine_except4.i)
# Check error when using PorousFlowFullySaturated action,
# attempting to use PorousFlowSingleComponentFluid but with no fp specified
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
block = '0'
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = pp
temperature = temp
mass_fraction_vars = "nacl"
fluid_properties_type = PorousFlowSingleComponentFluid
dictator_name = dictator
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Variables]
[pp]
initial_condition = 20E6
[]
[temp]
initial_condition = 323.15
[]
[nacl]
initial_condition = 0.1047
[]
[]
[Kernels]
# All provided by PorousFlowFullySaturated action
[]
[BCs]
[t_bdy]
type = DirichletBC
variable = temp
boundary = 'left right'
value = 323.15
[]
[p_bdy]
type = DirichletBC
variable = pp
boundary = 'left right'
value = 20E6
[]
[nacl_bdy]
type = DirichletBC
variable = nacl
boundary = 'left right'
value = 0.1047
[]
[]
[Materials]
# Thermal conductivity
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
wet_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
[]
# Specific heat capacity
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 850
density = 2700
[]
# Permeability
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-13 0 0 0 1E-13 0 0 0 1E-13'
[]
# Porosity
[porosity]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = fullsat_brine_except2
[]
(tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/tests/materials/packed_column/packed_column.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First dot for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Materials]
[column]
type = PackedColumn
temperature = 303
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/real_function_control/real_function_control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
dtmin = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Functions]
[./func_coef]
type = ParsedFunction
value = '2*t + 0.1'
[../]
[]
[Postprocessors]
[./coef]
type = RealControlParameterReporter
parameter = 'Kernels/diff/coef'
[../]
[]
[Controls]
[./func_control]
type = RealFunctionControl
parameter = '*/*/coef'
function = 'func_coef'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/2D/dirichlet.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.5 * t'
[]
[pully]
type = ParsedFunction
value = '-0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/postprocessors/element_l2_error_pps/element_l2_error_pp_test.i)
###########################################################
# This is a simple test of the Postprocessor System. This
# test uses a forcing function and the MMS to verify
# correctness of the implementation.
# Grid adaptivity is applied at successively finer grids
# to verify the correct slope of the measure of error
# against the analytical solution.
#
# @Requirement F6.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 2
ymin = 0
ymax = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
active = 'forcing_func u_func'
[./forcing_func]
type = ParsedFunction
value = alpha*alpha*pi*pi*sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[./u_func]
type = ParsedFunction
value = sin(alpha*pi*x)
vars = 'alpha'
vals = '4'
[../]
[]
[Kernels]
active = 'diff forcing'
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
function = forcing_func
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = '3'
value = 0
[../]
[]
[Executioner]
type = Steady
[./Adaptivity]
refine_fraction = 1.0
coarsen_fraction = 0.0
max_h_level = 10
steps = 4
[../]
[]
# Postprocessor System
[Postprocessors]
[./integral]
type = ElementL2Error
variable = u
function = u_func
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/geomsearch/patch_update_strategy/always-grid-sequence.i)
[Mesh]
type = FileMesh
file = long_range_coarse.e
dim = 2
patch_update_strategy = always
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
solution_variables = 'u'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = 'nonlinear timestep_end'
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = FunctionDirichletBC
variable = u
boundary = 'lefttop righttop'
function = 't'
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 'leftbottom rightbottom'
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 3
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
num_grids = 2
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[num_nl]
type = NumNonlinearIterations
[]
[total_nl]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[]
(modules/porous_flow/test/tests/poro_elasticity/terzaghi_fully_saturated_volume.i)
# Terzaghi's problem of consolodation of a drained medium
# The FullySaturated Kernels are used, with multiply_by_density = false
# so that this becomes a linear problem with constant Biot Modulus
#
# A saturated soil sample sits in a bath of water.
# It is constrained on its sides, and bottom.
# Its sides and bottom are also impermeable.
# Initially it is unstressed.
# A normal stress, q, is applied to the soil's top.
# The soil then slowly compresses as water is squeezed
# out from the sample from its top (the top BC for
# the porepressure is porepressure = 0).
#
# See, for example. Section 2.2 of the online manuscript
# Arnold Verruijt "Theory and Problems of Poroelasticity" Delft University of Technology 2013
# but note that the "sigma" in that paper is the negative
# of the stress in TensorMechanics
#
# Here are the problem's parameters, and their values:
# Soil height. h = 10
# Soil's Lame lambda. la = 2
# Soil's Lame mu, which is also the Soil's shear modulus. mu = 3
# Soil bulk modulus. K = la + 2*mu/3 = 4
# Soil confined compressibility. m = 1/(K + 4mu/3) = 0.125
# Soil bulk compliance. 1/K = 0.25
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Soil initial storativity, which is the reciprocal of the initial Biot modulus. S = phi0/Kf + (alpha - phi0)(1 - alpha)/K = 0.0625
# Consolidation coefficient. c = k/(S + alpha^2 m) = 13.95348837
# Normal stress on top. q = 1
# Initial porepressure, resulting from instantaneous application of q, assuming corresponding instantaneous increase of porepressure (Note that this is calculated by MOOSE: we only need it for the analytical solution). p0 = alpha*m*q/(S + alpha^2 m) = 0.69767442
# Initial vertical displacement (down is positive), resulting from instantaneous application of q (Note this is calculated by MOOSE: we only need it for the analytical solution). uz0 = q*m*h*S/(S + alpha^2 m)
# Final vertical displacement (down in positive) (Note this is calculated by MOOSE: we only need it for the analytical solution). uzinf = q*m*h
#
# The solution for porepressure is
# P = 4*p0/\pi \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos ((2k-1)\pi z/(2h)) \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
# This series converges very slowly for ct/h^2 small, so in that domain
# P = p0 erf( (1-(z/h))/(2 \sqrt(ct/h^2)) )
#
# The degree of consolidation is defined as
# U = (uz - uz0)/(uzinf - uz0)
# where uz0 and uzinf are defined above, and
# uz = the vertical displacement of the top (down is positive)
# U = 1 - (8/\pi^2)\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \exp(-(2k-1)^2 \pi^2 ct/(4 h^2))
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = 0
zmax = 10
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[basefixed]
type = DirichletBC
variable = disp_z
value = 0
boundary = back
[]
[topdrained]
type = DirichletBC
variable = porepressure
value = 0
boundary = front
[]
[topload]
type = NeumannBC
variable = disp_z
value = -1
boundary = front
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
coupling_type = HydroMechanical
biot_coefficient = 0.6
multiply_by_density = false
variable = porepressure
[]
[flux]
type = PorousFlowFullySaturatedDarcyBase
multiply_by_density = false
variable = porepressure
gravity = '0 0 0'
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 0.96
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
# bulk modulus is lambda + 2*mu/3 = 2 + 2*3/3 = 4
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
fluid_bulk_modulus = 8
solid_bulk_compliance = 0.25
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
use_displaced_mesh = false
[]
[p1]
type = PointValue
outputs = csv
point = '0 0 1'
variable = porepressure
use_displaced_mesh = false
[]
[p2]
type = PointValue
outputs = csv
point = '0 0 2'
variable = porepressure
use_displaced_mesh = false
[]
[p3]
type = PointValue
outputs = csv
point = '0 0 3'
variable = porepressure
use_displaced_mesh = false
[]
[p4]
type = PointValue
outputs = csv
point = '0 0 4'
variable = porepressure
use_displaced_mesh = false
[]
[p5]
type = PointValue
outputs = csv
point = '0 0 5'
variable = porepressure
use_displaced_mesh = false
[]
[p6]
type = PointValue
outputs = csv
point = '0 0 6'
variable = porepressure
use_displaced_mesh = false
[]
[p7]
type = PointValue
outputs = csv
point = '0 0 7'
variable = porepressure
use_displaced_mesh = false
[]
[p8]
type = PointValue
outputs = csv
point = '0 0 8'
variable = porepressure
use_displaced_mesh = false
[]
[p9]
type = PointValue
outputs = csv
point = '0 0 9'
variable = porepressure
use_displaced_mesh = false
[]
[p99]
type = PointValue
outputs = csv
point = '0 0 10'
variable = porepressure
use_displaced_mesh = false
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 10'
variable = disp_z
use_displaced_mesh = false
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.5*t<0.1,0.5*t,0.1)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.0001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = terzaghi_fully_saturated_volume
[csv]
type = CSV
[]
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp.i)
[Mesh]
type = FileMesh
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
variable = nn
solution = soln
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/controls/time_periods/nodalkernels/nodal.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
[]
[Controls]
[./time_period]
type = TimePeriod
enable_objects = '*::constant_rate'
start_time = 0.5
end_time = 1
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/dg_kernel_with_aux_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = u
[../]
[]
[DGKernels]
[./nope]
type = DGDiffusion
variable = v
epsilon = -1
sigma = 6
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/1D_spherical/finiteStrain_1DSphere_hollow.i)
# This simulation models the mechanics solution for a hollow sphere under
# pressure, applied on the outer surfaces, using 1D spherical symmetry
# assumpitions. The inner radius of the sphere, r = 4mm, is pinned to prevent
# rigid body movement of the sphere.
#
# From Bower (Applied Mechanics of Solids, 2008, available online at
# solidmechanics.org/text/Chapter4_1/Chapter4_1.htm), and applying the outer
# pressure and pinned displacement boundary conditions set in this simulation,
# the radial displacement is given by:
#
# u(r) = \frac{P(1 + v)(1 - 2v)b^3}{E(b^3(1 + v) + 2a^3(1-2v))} * (\frac{a^3}{r^2} - r)
#
# where P is the applied pressure, b is the outer radius, a is the inner radius,
# v is Poisson's ration, E is Young's Modulus, and r is the radial position.
#
# The radial stress is given by:
#
# S(r) = \frac{Pb^3}{b^3(1 + v) + 2a^3(1 - 2v)} * (\frac{2a^3}{r^3}(2v - 1) - (1 + v))
#
# The test assumes an inner radius of 4mm, and outer radius of 9 mm,
# zero displacement at r = 4mm, and an applied outer pressure of 2MPa.
# The radial stress is largest in the inner most element and, at an assumed
# mid element coordinate of 4.5mm, is equal to -2.545MPa.
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 4
xmax = 9
nx = 5
[]
[GlobalParams]
displacements = 'disp_r'
[]
[Problem]
coord_type = RSPHERICAL
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
spherical_center_point = '4.0 0.0 0.0'
generate_output = 'spherical_radial_stress'
[]
[]
[Postprocessors]
[stress_rr]
type = ElementAverageValue
variable = spherical_radial_stress
[]
[]
[BCs]
[innerDisp]
type = DirichletBC
boundary = left
variable = disp_r
value = 0.0
[]
[outerPressure]
type = Pressure
boundary = right
variable = disp_r
factor = 2
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.345
youngs_modulus = 1e4
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 0.25
dtmin = 0.0001
end_time = 0.25
[]
[Outputs]
exodus = true
[]
(test/tests/restrictable/check_error/check_error.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
block = '1 2'
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = '1'
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = '2'
prop_names = 'a'
prop_values = '10'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(tutorials/darcy_thermo_mech/step10_multiapps/problems/step10.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 100
ymax = 0.304 # Length of test chamber
xmax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[k_eff]
initial_condition = 15.0 # water at 20C
[]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Modules/TensorMechanics/Master]
[all]
# This block adds all of the proper Kernels, strain calculators, and Variables
# for TensorMechanics in the correct coordinate system (autodetected)
add_variables = true
strain = FINITE
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
generate_output = 'vonmises_stress elastic_strain_xx elastic_strain_yy strain_xx strain_yy'
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = bottom
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = top
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = bottom
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = top
[]
[hold_inlet]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[]
[hold_center]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[]
[hold_outside]
type = DirichletBC
variable = disp_r
boundary = right
value = 0
[]
[]
[Materials]
viscosity_file = data/water_viscosity.csv
density_file = data/water_density.csv
specific_heat_file = data/water_specific_heat.csv
thermal_expansion_file = data/water_thermal_expansion.csv
[column]
type = PackedColumn
temperature = temperature
radius = 1
thermal_conductivity = k_eff # Use the AuxVariable instead of calculating
fluid_viscosity_file = ${viscosity_file}
fluid_density_file = ${density_file}
fluid_specific_heat_file = ${specific_heat_file}
fluid_thermal_expansion_file = ${thermal_expansion_file}
[]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200e9 # (Pa) from wikipedia
poissons_ratio = .3 # from wikipedia
[]
[elastic_stress]
type = ADComputeFiniteStrainElasticStress
[]
[thermal_strain]
type = ADComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1e-6
eigenstrain_name = eigenstrain
temperature = temperature
[]
[]
[Postprocessors]
[average_temperature]
type = ElementAverageValue
variable = temperature
[]
[]
[Executioner]
type = Transient
start_time = -1
end_time = 200
steady_state_tolerance = 1e-7
steady_state_detection = true
dt = 0.25
solve_type = PJFNK
automatic_scaling = true
compute_scaling_once = false
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 500'
line_search = none
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[MultiApps]
[micro]
type = TransientMultiApp
app_type = DarcyThermoMechApp
positions = '0.01285 0.0 0
0.01285 0.0608 0
0.01285 0.1216 0
0.01285 0.1824 0
0.01285 0.2432 0
0.01285 0.304 0'
input_files = step10_micro.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[keff_from_sub]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = k_eff
power = 1
postprocessor = k_eff
execute_on = 'timestep_end'
[]
[temperature_to_sub]
type = MultiAppVariableValueSamplePostprocessorTransfer
to_multi_app = micro
source_variable = temperature
postprocessor = temperature_in
execute_on = 'timestep_end'
[]
[]
[Controls]
[multiapp]
type = TimePeriod
disable_objects = 'MultiApps::micro Transfers::keff_from_sub Transfers::temperature_to_sub'
start_time = '0'
execute_on = 'initial'
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/porous_flow/test/tests/basic_advection/2phase.i)
# Basic advection of u in a 2-phase situation
#
# grad(P) = -2
# density * gravity = 4 * 0.25
# grad(P) - density * gravity = -3
# permeability = 10
# relative permeability = 0.5
# viscosity = 150
# so Darcy velocity = 0.1
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P0]
[]
[P1]
[]
[]
[ICs]
[P0]
type = FunctionIC
variable = P0
function = '0'
[]
[P1]
type = FunctionIC
variable = P1
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 2
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
density0 = 32
viscosity = 123
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = P0
phase1_porepressure = P1
capillary_pressure = pc
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '10 0 0 0 10 0 0 0 10'
[]
[relperm0]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[relperm1]
type = PorousFlowRelativePermeabilityConst
kr = 0.5
phase = 1
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/gap_heat_transfer_radiation_test.i)
#
# This test replicates the legacy heat transfter test
# gap_heat_transfer_radiation/gap_heat_transfer_radiation_test.i
# The flux post processors give 3.753945e+01
#
[Mesh]
[file]
type = FileMeshGenerator
file = gap_heat_transfer_radiation_test.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '2'
new_block_id = '200'
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '3'
new_block_id = '300'
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Functions]
[temp]
type = PiecewiseLinear
x = '0 1'
y = '200 200'
[]
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
scaling = 1e-8
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
scaling = 1e-1
[]
[]
[Kernels]
[heat]
type = HeatConduction
variable = temp
block = '1 2'
[]
[]
[BCs]
[temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[]
[temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[]
[]
[UserObjects]
[radiative]
type = GapFluxModelRadiative
secondary_emissivity = 0.5
primary_emissivity = 0.5
temperature = temp
boundary = 3
[]
[simple]
type = GapFluxModelSimple
k = 0.09187557
temperature = temp
boundary = 3
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
primary_boundary = 3
primary_subdomain = 300
secondary_boundary = 2
secondary_subdomain = 200
gap_flux_models = 'simple radiative'
[]
[]
[Materials]
[heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 10000000.0
[]
[density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1.0
[]
[Postprocessors]
[temp_left]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[]
[temp_right]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[]
[flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[]
[flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/discrete/recompute_block_error.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = 0
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
compute = false # makes this material "discrete"
[../]
[./newton]
type = NewtonMaterial
block = '0 10'
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime'
prop_values = '1 0.5 '
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/twinning/combined_twinning_slip_error.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_1]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_2]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_4]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_5]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_6]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_7]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_8]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_9]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_10]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_11]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_6]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_7]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_8]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_9]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_10]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_11]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = twin_total_volume_fraction_twins
execute_on = timestep_end
[]
[slip_increment_0]
type = MaterialStdVectorAux
variable = slip_increment_0
property = slip_increment
index = 0
execute_on = timestep_end
[]
[slip_increment_1]
type = MaterialStdVectorAux
variable = slip_increment_1
property = slip_increment
index = 1
execute_on = timestep_end
[]
[slip_increment_2]
type = MaterialStdVectorAux
variable = slip_increment_2
property = slip_increment
index = 2
execute_on = timestep_end
[]
[slip_increment_3]
type = MaterialStdVectorAux
variable = slip_increment_3
property = slip_increment
index = 3
execute_on = timestep_end
[]
[slip_increment_4]
type = MaterialStdVectorAux
variable = slip_increment_4
property = slip_increment
index = 4
execute_on = timestep_end
[]
[slip_increment_5]
type = MaterialStdVectorAux
variable = slip_increment_5
property = slip_increment
index = 5
execute_on = timestep_end
[]
[slip_increment_6]
type = MaterialStdVectorAux
variable = slip_increment_6
property = slip_increment
index = 6
execute_on = timestep_end
[]
[slip_increment_7]
type = MaterialStdVectorAux
variable = slip_increment_7
property = slip_increment
index = 7
execute_on = timestep_end
[]
[slip_increment_8]
type = MaterialStdVectorAux
variable = slip_increment_8
property = slip_increment
index = 8
execute_on = timestep_end
[]
[slip_increment_9]
type = MaterialStdVectorAux
variable = slip_increment_9
property = slip_increment
index = 9
execute_on = timestep_end
[]
[slip_increment_10]
type = MaterialStdVectorAux
variable = slip_increment_10
property = slip_increment
index = 10
execute_on = timestep_end
[]
[slip_increment_11]
type = MaterialStdVectorAux
variable = slip_increment_11
property = slip_increment
index = 11
execute_on = timestep_end
[]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_4]
type = MaterialStdVectorAux
variable = twin_volume_fraction_4
property = twin_twin_system_volume_fraction
index = 4
execute_on = timestep_end
[]
[twin_volume_fraction_5]
type = MaterialStdVectorAux
variable = twin_volume_fraction_5
property = twin_twin_system_volume_fraction
index = 5
execute_on = timestep_end
[]
[twin_volume_fraction_6]
type = MaterialStdVectorAux
variable = twin_volume_fraction_6
property = twin_twin_system_volume_fraction
index = 6
execute_on = timestep_end
[]
[twin_volume_fraction_7]
type = MaterialStdVectorAux
variable = twin_volume_fraction_7
property = twin_twin_system_volume_fraction
index = 7
execute_on = timestep_end
[]
[twin_volume_fraction_8]
type = MaterialStdVectorAux
variable = twin_volume_fraction_8
property = twin_twin_system_volume_fraction
index = 8
execute_on = timestep_end
[]
[twin_volume_fraction_9]
type = MaterialStdVectorAux
variable = twin_volume_fraction_9
property = twin_twin_system_volume_fraction
index = 9
execute_on = timestep_end
[]
[twin_volume_fraction_10]
type = MaterialStdVectorAux
variable = twin_volume_fraction_10
property = twin_twin_system_volume_fraction
index = 10
execute_on = timestep_end
[]
[twin_volume_fraction_11]
type = MaterialStdVectorAux
variable = twin_volume_fraction_11
property = twin_twin_system_volume_fraction
index = 11
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.02*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5' # roughly copper
fill_method = symmetric9
euler_angle_1 = 54.74
euler_angle_2 = 45.0
euler_angle_3 = 270.0
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_xtalpl slip_xtalpl'
tan_mod_type = exact
[]
[twin_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
base_name = twin
number_slip_systems = 12
slip_sys_file_name = 'fcc_input_twinning_systems.txt'
initial_twin_lattice_friction = 60.0
[]
[slip_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
total_twin_volume_fraction = 'total_volume_fraction_twins'
[]
[]
[Postprocessors]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[slip_increment_0]
type = ElementAverageValue
variable = slip_increment_0
[]
[slip_increment_1]
type = ElementAverageValue
variable = slip_increment_1
[]
[slip_increment_2]
type = ElementAverageValue
variable = slip_increment_2
[]
[slip_increment_3]
type = ElementAverageValue
variable = slip_increment_3
[]
[slip_increment_4]
type = ElementAverageValue
variable = slip_increment_4
[]
[slip_increment_5]
type = ElementAverageValue
variable = slip_increment_5
[]
[slip_increment_6]
type = ElementAverageValue
variable = slip_increment_6
[]
[slip_increment_7]
type = ElementAverageValue
variable = slip_increment_7
[]
[slip_increment_8]
type = ElementAverageValue
variable = slip_increment_8
[]
[slip_increment_9]
type = ElementAverageValue
variable = slip_increment_9
[]
[slip_increment_10]
type = ElementAverageValue
variable = slip_increment_10
[]
[slip_increment_11]
type = ElementAverageValue
variable = slip_increment_11
[]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[twin_volume_fraction_4]
type = ElementAverageValue
variable = twin_volume_fraction_4
[]
[twin_volume_fraction_5]
type = ElementAverageValue
variable = twin_volume_fraction_5
[]
[twin_volume_fraction_6]
type = ElementAverageValue
variable = twin_volume_fraction_6
[]
[twin_volume_fraction_7]
type = ElementAverageValue
variable = twin_volume_fraction_7
[]
[twin_volume_fraction_8]
type = ElementAverageValue
variable = twin_volume_fraction_8
[]
[twin_volume_fraction_9]
type = ElementAverageValue
variable = twin_volume_fraction_9
[]
[twin_volume_fraction_10]
type = ElementAverageValue
variable = twin_volume_fraction_10
[]
[twin_volume_fraction_11]
type = ElementAverageValue
variable = twin_volume_fraction_11
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.005
dtmin = 0.01
num_steps = 6
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/restart/kernel_restartable/kernel_restartable_custom_name_second.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
restart_file_base = kernel_restartable_custom_name_restart_cp/LATEST
name = "SomeCrazyName" # Testing this
[]
(modules/porous_flow/test/tests/relperm/brooks_corey2.i)
# Test Brooks-Corey relative permeability curve by varying saturation over the mesh
# Exponent lambda = 2 for both phases
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
s_res = 0.2
sum_s_res = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityBC
phase = 1
lambda = 2
nw_phase = true
s_res = 0.3
sum_s_res = 0.5
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-8
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/xfem/test/tests/moving_interface/cut_mesh_2d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
[]
[XFEM]
geometric_cut_userobjects = 'cut_mesh'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = gen
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[AuxVariables]
[u]
[]
[]
[UserObjects]
[cut_mesh]
type = InterfaceMeshCut2DUserObject
mesh_file = circle_surface.e
interface_velocity_function = vel_func
heal_always = true
block = 2
[]
[]
[Functions]
[vel_func]
type = ConstantFunction
value = 0.011
[]
[]
[Modules/TensorMechanics/Master]
displacements = 'disp_x disp_y'
[all]
strain = SMALL
add_variables = true
incremental = false
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
displacements = 'disp_x disp_y'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[AuxVariables]
[ls]
[]
[]
[AuxKernels]
[ls]
type = MeshCutLevelSetAux
mesh_cut_user_object = cut_mesh
variable = ls
[]
[]
[BCs]
[box1_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = left
[]
[box1_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = left
[]
[box2_x]
type = FunctionDirichletBC
variable = disp_x
function = '0.01*t'
boundary = right
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 20
l_tol = 1e-3
nl_max_its = 15
nl_abs_tol = 1e-10
nl_rel_tol = 1e-12
start_time = 0.0
dt = 2
end_time = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/surrogates/gaussian_process/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 1
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 2.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[]
[Outputs]
[]
(test/tests/transfers/transfer_interpolation/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# This test currently diffs when run in parallel with DistributedMesh enabled,
# most likely due to the fact that it uses some geometric search stuff.
# For more information, see #2121.
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./layered_average]
type = LayeredAverage
variable = u
direction = x
num_layers = 3
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
nl_rel_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
interpolate_transfers = true
output_sub_cycles = true
[../]
[]
[Transfers]
[./nearest_node]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = nearest_node
[../]
[./mesh_function]
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
source_variable = u
variable = mesh_function
[../]
[./user_object]
type = MultiAppUserObjectTransfer
to_multi_app = sub
variable = user_object
user_object = layered_average
[../]
[./interpolation]
type = MultiAppInterpolationTransfer
to_multi_app = sub
source_variable = u
variable = interpolation
[../]
[]
(modules/porous_flow/test/tests/numerical_diffusion/fltvd_no_antidiffusion.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, but without any antidiffusion
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = none
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-1
nl_abs_tol = 1E-8
nl_max_its = 500
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/tag/tag_nodal_kernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./time]
type = TimeDerivative
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 10
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'time nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = LAGRANGE
[../]
[./tag_variable2]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = nodal_ode
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
num_steps = 10
nl_rel_tol = 1e-08
dt = 0.01
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/KKS_system/derivative_parsed_material.i)
#
# This test validates the free energy material with automatic differentiation for the KKS system
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[BCs]
[./left]
type = DirichletBC
variable = c1
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = c1
boundary = 'right'
value = 1
[../]
[./top]
type = DirichletBC
variable = c2
boundary = 'top'
value = 0
[../]
[./bottom]
type = DirichletBC
variable = c2
boundary = 'bottom'
value = 1
[../]
[]
[Variables]
# concentration 1
[./c1]
order = FIRST
family = LAGRANGE
[../]
# concentration 2
[./c2]
order = FIRST
family = LAGRANGE
[../]
[]
[Materials]
[./fa]
type = DerivativeParsedMaterial
f_name = F
args = 'c1 c2'
constant_names = 'T kB'
constant_expressions = '400 .000086173324'
function = 'c1^2+100*T*kB*(c2-0.5)^3+c1^4*c2^5'
outputs = exodus
[../]
[]
[Kernels]
[./c1diff]
type = Diffusion
variable = c1
[../]
[./c2diff]
type = Diffusion
variable = c2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = derivative_parsed_material
exodus = true
[]
(test/tests/multiapps/picard_catch_up/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = 'v'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'sub.i'
max_catch_up_steps = 100
max_failures = 100
catch_up = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(tutorials/tutorial02_multiapps/step03_coupling/03_master_subcycling_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[vt]
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ParsedMaterial
f_name = D
args = 'vt'
function = 'vt'
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
picard_max_its = 10
nl_abs_tol = 1e-10
picard_rel_tol = 1e-6
picard_abs_tol = 1e-10
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[micro]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '03_sub_subcycling_picard.i'
execute_on = timestep_end
output_in_position = true
sub_cycling = true
[]
[]
[Transfers]
[push_u]
type = MultiAppVariableValueSampleTransfer
to_multi_app = micro
source_variable = u
variable = ut
[]
[pull_v]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = micro
variable = vt
postprocessor = average_v
[]
[]
(modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial3_planar.i)
# same as uni_axial2 but with planar mohr-coulomb
[Mesh]
type = FileMesh
file = quarter_hole.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = '0'
[../]
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = '0'
[../]
[./ymax_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 'ymax'
function = '-1E-4*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0.005 0.02 0.002'
variable = stress_zz
[../]
[./f]
type = PointValue
point = '0.005 0.02 0.002'
variable = yield_fcn
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 1E7
[../]
[./fric]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./dil]
type = TensorMechanicsHardeningConstant
value = 40
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = coh
friction_angle = fric
dilation_angle = dil
yield_function_tolerance = 1.0 # THIS IS HIGHER THAN THE SMOOTH CASE TO AVOID PRECISION-LOSS PROBLEMS!
shift = 1.0
use_custom_returnMap = false
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 5E9' # young = 10Gpa, poisson = 0.0
[../]
[./strain]
type = ComputeIncrementalSmallStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 1
ep_plastic_tolerance = 1E-9
plastic_models = mc
max_NR_iterations = 100
deactivation_scheme = 'safe'
min_stepsize = 1
max_stepsize_for_dumb = 1
debug_fspb = crash
[../]
[]
# Preconditioning and Executioner options kindly provided by Andrea
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 1.05
dt = 0.1
solve_type = NEWTON
type = Transient
[]
[Outputs]
file_base = uni_axial3_planar
[./exodus]
type = Exodus
hide = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz yield_fcn s_xx s_xy s_xz s_yy s_yz s_zz f'
[../]
[./csv]
type = CSV
interval = 1
[../]
[]
(tutorials/tutorial02_multiapps/step01_multiapps/01_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0'
input_files = '01_sub.i'
[]
[]
(examples/ex03_coupling/ex03.i)
[Mesh]
file = mug.e
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_convected]
type = Diffusion
variable = convected
[../]
[./conv]
type = ExampleConvection
variable = convected
# Couple a variable into the convection kernel using local_name = simulationg_name syntax
some_variable = diffused
[../]
[./diff_diffused]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./bottom_convected]
type = DirichletBC
variable = convected
boundary = 'bottom'
value = 1
[../]
[./top_convected]
type = DirichletBC
variable = convected
boundary = 'top'
value = 0
[../]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/richards/test/tests/pressure_pulse/pp21.i)
# investigating pressure pulse in 1D with 2 phase
# steadystate
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardsfgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1.e-10
nl_max_its = 10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp21
exodus = true
[]
(modules/tensor_mechanics/test/tests/dynamics/linear_constraint/disp_mid.i)
# Constraining secondary nodes to move a linear combination of primary nodes
#
# The test consists of a 2D rectangular block divided into two Quad elements
# (along its height) which have different material properties.
# A displacement of 2 m is applied to the top surface of the block in x direction and the
# bottom surface is held fixed.
# The nodes of the interface between the two elements will tend to move as
# dictated by the material models of the two elements.
# LinearNodalConstraint forces the interface nodes to move as a linear combination
# of the nodes on the top and bottom of the block.
# primary node ids and the corresponding weights are taken as input by the LinearNodalConstraint
# along with the secondary node set or secondary node ids.
# The constraint can be applied using either penalty or kinematic formulation.
# In this example, the final x displacement of the top surface is 2m and bottom surface is 0m.
# Therefore, the final x displacement of the interface nodes would be 0.25*top+0.75*bottom = 0.5m
[Mesh]
file=rect_mid.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./top_2x]
type = DirichletBC
variable = disp_x
boundary = 10
value = 2.0
[../]
[./top_2y]
type = DirichletBC
variable = disp_y
boundary = 10
value = 0.0
[../]
[./bottom_1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_2]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./Elasticity_tensor_1]
type = ComputeElasticityTensor
block = 1
fill_method = 'symmetric_isotropic'
C_ijkl = '400. 200.'
[../]
[./strain_1]
type = ComputeSmallStrain
block = 1
displacements = 'disp_x disp_y'
[../]
[./stress_1]
type = ComputeLinearElasticStress
block = 1
[../]
[./density_1]
type = GenericConstantMaterial
block = 1
prop_names = 'density'
prop_values = '10.'
[../]
[./Elasticity_tensor_2]
type = ComputeElasticityTensor
block = 2
fill_method = 'symmetric_isotropic'
C_ijkl = '1000. 500.'
[../]
[./strain_2]
type = ComputeSmallStrain
block = 2
displacements = 'disp_x disp_y'
[../]
[./stress_2]
type = ComputeLinearElasticStress
block = 2
[../]
[./density_2]
type = GenericConstantMaterial
block = 2
prop_names = 'density'
prop_values = '10.'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = ''
petsc_options_value = ''
line_search = 'none'
[]
[Constraints]
[./disp_x_1]
type = LinearNodalConstraint
variable = disp_x
primary = '0 5'
weights = '0.25 0.75'
# secondary_node_set = '2'
secondary_node_ids = '2 3'
penalty = 1e8
formulation = kinematic
[../]
[./disp_y_1]
type = LinearNodalConstraint
variable = disp_y
primary = '0 5'
weights = '0.25 0.75'
# secondary_node_set = '2'
secondary_node_ids = '2 3'
penalty = 1e8
formulation = kinematic
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_6]
type = NodalVariableValue
nodeid = 5
variable = disp_x
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/richards/test/tests/gravity_head_1/gh06.i)
# unsaturated = true
# gravity = false
# supg = true
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh06
exodus = true
[]
(test/tests/materials/functor_properties/traditional-mat-props.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff_u]
type = MatDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 0
[]
[]
[Materials]
[block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[]
[block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/multiple_radiation_cavities/multiple_radiation_cavities.i)
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Mesh]
[cartesian]
type = CartesianMeshGenerator
dim = 2
dx = '0.5 4 1 4 0.5'
ix = '2 2 2 2 2'
dy = '0.3 10 1'
iy = '2 2 2'
subdomain_id = '1 2 3 4 5
6 7 8 9 10
11 12 13 14 15'
[]
[add_side_left_left]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 6
paired_block = 7
new_boundary = left_left
input = cartesian
[]
[add_side_left_bottom]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 2
paired_block = 7
new_boundary = left_bottom
input = add_side_left_left
[]
[add_side_left_right]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 8
paired_block = 7
new_boundary = left_right
input = add_side_left_bottom
[]
[add_side_left_top]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 12
paired_block = 7
new_boundary = left_top
input = add_side_left_right
[]
[add_side_right_left]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 8
paired_block = 9
new_boundary = right_left
input = add_side_left_top
[]
[add_side_right_bottom]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 4
paired_block = 9
new_boundary = right_bottom
input = add_side_right_left
[]
[add_side_right_right]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 10
paired_block = 9
new_boundary = right_right
input = add_side_right_bottom
[]
[add_side_right_top]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 14
paired_block = 9
new_boundary = right_top
input = add_side_right_right
[]
[]
[GrayDiffuseRadiation]
[left]
boundary = 'left_left left_right left_bottom left_top'
emissivity = '0.8 0.8 0.9 0.5'
n_patches = '2 2 2 2'
temperature = temperature
ray_tracing_face_order = SECOND
[]
[right]
boundary = 'right_left right_right right_bottom right_top'
emissivity = '0.8 0.8 0.9 0.5'
n_patches = '2 2 2 2'
temperature = temperature
ray_tracing_face_order = SECOND
[]
[]
[Variables]
[temperature]
block = '1 2 3 4 5 6 8 10 11 12 13 14 15'
initial_condition = 300
[]
[]
[Kernels]
[conduction]
type = HeatConduction
variable = temperature
diffusion_coefficient = 10
block = '1 2 3 4 5 6 8 10 11 12 13 14 15'
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = temperature
value = 300
boundary = bottom
[]
[top]
type = DirichletBC
variable = temperature
value = 400
boundary = top
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/single_pnt_2d/single_point_2d.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = single_point_2d.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./appl_disp]
type = PiecewiseLinear
x = '0 0.001 0.101'
y = '0 0.0 -0.10'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./incslip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./incslip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = appl_disp
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 4
value = -0.002001
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e9
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputePlaneFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputePlaneFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x]
type = NodalVariableValue
nodeid = 5
variable = disp_x
[../]
[./disp_y]
type = NodalVariableValue
nodeid = 5
variable = disp_y
[../]
[./inc_slip_x]
type = NodalVariableValue
nodeid = 5
variable = inc_slip_x
[../]
[./inc_slip_y]
type = NodalVariableValue
nodeid = 5
variable = inc_slip_y
[../]
[./accum_slip_x]
type = NodalVariableValue
nodeid = 5
variable = accum_slip_x
[../]
[./accum_slip_y]
type = NodalVariableValue
nodeid = 5
variable = accum_slip_y
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -mat_superlu_dist_iterrefine'
petsc_options_value = 'lu superlu_dist 1'
line_search = 'none'
l_max_its = 100
nl_max_its = 200
dt = 0.001
end_time = 0.001
num_steps = 10000
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
dtmin = 0.001
l_tol = 1e-3
[]
[Outputs]
file_base = single_point_2d_out_glued_kin
exodus = true
print_linear_residuals = true
perf_graph = true
csv = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = glued
formulation = kinematic
penalty = 1e12
normalize_penalty = true
tangential_tolerance = 1e-3
[../]
[]
(test/tests/dirackernels/reporter_point_source/2d_vpp_transient.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
uniform_refine = 4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dot]
type = TimeDerivative
variable = u
[]
[]
[DiracKernels]
[vpp_point_source]
type = ReporterPointSource
variable = u
value_name = point_sample_source/u
x_coord_name = point_sample_source/x
y_coord_name = point_sample_source/y
z_coord_name = point_sample_source/z
[]
[]
[VectorPostprocessors]
[point_sample_source]
type = PointValueSampler
variable = u
points = '0.2 0.8 0.0 0.2 0.2 0.0'
sort_by = id
execute_on = 'timestep_begin'
outputs = none
[]
[point_sample_out]
type = PointValueSampler
variable = u
points = '0.2 0.8 0.0'
sort_by = id
execute_on = 'timestep_begin'
contains_complete_history = true
outputs = 'csv'
[]
[]
[Functions]
[left_bc_fn]
type = ParsedFunction
value = 1+5*y*y
[]
[]
[BCs]
[left]
type = FunctionNeumannBC
variable = u
boundary = left
function = left_bc_fn
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 5
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
csv = true
[]
(test/tests/bcs/misc_bcs/vector_neumann_bc_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right top'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0.0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 2.0
[../]
[./top]
type = VectorNeumannBC
variable = u
vector_value = '1 1 0'
boundary = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/nodal_patch_recovery/patch_recovery.i)
[GlobalParams]
displacements = 'ux uy'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[UserObjects]
[stress_xx_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '0 0'
execute_on = 'TIMESTEP_END'
[]
[stress_yy_patch]
type = NodalPatchRecoveryMaterialProperty
patch_polynomial_order = FIRST
property = 'stress'
component = '1 1'
execute_on = 'TIMESTEP_END'
[]
[]
[AuxVariables]
[stress_xx_recovered]
order = FIRST
family = LAGRANGE
[]
[stress_yy_recovered]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[tdisp]
type = ParsedFunction
value = 0.01*t
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[stress_xx_recovered]
type = NodalPatchRecoveryAux
variable = stress_xx_recovered
nodal_patch_recovery_uo = stress_xx_patch
execute_on = 'TIMESTEP_END'
[]
[stress_yy_recovered]
type = NodalPatchRecoveryAux
variable = stress_yy_recovered
nodal_patch_recovery_uo = stress_yy_patch
execute_on = 'TIMESTEP_END'
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = uy
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = ux
boundary = 'top bottom'
value = 0
[]
[disp_y]
type = FunctionDirichletBC
variable = uy
boundary = 'top'
function = tdisp
preset = false
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
dt = 0.05
num_steps = 2
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(test/tests/userobjects/setup_interface_count/nodal.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = NodalSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./timestep] # once per timestep
type = NodalSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./subdomain] # 0, not execute for this type of object
type = NodalSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = NodalSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = NodalSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./execute] # 6 for initial and 12 for each timestep (3 nodes on two boundaries)
type = NodalSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = NodalSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[]
[Outputs]
csv = true
[]
(modules/richards/test/tests/gravity_head_1/gh15.i)
# unsaturated = false
# gravity = true
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh15
exodus = true
[]
(test/tests/postprocessors/side_integral/side_integral_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 4
ymin = 0
ymax = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./integral]
type = SideIntegralVariablePostprocessor
boundary = 0
variable = u
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/thermal_hydraulics/test/tests/materials/prandtl_number/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Pr]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[RPr_ak]
type = MaterialRealAux
variable = Pr
property = Pr
[]
[]
[Materials]
[props]
type = GenericConstantMaterial
prop_names = 'cp mu k'
prop_values = '1 2 4'
[]
[Pr_material]
type = PrandtlNumberMaterial
cp = cp
k = k
mu = mu
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[Pr]
type = ElementalVariableValue
elementid = 0
variable = Pr
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_dyn_variable_action.i)
# Test for small strain euler beam vibration in y direction
# The velocity and acceleration AuxVariables and the corresponding AuxKernels
# are set up using the LineElementAction using add_dynamic_variables. The action
# also creates the displacement variables, stress divergence kernels and
# beam strain. NodalTranslationalInertia is not created by the action.
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.01
Iy = 1e-4
Iz = 1e-4
y_orientation = '0.0 1.0 0.0'
# Add AuxVariables and AuxKernels for dynamic simulation
add_dynamic_variables = true
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25 # Newmark time integration parameter
gamma = 0.5 # Newmark time integration parameter
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_added_mass_out'
hide = 'rot_vel_x rot_vel_y rot_vel_z rot_accel_x rot_accel_y rot_accel_z'
exodus = true
csv = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_no_split.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = none
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/add_side_sets/cylinder_normals_fixed.i)
[Mesh]
[file]
type = FileMeshGenerator
file = cylinder.e
[]
# Mesh Modifiers
[add_side_sets]
type = SideSetsFromNormalsGenerator
input = file
normals = '0 1 0
0 -1 0'
new_boundary = 'front back'
# This parameter makes it so that we won't
# adjust the normal for each adjacent element.
fixed_normal = true
variance = 0.5
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[front]
type = DirichletBC
variable = u
boundary = front
value = 0
[]
[back]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/warrick_lomen_islas/wli02.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 1
xmin = -1000
xmax = 0
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./SeffBW]
type = RichardsSeff1BWsmall
Sn = 0.0
Ss = 1.0
C = 1.5
las = 2
[../]
[./RelPermBW]
type = RichardsRelPermBW
Sn = 0.0
Ss = 1.0
Kn = 0
Ks = 1
C = 1.5
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E2
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = -1E-4
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffBW
pressure_vars = pressure
[../]
[]
[BCs]
active = 'base'
[./base]
type = DirichletBC
variable = pressure
boundary = 'left'
value = -1E-4
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1 0 0 0 1 0 0 0 1'
density_UO = DensityConstBulk
relperm_UO = RelPermBW
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffBW
viscosity = 4
gravity = '-0.1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -ksp_rtol -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 100
dt = 5
[]
[Outputs]
file_base = wli02
interval = 10000
execute_on = 'timestep_end final'
exodus = true
[]
(modules/tensor_mechanics/test/tests/visco/gen_kv_driving.i)
# Represents a unique Maxwell module with E = 10GPa and eta = 10 days with an imposed eigenstrain alpha = 0.001.
# The behavior is set up so that the creep strain is driven by both the elastic stress and the internal
# stress induced by the eigenstrain (E * alpha).
#
# In this test, the specimen is free of external stress (sigma = 0) so the creep deformation only derives from
# the eigenstrain. The total strain to be expected is:
# epsilon = alpha * (1 + t / eta)
# Both the stress and the elastic strain are 0.
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[]
[Materials]
[./eigen]
type = ComputeEigenstrain
eigenstrain_name = eigen_true
eigen_base = '1e-3 1e-3 1e-3 0 0 0'
[../]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = ''
creep_viscosity = '10'
poisson_ratio = 0.2
young_modulus = 10e9
driving_eigenstrain = eigen_true
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = 'eigen_true'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-11
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = gen_kv_driving_out
exodus = true
csv = true
[]
(modules/tensor_mechanics/tutorials/basics/part_2.3.i)
#Tensor Mechanics tutorial: the basics
#Step 2, part 3
#2D axisymmetric RZ simulation of uniaxial tension with J2 plasticity with no
#hardening
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = necking_quad4.e
uniform_refine = 0
second_order = true
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE
add_variables = true
generate_output = 'stress_yy strain_yy' #use the yy option to get the zz component in axisymmetric coords
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1e-9
plastic_models = J2
[../]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[../]
[./J2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = '0.0007*t'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.25
end_time = 20
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 1 101'
[]
[Postprocessors]
[./ave_stress_bottom]
type = SideAverageValue
variable = stress_yy
boundary = bottom
[../]
[./ave_strain_bottom]
type = SideAverageValue
variable = strain_yy
boundary = bottom
[../]
[]
[Outputs]
exodus = true
perf_graph = true
csv = true
print_linear_residuals = false
[]
(modules/richards/test/tests/gravity_head_1/gh08.i)
# unsaturated = true
# gravity = true
# supg = true
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
preset = false
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh08
exodus = true
[]
(modules/thermal_hydraulics/test/tests/auxkernels/convective_heat_flux_1phase/test.i)
# The test computes convective heat flux for single phase flow according to:
#
# q = Hw * (T_wall - T_fluid)
#
# where Hw = 2, T_wall = 310 and T_fluid = 300. Thus, q = 20.
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[AuxVariables]
[q_wall]
family = MONOMIAL
order = CONSTANT
[]
[T_wall]
[]
[]
[ICs]
[T_wall_ic]
type = ConstantIC
variable = T_wall
value = 310
[]
[]
[AuxKernels]
[sound_speed_aux]
type = ConvectiveHeatFlux1PhaseAux
variable = q_wall
Hw = Hw
T_wall = T_wall
T = T
[]
[]
[Materials]
[mats]
type = GenericConstantMaterial
prop_names = 'T Hw'
prop_values = '300 2'
[]
[]
[Postprocessors]
[q_wall]
type = ElementalVariableValue
variable = q_wall
elementid = 0
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bcs]
type = DirichletBC
variable = u
boundary = 'left right'
value = 1
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
abort_on_solve_fail = true
[]
[Outputs]
csv = true
execute_on = TIMESTEP_END
[]
(modules/contact/test/tests/verification/patch_tests/plane_3/plane3_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(test/tests/restart/kernel_restartable/kernel_restartable_custom_name.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = RestartDiffusion
variable = u
coef = 1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1e-2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./restart]
type = Checkpoint
num_files = 100
[../]
[]
[Problem]
name = "SomeCrazyName" # Testing this
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_fully_saturated_volume.i)
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source has units 1/s. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In standard porous_flow, everything is based on mass, eg the source has
# units kg/s/m^3. This is discussed in the other pp_generation_unconfined
# models. In this test, we use the FullySaturated Kernel and set
# multiply_by_density = false
# meaning the fluid Kernel has units of volume, and the source, s, has units 1/time
#
# The ratios are:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
variable = porepressure
multiply_by_density = false
coupling_type = HydroMechanical
biot_coefficient = 0.3
[]
[source]
type = BodyForce
function = 0.1
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature_qp]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst # the "const" is irrelevant here: all that uses Porosity is the BiotModulus, which just uses the initial value of porosity
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.3
fluid_bulk_modulus = 3.3333333333
solid_bulk_compliance = 0.5
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[stress_xx_over_strain]
type = FunctionValuePostprocessor
function = stress_xx_over_strain_fcn
outputs = csv
[]
[stress_zz_over_strain]
type = FunctionValuePostprocessor
function = stress_zz_over_strain_fcn
outputs = csv
[]
[p_over_strain]
type = FunctionValuePostprocessor
function = p_over_strain_fcn
outputs = csv
[]
[]
[Functions]
[stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[]
[stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[]
[p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_fully_saturated_volume
[csv]
type = CSV
[]
[]
(modules/contact/test/tests/bouncing-block-contact/mixed-weighted-gap-swapped.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
correct_edge_dropping = true
[]
[Mesh]
second_order = true
[file_mesh]
type = FileMeshGenerator
file = long-bottom-block-1elem-blocks-coarse.e
[]
[]
[Variables]
[disp_x]
block = '1 2'
scaling = 1e1
order = SECOND
[]
[disp_y]
block = '1 2'
scaling = 1e1
order = SECOND
[]
[frictional_normal_lm]
block = 4
scaling = 1e3
[]
[]
[ICs]
[disp_y]
block = 2
variable = disp_y
value = '${fparse starting_point + offset}'
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[]
[Constraints]
[frictional_normal_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_normal_lm
disp_x = disp_x
disp_y = disp_y
normalize_c = true
c = 1.0e-2
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 10
secondary_boundary = 20
primary_subdomain = 3
secondary_subdomain = 4
variable = frictional_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[]
[leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu NONZERO 1e-15'
l_max_its = 30
nl_max_its = 25
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
(modules/combined/test/tests/thermo_mech/thermo_mech_smp.i)
[GlobalParams]
temperature = temp
volumetric_locking_correction = true
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = 1
value = 10.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 0.0
thermal_expansion_coeff = 1e-5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./heat]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
density = 1.0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-14
l_tol = 1e-3
l_max_its = 100
dt = 1.0
end_time = 1.0
[]
[Outputs]
file_base = thermo_mech_smp_out
[./exodus]
type = Exodus
execute_on = 'initial timestep_end nonlinear'
nonlinear_residual_dt_divisor = 100
[../]
[]
(modules/contact/examples/3d_berkovich/indenter_berkovich_friction.i)
[Mesh]
file = indenter.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
order = FIRST
family = LAGRANGE
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[]
[AuxKernels]
[]
[Functions]
[./push_down]
type = ParsedFunction
value = 'if(t < 1.5, -t, t-3.0)'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
save_in = 'saved_x saved_y saved_z'
use_finite_deform_jacobian = true
[../]
[]
[BCs]
[./botz]
type = DirichletBC
variable = disp_z
boundary = 101
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 101
value = 0.0
[../]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./boty111]
type = DirichletBC
variable = disp_y
boundary = 111
value = 0.0
[../]
[./botx111]
type = DirichletBC
variable = disp_x
boundary = 111
value = 0.0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = '201'
function = push_down
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 201
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = 201
value = 0.0
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 48
slip_sys_file_name = input_slip_sys_bcc48.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 48 0.0001 0.01'
uo_state_var_name = state_var_gss
slip_incr_tol = 10.0
block = 1
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 48
uo_state_var_name = state_var_gss
block = 1
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 48
groups = '0 24 48'
group_values = '900 1000' #120
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
block = 1
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 48
hprops = '1.4 1000 1200 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
block = 1
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
block = 1
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
maximum_substep_iteration = 25
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 1
C_ijkl = '265190 113650 113650 265190 113650 265190 75769 75769 75760'
fill_method = symmetric9
[../]
[./elasticity_tensor_indenter]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000000.0
poissons_ratio = 0.3
block = 2
[../]
[./stress_indenter]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 1
[../]
[./resid_z]
type = NodalSum
variable = saved_z
boundary = 201
[../]
[./disp_z]
type = NodalExtremeValue
variable = disp_z
boundary = 201
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 60
nl_max_its = 50
dt = 0.004
dtmin = 0.00001
end_time = 1.8
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6 # 6 if no friction
l_tol = 1e-3
automatic_scaling = true
[]
[Outputs]
[./my_checkpoint]
type = Checkpoint
interval = 50
[../]
exodus = true
csv = true
print_linear_residuals = true
print_perf_log = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '202'
secondary = '102'
[../]
[]
[Contact]
[./ind_base]
primary = 202
secondary = 102
model = coulomb
friction_coefficient = 0.4
normalize_penalty = true
formulation = tangential_penalty
penalty = 1e7
capture_tolerance = 0.0001
[../]
[]
(test/tests/postprocessors/change_over_time/change_over_time.i)
# This test tests the ChangeOverTimePostprocessor, which computes the change
# in a postprocessor value with respect to the previous value or with respect to
# the initial value. This test creates a time-dependent function postprocessor
# and then computes its change over a timestep. The FE problem used here is a
# dummy problem and has no effect on the test.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time_derivative]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0.0
dt = 1.0
num_steps = 2
[]
[Functions]
[./my_function]
type = ParsedFunction
value = '1 + t * t'
[../]
[]
[Postprocessors]
[./my_postprocessor]
type = FunctionValuePostprocessor
function = my_function
execute_on = 'initial timestep_end'
[../]
[./change_over_time]
type = ChangeOverTimePostprocessor
postprocessor = my_postprocessor
change_with_respect_to_initial = false
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
file_base = 'change_over_time_previous'
csv = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-fb-lm-nodal-disp.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
secondary = 10
primary = 20
variable = normal_lm
primary_variable = disp_x
disp_y = disp_y
ncp_function_type = 'fb'
[../]
[./disp_x]
type = NormalNodalMechanicalContact
secondary = 10
primary = 20
variable = disp_x
primary_variable = disp_x
lambda = normal_lm
component = x
[../]
[./disp_y]
type = NormalNodalMechanicalContact
secondary = 10
primary = 20
variable = disp_y
primary_variable = disp_y
lambda = normal_lm
component = y
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/bcs/coupled_var_neumann/coupled_var_neumann_nl.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[Variables]
[u][]
[v][]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = CoupledVarNeumannBC
variable = u
boundary = 'right'
v = v
[]
[v_left]
type = DirichletBC
variable = v
boundary = 'left'
value = 0
[]
[v_right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/second_order_elements/diffusion_2d_quad8.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.35 1.0 0.35 0.2'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 3
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_stress_errorcheck.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0e10
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
(modules/combined/test/tests/ad_power_law_creep/power_law_creep_restart2.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = ADHeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.6
end_time = 1.0
num_steps = 12
dt = 0.1
[]
[Outputs]
file_base = power_law_creep_out
exodus = true
[]
[Problem]
restart_file_base = power_law_creep_restart1_out_cp/0006
[]
(modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d_as_2d.i)
#This tests the Interaction-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with one element
#through the thickness, and calculates the Interaction-Integrals using options
#to treat it as 2d.
[GlobalParams]
order = FIRST
# order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack_3d_as_2d.e
displacements = 'disp_x disp_y disp_z'
partitioner = centroid
centroid_partitioner_direction = z
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI InteractionIntegralKII InteractionIntegralKIII'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
output_q = false
incremental = true
equivalent_k = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = interaction_integral_3d_as_2d_out
exodus = true
csv = true
[]
(test/tests/restrictable/internal_side_user_object/internal_side_user_object.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Postprocessors]
[./all_pp]
type = NumInternalSides
execute_on = 'initial timestep_end'
[../]
[./block_1_pp]
type = NumInternalSides
block = 1
execute_on = 'initial timestep_end'
[../]
[./block_2_pp]
type = NumInternalSides
block = 2
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/multiapps/check_error/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/restart/restart_transient_from_transient/pseudo_trans_with_2subs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = 'replicated'
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2'
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 50
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
end_time = 20
dt = 2.0
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0
0.5 0 0'
input_files = pseudo_trans_with_2subs_sub.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[p_to_sub]
type = MultiAppProjectionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppInterpolationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
checkpoint = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
(test/tests/interfacekernels/1d_interface/ik_save_in_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 2
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain1
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[./interface_again]
type = SideSetsBetweenSubdomainsGenerator
input = interface
primary_block = '1'
paired_block = '0'
new_boundary = 'primary1_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[AuxVariables]
[./primary_resid]
[../]
[./secondary_resid]
[../]
[./primary_jac]
[../]
[./secondary_jac]
[../]
[]
[Kernels]
[./diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
save_in = 'primary_resid'
[../]
[./diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
save_in = 'secondary_resid'
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
D = 4
D_neighbor = 2
save_in_var_side = 'm s'
save_in = 'primary_resid secondary_resid'
diag_save_in_var_side = 'm s'
diag_save_in = 'primary_jac secondary_jac'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
save_in = 'primary_resid'
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
save_in = 'secondary_resid'
[../]
[./middle]
type = MatchedValueBC
variable = v
boundary = 'primary0_interface'
v = u
save_in = 'secondary_resid'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
(modules/porous_flow/test/tests/poro_elasticity/mandel_fully_saturated.i)
# Mandel's problem of consolodation of a drained medium
# Using the FullySaturatedDarcyBase and FullySaturatedMassTimeDerivative kernels
#
# A sample is in plane strain.
# -a <= x <= a
# -b <= y <= b
# It is squashed with constant force by impermeable, frictionless plattens on its top and bottom surfaces (at y=+/-b)
# Fluid is allowed to leak out from its sides (at x=+/-a)
# The porepressure within the sample is monitored.
#
# As is common in the literature, this is simulated by
# considering the quarter-sample, 0<=x<=a and 0<=y<=b, with
# impermeable, roller BCs at x=0 and y=0 and y=b.
# Porepressure is fixed at zero on x=a.
# Porepressure and displacement are initialised to zero.
# Then the top (y=b) is moved downwards with prescribed velocity,
# so that the total force that is inducing this downwards velocity
# is fixed. The velocity is worked out by solving Mandel's problem
# analytically, and the total force is monitored in the simulation
# to check that it indeed remains constant.
#
# Here are the problem's parameters, and their values:
# Soil width. a = 1
# Soil height. b = 0.1
# Soil's Lame lambda. la = 0.5
# Soil's Lame mu, which is also the Soil's shear modulus. mu = G = 0.75
# Soil bulk modulus. K = la + 2*mu/3 = 1
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.2
# Soil bulk compliance. 1/K = 1
# Fluid bulk modulus. Kf = 8
# Fluid bulk compliance. 1/Kf = 0.125
# Soil initial porosity. phi0 = 0.1
# Biot coefficient. alpha = 0.6
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 4.705882
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.694118
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.372627
# Skempton coefficient. B = alpha*M/Ku = 1.048035
# Fluid mobility (soil permeability/fluid viscosity). k = 1.5
# Consolidation coefficient. c = 2*k*B^2*G*(1-nu)*(1+nuu)^2/9/(1-nuu)/(nuu-nu) = 3.821656
# Normal stress on top. F = 1
#
# The solution for porepressure and displacements is given in
# AHD Cheng and E Detournay "A direct boundary element method for plane strain poroelasticity" International Journal of Numerical and Analytical Methods in Geomechanics 12 (1988) 551-572.
# The solution involves complicated infinite series, so I shall not write it here
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[roller_xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left'
[]
[roller_ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom'
[]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[xmax_drained]
type = DirichletBC
variable = porepressure
value = 0
boundary = right
[]
[top_velocity]
type = FunctionDirichletBC
variable = disp_y
function = top_velocity
boundary = top
[]
[]
[Functions]
[top_velocity]
type = PiecewiseLinear
x = '0 0.002 0.006 0.014 0.03 0.046 0.062 0.078 0.094 0.11 0.126 0.142 0.158 0.174 0.19 0.206 0.222 0.238 0.254 0.27 0.286 0.302 0.318 0.334 0.35 0.366 0.382 0.398 0.414 0.43 0.446 0.462 0.478 0.494 0.51 0.526 0.542 0.558 0.574 0.59 0.606 0.622 0.638 0.654 0.67 0.686 0.702'
y = '-0.041824842 -0.042730269 -0.043412712 -0.04428867 -0.045509181 -0.04645965 -0.047268246 -0.047974749 -0.048597109 -0.0491467 -0.049632388 -0.050061697 -0.050441198 -0.050776675 -0.051073238 -0.0513354 -0.051567152 -0.051772022 -0.051953128 -0.052113227 -0.052254754 -0.052379865 -0.052490464 -0.052588233 -0.052674662 -0.052751065 -0.052818606 -0.052878312 -0.052931093 -0.052977751 -0.053018997 -0.053055459 -0.053087691 -0.053116185 -0.053141373 -0.05316364 -0.053183324 -0.053200724 -0.053216106 -0.053229704 -0.053241725 -0.053252351 -0.053261745 -0.053270049 -0.053277389 -0.053283879 -0.053289615'
[]
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[tot_force]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[tot_force]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_force
function = '-stress_yy+0.6*porepressure'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.6
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowFullySaturatedMassTimeDerivative
biot_coefficient = 0.6
coupling_type = HydroMechanical
variable = porepressure
[]
[flux]
type = PorousFlowFullySaturatedDarcyBase
variable = porepressure
gravity = '0 0 0'
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 8
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5 0.75'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*0.75/3 = 1
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure_qp]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid_qp]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.6
solid_bulk_compliance = 1
fluid_bulk_modulus = 8
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.5 0 0 0 1.5 0 0 0 1.5'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0.0 0 0'
variable = porepressure
[]
[p1]
type = PointValue
outputs = csv
point = '0.1 0 0'
variable = porepressure
[]
[p2]
type = PointValue
outputs = csv
point = '0.2 0 0'
variable = porepressure
[]
[p3]
type = PointValue
outputs = csv
point = '0.3 0 0'
variable = porepressure
[]
[p4]
type = PointValue
outputs = csv
point = '0.4 0 0'
variable = porepressure
[]
[p5]
type = PointValue
outputs = csv
point = '0.5 0 0'
variable = porepressure
[]
[p6]
type = PointValue
outputs = csv
point = '0.6 0 0'
variable = porepressure
[]
[p7]
type = PointValue
outputs = csv
point = '0.7 0 0'
variable = porepressure
[]
[p8]
type = PointValue
outputs = csv
point = '0.8 0 0'
variable = porepressure
[]
[p9]
type = PointValue
outputs = csv
point = '0.9 0 0'
variable = porepressure
[]
[p99]
type = PointValue
outputs = csv
point = '1 0 0'
variable = porepressure
[]
[xdisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_x
[]
[ydisp]
type = PointValue
outputs = csv
point = '1 0.1 0'
variable = disp_y
[]
[total_downwards_force]
type = ElementAverageValue
outputs = csv
variable = tot_force
[]
[dt]
type = FunctionValuePostprocessor
outputs = console
function = if(0.15*t<0.01,0.15*t,0.01)
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.7
[TimeStepper]
type = PostprocessorDT
postprocessor = dt
dt = 0.001
[]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = mandel_fully_saturated
[csv]
interval = 3
type = CSV
[]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_reporter/sub.i)
# This is changed by main.i for testing purposes
real_val = 0.0
vector_val0 = ${fparse real_val * 10}
vector_val1= ${fparse vector_val0 * 10}
vector_val2= ${fparse vector_val0 * 100}
vector_val3= ${fparse vector_val0 * 1000}
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = ${real_val}
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
error_on_dtmin = false
[]
[Postprocessors]
[pp]
type = PointValue
point = '0 0 0'
variable = u
[]
[]
[VectorPostprocessors]
[vpp]
type = ConstantVectorPostprocessor
vector_names = 'vec'
value = '${vector_val0} ${vector_val1} ${vector_val2} ${vector_val3}'
[]
[]
[Reporters]
[constant]
type = ConstantReporter
integer_names = 'int'
integer_values = 0
string_names = 'str'
string_values = 'this_value'
[]
[mesh]
type = MeshInfo
items = sidesets
[]
[]
# This is used in main_batch.i
[Controls]
[stm]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(modules/contact/test/tests/mortar_tm/2drz/frictionless_second/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite_rr'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = 0
ymax = 10
nx = 2
ny = 33
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
extra_vector_tags = 'ref'
[]
[plank]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = block_right
value = 0
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = GenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 3
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-12
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/examples/piston/piston_params.i)
## This example is documented on YouTube at:
## https://www.youtube.com/watch?v=L9plLYkAbvQ
##
## Additional files (e.g. the CAD model, results)
## can be downloaded freely from Zenodo at:
## https://doi.org/10.5281/zenodo.3886965
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
# Read in mesh from file
type = FileMesh
file = piston_coarse.e
[]
# This is where mesh adaptivity magic happens
[Adaptivity]
steps = 1
max_h_level = 3
cycles_per_step = 1
initial_marker = uniform
marker = errorFraction
[Markers]
[uniform]
type = UniformMarker
mark = refine
[]
[errorFraction]
type = ErrorFractionMarker
coarsen = 0.5
indicator = gradientJump
refine = 0.5
[]
[]
[Indicators]
[gradientJump]
type = GradientJumpIndicator
variable = disp_y
[]
[]
[]
[Modules/TensorMechanics/Master]
# Parameters that apply to all subblocks are specified at this level.
# They can be overwritten in the subblocks.
add_variables = true
incremental = false
strain = SMALL
generate_output = 'vonmises_stress'
[block]
block = 1
[]
[]
[BCs]
[Pressure]
[load]
# Applies the pressure
boundary = load_surf
function = 't*550e5'
[]
[]
[symmetry_x]
# Applies symmetry on the xmin faces
type = DirichletBC
variable = disp_x
boundary = 'xmin'
value = 0.0
[]
[hold_y]
# Anchors the bottom against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = 'ymin'
value = 0.0
[]
[symmetry_z]
# Applies symmetry on the zmin faces
type = DirichletBC
variable = disp_z
boundary = 'zmin'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor_steel]
# Creates the elasticity tensor using steel parameters
youngs_modulus = 210e9 #Pa
poissons_ratio = 0.3
type = ComputeIsotropicElasticityTensor
block = 1
[]
[stress]
# Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
block = 1
[]
[]
[Preconditioning]
[SMP]
# Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[]
[]
[Executioner]
# We solve a steady state problem using Newton's iteration
type = Transient
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 30
l_tol = 1e-4
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/preconditioners/fsp/fsp_test_image.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 41
ny = 41
[]
[./image]
input = gen
type = ImageSubdomainGenerator
file = kitten.png
threshold = 100
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = 1
[../]
[./v]
order = FIRST
family = LAGRANGE
block = 1
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u left_v right_u'
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 100
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Problem]
type = FEProblem
material_coverage_check = false
kernel_coverage_check = false
[]
[Executioner]
# This is setup automatically in MOOSE (SetupPBPAction.C)
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type'
# petsc_options_value = 'asm'
type = Steady
[]
[Preconditioning]
[./FSP]
# It is the starting point of splitting
type = FSP
topsplit = 'uv' # 'uv'
[./uv]
# Generally speaking, there are four types of splitting we could choose
# <additive,multiplicative,symmetric_multiplicative,schur>
# An approximate solution to the original system
# | A_uu A_uv | | u | _ |f_u|
# | 0 A_vv | | v | - |f_v|
# is obtained by solving the following subsystems
# A_uu u = f_u and A_vv v = f_v
# If splitting type is specified as schur, we may also want to set more options to
# control how schur works using PETSc options
# petsc_options_iname = '-pc_fieldsplit_schur_fact_type -pc_fieldsplit_schur_precondition'
# petsc_options_value = 'full selfp'
splitting = 'u v' # 'u' and 'v'
splitting_type = additive
[../]
[./u]
# PETSc options for this subsolver
# A prefix will be applied, so just put the options for this subsolver only
vars = u
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[../]
[./v]
# PETSc options for this subsolver
vars = v
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[../]
[../]
[]
[Outputs]
file_base = kitten_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/finite_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_x]
scaling = 1e-10
[../]
[./disp_y]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_x]
type = StressDivergenceTensors
component = 0
variable = disp_x
use_displaced_mesh = true
[../]
[./stress_y]
type = StressDivergenceTensors
component = 1
variable = disp_y
use_displaced_mesh = true
[../]
[./stress_z]
type = StressDivergenceTensors
component = 2
variable = disp_z
use_displaced_mesh = true
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeFiniteStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = finite_elastic_out
[]
(modules/contact/test/tests/verification/hertz_cyl/quart_symm_q4/hertz_cyl_qsym_1deg_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_qsym_1deg_q4.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_zero]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.0 0.0'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 4
paired_boundary = 3
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./disp_x281]
type = NodalVariableValue
nodeid = 280
variable = disp_x
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = disp_ramp_vert
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-5
l_max_its = 50
nl_max_its = 100
start_time = 0.0
dt = 0.1
dtmin = 0.1
num_steps = 10
end_time = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '4'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x281 top_react_x top_react_y x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
primary = 3
secondary = 4
model = glued
formulation = kinematic
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/2D_different_planes/gps_xy.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = square_xy_plane.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./generalized_plane_strain]
block = 1
strain = SMALL
scalar_out_of_plane_strain = scalar_strain_zz
out_of_plane_direction = z
planar_formulation = GENERALIZED_PLANE_STRAIN
eigenstrain_names = 'eigenstrain'
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 3
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
use_displaced_mesh = false
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 10
nl_rel_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = gps_xy_small_out
[./exodus]
type = Exodus
[../]
[]
(modules/combined/test/tests/j2_plasticity_vs_LSH/j2_hard1_mod.i)
# Test designed to compare results and active time between SH/LinearStrainHardening
# material vs TM j2 plastic user object. As number of elements increases, TM
# active time increases at a much higher rate than SM. Testing at 4x4x4
# (64 elements).
#
# plot vm_stress vs intnl to see constant hardening
#
# Original test located at:
# tensor_mechanics/tests/j2_plasticity/hard1.i
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'stress_zz vonmises_stress effective_plastic_strain'
[]
[]
[AuxVariables]
[intnl]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[intnl]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = intnl
[]
[]
[BCs]
[left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[z]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/60'
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningConstant
value = 2.4e2
[]
[j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
#with E = 2.1e5 and nu = 0.3
#Hooke's law: E-nu to Lambda-G
C_ijkl = '121154 80769.2'
[]
[mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-9
plastic_models = j2
tangent_operator = elastic
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-4
start_time = 0.0
end_time = 0.5
dt = 0.01
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[intnl]
type = ElementAverageValue
variable = intnl
[]
[eq_pl_strain]
type = PointValue
point = '0 0 0'
variable = effective_plastic_strain
[]
[vm_stress]
type = PointValue
point = '0 0 0'
variable = vonmises_stress
[]
[]
[Outputs]
csv = true
print_linear_residuals = false
perf_graph = true
[]
(modules/porous_flow/test/tests/actions/basicthm_th.i)
# PorousFlowBasicTHM action with coupling_type = ThermoHydroGenerator
# (no mechanical effects)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 3
xmax = 10
ymax = 3
[]
[aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 1 0'
top_right = '10 2 0'
[]
[injection_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'injection_area'
normal = '-1 0 0'
input = 'aquifer'
[]
[outflow_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'outflow_area'
normal = '1 0 0'
input = 'injection_area'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caprock aquifer'
input = 'outflow_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
initial_condition = 1e6
[]
[temperature]
initial_condition = 293
scaling = 1e-6
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydro
gravity = '0 0 0'
fp = simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1.5e6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 313
boundary = injection_area
[]
[constant_outflow_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = outflow_area
pt_vals = '0 1e9'
multipliers = '0 1e9'
flux_function = 1e-6
PT_shift = 1e6
[]
[constant_outflow_temperature]
type = DirichletBC
variable = temperature
value = 293
boundary = outflow_area
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2e-7
fluid_bulk_modulus = 1e7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[permeability_caprock]
type = PorousFlowPermeabilityConst
block = caprock
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
biot_coefficient = 0.8
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caprock aquifer'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e4
dt = 1e3
nl_abs_tol = 1e-15
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/multiapps/dynamic_sub_app_number/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[center]
type = PointValue
variable = u
point = '0.5 0 0'
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_pps_lim.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./timestep_fn]
type = PiecewiseLinear
x = '0. 40.'
y = '10. 1. '
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 40.0
n_startup_steps = 2
dtmax = 6.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
timestep_limiting_postprocessor = timestep_pp
dt = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
# Just use a simple postprocessor to test capability to limit the time step length to the postprocessor value
[./timestep_pp]
type = FunctionValuePostprocessor
function = timestep_fn
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(python/peacock/tests/input_tab/InputFileEditor/gold/fsp_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[v]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[conv_v]
type = CoupledForce
variable = v
v = 'u'
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
inactive = 'right_v'
[left_u]
type = DirichletBC
variable = u
boundary = '1'
value = 0
[]
[right_u]
type = DirichletBC
variable = u
boundary = '2'
value = 100
[]
[left_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[]
[right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[]
[]
[Executioner]
# This is setup automatically in MOOSE (SetupPBPAction.C)
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type'
# petsc_options_value = 'asm'
type = Steady
[]
[Preconditioning]
[FSP]
# It is the starting point of splitting
type = FSP
topsplit = 'uv' # uv should match the following block name
[uv]
# Generally speaking, there are four types of splitting we could choose
# <additive,multiplicative,symmetric_multiplicative,schur>
# An approximate solution to the original system
# | A_uu A_uv | | u | _ |f_u|
# | 0 A_vv | | v | - |f_v|
# is obtained by solving the following subsystems
# A_uu u = f_u and A_vv v = f_v
# If splitting type is specified as schur, we may also want to set more options to
# control how schur works using PETSc options
# petsc_options_iname = '-pc_fieldsplit_schur_fact_type -pc_fieldsplit_schur_precondition'
# petsc_options_value = 'full selfp'
splitting = 'u v' # u and v are the names of subsolvers
splitting_type = additive
[]
[u]
# PETSc options for this subsolver
# A prefix will be applied, so just put the options for this subsolver only
vars = 'u'
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[]
[v]
# PETSc options for this subsolver
vars = 'v'
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[]
[]
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/predef/dpredef.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t*10
[]
[]
[AuxVariables]
[strain_yy]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[Pressure]
[bc_presssure]
boundary = top
function = top_pull
[]
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
# 1. Active for UMAT run
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_dpredef'
num_state_vars = 0
external_fields = 'strain_yy'
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
base_name = 'base'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[strain_dependent_elasticity_tensor]
type = CompositeElasticityTensor
args = strain_yy
tensors = 'base'
weights = 'prefactor_material'
[]
[prefactor_material_block]
type = DerivativeParsedMaterial
f_name = prefactor_material
# 0.11112 is the strain_yy increment
function = '1.0/(1.0 + 0.11112)'
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 10
dt = 10.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/ping-ponging/kinematic-ping-pong.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-no-lower-d.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = false
use_automatic_differentiation = true
strain = SMALL
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e0
poissons_ratio = 0.3
[]
[stress]
type = ADComputeLinearElasticStress
[]
[]
[Contact]
[leftright]
secondary = 10
primary = 20
model = frictionless
formulation = kinematic
penalty = 1e0
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
num_steps = 19
end_time = 200
dt = 5
dtmin = 5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type -mat_mffd_err'
petsc_options_value = 'hypre boomeramg 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem
exodus = true
csv = false
[]
(test/tests/misc/check_error/function_file_test2.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_rows.csv #Will generate error because data is expected in columns
format = columns
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/transfers/multiapp_conservative_transfer/sub_userobject.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 8
xmax = 0.1
ymax = 0.5
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[AuxVariables]
[./layered_average_value]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./from_postprocessor]
type = ElementIntegralVariablePostprocessor
variable = layered_average_value
[../]
[]
[Functions]
[./axial_force]
type = ParsedFunction
value = 1000*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = axial_force
[../]
[]
[AuxKernels]
[./layered_aux]
type = SpatialUserObjectAux
variable = layered_average_value
execute_on = 'nonlinear TIMESTEP_END'
user_object = layered_average
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./layered_average]
type = LayeredAverage
variable = u
direction = y
num_layers = 4
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Problem]
coord_type = rz
type = FEProblem
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer_vector/sub.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
# Give the far left element a block so that we can
# grab its value
[left_elem_block]
type = ParsedSubdomainMeshGenerator
input = gmg
combinatorial_geometry = 'x < 0.1'
block_id = 1
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[prop_a]
family = MONOMIAL
order = CONSTANT
[]
[prop_b]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[prop_a]
type = MaterialRealAux
variable = prop_a
property = prop_a
[]
[prop_b]
type = MaterialRealAux
variable = prop_b
property = prop_b
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Materials]
[mat]
type = GenericConstantMaterial
prop_names = 'prop_a prop_b'
prop_values = '100 200'
[]
[mat2]
type = GenericConstantMaterial
prop_names = 'prop_c prop_d prop_e'
prop_values = '300 400 500'
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[prop_a]
type = ElementAverageValue
variable = prop_a
block = 1
[]
[prop_b]
type = ElementAverageValue
variable = prop_b
block = 1
[]
[]
[Outputs]
csv = true
[]
(modules/fsi/test/tests/fsi_acoustics/wave_height_bc/wave_height_bc.i)
# Test for `FluidFreeSurfaceBC` BC with only the fluid domain. The domain is 3D with
# lengths 1 X 1 X 0.01 meters. It is subjected to a 2D Gaussian initial condition
# with the peak at the midpoint (0.5, 0.5, 0.01). Wave heights are recorded at the
# midpoint at different times. The recorded wave heights should match with the values
# that are provided.
# Input parameters:
# Dimensions = 3
# Lengths = 1 X 1 X 0.01 meters
# Fluid speed of sound = 1500 m/s
# Initial condition = 0.00001*exp(-((x-0.5)/0.1)^2-((y-0.5)/0.1)^2)
# Fluid domain = true
# Fluid BCs = pressures are zero on all the four edges of the domain and `FluidFreeSurfaceBC` is applied on the front
# Structural domain = false
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 15
ny = 15
nz = 1
xmax = 1
ymax = 1
zmax = 0.01
[]
[]
[GlobalParams]
[]
[Variables]
[./p]
[../]
[]
[AuxVariables]
[./Wave1]
[../]
[]
[Kernels]
[./diffusion]
type = Diffusion
variable = 'p'
[../]
[./inertia]
type = AcousticInertia
variable = p
[../]
[]
[AuxKernels]
[./waves]
type = WaveHeightAuxKernel
variable = 'Wave1'
pressure = p
density = 1e-6
gravity = 9.81
execute_on = timestep_end
[../]
[]
[BCs]
[./leftright_pressure]
type = DirichletBC
variable = p
boundary = 'left right top bottom'
value = 0
[../]
[./free]
type = FluidFreeSurfaceBC
variable = p
boundary = 'front'
alpha = '0.1'
[]
[]
[ICs]
[./u_ic]
type = FunctionIC
variable = 'p'
function = initial_cond
boundary = 'front'
[../]
[]
[Functions]
[./initial_cond]
type = ParsedFunction
value = '0.00001*exp(-((x-0.5)/0.1)^2-((y-0.5)/0.1)^2)'
[../]
[]
[Materials]
[./co_sq]
type = GenericConstantMaterial
prop_names = inv_co_sq
prop_values = 4.44e-7
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
start_time = 0.0
end_time = 0.2
dt = 0.005
dtmin = 0.00001
nl_abs_tol = 1e-12
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 25
timestep_tolerance = 1e-8
automatic_scaling = true
[TimeIntegrator]
type = NewmarkBeta
[]
[]
[Postprocessors]
[./W1]
type = PointValue
point = '0.5 0.5 0.01'
variable = Wave1
[../]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
print_linear_residuals = true
[]
(modules/contact/test/tests/mechanical_constraint/glued_penalty.i)
[Mesh]
file = blocks_2d_nogap.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.01
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = glued
formulation = penalty
penalty = 1e+7
[../]
[]
(modules/porous_flow/test/tests/jacobian/desorped_mass_vol_exp01.i)
# Tests the PorousFlowDesorpedMassVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, HM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[conc]
family = MONOMIAL
order = CONSTANT
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[]
[conc]
type = RandomIC
min = 0
max = 1
variable = conc
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[]
[poro]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = porepressure
[]
[conc_in_poro]
type = PorousFlowDesorpedMassVolumetricExpansion
conc_var = conc
variable = porepressure
[]
[conc]
type = PorousFlowDesorpedMassVolumetricExpansion
conc_var = conc
variable = conc
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z conc'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
(test/tests/misc/check_error/bad_bc_var_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = foo # Test for missing variable
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/action/action_1D.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = FINITE
add_variables = true
new_system = true
formulation = TOTAL
volumetric_locking_correction = false
[]
[]
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[stress_base]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_10.i)
# unsaturated = true
# gravity = false
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_10
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test4.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test4_out
exodus = true
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_steady.i)
# Using a mixed-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
type = FileMesh
# The gold mesh is used to reduce the number of large files in the MOOSE repository.
# The porepressure is not read from the gold mesh
file = 'gold/fine_steady_out.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e6
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability1]
type = PorousFlowPermeabilityConst
permeability = '1.8e-11 0 0 0 1.8e-11 0 0 0 1.8e-11' # kf=3e-8, a=6e-4m. 1.8e-11 = kf * a
block = 'fracture'
[]
[permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
# controls for nonlinear iterations
nl_abs_tol = 1e-9
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
(modules/contact/test/tests/frictional/single_point_2d/single_point_2d_tp.i)
[Mesh]
file = single_point_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./horizontal_movement]
type = ParsedFunction
value = t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
diag_save_in = 'diag_saved_x diag_saved_y'
[../]
[]
[AuxKernels]
[./incslip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./incslip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./botx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./boty2]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 4
value = -0.005
[../]
[]
[Materials]
[./bottom]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e9
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[./top]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 200
dt = 0.001
end_time = 0.01
num_steps = 1000
nl_rel_tol = 1e-08
nl_abs_tol = 1e-08
dtmin = 0.001
l_tol = 1e-3
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = coulomb
friction_coefficient = '0.25'
formulation = tangential_penalty
penalty = 1e10
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '2'
secondary = '3'
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/special/objective_shear.i)
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Functions]
[shearme]
type = PiecewiseLinear
x = '0 1'
y = '0 2'
[]
[]
[BCs]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[bottom_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[bottom_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = bottom
value = 0.0
[]
[shear]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = shearme
preset = true
[]
[hmm]
type = DirichletBC
preset = true
variable = disp_y
boundary = top
value = 0.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/single_var_constraint_2d/propagating_2field_2constraint.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[Constraints]
[./xfem_constraint_u]
type = XFEMSingleVariableConstraint
variable = u
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[./xfem_constraint_v]
type = XFEMSingleVariableConstraint
variable = v
jump = 0
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/xfem/test/tests/moving_interface/moving_bimaterial_finite_strain_esm.i)
# This test is for two layer materials with different youngs modulus with AD
# The global stress is determined by switching the stress based on level set values
# The material interface is marked by a level set function
# The two layer materials are glued together
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[XFEM]
output_cut_plane = true
[]
[UserObjects]
[level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[]
[esm]
type = CutElementSubdomainModifier
geometric_cut_userobject = level_set_cut_uo
apply_initial_conditions = false
[]
[]
[Mesh]
use_displaced_mesh = true
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 5
ymin = 0
ymax = 5
elem_type = QUAD4
[]
[bottom]
type = SubdomainBoundingBoxGenerator
input = generated_mesh
block_id = 0
bottom_left = '0 0 0'
top_right = '5 2.5 0'
[]
[top]
type = SubdomainBoundingBoxGenerator
input = bottom
block_id = 1
bottom_left = '0 2.5 0'
top_right = '5 5 0'
[]
[]
[Functions]
[ls_func]
type = ParsedFunction
value = 'y-2.73+t'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[ls]
[]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[ls_function]
type = FunctionAux
variable = ls
function = ls_func
[]
[strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[]
[strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[]
[strain_xy]
type = RankTwoAux
variable = strain_xy
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[]
[stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[]
[stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[]
[]
[Kernels]
[solid_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[solid_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Constraints]
[dispx_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_x
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[]
[dispy_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = disp_y
alpha = 1e8
geometric_cut_userobject = 'level_set_cut_uo'
[]
[]
[BCs]
[bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[]
[bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[]
[topx]
type = FunctionDirichletBC
boundary = top
variable = disp_x
function = 0.03*t
[]
[topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = '0.03*t'
[]
[]
[Materials]
[elasticity_tensor_A]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1e9
poissons_ratio = 0.3
[]
[strain_A]
type = ComputeFiniteStrain
block = 1
[]
[stress_A]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_B]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 1e7
poissons_ratio = 0.3
[]
[strain_B]
type = ComputeFiniteStrain
block = 0
[]
[stress_B]
type = ComputeFiniteStrainElasticStress
block = 0
[]
[]
[Postprocessors]
[disp_x_norm]
type = ElementL2Norm
variable = disp_x
[]
[disp_y_norm]
type = ElementL2Norm
variable = disp_y
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-13
nl_abs_tol = 1e-50
# time control
start_time = 0.0
dt = 0.1
num_steps = 4
max_xfem_update = 1
[]
[Outputs]
print_linear_residuals = false
exodus = true
[]
(modules/ray_tracing/test/tests/raykernels/coupled_line_source_ray_kernel/coupled_line_source_ray_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 5
ymax = 5
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[v]
order = FIRST
family = LAGRANGE
[]
[]
[BCs]
[u_left]
type = DirichletBC
variable = u
value = 0
boundary = 'left'
[]
[u_right]
type = DirichletBC
variable = u
value = 1
boundary = 'right'
[]
[v_left]
type = DirichletBC
variable = v
value = 0
boundary = 'left'
[]
[v_right]
type = DirichletBC
variable = v
value = 1
boundary = 'right'
[]
[]
[Kernels]
[diffusion_u]
type = Diffusion
variable = u
[]
[diffusion_v]
type = Diffusion
variable = v
[]
[]
[RayKernels]
active = 'source'
[source]
type = CoupledLineSourceRayKernelTest
variable = u
coupled = v
[]
[source_ad]
type = ADCoupledLineSourceRayKernelTest
variable = u
coupled = v
[]
[]
[UserObjects/study]
type = RepeatableRayStudy
start_points = '0 0 0
0 4.9 0'
end_points = '5 0 0
4.9 3.9 0'
names = 'ray1 ray2'
execute_on = PRE_KERNELS
[]
[Preconditioning/smp]
type = SMP
full = true
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/eigenstrain/thermal_expansion_small.i)
# Test for thermal expansion eigenstrain
# A beam of length 4m fixed at one end is heated from 0 to 100 degrees
# celcius. The beam has a thermal expansion coefficient of 1e-4.
# The thermal expansion eigenstrain is 1e-2 which leads to the change
# in length of 0.04 m irrespective of the material properties of the
# beam.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e6
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.5
Ay = 0.0
Az = 0.0
Iy = 0.01
Iz = 0.01
y_orientation = '0.0 1.0 0.0'
eigenstrain_names = 'thermal'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./thermal]
type = ComputeThermalExpansionEigenstrainBeam
thermal_expansion_coeff = 1e-4
temperature = 100
stress_free_temperature = 0
eigenstrain_name = thermal
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence/3D/dirichlet.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.4 * t'
[]
[pully]
type = ParsedFunction
value = '-0.2 * t'
[]
[pullz]
type = ParsedFunction
value = '0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[pull_z]
type = FunctionDirichletBC
boundary = right
variable = disp_z
function = pullz
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/beam/static_vm/ansys_vm2.i)
# This is a reproduction of test number 2 of ANSYS apdl verification manual.
# This test checks for the deformation at the center of a beam with simply
# supported boundary conditions and a uniform load w = 10,000 lb/ft.
# ||||||||| def. ||||||||
# *---*---*---*---*---*---*---*---*
# /\ /\
# /// oo
# a l a
# <-----> <--------------> <----->
#
# l = 240 in, a = 120 in, A = 50.65 in^2, Iz = 7892 in^2
# E = 30e6 psi
# Solution deflection: 0.182 in. (dispz_5: -1.824633e-01)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 8
xmin = 0.0
xmax = 480.0
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0'
new_boundary = 'one'
input = generated_mesh
[]
[cnode1]
type = ExtraNodesetGenerator
coord = '60.0'
new_boundary = 'two'
input = cnode
[]
[cnode2]
type = ExtraNodesetGenerator
coord = '420.0'
new_boundary = 'eight'
input = cnode1
[]
[cnode3]
type = ExtraNodesetGenerator
coord = '480.0'
new_boundary = 'nine'
input = cnode2
[]
[cnode4]
type = ExtraNodesetGenerator
coord = '120.0'
new_boundary = 'BC1'
input = cnode3
[]
[cnode5]
type = ExtraNodesetGenerator
coord = '360.0'
new_boundary = 'BC2'
input = cnode4
[]
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 50.65
Ay = 0.0
Az = 0.0
Iy = 7892.0
Iz = 7892.0
y_orientation = '0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 30.0e6
# poissons_ratio = -0.9998699638
poissons_ratio = 0.33
# poissons_ratio = 0.3
shear_coefficient = 0.85
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'BC1'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'BC1'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'BC1'
value = 0.0
[../]
[./fixy2]
type = DirichletBC
variable = disp_y
boundary = 'BC2'
value = 0.0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
boundary = 'BC2'
value = 0.0
[../]
[]
[Functions]
[./force_50e3]
type = PiecewiseLinear
x = '0.0 10.0'
y = '0.0 50000.0'
[../]
[./force_25e3]
type = PiecewiseLinear
x = '0.0 10.0'
y = '0.0 25000.0'
[../]
[]
[NodalKernels]
[./force_z2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 'two'
function = force_50e3
[../]
[./force_z8]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 'eight'
function = force_50e3
[../]
[./force_z1]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 'one'
function = force_25e3
[../]
[./force_z9]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 'nine'
function = force_25e3
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = JFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-06
nl_abs_tol = 1e-06
dt = 1.0
dtmin = 0.001
end_time = 10
[]
[Postprocessors]
[./disp_z1]
type = PointValue
point = '0.0 0.0 0.0'
variable = disp_z
[../]
[./disp_x1]
type = PointValue
point = '0.0 0.0 0.0'
variable = disp_x
[../]
[./disp_z2]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_z
[../]
[./disp_zBC1]
type = PointValue
point = '120.0 0.0 0.0'
variable = disp_z
[../]
[./disp_z5]
type = PointValue
point = '240.0 0.0 0.0'
variable = disp_z
[../]
[./disp_zBC2]
type = PointValue
point = '360.0 0.0 0.0'
variable = disp_z
[../]
[./disp_xBC2]
type = PointValue
point = '360.0 0.0 0.0'
variable = disp_x
[../]
[./disp_z8]
type = PointValue
point = '420.0 0.0 0.0'
variable = disp_z
[../]
[./disp_z9]
type = PointValue
point = '480.0 0.0 0.0'
variable = disp_z
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
csv = true
exodus = false
[]
(modules/contact/test/tests/hertz_spherical/hertz_contact_hex20.i)
# Hertz Contact: Sphere on sphere
# Spheres have the same radius, Young's modulus, and Poisson's ratio.
# Define E:
# 1/E = (1-nu1^2)/E1 + (1-nu2^2)/E2
#
# Effective radius R:
# 1/R = 1/R1 + 1/R2
#
# F is the applied compressive load.
#
# Area of contact a::
# a^3 = 3FR/4E
#
# Depth of indentation d:
# d = a^2/R
#
#
# Let R1 = R2 = 2. Then R = 1.
#
# Let nu1 = nu2 = 0.25, E1 = E2 = 1.40625e7. Then E = 7.5e6.
#
# Let F = 10000. Then a = 0.1, d = 0.01.
#
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
order = SECOND
[]
[Mesh]#Comment
file = hertz_contact_hex20.e
allow_renumbering = false
[] # Mesh
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 795.77471545947674 # 10000/pi/2^2
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.01 -0.01'
[../]
[] # Functions
[Variables]
[./disp_x]
order = SECOND
family = LAGRANGE
[../]
[./disp_y]
order = SECOND
family = LAGRANGE
[../]
[./disp_z]
order = SECOND
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[] # AuxVariables
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
extra_vector_tags = 'ref'
save_in = 'saved_x saved_y saved_z'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
# [./vonmises]
# type = RankTwoScalarAux
# rank_two_tensor = stress
# variable = vonmises
# scalar_type = VonMisesStress
# [../]
[] # AuxKernels
[BCs]
[./base_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0.0
[../]
[./base_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0.0
[../]
[./base_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0.0
[../]
[./symm_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./symm_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[] # BCs
[Contact]
[./dummy_name]
primary = 1000
secondary = 100
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
[../]
[]
#[Dampers]
# [./contact_slip]
# type = ContactSlipDamper
# primary = 1000
# secondary = 100
# [../]
#[]
[Materials]
[./tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.40625e7
poissons_ratio = 0.25
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1'
[../]
[./tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '1000'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress_1000]
type = ComputeLinearElasticStress
block = '1000'
[../]
[] # Materials
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 2.0
[./Quadrature]
order = THIRD
[../]
[] # Executioner
[Postprocessors]
[./maxdisp]
type = NodalVariableValue
nodeid = 386 # 387-1 where 387 is the exodus node number of the top-center node
variable = disp_y
[../]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 2
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 2
[../]
[./bot_react_z]
type = NodalSum
variable = saved_z
boundary = 2
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[] # Outputs
(modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform2.i)
# checking for small deformation
# A single element is stretched by 1E-6m in x,y and z directions.
# stress_zz = Youngs Modulus*Strain = 2E6*1E-6 = 2 Pa
# wpt_tensile_strength is set to 5Pa
# Since maximum stress which is 2Pa is less than tension cutoff, plastic yeilding shoud not be observed.
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 1E-6
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 1E-6
[]
[topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningConstant
value = 5
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(framework/contrib/hit/test/input.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[SolidMechanics]
[./solid]
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = 0.02*t
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = 0.01*t
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./mean_alpha]
type = Elastic
block = 1
youngs_modulus = 1e6
poissons_ratio = .3
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
temp = temp
thermal_expansion_function = cte_func_mean
stress_free_temperature = 0.0
thermal_expansion_reference_temperature = 0.5
thermal_expansion_function_type = mean
[../]
[./inst_alpha]
type = Elastic
block = 2
youngs_modulus = 1e6
poissons_ratio = .3
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
temp = temp
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
thermal_expansion_function_type = instantaneous
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalMaxValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalMaxValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
file_base = const_alpha_out
exodus = true
csv = true
[]
(modules/combined/examples/phase_field-mechanics/LandauPhaseTrans.i)
#
# Martensitic transformation
# Chemical driving force described by Landau Polynomial
# Coupled with elasticity (Mechanics)
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
[]
[Variables]
[./eta1]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[./eta2]
[./InitialCondition]
type = RandomIC
min = 0
max = 0.1
[../]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy'
eigenstrain_names = 'eigenstrain1 eigenstrain2'
[../]
[]
[Kernels]
[./eta_bulk1]
type = AllenCahn
variable = eta1
args = 'eta2'
f_name = F
[../]
[./eta_bulk2]
type = AllenCahn
variable = eta2
args = 'eta1'
f_name = F
[../]
[./eta_interface1]
type = ACInterface
variable = eta1
kappa_name = kappa_eta
[../]
[./eta_interface2]
type = ACInterface
variable = eta2
kappa_name = kappa_eta
[../]
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'L kappa_eta'
prop_values = '1 1'
[../]
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
args = 'eta1 eta2'
constant_names = 'A2 A3 A4'
constant_expressions = '0.2 -12.6 12.4'
function = 'A2/2*(eta1^2+eta2^2) + A3/3*(eta1^3+eta2^3) + A4/4*(eta1^2+eta2^2)^2'
enable_jit = true
derivative_order = 2
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '700 300 300 700 300 700 300 300 300'
fill_method = symmetric9
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./var_dependence1]
type = DerivativeParsedMaterial
f_name = var_dep1
args = 'eta1'
function = eta1
enable_jit = true
derivative_order = 2
[../]
[./var_dependence2]
type = DerivativeParsedMaterial
f_name = var_dep2
args = 'eta2'
function = eta2
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain1]
type = ComputeVariableEigenstrain
eigen_base = '0.1 -0.1 0 0 0 0'
prefactor = var_dep1
args = 'eta1'
eigenstrain_name = eigenstrain1
[../]
[./eigenstrain2]
type = ComputeVariableEigenstrain
eigen_base = '-0.1 0.1 0 0 0 0'
prefactor = var_dep2
args = 'eta2'
eigenstrain_name = eigenstrain2
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta1 eta2'
derivative_order = 2
[../]
[./totol_free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe'
args = 'eta1 eta2'
derivative_order = 2
[../]
[]
[BCs]
[./all_y]
type = DirichletBC
variable = disp_y
boundary = 'top bottom left right'
value = 0
[../]
[./all_x]
type = DirichletBC
variable = disp_x
boundary = 'top bottom left right'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
# this gives best performance on 4 cores
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 10
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 9
iteration_window = 2
growth_factor = 1.1
cutback_factor = 0.75
dt = 0.3
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/tosub_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
elem_type = QUAD8
[]
[Variables]
[u]
family = LAGRANGE
order = FIRST
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[u_elemental]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[fun_aux]
type = FunctionAux
function = 'x + y'
variable = u_elemental
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0.48 0.01 0'
input_files = tosub_sub.i
[]
[]
[Transfers]
[to_sub_nodal_to_nodal]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = nodal_source_from_master_nodal
[]
[to_sub_nodal_to_elemental]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = nodal_source_from_master_elemental
[]
[to_sub_elemental_to_nodal]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u_elemental
variable = elemental_source_from_master_nodal
[]
[to_sub_elemental_to_elemental]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u_elemental
variable = elemental_source_from_master_elemental
[]
[]
(test/tests/mesh/adapt/interval.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 4
dt = .1
[./Adaptivity]
interval = 2
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh12.i)
# unsaturated = true
# gravity = true
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh12
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/badproperties/stvenantkirchhoff.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[strain]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[boty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = strain
[]
[]
[Materials]
[elastic_tensor]
type = ComputeElasticityTensor
C_ijkl = '102272 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[]
[compute_stress]
type = ComputeStVenantKirchhoffStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 5
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.01
dtmin = 0.01
end_time = 0.01
[]
[Outputs]
exodus = false
csv = true
[]
(tutorials/tutorial02_multiapps/step01_multiapps/05_sub_parallel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_exponential.i)
#
# Test to exercise the exponential stress release
#
# Stress vs. strain should show a linear relationship until cracking,
# an exponential stress release, a linear relationship back to zero
# strain, a linear relationship with the original stiffness in
# compression and then back to zero strain, a linear relationship
# back to the exponential curve, and finally further exponential
# stress release.
#
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displx]
type = PiecewiseLinear
x = '0 1 2 3 4 5 6'
y = '0 0.00175 0 -0.0001 0 0.00175 0.0035'
[../]
[./disply]
type = PiecewiseLinear
x = '0 5 6'
y = '0 0 .00175'
[../]
[./displz]
type = PiecewiseLinear
x = '0 2 3'
y = '0 0 .0035'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pullx]
type = FunctionDirichletBC
#type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = displx
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = '11 12'
value = 0.0
[../]
[./move_y]
type = FunctionDirichletBC
variable = disp_y
boundary = '15 16'
function = disply
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = '3'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 186.5e9
poissons_ratio = .316
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 119.3e6
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ExponentialSoftening
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-6
nl_max_its = 10
nl_rel_tol = 1e-12
nl_abs_tol = 1.e-4
start_time = 0.0
dt = 0.02
dtmin = 0.02
num_steps = 300
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain_shear.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '0 0 0 5e9 5e9 5e9'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e01]
type = ElementL2Error
variable = e01
function = 0.095 #Shear strain check
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_vol_dev.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'local_fracture_energy'
decomposition_type = strain_vol_dev
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./local_fracture_energy]
type = DerivativeParsedMaterial
f_name = local_fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy local_fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 10
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d_fully_saturated.i)
# 1phase, heat advecting with a moving fluid
# Using the FullySaturated Kernel
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[temp]
initial_condition = 200
[]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = '1-x'
[]
[]
[BCs]
[pp0]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[pp1]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[spit_heat]
type = DirichletBC
variable = temp
boundary = left
value = 300
[]
[suck_heat]
type = DirichletBC
variable = temp
boundary = right
value = 200
[]
[]
[Kernels]
[mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[advection]
type = PorousFlowFullySaturatedDarcyBase
variable = pp
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[convection]
type = PorousFlowFullySaturatedHeatAdvection
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 100
density0 = 1000
viscosity = 4.4
thermal_expansion = 0
cv = 2
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 125
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 2 0 0 0 3'
[]
[massfrac]
type = PorousFlowMassFraction
[]
[PS]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres bjacobi 1E-15 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 0.6
[]
[VectorPostprocessors]
[T]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 51
sort_by = x
variable = temp
[]
[]
[Outputs]
file_base = heat_advection_1d_fully_saturated
[csv]
type = CSV
sync_times = '0.1 0.6'
sync_only = true
[]
[]
(modules/tensor_mechanics/test/tests/truss/truss_hex_action.i)
# This test is designed to check
# whether truss element works well with other multi-dimensional element
# e.g. the hex element in this case, by assigning different block number
# to different types of elements.
[Mesh]
type = FileMesh
file = truss_hex.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./fixx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[./fixDummyHex_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0
[../]
[./fixDummyHex_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0
[../]
[./fixDummyHex_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '0 -2 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area1]
type = ConstantAux
block = 1
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[./area2]
type = ConstantAux
block = 2
variable = area
value = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[./TensorMechanics]
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Modules/TensorMechanics/LineElementMaster]
[./block]
truss = true
displacements = 'disp_x disp_y disp_z'
area = area
block = '1 2'
save_in = 'react_x react_y react_z'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1000
youngs_modulus = 1e6
poissons_ratio = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1000
[../]
[./linelast]
type = LinearElasticTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
youngs_modulus = 1e6
[../]
[]
[Outputs]
file_base = 'truss_hex_out'
exodus = true
[]
(modules/contact/test/tests/simple_contact/two_block_compress/two_equal_blocks_compress_2d.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = -1.0
xmax = 0.0
ymin = -0.5
ymax = 0.5
nx = 4
ny = 4
elem_type = QUAD4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = '10 11 12 13'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.0
xmax = 1.0
ymin = -0.5
ymax = 0.5
nx = 5
ny = 5
elem_type = QUAD4
[]
[right_block_sidesets]
type = RenameBoundaryGenerator
input = right_block
old_boundary = '0 1 2 3'
new_boundary = '20 21 22 23'
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block_sidesets
subdomain_id = 2
[]
[combined_mesh]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[]
[left_lower]
type = LowerDBlockFromSidesetGenerator
input = combined_mesh
sidesets = '11'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[right_lower]
type = LowerDBlockFromSidesetGenerator
input = left_lower
sidesets = '23'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[]
[]
[Functions]
[horizontal_movement]
type = PiecewiseLinear
x = '0 1.0'
y = '0 0.4'
[]
[vertical_movement]
type = PiecewiseLinear
x = '0 1.0'
y = '0 0'
[]
[]
[BCs]
[push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = horizontal_movement
[]
[fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 21
value = 0.0
[]
[fix_right_y]
type = DirichletBC
variable = disp_y
boundary = 21
value = 0.0
[]
[push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 13
function = vertical_movement
[]
[]
[Materials]
[elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[]
[]
[Constraints]
[normal_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = '23'
secondary_boundary = '11'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
correct_edge_dropping = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = '23'
secondary_boundary = '11'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = '23'
secondary_boundary = '11'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu superlu_dist nonzero 1e-10'
line_search = 'none'
dt = 0.1
dtmin = 0.01
end_time = 1.0
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
[]
[Outputs]
csv = true
execute_on = 'FINAL'
[]
[Postprocessors]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = 'secondary_lower'
[]
[normal_lm]
type = ElementAverageValue
variable = normal_lm
block = 'secondary_lower'
[]
[avg_disp_x]
type = ElementAverageValue
variable = disp_x
block = '1 2'
[]
[avg_disp_y]
type = ElementAverageValue
variable = disp_y
block = '1 2'
[]
[max_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
[]
[max_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
[]
[min_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
value_type = min
[]
[min_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
value_type = min
[]
[]
(test/tests/misc/check_error/subdomain_restricted_auxkernel_mismatch.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./foo]
order = FIRST
family = LAGRANGE
block = 1
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[AuxKernels]
[./foo]
type = ConstantAux
variable = foo
value = 1
block = 2
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test2tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test2.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test2tt_out
exodus = true
[]
(tutorials/darcy_thermo_mech/step03_darcy_material/problems/step3.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables/pressure]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Materials]
[column]
type = PackedColumn
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/dirackernels/point_caching/point_caching_uniform_refinement.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
active = 'point_source'
[./point_source]
type = CachingPointSource
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
steps = 2
marker = uniform
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_copy_transfer/third_monomial_from_sub/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = THIRD
[../]
[]
[AuxKernels]
[./aux]
type = FunctionAux
variable = aux
execute_on = initial
function = 10*x*y
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
hide = 'u'
exodus = true
[]
(test/tests/misc/selective_reinit/selective_reinit_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./dummy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./constant_dummy]
type = ConstantAux
variable = dummy
execute_on = 'initial timestep_end'
value = 4
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./u_integral]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.2 0.2 0'
top_right = '0.8 0.8 0'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
show = u
[]
[LotsOfAuxVariables]
[./avar]
number = 20
[../]
[]
(modules/tensor_mechanics/test/tests/poro/vol_expansion.i)
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion
#
# P = t
# With the Biot coefficient being 2.0, the effective stresses should be
# stress_xx = stress_yy = stress_zz = 2t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = 2t.
# I use a single element lying 0<=x<=1, 0<=y<=1 and 0<=z<=1, and
# fix the left, bottom and back boundaries appropriately,
# so at the point x=y=z=1, the displacements should be
# disp_x = disp_y = disp_z = 2t/3 (small strain physics is used)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./p]
[../]
[]
[BCs]
[./p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[../]
[./xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[../]
[./ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[./zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[../]
[]
[Kernels]
[./unimportant_p]
type = Diffusion
variable = p
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
porepressure = p
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
porepressure = p
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
porepressure = p
component = 2
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./corner_x]
type = PointValue
point = '1 1 1'
variable = disp_x
[../]
[./corner_y]
type = PointValue
point = '1 1 1'
variable = disp_y
[../]
[./corner_z]
type = PointValue
point = '1 1 1'
variable = disp_z
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
# bulk modulus = 1, poisson ratio = 0.2
C_ijkl = '0.5 0.75'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./biot]
type = GenericConstantMaterial
prop_names = biot_coefficient
prop_values = 2.0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
file_base = vol_expansion
exodus = true
[]
(modules/combined/test/tests/eigenstrain/inclusion.i)
# This test allows comparison of simulation and analytical solution for a misfitting precipitate
# using ComputeVariableEigenstrain for the simulation and the InclusionProperties material
# for the analytical solution. Increasing mesh resolution will improve agreement.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 1.5
ymax = 1.5
elem_type = QUAD4
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[AuxVariables]
[./s11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./s11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./s22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./e11_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e12_an]
order = CONSTANT
family = MONOMIAL
[../]
[./e22_an]
order = CONSTANT
family = MONOMIAL
[../]
[./fel_an]
order = CONSTANT
family = MONOMIAL
[../]
[./c]
[../]
[]
[AuxKernels]
[./matl_s11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = s11_aux
[../]
[./matl_s12]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = s12_aux
[../]
[./matl_s22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = s22_aux
[../]
[./matl_s11_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 0
variable = s11_an
[../]
[./matl_s12_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 0
index_j = 1
variable = s12_an
[../]
[./matl_s22_an]
type = RankTwoAux
rank_two_tensor = stress_an
index_i = 1
index_j = 1
variable = s22_an
[../]
[./matl_e11]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = e11_aux
[../]
[./matl_e12]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 1
variable = e12_aux
[../]
[./matl_e22]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = e22_aux
[../]
[./matl_e11_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 0
variable = e11_an
[../]
[./matl_e12_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 0
index_j = 1
variable = e12_an
[../]
[./matl_e22_an]
type = RankTwoAux
rank_two_tensor = strain_an
index_i = 1
index_j = 1
variable = e22_an
[../]
[./matl_fel_an]
type = MaterialRealAux
variable = fel_an
property = fel_an_mat
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 0.005*c^2
args = c
outputs = exodus
output_properties = 'var_dep'
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 0 0 0 0'
prefactor = var_dep
args = c
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./analytical]
type = InclusionProperties
a = 0.1
b = 0.1
lambda = 1
mu = 1
misfit_strains = '0.005 0.005'
strain_name = strain_an
stress_name = stress_an
energy_name = fel_an_mat
[../]
[]
[BCs]
active = 'left_x bottom_y'
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
l_max_its = 30
nl_max_its = 10
nl_rel_tol = 1.0e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./c_IC]
int_width = 0.075
x1 = 0
y1 = 0
radius = 0.1
outvalue = 0
variable = c
invalue = 1
type = SmoothCircleIC
[../]
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_small.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
displacements = 'disp_x disp_y'
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
planar_formulation = GENERALIZED_PLANE_STRAIN
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_zz
temperature = temp
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-4
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-5
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(test/tests/partitioners/random_partitioner/random_partitioner.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[Partitioner]
type = RandomPartitioner
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
(test/tests/multiapps/picard/picard_custom_postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./unorm_begin]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_begin'
outputs = none
[../]
[./unorm]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./unorm_err]
type = RelativeDifferencePostprocessor
value1 = unorm
value2 = unorm_begin
outputs = none
[../]
[./vnorm]
type = ElementL2Norm
variable = v
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
disable_fixed_point_residual_norm_check = true
custom_pp = unorm_err
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = steady_picard_sub.i
no_backup_and_restore = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/j_integral_2d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d.e
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = 10.0*(2*x/504)
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
temperature = temp
incremental = true
eigenstrain_names = thermal_expansion
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
eigenstrain_names = thermal_expansion
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
block = 1
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 0.0
thermal_expansion_coeff = 1.35e-5
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_2d_out
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[../]
[]
(modules/peridynamics/test/tests/restart/2D_mesh_restartable_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1003
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0.001
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e8
poissons_ratio = 0.3
[../]
[./strain]
type = ComputePlaneSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 1
# num_steps = 2
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_mesh_restartable_H1NOSPD_out
exodus = true
checkpoint = true
[]
(modules/tensor_mechanics/test/tests/auxkernels/ranktwoscalaraux.i)
[Mesh]
displacements = 'disp_x disp_y disp_z'
[generated_mesh]
type = GeneratedMeshGenerator
elem_type = HEX8
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 1.0
[]
[node]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 6
input = generated_mesh
[]
[snode]
type = ExtraNodesetGenerator
coord = '1.0 0.0 0.0'
new_boundary = 7
input = node
[]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./fplastic]
type = FiniteStrainPlasticMaterial
block = 0
yield_stress='0. 445. 0.05 610. 0.1 680. 0.38 810. 0.95 920. 2. 950.'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.827e5 1.21e5 1.21e5 2.827e5 1.21e5 2.827e5 0.808e5 0.808e5 0.808e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Functions]
[./topfunc]
type = ParsedFunction
value = 't'
[../]
[]
[BCs]
[./bottom3]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = topfunc
[../]
[./corner1]
type = DirichletBC
variable = disp_x
boundary = 6
value = 0.0
[../]
[./corner2]
type = DirichletBC
variable = disp_y
boundary = 6
value = 0.0
[../]
[./corner3]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./side1]
type = DirichletBC
variable = disp_y
boundary = 7
value = 0.0
[../]
[./side2]
type = DirichletBC
variable = disp_z
boundary = 7
value = 0.0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./L2norm]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hydrostatic
scalar_type = Hydrostatic
[../]
[./L2norm]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = L2norm
scalar_type = L2norm
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./hydrostatic]
type = ElementAverageValue
variable = hydrostatic
[../]
[./L2norm]
type = ElementAverageValue
variable = L2norm
[../]
[]
[Executioner]
type = Transient
dt=0.1
dtmin=0.1
dtmax=1
end_time=1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/utils/perf_graph_live_print/perf_graph_live_print.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Problem]
type = SlowProblem
seconds_to_sleep = 8
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
perf_graph_live_time_limit = 1
exodus = true
[]
(modules/combined/test/tests/poro_mechanics/pp_generation.i)
# A sample is constrained on all sides and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie m^3/second per cubic meter), and the
# rise in porepressure is observed.
#
# Source = s (units = 1/second)
#
# Expect:
# porepressure = Biot-Modulus*s*t
# stress = 0 (remember this is effective stress)
#
# Parameters:
# Biot coefficient = 0.3
# Porosity = 0.1
# Bulk modulus = 2
# Shear modulus = 1.5
# fluid bulk modulus = 1/0.3 = 3.333333
# 1/Biot modulus = (1 - 0.3)*(0.3 - 0.1)/2 + 0.1*0.3 = 0.1. BiotModulus = 10
# s = 0.1
#
# Expect
# porepressure = t
# stress = 0
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
[../]
[]
[BCs]
[./confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[../]
[./confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[../]
[./confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./source]
type = BodyForce
function = 0.1
variable = porepressure
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.1
biot_coefficient = 0.3
solid_bulk_compliance = 0.5
fluid_bulk_compliance = 0.3
constant_porosity = true
[../]
[]
[Postprocessors]
[./p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[../]
[./zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[../]
[./stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[../]
[./stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[../]
[./stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation
[./csv]
type = CSV
[../]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_2D_trimesh.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
# 2D version
[Mesh]
type = FileMesh
file = trimesh.msh
[]
[GlobalParams]
block = '50'
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.305,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.04 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/multiapps/sub_cycling_failure/sub_gold.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
[./dts]
# These mimic the behavior of the failing solve
type = PiecewiseConstant
x = '0 0.1 0.105'
y = '0.01 0.005 0.01'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
[./TimeStepper]
type = FunctionDT
function = dts
[../]
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.09
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.09
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3qtt_out
exodus = true
[]
(test/tests/vectorpostprocessors/intersection_points_along_line/3d.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
# Ray tracing code is not yet compatible with DistributedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./intersections]
type = IntersectionPointsAlongLine
start = '0.05 0.05 0.05'
end = '0.05 0.05 0.405'
[../]
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/ad_linear_elasticity/tensor.i)
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 2
ymax = 2
[]
[Variables]
[./diffused]
[./InitialCondition]
type = RandomIC
[../]
[../]
[]
[AuxVariables]
[./C11]
order = CONSTANT
family = MONOMIAL
[../]
[./C12]
order = CONSTANT
family = MONOMIAL
[../]
[./C13]
order = CONSTANT
family = MONOMIAL
[../]
[./C14]
order = CONSTANT
family = MONOMIAL
[../]
[./C15]
order = CONSTANT
family = MONOMIAL
[../]
[./C16]
order = CONSTANT
family = MONOMIAL
[../]
[./C22]
order = CONSTANT
family = MONOMIAL
[../]
[./C23]
order = CONSTANT
family = MONOMIAL
[../]
[./C24]
order = CONSTANT
family = MONOMIAL
[../]
[./C25]
order = CONSTANT
family = MONOMIAL
[../]
[./C26]
order = CONSTANT
family = MONOMIAL
[../]
[./C33]
order = CONSTANT
family = MONOMIAL
[../]
[./C34]
order = CONSTANT
family = MONOMIAL
[../]
[./C35]
order = CONSTANT
family = MONOMIAL
[../]
[./C36]
order = CONSTANT
family = MONOMIAL
[../]
[./C44]
order = CONSTANT
family = MONOMIAL
[../]
[./C45]
order = CONSTANT
family = MONOMIAL
[../]
[./C46]
order = CONSTANT
family = MONOMIAL
[../]
[./C55]
order = CONSTANT
family = MONOMIAL
[../]
[./C56]
order = CONSTANT
family = MONOMIAL
[../]
[./C66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
use_automatic_differentiation = true
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = diffused
[../]
[]
[AuxKernels]
[./matl_C11]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C11
[../]
[./matl_C12]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C12
[../]
[./matl_C13]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C13
[../]
[./matl_C14]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 2
variable = C14
[../]
[./matl_C15]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 2
variable = C15
[../]
[./matl_C16]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 1
variable = C16
[../]
[./matl_C22]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
variable = C22
[../]
[./matl_C23]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
variable = C23
[../]
[./matl_C24]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 2
variable = C24
[../]
[./matl_C25]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 2
variable = C25
[../]
[./matl_C26]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 1
variable = C26
[../]
[./matl_C33]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
variable = C33
[../]
[./matl_C34]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 1
index_l = 2
variable = C34
[../]
[./matl_C35]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C35
[../]
[./matl_C36]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 1
variable = C36
[../]
[./matl_C44]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
variable = C44
[../]
[./matl_C45]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 2
variable = C45
[../]
[./matl_C46]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 1
variable = C46
[../]
[./matl_C55]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 2
variable = C55
[../]
[./matl_C56]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 1
variable = C56
[../]
[./matl_C66]
type = ADRankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
variable = C66
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeElasticityTensor
fill_method = symmetric21
C_ijkl ='1111 1122 1133 1123 1113 1112 2222 2233 2223 2213 2212 3333 3323 3313 3312 2323 2313 2312 1313 1312 1212'
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = 'bottom top'
value = 0.5
[../]
[./disp_x_BC2]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.01
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.8
[../]
[./disp_y_BC2]
type = DirichletBC
variable = disp_y
boundary = 'left right'
value = 0.02
[../]
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/except2.i)
# checking for exception error messages
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 8E-6
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 6E-6
[]
[topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 0
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 0'
ep_plastic_tolerance = 1E-3
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[./elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.1 0.45 0'
input_files = fromsub_fixed_meshes_sub.i
[../]
[]
[Transfers]
# Note: it's not generally advised to use "fixed_meshes = true" with displaced
# meshes. We only do that for this test to make sure the test will fail if
# "fixed_meshes" isn't working properly.
[./from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
fixed_meshes = true
displaced_source_mesh = true
[../]
[./elemental_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = elemental_from_sub
fixed_meshes = true
displaced_source_mesh = true
[../]
[]
(test/tests/auxkernels/ghosting_aux/no_algebraic_ghosting.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[Partitioner]
type = GridPartitioner
nx = 2
ny = 2
[]
output_ghosting = true
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid]
type = ProcessorIDAux
variable = pid
[]
[]
[Problem]
default_ghosting = false
[]
(modules/contact/test/tests/sliding_block/sliding/frictional_04_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# A friction coefficient of 0.4 is used. The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 14.99999
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 1e+7
friction_coefficient = 0.4
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(test/tests/controls/output/controllable_clear.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = u
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Outputs]
controls = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = '*/*/point'
execute_on = 'initial'
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_twinning/modified_kalidindi_for_hcp.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[single_xtal]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_xx]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_volume_fraction_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_increment_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_increment_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_increment_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_increment_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_increment_5]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_1]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_2]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_4]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_5]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_2]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_4]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_5]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_xx]
type = RankTwoAux
variable = fp_xx
rank_two_tensor = plastic_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = twin_total_volume_fraction_twins
execute_on = timestep_end
[]
[twin_volume_fraction_0]
type = MaterialStdVectorAux
variable = twin_volume_fraction_0
property = twin_twin_system_volume_fraction
index = 0
execute_on = timestep_end
[]
[twin_volume_fraction_1]
type = MaterialStdVectorAux
variable = twin_volume_fraction_1
property = twin_twin_system_volume_fraction
index = 1
execute_on = timestep_end
[]
[twin_volume_fraction_2]
type = MaterialStdVectorAux
variable = twin_volume_fraction_2
property = twin_twin_system_volume_fraction
index = 2
execute_on = timestep_end
[]
[twin_volume_fraction_3]
type = MaterialStdVectorAux
variable = twin_volume_fraction_3
property = twin_twin_system_volume_fraction
index = 3
execute_on = timestep_end
[]
[twin_volume_fraction_4]
type = MaterialStdVectorAux
variable = twin_volume_fraction_4
property = twin_twin_system_volume_fraction
index = 4
execute_on = timestep_end
[]
[twin_volume_fraction_5]
type = MaterialStdVectorAux
variable = twin_volume_fraction_5
property = twin_twin_system_volume_fraction
index = 5
execute_on = timestep_end
[]
[twin_resistance_0]
type = MaterialStdVectorAux
variable = twin_resistance_0
property = twin_slip_resistance
index = 0
execute_on = timestep_end
[]
[twin_resistance_1]
type = MaterialStdVectorAux
variable = twin_resistance_1
property = twin_slip_resistance
index = 1
execute_on = timestep_end
[]
[twin_resistance_2]
type = MaterialStdVectorAux
variable = twin_resistance_2
property = twin_slip_resistance
index = 2
execute_on = timestep_end
[]
[twin_resistance_3]
type = MaterialStdVectorAux
variable = twin_resistance_3
property = twin_slip_resistance
index = 3
execute_on = timestep_end
[]
[twin_resistance_4]
type = MaterialStdVectorAux
variable = twin_resistance_4
property = twin_slip_resistance
index = 4
execute_on = timestep_end
[]
[twin_resistance_5]
type = MaterialStdVectorAux
variable = twin_resistance_5
property = twin_slip_resistance
index = 5
execute_on = timestep_end
[]
[twin_increment_0]
type = MaterialStdVectorAux
variable = twin_increment_0
property = twin_slip_increment
index = 0
execute_on = timestep_end
[]
[twin_increment_1]
type = MaterialStdVectorAux
variable = twin_increment_1
property = twin_slip_increment
index = 1
execute_on = timestep_end
[]
[twin_increment_2]
type = MaterialStdVectorAux
variable = twin_increment_2
property = twin_slip_increment
index = 2
execute_on = timestep_end
[]
[twin_increment_3]
type = MaterialStdVectorAux
variable = twin_increment_3
property = twin_slip_increment
index = 3
execute_on = timestep_end
[]
[twin_increment_4]
type = MaterialStdVectorAux
variable = twin_increment_4
property = twin_slip_increment
index = 4
execute_on = timestep_end
[]
[twin_increment_5]
type = MaterialStdVectorAux
variable = twin_increment_5
property = twin_slip_increment
index = 5
execute_on = timestep_end
[]
[twin_tau_0]
type = MaterialStdVectorAux
variable = resolved_twin_stress_0
property = twin_applied_shear_stress
index = 0
execute_on = timestep_end
[]
[twin_tau_1]
type = MaterialStdVectorAux
variable = resolved_twin_stress_1
property = twin_applied_shear_stress
index = 1
execute_on = timestep_end
[]
[twin_tau_2]
type = MaterialStdVectorAux
variable = resolved_twin_stress_2
property = twin_applied_shear_stress
index = 2
execute_on = timestep_end
[]
[twin_tau_3]
type = MaterialStdVectorAux
variable = resolved_twin_stress_3
property = twin_applied_shear_stress
index = 3
execute_on = timestep_end
[]
[twin_tau_4]
type = MaterialStdVectorAux
variable = resolved_twin_stress_4
property = twin_applied_shear_stress
index = 4
execute_on = timestep_end
[]
[twin_tau_5]
type = MaterialStdVectorAux
variable = resolved_twin_stress_5
property = twin_applied_shear_stress
index = 5
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
preset = true
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'twin_xtalpl'
tan_mod_type = exact
[]
[twin_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
base_name = twin
crystal_lattice_type = HCP
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
number_slip_systems = 6
slip_sys_file_name = 'hcp_tensile_twin_systems.txt'
initial_twin_lattice_friction = 1140
non_coplanar_coefficient_twin_hardening = 10000
coplanar_coefficient_twin_hardening = 1000
characteristic_twin_shear = 0.167
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_xx]
type = ElementAverageValue
variable = fp_xx
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[twin_volume_fraction_0]
type = ElementAverageValue
variable = twin_volume_fraction_0
[]
[twin_volume_fraction_1]
type = ElementAverageValue
variable = twin_volume_fraction_1
[]
[twin_volume_fraction_2]
type = ElementAverageValue
variable = twin_volume_fraction_2
[]
[twin_volume_fraction_3]
type = ElementAverageValue
variable = twin_volume_fraction_3
[]
[twin_volume_fraction_4]
type = ElementAverageValue
variable = twin_volume_fraction_4
[]
[twin_volume_fraction_5]
type = ElementAverageValue
variable = twin_volume_fraction_5
[]
[twin_resistance_0]
type = ElementAverageValue
variable = twin_resistance_0
[]
[twin_resistance_1]
type = ElementAverageValue
variable = twin_resistance_1
[]
[twin_resistance_2]
type = ElementAverageValue
variable = twin_resistance_2
[]
[twin_resistance_3]
type = ElementAverageValue
variable = twin_resistance_3
[]
[twin_resistance_4]
type = ElementAverageValue
variable = twin_resistance_4
[]
[twin_resistance_5]
type = ElementAverageValue
variable = twin_resistance_5
[]
[twin_increment_0]
type = ElementAverageValue
variable = twin_increment_0
[]
[twin_increment_1]
type = ElementAverageValue
variable = twin_increment_1
[]
[twin_increment_2]
type = ElementAverageValue
variable = twin_increment_2
[]
[twin_increment_3]
type = ElementAverageValue
variable = twin_increment_3
[]
[twin_increment_4]
type = ElementAverageValue
variable = twin_increment_4
[]
[twin_increment_5]
type = ElementAverageValue
variable = twin_increment_5
[]
[twin_tau_0]
type = ElementAverageValue
variable = resolved_twin_stress_0
[]
[twin_tau_1]
type = ElementAverageValue
variable = resolved_twin_stress_1
[]
[twin_tau_2]
type = ElementAverageValue
variable = resolved_twin_stress_2
[]
[twin_tau_3]
type = ElementAverageValue
variable = resolved_twin_stress_3
[]
[twin_tau_4]
type = ElementAverageValue
variable = resolved_twin_stress_4
[]
[twin_tau_5]
type = ElementAverageValue
variable = resolved_twin_stress_5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 2.5
[]
[Outputs]
csv = true
[]
(test/tests/controls/real_function_control/multi_real_function_control.i)
###########################################################
# This is a test of the Control Logic System. This test
# uses the RealFunctionControl to change a multiple Kernel
# coefficients based on an analytical function at the end
# of each timestep.
#
# @Requirement F8.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff_u]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 0.2
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Functions]
[./func_coef]
type = ParsedFunction
value = '2*t + 0.1'
[../]
[]
[Postprocessors]
[./u_coef]
type = RealControlParameterReporter
parameter = 'Kernels/diff_u/coef'
[../]
[./v_coef]
type = RealControlParameterReporter
parameter = 'Kernels/diff_v/coef'
[../]
[]
[Controls]
[./func_control]
type = RealFunctionControl
parameter = '*/*/coef'
function = 'func_coef'
execute_on = 'timestep_begin'
[../]
[]
(test/tests/outputs/iterative/iterative_csv.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./iterations]
type = NumResidualEvaluations
execute_on = linear
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = CSV
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
start_time = 1.8
end_time = 1.85
execute_on = 'nonlinear linear timestep_end'
[../]
[]
(test/tests/mortar/1d/1d.i)
[Mesh]
file = 2-lines.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ScalarKernels]
[./ced]
type = NodalEqualValueConstraint
variable = lm
var = u
boundary = '100 101'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = '2'
value = 3
[../]
[./evc1]
type = OneDEqualValueConstraintBC
variable = u
boundary = '100'
lambda = lm
component = 0
vg = 1
[../]
[./evc2]
type = OneDEqualValueConstraintBC
variable = u
boundary = '101'
lambda = lm
component = 0
vg = -1
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/print_c/print_c.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t
[]
[]
[AuxVariables]
[strain_yy]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[Pressure]
[bc_presssure]
boundary = top
function = top_pull
[]
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
[umat]
type = AbaqusUMATStress
constant_properties = '210000 0.3'
plugin = '../../../plugins/elastic_print_c'
num_state_vars = 0
external_fields = 'strain_yy'
use_one_based_indexing = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 10
dt = 10.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/energy_source/steady.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[temperature][]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = temperature
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = temperature
thermal_conductivity = 'k'
[../]
[temperature_source]
type = INSADEnergySource
variable = temperature
source_function = 1
[]
[temperature_supg]
type = INSADEnergySUPG
variable = temperature
velocity = velocity
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[./temperature_hot]
type = DirichletBC
variable = temperature
boundary = 'bottom'
value = 1
[../]
[./temperature_cold]
type = DirichletBC
variable = temperature
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSADStabilized3Eqn
velocity = velocity
pressure = p
temperature = temperature
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/cohesive_zone_model/stretch_rotate_large_deformation.i)
#
# Stretch + rotation test
#
# This test is designed to compute a uniaxial stress and then follow it as the mesh is rotated .
#
# The mesh is composed of two, single-elemnt blocks
[Mesh]
[./msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -1
zmax = 1
[]
[./new_block]
type = SubdomainBoundingBoxGenerator
input = msh
block_id = 1
bottom_left = '-0.5 -0.5 0'
top_right = '0.5 0.5 0.5'
[]
[./split]
type = BreakMeshByBlockGenerator
input = new_block
[]
[add_side_sets]
input = split
type = SideSetsFromNormalsGenerator
normals = '0 -1 0
0 1 0
-1 0 0
1 0 0
0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'y0 y1 x0 x1 z0 z1'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./stretch]
type = PiecewiseLinear
x = '0 1'
y = '0 300'
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
preset = true
value = 0.0
boundary = x0
variable = disp_x
[../]
[./fix_y]
type = DirichletBC
preset = true
value = 0.0
boundary = y0
variable = disp_y
[../]
[./fix_z]
type = DirichletBC
preset = true
value = 0.0
boundary = z0
variable = disp_z
[../]
[./back_z]
type = FunctionNeumannBC
boundary = z1
variable = disp_z
use_displaced_mesh = false
function = stretch
[../]
[./rotate_x]
type = DisplacementAboutAxis
boundary = 'x0 y0 z0 z1'
function = '90.'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 1. 0.'
component = 0
variable = disp_x
angular_velocity = true
[../]
[./rotate_y]
type = DisplacementAboutAxis
boundary = 'x0 y0 z0 z1'
function = '90.'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 1. 0.'
component = 1
variable = disp_y
angular_velocity = true
[../]
[./rotate_z]
type = DisplacementAboutAxis
boundary = 'x0 y0 z0 z1'
function = '90.'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 1. 0.'
component = 2
variable = disp_z
angular_velocity = true
[../]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[./czm_ik]
boundary = 'interface'
strain = FINITE
generate_output='traction_x traction_y traction_z jump_x jump_y jump_z normal_traction tangent_traction normal_jump tangent_jump pk1_traction_x pk1_traction_y pk1_traction_z'
[../]
[]
[Controls]
[./c1]
type = TimePeriod
enable_objects = 'BCs::fix_x BCs::fix_y BCs::fix_z BCs::back_z'
disable_objects = 'BCs::rotate_x BCs::rotate_y BCs::rotate_z'
start_time = '0'
end_time = '1'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
use_automatic_differentiation = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_xz'
[../]
[../]
[../]
[]
[Materials]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e3
poissons_ratio = 0.3
[../]
[./czm_mat]
type = PureElasticTractionSeparation
boundary = 'interface'
normal_stiffness = 10000
tangent_stiffness = 7000
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'
nl_rel_tol = 1e-30
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 0.1
end_time = 2
[]
[Outputs]
exodus = true
csv =true
[]
(modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_multiple_dimension_base.i)
[Mesh]
[./msh]
type = GeneratedMeshGenerator
[]
[./subdomain_1]
type = SubdomainBoundingBoxGenerator
input = msh
bottom_left = '0 0 0'
block_id = 1
top_right = '0.5 1 1'
[]
[./subdomain_2]
type = SubdomainBoundingBoxGenerator
input = subdomain_1
bottom_left = '0.5 0 0'
block_id = 2
top_right = '1 1 1'
[]
[./breakmesh]
input = subdomain_2
type = BreakMeshByBlockGenerator
[../]
[add_side_sets]
input = breakmesh
type = SideSetsFromNormalsGenerator
normals = '0 -1 0
0 1 0
-1 0 0
1 0 0
0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'y0 y1 x0 x1 z0 z1'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_yz stress_xz stress_xy'
[../]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[./czm1]
boundary = 'interface'
generate_output = 'traction_x traction_y traction_z normal_traction tangent_traction jump_x jump_y jump_z normal_jump tangent_jump'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = x0
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = x0
value = 0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
preset = false
boundary = x0
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = x1
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = x1
[../]
[./right_z]
type = FunctionDirichletBC
variable = disp_z
preset = false
boundary = x1
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = '1 2'
fill_method = symmetric_isotropic
C_ijkl = '0.3 0.5e8'
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[./czm_mat]
type = PureElasticTractionSeparation
boundary = 'interface'
normal_stiffness = 10
tangent_stiffness = 5
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
solve_type = NEWTON
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
nl_max_its = 5
l_tol = 1e-10
l_max_its = 50
start_time = 0.0
dt = 0.2
end_time = 0.2
dtmin = 0.2
line_search = none
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
(test/tests/multiapps/centroid_multiapp/centroid_multiapp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./x]
family = MONOMIAL
order = CONSTANT
[../]
[./y]
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./x]
type = FunctionIC
function = x
variable = x
[../]
[./y]
type = FunctionIC
function = y
variable = y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = CentroidMultiApp
input_files = 'sub_app.i'
output_in_position = true
[]
[]
[Transfers]
[./incoming_x]
type = MultiAppVariableValueSamplePostprocessorTransfer
source_variable = x
to_multi_app = sub
postprocessor = incoming_x
[../]
[./incoming_y]
type = MultiAppVariableValueSamplePostprocessorTransfer
source_variable = y
to_multi_app = sub
postprocessor = incoming_y
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test2q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test2q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test2q_out
exodus = true
[]
(modules/functional_expansion_tools/examples/3D_volumetric_Cartesian/main.i)
# Basic example coupling a master and sub app in a 3D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
#
# Note: this problem is not light, and may take a few minutes to solve.
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/target_boundary_master.i)
[Mesh]
[drmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 30
ny = 30
xmax = 2
elem_type = QUAD4
partition = square
[]
[]
[Variables]
[u][]
[]
[Kernels]
[conduction]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 10
[]
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
app_type = MooseTestApp
input_files = 'target_boundary_sub.i'
positions = '-1.0 0.0 0.0
2. 0.0 0.0'
output_in_position = true
execute_on = 'timestep_end'
[]
[]
[Transfers]
[target_boundary]
type = MultiAppNearestNodeTransfer
source_variable = u
to_multi_app = sub
variable = source
target_boundary = 'right'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/sideset_from_nodeset/sideset_from_nodeset_test.i)
[Mesh]
file = cube_no_sidesets.e
construct_side_list_from_node_list = true
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = 3
value = 3
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = cube_hex_out
exodus = true
[]
(examples/ex14_pps/ex14_compare_solutions_1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 100
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
parallel_type = replicated # This uses SolutionUserObject which doesn't work with DistributedMesh.
[]
[Variables]
[./forced]
order = THIRD
family = HERMITE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = forced
[../]
[./forcing]
type = BodyForce
variable = forced
function = 'x*x+y*y' # Any object expecting a function name can also receive a ParsedFunction string
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = forced
boundary = 'bottom right top left'
value = 0
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
xda = true #XDA writes out the perfect internal state of all variables, allowing SolutionUserObject to read back in higher order solutions and adapted meshes
[]
(tutorials/tutorial02_multiapps/step01_multiapps/01_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[secondary]
input = block_rename
type = LowerDBlockFromSidesetGenerator
sidesets = 'block_left'
new_block_id = '30'
new_block_name = 'frictionless_secondary_subdomain'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'plank_right'
new_block_id = '20'
new_block_name = 'frictionless_primary_subdomain'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = ${fparse 2.0 / (E_plank + E_block)}
[]
[temp]
order = ${order}
block = 'plank block'
scaling = 1e-1
[]
[thermal_lm]
order = ${order}
block = 'frictionless_secondary_subdomain'
scaling = 1e-7
[]
[frictionless_normal_lm]
order = FIRST
block = 'frictionless_secondary_subdomain'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[action]
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
strain = FINITE
[]
[]
[Kernels]
[hc]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = 'plank block'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = plank_right
secondary_boundary = block_left
primary_subdomain = frictionless_primary_subdomain
secondary_subdomain = frictionless_secondary_subdomain
variable = frictionless_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[thermal_contact]
type = GapConductanceConstraint
variable = thermal_lm
secondary_variable = temp
k = 1
use_displaced_mesh = true
primary_boundary = plank_right
primary_subdomain = frictionless_primary_subdomain
secondary_boundary = block_left
secondary_subdomain = frictionless_secondary_subdomain
displacements = 'disp_x disp_y'
[]
[]
[BCs]
[left_temp]
type = DirichletBC
variable = temp
boundary = 'plank_left'
value = 400
[]
[right_temp]
type = DirichletBC
variable = temp
boundary = 'block_right'
value = 300
[]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
preset = false
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
preset = false
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[heat_plank]
type = ADHeatConductionMaterial
block = plank
thermal_conductivity = 2
specific_heat = 1
[]
[heat_block]
type = ADHeatConductionMaterial
block = block
thermal_conductivity = 1
specific_heat = 1
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount -snes_max_it'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15 20'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'none'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[avg_temp]
type = ElementAverageValue
variable = temp
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
checkpoint = true
[comp]
type = CSV
show = 'contact avg_temp'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/tag/tag_dirac_kernels.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ddt_u]
type = TimeDerivative
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./diff_u]
type = Diffusion
variable = u
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./ddt_v]
type = TimeDerivative
variable = v
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./diff_v]
type = Diffusion
variable = v
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[DiracKernels]
[./nonlinear_source]
type = NonlinearSource
variable = u
coupled_var = v
scale_factor = 1000
point = '0.2 0.3 0'
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1 vec_tag2'
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
extra_matrix_tags = 'mat_tag1 mat_tag2'
extra_vector_tags = 'vec_tag1'
[../]
[]
[Preconditioning]
[./precond]
type = SMP
full = true
[../]
[]
[Problem]
type = TagTestProblem
test_tag_vectors = 'time nontime residual vec_tag1 vec_tag2'
test_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_matrices = 'mat_tag1 mat_tag2'
extra_tag_vectors = 'vec_tag1 vec_tag2'
[]
[AuxVariables]
[./tag_variable1]
order = FIRST
family = LAGRANGE
[../]
[./tag_variable2]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./TagVectorAux1]
type = TagVectorAux
variable = tag_variable1
v = u
vector_tag = vec_tag2
execute_on = timestep_end
[../]
[./TagVectorAux2]
type = TagMatrixAux
variable = tag_variable2
v = u
matrix_tag = mat_tag2
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON' # NEWTON provides a more stringent test of off-diagonal Jacobians
num_steps = 5
dt = 1
dtmin = 1
l_max_its = 100
nl_max_its = 6
nl_abs_tol = 1.e-13
[]
[Postprocessors]
[./point_value]
type = PointValue
variable = u
point = '0.2 0.3 0'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/picard_failure/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./nan]
type = NanAtCountKernel
variable = v
count = 32
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Postprocessors]
[./elem_average_value]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
snesmf_reuse_base = false
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/moving_interface/moving_diffusion.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 3
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
elem_type = QUAD4
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./ls_func]
type = ParsedFunction
value = 'x-0.76+0.21*t'
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[Constraints]
[./u_constraint]
type = XFEMSingleVariableConstraint
use_displaced_mesh = false
variable = u
jump = 0
use_penalty = true
alpha = 1e5
geometric_cut_userobject = 'level_set_cut_uo'
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[../]
[./diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 0.5
[../]
[./diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
l_max_its = 20
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
start_time = 0.0
dt = 1
end_time = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
perf_graph = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/dynamics/wave_1D/wave_rayleigh_hht_AD.i)
# Wave propogation in 1D using HHT time integration in the presence of Rayleigh damping
#
# The test is for an 1D bar element of length 4m fixed on one end
# with a sinusoidal pulse dirichlet boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# eta and zeta are mass dependent and stiffness dependent Rayleigh damping
# coefficients, respectively.
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*((1+alpha)*vel-alpha*vel_old)
# +(1+alpha)*K*disp-alpha*K*disp_old = 0
#
# Here M is the mass matrix, K is the stiffness matrix
#
# The displacement at the first, second, third and fourth node at t = 0.1 are
# -7.787499960311491942e-02, 1.955566679096475483e-02 and -4.634888180231294501e-03, respectively.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 4
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 4.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
hht_alpha = -0.3
stiffness_damping_coefficient = 0.1
use_automatic_differentiation = true
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.422
gamma = 0.8
eta=0.1
alpha = -0.3
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.422
gamma = 0.8
eta = 0.1
alpha = -0.3
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.422
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.422
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.422
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = right
value=0.0
[../]
[./right_z]
type = DirichletBC
variable = disp_z
boundary = right
value=0.0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value=0.0
[../]
[./left_z]
type = DirichletBC
variable = disp_z
boundary = left
value=0.0
[../]
[./front_x]
type = DirichletBC
variable = disp_x
boundary = front
value=0.0
[../]
[./front_z]
type = DirichletBC
variable = disp_z
boundary = front
value=0.0
[../]
[./back_x]
type = DirichletBC
variable = disp_x
boundary = back
value=0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = back
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = displacement_bc
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ADComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '1 0'
[../]
[./strain]
type = ADComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ADComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
start_time = 0
end_time = 6.0
l_tol = 1e-12
nl_rel_tol = 1e-12
dt = 0.1
[]
[Functions]
[./displacement_bc]
type = PiecewiseLinear
data_file = 'sine_wave.csv'
format = columns
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp_1]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_2]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./disp_3]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./disp_4]
type = NodalVariableValue
nodeid = 14
variable = disp_y
[../]
[]
[Outputs]
file_base = 'wave_rayleigh_hht_out'
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/homogenization/anisoShortFiber.i)
#
# Test from:
# Multiple Scale Analysis of Heterogeneous Elastic Structures Using
# Homogenization Theory and Voronoi Cell Finite Element Method
# by S.Ghosh et. al, Int J. Solids Structures, Vol. 32, No. 1,
# pp. 27-62, 1995.
#
# From that paper, elastic constants should be:
# E1111: 122.4
# E2222: 151.2
# E1212: 42.1
# E1122: 36.23
#
# Note: this is for plane stress conditions
#
[Mesh]
file = anisoShortFiber.e
# To calculate matching values, refine the mesh one time.
# We use a coarse mesh for speed in this test.
# uniform_refine = 1
[]
[Variables]
[./dx_xx]
order = FIRST
family = LAGRANGE
[../]
[./dy_xx]
order = FIRST
family = LAGRANGE
[../]
[./dx_yy]
order = FIRST
family = LAGRANGE
[../]
[./dy_yy]
order = FIRST
family = LAGRANGE
[../]
[./dx_xy]
order = FIRST
family = LAGRANGE
[../]
[./dy_xy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./div_x_xx]
type = StressDivergenceTensors
component = 0
variable = dx_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_y_xx]
type = StressDivergenceTensors
component = 1
variable = dy_xx
displacements = 'dx_xx dy_xx'
use_displaced_mesh = false
base_name = xx
[../]
[./div_x_yy]
type = StressDivergenceTensors
component = 0
variable = dx_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_y_yy]
type = StressDivergenceTensors
component = 1
variable = dy_yy
displacements = 'dx_yy dy_yy'
use_displaced_mesh = false
base_name = yy
[../]
[./div_x_xy]
type = StressDivergenceTensors
component = 0
variable = dx_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./div_y_xy]
type = StressDivergenceTensors
component = 1
variable = dy_xy
displacements = 'dx_xy dy_xy'
use_displaced_mesh = false
base_name = xy
[../]
[./aeh_dx_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xx
component = 0
column = xx
base_name = xx
[../]
[./aeh_dy_xx]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xx
component = 1
column = xx
base_name = xx
[../]
[./aeh_dx_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_yy
component = 0
column = yy
base_name = yy
[../]
[./aeh_dy_yy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_yy
component = 1
column = yy
base_name = yy
[../]
[./aeh_dx_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dx_xy
component = 0
column = xy
base_name = xy
[../]
[./aeh_dy_xy]
type = AsymptoticExpansionHomogenizationKernel
variable = dy_xy
component = 1
column = xy
base_name = xy
[../]
[]
[BCs]
[./Periodic]
[./top_bottom]
primary = 30
secondary = 40
translation = '0 1 0'
[../]
[./left_right]
primary = 10
secondary = 20
translation = '1 0 0'
[../]
[../]
[./dx_xx_anchor]
type = DirichletBC
variable = dx_xx
boundary = 1
value = 0.0
[../]
[./dy_xx_anchor]
type = DirichletBC
variable = dy_xx
boundary = 1
value = 0.0
[../]
[./dx_yy_anchor]
type = DirichletBC
variable = dx_yy
boundary = 1
value = 0.0
[../]
[./dy_yy_anchor]
type = DirichletBC
variable = dy_yy
boundary = 1
value = 0.0
[../]
[./dx_xy_anchor]
type = DirichletBC
variable = dx_xy
boundary = 1
value = 0.0
[../]
[./dy_xy_anchor]
type = DirichletBC
variable = dy_xy
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./elastic_stress_xx]
type = ComputeLinearElasticStress
base_name = xx
[../]
[./elastic_stress_yy]
type = ComputeLinearElasticStress
base_name = yy
[../]
[./elastic_stress_xy]
type = ComputeLinearElasticStress
base_name = xy
[../]
[./strain_xx]
type = ComputeSmallStrain
displacements = 'dx_xx dy_xx'
base_name = xx
[../]
[./strain_yy]
type = ComputeSmallStrain
displacements = 'dx_yy dy_yy'
base_name = yy
[../]
[./strain_xy]
type = ComputeSmallStrain
displacements = 'dx_xy dy_xy'
base_name = xy
[../]
[./block1]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xx
[../]
[./block2]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = yy
[../]
[./block3]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric9
C_ijkl = '81.360117 26.848839 26.848839 81.360117 26.848839 81.360117 27.255639 27.255639 27.255639'
base_name = xy
[../]
[./block4]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xx
[../]
[./block5]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = yy
[../]
[./block6]
type = ComputeElasticityTensor
block = 2
fill_method = symmetric9
C_ijkl = '416.66667 83.33333 83.33333 416.6667 83.33333 416.66667 166.66667 166.66667 166.66667'
base_name = xy
[../]
[]
[Postprocessors]
[./E1111]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2222]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = yy
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1122]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xx
column = yy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E2211]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xy
row = yy
column = xx
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[./E1212]
type = AsymptoticExpansionHomogenizationElasticConstants
base_name = xx
row = xy
column = xy
dx_xx = dx_xx
dy_xx = dy_xx
dx_yy = dx_yy
dy_yy = dy_yy
dx_xy = dx_xy
dy_xy = dy_xy
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter -pc_hypre_boomeramg_grid_sweeps_all -ksp_type -mat_mffd_type'
petsc_options_value = '201 hypre boomeramg 2 2 fgmres ds'
line_search = 'none'
l_tol = 1e-4
l_max_its = 40
nl_max_its = 40
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
end_time = 10.0
num_steps = 1
dt = 10
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/executioners/eigen_executioners/normal_eigen_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
[]
[Variables]
active = 'u'
[./u]
# second order is way better than first order
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff rea rhs'
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = CoefReaction
variable = u
coefficient = 2.0
[../]
[./rhs]
type = MassEigenKernel
variable = u
eigen = false
[../]
[./rea1]
type = CoefReaction
variable = u
coefficient = 1.0
[../]
[]
[BCs]
[./inhomogeneous]
type = DirichletBC
variable = u
boundary = '2 3'
value = 1
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'unorm'
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = timestep_end
[../]
[]
[Outputs]
file_base = normal_eigen_kernel
exodus = true
[]
(modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/lambda_shear_modulus_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
lambda = 113636
shear_modulus = 454545
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/controls/error/disable_executioner.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'disable_executioner' # tests error
parameter = 'Executioner::*/enable'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform8.i)
# Plastic deformation, compression with hardening
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_z = -t
# should yield trial stress:
# stress_zz = -2*t
# The compressive strength varies as a cubic between 1 (at intnl=0)
# and 2 (at intnl=1). The equation to solve is
# 2 - Ezzzz * ga = -2 * (ga - 1/2)^3 + (3/2) (ga - 1/2) + 3/2
# where the left-hand side comes from p = p_trial + ga * Ezzzz
# and the right-hand side is the cubic compressive strength
# The solution is ga = 0.355416 ( = intnl[1]), and the cubic
# is 1.289168 ( = -p) at that point
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = -t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 2
value_residual = 1
internal_0 = -1
internal_limit = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 20
tip_smoother = 5
smoothing_tol = 5
yield_function_tol = 1E-10
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform8
csv = true
[]
(modules/peridynamics/test/tests/auxkernels/boundary_offset_node_volume_3D.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./fmg]
type = FileMeshGenerator
file = 3D_cube.e
[../]
[./mgpd]
type = MeshGeneratorPD
input = fmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./gap_offset]
[../]
[./node_volume]
[../]
[]
[AuxKernels]
[./gap_offset]
type = BoundaryOffsetPD
variable = gap_offset
[../]
[./node_volume]
type = NodalVolumePD
variable = node_volume
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./blk1]
formulation = BOND
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./material_pd]
type = ComputeSmallStrainVariableHorizonMaterialBPD
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 1001
value = 0
[../]
[./fix_z]
type = DirichletBC
variable = disp_z
boundary = 1001
value = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 1
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/tutorial/13.i)
# Example of reactive transport model with dissolution of dolomite
#
# The equilibrium system has 5 primary species (Variables) and
# 5 secondary species (PorousFlowMassFractionAqueousEquilibrium).
# Some of the equilibrium constants have been chosen rather arbitrarily.
#
# Equilibrium reactions
# H+ + HCO3- = CO2(aq)
# -H+ + HCO3- = CO32-
# HCO3- + Ca2+ = CaHCO3+
# HCO3- + Mg2+ = MgHCO3+
# HCO3- + Fe2+ = FeHCO3+
#
# The kinetic reaction that dissolves dolomite involves all 5 primary species.
#
# -2H+ + 2HCO3- + Ca2+ + 0.8Mg2+ + 0.2Fe2+ = CaMg0.8Fe0.2(CO3)2
#
# The initial concentration of precipitated dolomite is high, so it starts
# to dissolve immediately, increasing the concentrations of the primary species.
#
# Only single-phase, fully saturated physics is used.
# The pressure gradient is fixed, so that the Darcy velocity is 0.1m/s.
#
# Primary species are injected from the left side, and they flow to the right.
# Less dolomite dissolution therefore occurs on the left side (where
# the primary species have higher concentration).
#
# This test is more fully documented in tutorial_13
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 1
[]
[Variables]
[h+]
[]
[hco3-]
[]
[ca2+]
[]
[mg2+]
[]
[fe2+]
[]
[]
[AuxVariables]
[eqm_k0]
initial_condition = 2.19E6
[]
[eqm_k1]
initial_condition = 4.73E-11
[]
[eqm_k2]
initial_condition = 0.222
[]
[eqm_k3]
initial_condition = 1E-2
[]
[eqm_k4]
initial_condition = 1E-3
[]
[kinetic_k]
initial_condition = 326.2
[]
[pressure]
[]
[dolomite]
family = MONOMIAL
order = CONSTANT
[]
[dolomite_initial]
initial_condition = 1E-7
[]
[]
[AuxKernels]
[dolomite]
type = PorousFlowPropertyAux
property = mineral_concentration
mineral_species = 0
variable = dolomite
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[ICs]
[pressure_ic]
type = FunctionIC
variable = pressure
function = '(1 - x) * 1E6'
[]
[h+_ic]
type = BoundingBoxIC
variable = h+
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 5.0e-2
outside = 1.0e-6
[]
[hco3_ic]
type = BoundingBoxIC
variable = hco3-
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 5.0e-2
outside = 1.0e-6
[]
[ca2_ic]
type = BoundingBoxIC
variable = ca2+
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 5.0e-2
outside = 1.0e-6
[]
[mg2_ic]
type = BoundingBoxIC
variable = mg2+
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 5.0e-2
outside = 1.0e-6
[]
[fe2_ic]
type = BoundingBoxIC
variable = fe2+
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 0.25
inside = 5.0e-2
outside = 1.0e-6
[]
[]
[Kernels]
[h+_ie]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = h+
[]
[h+_conv]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = h+
[]
[predis_h+]
type = PorousFlowPreDis
variable = h+
mineral_density = 2875.0
stoichiometry = -2
[]
[hco3-_ie]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = hco3-
[]
[hco3-_conv]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = hco3-
[]
[predis_hco3-]
type = PorousFlowPreDis
variable = hco3-
mineral_density = 2875.0
stoichiometry = 2
[]
[ca2+_ie]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = ca2+
[]
[ca2+_conv]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = ca2+
[]
[predis_ca2+]
type = PorousFlowPreDis
variable = ca2+
mineral_density = 2875.0
stoichiometry = 1
[]
[mg2+_ie]
type = PorousFlowMassTimeDerivative
fluid_component = 3
variable = mg2+
[]
[mg2+_conv]
type = PorousFlowAdvectiveFlux
fluid_component = 3
variable = mg2+
[]
[predis_mg2+]
type = PorousFlowPreDis
variable = mg2+
mineral_density = 2875.0
stoichiometry = 0.8
[]
[fe2+_ie]
type = PorousFlowMassTimeDerivative
fluid_component = 4
variable = fe2+
[]
[fe2+_conv]
type = PorousFlowAdvectiveFlux
fluid_component = 4
variable = fe2+
[]
[predis_fe2+]
type = PorousFlowPreDis
variable = fe2+
mineral_density = 2875.0
stoichiometry = 0.2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'h+ hco3- ca2+ mg2+ fe2+'
number_fluid_phases = 1
number_fluid_components = 6
number_aqueous_equilibrium = 5
number_aqueous_kinetic = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
viscosity = 1E-3
[]
[]
[]
[BCs]
[hco3-_left]
type = DirichletBC
variable = hco3-
boundary = left
value = 5E-2
[]
[h+_left]
type = DirichletBC
variable = h+
boundary = left
value = 5E-2
[]
[ca2+_left]
type = DirichletBC
variable = ca2+
boundary = left
value = 5E-2
[]
[mg2+_left]
type = DirichletBC
variable = mg2+
boundary = left
value = 5E-2
[]
[fe2+_left]
type = DirichletBC
variable = fe2+
boundary = left
value = 5E-2
[]
[hco3-_right]
type = DirichletBC
variable = hco3-
boundary = right
value = 1E-6
[]
[h+_right]
type = DirichletBC
variable = h+
boundary = right
value = 1e-6
[]
[ca2+_right]
type = DirichletBC
variable = ca2+
boundary = right
value = 1E-6
[]
[mg2+_right]
type = DirichletBC
variable = mg2+
boundary = right
value = 1E-6
[]
[fe2+_right]
type = DirichletBC
variable = fe2+
boundary = right
value = 1E-6
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 298.15
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pressure
[]
[equilibrium_massfrac]
type = PorousFlowMassFractionAqueousEquilibriumChemistry
mass_fraction_vars = 'h+ hco3- ca2+ mg2+ fe2+'
num_reactions = 5
equilibrium_constants = 'eqm_k0 eqm_k1 eqm_k2 eqm_k3 eqm_k4'
primary_activity_coefficients = '1 1 1 1 1'
secondary_activity_coefficients = '1 1 1 1 1'
reactions = '1 1 0 0 0
-1 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1'
[]
[kinetic]
type = PorousFlowAqueousPreDisChemistry
primary_concentrations = 'h+ hco3- ca2+ mg2+ fe2+'
num_reactions = 1
equilibrium_constants = kinetic_k
primary_activity_coefficients = '1 1 1 1 1'
reactions = '-2 2 1 0.8 0.2'
specific_reactive_surface_area = '1.2E-8'
kinetic_rate_constant = '3E-4'
activation_energy = '1.5e4'
molar_volume = 64365.0
gas_constant = 8.314
reference_temperature = 298.15
[]
[dolomite_conc]
type = PorousFlowAqueousPreDisMineral
initial_concentrations = dolomite_initial
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/coupled-force/steady-function.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[u]
family = LAGRANGE_VEC
[]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[momentum_coupled_force]
type = INSADMomentumCoupledForce
variable = velocity
vector_function = 'vector_func'
[]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[u_diff]
type = VectorDiffusion
variable = u
[]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left top'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[u_left]
type = VectorFunctionDirichletBC
variable = u
boundary = 'left'
function_x = 1
function_y = 1
[]
[u_right]
type = VectorFunctionDirichletBC
variable = u
boundary = 'right'
function_x = -1
function_y = -1
[]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
exodus = true
[]
[Functions]
[vector_func]
type = ParsedVectorFunction
value_x = '-2*x + 1'
value_y = '-2*x + 1'
[]
[]
(python/peacock/tests/common/transient_with_date.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = with_date
exodus = true
[./with_date]
type = Exodus
file_base = with_date
append_date = true
append_date_format = '%Y-%m-%d'
[../]
[]
(modules/richards/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/lava_lamp/1phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only. The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores.
[GlobalParams]
PorousFlowDictator = 'dictator'
gravity = '0 -9.81 0'
[]
[Adaptivity]
max_h_level = 2
marker = marker
initial_marker = initial
initial_steps = 2
[Indicators]
[indicator]
type = GradientJumpIndicator
variable = zi
[]
[]
[Markers]
[marker]
type = ErrorFractionMarker
indicator = indicator
refine = 0.8
[]
[initial]
type = BoxMarker
bottom_left = '0 1.95 0'
top_right = '2 2 0'
inside = REFINE
outside = DO_NOTHING
[]
[]
[]
[Mesh]
type = GeneratedMesh
dim = 2
ymin = 1.5
ymax = 2
xmax = 2
ny = 20
nx = 40
bias_y = 0.95
[]
[AuxVariables]
[xnacl]
initial_condition = 0.01
[]
[saturation_gas]
order = FIRST
family = MONOMIAL
[]
[xco2l]
order = FIRST
family = MONOMIAL
[]
[density_liquid]
order = FIRST
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = 'timestep_end'
[]
[xco2l]
type = PorousFlowPropertyAux
variable = xco2l
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = 'timestep_end'
[]
[density_liquid]
type = PorousFlowPropertyAux
variable = density_liquid
property = density
phase = 0
execute_on = 'timestep_end'
[]
[]
[Variables]
[pgas]
[]
[zi]
scaling = 1e4
[]
[]
[ICs]
[pressure]
type = FunctionIC
function = 10e6-9.81*1000*y
variable = pgas
[]
[zi]
type = ConstantIC
value = 0
variable = zi
[]
[porosity]
type = RandomIC
variable = porosity
min = 0.25
max = 0.275
seed = 0
[]
[]
[BCs]
[top]
type = DirichletBC
value = 0.04
variable = zi
boundary = top
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[diff0]
type = PorousFlowDispersiveFlux
fluid_component = 0
variable = pgas
disp_long = '0 0'
disp_trans = '0 0'
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = zi
disp_long = '0 0'
disp_trans = '0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = '45'
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = 'pgas'
z = 'zi'
temperature_unit = Celsius
xnacl = 'xnacl'
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
phase = 0
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
s_res = 0.1
sum_s_res = 0.2
[]
[diffusivity]
type = PorousFlowDiffusivityConst
diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
tortuosity = '1 1'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e6
nl_max_its = 25
l_max_its = 100
dtmax = 1e4
nl_abs_tol = 1e-6
[TimeStepper]
type = IterationAdaptiveDT
dt = 100
growth_factor = 2
cutback_factor = 0.5
[]
[]
[Functions]
[flux]
type = ParsedFunction
vals = 'delta_xco2 dt'
vars = 'dx dt'
value = 'dx/dt'
[]
[]
[Postprocessors]
[total_co2_in_gas]
type = PorousFlowFluidMass
phase = 1
fluid_component = 1
[]
[total_co2_in_liquid]
type = PorousFlowFluidMass
phase = 0
fluid_component = 1
[]
[numdofs]
type = NumDOFs
[]
[delta_xco2]
type = ChangeOverTimePostprocessor
postprocessor = total_co2_in_liquid
[]
[dt]
type = TimestepSize
[]
[flux]
type = FunctionValuePostprocessor
function = flux
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
csv = true
[]
(modules/xfem/test/tests/pressure_bc/inclined_edge_2d_pressure.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = False
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 9
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.0 0.33 0.5 0.67'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
generate_output = 'stress_xx stress_yy'
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0 1.0 2.0'
y = '0 500 1000'
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./top_y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[./bottom_x]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[]
[DiracKernels]
[./pressure_x]
type = XFEMPressure
variable = disp_x
component = 0
function = pressure
[../]
[./pressure_y]
type = XFEMPressure
variable = disp_y
component = 1
function = pressure
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1
end_time = 2
[]
[Outputs]
file_base = inclined_edge_2d_pressure_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(tutorials/darcy_thermo_mech/step06_coupled_darcy_heat_conduction/problems/step6a_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[temperature]
initial_condition = 300 # Start at room temperature
[]
[]
[AuxVariables]
[velocity]
order = CONSTANT
family = MONOMIAL_VEC
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[heat_conduction]
type = ADHeatConduction
variable = temperature
[]
[heat_conduction_time_derivative]
type = ADHeatConductionTimeDerivative
variable = temperature
[]
[heat_convection]
type = DarcyAdvection
variable = temperature
pressure = pressure
[]
[]
[AuxKernels]
[velocity]
type = DarcyVelocity
variable = velocity
execute_on = timestep_end
pressure = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[inlet_temperature]
type = FunctionDirichletBC
variable = temperature
boundary = left
function = 'if(t<0,350+50*t,350)'
[]
[outlet_temperature]
type = HeatConductionOutflow
variable = temperature
boundary = right
[]
[]
[Materials]
[column]
type = PackedColumn
temperature = temperature
radius = 1
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
end_time = 100
dt = 0.25
start_time = -1
steady_state_tolerance = 1e-5
steady_state_detection = true
[TimeStepper]
type = FunctionDT
function = 'if(t<0,0.1,0.25)'
[]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/nodal_area/nodal_area_3D.i)
[Mesh]
file = nodal_area_3D.e
[]
[Variables]
[./dummy]
[../]
[]
[AuxVariables]
[./nodal_area]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./dummy]
type = Diffusion
variable = dummy
[../]
[]
[UserObjects]
[./nodal_area]
type = NodalArea
variable = nodal_area
boundary = 1
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./dummy]
type = DirichletBC
variable = dummy
boundary = 1
value = 100
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_abs_tol = 1e-11
nl_rel_tol = 1e-10
l_max_its = 20
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/static/timoshenko_small_strain_z.i)
# Test for small strain timoshenko beam bending in z direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.00027846257
# Poisson's ratio (nu) = 0.3
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 204.3734
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = 5.868e-2m
# Using 10 elements to discretize the beam element, the FEM solution is 5.852e-2 m.
# This deflection matches the FEM solution given in Prathap and Bhashyam (1982).
# References:
# Prathap and Bhashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
# Note that the force is scaled by 1e-4 compared to the reference problem.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_z2]
type = ConstantRate
variable = disp_z
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = 0.3
shear_coefficient = 0.85
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_z
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/time_integrators/actually_explicit_euler/diverged.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./nan]
type = NanKernel
variable = u
timestep_to_nan = 4
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.001
l_tol = 1e-12
dtmin = 1e-8
[./TimeIntegrator]
type = ActuallyExplicitEuler
solve_type = lump_preconditioned
[../]
[]
[Outputs]
exodus = false
[]
(modules/tensor_mechanics/tutorials/basics/part_1.1.i)
#Tensor Mechanics tutorial: the basics
#Step 1, part 1
#2D simulation of uniaxial tension with linear elasticity
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = necking_quad4.e
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = SMALL #Small linearized strain, automatically set to XY coordinates
add_variables = true #Add the variables from the displacement string in GlobalParams
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.05
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 1 101'
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/bcs/matched_value_bc/matched_value_bc_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
# Solves a pair of coupled diffusion equations where u=v on the boundary
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 3
[../]
[./v]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[]
[Kernels]
active = 'diff_u diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'right_v left_u'
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 3
[../]
[./left_u]
type = MatchedValueBC
variable = u
boundary = 3
v = v
[../]
[]
[Preconditioning]
[./precond]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-10
l_tol = 1e-12
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/test/tests/thermal_elastic/ad-thermal_elastic.i)
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and xz
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components. This displacement is again applied in the second
# step.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore, for the mechanical strain,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
# Young's modulus is a function of temperature for this test. The
# temperature changes from 100 to 500. The Young's modulus drops
# due to that temperature change from 1e6 to 6e5.
# Poisson's ratio also is a function of temperature and changes from
# 0 to 0.25.
# At the end of the temperature ramp, E=6e5 and nu=0.25. This gives
# G=2.4e=5. lambda=E*nu/(1+nu)/(1-2*nu)=2.4E5. The final stress
# is therefore
# stress xx = 2.4e5 * 12e-6 + 2*2.4e5*2e-6 = 3.84
# stress yy = 2.4e5 * 12e-6 + 2*2.4e5*4e-6 = 4.80
# stress zz = 2.4e5 * 12e-6 + 2*2.4e5*6e-6 = 5.76
# stress xy = 2 * 2.4e5 * 2e-6 / 2 = 0.48
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 2.4e5 * 4e-6 / 2 = 0.96
# stress xz = 2 * 2.4e5 * 6e-6 / 2 = 1.44
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = thermal_elastic.e
[]
[Functions]
[./ramp1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 1e-6
[../]
[./ramp2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 2e-6
[../]
[./ramp3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 3e-6
[../]
[./ramp4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 4e-6
[../]
[./ramp6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 2.'
scale_factor = 6e-6
[../]
[./tempFunc]
type = PiecewiseLinear
x = '0 1 2'
y = '100.0 100.0 500.0'
[../]
[]
[Variables]
[./temp]
initial_condition = 100.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_xz stress_yz'
strain = FINITE
use_automatic_differentiation = true
[../]
[]
[Kernels]
[./heat]
type = ADDiffusion
variable = temp
[../]
[]
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 1
function = ramp2
[../]
[./node1_z]
type = ADFunctionDirichletBC
variable = disp_z
boundary = 1
function = ramp3
[../]
[./node2_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 2
function = ramp1
[../]
[./node2_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 2
function = ramp2
[../]
[./node2_z]
type = ADFunctionDirichletBC
variable = disp_z
boundary = 2
function = ramp6
[../]
[./node3_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 3
function = ramp1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = ADFunctionDirichletBC
variable = disp_z
boundary = 3
function = ramp3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 5
function = ramp1
[../]
[./node5_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 5
function = ramp4
[../]
[./node5_z]
type = ADFunctionDirichletBC
variable = disp_z
boundary = 5
function = ramp3
[../]
[./node6_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 6
function = ramp2
[../]
[./node6_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 6
function = ramp4
[../]
[./node6_z]
type = ADFunctionDirichletBC
variable = disp_z
boundary = 6
function = ramp6
[../]
[./node7_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 7
function = ramp2
[../]
[./node7_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 7
function = ramp2
[../]
[./node7_z]
type = ADFunctionDirichletBC
variable = disp_z
boundary = 7
function = ramp3
[../]
[./node8_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 8
function = ramp1
[../]
[./node8_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 8
function = ramp2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[./temp]
type = ADFunctionDirichletBC
variable = temp
boundary = '10 12'
function = tempFunc
[../]
[]
[Materials]
[./youngs_modulus]
type = ADPiecewiseLinearInterpolationMaterial
x = '100 500'
y = '1e6 6e5'
property = youngs_modulus
variable = temp
[../]
[./poissons_ratio]
type = ADPiecewiseLinearInterpolationMaterial
x = '100 500'
y = '0 0.25'
property = poissons_ratio
variable = temp
[../]
[./elasticity_tensor]
type = ADComputeVariableIsotropicElasticityTensor
youngs_modulus = youngs_modulus
poissons_ratio = poissons_ratio
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
l_max_its = 20
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/sliding_block/edge_dropping/two_equal_blocks_slide_2d.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 2
xmin = -1.0
xmax = 0.0
ymin = -0.5
ymax = 0.5
nx = 4
ny = 4
elem_type = QUAD4
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3'
new_boundary = '10 11 12 13'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.0
xmax = 1.0
ymin = -0.5
ymax = 0.5
nx = 5
ny = 5
elem_type = QUAD4
[]
[right_block_sidesets]
type = RenameBoundaryGenerator
input = right_block
old_boundary = '0 1 2 3'
new_boundary = '20 21 22 23'
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block_sidesets
subdomain_id = 2
[]
[combined_mesh]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[]
[left_lower]
type = LowerDBlockFromSidesetGenerator
input = combined_mesh
sidesets = '11'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[right_lower]
type = LowerDBlockFromSidesetGenerator
input = left_lower
sidesets = '23'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[]
[]
[Functions]
[horizontal_movement]
type = PiecewiseLinear
x = '0 0.1 4'
y = '0 0.05 0.05'
[]
[vertical_movement]
type = PiecewiseLinear
x = '0 0.1 4'
y = '0 0 0.3'
[]
[]
[BCs]
[push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = horizontal_movement
[]
[fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 21
value = 0.0
[]
[fix_right_y]
type = DirichletBC
variable = disp_y
boundary = 21
value = 0.0
[]
[push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 13
function = vertical_movement
[]
[]
[Materials]
[elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[]
[]
[Constraints]
[normal_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = '23'
secondary_boundary = '11'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
correct_edge_dropping = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = '23'
secondary_boundary = '11'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = '23'
secondary_boundary = '11'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu superlu_dist nonzero 1e-10'
line_search = 'none'
dt = 0.1
dtmin = 0.01
end_time = 1.0
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
snesmf_reuse_base = false
[]
[Outputs]
csv = true
execute_on = 'FINAL'
[]
[Postprocessors]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = 'secondary_lower'
[]
[normal_lm]
type = ElementAverageValue
variable = normal_lm
block = 'secondary_lower'
[]
[avg_disp_x]
type = ElementAverageValue
variable = disp_x
block = '1 2'
[]
[avg_disp_y]
type = ElementAverageValue
variable = disp_y
block = '1 2'
[]
[max_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
[]
[max_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
[]
[min_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
value_type = min
[]
[min_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
value_type = min
[]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest9.i)
# 2D, removal of a block which should also completely remove a sideset
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '3 4 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox1
block = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/lower_d_block_generator/names.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./lower_d_block]
type = LowerDBlockFromSidesetGenerator
input = gmg
new_block_id = 10
sidesets = 'bottom bottom right top left'
[]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 10
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
block = 0
[../]
[./srcv]
type = BodyForce
block = 10
variable = v
function = 1
[../]
[./time_v]
type = TimeDerivative
block = 10
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/energy_conservation/heat04_fullysat_action.i)
# heat04, but using an action
#
# The sample is a single unit element, with fixed displacements on
# all sides. A heat source of strength S (J/m^3/s) is applied into
# the element. There is no fluid flow or heat flow. The rise
# in temperature, porepressure and stress, and the change in porosity is
# matched with theory.
#
# In this case, fluid mass must be conserved, and there is no
# volumetric strain, so
# porosity * fluid_density = constant
# Also, the energy-density in the rock-fluid system increases with S:
# d/dt [(1 - porosity) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T] = S
# Also, the porosity evolves according to THM as
# porosity = biot + (porosity0 - biot) * exp( (biot - 1) * P / fluid_bulk + rock_thermal_exp * T)
# Finally, the effective stress must be exactly zero (as there is
# no strain).
#
# Let us assume that
# fluid_density = dens0 * exp(P / fluid_bulk - fluid_thermal_exp * T)
# Then the conservation of fluid mass means
# porosity = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T)
# where dens0 * por0 = the initial fluid mass.
# The last expression for porosity, combined with the THM one,
# and assuming that biot = 1 for simplicity, gives
# porosity = 1 + (porosity0 - 1) * exp(rock_thermal_exp * T) = por0 * exp(- P / fluid_bulk + fluid_thermal_exp * T) .... (A)
#
# This stuff may be substituted into the heat energy-density equation:
# S = d/dt [(1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T]
#
# If S is constant then
# S * t = (1 - porosity0) * exp(rock_thermal_exp * T) * rock_density * rock_heat_cap * T + porosity * fluid_density * fluid_heat_cap * T
# with T(t=0) = 0 then Eqn(A) implies that por0 = porosity0 and
# P / fluid_bulk = fluid_thermal_exp * T - log(1 + (por0 - 1) * exp(rock_thermal_exp * T)) + log(por0)
#
# Parameters:
# A = 2
# fluid_bulk = 2.0
# dens0 = 3.0
# fluid_thermal_exp = 0.5
# fluid_heat_cap = 2
# por0 = 0.5
# rock_thermal_exp = 0.25
# rock_density = 5
# rock_heat_capacity = 0.2
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[]
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = pp
temperature = temp
dictator_name = Sir
biot_coefficient = 1.0
gravity = '0 0 0'
fp = the_simple_fluid
stabilization = none
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = Sir
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[pp]
[]
[temp]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[heat_source]
type = BodyForce
function = 1
variable = temp
[]
[]
[Functions]
[err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[]
[err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 0 0 0 0 0'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[]
[t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[]
[porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[]
[err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04_fullysat_action
csv = true
[]
(modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i)
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '1 2 3 4 5 6 7'
[]
[Mesh]#Comment
file = elastic_patch.e
[] # Mesh
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[./firstinv]
order = CONSTANT
family = MONOMIAL
[../]
[./secondinv]
order = CONSTANT
family = MONOMIAL
[../]
[./thirdinv]
order = CONSTANT
family = MONOMIAL
[../]
[./maxprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./midprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./minprincipal]
order = CONSTANT
family = MONOMIAL
[../]
[./direction]
order = CONSTANT
family = MONOMIAL
[../]
[./max_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./sint]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./elastic_energy]
type = ElasticEnergyAux
variable = elastic_energy
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = vonmisesStress
[../]
[./hydrostatic]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = hydrostatic
scalar_type = hydrostatic
[../]
[./fi]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = firstinv
scalar_type = firstinvariant
[../]
[./si]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = secondinv
scalar_type = secondinvariant
[../]
[./ti]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = thirdinv
scalar_type = thirdinvariant
[../]
[./maxprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = maxprincipal
scalar_type = MaxPRiNCIpAl
[../]
[./midprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = midprincipal
scalar_type = MidPRiNCIpAl
[../]
[./minprincipal]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = minprincipal
scalar_type = MiNPRiNCIpAl
[../]
[./direction]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = direction
scalar_type = direction
direction = '1 1 1'
[../]
[./max_shear]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = max_shear
scalar_type = MaxShear
[../]
[./sint]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = sint
scalar_type = StressIntensity
[../]
[] # AuxKernels
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeFiniteStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[] # Materials
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[] # Executioner
[Outputs]
exodus = true
[] # Outputs
(modules/fsi/test/tests/fsi_2d/fsi_flat_channel.i)
[GlobalParams]
gravity = '0 0 0'
integrate_p_by_parts = true
laplace = true
convective_term = true
transient_term = true
pspg = true
displacements = 'disp_x disp_y'
[]
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 10
ny = 15
elem_type = QUAD4
[]
[subdomain1]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.0 0.5 0'
block_id = 1
top_right = '3.0 1.0 0'
input = gmg
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
input = subdomain1
[]
[break_boundary]
type = BreakBoundaryOnSubdomainGenerator
input = interface
[]
[]
[Variables]
[./vel_x]
block = 0
[../]
[./vel_y]
block = 0
[../]
[./p]
block = 0
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./vel_x_solid]
block = 1
[../]
[./vel_y_solid]
block = 1
[../]
[]
[Kernels]
[./vel_x_time]
type = INSMomentumTimeDerivative
variable = vel_x
block = 0
use_displaced_mesh = true
[../]
[./vel_y_time]
type = INSMomentumTimeDerivative
variable = vel_y
block = 0
use_displaced_mesh = true
[../]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
block = 0
use_displaced_mesh = true
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
block = 0
use_displaced_mesh = true
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
block = 0
use_displaced_mesh = true
[../]
[./vel_x_mesh]
type = ConvectedMesh
disp_x = disp_x
disp_y = disp_y
variable = vel_x
block = 0
use_displaced_mesh = true
[../]
[./vel_y_mesh]
type = ConvectedMesh
disp_x = disp_x
disp_y = disp_y
variable = vel_y
block = 0
use_displaced_mesh = true
[../]
[./disp_x_fluid]
type = Diffusion
variable = disp_x
block = 0
[../]
[./disp_y_fluid]
type = Diffusion
variable = disp_y
block = 0
[../]
[./accel_tensor_x]
type = CoupledTimeDerivative
variable = disp_x
v = vel_x_solid
block = 1
[../]
[./accel_tensor_y]
type = CoupledTimeDerivative
variable = disp_y
v = vel_y_solid
block = 1
[../]
[./vxs_time_derivative_term]
type = CoupledTimeDerivative
variable = vel_x_solid
v = disp_x
block = 1
[../]
[./vys_time_derivative_term]
type = CoupledTimeDerivative
variable = vel_y_solid
v = disp_y
block = 1
[../]
[./source_vxs]
type = MatReaction
variable = vel_x_solid
block = 1
mob_name = 1
[../]
[./source_vys]
type = MatReaction
variable = vel_y_solid
block = 1
mob_name = 1
[../]
[]
[InterfaceKernels]
[./penalty_interface_x]
type = CoupledPenaltyInterfaceDiffusion
variable = vel_x
neighbor_var = disp_x
secondary_coupled_var = vel_x_solid
boundary = master0_interface
penalty = 1e6
[../]
[./penalty_interface_y]
type = CoupledPenaltyInterfaceDiffusion
variable = vel_y
neighbor_var = disp_y
secondary_coupled_var = vel_y_solid
boundary = master0_interface
penalty = 1e6
[../]
[]
[Modules/TensorMechanics/Master]
[./solid_domain]
strain = SMALL
incremental = false
# generate_output = 'strain_xx strain_yy strain_zz' ## Not at all necessary, but nice
block = '1'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e2
poissons_ratio = 0.3
block = '1'
[../]
[./small_stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[BCs]
[./fluid_x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom'
value = 0.0
[../]
[./fluid_y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom left_to_0'
value = 0.0
[../]
[./x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'left_to_0'
function = 'inlet_func'
[../]
[./no_disp_x]
type = DirichletBC
variable = disp_x
boundary = 'bottom top left_to_1 right_to_1 left_to_0 right_to_0'
value = 0
[../]
[./no_disp_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top left_to_1 right_to_1 left_to_0 right_to_0'
value = 0
[../]
[./solid_x_no_slip]
type = DirichletBC
variable = vel_x_solid
boundary = 'top left_to_1 right_to_1'
value = 0.0
[../]
[./solid_y_no_slip]
type = DirichletBC
variable = vel_y_solid
boundary = 'top left_to_1 right_to_1'
value = 0.0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
num_steps = 5
# num_steps = 60
dt = 0.1
dtmin = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = none
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '(-16 * (y - 0.25)^2 + 1) * (1 + cos(t))'
[../]
[]
(test/tests/bcs/coupled_var_neumann/coupled_var_neumann.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./coupled_bc_var]
[../]
[]
[ICs]
[./coupled_bc_var]
type = FunctionIC
variable = coupled_bc_var
function = set_coupled_bc_var
[../]
[]
[Functions]
[./set_coupled_bc_var]
type = ParsedFunction
value = 'y - 0.5'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = CoupledVarNeumannBC
variable = u
boundary = 1
v = coupled_bc_var
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dispersion/disp01.i)
# Test dispersive part of PorousFlowDispersiveFlux kernel by setting diffusion
# coefficients to zero. A pressure gradient is applied over the mesh to give a
# uniform velocity. Gravity is set to zero.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 10
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[massfrac0]
[]
[]
[AuxVariables]
[velocity]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[velocity]
type = PorousFlowDarcyVelocityComponent
variable = velocity
component = x
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = pic
[]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[]
[Functions]
[pic]
type = ParsedFunction
value = 1.1e5-x*1e3
[]
[]
[BCs]
[xleft]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[]
[xright]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[]
[pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[]
[pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1.1e5
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
variable = pp
disp_trans = 0
disp_long = 0.2
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0.2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '0 0'
tortuosity = 0.1
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e3
dtmax = 50
[TimeStepper]
type = IterationAdaptiveDT
growth_factor = 1.5
cutback_factor = 0.5
dt = 1
[]
[]
[VectorPostprocessors]
[xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[]
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/kernels/diffusion_with_hanging_node/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# BCs cannot be preset due to Jacobian test
[./left]
type = DirichletBC
preset = false
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
preset = false
variable = u
boundary = right
value = 1
[../]
[]
[Preconditioning]
[./pre]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-pc_svd_monitor -ksp_view_pmat'
petsc_options_iname = '-pc_type'
petsc_options_value = 'svd'
[]
[Outputs]
exodus = true
[]
[Adaptivity]
marker = box
max_h_level = 1
initial_steps = 1
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.5 0 0'
top_right = '1 1 0'
inside = 'refine'
outside = 'do_nothing'
[../]
[../]
[]
(tutorials/tutorial02_multiapps/step01_multiapps/05_master_parallel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = 1.
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0 0 0 1 0 0 2 0 0'
input_files = '05_sub_parallel.i'
[]
[]
(test/tests/kernels/coefficient_time_derivative/coefficient_time_derivative_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = CoefTimeDerivative
variable = u
Coefficient = 0.1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/DiffuseCreep/variable_base_eigen_strain.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.01*v'
[../]
[../]
[./mu]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./eigen_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./eigen_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./eigenstrain_xx]
type = RankTwoAux
variable = eigen_strain_xx
rank_two_tensor = eigenstrain
index_i = 0
index_j = 0
[../]
[./eigenstrain_yy]
type = RankTwoAux
variable = eigen_strain_yy
rank_two_tensor = eigenstrain
index_i = 1
index_j = 1
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./eigenstrain_prefactor]
type = DerivativeParsedMaterial
block = 0
function = 'c-0.1'
args = c
f_name = eigenstrain_prefactor
derivative_order = 1
[../]
[./eigenstrain]
type = ComputeVariableBaseEigenStrain
base_tensor_property_name = aniso_tensor
prefactor = eigenstrain_prefactor
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/03_sub_uot.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 10
xmin = -0.05
xmax = 0.05
ymin = -0.05
ymax = 0.05
zmax = 3
[]
[Variables]
[v]
[]
[]
[AuxVariables]
[u_integral]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[front]
type = DirichletBC
variable = v
boundary = front
value = 0
[]
[back]
type = DirichletBC
variable = v
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[UserObjects]
[layered_average]
type = NearestPointLayeredAverage
points = '0 0 0'
direction = z
num_layers = 4
variable = v
[]
[]
(test/tests/mesh_modifiers/mesh_extruder/extruder_angle.i)
[Mesh]
[file]
type = FileMeshGenerator
file = chimney_quad.e
[]
[extrude]
type = MeshExtruderGenerator
input = file
num_layers = 20
extrusion_vector = '1e-2 1e-2 0'
bottom_sideset = '10'
top_sideset = '20'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = 10
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = 20
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_quad_angle
exodus = true
[]
(test/tests/parser/param_substitution/param_substitution.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
# Here we use the GetPot "DBE" function to perform a substitution.
# The parameter "FILENAME" can either exist in this file or
# be provided on the CLI
file_base = out_${FILENAME}
[]
(test/tests/multiapps/picard_failure/picard_sub_no_fail.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Postprocessors]
[./elem_average_value]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dispersion/disp01_heavy.i)
# Test dispersive part of PorousFlowDispersiveFlux kernel by setting diffusion
# coefficients to zero. A pressure gradient is applied over the mesh to give a
# uniform velocity. Gravity is set to zero.
# Mass fraction is set to 1 on the left hand side and 0 on the right hand side.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 200
xmax = 10
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[pp]
[]
[massfrac0]
[]
[]
[AuxVariables]
[velocity]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[velocity]
type = PorousFlowDarcyVelocityComponent
variable = velocity
component = x
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = pic
[]
[massfrac0]
type = ConstantIC
variable = massfrac0
value = 0
[]
[]
[Functions]
[pic]
type = ParsedFunction
value = 1.1e5-x*1e3
[]
[]
[BCs]
[xleft]
type = DirichletBC
value = 1
variable = massfrac0
boundary = left
[]
[xright]
type = DirichletBC
value = 0
variable = massfrac0
boundary = right
[]
[pright]
type = DirichletBC
variable = pp
boundary = right
value = 1e5
[]
[pleft]
type = DirichletBC
variable = pp
boundary = left
value = 1.1e5
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[diff0]
type = PorousFlowDispersiveFlux
variable = pp
disp_trans = 0
disp_long = 0.2
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[]
[adv1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = massfrac0
[]
[diff1]
type = PorousFlowDispersiveFlux
fluid_component = 1
variable = massfrac0
disp_trans = 0
disp_long = 0.2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0'
number_fluid_phases = 1
number_fluid_components = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = massfrac0
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[poro]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[diff]
type = PorousFlowDiffusivityConst
diffusion_coeff = '0 0'
tortuosity = 0.1
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-9 0 0 0 1e-9 0 0 0 1e-9'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e3
dtmax = 10
[TimeStepper]
type = IterationAdaptiveDT
growth_factor = 1.5
cutback_factor = 0.5
dt = 1
[]
[]
[VectorPostprocessors]
[xmass]
type = NodalValueSampler
sort_by = id
variable = massfrac0
[]
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/meshgenerators/combiner_generator/combiner_multi_input_translate_from_file.i)
[Mesh]
[gen1]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[gen2]
type = GeneratedMeshGenerator
dim = 2
nx = 12
ny = 12
[]
[gen3]
type = GeneratedMeshGenerator
dim = 2
nx = 14
ny = 14
[]
[cmbn]
type = CombinerGenerator
inputs = 'gen1 gen2 gen3'
positions_file = 'positions.txt'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test1tt.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test1.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[]
[Outputs]
file_base = pl_test1tt_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/torque/ad_torque_small.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
origin = '0 0 2'
direction = '0 0 1'
polar_moment_of_inertia = pmi
factor = t
[]
[Mesh]
[ring]
type = AnnularMeshGenerator
nr = 1
nt = 30
rmin = 0.95
rmax = 1
[]
[extrude]
type = MeshExtruderGenerator
input = ring
extrusion_vector = '0 0 2'
bottom_sideset = 'bottom'
top_sideset = 'top'
num_layers = 5
[]
[]
[AuxVariables]
[alpha_var]
[]
[shear_stress_var]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[alpha]
type = RotationAngle
variable = alpha_var
[]
[shear_stress]
type = ParsedAux
variable = shear_stress_var
args = 'stress_yz stress_xz'
function = 'sqrt(stress_yz^2 + stress_xz^2)'
[]
[]
[BCs]
# fix bottom
[fix_x]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0
[]
[fix_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[]
[fix_z]
type = DirichletBC
boundary = bottom
variable = disp_z
value = 0
[]
# twist top
[twist_x]
type = ADTorque
boundary = top
variable = disp_x
[]
[twist_y]
type = ADTorque
boundary = top
variable = disp_y
[]
[twist_z]
type = ADTorque
boundary = top
variable = disp_z
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = SMALL
use_automatic_differentiation = true
generate_output = 'vonmises_stress stress_yz stress_xz'
[]
[]
[Postprocessors]
[pmi]
type = PolarMomentOfInertia
boundary = top
# execute_on = 'INITIAL NONLINEAR'
execute_on = 'INITIAL'
[]
[alpha]
type = SideAverageValue
variable = alpha_var
boundary = top
[]
[shear_stress]
type = ElementAverageValue
variable = shear_stress_var
[]
[]
[Materials]
[stress]
type = ADComputeLinearElasticStress
[]
[elastic]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 0.3
shear_modulus = 100
[]
[]
[Executioner]
# type = Steady
type = Transient
num_steps = 1
solve_type = NEWTON
petsc_options_iname = '-pctype'
petsc_options_value = 'lu'
nl_max_its = 150
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/multiapps/relaxation/sub_relaxed_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/joule_heating/transient_jouleheating.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 5
ymax = 5
[]
[Variables]
[./T]
initial_condition = 293.0 #in K
[../]
[./elec]
[../]
[]
[Kernels]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = T
[../]
[./HeatSrc]
type = JouleHeatingSource
variable = T
elec = elec
[../]
[./electric]
type = HeatConduction
variable = elec
diffusion_coefficient = electrical_conductivity
[../]
[]
[BCs]
[./lefttemp]
type = DirichletBC
boundary = left
variable = T
value = 293 #in K
[../]
[./elec_left]
type = DirichletBC
variable = elec
boundary = left
value = 1 #in V
[../]
[./elec_right]
type = DirichletBC
variable = elec
boundary = right
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '397.48' #copper in W/(m K)
block = 0
[../]
[./cp]
type = GenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '385.0' #copper in J/(kg K)
block = 0
[../]
[./rho]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8920.0' #copper in kg/(m^3)
block = 0
[../]
[./sigma] #copper is default material
type = ElectricalConductivity
temperature = T
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 101 preonly ilu 1'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
l_tol = 1e-4
dt = 1
end_time = 5
automatic_scaling = true
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/special/patch.i)
[Mesh]
[base]
type = FileMeshGenerator
file = 'patch.xda'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right bottom top back front'
points = ' 0 0.5 0.5
1 0.5 0.5
0.5 0.0 0.5
'
' 0.5 1.0 0.5
0.5 0.5 0.0
0.5 0.5 1.0'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
base_name = "whatever"
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[front]
type = DirichletBC
preset = true
variable = disp_z
boundary = front
value = 0.1
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
elasticity_tensor = whatever_elasticity_tensor
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
dtmin = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/output_in_position/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = sub.i
output_in_position = true
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_verbose.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[radiation]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
use_displaced_mesh = true
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
correct_edge_dropping = true
gap_flux_models = 'radiation conduction'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
csv = true
[exodus]
type = Exodus
show = 'temp'
[]
[]
(modules/contact/test/tests/verification/patch_tests/cyl_4/cyl4_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl4_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl4_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/cyl2D_yz.i)
#
# 2D Cylindrical Gap Heat Transfer Test.
#
# This test exercises 2D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of an inner solid cylinder of radius = 1 unit, and outer
# hollow cylinder with an inner radius of 2 in the y-z plane. In other words,
# the gap between them is 1 radial unit in length.
#
# The calculated results are the same as for the cyl2D.i case in the x-y plane.
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
[file]
type = FileMeshGenerator
file = cyl2D.e
[]
[./rotate]
type = TransformGenerator
transform = ROTATE
vector_value = '0 90 90'
input = file
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[../]
[]
[Variables]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_conductance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./gap_cond]
type = MaterialRealAux
property = gap_conductance
variable = gap_conductance
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1000000.0
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1
quadrature = true
gap_geometry_type = CYLINDER
cylinder_axis_point_1 = '0 0 0'
cylinder_axis_point_2 = '1 0 0'
[../]
[]
[BCs]
[./mid]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[./Quadrature]
order = fifth
side_order = seventh
[../]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
(test/tests/misc/check_error/nodal_value_off_block.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
[./u]
block = '1 2'
[../]
[./v]
block = 2
[../]
[]
[Kernels]
[./diff]
type = BlkResTestDiffusion
variable = u
block = '1 2'
[../]
[./v_diff]
type = Diffusion
variable = v
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./mat0]
type = GenericConstantMaterial
block = 1
prop_names = 'a b'
prop_values = '1 2'
[../]
[./mat1]
type = GenericConstantMaterial
block = 2
prop_names = a
prop_values = 10
[../]
[]
[Postprocessors]
[./off_block]
type = NodalVariableValue
variable = v
nodeid = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/temperature/elastic_dtemperature.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = t/100
[]
# Forced evolution of temperature
[temperature_load]
type = ParsedFunction
value = '273 + 10*t'
[]
# Factor to multiply the elasticity tensor in MOOSE
[elasticity_prefactor]
type = ParsedFunction
value = '273/(273 + 10*t + 10)'
[]
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[temperature_function]
type = FunctionAux
variable = temperature
function = temperature_load
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
generate_output = 'stress_yy'
[]
[]
[ICs]
[ic_temperature]
type = ConstantIC
value = 273
variable = temperature
[]
[]
[BCs]
[y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
# This input file is used to compare the MOOSE and UMAT models, activating
# specific ones with cli args.
# 1. Active for umat calculation
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_dtemperature'
num_state_vars = 0
temperature = temperature
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elastic]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000
poissons_ratio = 0.3
elasticity_tensor_prefactor = 'elasticity_prefactor'
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
num_steps = 30
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain_action.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 -0.5 0'
new_boundary = 100
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Variables]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[Modules]
[./TensorMechanics]
# Master action for generating the tensor mechanics kernels, variables,
# strain calculation material, and the auxilliary system for visualization
[./Master]
[./stress_div]
strain = SMALL
add_variables = true
global_strain = global_strain #global strain contribution
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy
stress_yy vonmises_stress'
[../]
[../]
# GlobalStrain action for generating the objects associated with the global
# strain calculation and associated displacement visualization
[./GlobalStrain]
[./global_strain]
scalar_global_strain = global_strain
displacements = 'u_x u_y u_z'
auxiliary_displacements = 'disp_x disp_y disp_z'
global_displacements = 'ug_x ug_y ug_z'
[../]
[../]
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'z'
variable = 'u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
# applied displacement
[./appl_y]
type = DirichletBC
boundary = top
variable = u_y
value = 0.033
[../]
[./fix_y]
type = DirichletBC
boundary = bottom
variable = u_y
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/functional_expansion_tools/examples/2D_interface/sub.i)
# Basic example coupling a master and sub app at an interface in a 2D model.
# The master app provides a flux term to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's interface conditions, both value and flux, are transferred back
# to the master app
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.4
xmax = 2.4
nx = 30
ymin = 0.0
ymax = 10.0
ny = 20
[]
[Variables]
[./s]
[../]
[]
[Kernels]
[./diff_s]
type = HeatConduction
variable = s
[../]
[./time_diff_s]
type = HeatConductionTimeDerivative
variable = s
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_s]
type = ConstantIC
value = 2
variable = s
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = s
boundary = bottom
value = 0.1
[../]
[./interface_flux]
type = FXFluxBC
boundary = left
variable = s
function = FX_Basis_Flux_Sub
[../]
[]
[Functions]
[./FX_Basis_Value_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '4'
physical_bounds = '0.0 10'
y = Legendre
[../]
[./FX_Basis_Flux_Sub]
type = FunctionSeries
series_type = Cartesian
orders = '5'
physical_bounds = '0.0 10'
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Sub]
type = FXBoundaryValueUserObject
function = FX_Basis_Value_Sub
variable = s
boundary = left
[../]
[./FX_Flux_UserObject_Sub]
type = FXBoundaryFluxUserObject
function = FX_Basis_Flux_Sub
variable = s
boundary = left
diffusivity = thermal_conductivity
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1.0
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/postprocessors/num_adaptivity_cycles/num_adaptivity_cycles_toggle_adaptivity_wait.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = 'PJFNK'
[]
[Adaptivity]
cycles_per_step = 1
marker = box
max_h_level = 2
initial_steps = 4
initial_marker = initial_box
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = dont_mark
type = BoxMarker
[../]
[./initial_box]
type = BoxMarker
bottom_left = '0.8 0.1 0'
top_right = '0.9 0.2 0'
inside = refine
outside = dont_mark
[../]
[../]
[]
[UserObjects]
[./toggle_adaptivity]
type = ToggleMeshAdaptivity
mesh_adaptivity = 'off'
apply_after_timestep = 1
[../]
[]
[Postprocessors]
[./adaptivity_cycles]
type = NumAdaptivityCycles
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/materials/interface_material/interface_value_material_noIK.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
xmax = 2
ny = 2
ymax = 2
elem_type = QUAD4
[]
[./subdomain_id]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1 0 0'
top_right = '2 2 0'
block_id = 1
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain_id
primary_block = '0'
paired_block = '1'
new_boundary = 'interface'
[../]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 1
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = 'diffusivity'
block = 0
[../]
[./diff_v]
type = MatDiffusion
variable = v
diffusivity = 'diffusivity'
block = 1
[../]
[]
[BCs]
[u_left]
type = DirichletBC
boundary = 'left'
variable = u
value = 1
[]
[v_right]
type = DirichletBC
boundary = 'right'
variable = v
value = 0
[]
[]
[Materials]
[./stateful1]
type = StatefulMaterial
block = 0
initial_diffusivity = 1
# outputs = all
[../]
[./stateful2]
type = StatefulMaterial
block = 1
initial_diffusivity = 2
# outputs = all
[../]
[./interface_material_avg]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = average
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_primary_minus_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_primary_minus_secondary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_secondary_minus_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_secondary_minus_primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_abs]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_abs
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
mat_prop_var_out_basename = diff_var
boundary = interface
interface_value_type = secondary
nl_var_primary = u
nl_var_secondary = v
[../]
[]
[AuxKernels]
[./interface_material_avg]
type = MaterialRealAux
property = diff_average
variable = diffusivity_average
boundary = interface
[]
[./interface_material_jump_primary_minus_secondary]
type = MaterialRealAux
property = diff_jump_primary_minus_secondary
variable = diffusivity_jump_primary_minus_secondary
boundary = interface
[]
[./interface_material_jump_secondary_minus_primary]
type = MaterialRealAux
property = diff_jump_secondary_minus_primary
variable = diffusivity_jump_secondary_minus_primary
boundary = interface
[]
[./interface_material_jump_abs]
type = MaterialRealAux
property = diff_jump_abs
variable = diffusivity_jump_abs
boundary = interface
[]
[./interface_material_primary]
type = MaterialRealAux
property = diff_primary
variable = diffusivity_primary
boundary = interface
[]
[./interface_material_secondary]
type = MaterialRealAux
property = diff_secondary
variable = diffusivity_secondary
boundary = interface
[]
[diffusivity_var]
type = MaterialRealAux
property = diffusivity
variable = diffusivity_var
[]
[]
[AuxVariables]
[diffusivity_var]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_average]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_primary_minus_secondary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_secondary_minus_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_abs]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_secondary]
family = MONOMIAL
order = CONSTANT
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/numerical_diffusion/fully_saturated_action.i)
# Using the fully-saturated action, which does mass lumping but no upwinding
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
mass_fraction_vars = tracer
stabilization = none
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-1
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
elem_type = QUAD8
[]
[Variables]
[u]
family = LAGRANGE
order = FIRST
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[AuxVariables]
[nodal_source_from_sub_nodal]
family = LAGRANGE
order = FIRST
[]
[nodal_source_from_sub_elemental]
family = MONOMIAL
order = CONSTANT
[]
[elemental_source_from_sub_nodal]
family = LAGRANGE
order = FIRST
[]
[elemental_source_from_sub_elemental]
family = MONOMIAL
order = CONSTANT
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.48 0.01 0 -1.01 0.01 0'
input_files = fromsub_sub.i
[]
[]
[Transfers]
[from_sub_nodal_from_nodal]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = nodal_source_from_sub_nodal
[]
[from_sub_nodal_from_elemental]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = nodal_source_from_sub_elemental
[]
[from_sub_elemental_from_nodal]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u_elemental
variable = elemental_source_from_sub_nodal
[]
[from_sub_elemental_from_elemental]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u_elemental
variable = elemental_source_from_sub_elemental
[]
[]
(test/tests/executioners/eigen_executioners/ipm.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
displacements = 'x_disp y_disp'
[]
#The minimum eigenvalue for this problem is 2*(pi/a)^2 + 2 with a = 100.
#Its inverse will be 0.49950700634518.
[Variables]
active = 'u'
[./u]
# second order is way better than first order
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./x_disp]
[../]
[./y_disp]
[../]
[]
[AuxKernels]
[./x_disp]
type = FunctionAux
variable = x_disp
function = x_disp_func
[../]
[./y_disp]
type = FunctionAux
variable = y_disp
function = y_disp_func
[../]
[]
[Functions]
[./x_disp_func]
type = ParsedFunction
value = 0
[../]
[./y_disp_func]
type = ParsedFunction
value = 0
[../]
[]
[Kernels]
active = 'diff rea rhs'
[./diff]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[./rea]
type = CoefReaction
variable = u
coefficient = 2.0
use_displaced_mesh = true
[../]
[./rhs]
type = MassEigenKernel
variable = u
use_displaced_mesh = true
[../]
[]
[BCs]
active = 'homogeneous'
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
use_displaced_mesh = true
[../]
[]
[Executioner]
type = InversePowerMethod
min_power_iterations = 11
max_power_iterations = 400
Chebyshev_acceleration_on = true
eig_check_tol = 1e-12
k0 = 0.5
bx_norm = 'unorm'
xdiff = 'udiff'
normalization = 'unorm'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Postprocessors]
active = 'unorm udiff'
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
use_displaced_mesh = true
[../]
[./udiff]
type = ElementL2Diff
variable = u
execute_on = 'linear timestep_end'
use_displaced_mesh = true
[../]
[]
[Outputs]
file_base = ipm
exodus = true
hide = 'x_disp y_disp'
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_angle.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 2D version with velocity = (0.1, 0.2, 0)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
xmin = 0
xmax = 1
ny = 10
ymin = 0
ymax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x - 2 * y'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1 | x > 0.3 | y < 0.1 | y > 0.3, 0, 1)'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_boundary_porepressure]
type = FunctionDirichletBC
variable = porepressure
function = '1 - x - 2 * y'
boundary = 'left right top bottom'
[]
[no_tracer_at_boundary]
type = DirichletBC
variable = tracer
value = 0
boundary = 'left right top bottom'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 0.3
dt = 0.1
[]
[Outputs]
[out]
type = Exodus
execute_on = 'initial final'
[]
[]
(test/tests/vectorpostprocessors/nodal_value_sampler/nodal_value_sampler.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./nodal_sample]
type = NodalValueSampler
variable = 'u v'
boundary = top
sort_by = x
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
csv = true
[]
(modules/xfem/test/tests/second_order_elements/diffusion_2d_quad9_test.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD9
[]
[XFEM]
cut_data = '0.35 1.0 0.35 0.4 0 0'
qrule = volfrac
output_cut_plane = true
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 3
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/umat/time_step/elastic_timestep.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = t/100
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_timestep'
num_state_vars = 0
use_one_based_indexing = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 30
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 30
iteration_window = 9
growth_factor = 2.0
cutback_factor = 1.0
timestep_limiting_postprocessor = matl_ts_min
dt = 1.0
[]
[]
[UserObjects]
[time_step_size]
type = TimestepSize
execute_on = 'INITIAL LINEAR'
[]
[terminator_umat]
type = Terminator
expression = 'time_step_size > matl_ts_min'
fail_mode = SOFT
execute_on = 'FINAL'
[]
[]
[Postprocessors]
[matl_ts_min]
type = MaterialTimeStepPostprocessor
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/bcs/bcs_integrated.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[./right2]
type = FunctionNeumannBC
variable = u
boundary = right
function = (y*(t-1))+1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./period0]
type = TimePeriod
disable_objects = 'BCs::right2'
start_time = '0'
end_time = '0.95'
execute_on = 'initial timestep_begin'
[../]
[./period2]
type = TimePeriod
disable_objects = 'BCs::right'
start_time = '1'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/multiapps/full_solve_multiapp/master_eigen.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[rhs]
type = MassEigenKernel
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = NonlinearEigen
bx_norm = 'unorm'
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[unorm]
type = ElementIntegralVariablePostprocessor
variable = u
# execute on residual is important for nonlinear eigen solver!
execute_on = linear
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
[MultiApps]
[full_solve]
type = FullSolveMultiApp
# not setting app_type to use the same app type of master, i.e. MooseTestApp
execute_on = initial
positions = '0 0 0'
input_files = sub.i
[]
[]
(test/tests/mortar/1d/1d_nodebc_name.i)
# Tests a 'jump' across a boundary where the jump simply connects two diffusion domains
# This test uses named nodal boundaries instead of the actual node #'s
[Mesh]
file = 2-lines.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '1 2'
[../]
[./lm]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[ScalarKernels]
[./ced]
type = NodalEqualValueConstraint
variable = lm
var = u
boundary = '100 101'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = '2'
value = 3
[../]
[./evc1]
type = OneDEqualValueConstraintBC
variable = u
boundary = '100'
lambda = lm
component = 0
vg = 1
[../]
[./evc2]
type = OneDEqualValueConstraintBC
variable = u
boundary = '101'
lambda = lm
component = 0
vg = -1
[../]
[]
[Preconditioning]
[./fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/materials/ad_material/conversion/1d_dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmax = 2
[]
[Variables]
[v]
initial_condition = 1.1
[]
[]
[Kernels]
inactive = 'ad_diff'
[diff]
type = MatDiffusion
variable = v
diffusivity = 'coef'
[]
[ad_diff]
type = ADMatDiffusion
variable = v
diffusivity = 'ad_coef_2'
[]
[sink]
type = ADBodyForce
variable = v
function = 'sink'
[]
[]
[BCs]
[bounds]
type = DirichletBC
variable = v
boundary = 'left right'
value = 0
[]
[]
[Functions]
[sink]
type = ParsedFunction
value = '3*x^3'
[]
[]
[Materials]
[ad_coef]
type = ADParsedMaterial
f_name = 'ad_coef'
function = '0.01 * max(v, 1)'
args = 'v'
[]
[converter_to_regular]
type = MaterialADConverter
ad_props_in = 'ad_coef'
reg_props_out = 'coef'
[]
# at this point we should have lost the derivatives
[converter_to_ad]
type = MaterialADConverter
reg_props_in = 'coef'
ad_props_out = 'ad_coef_2'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_stress_free_temp.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material; however, in this case the stress free temperature of the material
# has been set to 200K so that there is an initial delta temperature of 100K.
# An initial temperature of 300K is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. The final temperature is 675K
# The thermal strain increment should therefore be
# (675K - 300K) * 1.3e-5 1/K + 100K * 1.3e-5 1/K = 6.175e-3 m/m.
# This test uses a start up step to identify problems in the calculation of
# eigenstrains with a stress free temperature that is different from the initial
# value of the temperature in the problem
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
initial_condition = 300.0
[../]
[./eigenstrain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./eigenstrain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./total_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(5000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./eigenstrain_yy]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_xx]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = RankTwoAux
rank_two_tensor = eigenstrain
variable = eigenstrain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 200
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = -0.0125
n_startup_steps = 1
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[./eigenstrain_xx]
type = ElementAverageValue
variable = eigenstrain_xx
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_yy]
type = ElementAverageValue
variable = eigenstrain_yy
execute_on = 'initial timestep_end'
[../]
[./eigenstrain_zz]
type = ElementAverageValue
variable = eigenstrain_zz
execute_on = 'initial timestep_end'
[../]
[./total_strain_xx]
type = ElementAverageValue
variable = total_strain_xx
execute_on = 'initial timestep_end'
[../]
[./total_strain_yy]
type = ElementAverageValue
variable = total_strain_yy
execute_on = 'initial timestep_end'
[../]
[./total_strain_zz]
type = ElementAverageValue
variable = total_strain_zz
execute_on = 'initial timestep_end'
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/restart/restart_transient_from_steady/steady_with_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
execute_on = 'initial final'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
execute_on = 'initial final'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
execute_on = 'initial final'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
fixed_point_rel_tol = 1E-7
fixed_point_abs_tol = 1.0e-07
fixed_point_max_its = 12
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = steady_with_sub_sub.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[p_to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
checkpoint = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
(test/tests/mesh_modifiers/mesh_extruder/extrude_remap_layer2.i)
[Mesh]
[file]
type = FileMeshGenerator
file = multiblock.e
[]
[extrude]
type = MeshExtruderGenerator
input = file
num_layers = 6
extrusion_vector = '0 0 2'
bottom_sideset = 'new_bottom'
top_sideset = 'new_top'
# Remap layers
existing_subdomains = '1 2 5'
layers = '1 3 5'
new_ids = '10 12 15' # Repeat this remapping for each layer
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = 'new_bottom'
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = 'new_top'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/stateful_prop/computing_initial_residual_test.i)
[Mesh]
dim = 3
file = cube.e
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 1.0
[../]
[]
[Materials]
[./stateful]
type = ComputingInitialTest
block = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_max_its = 10
start_time = 0.0
num_steps = 5
dt = .1
[]
[Outputs]
file_base = computing_initial_residual_test_out
[./out]
type = Exodus
elemental_as_nodal = true
execute_elemental_on = none
[../]
[]
(test/tests/transfers/multiapp_projection_transfer/high_order_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Functions]
[./test_function]
type = ParsedFunction
value = '2.5*x^2 + 0.75*y^2 + 0.15*x*y'
[../]
[]
[AuxVariables]
[./from_sub]
family = monomial
order = first
[../]
[./test_var]
family = monomial
order = first
[./InitialCondition]
type = FunctionIC
function = test_function
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
app_type = MooseTestApp
execute_on = initial
positions = '0.0 0.0 0.0'
input_files = high_order_sub.i
[../]
[]
[Transfers]
[./from]
type = MultiAppProjectionTransfer
execute_on = same_as_multiapp
from_multi_app = sub
source_variable = test_var
variable = from_sub
[../]
[./to]
type = MultiAppProjectionTransfer
execute_on = same_as_multiapp
to_multi_app = sub
source_variable = test_var
variable = from_master
[../]
[]
(test/tests/transfers/multiapp_mesh_function_transfer/tosub_source_displaced.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
displacements = 'x_disp y_disp'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./x_disp]
initial_condition = -0.1
[../]
[./y_disp]
initial_condition = -0.1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '.1 .1 0 0.6 0.6 0 0.6 0.1 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = tosub_sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
source_variable = u
variable = transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
#displaced_source_mesh = true
[../]
[./elemental_to_sub]
source_variable = u
variable = elemental_transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
#displaced_source_mesh = true
[../]
[]
(modules/contact/test/tests/verification/patch_tests/cyl_1/cyl1_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = cyl1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = cyl1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(test/tests/parser/cli_argument/cli_arg_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 9999 # Override this value
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Materials]
active = empty
[./empty]
type = MTMaterial
block = 9999 # Override this value
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/outputs/iterative/iterative_inline.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
nonlinear_residual_start_time = 1.8
linear_residual_start_time = 1.8
nonlinear_residual_end_time = 1.85
linear_residual_end_time = 1.85
[../]
[]
(modules/contact/test/tests/mechanical_constraint/frictionless_kinematic_gap_offsets.i)
# this test is the same as frictionless_kinematic test but designed to test the gap offset capability
# gap offsets with value of 0.01 were introduced to both primary and secondary sides in the initial mesh
# these values were accounted using the gap offset capability to produce the same result as if no gap offsets were introduced
[Mesh]
file = blocks_2d_gap_offset.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./primary_gap_offset]
[../]
[./secondary_gap_offset]
[../]
[./mapped_primary_gap_offset]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./primary_gap_offset]
type = ConstantAux
variable = primary_gap_offset
value = -0.01
boundary = 2
[../]
[./mapped_primary_gap_offset]
type = GapValueAux
variable = mapped_primary_gap_offset
paired_variable = primary_gap_offset
boundary = 3
paired_boundary = 2
[../]
[./secondary_gap_offset]
type = ConstantAux
variable = secondary_gap_offset
value = -0.01
boundary = 3
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e7
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = 2
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
file_base = frictionless_kinematic_gap_offsets_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = frictionless
penalty = 1e+6
secondary_gap_offset = secondary_gap_offset
mapped_primary_gap_offset = mapped_primary_gap_offset
[../]
[]
(test/tests/outputs/vtk/vtk_diff_serial_mesh_parallel.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
# We found that the Metis partitioner sometimes partitioned this 2x2
# mesh differently on Mac vs. Linux?
partitioner = centroid
centroid_partitioner_direction = x
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(test/tests/multiapps/restart_subapp_ic/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
value = t*x
[../]
[./ffn]
type = ParsedFunction
value = x
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/full_solve_multiapp_reset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[../]
[td]
type = ADTimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.25
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/vtk/vtk_parallel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/fromsub_fixed_meshes_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.1
ymax = 0.1
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Functions]
[./disp_fun]
type = ParsedFunction
value = 2*t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./disp_kern]
type = FunctionAux
variable = disp_x
function = disp_fun
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_multiple_softening.i)
# Test of cracking with direction-specific release models in 3
# directions. Block is first pulled in one direction, and then
# held while it is sequentially pulled in the other two
# directions. Poisson's ratio is zero so that the cracking in one
# direction doesn't affect the others.
# Softening in the three directions should follow the laws for the
# prescribed models in the three directions, which are power law (x),
# exponential (y), and abrupt (z).
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displx]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 1 1 1'
[../]
[./disply]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 1 1'
[../]
[./displz]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 0 1'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pullx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = displx
[../]
[./pully]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = disply
[../]
[./pullz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = displz
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.8e7
poissons_ratio = 0
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 1.68e6
softening_models = 'power_law_softening exponential_softening abrupt_softening'
prescribed_crack_directions = 'x y z'
[../]
[./power_law_softening]
type = PowerLawSoftening
stiffness_reduction = 0.3333
[../]
[./exponential_softening]
type = ExponentialSoftening
[../]
[./abrupt_softening]
type = AbruptSoftening
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type'
petsc_options_value = '101 asm lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-5
start_time = 0.0
end_time = 3.0
dt = 0.01
[]
[Outputs]
exodus = true
[]
(test/tests/interfaces/random/random_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1e-5
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[Materials]
[./random]
type = RandomMaterial
block = 0
outputs = exodus
output_properties = rand_real
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/vector_fe/coupled_vector_gradient.i)
# This example demonstrates ability to set Dirichlet boundary conditions for LAGRANGE_VEC variables
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
family = LAGRANGE_VEC
order = FIRST
[../]
[./v]
family = LAGRANGE_VEC
order = FIRST
[../]
[./w]
family = LAGRANGE_VEC
order = FIRST
[../]
[./s]
family = LAGRANGE_VEC
order = FIRST
[../]
[./q]
[../]
[]
[Kernels]
[./u_diff]
type = VectorDiffusion
variable = u
[../]
[./v_diff]
type = VectorDiffusion
variable = v
[../]
[./w_diff]
type = VectorDiffusion
variable = w
[../]
[./s_diff]
type = VectorDiffusion
variable = s
[../]
[./v_coupled_diff]
type = CoupledVectorDiffusion
variable = v
v = u
[../]
[./w_coupled_diff]
type = CoupledVectorDiffusion
variable = w
v = u
state = old
[../]
[./s_coupled_diff]
type = CoupledVectorDiffusion
variable = s
v = u
state = older
[../]
[./q_diff]
type = Diffusion
variable = q
[../]
[]
[BCs]
[./left_u]
type = VectorDirichletBC
variable = u
values = '0 0 0'
boundary = 'left'
[../]
[./left_v]
type = VectorDirichletBC
variable = v
values = '0 0 0'
boundary = 'left'
[../]
[./left_w]
type = VectorDirichletBC
variable = w
values = '0 0 0'
boundary = 'left'
[../]
[./left_s]
type = VectorDirichletBC
variable = s
values = '0 0 0'
boundary = 'left'
[../]
[./right_u]
type = VectorFunctionDirichletBC
variable = u
boundary = 'right'
function_x = 'x_exact'
function_y = 'y_exact'
[../]
[./right_v]
type = VectorFunctionDirichletBC
variable = v
boundary = 'right'
function_x = 'x_exact'
function_y = 'y_exact'
[../]
[./right_w]
type = VectorFunctionDirichletBC
variable = w
boundary = 'right'
function_x = 'x_exact_old'
function_y = 'y_exact_old'
[../]
[./right_s]
type = VectorFunctionDirichletBC
variable = s
boundary = 'right'
function_x = 'x_exact_older'
function_y = 'y_exact_older'
[../]
[./left_q]
type = DirichletBC
variable = q
boundary = 'left'
value = 1
[../]
[./right_q]
type = NeumannBC
variable = q
boundary = 'right'
value = 1
[../]
[]
[Functions]
[./x_exact]
type = ParsedFunction
value = 't'
[../]
[./y_exact]
type = ParsedFunction
value = 't'
[../]
[./x_exact_old]
type = ParsedFunction
value = 'if(t < 1, 0, t - 1)'
[../]
[./y_exact_old]
type = ParsedFunction
value = 'if(t < 1, 0, t - 1)'
[../]
[./x_exact_older]
type = ParsedFunction
value = 'if(t < 2, 0, t - 2)'
[../]
[./y_exact_older]
type = ParsedFunction
value = 'if(t < 2, 0, t - 2)'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 3
solve_type = 'NEWTON'
petsc_options = '-ksp_converged_reason -snes_converged_reason'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '100'
nl_max_its = 3
l_max_its = 100
dtmin = 1
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/materials/convective_heat_transfer_coefficient/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[Hw_ak]
type = MaterialRealAux
variable = Hw
property = Hw
[]
[]
[Materials]
[props]
type = GenericConstantMaterial
prop_names = 'Nu k D_h'
prop_values = '1000 2 20'
[]
[Hw_material]
type = ConvectiveHeatTransferCoefficientMaterial
Nu = Nu
D_h = D_h
k = k
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[Hw]
type = ElementalVariableValue
elementid = 0
variable = Hw
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/transfers/multiapp_transfer_transformation/transfer_transformation.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 3
ny = 5
nz = 0
xmax = 0.8
xmin = 0.2
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[./subdomain_id]
type = ElementSubdomainIDGenerator
input = gmg
subdomain_ids = '0 1 2
0 1 2
0 1 2
0 1 2
0 1 2'
[]
[./boundary01]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain_id
primary_block = '0'
paired_block = '1'
new_boundary = 'boundary01'
[]
[./boundary10]
type = SideSetsBetweenSubdomainsGenerator
input = boundary01
primary_block = '1'
paired_block = '0'
new_boundary = 'boundary10'
[]
[./boundary12]
type = SideSetsBetweenSubdomainsGenerator
input = boundary10
primary_block = '1'
paired_block = '2'
new_boundary = 'boundary12'
[]
[./boundary21]
type = SideSetsBetweenSubdomainsGenerator
input = boundary12
primary_block = '2'
paired_block = '1'
new_boundary = 'boundary21'
[]
uniform_refine = 3
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./fromsubelem]
order = constant
family = monomial
[../]
[./fromsub]
[]
[]
[BCs]
[./left0]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right0]
type = DirichletBC
variable = u
boundary = boundary01
value = 1
[../]
[./right1]
type = DirichletBC
variable = u
boundary = boundary12
value = 0
[../]
[./right2]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
app_type = MooseTestApp
positions = '0.0 0.0 0.0'
execute_on = 'timestep_end'
input_files = transfer_transformation_sub.i
[]
[]
[Transfers]
[from_sub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
num_points = 1
shrink_gap_width = 0.2
shrink_mesh = 'source'
source_variable = 'u'
variable = 'fromsub'
exclude_gap_blocks = '1 3'
[]
[from_sub_elem]
type = MultiAppInterpolationTransfer
from_multi_app = sub
num_points = 4
shrink_gap_width = 0.2
shrink_mesh = 'source'
source_variable = 'u'
variable = 'fromsubelem'
exclude_gap_blocks = '1 3'
[]
[from_master]
type = MultiAppInterpolationTransfer
to_multi_app = sub
num_points = 1
shrink_gap_width = 0.2
shrink_mesh = 'target'
source_variable = 'u'
exclude_gap_blocks = '1 3'
variable = 'frommaster'
[]
[from_master_elem]
type = MultiAppInterpolationTransfer
to_multi_app = sub
num_points = 4
shrink_gap_width = 0.2
shrink_mesh = 'target'
source_variable = 'u'
exclude_gap_blocks = '1 3'
variable = 'frommasterelem'
[]
[]
(modules/contact/test/tests/kinematic-and-scaling/bouncing-block-kinematic.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-no-lower-d-coarse.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = false
use_automatic_differentiation = true
strain = SMALL
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[stress]
type = ADComputeLinearElasticStress
[]
[]
[Contact]
[leftright]
secondary = 10
primary = 20
model = frictionless
formulation = kinematic
penalty = 1e3
normal_smoothing_distance = 0.1
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 100
dt = 5
dtmin = 5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 200'
l_max_its = 200
nl_max_its = 20
line_search = 'none'
automatic_scaling = true
verbose = true
scaling_group_variables = 'disp_x disp_y'
resid_vs_jac_scaling_param = 1
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[nl]
type = NumNonlinearIterations
[]
[lin]
type = NumLinearIterations
[]
[tot_nl]
type = CumulativeValuePostprocessor
postprocessor = nl
[]
[tot_lin]
type = CumulativeValuePostprocessor
postprocessor = lin
[]
[]
(modules/tensor_mechanics/test/tests/check_error/youngs_modulus.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = -1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/test_crack_counter.i)
# This test is used to verify that the pure test object (TestCrackCounter)
# is correctly using the API for extracting the crack_tip_origin_direction_map
# from XFEM. The map contains information of the location of all the crack tips
# computed by XFEM. The TestCrackCounter postprocessor simply returns the
# number of elements in the map which corresponds to the number of cracks.
#
# In this test case 4 prescribed cracks are applied. Therefore, the
# TestCrackCounter postprocessor returns a value of 4.
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.7 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./line_seg_cut_uo2]
type = LineSegmentCutUserObject
cut_data = '0.0 0.5 0.3 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./line_seg_cut_uo3]
type = LineSegmentCutUserObject
cut_data = '0.5 0.0 0.5 0.3'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[./line_seg_cut_uo4]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.7'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 50 100'
y='0 0.02 0.1'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pull
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Postprocessors]
[./number_of_cracks]
type = TestCrackCounter
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
num_steps = 5000
max_xfem_update = 1
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/linear_elasticity/linear_anisotropic_material.i)
# This input file is designed to test the LinearGeneralAnisotropicMaterial class. This test is
# for regression testing. This just takes the material properties and puts them into
# aux variables; the diffusion kernel is just to have a simple kernel to run the test.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./diffused]
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
incremental = true
add_variables = true
[]
[AuxVariables]
[./C11]
order = CONSTANT
family = MONOMIAL
[../]
[./C12]
order = CONSTANT
family = MONOMIAL
[../]
[./C13]
order = CONSTANT
family = MONOMIAL
[../]
[./C14]
order = CONSTANT
family = MONOMIAL
[../]
[./C15]
order = CONSTANT
family = MONOMIAL
[../]
[./C16]
order = CONSTANT
family = MONOMIAL
[../]
[./C22]
order = CONSTANT
family = MONOMIAL
[../]
[./C23]
order = CONSTANT
family = MONOMIAL
[../]
[./C24]
order = CONSTANT
family = MONOMIAL
[../]
[./C25]
order = CONSTANT
family = MONOMIAL
[../]
[./C26]
order = CONSTANT
family = MONOMIAL
[../]
[./C33]
order = CONSTANT
family = MONOMIAL
[../]
[./C34]
order = CONSTANT
family = MONOMIAL
[../]
[./C35]
order = CONSTANT
family = MONOMIAL
[../]
[./C36]
order = CONSTANT
family = MONOMIAL
[../]
[./C44]
order = CONSTANT
family = MONOMIAL
[../]
[./C45]
order = CONSTANT
family = MONOMIAL
[../]
[./C46]
order = CONSTANT
family = MONOMIAL
[../]
[./C55]
order = CONSTANT
family = MONOMIAL
[../]
[./C56]
order = CONSTANT
family = MONOMIAL
[../]
[./C66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[AuxKernels]
[./matl_C11]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
variable = C11
[../]
[./matl_C12]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
variable = C12
[../]
[./matl_C13]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
variable = C13
[../]
[./matl_C14]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 2
variable = C14
[../]
[./matl_C15]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 2
variable = C15
[../]
[./matl_C16]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 1
variable = C16
[../]
[./matl_C22]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
variable = C22
[../]
[./matl_C23]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
variable = C23
[../]
[./matl_C24]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 2
variable = C24
[../]
[./matl_C25]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 2
variable = C25
[../]
[./matl_C26]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 0
index_l = 1
variable = C26
[../]
[./matl_C33]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
variable = C33
[../]
[./matl_C34]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 1
index_l = 2
variable = C34
[../]
[./matl_C35]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 2
variable = C35
[../]
[./matl_C36]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 0
index_l = 1
variable = C36
[../]
[./matl_C44]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
variable = C44
[../]
[./matl_C45]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 2
variable = C45
[../]
[./matl_C46]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 0
index_l = 1
variable = C46
[../]
[./matl_C55]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 2
variable = C55
[../]
[./matl_C56]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 2
index_k = 0
index_l = 1
variable = C56
[../]
[./matl_C66]
type = RankFourAux
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
variable = C66
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric21
C_ijkl ='1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[./top]
type = DirichletBC
variable = diffused
boundary = '2'
value = 0
[../]
[./disp_x_BC]
type = DirichletBC
variable = disp_x
boundary = '0 1 2 3'
value = 0.0
[../]
[./disp_y_BC]
type = DirichletBC
variable = disp_y
boundary = '0 1 2 3'
value = 0.0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mechanical_constraint/frictionless_penalty.i)
[Mesh]
file = blocks_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = frictionless
formulation = penalty
penalty = 1e+7
[../]
[]
(modules/tensor_mechanics/tutorials/basics/part_2.1.i)
#Tensor Mechanics tutorial: the basics
#Step 2, part 1
#2D axisymmetric RZ simulation of uniaxial tension linear elasticity
[GlobalParams]
displacements = 'disp_r disp_z' #change the variable names for the coordinate system
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = necking_quad4.e
uniform_refine = 1
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = SMALL #detects the change in coordinate system and automatically sets the correct strain class
add_variables = true
generate_output = 'stress_zz vonmises_stress' #use stress_zz to get stress_theta quantity
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_r #change the variable to reflect the new displacement names
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_z #change the variable to reflect the new displacement names
boundary = bottom
value = 0.0
[../]
[./top]
type = DirichletBC
variable = disp_z #change the variable to reflect the new displacement names
boundary = top
value = 0.0035
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 1 101'
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/rz_cone_by_parts_steady_stabilized_second_order.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Not integrating the pressure by parts, thereby requiring a pressure pin.
# .) Natural boundary condition at the outlet.
[GlobalParams]
integrate_p_by_parts = true
laplace = true
gravity = '0 0 0'
supg = true
pspg = true
order = SECOND
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
[../]
[./vel_y]
# Velocity in axial (z) direction
[../]
[./p]
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp_nodens.i)
# No-density version of pressure pulse in 1D with 1 phase but 2 components (viscosity, relperm, etc are independent of mass-fractions)
# This input file uses the PorousFlowFullySaturated Action but with multiply_by_density = false
# This implies the porepressure will immediately go to steady state
# The massfrac variables will then advect with the Darcy velocity
# The Darcy velocity = (k / mu) * grad(P) = (1E-7 / 1E-3) * (1E6 / 1E2) = 1 m/s
# The advection speed = Darcy velocity / porosity = 10 m/s
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 0
[]
[tracer]
initial_condition = 0.1
[]
[]
[PorousFlowFullySaturated]
porepressure = pp
mass_fraction_vars = 'tracer'
gravity = '0 0 0'
fp = simple_fluid
stabilization = Full
multiply_by_density = false
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-7 0 0 0 1E-7 0 0 0 1E-7'
[]
[]
[BCs]
[left_p]
type = DirichletBC
boundary = left
value = 1E6
variable = pp
[]
[right_p]
type = DirichletBC
boundary = right
value = 0
variable = pp
[]
[left_tracer]
type = DirichletBC
boundary = left
value = 0.9
variable = tracer
[]
[right_tracer]
type = DirichletBC
boundary = right
value = 0.1
variable = tracer
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_000]
type = PointValue
variable = tracer
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_010]
type = PointValue
variable = tracer
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_020]
type = PointValue
variable = tracer
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_030]
type = PointValue
variable = tracer
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_040]
type = PointValue
variable = tracer
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_050]
type = PointValue
variable = tracer
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_060]
type = PointValue
variable = tracer
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_070]
type = PointValue
variable = tracer
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_080]
type = PointValue
variable = tracer
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_090]
type = PointValue
variable = tracer
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[tracer_100]
type = PointValue
variable = tracer
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(test/tests/geomsearch/patch_update_strategy/always.i)
[Mesh]
type = FileMesh
file = long_range.e
dim = 2
patch_update_strategy = always
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
block = right
[../]
[]
[AuxVariables]
[./linear_field]
[../]
[./receiver]
# The field to transfer into
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./elemental_reciever]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./linear_in_y]
# This just gives us something to transfer that varies in y so we can ensure the transfer is working properly...
type = FunctionAux
variable = linear_field
function = y
execute_on = initial
[../]
[./right_to_left]
type = GapValueAux
variable = receiver
paired_variable = linear_field
paired_boundary = rightleft
execute_on = timestep_end
boundary = leftright
[../]
[./y_displacement]
type = FunctionAux
variable = disp_y
function = t
execute_on = 'linear timestep_begin'
block = left
[../]
[./elemental_right_to_left]
type = GapValueAux
variable = elemental_reciever
paired_variable = linear_field
paired_boundary = rightleft
boundary = leftright
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = righttop
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = rightbottom
value = 0
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Executioner]
type = Transient
num_steps = 30
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/format/output_test_tecplot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
tecplot = true
[]
(test/tests/restart/pointer_restart_errors/pointer_load_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./restartable_types]
type = PointerLoadError
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
checkpoint = true
[]
(modules/peridynamics/test/tests/generalized_plane_strain/out_of_plane_pressure_OSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./stress_zz]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules]
[./Peridynamics/Mechanics]
[./Master]
[./all]
formulation = ORDINARY_STATE
[../]
[../]
[./GeneralizedPlaneStrain]
[./all]
formulation = ORDINARY_STATE
out_of_plane_stress_variable = stress_zz
out_of_plane_pressure = pressure_function
factor = 1e5
[../]
[../]
[../]
[]
[AuxKernels]
[./stress_zz]
type = NodalRankTwoPD
variable = stress_zz
poissons_ratio = 0.3
youngs_modulus = 1e6
rank_two_tensor = stress
output_type = component
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./react_z]
type = NodalVariableIntegralPD
variable = stress_zz
[../]
[]
[Functions]
[./pressure_function]
type = PiecewiseLinear
x = '0 1'
y = '0 1'
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
boundary = 1003
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1000
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialOSPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0.0
end_time = 1.0
[]
[Outputs]
exodus = true
file_base = out_of_plane_pressure_OSPD
[]
(modules/tensor_mechanics/test/tests/ad_action/two_block_new.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. They
# can be overwritten in the subblocks.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[./block1]
# the `block` parameter is only valid insde a subblock.
block = 1
use_automatic_differentiation = true
[../]
[./block2]
block = 2
# the `additional_generate_output` parameter is also only valid inside a
# subblock. Values specified here are appended to the `generate_output`
# parameter values.
additional_generate_output = 'strain_yy'
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = ADRankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ADComputeFiniteStrainElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/jacobian/mass_vol_exp02.i)
# Tests the PorousFlowMassVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, HM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[p]
type = RandomIC
min = -1
max = 1
variable = porepressure
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[]
[poro]
type = PorousFlowMassVolumetricExpansion
fluid_component = 0
variable = porepressure
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
[]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
(modules/xfem/test/tests/second_order_elements/diffusion_2d_quad9.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD9
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.35 1.0 0.35 0.2'
time_start_cut = 0.0
time_end_cut = 2.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 3
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/stochastic_tools/test/tests/transfers/sampler_postprocessor/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
error_on_dtmin = false
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[]
[Outputs]
[]
(modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = Pressure
variable = disp_r
boundary = right
factor = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
(test/tests/misc/check_error/assertion_test.i)
[Mesh]
file = square.e # Read a Mesh
[./Generation] # AND create a Mesh...
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
active = empty
[./empty]
type = EmptyMaterial
block = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/xfem/test/tests/single_var_constraint_3d/stationary_jump_fluxjump_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.25
elem_type = HEX8
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.5 -0.001 -0.001
0.5 1.001 -0.001
0.5 1.001 1.001
0.5 -0.001 1.001'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 1
geometric_cut_userobject = 'square_planar_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/thermal_expansion_function/small_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/kernels/2d_diffusion/2d_diffusion_test.i)
###########################################################
# This is a simple test of the Kernel System.
# It solves the Laplacian equation on a small 2x2 grid.
# The "Diffusion" kernel is used to calculate the
# residuals of the weak form of this operator.
#
# @Requirement F3.30
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# BCs cannot be preset due to Jacobian test
active = 'left right'
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(python/peacock/tests/common/transient_big.i)
###########################################################
# This is a simple test with a time-dependent problem
# demonstrating the use of a "Transient" Executioner.
#
# @Requirement F1.10
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 10
ny = 10
elem_type = QUAD4
uniform_refine = 2
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./dt]
type = TimestepSize
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.1
[]
[Outputs]
file_base = out_transient
exodus = true
[]
(test/tests/transfers/multiapp_mesh_function_transfer/tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 0.2
ymax = 0.2
displacements = 'x_disp y_disp'
[]
[Variables]
[./sub_u]
[../]
[]
[AuxVariables]
[./transferred_u]
[../]
[./elemental_transferred_u]
order = CONSTANT
family = MONOMIAL
[../]
[./x_disp]
initial_condition = .2
[../]
[./y_disp]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = sub_u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = sub_u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = sub_u
boundary = right
value = 4
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/sub_cycling/master_iteration_adaptive.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0 0 0 0'
input_files = sub.i
sub_cycling = true
[../]
[]
(modules/tensor_mechanics/test/tests/truss/truss_2d_action.i)
#
# Truss in two dimensional space
#
# The truss is made of five equilateral triangles supported at each end.
# The truss starts at (0,0). At (1,0), there is a point load of 25.
# The reactions are therefore
# Ryleft = 2/3 * 25 = 16.7
# Ryright = 1/3 * 25 = 8.33
# The area of each member is 0.8.
# Statics gives the stress in each member. For example, for element 6 (from
# (0,0) to (1/2,sqrt(3)/2)), the force is
# f = 2/3 * 25 * 2/sqrt(3) = 100/3/sqrt(3) (compressive)
# and the stress is
# s = -100/3/sqrt(3)/0.8 = -24.06
#
[Mesh]
type = FileMesh
file = truss_2d.e
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixy4]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '1 0 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = 1
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = 1
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = 1
variable = area
value = 0.8
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Modules/TensorMechanics/LineElementMaster]
[./block]
truss = true
add_variables = true
displacements = 'disp_x disp_y'
# area = area # commented out for error check
block = 1
save_in = 'react_x react_y'
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = 1
youngs_modulus = 1e6
displacements = 'disp_x disp_y'
[../]
[]
[Outputs]
file_base = 'truss_2d_out'
exodus = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_rz_exponential.i)
#
# Test to exercise the exponential stress release
#
# Stress vs. strain should show a linear relationship until cracking,
# an exponential stress release, a linear relationship back to zero
# strain, a linear relationship with the original stiffness in
# compression and then back to zero strain, a linear relationship
# back to the exponential curve, and finally further exponential
# stress release.
[Mesh]
file = cracking_rz_test.e
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Functions]
[./disply]
type = PiecewiseLinear
x = '0 1 2 3 4 5 6'
y = '0 0.00175 0 -0.0001 0 0.00175 0.0035'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pully]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disply
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./sides]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 186.5e9
poissons_ratio = 0.316
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 119.3e6
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ExponentialSoftening
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-5
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-4
start_time = 0.0
end_time = 6.0
dt = 0.005
dtmin = 0.005
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/nearest_point_layered_integral/nearest_point_layered_integral.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 1.5
ymax = 1.5
zmax = 1.2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./np_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./np_layered_average]
type = SpatialUserObjectAux
variable = np_layered_average
execute_on = timestep_end
user_object = npla
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 1
[../]
[]
[UserObjects]
[./npla]
type = NearestPointLayeredIntegral
direction = y
num_layers = 10
variable = u
points_file = points.txt
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/frictional/single_point_2d/single_point_2d_predictor.i)
[Mesh]
file = single_point_2d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./horizontal_movement]
type = ParsedFunction
value = t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
diag_save_in = 'diag_saved_x diag_saved_y'
[../]
[]
[AuxKernels]
[./incslip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./incslip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./botx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./boty2]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 4
value = -0.005
[../]
[]
[Materials]
[./bottom]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e9
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[./top]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 200
dt = 0.001
end_time = 0.01
num_steps = 1000
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.001
l_tol = 1e-3
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = coulomb
friction_coefficient = '0.25'
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '2'
secondary = '3'
[../]
[]
(test/tests/auxkernels/element_aux_boundary/element_aux_boundary.i)
[Mesh]
type = FileMesh
file = rectangle.e
dim = 2
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./real_property]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./real_property]
type = MaterialRealAux
variable = real_property
property = real_property
boundary = '1 2'
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Materials]
[./boundary_1]
type = OutputTestMaterial
boundary = 1
real_factor = 2
variable = u
[../]
[./boundary_2]
type = OutputTestMaterial
boundary = 2
real_factor = 2
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/peridynamics/test/tests/failure_tests/2D_singular_shape_tensor_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
cracks_start = '0.25 0.5 0'
cracks_end = '0.75 0.5 0'
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./critical_stress]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./bond_status]
type = RankTwoBasedFailureCriteriaNOSPD
variable = bond_status
rank_two_tensor = stress
critical_variable = critical_stress
failure_criterion = VonMisesStress
[../]
[]
[UserObjects]
[./singular_shape_tensor]
type = SingularShapeTensorEliminatorUserObjectPD
[../]
[]
[ICs]
[./critical_stretch]
type = ConstantIC
variable = critical_stress
value = 150
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.002*t'
[../]
[./rbm_x]
type = RBMPresetOldValuePD
variable = disp_x
boundary = 999
[../]
[./rbm_y]
type = RBMPresetOldValuePD
variable = disp_y
boundary = 999
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./strain]
type = ComputeSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
dt = 1
end_time = 1
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_singular_shape_tensor_H1NOSPD
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/boundary_tomaster_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
elem_type = QUAD8
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 0.0
[../]
[./right]
type = DirichletBC
variable = u
boundary = bottom
value = 1.0
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/discrete/recompute_warning.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[./left_domain]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[../]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = GenericConstantMaterial
prop_names = 'f f_prime'
prop_values = '22 24'
block = 0
compute = true # the default, but should trigger a warning because newton is calling getMaterial on this
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = recompute_props
max_iterations = 0
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(modules/richards/test/tests/pressure_pulse/pp22.i)
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
dtmin = 1E3
nl_rel_tol=1.e-10
nl_max_its=20
end_time = 1E4
[]
[Outputs]
file_base = pp22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/outputs/console/console_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = -1
end_time = 0
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
execute_on = 'timestep_end'
[./screen]
type = Console
verbose = true
time_precision = 6
execute_on = 'failed nonlinear linear timestep_begin timestep_end'
[../]
[]
(modules/combined/test/tests/cavity_pressure/initial_temperature.i)
#
# Cavity Pressure Test
#
# This test is designed to compute an internal pressure based on
# p = n * R * T / V
# where
# p is the pressure
# n is the amount of material in the volume (moles)
# R is the universal gas constant
# T is the temperature
# V is the volume
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total
# initial volume is 7.
# The test adjusts n, T, and V in the following way:
# n => n0 + alpha * t
# T => T0 + beta * t
# V => V0 + gamma * t
# with
# alpha = n0
# beta = T0 / 2
# gamma = -(0.003322259...) * V0
# T0 = 240.54443866068704
# V0 = 7
# n0 = f(p0)
# p0 = 100
# R = 8.314472 J * K^(-1) * mol^(-1)
#
# So, n0 = p0 * V0 / R / T0 = 100 * 7 / 8.314472 / 240.544439
# = 0.35
#
# The parameters combined at t = 1 gives p = 301.
#
# This test sets the initial temperature to 500, but the CavityPressure
# is told that that initial temperature is T0. Thus, the final solution
# is unchanged.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = 3d.e
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[Functions]
[./displ_positive]
type = PiecewiseLinear
x = '0 1'
y = '0 0.0029069767441859684'
[../]
[./displ_negative]
type = PiecewiseLinear
x = '0 1'
y = '0 -0.0029069767441859684'
[../]
[./temp1]
type = PiecewiseLinear
x = '0 1'
y = '1 1.5'
scale_factor = 240.54443866068704
[../]
[./material_input_function]
type = PiecewiseLinear
x = '0 1'
y = '0 0.35'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 500
[../]
[./material_input]
[../]
[]
[AuxVariables]
[./pressure_residual_x]
[../]
[./pressure_residual_y]
[../]
[./pressure_residual_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[./heat]
type = Diffusion
variable = temp
use_displaced_mesh = true
[../]
[./material_input_dummy]
type = Diffusion
variable = material_input
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[]
[BCs]
[./no_x_exterior]
type = DirichletBC
variable = disp_x
boundary = '7 8'
value = 0.0
[../]
[./no_y_exterior]
type = DirichletBC
variable = disp_y
boundary = '9 10'
value = 0.0
[../]
[./no_z_exterior]
type = DirichletBC
variable = disp_z
boundary = '11 12'
value = 0.0
[../]
[./prescribed_left]
type = FunctionDirichletBC
variable = disp_x
boundary = 13
function = displ_positive
[../]
[./prescribed_right]
type = FunctionDirichletBC
variable = disp_x
boundary = 14
function = displ_negative
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '17 18'
value = 0.0
[../]
[./no_x_interior]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./no_y_interior]
type = DirichletBC
variable = disp_y
boundary = '3 4'
value = 0.0
[../]
[./no_z_interior]
type = DirichletBC
variable = disp_z
boundary = '5 6'
value = 0.0
[../]
[./temperatureInterior]
type = FunctionDirichletBC
boundary = 100
function = temp1
variable = temp
[../]
[./MaterialInput]
type = FunctionDirichletBC
boundary = '100 13 14 15 16'
function = material_input_function
variable = material_input
[../]
[./CavityPressure]
[./1]
boundary = 100
initial_pressure = 100
material_input = materialInput
R = 8.314472
temperature = aveTempInterior
initial_temperature = 240.54443866068704
volume = internalVolume
startup_time = 0.5
output = ppress
save_in = 'pressure_residual_x pressure_residual_y pressure_residual_z'
[../]
[../]
[]
[Materials]
[./elast_tensor1]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 1
[../]
[./strain1]
type = ComputeFiniteStrain
block = 1
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./elast_tensor2]
type = ComputeElasticityTensor
C_ijkl = '0 5'
fill_method = symmetric_isotropic
block = 2
[../]
[./strain2]
type = ComputeFiniteStrain
block = 2
[../]
[./stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_rel_tol = 1e-12
l_tol = 1e-12
l_max_its = 20
dt = 0.5
end_time = 1.0
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial linear'
[../]
[./aveTempInterior]
type = SideAverageValue
boundary = 100
variable = temp
execute_on = 'initial linear'
[../]
[./materialInput]
type = SideAverageValue
boundary = '7 8 9 10 11 12'
variable = material_input
execute_on = linear
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_power.i)
#
# Simple test of power law softening law for smeared cracking.
# Upon reaching the failure stress in the x direction, the
# softening model abruptly reduces the stress to a fraction
# of its original value, and re-loading occurs at a reduced
# stiffness. This is repeated multiple times.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 1 2 3 4'
y = '0 1 0 -1 0'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pull]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = displ
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.8e7
poissons_ratio = 0
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 1.68e6
softening_models = power_law_softening
[../]
[./power_law_softening]
type = PowerLawSoftening
stiffness_reduction = 0.3333
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type'
petsc_options_value = '101 asm lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
dt = 0.01
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/add_side_sets_from_bounding_box/add_side_sets_from_bounding_box.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gen
block_id = 0
boundary_id_old = 'left'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.5 0.5 0'
[]
[createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
block_id = 0
boundary_id_old = 'right'
boundary_id_new = 11
bottom_left = '0.5 0.5 0'
top_right = '1.1 1.1 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[]
[rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/iterative/iterative_steady.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
execute_on = 'initial timestep_end failed nonlinear linear'
sequence = false
[../]
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_bf.i)
#This is a regression test that exercises the option to include
#the effects of the body force in the interaction integral. This
#uses the same basic model as the other cases in this directory.
#This is a placeholder until a suitable problem with an analytical
#solution can be identified.
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = False
[]
[Mesh]
file = crack2d.e
displacements = 'disp_x disp_y'
# uniform_refine = 3
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
symmetry_plane = 1
incremental = true
# interaction integral parameters
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
body_force = body_force
[]
[Modules/TensorMechanics]
[Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[]
[MaterialVectorBodyForce/all]
body_force = body_force
[]
[]
[BCs]
[crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[]
[no_x1]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[]
[elastic_stress]
type = ComputeFiniteStrainElasticStress
[]
[body_force]
type = GenericConstantVectorMaterial
prop_names = 'body_force'
prop_values = '0.1 0.1 0.0'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/action/action_L.i)
[Mesh]
type = FileMesh
file = 'L.exo'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = SMALL
add_variables = true
new_system = true
formulation = TOTAL
volumetric_locking_correction = true
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Functions]
[pfn]
type = PiecewiseLinear
x = '0 1 2'
y = '0.00 0.3 0.5'
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = fix
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = fix
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = fix
value = 0.0
[]
[front]
type = FunctionDirichletBC
variable = disp_z
boundary = pull
function = pfn
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
end_time = 1.0
dtmin = 0.5
dt = 0.5
[]
[Outputs]
[out]
type = Exodus
file_base = 'blah'
[]
[]
(modules/xfem/test/tests/moving_interface/moving_level_set.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutSetUserObject
cut_data = '0.3 1.0 0.3 0.2 0 3'
heal_always = false
[../]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '3 5'
[../]
[./ls_func]
type = ParsedFunction
value = 'x-0.7-0.07*(t-1)'
[../]
[]
[Constraints]
[./u_constraint]
type = XFEMSingleVariableConstraint
geometric_cut_userobject = 'level_set_cut_uo'
use_displaced_mesh = false
variable = u
use_penalty = true
alpha = 1e5
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 3
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-9
start_time = 0.0
dt = 1
end_time = 3.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/preconditioners/fsp/fsp_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff_u conv_v diff_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_v]
type = CoupledForce
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 100
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Steady
# This is setup automatically in MOOSE (SetupPBPAction.C)
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type'
# petsc_options_value = 'asm'
[]
[Preconditioning]
active = 'FSP'
[./FSP]
type = FSP
# It is the starting point of splitting
topsplit = 'uv' # 'uv' should match the following block name
[./uv]
splitting = 'u v' # 'u' and 'v' are the names of subsolvers
# Generally speaking, there are four types of splitting we could choose
# <additive,multiplicative,symmetric_multiplicative,schur>
splitting_type = additive
# An approximate solution to the original system
# | A_uu A_uv | | u | _ |f_u|
# | 0 A_vv | | v | - |f_v|
# is obtained by solving the following subsystems
# A_uu u = f_u and A_vv v = f_v
# If splitting type is specified as schur, we may also want to set more options to
# control how schur works using PETSc options
# petsc_options_iname = '-pc_fieldsplit_schur_fact_type -pc_fieldsplit_schur_precondition'
# petsc_options_value = 'full selfp'
[../]
[./u]
vars = 'u'
# PETSc options for this subsolver
# A prefix will be applied, so just put the options for this subsolver only
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[../]
[./v]
vars = 'v'
# PETSc options for this subsolver
petsc_options_iname = '-pc_type -ksp_type'
petsc_options_value = ' hypre preonly'
[../]
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined_hht.i)
# Test to verify the fundamental natural frequency of a one element ADComputeShellStress
# BCs: Clamped on one end, free on others.
# Initial perturbation applied to edge of the beam. After that, the shell vibrates freely.
#
# Results have been compared for various thicknesses with the following approximate Results
# (Moose results were obtained with 8 elements along the length)
# Thickness = 0.1. Reference freq: 10.785 Hz, Moose freq: 10.612 Hz
# Thickness = 0.05. Reference freq: 5.393 Hz, Moose freq: 5.335 Hz
# Thickness = 0.025. Reference freq: 2.696 Hz, Moose freq: 2.660 Hz
#
# Reference values have been obtained from Robert Blevins, "Formulas for Dynamics, Acoustics and Vibration",
# Table 5.3 case 11. Formula looks like: f = lambda^2/(2*pi*a^2) * sqrt(E*h^2/(12*(1-nu*nu))), where lambda
# changes as a function of shell dimensions.
# This test uses one single element for speed reasons.
# Here, the shell, instead of being on the XY plane, is oriented at a 45 deg. angle
# with respect to the Y axis.
[Mesh]
type = FileMesh
file = shell_inclined.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./rot_x]
[../]
[./rot_y]
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
# aux variables for dynamics
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
[./rot_vel_x]
[../]
[./rot_vel_y]
[../]
[./rot_accel_x]
[../]
[./rot_accel_y]
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
# Kernels for dynamics
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '0'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '0'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '0'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.0
[../]
[]
[Functions]
[./force_function]
type = PiecewiseLinear
x = '0.0 0.01 0.15 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = '2'
function = force_function
[../]
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[./inertial_force_x]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 0
variable = disp_x
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_y]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 1
variable = disp_y
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_z]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 2
variable = disp_z
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_rot_x]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 3
variable = rot_x
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[./inertial_force_rot_y]
type = ADInertialForceShell
use_displaced_mesh = true
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 4
variable = rot_y
thickness = 0.1
eta = 0.0
alpha = 0.0
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.3
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.005
dtmin = 0.005
timestep_tolerance = 2e-13
end_time = 0.5
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Outputs]
perf_graph = true
exodus = true
csv = true
[]
(modules/combined/test/tests/internal_volume/hex20.i)
#
# Internal Volume Test
#
# This test is designed to compute the internal volume of a space considering
# an embedded volume inside.
#
# The mesh is composed of one block (1) with an interior cavity of volume 8.
# Block 2 sits in the cavity and has a volume of 1. Thus, the total volume
# is 7.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = meshes/hex20.e
[]
[Functions]
[./step]
type = PiecewiseLinear
x = '0. 1. 2. 3.'
y = '0. 0. 1e-2 0.'
scale_factor = 0.5
[../]
[]
[Variables]
[./disp_x]
order = SECOND
family = LAGRANGE
[../]
[./disp_y]
order = SECOND
family = LAGRANGE
[../]
[./disp_z]
order = SECOND
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
incremental = true
strain = FINITE
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./prescribed_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 100
function = step
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0.0
dt = 1.0
end_time = 3.0
[./Quadrature]
order = THIRD
[../]
[]
[Postprocessors]
[./internalVolume]
type = InternalVolume
boundary = 100
execute_on = 'initial timestep_end'
[../]
[./dispZ]
type = ElementAverageValue
block = '1 2'
variable = disp_z
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/beam/static/torsion_1.i)
# Torsion test with automatically calculated Ix
# A beam of length 1 m is fixed at one end and a moment of 5 Nm
# is applied along the axis of the beam.
# G = 7.69e9
# Ix = Iy + Iz = 2e-5
# The axial twist at the free end of the beam is:
# phi = TL/GIx = 3.25e-4
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 1.0
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/LineElementMaster]
[./block_all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
Iy = 1e-5
Iz = 1e-5
y_orientation = '0.0 1.0 0.0'
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = rot_x
boundary = right
rate = 5.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.0e9
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '1.0 0.0 0.0'
variable = rot_x
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_isotropic_elasticity_tensor/2D-axisymmetric_rz_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD8
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
#Material constants selected to match isotropic lambda and shear modulus case
type = ADComputeElasticityTensor
C_ijkl = '1022726 113636 113636 1022726 454545'
fill_method = axisymmetric_rz
[../]
[./elastic_stress]
type = ADComputeLinearElasticStress
[../]
[]
[BCs]
# pin particle along symmetry planes
[./no_disp_r]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# exterior and internal pressures
[./exterior_pressure_r]
type = ADPressure
variable = disp_r
boundary = right
component = 0
constant = 200000
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 1
num_steps = 1000
dtmax = 5e6
dtmin = 1
[./TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 6
iteration_window = 0
linear_iteration_ratio = 100
[../]
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Postprocessors]
[./dt]
type = TimestepSize
[../]
[]
[Outputs]
file_base = 2D-axisymmetric_rz_test_out
exodus = true
[]
(test/tests/outputs/xml/xml_iterations.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables/u]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[time]
type = ADTimeDerivative
variable = u
[]
[]
[Functions/function]
type = ParsedFunction
value = 2*x
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = NEWTON
[]
[VectorPostprocessors]
[line]
type = LineFunctionSampler
functions = function
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 5
sort_by = x
execute_on = 'LINEAR'
[]
[]
[Outputs]
[out]
type = XMLOutput
execute_on = 'LINEAR NONLINEAR'
[]
[]
(tutorials/tutorial02_multiapps/app/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_4/ring4_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/porous_flow/test/tests/numerical_diffusion/pffltvd_action.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, employing PorousFlow Kernels and UserObjects, with superbee flux-limiter
# Using the PorousFlowFullySaturated Action
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
fp = the_simple_fluid
mass_fraction_vars = tracer
stabilization = KT
flux_limiter_type = superbee
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
file_base = pffltvd_out
[out]
type = CSV
execute_on = final
[]
[]
(modules/contact/test/tests/mortar_tm/2drz/ad_frictionless_first/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite'
[Problem]
coord_type = RZ
[]
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 0.6
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.61
xmax = 1.21
ymin = 9.2
ymax = 10.0
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[block]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'block'
[]
[plank]
use_automatic_differentiation = true
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank'
eigenstrain_names = 'swell'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = block_right
value = 0
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[swell]
type = ADComputeEigenstrain
block = 'plank'
eigenstrain_name = swell
eigen_base = '1 0 0 0 0 0 0 0 0'
prefactor = swell_mat
[]
[swell_mat]
type = ADGenericFunctionMaterial
prop_names = 'swell_mat'
prop_values = '7e-2*(1-cos(4*t))'
block = 'plank'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/contact/test/tests/pdass_problems/cylinder_friction.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
[input_file]
type = FileMeshGenerator
file = hertz_cyl_coarser.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
new_block_id = 10001
new_block_name = 'secondary_lower'
sidesets = '3'
input = input_file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
new_block_id = 10000
sidesets = '2'
new_block_name = 'primary_lower'
input = secondary
[]
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[frictionless_normal_lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
use_dual = true
[]
[tangential_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[saved_x]
[]
[saved_y]
[]
[diag_saved_x]
[]
[diag_saved_y]
[]
[]
[Functions]
[disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. -0.020 -0.020'
[]
[disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. 0.0 0.015'
[]
[]
[Kernels]
[TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
block = '1 2 3 4 5 6 7'
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
block = '1 2 3 4 5 6 7'
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
block = '1 2 3 4 5 6 7'
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
block = '1 2 3 4 5 6 7'
[]
[]
[Postprocessors]
[bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[]
[bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[]
[top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[]
[top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[]
[_dt]
type = TimestepSize
[]
[num_lin_it]
type = NumLinearIterations
[]
[num_nonlin_it]
type = NumNonlinearIterations
[]
[]
[BCs]
[side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[]
[bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[]
[top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[]
[top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[]
[]
[Materials]
[stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[]
[stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[]
[stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2 3 4 5 6 7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stuff2_strain]
type = ComputeFiniteStrain
block = '2 3 4 5 6 7'
[]
[stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2 3 4 5 6 7'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 1e-5'
line_search = 'none'
nl_abs_tol = 1e-7
start_time = 0.0
end_time = 0.3 # 3.5
l_tol = 1e-4
dt = 0.1
dtmin = 0.001
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[]
[y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[]
[cont_press]
type = NodalValueSampler
variable = frictionless_normal_lm
boundary = '3'
sort_by = id
[]
[friction]
type = NodalValueSampler
variable = frictionless_normal_lm
boundary = '3'
sort_by = id
[]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
exodus = false
csv = false
[console]
type = Console
max_rows = 5
[]
[chkfile]
type = CSV
show = 'x_disp y_disp cont_press friction'
file_base = cylinder_friction_check
create_final_symlink = true
execute_on = 'FINAL'
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 2
secondary_boundary = 3
primary_subdomain = 10000
secondary_subdomain = 10001
variable = frictionless_normal_lm
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
friction_lm = tangential_lm
mu = 0.4
c_t = 1.0e5
c = 1.0e6
[]
[x]
type = NormalMortarMechanicalContact
primary_boundary = '2'
secondary_boundary = '3'
primary_subdomain = '10000'
secondary_subdomain = '10001'
variable = frictionless_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[y]
type = NormalMortarMechanicalContact
primary_boundary = '2'
secondary_boundary = '3'
primary_subdomain = '10000'
secondary_subdomain = '10001'
variable = frictionless_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 2
secondary_boundary = 3
primary_subdomain = 10000
secondary_subdomain = 10001
variable = tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 2
secondary_boundary = 3
primary_subdomain = 10000
secondary_subdomain = 10001
variable = tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
(test/tests/postprocessors/element_integral_var_pps/initial_pps.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
elem_type = QUAD9
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 2.8
[../]
[../]
[./v]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 5.4
[../]
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[../]
[]
[Postprocessors]
[./initial_u]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = initial
[../]
[./initial_v]
type = ElementIntegralVariablePostprocessor
variable = v
execute_on = initial
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 0.3
[]
[Outputs]
file_base = out_initial_pps
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_ti.i)
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
nx = 10
dim = 1
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./rot_accel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_accel_x
first = false
[../]
[./rot_accel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_accel_y
first = false
[../]
[./rot_accel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_accel_z
first = false
[../]
[./rot_vel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_vel_x
[../]
[./rot_vel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_vel_y
[../]
[./rot_vel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_vel_z
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
# Time integrator
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.4225
gamma = 0.8
[../]
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
zeta = 0.1
alpha = -0.3
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
alpha = -0.3
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
alpha = -0.3
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
alpha = -0.3
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
alpha = -0.3
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
alpha = -0.3
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
alpha = -0.3
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_rayleigh_hht_out'
exodus = true
csv = true
perf_graph = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_4/brick4_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x59]
type = NodalVariableValue
nodeid = 58
variable = disp_x
[../]
[./disp_x64]
type = NodalVariableValue
nodeid = 63
variable = disp_x
[../]
[./disp_y59]
type = NodalVariableValue
nodeid = 58
variable = disp_y
[../]
[./disp_y64]
type = NodalVariableValue
nodeid = 63
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x59 disp_y59 disp_x64 disp_y64 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_file.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped masses at the ends of the beam.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass = 0.01899772 at the cantilever end
# mass = 2.0 at the fixed end (just for file testing purposes does not alter result)
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = 'left right'
beta = 0.25
gamma = 0.5
# nodal_mass_file = nodal_mass.csv # commented out for testing error message
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = 'left right'
beta = 0.25
gamma = 0.5
nodal_mass_file = nodal_mass.csv
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = 'left right'
beta = 0.25
gamma = 0.5
nodal_mass_file = nodal_mass.csv
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = dyn_euler_small_added_mass_out
exodus = true
csv = true
perf_graph = true
[]
(modules/chemical_reactions/test/tests/parser/equilibrium_action.i)
# Test AqueousEquilibriumReactions parser
[Mesh]
type = GeneratedMesh
dim = 2
[]
[Variables]
[./a]
[../]
[./b]
[../]
[]
[AuxVariables]
[./pressure]
[../]
[]
[ICs]
[./a]
type = BoundingBoxIC
variable = a
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./b]
type = BoundingBoxIC
variable = b
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[ReactionNetwork]
[./AqueousEquilibriumReactions]
primary_species = 'a b'
reactions = '2a = pa2 2,
(1.0)a + (1.0)b = pab -2'
secondary_species = 'pa2 pab'
pressure = pressure
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-12
end_time = 10
dt = 10
[]
[Outputs]
file_base = equilibrium_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(tutorials/darcy_thermo_mech/step03_darcy_material/tests/kernels/darcy_pressure/darcy_pressure.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First dot for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Materials]
[pressure]
type = ADGenericConstantMaterial
prop_values = '0.8451e-9 7.98e-4'
prop_names = 'permeability viscosity'
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/cohesive_zone_model/czm_patch_test_base.i)
# Patch test for cohesive zone modeling to check the jacobian of cohesive kernels and materials.
# One test of this kind should be included when adding a new traction separation law.
# To preperly check the cohesive zone Jacobian, the cohesive stiffness should be low compared to the bulk stiffness.
# Quadratic convergence is always expected.
[Mesh]
[./msh]
type = FileMeshGenerator
file = patch_mesh.e
[]
[./split]
type = BreakMeshByBlockGenerator
input = msh
[]
[./add_surfaces]
type = SideSetsFromNormalsGenerator
input = split
normals = '0 0 1
0 1 0
1 0 0
0 0 -1
0 -1 0
-1 0 0'
fixed_normal = true
new_boundary = 'z1 y1 x1 z0 y0 x0'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
use_finite_deform_jacobian = true
use_automatic_differentiation = true
[../]
[../]
[../]
[]
[Functions]
[./stretch]
type = PiecewiseLinear
x = '0 0.05'
y = '0 0.1'
[../]
[]
[Constraints]
[x1]
type = EqualValueBoundaryConstraint
variable = disp_x
secondary = 'x1' # boundary
penalty = 1e6
[]
[y1]
type = EqualValueBoundaryConstraint
variable = disp_y
secondary = 'y1' # boundary
penalty = 1e6
[]
[]
[BCs]
[./fix_x]
type = DirichletBC
preset = true
value = 0.0
boundary = 'x0'
variable = disp_x
[../]
[./fix_y]
type = DirichletBC
preset = true
value = 0.0
boundary = 'y0'
variable = disp_y
[../]
[./fix_z]
type = DirichletBC
preset = true
value = 0.0
boundary = 'z0'
variable = disp_z
[../]
[./back_z]
type = FunctionDirichletBC
boundary = 'z1'
variable = disp_z
use_displaced_mesh = true
function = stretch
[../]
[./rotate_x]
type = DisplacementAboutAxis
boundary = 'x0 y0 z0 x1 y1 z1'
function = '90.'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 1. 0.'
component = 0
variable = disp_x
angular_velocity = true
[../]
[./rotate_y]
type = DisplacementAboutAxis
boundary = 'x0 y0 z0 x1 y1 z1'
function = '90.'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 1. 0.'
component = 1
variable = disp_y
angular_velocity = true
[../]
[./rotate_z]
type = DisplacementAboutAxis
boundary = 'x0 y0 z0 x1 y1 z1'
function = '90.'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 1. 0.'
component = 2
variable = disp_z
angular_velocity = true
[../]
[]
[Controls]
[./c1]
type = TimePeriod
enable_objects = 'BCs::fix_x BCs::fix_y BCs::fix_z BCs::back_z Constraints::x1 Constraints::y1'
disable_objects = 'BCs::rotate_x BCs::rotate_y BCs::rotate_z'
start_time = '0'
end_time = '0.05'
[../]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[./czm_ik]
boundary = 'interface'
[../]
[]
[Materials]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ADComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[./czm_mat]
boundary = 'interface'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.025
end_time = 0.075
[]
[Postprocessors]
[./nonlin]
type = NumNonlinearIterations
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/dirackernels/material_point_source/material_error_check.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
[./material_source]
type = MaterialPointSource
variable = u
point = '0.2 0.3 0.0'
material_prop = 'diffusivity'
prop_state = 'old'
[../]
[]
[Materials]
[./stateful]
type = StatefulMaterial
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic/elastic_rotation_test.i)
#
# Rotation Test
#
# This test is designed to compute stress based on uniaxial strain
# and then follow that stress as the mesh is rotated 90 degrees.
#
# The mesh is composed of one block with a single element. The nodal
# displacements in the three directions are prescribed. Poisson's
# ratio is 1/3, and Young's modulus is 1e6.
#
# This test is mentioned in
# K. Kamojjala, R. Brannon, A. Sadeghirad, and J. Guilkey, "Verification
# tests in solid mechanics," Engineering with Computers, Vol. 31, 2015.
# DOI: 10.1007/s00366-013-0342-x
#
[Mesh]
type = FileMesh
file = rotation_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./x_200]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2*(t-t0)) - 1.0)'
[../]
[./y_200]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, (1.0+delta)*sin(pi/2*(t-t0)))'
[../]
[./x_300]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2.0*(t-t0)) - sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./y_300]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) + (1+delta)*sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./x_400]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, -sin(pi/2.0*(t-t0)))'
[../]
[./y_400]
type = ParsedFunction
vars = 'delta t0'
vals = '1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) - 1.0)'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[../]
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./x_200]
type = FunctionDirichletBC
variable = disp_x
boundary = 200
function = x_200
[../]
[./y_200]
type = FunctionDirichletBC
variable = disp_y
boundary = 200
function = y_200
[../]
[./x_300]
type = FunctionDirichletBC
variable = disp_x
boundary = 300
function = x_300
[../]
[./y_300]
type = FunctionDirichletBC
variable = disp_y
boundary = 300
function = y_300
[../]
[./x_400]
type = FunctionDirichletBC
variable = disp_x
boundary = 400
function = x_400
[../]
[./y_400]
type = FunctionDirichletBC
variable = disp_y
boundary = 400
function = y_400
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '100 200 300 400'
value = 0.0
[../]
[]
[Materials]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.5e6 0.75e6 0.75e6 1.5e6 0.75e6 1.5e6 0.375e6 0.375e6 0.375e6'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type '
petsc_options_value = lu
nl_rel_tol = 1e-30
nl_abs_tol = 1e-20
l_max_its = 20
start_time = 0.0
dt = 0.01
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/multilevel/dt_from_sub_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = dt_from_sub_sub.i
[../]
[]
(test/tests/misc/execute_on/execute_on_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[AuxVariables]
[./initial]
[../]
[./timestep_begin]
[../]
[./timestep_end]
[../]
[./nonlinear]
[../]
[./linear]
[../]
[./custom]
initial_condition = 999
[../]
[]
[AuxKernels]
[./initial]
type = CheckCurrentExecAux
variable = initial
execute_on = initial
[../]
[./timestep_begin]
type = CheckCurrentExecAux
variable = timestep_begin
execute_on = timestep_begin
[../]
[./timestep_end]
type = CheckCurrentExecAux
variable = timestep_end
execute_on = timestep_end
[../]
[./nonlinear]
type = CheckCurrentExecAux
variable = nonlinear
execute_on = nonlinear
[../]
[./linear]
type = CheckCurrentExecAux
variable = linear
execute_on = linear
[../]
[./custom]
# this kernel will be never executed by Steady, so the initial value of this variable is not going to change
type = CheckCurrentExecAux
variable = custom
execute_on = custom
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_kernel]
type = FunctionAux
function = x*y
variable = u_aux
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
xda = true
[./xdr]
type = XDR
[../]
[]
(test/tests/mesh_modifiers/mesh_extruder/extrude_remap_layer1.i)
[Mesh]
[file]
type = FileMeshGenerator
file = multiblock.e
[]
[extrude]
type = MeshExtruderGenerator
input = file
num_layers = 6
extrusion_vector = '0 0 2'
bottom_sideset = 'new_bottom'
top_sideset = 'new_top'
# Remap layers
existing_subdomains = '1 2 5'
layers = '1 3 5'
new_ids = '10 12 15
30 32 35
50 52 55'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = 'new_bottom'
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = 'new_top'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_interpolation_transfer/fromsub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = .21
xmax = .79
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./disp_x]
initial_condition = -0.4
[../]
[./disp_y]
[../]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./x_func]
type = ParsedFunction
value = x
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./x_func_aux]
type = FunctionAux
variable = elemental
function = x_func
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/quad_sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef= 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./pp]
type = Receiver
default = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/power_law_hardening/PowerLawHardening.i)
# This is a test of the isotropic power law hardening constitutive model.
# In this problem, a single Hex 8 element is fixed at the bottom and pulled at the top
# at a constant rate of 0.1.
# Before yield, stress = strain (=0.1*t) as youngs modulus is 1.0.
# The yield stress for this problem is 0.25 ( as strength coefficient is 0.5 and strain rate exponent is 0.5).
# Therefore, the material should start yielding at t = 2.5 seconds and then follow stress = K *pow(strain,n) or
# stress ~ 0.5*pow(0.1*t,0.5).
#
# This tensor mechanics version of the power law hardening plasticity model matches
# the solid mechanics version for this toy problem under exodiff limits
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[AuxVariables]
[./total_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t*(0.1)
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
generate_output = 'stress_yy'
[]
[]
[AuxKernels]
[./total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.3
[../]
[./power_law_hardening]
type = IsotropicPowerLawHardeningStressUpdate
strength_coefficient = 0.5 #K
strain_hardening_exponent = 0.5 #n
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_hardening'
tangent_operator = elastic
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_snes_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 5.0
dt = 0.25
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = total_strain_yy
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/misc/check_error/dirac_kernel_with_aux_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rea]
type = Reaction
variable = u
[../]
[]
[DiracKernels]
[./nope]
type = CachingPointSource
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./right_bc]
# Flux BC for computing the analytical solution in the postprocessor
type = ParsedFunction
value = exp(y)+1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = right
function = right_bc
[../]
[]
[Materials]
[./mat_props]
type = GenericConstantMaterial
block = 0
prop_names = diffusivity
prop_values = 2
[../]
[./mat_props_bnd]
type = GenericConstantMaterial
boundary = right
prop_names = diffusivity
prop_values = 1
[../]
[./mat_props_vector]
type = GenericConstantVectorMaterial
boundary = 'right top'
prop_names = diffusivity_vec
prop_values = '1 1.5 1'
[../]
[]
[Postprocessors]
inactive = 'avg_flux_top'
[./avg_flux_right]
# Computes -\int(exp(y)+1) from 0 to 1 which is -2.718281828
type = SideDiffusiveFluxIntegral
variable = u
boundary = right
diffusivity = diffusivity
[../]
[./avg_flux_top]
type = SideVectorDiffusivityFluxIntegral
variable = u
boundary = top
diffusivity = diffusivity_vec
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/console/multiapp/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
(test/tests/meshgenerators/patch_mesh_generator/patch_mesh_generator.i)
[Mesh]
[./patch]
type = PatchMeshGenerator
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
end_time = 1.0
dt = 1.0
[]
[Outputs]
file_base = patch_out.e
exodus = true
[]
(modules/tensor_mechanics/test/tests/line_material_rank_two_sampler/rank_two_scalar_sampler.i)
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
elem_type = HEX
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = 1e-6
[../]
[]
[Variables]
[./x_disp]
order = FIRST
family = LAGRANGE
[../]
[./y_disp]
order = FIRST
family = LAGRANGE
[../]
[./z_disp]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
[../]
[]
[VectorPostprocessors]
[./vonmises]
type = LineMaterialRankTwoScalarSampler
start = '0.1667 0.4 0.45'
end = '0.8333 0.6 0.55'
property = stress
scalar_type = VonMisesStress
sort_by = id
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[BCs]
[./front]
type = FunctionDirichletBC
variable = z_disp
boundary = 5
function = rampConstant
[../]
[./back_x]
type = DirichletBC
variable = x_disp
boundary = 0
value = 0.0
[../]
[./back_y]
type = DirichletBC
variable = y_disp
boundary = 0
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = z_disp
boundary = 0
value = 0.0
[../]
[]
[Materials]
[./elast_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = .3
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
start_time = 0.0
num_steps = 99999
end_time = 1.0
dt = 0.1
[]
[Outputs]
file_base = rank_two_scalar_sampler_out
exodus = true
csv = true
[]
(test/tests/misc/check_error/bad_parsed_function_vars.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
nz = 2
[]
[Variables]
[./u]
block = 0
[../]
[]
[Functions]
[./sin_func]
type = ParsedFunction
value = sin(y)
vars = y # <- This is a bad - you can't specify x, y, z, or t
vals = 0
[../]
[]
[Kernels]
[./diffused]
type = Diffusion
variable = u
block = 0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = sin_func
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/level_set/test/tests/transfers/markers/single_level/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./marker]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = LevelSetReinitializationProblem
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
execute_on = FINAL
[../]
[]
(modules/porous_flow/test/tests/relperm/unity.i)
# Test perfectly mobile relative permeability curve by varying saturation over the mesh
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[kr1]
type = PorousFlowRelativePermeabilityConst
phase = 1
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-8
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/auxkernels/bounds/old_value_bounds.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./bounds_dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 1
[../]
[]
[Bounds]
[./u_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = u
bound_type = upper
bound_value = 1
[../]
[./u_lower_bound]
type = VariableOldValueBoundsAux
variable = bounds_dummy
bounded_variable = u
bound_type = lower
[../]
[./v_upper_bound]
type = ConstantBoundsAux
variable = bounds_dummy
bounded_variable = v
bound_type = upper
bound_value = 3
[../]
[./v_lower_bound]
type = VariableOldValueBoundsAux
variable = bounds_dummy
bounded_variable = v
bound_type = lower
[../]
[]
[Executioner]
type = Transient
num_steps = 2
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/orthotropic_rotation_Cijkl.i)
# This test is designed to test the correct application of the Euler angle
# rotations to the elasticity tensor. The test uses values for the nine C_ijkl
# entries that correspond to the engineering notation placement:
# e.g. C11 = 11e3, c12 = 12e3, c13 = 13e3, c22 = 22e3 ..... c66 = 66e3
#
# A rotation of (0, 90, 0) is applied to the 1x1x1 cube, such that the values of
# c12 and c13 switch, c22 and c33 switch, and c55 and c66 switch. Postprocessors
# are used to verify this switch (made simple with the value convention above)
# and to verify that the unrotated components along the x-axis remain constant.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./lage_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./pk2_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./lage_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./c11]
order = CONSTANT
family = MONOMIAL
[../]
[./c12]
order = CONSTANT
family = MONOMIAL
[../]
[./c13]
order = CONSTANT
family = MONOMIAL
[../]
[./c22]
order = CONSTANT
family = MONOMIAL
[../]
[./c23]
order = CONSTANT
family = MONOMIAL
[../]
[./c33]
order = CONSTANT
family = MONOMIAL
[../]
[./c44]
order = CONSTANT
family = MONOMIAL
[../]
[./c55]
order = CONSTANT
family = MONOMIAL
[../]
[./c66]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[AuxKernels]
[./lage_xx]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./lage_yy]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./pk2_yy]
type = RankTwoAux
variable = pk2_yy
rank_two_tensor = pk2
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./lage_zz]
type = RankTwoAux
rank_two_tensor = lage
variable = lage_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./c11]
type = RankFourAux
variable = c11
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 0
index_l = 0
execute_on = timestep_end
[../]
[./c12]
type = RankFourAux
variable = c12
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c13]
type = RankFourAux
variable = c13
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 0
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c22]
type = RankFourAux
variable = c22
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 1
index_l = 1
execute_on = timestep_end
[../]
[./c23]
type = RankFourAux
variable = c23
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 1
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c33]
type = RankFourAux
variable = c33
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 2
index_k = 2
index_l = 2
execute_on = timestep_end
[../]
[./c44]
type = RankFourAux
variable = c44
rank_four_tensor = elasticity_tensor
index_i = 1
index_j = 2
index_k = 1
index_l = 2
execute_on = timestep_end
[../]
[./c55]
type = RankFourAux
variable = c55
rank_four_tensor = elasticity_tensor
index_i = 2
index_j = 0
index_k = 2
index_l = 0
execute_on = timestep_end
[../]
[./c66]
type = RankFourAux
variable = c66
rank_four_tensor = elasticity_tensor
index_i = 0
index_j = 1
index_k = 0
index_l = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '11e3 12e3 13e3 22e3 23e3 33e3 44e3 55e3 66e3'
fill_method = symmetric9
euler_angle_1 = 0.0
euler_angle_2 = 45.0
euler_angle_3 = 45.0
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8' #strength units in MPa
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Postprocessors]
[./lage_xx]
type = ElementAverageValue
variable = lage_xx
[../]
[./pk2_yy]
type = ElementAverageValue
variable = pk2_yy
[../]
[./lage_yy]
type = ElementAverageValue
variable = lage_yy
[../]
[./lage_zz]
type = ElementAverageValue
variable = lage_zz
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./c11]
type = ElementAverageValue
variable = c11
[../]
[./c12]
type = ElementAverageValue
variable = c12
[../]
[./c13]
type = ElementAverageValue
variable = c13
[../]
[./c22]
type = ElementAverageValue
variable = c22
[../]
[./c23]
type = ElementAverageValue
variable = c23
[../]
[./c33]
type = ElementAverageValue
variable = c33
[../]
[./c44]
type = ElementAverageValue
variable = c44
[../]
[./c55]
type = ElementAverageValue
variable = c55
[../]
[./c66]
type = ElementAverageValue
variable = c66
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-3
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 1 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
dtmax = 0.1
dtmin = 1.0e-3
dt = 0.05
end_time = 0.5
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/variables/curvilinear_element/curvilinear_element_test.i)
[Mesh]
file = curvi.e
# This mesh only has one element. It does seem to work if you
# use ReplicatedMesh on two processors, but it hangs with DistributedMesh
# on two processors.
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./integral]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/volumetric_deform_grad/volumetric_strain_interface.i)
#This test has volumetric deformation gradient as identity
#Test the interface
#Results should match with elasticity
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./volumetric_strain]
type = ComputeVolumetricDeformGrad
pre_deform_grad_name = deformation_gradient
volumetric_deform_grad_name = volumetric_deformation_gradient
post_deform_grad_name = elastic_deformation_gradient
block = 0
[../]
[./elastic_stress]
type = ComputeDeformGradBasedStress
deform_grad_name = elastic_deformation_gradient
elasticity_tensor_name = elasticity_tensor
stress_name = elastic_stress
jacobian_name = elastic_jacobian
block = 0
[../]
[./corrected_stress]
type = VolumeDeformGradCorrectedStress
pre_stress_name = elastic_stress
deform_grad_name = volumetric_deformation_gradient
pre_jacobian_name = elastic_jacobian
stress_name = stress
jacobian_name = Jacobian_mult
block = 0
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
csv = true
[]
(test/tests/executioners/eigen_executioners/ne_deficient_b.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
eigen = true
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./rhs]
type = CoupledEigenKernel
variable = u
v = v
[../]
[./src_v]
type = CoupledForce
variable = v
v = u
[../]
[]
[BCs]
[./homogeneous_u]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./homogeneous_v]
type = DirichletBC
variable = v
boundary = '0 1 2 3'
value = 0
[../]
[]
[Executioner]
type = NonlinearEigen
bx_norm = 'vnorm'
free_power_iterations = 2
nl_abs_tol = 1e-12
nl_rel_tol = 1e-50
k0 = 1.0
output_after_power_iterations = false
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Postprocessors]
[./vnorm]
type = ElementIntegralVariablePostprocessor
variable = v
# execute on residual is important for nonlinear eigen solver!
execute_on = linear
[../]
[./udiff]
type = ElementL2Diff
variable = u
outputs = console
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ne_deficient_b
exodus = true
[]
(test/tests/kernels/simple_transient_diffusion/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/transient_multiapp/dt_from_multi_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/nodal_area/nodal_area_2D.i)
[Mesh]
file = nodal_area_2D.e
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./nodal_area]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./dummy]
type = Diffusion
variable = dummy
[../]
[]
[UserObjects]
[./nodal_area]
type = NodalArea
variable = nodal_area
boundary = 1
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./dummy]
type = DirichletBC
variable = dummy
boundary = 1
value = 100
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_abs_tol = 1e-11
nl_rel_tol = 1e-10
l_max_its = 20
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_01.i)
# unsaturated = false
# gravity = false
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[AuxVariables]
[./RFUF_Residual]
[../]
[./RFUF_Jacobian]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
richardsVarNames_UO = PPNames
variable = pressure
save_in = RFUF_Residual
diag_save_in = RFUF_Jacobian
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_01
[./Exodus]
hide = 'RFUF_Residual RFUF_Jacobian'
type = Exodus
[../]
[]
(test/tests/geomsearch/quadrature_nearest_node_locator/qnnl_ad.i)
[Mesh]
file = 2dcontact_collide.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./distance]
order = CONSTANT
family = MONOMIAL
[../]
[disp_x][]
[disp_y][]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./distance]
type = NearestNodeDistanceAux
variable = distance
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
file_base = qnnl_ad
[]
(test/tests/interfacekernels/ad_coupled_value/coupled.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 20
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[]
[Variables]
[./u]
block = '0'
[../]
[./v]
block = '1'
[../]
[w][]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
block = 0
[../]
[./diff_v]
type = Diffusion
variable = v
block = 1
[../]
[diff_w]
type = Diffusion
variable = w
[]
[]
[InterfaceKernels]
[./interface]
type = ADCoupledInterfacialSource
variable = u
neighbor_var = v
var_source = w
boundary = primary0_interface
D = 1
D_neighbor = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 10
[../]
[./middle]
type = MatchedValueBC
variable = v
boundary = 'primary0_interface'
v = u
[../]
[w_left]
type = DirichletBC
variable = w
boundary = 'left'
value = 0
[]
[w_right]
type = DirichletBC
variable = w
boundary = 'right'
value = 4
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/pressure_bc/2d_pressure_displaced_mesh.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.0 0.5 1.0 0.5'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
planar_formulation = PLANE_STRAIN
generate_output = 'stress_xx stress_yy'
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0 1.0'
y = '500 500'
[../]
[./bc_func_tx]
type = ParsedFunction
value = '0.5-(0.5-x)*cos(pi*t/2.0)-x'
[../]
[./bc_func_ty]
type = ParsedFunction
value = '(0.5-x)*sin(pi*t/2.0)+0.5'
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
boundary = 0
preset = false
variable = disp_y
value = 0.0
[../]
[./bottom_x]
type = DirichletBC
boundary = 0
preset = false
variable = disp_x
value = 0.0
[../]
[./top_right_y]
type = FunctionDirichletBC
boundary = 2
preset = false
variable = disp_y
function = bc_func_ty
[../]
[./top_right_x]
type = FunctionDirichletBC
boundary = 2
preset = false
variable = disp_x
function = bc_func_tx
[../]
[]
[DiracKernels]
[./pressure_x]
type = XFEMPressure
variable = disp_x
component = 0
function = pressure
use_displaced_mesh = true
[../]
[./pressure_y]
type = XFEMPressure
variable = disp_y
component = 1
function = pressure
use_displaced_mesh = true
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-14
# time control
start_time = 0.0
dt = 0.1
end_time = 1.0
[]
[Outputs]
file_base = 2d_pressure_displaced_mesh_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3qns.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3q.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.025
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3qns_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain_disp.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0 -0.5 0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'z'
variable = 'u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./fix_y]
type = DirichletBC
boundary = bottom
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[./appl_y]
type = DirichletBC
boundary = top
variable = u_y
value = 0.033
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '7 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-6
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/special/patch.i)
[Mesh]
[base]
type = FileMeshGenerator
file = 'patch.xda'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right bottom top back front'
points = ' 0 0.5 0.5
1 0.5 0.5
0.5 0.0 0.5
'
' 0.5 1.0 0.5
0.5 0.5 0.0
0.5 0.5 1.0'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
base_name = "whatever"
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = whatever_cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = whatever_mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[front]
type = DirichletBC
preset = true
variable = disp_z
boundary = front
value = 0.1
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
elasticity_tensor = whatever_elasticity_tensor
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
dtmin = 1.0
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/rogers_stallybrass_clements/rsc_fu_02.i)
# RSC test with low-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 200
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-2 5E-1 8E-1'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFullyUpwindFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc_fu_02
interval = 100000
execute_on = 'initial timestep_end final'
exodus = true
[]
(test/tests/multiapps/override_cliargs/sub.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
value = 0
boundary = left
[]
[right]
type = DirichletBC
variable = u
value = 1
boundary = left
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[integral]
type = ElementIntegralVariablePostprocessor
variable = u
[]
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test7.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[./SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gmg
block_id = 1
bottom_left = '0 0 0'
top_right = '1 1 1'
[../]
[./SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '2 2 0'
top_right = '3 3 1'
[../]
[./ed0]
type = BlockDeletionGenerator
block = 1
input = SubdomainBoundingBox2
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/from_one_sub_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./sub_average]
type = Receiver
[../]
[./sub_sum]
type = Receiver
[../]
[./sub_maximum]
type = Receiver
[../]
[./sub_minimum]
type = Receiver
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '0.2 0.2 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub0.i'
[../]
[]
[Transfers]
[./pp_transfer_ave]
type = MultiAppPostprocessorTransfer
reduction_type = average
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_average
[../]
[./pp_transfer_sum]
type = MultiAppPostprocessorTransfer
reduction_type = sum
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_sum
[../]
[./pp_transfer_min]
type = MultiAppPostprocessorTransfer
reduction_type = minimum
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_minimum
[../]
[./pp_transfer_max]
type = MultiAppPostprocessorTransfer
reduction_type = maximum
from_multi_app = sub
from_postprocessor = average
to_postprocessor = sub_maximum
[../]
[]
(test/tests/fvkernels/fv_coupled_var/coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 2
[]
[Variables]
[u][]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[w]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[s][]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[rxn]
type = Reaction
variable = u
rate = 2.0
[]
[diffs]
type = Diffusion
variable = s
[]
[prod]
type = CoupledForce
variable = s
v = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[rxn]
type = FVReaction
variable = v
rate = 2.0
[]
[diffw]
type = FVDiffusion
variable = w
coeff = coeff
[]
[prod]
type = FVCoupledForce
variable = w
v = 'v'
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 1
[]
[leftw]
type = FVDirichletBC
variable = w
boundary = left
value = 0
[]
[rightw]
type = FVDirichletBC
variable = w
boundary = right
value = 1
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[lefts]
type = DirichletBC
variable = s
boundary = left
value = 0
[]
[rights]
type = DirichletBC
variable = s
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/nl_forced_its/nl_forced_its.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
scaling = 1e-5
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1000
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 100000
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
line_search = 'none'
solve_type = PJFNK
l_max_its = 20
nl_max_its = 20
nl_forced_its = 2
nl_abs_div_tol = 1e+3
dt = 1
num_steps = 2
petsc_options = '-snes_converged_reason -ksp_converged_reason '
petsc_options_iname = '-pc_type -pc_hypre_type '
petsc_options_value = 'hypre boomeramg'
[]
(modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZLinearConstant.i)
#
# This test checks whether the ComputeReducedOrderEigenstrain is functioning properly.
#
# If instead of 'fred', 'thermal_eigenstrain' is given to
# eigenstrain_names in the Modules/TensorMechanics/Master/all block, the output will be
# identical since the thermal strain is constant in the elements.
#
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
xmax = 3
xmin = 1
ymax = 1
ymin = 0
[]
[Functions]
[./tempBC]
type = ParsedFunction
value = '700+2*t*t'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 700
[../]
[]
[AuxVariables]
[./hydro_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./hydro_first]
order = FIRST
family = MONOMIAL
[../]
[./hydro_second]
order = SECOND
family = MONOMIAL
[../]
[./sxx_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./sxx_first]
order = FIRST
family = MONOMIAL
[../]
[./sxx_second]
order = SECOND
family = MONOMIAL
[../]
[./szz_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./szz_first]
order = FIRST
family = MONOMIAL
[../]
[./szz_second]
order = SECOND
family = MONOMIAL
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
temperature = temp
eigenstrain_names = 'fred' #'thermal_eigenstrain'
[../]
[../]
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./hydro_constant_aux]
type = RankTwoScalarAux
variable = hydro_constant
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_first_aux]
type = RankTwoScalarAux
variable = hydro_first
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./hydro_second_aux]
type = RankTwoScalarAux
variable = hydro_second
rank_two_tensor = stress
scalar_type = Hydrostatic
[../]
[./sxx_constant_aux]
type = RankTwoAux
variable = sxx_constant
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_first_aux]
type = RankTwoAux
variable = sxx_first
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./sxx_second_aux]
type = RankTwoAux
variable = sxx_second
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./szz_constant_aux]
type = RankTwoAux
variable = szz_constant
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_first_aux]
type = RankTwoAux
variable = szz_first
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./szz_second_aux]
type = RankTwoAux
variable = szz_second
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./temp_right]
type = FunctionDirichletBC
variable = temp
boundary = right
function = tempBC
[../]
[./temp_left]
type = FunctionDirichletBC
variable = temp
boundary = left
function = tempBC
[../]
[]
[Materials]
[./fuel_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0
[../]
[./fuel_thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = temp
stress_free_temperature = 700.0
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./reduced_order_eigenstrain]
type = ComputeReducedOrderEigenstrain
input_eigenstrain_names = 'thermal_eigenstrain'
eigenstrain_name = 'fred'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
dt = 1
num_steps = 10
nl_rel_tol = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
[]
(modules/peridynamics/test/tests/simple_tests/2D_irregularD_variableH_OSPD.i)
# Test for ordinary state-based peridynamic formulation
# for irregular grid from file mesh with varying bond constants
# partial Jacobian
# Jacobian from bond-based formulation is used for preconditioning
# Square plate with Dirichlet boundary conditions applied
# at the left, top and bottom edges
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./fmg]
type = FileMeshGenerator
file = square.e
[../]
[./gpd]
type = MeshGeneratorPD
input = fmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1001
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1004
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1002
function = '-0.001 * t'
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = ORDINARY_STATE
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.0
[../]
[./force_density]
type = ComputeSmallStrainVariableHorizonMaterialOSPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
end_time = 1
[]
[Outputs]
file_base = 2D_irregularD_variableH_OSPD
exodus = true
[]
(modules/chemical_reactions/test/tests/solid_kinetics/2species_without_action.i)
# Simple reaction-diffusion example without using the action.
# In this example, two primary species a and b diffuse towards each other from
# opposite ends of a porous medium, reacting when they meet to form a mineral
# precipitate
# This simulation is identical to 2species.i, but explicitly includes the AuxVariables,
# AuxKernels, and Kernels that the action in 2species.i adds
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 40
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[./b]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[]
[AuxVariables]
[./mineral]
[../]
[]
[AuxKernels]
[./mineral_conc]
type = KineticDisPreConcAux
variable = mineral
e_act = 1.5e4
r_area = 1
log_k = -6
ref_kconst = 1e-8
gas_const = 8.314
ref_temp = 298.15
sys_temp = 298.15
sto_v = '1 1'
v = 'a b'
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_pd]
type = PrimaryDiffusion
variable = a
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_pd]
type = PrimaryDiffusion
variable = b
[../]
[./a_r]
type = CoupledBEKinetic
variable = a
v = mineral
weight = 1
[../]
[./b_r]
type = CoupledBEKinetic
variable = b
v = mineral
weight = 1
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
preset = false
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = DirichletBC
variable = a
preset = false
boundary = right
value = 0
[../]
[./b_left]
type = DirichletBC
variable = b
preset = false
boundary = left
value = 0
[../]
[./b_right]
type = DirichletBC
variable = b
preset = false
boundary = right
value = 1.0e-2
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '5e-4 4e-3 0.4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 50
dt = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
(test/tests/multiapps/multilevel/dt_from_sub_subsub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_coupled_scaled.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./T]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./power]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
mat_prop = diffusion
offset = 0.0
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./diff_T]
type = Diffusion
variable = T
[../]
[./src_T]
type = CoupledForce
variable = T
v = power
[../]
[]
[AuxKernels]
[./power_ak]
type = NormalizationAux
variable = power
source_variable = u
normalization = unorm
# this coefficient will affect the eigenvalue.
normal_factor = 10
execute_on = linear
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigenU]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[]
[Materials]
[./dc]
type = VarCouplingMaterial
var = T
block = 0
base = 1.0
coef = 1.0
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
# Postprocessor value to normalize
normalization = unorm
# Value to set normilization to
normal_factor = 17
[]
[Postprocessors]
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/visco/burgers_creep.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./burgers]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = burgers
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-10
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = burgers_creep_out
exodus = true
[]
(test/tests/mesh/mixed_dim/1d_3d.i)
[Mesh]
file = 1d_3d.e
# 1d_3d.e contains HEX8 and BEAM2 elements - no additional input file
# changes are necessary to handle mixed-dim meshes.
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 4
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 100
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 101
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = 1d_3d_out
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_radiation/gap_heat_transfer_radiation_test.i)
#
# 1-D Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a helium-filled gap including radiation.
#
# The mesh consists of two element blocks containing one element each. Each
# element is a unit cube. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far left boundary
# is ramped from 100 to 200 over one time unit, and then held fixed for an additional
# time unit. The temperature of the far right boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks:
#
# Flux = (T_left - T_right) * h_gap
#
# where h_gap = h_gas + h_cont + h_rad
#
# By setting the contact pressure, roughnesses, and jump distances to zero, the gap
# conductance simplifies to:
#
# h_gap = gapK/d_gap + sigma*Fe*(T_left^2 + T_right^2)*(T_left + T_right)
#
# where Fe = 1/(1/eps_left + 1/eps_right - 1)
# eps = emissivity
#
# For pure helium, BISON computes the gas conductivity as:
#
# gapK(Tavg) = 2.639e-3*Tavg^0.7085
#
# For the test, the final (t=2) average gas temperature is (200 +100)/2 = 150,
# giving gapK(150) = 0.09187557
#
# Assuming ems_left = ems_right = 0.5, Fe = 1/3
#
# The heat flux across the gap at that time is then:
#
# Flux(2) = 100 * ((0.09187557/1.0) + (5.669e-8/3)*(200^2 + 100^2)*(200 + 100))
# = 37.532557
#
# The flux post processors give 37.53255
#
[Mesh]
file = gap_heat_transfer_radiation_test.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '200 200'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[ThermalContact]
[./gap]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
gap_conductivity = 0.09187557
emissivity_primary = 0.5
emissivity_secondary = 0.5
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 10000000.0
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_abs_tol = 1e-6
nl_rel_tol = 1e-10
l_tol = 1e-3
l_max_its = 100
start_time = 0.0
dt = 1
end_time = 1.0
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/grid-sequencing/fine.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 40
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[./diff]
type = Diffusion
variable = u
[../]
[rxn]
type = Reaction
variable = u
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 1
solve_type = 'PJFNK'
petsc_options = '-snes_monitor_solution'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./coarse]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = coarse.i
[../]
[]
[Transfers]
[./mesh_function_begin]
type = MultiAppMeshFunctionTransfer
from_multi_app = coarse
source_variable = u
variable = u
execute_on = timestep_begin
[../]
[]
(modules/stochastic_tools/test/tests/surrogates/pod_rb/boundary/sub.i)
[Problem]
type = FEProblem
extra_tag_vectors = 'diff react bodyf dir_src dir_imp'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 15
xmax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = k
extra_vector_tags = 'diff'
[]
[reaction]
type = MaterialReaction
variable = u
coefficient = alpha
extra_vector_tags = 'react'
[]
[source]
type = BodyForce
variable = u
value = 1.0
extra_vector_tags = 'bodyf'
[]
[]
[Materials]
[k]
type = GenericConstantMaterial
prop_names = k
prop_values = 1.0
[]
[alpha]
type = GenericConstantMaterial
prop_names = alpha
prop_values = 1.0
[]
[]
[BCs]
[dummy_1]
type = DirichletBC
variable = u
boundary = left
value = 0
extra_vector_tags = 'dir_imp'
[]
[dummy_2]
type = DirichletBCModifier
variable = u
boundary = left
value = 1
extra_vector_tags = 'dir_src'
[]
[left]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(test/tests/outputs/iterative/iterative_steady_sequence.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
execute_on = 'initial timestep_end failed nonlinear linear'
sequence = true
[../]
[]
(modules/porous_flow/test/tests/gravity/grav01d.i)
# Test illustrating that PorousFlow allows block-restricted relative permeabilities and capillarities
# and automatically adds appropriate Joiners.
# Physically, this test is checking that gravity head is established
# for 1phase, vanGenuchten, constant fluid-bulk, constant viscosity, constant permeability, Corey relative perm
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[define_block1]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '-1 -1 -1'
top_right = '-0.5 1 1'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = -1
max = 1
[]
[]
[]
[Kernels]
[dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 2 -1 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = -1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc_0]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[pc_1]
type = PorousFlowCapillaryPressureVG
m = 0.6
alpha = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss_0]
type = PorousFlow1PhaseP
block = 0
porepressure = pp
capillary_pressure = pc_0
[]
[ppss_1]
type = PorousFlow1PhaseP
block = 1
porepressure = pp
capillary_pressure = pc_1
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm_0]
type = PorousFlowRelativePermeabilityCorey
block = 0
n = 1
phase = 0
[]
[relperm_1]
type = PorousFlowRelativePermeabilityCorey
block = 1
n = 2
phase = 0
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
active = andy
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E6
end_time = 1E6
[]
[Outputs]
execute_on = 'timestep_end'
file_base = grav01d
csv = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/cp_slip_rate_integ/crysp_linesearch.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[./disp_z]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.0001*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCPSlipRateRes
block = 0
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.01 5 8 0.001 0.01 9 12 0.001 0.01'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
slip_incr_tol = 1
maximum_substep_iteration = 12
use_line_search = true
rtol = 1e-8
abs_tol = 1e-12
line_search_method = 'BISECTION'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 10
dtmin = 0.05
dtmax = 1e4
num_steps = 10
[]
[Outputs]
file_base = crysp_linesearch_out
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(modules/richards/test/tests/recharge_discharge/rd02.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 120
ny = 1
xmin = 0
xmax = 6
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-2 1 10 500 5000 50000'
x = '0 10 100 1000 10000 500000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1E3
bulk_mod = 2E7
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.336
al = 1.43E-4
[../]
[./RelPermPower]
type = RichardsRelPermVG1
scut = 0.99
simm = 0.0
m = 0.336
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E+0
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[BCs]
active = 'fix_bot'
[./fix_bot]
type = DirichletBC
variable = pressure
boundary = 'left'
value = 0.0
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.33
mat_permeability = '0.295E-12 0 0 0 0.295E-12 0 0 0 0.295E-12'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1.01E-3
gravity = '-10 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-13 1E-15 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 345600
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rd02
interval = 100000
execute_on = 'initial final'
exodus = true
[]
(modules/combined/test/tests/beam_eigenstrain_transfer/subapp_err_4.i)
# SubApp with 2D model to test multi app vectorpostprocessor to aux var transfer
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.1 0.0'
variable = axial_strain
num_points = 21
sort_by = 'id'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
(test/tests/constraints/equal_value_boundary_constraint/equal_value_boundary_constraint_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
elem_type = QUAD4
allow_renumbering = false
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = diffused
preset = false
boundary = 'left'
value = 1.0
[../]
[./right]
type = DirichletBC
variable = diffused
preset = false
boundary = 'right'
value = 0.0
[../]
[]
# Constraint System
[Constraints]
[./y_top]
type = EqualValueBoundaryConstraint
variable = diffused
primary = '45' # node on boundary
secondary = 'top' # boundary
penalty = 10e6
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = ''
petsc_options_value = ''
line_search = 'none'
[]
[Postprocessors]
active = ' '
[./residual]
type = Residual
[../]
[./nl_its]
type = NumNonlinearIterations
[../]
[./lin_its]
type = NumLinearIterations
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
exodus = true
[]
(test/tests/test_harness/csv_validation_tester_01.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmax = 3
[]
[Functions]
[./fn]
type = PiecewiseLinear
axis = x
x = '0 2'
y = '1.01 2.99'
[../]
[]
[AuxVariables]
[./a]
[../]
[]
[AuxKernels]
[./a_ak]
type = FunctionAux
variable = a
function = fn
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./value1]
type = PointValue
variable = a
point = '0 0 0'
[../]
[./value2]
type = PointValue
variable = a
point = '1 0 0'
[../]
[./value3]
type = PointValue
variable = a
point = '2 0 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.1
solve_type = NEWTON
[]
[Outputs]
[./csv]
type = CSV
file_base = csv_validation_tester_01
execute_on = 'final'
[../]
[]
(test/tests/restart/restart_add_variable/add_variable_restart.i)
# Use the exodus file for restarting the problem:
# - restart one variable
# - and have one extra variable
# - have PBP active to have more system in Equation system
#
[Mesh]
file = transient_with_stateful_out.e
[]
[Functions]
[./exact_fn]
type = ParsedFunction
value = t*((x*x)+(y*y))
[../]
[./forcing_fn]
type = ParsedFunction
value = -4+(x*x+y*y)
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./diffusivity]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./out_diffusivity]
type = MaterialRealAux
variable = diffusivity
property = diffusivity
[../]
[]
[Kernels]
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = diffusivity
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[Materials]
[./mat]
type = StatefulMaterial
block = 0
[../]
[]
[BCs]
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = '3'
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 1
[../]
[]
[Preconditioning]
[./PBP]
type = PBP
solve_order = 'u v'
preconditioner = 'AMG AMG'
[../]
[]
[Executioner]
type = Transient
solve_type = JFNK
dt = 0.1
reset_dt = true #NECESSARY to force a change in DT when using restart!
num_steps = 3
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
execute_elemental_on = none
[../]
[]
[Problem]
restart_file_base = transient_with_stateful_out_cp/LATEST
[]
(modules/richards/test/tests/recharge_discharge/rd03.i)
[Mesh]
file = gold/rd02.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '2E4 1E6'
x = '0 1E6'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1E3
bulk_mod = 2E7
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.336
al = 1.43E-4
[../]
[./RelPermPower]
type = RichardsRelPermVG1
scut = 0.99
simm = 0.0
m = 0.336
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E+0
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
initial_from_file_timestep = 2
initial_from_file_var = pressure
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[BCs]
active = 'fix_bot'
[./fix_bot]
type = DirichletBC
variable = pressure
boundary = 'left'
value = 0.0
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.33
mat_permeability = '0.295E-12 0 0 0 0.295E-12 0 0 0 0.295E-12'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1.01E-3
gravity = '-10 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-13 1E-15 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 8.2944E6
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rd03
interval = 100000
execute_on = 'initial timestep_end final'
exodus = true
[]
(modules/peridynamics/test/tests/generalized_plane_strain/generalized_plane_strain_OSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./stress_zz]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/Peridynamics/Mechanics]
[./Master]
[./all]
formulation = ORDINARY_STATE
[../]
[../]
[./GeneralizedPlaneStrain]
[./all]
formulation = ORDINARY_STATE
out_of_plane_stress_variable = stress_zz
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_zz]
type = NodalRankTwoPD
variable = stress_zz
poissons_ratio = 0.3
youngs_modulus = 1e6
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
rank_two_tensor = stress
output_type = component
index_i = 2
index_j = 2
[../]
[]
[Postprocessors]
[./react_z]
type = NodalVariableIntegralPD
variable = stress_zz
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
boundary = 1000
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1000
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./force_density]
type = ComputeSmallStrainVariableHorizonMaterialOSPD
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
[]
[Outputs]
exodus = true
file_base = generalized_plane_strain_OSPD
[]
(test/tests/outputs/iterative/iterative.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
nonlinear_residual_dt_divisor = 100
linear_residual_dt_divisor = 100
start_time = 1.8
end_time = 1.85
execute_on = 'nonlinear linear timestep_end'
[../]
[]
(modules/contact/test/tests/verification/patch_tests/brick_1/brick1_aug.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 100
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
tangential_tolerance = 1e-3
formulation = augmented_lagrange
normalize_penalty = true
penalty = 1e8
model = frictionless
al_penetration_tolerance = 1e-8
[../]
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform2.i)
# apply a pure tension, then some shear with compression
# the BCs are designed to map out the yield function, showing
# the affect of the small_smoother parameter
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*t)'
[]
[topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-0.01E-6))'
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,2E-6-t)'
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[]
[tanphi]
type = TensorMechanicsHardeningConstant
value = 1
[]
[tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.01745506
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[]
[mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-4
plastic_models = wps
transverse_direction = '0 0 1'
debug_fspb = crash
[]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = aux_nonlinear_solution_adapt_out_0004_mesh.xda
parallel_type = replicated
[]
[Adaptivity]
marker = error_frac
steps = 2
[./Indicators]
[./jump_indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./error_frac]
type = ErrorFractionMarker
indicator = jump_indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xda_kernel]
type = SolutionAux
variable = u_aux
solution = xda_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u_aux
execute_on = initial
[../]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xda_func
variable = u
type = FunctionIC
[../]
[]
(test/tests/outputs/console/additional_execute_on.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./console]
type = Console
additional_execute_on = initial
[../]
[]
(modules/combined/test/tests/break_mesh_interface_contact/break_mesh_interface_contact.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
nx = 5
ny = 5
dim = 2
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = gen
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[breakmesh]
input = block2
type = BreakMeshByBlockGenerator
block_pairs = '1 2'
split_interface = true
add_interface_on_two_sides = true
[]
[]
[Variables]
[temperature]
[]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[thermal_cond]
type = HeatConduction
variable = temperature
[]
[]
[Modules/TensorMechanics/Master]
generate_output = 'stress_xx stress_yy strain_xx strain_yy'
add_variables = true
strain = FINITE
incremental = true
[block1]
block = 1
[]
[block2]
block = 2
[]
[]
[ThermalContact]
[thermal_contact]
type = GapHeatTransfer
variable = temperature
primary = Block1_Block2
secondary = Block2_Block1
emissivity_primary = 0
emissivity_secondary = 0
quadrature = true
gap_conductivity = 1
[]
[]
[Contact]
[mechanical]
primary = Block1_Block2
secondary = Block2_Block1
penalty = 1000
model = coulomb
friction_coefficient = 0.5
formulation = tangential_penalty
tangential_tolerance = 0.1
[]
[]
[BCs]
[left_temp]
type = DirichletBC
value = 100
variable = temperature
boundary = left
[]
[right_temp]
type = DirichletBC
value = 0
variable = temperature
boundary = right
[]
[left_disp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = left
function = 0
[]
[left_disp_y]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[]
[right_disp_x]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = '-t'
[]
[right_disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = '0'
[]
[]
[Materials]
[thermal_cond]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = 1
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 100
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Dampers]
[contact_slip]
type = ContactSlipDamper
secondary = Block1_Block2
primary = Block2_Block1
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
line_search = none
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
l_tol = 1e-4
l_max_its = 50
nl_max_its = 20
start_time = 0.0
num_steps = 2
dtmin = 1e-8
dt = 1e-2
automatic_scaling = true
[]
[Outputs]
print_linear_residuals = false
interval = 1
csv = false
perf_graph = false
exodus = true
[]
(modules/stochastic_tools/test/tests/multiapps/batch_full_solve_multiapp/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[time]
type = ADTimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.25
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/memory_usage/print_memory_usage.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Adaptivity]
[./Markers]
[./uni]
type = UniformMarker
mark = REFINE
[../]
[../]
# this marker will tag every element for refinement, growing the problem
# exponentially with each timestep
marker = uni
# avoid a refine after the final step
stop_time = 4.5
[]
[Postprocessors]
[./physical]
type = MemoryUsage
mem_type = physical_memory
value_type = total
# by default MemoryUsage reports the peak value for the current timestep
# out of all samples that have been taken (at linear and non-linear iterations)
execute_on = 'INITIAL TIMESTEP_END NONLINEAR LINEAR'
[../]
[./virtual]
type = MemoryUsage
mem_type = virtual_memory
value_type = total
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./page_faults]
type = MemoryUsage
mem_type = page_faults
value_type = total
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./DOFs]
type = NumDOFs
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./walltime]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
nl_abs_tol = 1e-10
num_steps = 5
dt = 1
[]
[Outputs]
csv = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
perf_graph = true
[]
(modules/xfem/test/tests/init_solution_propagation/init_solution_propagation.i)
# The purpose of this test is to verify that the procedures for initializing
# the solution on nodes/elements affected by XFEM works correctly in both
# serial and parallel.
# The crack cuts near to domain boundaries in parallel, and the displacement
# solution will be wrong in parallel if this is not done correctly. This
# test also has multiple aux variables of various types that are only computed
# on initialization, and which will be wrong if the XFEM initializtion
# is not done correctly.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 7
ny = 7
xmin = 0.0
xmax = 25.0
ymin = -12.5
ymax = 12.5
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_set_uo]
type = LineSegmentCutSetUserObject
cut_data ='0.0000e+000 0.0000e+000 5.5000e+000 0.0000e+000 0.0 0.0
5.5000e+000 0.0000e+000 2.5500e+001 0.0000e+000 0.05 1.05'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./const_monomial]
order = CONSTANT
family = MONOMIAL
[../]
[./first_monomial]
order = FIRST
family = MONOMIAL
[../]
[./first_linear]
order = FIRST
family = LAGRANGE
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./const_monomial]
type = FunctionAux
function = 'dummy'
variable = const_monomial
execute_on = 'initial'
[../]
[./first_monomial]
type = FunctionAux
function = 'dummy'
variable = first_monomial
execute_on = 'initial'
[../]
[./first_linear]
type = FunctionAux
function = 'dummy'
variable = first_linear
execute_on = 'initial'
[../]
[]
[Functions]
[./dummy]
type = ParsedFunction
value = 'x*x+y*y'
[../]
[./disp_top_y]
type = PiecewiseLinear
x = '0 1'
y = '0 0.1'
[../]
[]
[BCs]
[./top_y]
type = FunctionDirichletBC
boundary = 2
variable = disp_y
function = disp_top_y
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./right_x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
petsc_options = '-snes_ksp_ew'
l_max_its = 100
nl_max_its = 25
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
start_time = 0.0
dt = 0.1
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/eigenstrain/reducedOrderRZQuadratic.i)
#
# This test checks whether the ComputeReducedOrderEigenstrain is functioning properly.
#
# If instead of 'reduced_order_eigenstrain', 'thermal_eigenstrain' is given to
# eigenstrain_names in the Modules/TensorMechanics/Master/all block, the output will be
# quite different.
#
# Open the reducedOrderRZQuadratic_out_hydro_0001.csv file and plot the hydro variables as
# a function of x.
#
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 1
xmax = 3
xmin = 1
ymax = 1
ymin = 0
second_order = true
[]
[Functions]
[./tempLinear]
type = ParsedFunction
value = '715-5*x'
[../]
[./tempQuadratic]
type = ParsedFunction
vars = 'Tc Te'
vals = '701 700'
value = '(Te-Tc)/4.0*x*x+(Tc-Te)/2.0*x+Te+3.0*(Tc-Te)/4.0'
[../]
[./tempCubic]
type = ParsedFunction
value = '-1.25*x*x*x+11.25*x*x-33.75*x+733.75'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 295.0
[../]
[]
[AuxVariables]
[./hydro_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./hydro_first]
order = FIRST
family = MONOMIAL
[../]
[./hydro_second]
order = SECOND
family = MONOMIAL
[../]
[./sxx_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./sxx_first]
order = FIRST
family = MONOMIAL
[../]
[./sxx_second]
order = SECOND
family = MONOMIAL
[../]
[./szz_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./szz_first]
order = FIRST
family = MONOMIAL
[../]
[./szz_second]
order = SECOND
family = MONOMIAL
[../]
[./thermal_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./thermal_first]
order = FIRST
family = MONOMIAL
[../]
[./thermal_second]
order = SECOND
family = MONOMIAL
[../]
[./reduced_constant]
order = CONSTANT
family = MONOMIAL
[../]
[./reduced_first]
order = FIRST
family = MONOMIAL
[../]
[./reduced_second]
order = SECOND
family = MONOMIAL
[../]
[./temp2]
order = SECOND
family = LAGRANGE
initial_condition = 700
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
incremental = true
temperature = temp2
#eigenstrain_names = thermal_eigenstrain
eigenstrain_names = reduced_order_eigenstrain
[../]
[../]
[../]
[]
[Kernels]
[./heat]
type = Diffusion
variable = temp
[../]
[]
[AuxKernels]
[./hydro_constant_aux]
type = RankTwoScalarAux
variable = hydro_constant
rank_two_tensor = stress
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./hydro_first_aux]
type = RankTwoScalarAux
variable = hydro_first
rank_two_tensor = stress
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./hydro_second_aux]
type = RankTwoScalarAux
variable = hydro_second
rank_two_tensor = stress
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./sxx_constant_aux]
type = RankTwoAux
variable = sxx_constant
rank_two_tensor = stress
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./sxx_first_aux]
type = RankTwoAux
variable = sxx_first
rank_two_tensor = stress
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./sxx_second_aux]
type = RankTwoAux
variable = sxx_second
rank_two_tensor = stress
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./szz_constant_aux]
type = RankTwoAux
variable = szz_constant
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./szz_first_aux]
type = RankTwoAux
variable = szz_first
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./szz_second_aux]
type = RankTwoAux
variable = szz_second
rank_two_tensor = stress
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./thermal_constant_aux]
type = RankTwoAux
variable = thermal_constant
rank_two_tensor = thermal_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./thermal_first_aux]
type = RankTwoAux
variable = thermal_first
rank_two_tensor = thermal_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./thermal_second_aux]
type = RankTwoAux
variable = thermal_second
rank_two_tensor = thermal_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./reduced_constant_aux]
type = RankTwoAux
variable = reduced_constant
rank_two_tensor = reduced_order_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./reduced_first_aux]
type = RankTwoAux
variable = reduced_first
rank_two_tensor = reduced_order_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./reduced_second_aux]
type = RankTwoAux
variable = reduced_second
rank_two_tensor = reduced_order_eigenstrain
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./temp2]
type = FunctionAux
variable = temp2
function = tempQuadratic
execute_on = timestep_begin
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = bottom #'bottom top'
value = 0.0
[../]
[./temp_right]
type = DirichletBC
variable = temp
boundary = right
value = 700
[../]
[./temp_left]
type = DirichletBC
variable = temp
boundary = left
value = 710
[../]
[]
[Materials]
[./fuel_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e8
poissons_ratio = 0
[../]
[./fuel_thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = temp2
stress_free_temperature = 295.0
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./reduced_order_eigenstrain]
type = ComputeReducedOrderEigenstrain
input_eigenstrain_names = 'thermal_eigenstrain'
eigenstrain_name = 'reduced_order_eigenstrain'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew '
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type'
petsc_options_value = '70 hypre boomeramg'
num_steps = 1
nl_rel_tol = 1e-8
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[VectorPostprocessors]
[./hydro]
type = LineValueSampler
warn_discontinuous_face_values = false
num_points = 50
start_point = '1 0.07e-3 0'
end_point = '3 0.07e-3 0'
sort_by = x
variable = 'temp2 disp_x disp_y hydro_constant hydro_first hydro_second sxx_constant sxx_first sxx_second szz_constant szz_first szz_second thermal_constant thermal_first thermal_second reduced_constant reduced_first reduced_second'
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/misc/check_error/function_file_test10.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
xy_data = '1 2'
scale_factor = 1.0
axis = 3
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/porous_flow/test/tests/recover/pffltvd.i)
# Tests that PorousFlow can successfully recover using a checkpoint file.
# This test contains stateful material properties, adaptivity, integrated
# boundary conditions with nodal-sized materials, and TVD flux limiting.
#
# This test file is run three times:
# 1) The full input file is run to completion
# 2) The input file is run for half the time and checkpointing is included
# 3) The input file is run in recovery using the checkpoint data
#
# The final output of test 3 is compared to the final output of test 1 to verify
# that recovery was successful.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[Adaptivity]
initial_steps = 1
initial_marker = tracer_marker
marker = tracer_marker
max_h_level = 1
[Markers]
[tracer_marker]
type = ValueRangeMarker
variable = tracer
lower_bound = 0.02
upper_bound = 0.98
[]
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '2 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 2
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[]
[VectorPostprocessors]
[tracer]
type = NodalValueSampler
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 0.2
dt = 0.05
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_postprocessor_transfer/between_multiapp/main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.01
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[pp_sub_0]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub0.i
[]
[pp_sub_1]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub1.i
[]
[]
[Transfers]
[pp_transfer_1]
type = MultiAppPostprocessorTransfer
from_multi_app = pp_sub_0
to_multi_app = pp_sub_1
from_postprocessor = average_0
to_postprocessor = from_0
[]
[pp_transfer_2]
type = MultiAppPostprocessorTransfer
from_multi_app = pp_sub_1
to_multi_app = pp_sub_0
from_postprocessor = average_1
to_postprocessor = from_1
[]
[]
(modules/tensor_mechanics/test/tests/stickyBC/push_up.i)
# Testing StickyBC
#
# Push the bottom of an element upward until the top hits an (invisible) obstruction.
# 10 timesteps are used. In each timestep disp_y is increased by 0.1. The
# StickyBC has a max_value of 0.49, so at timestep 5 this bound will be violated
# and the top boundary will be fixed forever after.
#
# This test also illustrates that StickyBC is only ever meant to be used in
# special situations:
# - if, after the simulation ends, the bottom is moved downward again, the StickyBC
# will keep the top fixed. Ie, the StickyBC is truly "sticky".
# - setting max_value = 0.5 in this test illustrates the "approximate" nature
# of StickyBC, in that some nodes will be fixed at disp_y=0.5, while others
# will be fixed at disp_y=0.6, due to the timestepping and roundoff errors
# in MOOSE's solution.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
[../]
[]
[BCs]
[./obstruction]
type = StickyBC
variable = disp_y
boundary = top
max_value = 0.49
[../]
[./bottom]
type = FunctionDirichletBC
variable = disp_y
boundary = bottom
function = t
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./front]
type = DirichletBC
variable = disp_z
boundary = front
value = 0
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.0
poissons_ratio = 0.2
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = Linear
dt = 0.1
end_time = 1.0
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/examples/batch/sub.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[time]
type = ADTimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[average]
type = AverageNodalVariableValue
variable = u
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.25
solve_type = NEWTON
[]
[Controls]
[receiver]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(test/tests/misc/app_name/simple-diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/syntax_based_naming_access/system_asterisk_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'Postprocessors/*/point'
execute_on = 'initial'
[../]
[]
(modules/heat_conduction/test/tests/verify_against_analytical/ad_1D_transient.i)
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 1
nx = 160
xmax = 80
[]
[Variables]
[./T]
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '100*sin(pi*x/80)'
[../]
[]
[Kernels]
[./HeatDiff]
type = ADHeatConduction
variable = T
[../]
[./HeatTdot]
type = ADHeatConductionTimeDerivative
variable = T
[../]
[]
[BCs]
[./sides]
type = DirichletBC
variable = T
boundary = 'left right'
value = 0
[../]
[]
[Materials]
[./k]
type = ADGenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '0.95' #copper in cal/(cm sec C)
[../]
[./cp]
type = ADGenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '0.092' #copper in cal/(g C)
[../]
[./rho]
type = ADGenericConstantMaterial
prop_names = 'density'
prop_values = '8.92' #copper in g/(cm^3)
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(pi*x/80)*exp(-0.95/(0.092*8.92)*pi^2/80^2*t)'
variable = T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1e-6
dt = 2
end_time = 100
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/nemesis/nemesis.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
nemesis = true
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_bad_function_series.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[./AnotherFunction]
type = ConstantFunction
value = -1
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = AnotherFunction
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/contact/test/tests/mortar_tm/2d/ad_frictionless_sec/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
use_automatic_differentiation = true
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = ADFunctionDirichletBC
variable = disp_x
preset = false
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = ADFunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ADComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ADComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5.0
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment_free_orientation_inclined.i)
# Test to verify the fundamental natural frequency of a one element ADComputeShellStress
# BCs: Clamped on one end, free on others.
# Initial perturbation applied to edge of the beam. After that, the shell vibrates freely.
#
# Results have been compared for various thicknesses with the following approximate Results
# (Moose results were obtained with 8 elements along the length)
# Thickness = 0.1. Reference freq: 10.785 Hz, Moose freq: 10.612 Hz
# Thickness = 0.05. Reference freq: 5.393 Hz, Moose freq: 5.335 Hz
# Thickness = 0.025. Reference freq: 2.696 Hz, Moose freq: 2.660 Hz
#
# Reference values have been obtained from Robert Blevins, "Formulas for Dynamics, Acoustics and Vibration",
# Table 5.3 case 11. Formula looks like: f = lambda^2/(2*pi*a^2) * sqrt(E*h^2/(12*(1-nu*nu))), where lambda
# changes as a function of shell dimensions.
# This test uses one single element for speed reasons.
# Here, the shell, instead of being on the XY plane, is oriented at a 45 deg. angle
# with respect to the Y axis.
[Mesh]
type = FileMesh
file = shell_inclined.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./rot_x]
[../]
[./rot_y]
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
# aux variables for dynamics
[./vel_x]
[../]
[./vel_y]
[../]
[./vel_z]
[../]
[./accel_x]
[../]
[./accel_y]
[../]
[./accel_z]
[../]
[./rot_vel_x]
[../]
[./rot_vel_y]
[../]
[./rot_accel_x]
[../]
[./rot_accel_y]
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
# Kernels for dynamics
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '0'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '0'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '0'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.0
[../]
[]
[Functions]
[./force_function]
type = PiecewiseLinear
x = '0.0 0.01 0.15 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = '2'
function = force_function
[../]
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[./inertial_force_x]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 0
variable = disp_x
thickness = 0.1
[../]
[./inertial_force_y]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 1
variable = disp_y
thickness = 0.1
[../]
[./inertial_force_z]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 2
variable = disp_z
thickness = 0.1
[../]
[./inertial_force_rot_x]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 3
variable = rot_x
thickness = 0.1
[../]
[./inertial_force_rot_y]
type = ADInertialForceShell
use_displaced_mesh = true
eta = 0.0
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 4
variable = rot_y
thickness = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.3
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 1.06 1.06'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-11
nl_abs_tol = 1e-10
l_max_its = 20
dt = 0.005
dtmin = 0.005
timestep_tolerance = 2e-13
end_time = 0.5
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Outputs]
perf_graph = true
exodus = true
csv = true
[]
(test/tests/transfers/multiapp_copy_transfer/linear_lagrange_to_sub/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
source_variable = u
variable = u
to_multi_app = sub
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_cutback.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
gen_random_stress_flag = true
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1.0
dtmax = 10.0
dtmin = 1e-5
num_steps = 3
snesmf_reuse_base = false
[]
[Outputs]
file_base = crysp_cutback_out
exodus = true
csv = true
gnuplot = true
[]
(modules/tensor_mechanics/test/tests/ad_thermal_expansion_function/mean.i)
# This test checks the thermal expansion calculated via a mean thermal expansion coefficient.
# The coefficient is selected so as to result in a 1e-4 strain in the x-axis, and to cross over
# from positive to negative strain.
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 3
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = '1 + t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.3
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./thermal_expansion_strain]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 1.2
stress_free_temperature = 1.5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'T T_stress_free T_ref end_strain'
vals = '2 1.5 1.2 1e-4'
value = 'end_strain / (T - T_stress_free - end_strain * (T_stress_free - T_ref))'
[../]
[]
[Postprocessors]
[./disp_x_max]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./temp_avg]
type = ElementAverageValue
variable = temp
[../]
[]
[Executioner]
type = Transient
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/tension_release/4ElemTensionRelease_mechanical_constraint.i)
# This is a mechanical constraint (contact formulation) version of 4ElemTensionRelease.i
[Mesh]
file = 4ElemTensionRelease.e
[]
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Functions]
[./up]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0.0001 0 -.0001'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
generate_output = 'stress_yy'
[]
[]
[Contact]
[./dummy_name]
primary = 2
secondary = 3
penalty = 1e6
model = frictionless
tangential_tolerance = 0.01
[../]
[]
[BCs]
[./lateral]
type = DirichletBC
variable = disp_x
boundary = '1 4'
value = 0
[../]
[./bottom_up]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = up
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stiffStuff1_stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 101'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 0.2
dtmin = 0.2
end_time = 3
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_integral/layered_integral_test.i)
###########################################################
# This is a test of the UserObject System. The
# LayeredIntegral UserObject executes independently during
# the solve to compute a user-defined value. In this case
# an integral value in discrete layers along a vector
# in the domain. (Type: ElementalUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_integral]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./liaux]
type = SpatialUserObjectAux
variable = layered_integral
execute_on = timestep_end
user_object = layered_integral
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[UserObjects]
[./layered_integral]
type = LayeredIntegral
direction = y
num_layers = 3
variable = u
execute_on = linear
[../]
[]
[VectorPostprocessors]
[int]
type = SpatialUserObjectVectorPostprocessor
userobject = layered_integral
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_2subs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = 'replicated'
[]
[Problem]
restart_file_base = steady_with_2subs_out_cp/LATEST
skip_additional_restart_data = true
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2' # increase this function to drive transient
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 50
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3
dt = 1.0
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
fixed_point_rel_tol = 1e-7
fixed_point_abs_tol = 1e-07
fixed_point_max_its = 4
line_search = none
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0
0.5 0 0'
input_files = restart_trans_with_sub_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[p_to_sub]
type = MultiAppProjectionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppInterpolationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/time_integrators/implicit-euler/ie_adapt.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 4
ny = 4
elem_type = QUAD4
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 0
[../]
[../]
[]
[Functions]
[./forcing_fn]
type = ParsedFunction
# dudt = 3*t^2*(x^2 + y^2)
value = 3*t*t*((x*x)+(y*y))-(4*t*t*t)
[../]
[./exact_fn]
type = ParsedFunction
value = t*t*t*((x*x)+(y*y))
[../]
[]
[Kernels]
active = 'diff ie ffn'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = forcing_fn
[../]
[]
[BCs]
active = 'all'
[./all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Postprocessors]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 5
dt = 0.25
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/1d-strain.i)
# 1D strain controlled test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = false
constraint_types = 'strain'
ndim = 1
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '1d.exo'
[]
[ss]
type = SideSetsFromPointsGenerator
input = base
points = '-1 0 0
7 0 0'
new_boundary = 'left right'
[]
[]
[Variables]
[disp_x]
[]
[hvar]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'func_strain'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[func_stress]
type = ParsedFunction
value = '100*t'
[]
[func_strain]
type = ParsedFunction
value = '1.0e-2*t'
[]
[]
[BCs]
[Periodic]
[all]
variable = disp_x
auto_direction = 'x'
[]
[]
[centerfix_x]
type = DirichletBC
boundary = "fixme"
variable = disp_x
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = default
automatic_scaling = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(tutorials/tutorial01_app_development/step02_input_file/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/elastic_thermal_patch/elastic_thermal_patch.i)
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore, for the mechanical strain,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
# However, we must also consider the thermal strain.
# The temperature moves 100 degrees, and the coefficient of thermal
# expansion is 1e-8. Therefore, the thermal strain (and the displacement
# since this is a unit cube) is 1e-6.
# Therefore, the overall effect is (at time 1, with a 50 degree delta):
#
# stress xx = 1e6 * (1e-6-0.5e-6) = 0.5
# stress yy = 1e6 * (2e-6-0.5e-6) = 1.5
# stress zz = 1e6 * (3e-6-0.5e-6) = 2.5
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
#
# At time 2:
#
# stress xx = 1e6 * (1e-6-1e-6) = 0
# stress yy = 1e6 * (2e-6-1e-6) = 1
# stress zz = 1e6 * (3e-6-1e-6) = 2
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
[]
[Mesh]
file = elastic_thermal_patch_test.e
[]
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[./tempFunc]
type = PiecewiseLinear
x = '0. 2.'
y = '117.56 217.56'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 117.56
[../]
[]
[Modules/TensorMechanics/Master/All]
add_variables = true
strain = FINITE
eigenstrain_names = eigenstrain
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
boundary = '10 12'
function = tempFunc
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 0.333333333333333e6
shear_modulus = 0.5e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 117.56
thermal_expansion_coeff = 1e-8
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./heat]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-12
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/sub_cycling_failure/master_gold.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Functions]
# These mimic the behavior of the failing solve
[./dts]
type = PiecewiseLinear
x = '0 0.1 0.15'
y = '0.1 0.05 0.1'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
[./TimeStepper]
type = FunctionDT
function = dts
[../]
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub_gold.i
sub_cycling = true
[../]
[]
(test/tests/controls/time_periods/aux_kernels/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux0]
[../]
[./aux1]
[../]
[]
[Functions]
[./func]
type = ParsedFunction
value = t*x*y
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./aux0]
type = FunctionAux
variable = aux0
function = func
[../]
[./aux1]
type = FunctionAux
variable = aux1
function = func
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'AuxKernels::aux0 AuxKernels::aux1'
start_time = '0.25 0.55'
end_time = '0.65 0.75'
execute_on = 'initial timestep_begin'
[../]
[]
(tutorials/tutorial03_verification/app/test/tests/step04_mms/2d_main.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
ymax = 0
ymin = -0.2
nx = 20
ny = 4
[]
[]
[Variables]
[T]
[]
[]
[ICs]
[T_O]
type = ConstantIC
variable = T
value = 263.15
[]
[]
[Functions]
[source]
type = ParsedFunction
vars = 'hours shortwave kappa'
vals = '9 650 40'
value = 'shortwave*sin(0.5*x*pi)*exp(kappa*y)*sin(1/(hours*3600)*pi*t)'
[]
[]
[Kernels]
[T_time]
type = HeatConductionTimeDerivative
variable = T
density_name = 150
specific_heat = 2000
[]
[T_cond]
type = HeatConduction
variable = T
diffusion_coefficient = 0.01
[]
[T_source]
type = HeatSource
variable = T
function = source
[]
[]
[BCs]
[top]
type = NeumannBC
boundary = top
variable = T
value = -5
[]
[bottom]
type = DirichletBC
boundary = bottom
variable = T
value = 263.15
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
dt = 600 # 10 min
end_time = 32400 # 9 hour
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/2D_different_planes/gps_xz.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = square_xz_plane.e
[]
[Variables]
[./disp_x]
[../]
[./disp_z]
[../]
[./scalar_strain_yy]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./generalized_plane_strain]
block = 1
strain = SMALL
scalar_out_of_plane_strain = scalar_strain_yy
out_of_plane_direction = y
planar_formulation = GENERALIZED_PLANE_STRAIN
eigenstrain_names = 'eigenstrain'
generate_output = 'stress_xx stress_xz stress_yy stress_zz strain_xx strain_xz strain_yy strain_zz'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 3
variable = disp_z
value = 0.0
[../]
[]
[Materials]
[./elastic_stress]
type = ComputeLinearElasticStress
block = 1
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[]
[Postprocessors]
[./react_y]
type = MaterialTensorIntegral
use_displaced_mesh = false
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 10
nl_rel_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = gps_xz_small_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/ad_elastic/rz_finite_elastic-noad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_r]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_r]
type = StressDivergenceRZTensors
component = 0
variable = disp_r
use_displaced_mesh = true
[../]
[./stress_z]
type = StressDivergenceRZTensors
component = 1
variable = disp_z
use_displaced_mesh = true
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0
[../]
[./axial]
type = DirichletBC
variable = disp_r
boundary = left
value = 0
[../]
[./rdisp]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[./strain]
type = ComputeAxisymmetricRZFiniteStrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
file_base = rz_finite_elastic_out
[]
(test/tests/ics/zero_ic/test.i)
# This test makes sure that when people use an initial condition that accesses _zero
# the code does not crash. The "problem" is that InitialCondition uses _qp which for
# nodal variables loops over nodes, rather then q-points. Thus if people have more
# nodes that q-points (they have to dial a lower q-rule in the Executioner block), the
# code would do an out-of-bounds access and crash.
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX27
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[ICs]
[./ic_u]
type = ZeroIC
variable = u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = u
boundary = 'left right top bottom front back'
value = 0
[../]
[]
[Postprocessors]
[./l2_norm]
type = ElementL2Norm
variable = u
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[./Quadrature]
type = GAUSS
order = FIRST
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/dirackernels/theis1.i)
# Theis problem: Flow to single sink
# SinglePhase
# Cartesian mesh with logarithmic distribution in x and y.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
bias_x = 1.1
bias_y = 1.1
ymax = 100
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[pp]
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
viscosity = 0.001
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[Postprocessors]
[porepressure]
type = PointValue
point = '0 0 0'
variable = pp
execute_on = 'initial timestep_end'
[]
[total_mass]
type = PorousFlowFluidMass
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 200
end_time = 1E3
nl_abs_tol = 1e-10
[]
[Outputs]
perf_graph = true
file_base = theis1
[csv]
type = CSV
execute_on = final
[]
[]
[ICs]
[PressureIC]
variable = pp
type = ConstantIC
value = 20e6
[]
[]
[DiracKernels]
[sink]
type = PorousFlowSquarePulsePointSource
end_time = 1000
point = '0 0 0'
mass_flux = -0.04
variable = pp
[]
[]
[BCs]
[right]
type = DirichletBC
variable = pp
value = 20e6
boundary = right
[]
[top]
type = DirichletBC
variable = pp
value = 20e6
boundary = top
[]
[]
[VectorPostprocessors]
[pressure]
type = SideValueSampler
variable = pp
sort_by = x
execute_on = timestep_end
boundary = bottom
[]
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_file_extension.i)
[Mesh]
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
solution = soln
variable = nn
scale_factor = 2.0
[../]
[./en]
type = SolutionAux
solution = soln
variable = en
scale_factor = 2.0
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e-s003
system_variables = source_nodal
timestep = 2
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/misc/check_error/nan_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./nan]
type = NanKernel
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
(modules/ray_tracing/test/tests/raykernels/line_source_ray_kernel/line_source_ray_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 5
ymax = 5
[]
[Variables/u]
order = FIRST
family = LAGRANGE
[]
[BCs/zero]
type = DirichletBC
variable = u
value = 0
boundary = 'top right bottom left'
[]
[Kernels/diffusion]
type = Diffusion
variable = u
[]
[Postprocessors/postprocessor]
type = FunctionValuePostprocessor
function = 3
execute_on = initial
[]
[RayKernels]
[constant_source]
type = LineSourceRayKernel
variable = u
value = 5
rays = constant_source
[]
[pp_source]
type = LineSourceRayKernel
variable = u
postprocessor = postprocessor
rays = pp_source
[]
[function_source]
type = LineSourceRayKernel
variable = u
function = 'x + 2 * y'
rays = function_source
[]
[mixed_source]
type = LineSourceRayKernel
variable = u
value = 5
postprocessor = postprocessor
function = 'x + 2 * y'
rays = mixed_source
[]
[data_source]
type = LineSourceRayKernel
variable = u
ray_data_factor_names = data
rays = data_source
[]
[aux_data_source]
type = LineSourceRayKernel
variable = u
ray_aux_data_factor_names = aux_data
rays = aux_data_source
[]
[]
[UserObjects/study]
type = RepeatableRayStudy
start_points = '0 2 0
0.5 0.5 0
1 1 0
5 5 0
2 2 0
3 3 0'
end_points = '3 5 0
4.5 1.5 0
2 2 0
4 1 0
3 1 0
3 2 0'
names = 'constant_source
pp_source
function_source
mixed_source
data_source
aux_data_source'
ray_data_names = 'data'
ray_aux_data_names = 'aux_data'
initial_ray_data = '0; 0; 0; 0; 8; 0'
initial_ray_aux_data = '0; 0; 0; 0; 0; 10'
execute_on = PRE_KERNELS
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-10
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3q_out
exodus = true
[]
(test/tests/outputs/misc/warehouse_access.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
console = false
[./exodus2]
type = Exodus
file_base = exodus2
[../]
[./test]
type = OutputObjectTest
[../]
[]
(test/tests/auxkernels/element_quality_aux/element_quality_aux.i)
[Mesh]
type = FileMesh
file = mesh.e
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[quality]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[qa]
type = ElementQualityAux
variable = quality
metric = SHAPE
[]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/two_way_many_apps_master.i)
# In this test, the Master App is a 10x10 grid on the unit square, and
# there are 5 Sub Apps which correspond to each vertex of the unit square
# and the center, arranged in the following order:
# 3 4
# 2
# 0 1
# Sub Apps 0, 1, 3, and 4 currently overlap with a single element in
# each corner of the Master App, while Sub App 2 overlaps with 4
# Master App elements in the center. Note that we move the corner Sub
# Apps "outward" slightly along the diagonals to avoid ambiguity with
# which SubApp is "nearest" to a given Master App element centroid.
# This makes it easier to visually verify that the Transfers are
# working correctly.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[./elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
# Note, in case you want to modify this test. It is important that there are
# an odd number of apps because this way we will catch errors caused by load
# imbalances with our -p 2 tests.
type = TransientMultiApp
app_type = MooseTestApp
positions = '-0.11 -0.11 0.0
0.91 -0.11 0.0
0.4 0.4 0.0
-0.11 0.91 0.0
0.91 0.91 0.0'
input_files = two_way_many_apps_sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
[../]
[./elemental_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = u
variable = elemental_from_sub
[../]
[./to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = from_master
[../]
[./elemental_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = elemental_from_master
[../]
[]
(test/tests/multiapps/check_error/sub_unused.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
foo = bar
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/cyl_1/cyl1_template2.i)
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/phase_field/test/tests/CHSplitChemicalPotential/simple_transient_diffusion.i)
# Same problem as in moose/test/tests/kernels/simple_transient_diffusion
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = mu_prop
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./var_dependence]
type = DerivativeParsedMaterial
function = '0.1'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility_tensor]
type = ConstantAnisotropicMobility
M_name = mobility_tensor
tensor = '1 0 0 0 1 0 0 0 1'
[../]
[./mobility]
type = CompositeMobilityTensor
M_name = mobility_prop
tensors = mobility_tensor
weights = var_dep
args = c
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_tol = 1e-3
l_max_its = 20
nl_max_its = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/tecplot/tecplot_binary.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Tecplot
binary = true
[../]
[]
(modules/xfem/test/tests/moving_interface/verification/1D_rz_homog1mat.i)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: homogeneous 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is a single, constant value at all points in the system.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM results
# at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008118
# 0.6 520 520.0038529
# 0.8 560 560.0089177
# 1.0 600 600.0133344
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + 200*1.5*t/x'
[../]
[./neumann_func]
type = ParsedFunction
value = '1.5*200*t'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericConstantMaterial
prop_names = 'diffusion_coefficient'
prop_values = 1.5
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/geomsearch/3d_penetration_locator/3d_tet.i)
[Mesh]
file = 3d_thermal_contact_tet.e
dim = 2
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./gap_distance]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = leftleft
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = rightright
value = 1
[../]
[]
[AuxKernels]
[./distance]
type = PenetrationAux
variable = gap_distance
boundary = leftright
paired_boundary = rightleft
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/relperm/brooks_corey1.i)
# Test Brooks-Corey relative permeability curve by varying saturation over the mesh
# Exponent lambda = 2 for both phases
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[kr0aux]
family = MONOMIAL
order = CONSTANT
[]
[kr1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[kr0]
type = PorousFlowPropertyAux
property = relperm
phase = 0
variable = kr0aux
[]
[kr1]
type = PorousFlowPropertyAux
property = relperm
phase = 1
variable = kr1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityBC
phase = 0
lambda = 2
[]
[kr1]
type = PorousFlowRelativePermeabilityBC
phase = 1
lambda = 2
nw_phase = true
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 's0aux s1aux kr0aux kr1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 20
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-8
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/nodalkernels/constraint_enforcement/upper-and-lower-bound.i)
l=10
nx=100
num_steps=10
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[lm_upper]
[]
[lm_lower]
[]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[NodalKernels]
[upper_bound]
type = UpperBoundNodalKernel
variable = lm_upper
v = u
exclude_boundaries = 'left right'
upper_bound = 10
[]
[forces_from_upper]
type = CoupledForceNodalKernel
variable = u
v = lm_upper
coef = -1
[]
[lower_bound]
type = LowerBoundNodalKernel
variable = lm_lower
v = u
exclude_boundaries = 'left right'
lower_bound = 0
[]
[forces_from_lower]
type = CoupledForceNodalKernel
variable = u
v = lm_lower
coef = 1
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type'
petsc_options_value = '0 30 asm 16 basic'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[active_upper_lm]
type = GreaterThanLessThanPostprocessor
variable = lm_upper
execute_on = 'nonlinear timestep_end'
value = 1e-8
comparator = 'greater'
[]
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[active_lower_lm]
type = GreaterThanLessThanPostprocessor
variable = lm_lower
execute_on = 'nonlinear timestep_end'
value = 1e-8
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(modules/tensor_mechanics/test/tests/cohesive_zone_model/bilinear_mixed_scale_strength.i)
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 2
nx = 5
ny = 10
[]
[block1]
type = SubdomainBoundingBoxGenerator
input = 'msh'
bottom_left = '0 0 0'
top_right = '1 1 0'
block_id = 1
block_name = 'block1'
[]
[block2]
type = SubdomainBoundingBoxGenerator
input = 'block1'
bottom_left = '0 1 0'
top_right = '1 2 0'
block_id = 2
block_name = 'block2'
[]
[split]
type = BreakMeshByBlockGenerator
input = block2
[]
[top_node]
type = ExtraNodesetGenerator
coord = '0 2 0'
input = split
new_boundary = top_node
[]
[bottom_node]
type = ExtraNodesetGenerator
coord = '0 0 0'
input = top_node
new_boundary = bottom_node
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[TensorMechanics]
[Master]
generate_output = 'stress_yy'
[all]
strain = FINITE
add_variables = true
use_automatic_differentiation = true
decomposition_method = TaylorExpansion
save_in = 'resid_x resid_y'
[]
[]
[]
[]
[ICs]
[scale_factor]
type = FunctionIC
variable = scale_factor
function = 'if(x<0.5,1,100)'
[]
[]
[BCs]
[fix_x]
type = DirichletBC
preset = true
value = 0.0
boundary = bottom_node
variable = disp_x
[]
[fix_top]
type = DirichletBC
preset = true
boundary = top
variable = disp_x
value = 0
[]
[top]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = 'if(t<=0.3,t,if(t<=0.6,0.3-(t-0.3),0.6-t))'
preset = true
[]
[bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
preset = true
[]
[]
[AuxVariables]
[resid_x]
[]
[resid_y]
[]
[mode_mixity_ratio]
order = CONSTANT
family = MONOMIAL
[]
[damage]
order = CONSTANT
family = MONOMIAL
[]
[effective_displacement_at_full_degradation]
order = CONSTANT
family = MONOMIAL
[]
[maximum_mixed_mode_relative_displacement]
order = CONSTANT
family = MONOMIAL
[]
[effective_displacement_at_damage_initiation]
order = CONSTANT
family = MONOMIAL
[]
[scale_factor]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[mode_mixity_ratio]
type = MaterialRealAux
variable = mode_mixity_ratio
property = mode_mixity_ratio
execute_on = timestep_end
boundary = interface
[]
[damage]
type = MaterialRealAux
variable = damage
property = damage
execute_on = timestep_end
boundary = interface
[]
[effective_displacement_at_damage_initiation]
type = MaterialRealAux
variable = effective_displacement_at_damage_initiation
property = effective_displacement_at_damage_initiation
execute_on = timestep_end
boundary = interface
[]
[effective_displacement_at_full_degradation]
type = MaterialRealAux
variable = effective_displacement_at_full_degradation
property = effective_displacement_at_full_degradation
execute_on = timestep_end
boundary = interface
[]
[maximum_mixed_mode_relative_displacement]
type = MaterialRealAux
variable = maximum_mixed_mode_relative_displacement
property = maximum_mixed_mode_relative_displacement
execute_on = timestep_end
boundary = interface
[]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[czm_ik]
boundary = 'interface'
[]
[]
[Materials]
[stress]
type = ADComputeFiniteStrainElasticStress
[]
[elasticity_tensor]
type = ADComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[]
[czm]
type = BiLinearMixedModeTraction
boundary = 'interface'
penalty_stiffness = 1e6
GI_C = 1e3
GII_C = 1e2
normal_strength = 1e4
shear_strength = 1e3
displacements = 'disp_x disp_y'
eta = 2.2
viscosity = 1e-3
normal_strength_scale_factor = scale_factor
[]
[]
[Postprocessors]
[resid_x]
type = NodalSum
variable = resid_x
boundary = top
[]
[resid_y]
type = NodalSum
variable = resid_y
boundary = top
[]
[disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[]
[disp_x]
type = SideAverageValue
variable = disp_x
boundary = top
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
l_max_its = 2
l_tol = 1e-14
nl_max_its = 30
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.01
end_time = 0.05
dtmin = 0.01
[]
[Outputs]
csv = true
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform2.i)
# Plastic deformation, tensile failure
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_z = t
# should yield trial stress:
# stress_zz = 2*t
# Use tensile strength = 1, we should return to stress_zz = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = 0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform2
csv = true
[]
(modules/combined/test/tests/gravity/gravity.i)
# Gravity Test
#
# This test is designed to exercise the gravity body force kernel.
#
# The mesh for this problem is a rectangular bar 10 units by 1 unit
# by 1 unit.
#
# The boundary conditions for this problem are as follows. The
# displacement is zero on each of side that faces a negative
# coordinate direction. The acceleration of gravity is 20.
#
# The material has a Young's modulus of 1e6 and a density of 2.
#
# The analytic solution for the displacement along the bar is:
#
# u(x) = -b*x^2/(2*E)+b*L*x/E
#
# The displacement at x=L is b*L^2/(2*E) = 2*20*10*10/(2*1e6) = 0.002.
#
# The analytic solution for the stress along the bar assuming linear
# elasticity is:
#
# S(x) = b*(L-x)
#
# The stress at x=0 is b*L = 2*20*10 = 400.
#
# Note: The simulation does not measure stress at x=0. The stress
# is reported at element centers. The element closest to x=0 sits
# at x = 1/4 and has a stress of 390. This matches the linear
# stress distribution that is expected. The same situation applies
# at x = L where the stress is zero analytically. The nearest
# element is at x=9.75 where the stress is 10.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = gravity_test.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Modules/TensorMechanics/Master/All]
volumetric_locking_correction = true
strain = FINITE
add_variables = true
generate_output = 'stress_xx'
[]
[Kernels]
[./gravity]
type = Gravity
variable = disp_x
value = 20
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 5
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
bulk_modulus = 0.333333333333333e6
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./density]
type = Density
block = 1
density = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
end_time = 1.0
[]
[Outputs]
file_base = gravity_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/combined/test/tests/restart-transient-from-ss-with-stateful/master_tr.i)
[Problem]
restart_file_base = master_ss_checkpoint_cp/LATEST
force_restart = true
skip_additional_restart_data = true
[]
[Mesh]
file = master_ss_checkpoint_cp/LATEST
[]
[Variables]
[./temp]
# no initial condition for restart.
[../]
[]
[AuxVariables]
[./power]
order = FIRST
family = L2_LAGRANGE
initial_condition = 350
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = 'power'
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = temp
boundary = 'bottom top left right'
value = 300
[../]
[]
[Materials]
[./heat_material]
type = HeatConductionMaterial
temp = temp
specific_heat = 1000
thermal_conductivity = 500
[../]
[./density]
type = Density
density = 2000
[../]
[]
[Postprocessors]
[./avg_temp]
type = ElementAverageValue
variable = temp
execute_on = 'timestep_end'
[../]
[./avg_power]
type = ElementAverageValue
variable = power
execute_on = 'timestep_end'
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
line_search = 'none'
l_tol = 1e-02
nl_rel_tol = 5e-05
nl_abs_tol = 5e-05
l_max_its = 50
nl_max_its = 25
start_time = 0
end_time = 40
dt = 10
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
color = true
exodus = true
[]
[MultiApps]
[./bison]
type = TransientMultiApp
positions = '0 0 0'
input_files = 'sub_tr.i'
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./to_bison_mechanics]
type = MultiAppProjectionTransfer
to_multi_app = bison
variable = temp
source_variable = temp
execute_on = 'timestep_end'
[../]
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp.i)
# Pressure pulse in 1D with 1 phase but 3 components (viscosity, relperm, etc are independent of mass-fractions) - transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[massfrac0]
initial_condition = 0.1
[]
[massfrac1]
initial_condition = 0.3
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = pp
gravity = '0 0 0'
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = massfrac0
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = massfrac0
gravity = '0 0 0'
fluid_component = 1
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = massfrac1
[]
[flux2]
type = PorousFlowAdvectiveFlux
variable = massfrac1
gravity = '0 0 0'
fluid_component = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp massfrac0 massfrac1'
number_fluid_phases = 1
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-7
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac0 massfrac1'
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-7 1E-10 20 1E-10 1E-100'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[mf_0_010]
type = PointValue
variable = massfrac0
point = '10 0 0'
execute_on = 'timestep_end'
[]
[mf_1_010]
type = PointValue
variable = massfrac1
point = '10 0 0'
execute_on = 'timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_3comp
print_linear_residuals = true
exodus = true
csv = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test1q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test1q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-9
l_max_its = 10
start_time = 0.0
dt = 0.05
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test1q_out
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar_action/modular_gap_heat_transfer_mortar_displaced_radiation_conduction_action_existing_UOs.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[MortarGapHeatTransfer]
[mortar_heat_transfer]
temperature = temp
boundary = 100
use_displaced_mesh = true
primary_boundary = 100
secondary_boundary = 101
user_created_gap_flux_models = 'radiation_uo conduction_uo'
[]
[]
[UserObjects]
[radiation_uo]
type = GapFluxModelRadiation
temperature = temp
boundary = 100
primary_emissivity = 1.0
secondary_emissivity = 1.0
use_displaced_mesh = true
[]
[conduction_uo]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 0.02
use_displaced_mesh = true
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
csv = true
[exodus]
type = Exodus
show = 'temp'
[]
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/3tile_strain.i)
# This is a test to check that changing the finite_difference_width does indeed change convergence
# The number of nonlinear iterations should be greater a width of 1e-20 than 1e-2
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
group_variables = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
initial_condition = 920
[]
[]
[AuxKernels]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
extra_vector_tags = 'ref'
[]
[]
[BCs]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pull_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 5e-4
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[rom_stress_prediction]
type = LAROMANCE3TileTest
temperature = temperature
outputs = all
initial_cell_dislocation_density = 5.7e12
initial_wall_dislocation_density = 4.83e11
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
dt = 1e-5
num_steps = 5
[]
[Postprocessors]
[extrapolation]
type = ElementAverageValue
variable = ROM_extrapolation
outputs = console
[]
[temperature]
type = ElementAverageValue
variable = temperature
outputs = 'console'
[]
[partition_weight]
type = ElementAverageMaterialProperty
mat_prop = partition_weight
outputs = 'console'
[]
[creep_rate]
type = ElementAverageMaterialProperty
mat_prop = creep_rate
[]
[rhom_rate]
type = ElementAverageMaterialProperty
mat_prop = cell_dislocation_rate
outputs = 'console'
[]
[rhoi_rate]
type = ElementAverageMaterialProperty
mat_prop = wall_dislocation_rate
outputs = 'console'
[]
[vonmises]
type = ElementAverageValue
variable = vonmises_stress
outputs = 'console'
[]
[nl_its]
type = NumNonlinearIterations
outputs = none
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
outputs = 'console'
[]
[]
[Outputs]
csv = true
perf_graph = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/thm_rehbinder/free_outer.i)
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 40
nt = 16
rmin = 0.1
rmax = 1
dmin = 0.0
dmax = 90
growth_r = 1.1
[]
[make3D]
input = annular
type = MeshExtruderGenerator
bottom_sideset = bottom
top_sideset = top
extrusion_vector = '0 0 1'
num_layers = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
biot_coefficient = 1.0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[temperature]
[]
[]
[BCs]
# sideset 1 = outer
# sideset 2 = cavity
# sideset 3 = ymin
# sideset 4 = xmin
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'top bottom'
[]
[ymin]
type = DirichletBC
variable = disp_y
value = 0
boundary = dmin
[]
[xmin]
type = DirichletBC
variable = disp_x
value = 0
boundary = dmax
[]
[cavity_temperature]
type = DirichletBC
variable = temperature
value = 1000
boundary = rmin
[]
[cavity_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = rmin
[]
[cavity_zero_effective_stress_x]
type = Pressure
variable = disp_x
function = 1E6
boundary = rmin
use_displaced_mesh = false
[]
[cavity_zero_effective_stress_y]
type = Pressure
variable = disp_y
function = 1E6
boundary = rmin
use_displaced_mesh = false
[]
[outer_temperature]
type = DirichletBC
variable = temperature
value = 0
boundary = rmax
[]
[outer_pressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[]
[AuxVariables]
[stress_rr]
family = MONOMIAL
order = CONSTANT
[]
[stress_pp]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[stress_rr]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_rr
scalar_type = RadialStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[stress_pp]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = stress_pp
scalar_type = HoopStress
point1 = '0 0 0'
point2 = '0 0 1'
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.0
bulk_modulus = 1E12
viscosity = 1.0E-3
density0 = 1000.0
cv = 1000.0
cp = 1000.0
porepressure_coefficient = 0.0
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = ThermoHydroMechanical
multiply_by_density = false
add_stress_aux = true
porepressure = porepressure
temperature = temperature
eigenstrain_names = thermal_contribution
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1E10
poissons_ratio = 0.2
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = thermal_contribution
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1E-6
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 1E12
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
fluid_coefficient = 1E-6
drained_coefficient = 1E-6
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1E6 0 0 0 1E6 0 0 0 1E6'
[]
[]
[VectorPostprocessors]
[P]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = porepressure
[]
[T]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = temperature
[]
[U]
type = LineValueSampler
start_point = '0.1 0 0'
end_point = '1.0 0 0'
num_points = 10
sort_by = x
variable = disp_x
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_rtol'
petsc_options_value = 'gmres asm lu 1E-8'
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
file_base = free_outer
execute_on = timestep_end
csv = true
[]
(modules/tensor_mechanics/tutorials/basics/part_2.4.i)
#Tensor Mechanics tutorial: the basics
#Step 2, part 4
#2D axisymmetric RZ simulation of uniaxial tension with J2 plasticity with
#hardening
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = necking_quad4.e
uniform_refine = 0
second_order = true
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE
add_variables = true
generate_output = 'stress_yy strain_yy vonmises_stress'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1e-9
plastic_models = J2
[../]
[]
[UserObjects]
[./hardening]
type = TensorMechanicsHardeningCubic
value_0 = 2.4e2
value_residual = 3.0e2
internal_0 = 0
internal_limit = 0.005
[../]
[./J2]
type = TensorMechanicsPlasticJ2
yield_strength = hardening
yield_function_tolerance = 1E-9
internal_constraint_tolerance = 1E-9
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = '0.0007*t'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.25
end_time = 20
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 1 101'
[]
[Postprocessors]
[./ave_stress_bottom]
type = SideAverageValue
variable = stress_yy
boundary = bottom
[../]
[./ave_strain_bottom]
type = SideAverageValue
variable = strain_yy
boundary = bottom
[../]
[]
[Outputs]
exodus = true
perf_graph = true
csv = true
print_linear_residuals = false
[]
(modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_stress_relaxation.i)
#
# 1x1x1 unit cube with constant displacement on top face
#
# This problem was taken from "Finite element three-dimensional elastic-plastic
# creep analysis" by A. Levy, Eng. Struct., 1981, Vol. 3, January, pp. 9-16.
#
# The problem is a one-dimensional creep analysis. The top face is displaced 0.01
# units and held there. The stress relaxes in time according to the creep law.
#
# The analytic solution to this problem is (contrary to what is shown in the paper):
#
# / (E*ef)^3 \^(1/3)
# stress_yy = |---------------------|
# \ 3*a*E^4*ef^3*t + 1 /
#
# where E = 2.0e11 (Young's modulus)
# a = 3e-26 (creep coefficient)
# ef = 0.01 (displacement)
# t = 2160.0 (time)
#
# such that the analytical solution is computed to be 2.9518e3 Pa
#
# Averaged over the single element block, MOOSE calculates the stress in the yy direction to be
# to be 3.046e3 Pa, which is a 3.2% error from the analytical solution.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1e-2 1e-1 1e0 1e1 1e2'
x = '0 7e-1 7e0 7e1 1e2'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[../]
[]
[BCs]
[./u_top_pull]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.01
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.0e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 3.0e-26
n_exponent = 4
activation_energy = 0.0
relative_tolerance = 1e-14
absolute_tolerance = 1e-14
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-5
nl_abs_tol = 1e-8
l_tol = 1e-5
start_time = 0.0
end_time = 2160
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/sub_cycling/sub_iteration_adaptive.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/dirackernels/injection_with_plasticity.i)
# Example: Injection into a uniform aquifer 10 x 10 x 5 km
# Drucker-Prager deformation
# Darcy flow
gravity = -9.81
solid_density = 2350
fluid_density = 1000
porosity0 = 0.1
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1e4
ymin = 0
ymax = 1e4
zmax = 0
zmin = -5e3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 ${gravity}'
displacements = 'disp_x disp_y disp_z'
strain_at_nearest_qp = true
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0 # Not doing a thermal simulation
bulk_modulus = 2E9
density0 = ${fluid_density}
viscosity = 5E-4
[]
[]
[]
[PorousFlowFullySaturated]
coupling_type = HydroMechanical
porepressure = pp
dictator_name = dictator
fp = simple_fluid
add_darcy_aux = false
add_stress_aux = false
stabilization = none
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[pp]
scaling = 1E6
[InitialCondition]
type = FunctionIC
function = ini_pp
[]
[]
[]
[Functions]
[ini_stress]
type = ParsedFunction
value = '-${gravity} * z * (${solid_density} - ${fluid_density}) * (1.0 - ${porosity0})' # initial effective stress that should result from weight force
[]
[ini_pp]
type = ParsedFunction
value = '${gravity} * z * ${fluid_density} + 1E5'
[]
[]
[BCs]
[p_top]
type = FunctionDirichletBC
variable = pp
boundary = front
function = ini_pp
[]
[x_roller]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0
[]
[y_roller]
type = DirichletBC
variable = disp_y
boundary = 'top bottom'
value = 0
[]
[z_confined]
type = DirichletBC
variable = disp_z
boundary = 'back front'
value = 0
[]
[]
[UserObjects]
[pls_total_outflow_mass]
type = PorousFlowSumQuantity
[]
# Cohesion
[mc_coh]
type = TensorMechanicsHardeningConstant
value = 6.0E6
[]
# Friction angle
[mc_phi]
type = TensorMechanicsHardeningConstant
value = 35.0
convert_to_radians = true
[]
# Dilation angle
[mc_psi]
type = TensorMechanicsHardeningConstant
value = 2
convert_to_radians = true
[]
# Drucker-Prager objects
[dp]
type = TensorMechanicsPlasticDruckerPragerHyperbolic
mc_cohesion = mc_coh
mc_friction_angle = mc_phi
mc_dilation_angle = mc_psi
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[]
# Tensile strength
[tens]
type = TensorMechanicsHardeningConstant
value = 3.0E6
[]
# Compressive strength (cap on yield envelope)
[compr_all]
type = TensorMechanicsHardeningConstant
value = 1E10
[]
[]
[Materials]
[strain]
type = ComputeIncrementalSmallStrain
eigenstrain_names = eigenstrain_all
[]
[eigenstrain_all]
type = ComputeEigenstrainFromInitialStress
initial_stress = 'ini_stress 0 0 0 ini_stress 0 0 0 ini_stress'
eigenstrain_name = eigenstrain_all
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 3.3333E9
shear_modulus = 2.5E9
[]
[dp_mat]
type = CappedDruckerPragerStressUpdate
DP_model = dp
tensile_strength = tens
compressive_strength = compr_all
smoothing_tol = 1E5
yield_function_tol = 1E-3
tip_smoother = 0
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = dp_mat
[]
# Permeability
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-13 0 0 0 1E-13 0 0 0 1E-13'
[]
# Porosity
[porosity]
type = PorousFlowPorosity
porosity_zero = ${porosity0}
biot_coefficient = 1.0
solid_bulk = 1.0 # Required but irrelevant when biot_coefficient is unity
mechanical = true
fluid = true
[]
# Density of saturated rock
[density]
type = PorousFlowTotalGravitationalDensityFullySaturatedFromPorosity
rho_s = ${solid_density}
[]
[]
[DiracKernels]
[pls]
type = PorousFlowPolyLineSink
variable = pp
SumQuantityUO = pls_total_outflow_mass
point_file = two_nodes.bh
function_of = pressure
fluid_phase = 0
p_or_t_vals = '0 1E7'
fluxes = '-1.59 -1.59'
[]
[]
[Preconditioning]
[usual]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Transient
dt = 1E6
end_time = 1E6
nl_rel_tol = 1E-7
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/secant/steady_main.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
parallel_type = replicated
uniform_refine = 1
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[force_u]
type = CoupledForce
variable = u
v = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Postprocessors]
[unorm]
type = ElementL2Norm
variable = u
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-14
fixed_point_algorithm = 'secant'
fixed_point_max_its = 30
transformed_variables = 'u'
[]
[Outputs]
csv = true
exodus = false
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = 'steady_sub.i'
clone_master_mesh = true
transformed_variables = 'v'
[]
[]
[Transfers]
[v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[]
[u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[]
[]
(test/tests/multiapps/picard_multilevel/picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./coupled_force]
type = CoupledForce
variable = u
v = v
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub1]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./v]
type = MultiAppNearestNodeTransfer
from_multi_app = sub1
source_variable = v
variable = v
[../]
[]
(modules/xfem/test/tests/moving_interface/verification/1D_xy_lsdep1mat.i)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: xy
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in Cartesian coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=0) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 479.9999722
# 0.6 520 519.9998726
# 0.8 560 559.9997314
# 1.0 600 599.9996885
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = 'rhoCp*(-200*x+200)-(0.05*200*t/1.04)'
vars = 'rhoCp'
vals = 10
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/1.04)*(1-(x-0.04)-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '1.04 - x - 0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/contact/test/tests/verification/patch_tests/cyl_4/cyl4_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(test/tests/meshgenerators/combiner_generator/combiner_generator_from_file.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[cmbn]
type = CombinerGenerator
inputs = 'gen'
positions_file = 'positions.txt'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/function_neumann_bc/test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 32
ny = 32
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./exact_func]
type = ParsedFunction
value = x*x
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = BodyForce
variable = u
value = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionNeumannBC
function = exact_func
variable = u
boundary = right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
file_base = neumannbc_out
exodus = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_finite.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = FINITE
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/fdp_geometric_coupling/fdp_geometric_coupling.i)
[Mesh]
file = twoBlocksContactDiceSecondary2OffsetGap.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 100.0
[../]
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0 1 2'
y = '0 1 1'
scale_factor = 10.0
[../]
[./tempFunc]
type = PiecewiseLinear
x = '0. 3.'
y = '100.0 440.0'
[../]
[]
[Modules/TensorMechanics/Master]
[./block1]
block = 1
volumetric_locking_correction = true
incremental = true
strain = FINITE
eigenstrain_names = 'thermal_expansion1'
decomposition_method = EigenSolution
temperature = temp
[../]
[./block2]
block = 2
volumetric_locking_correction = true
incremental = true
strain = FINITE
eigenstrain_names = 'thermal_expansion2'
decomposition_method = EigenSolution
temperature = temp
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left_right_x]
type = DirichletBC
variable = disp_x
boundary = '1 4'
value = 0.0
[../]
[./left_right_y]
type = DirichletBC
variable = disp_y
boundary = '1 4'
value = 0.0
[../]
[./left_right_z]
type = DirichletBC
variable = disp_z
boundary = '1 4'
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
boundary = '2 3'
function = tempFunc
[../]
[]
[Contact]
[./dummy_name]
primary = 2
secondary = 3
penalty = 1e8
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress1]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[./thermal_expansion1]
type = ComputeThermalExpansionEigenstrain
block = 1
thermal_expansion_coeff = 1e-4
stress_free_temperature = 100.0
temperature = temp
eigenstrain_name = thermal_expansion1
[../]
[./thermal_expansion2]
type = ComputeThermalExpansionEigenstrain
block = 2
thermal_expansion_coeff = 1e-5
stress_free_temperature = 100.0
temperature = temp
eigenstrain_name = thermal_expansion2
[../]
[./heat]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
block = '1 2'
density = 1.0
[../]
[]
[Preconditioning]
[./FDP]
type = FDP
full = true
implicit_geometric_coupling = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -mat_fd_coloring_err -mat_fd_type'
petsc_options_value = 'lu 1e-8 ds'
nl_rel_tol = 1e-10
l_max_its = 5
nl_max_its = 3
dt = 5.0e-1
num_steps = 2
[]
[Outputs]
file_base = fdp_geometric_coupling_out
exodus = true
[]
(modules/contact/test/tests/mortar_dynamics/frictional-mortar-3d.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[AuxVariables]
[mortar_tangent_x]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_y]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_z]
family = LAGRANGE
order = FIRST
[]
[]
[AuxKernels]
[friction_x_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_x
component = 0
boundary = 'top_bottom'
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_y
component = 1
boundary = 'top_bottom'
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_z
component = 2
boundary = 'top_bottom'
[]
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 10
nz = 2
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
uniform_refine = 0
allow_renumbering = false
[]
[Variables]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_lm]
block = 'secondary_lower'
use_dual = true
[]
[mortar_tangential_3d_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
[]
[]
[Materials]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e4
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Constraints]
[friction]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
mu = 0.4
c = 1e4
c_t = 1.0e4
friction_lm = mortar_tangential_lm
friction_lm_dir = mortar_tangential_3d_lm
interpolate_normals = false
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = .025
dt = .025
dtmin = .001
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-14 1e-5'
l_max_its = 15
nl_max_its = 30
nl_rel_tol = 1e-11
nl_abs_tol = 1e-12
line_search = 'basic'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[frictional-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[frictional-pressure-3d]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_3d_lm
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_x]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_x
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[tangent_y]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_y
sort_by = 'id'
execute_on = TIMESTEP_END
[]
[]
(test/tests/multiapps/picard_sub_cycling/fully_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/1D/neumann.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '200 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionNeumannBC
boundary = left
variable = disp_x
function = pull
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 5.0
dtmin = 5.0
end_time = 5.0
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/exception.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[./uz]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.1*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = pk2
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_rate_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
block = 0
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/parser/cli_multiapp_group/dt_from_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[MultiApps]
[./sub_left]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_master_sub.i'
app_type = MooseTestApp
[../]
[./sub_right]
positions = '0 0 0 0.5 0.5 0 0.6 0.6 0 0.7 0.7 0'
type = TransientMultiApp
input_files = 'dt_from_master_sub.i'
app_type = MooseTestApp
[../]
[]
(test/tests/partitioners/block_weighted_partitioner/block_weighted_partitioner.i)
[Mesh]
type = FileMesh
file = block_weighted_partitioner.e
[Partitioner]
type = BlockWeightedPartitioner
block = '1 2 3'
weight = '3 1 10'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = Newton
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[npid]
family = Lagrange
order = first
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[npid_aux]
type = ProcessorIDAux
variable = npid
execute_on = 'INITIAL'
[]
[]
(test/tests/misc/deprecation/deprecated_coupled_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[v][]
[]
[Kernels]
active = 'diff_u coupled_u diff_v deprecated_coupled_v'
[./diff_u]
type = Diffusion
variable = u
[../]
[coupled_u]
type = DeprecatedCoupledVarKernel
variable = u
source = v
[]
[diff_v]
type = Diffusion
variable = v
[]
[deprecated_coupled_v]
type = DeprecatedCoupledVarKernel
variable = v
stupid_name = u
[]
[blessed_coupled_v]
type = DeprecatedCoupledVarKernel
variable = v
source = u
[]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/reset/multilevel_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/umat/print/print.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t/1000
[]
[]
[AuxVariables]
[strain_yy]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[Pressure]
[bc_presssure]
boundary = top
function = top_pull
[]
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_print'
num_state_vars = 0
external_fields = 'strain_yy'
use_one_based_indexing = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 20
dt = 10.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/range_check_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
bias_x = 0.1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/restart-transient-from-ss-with-stateful/master_ss.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
nx = 8
ny = 8
xmin = -82.627
xmax = 82.627
ymin = -82.627
ymax = 82.627
dim = 2
[]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 500
[../]
[]
[AuxVariables]
[./power]
order = FIRST
family = L2_LAGRANGE
initial_condition = 350
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_source_fuel]
type = CoupledForce
variable = temp
v = 'power'
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = temp
boundary = 'bottom top left right'
value = 300
[../]
[]
[Materials]
[./heat_material]
type = HeatConductionMaterial
temp = temp
specific_heat = 1000
thermal_conductivity = 500
[../]
[./density]
type = Density
density = 2000
[../]
[]
[Postprocessors]
[./avg_temp]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./avg_power]
type = ElementAverageValue
variable = power
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
line_search = 'none'
l_tol = 1e-05
nl_rel_tol = 1e-12
nl_abs_tol = 1e-9
l_max_its = 50
nl_max_its = 25
[]
[Outputs]
perf_graph = true
color = true
csv = true
exodus = true
[checkpoint]
type = Checkpoint
num_files = 2
additional_execute_on = 'FINAL' # seems to be a necessary to avoid a Checkpoint bug
[]
[]
[MultiApps]
[./bison]
type = FullSolveMultiApp
positions = '0 0 0'
input_files = 'sub_ss.i'
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./to_bison_mechanics]
type = MultiAppProjectionTransfer
to_multi_app = bison
variable = temp
source_variable = temp
execute_on = 'timestep_end'
[../]
[]
(test/tests/mesh_modifiers/mesh_extruder/gen_extrude.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 6
ny = 6
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[extrude]
type = MeshExtruderGenerator
input = gen
num_layers = 6
extrusion_vector = '1 0 1'
bottom_sideset = '10'
top_sideset = '20'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = 10
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = 20
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_gen
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/dirichlet.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVDirichletBC
variable = v
boundary = left
value = 7
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 7
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/problems/eigen_problem/initial_condition/ne_ic.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigen]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
execute_on = 'timestep_end'
[]
(modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/power_profile.i)
# This input file generates an Exodus output file with a surrogate power profile
# that is used in the RELAP-7 run. There is dummy diffusion solve to step through
# the simulation. The power profile (given as power density) is generated via
# aux variable
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.020652
xmax = 0.024748
ymin = 0
ymax = 3.865
nx = 5
ny = 20
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Functions]
[power_density_fn]
type = ParsedFunction
value = 'sin(y/3.865*pi)*sin((x-0.020652)/4.096e-3*pi/2.)*10e7*t'
[]
[]
[AuxVariables]
[power_density]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pd_aux]
type = FunctionAux
variable = power_density
function = power_density_fn
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.1
dt = 0.01
abort_on_solve_fail = true
[]
[Outputs]
[expdus]
type = Exodus
file_base = power_profile
[]
[]
(test/tests/transfers/multiapp_projection_transfer/fixed_meshes_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 5
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[./elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.01
solve_type = NEWTON
[]
[Outputs]
exodus = true
#
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.0 0.0 0'
input_files = fixed_meshes_sub.i
[../]
[]
[Transfers]
[./from_sub]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
fixed_meshes = true
[../]
[./elemental_from_sub]
type = MultiAppProjectionTransfer
from_multi_app = sub
source_variable = u
variable = elemental_from_sub
fixed_meshes = true
[../]
[./to_sub]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = u
variable = from_master
fixed_meshes = true
[../]
[./elemental_to_sub]
type = MultiAppProjectionTransfer
to_multi_app = sub
source_variable = u
variable = elemental_from_master
fixed_meshes = true
[../]
[]
(test/tests/outputs/exodus/invalid_hide_variables.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
hide = 'aux27 v num_aux'
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/userobjects/setup_interface_count/general.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0.5 0 0'
block_id = 1
top_right = '1 1 0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = GeneralSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./timestep] # 10, once per timestep
type = GeneralSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./subdomain] # 0, method not implemented for GeneralUserObjects
type = GeneralSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = GeneralSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = GeneralSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./execute] # 1 for initial and 2 for each timestep
type = GeneralSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
[../]
[./threadjoin] # 0, not implemented
type = GeneralSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/interfaces/random/random_uo.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./random_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./random_elemental]
type = RandomAux
variable = random_elemental
random_user_object = random_uo
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./random_uo]
type = RandomElementalUserObject
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_finite_rot_y.i)
# Large strain/large rotation cantilever beam test
# A 300 N point load is applied at the end of a 4 m long cantilever beam.
# Young's modulus (E) = 1e4
# Shear modulus (G) = 1e8
# shear coefficient (k) = 1.0
# Poisson's ratio (nu) = -0.99995
# Area (A) = 1.0
# Iy = Iz = 0.16
# The dimensionless parameter alpha = kAGL^2/EI = 1e6
# Since the value of alpha is quite high, the beam behaves like
# a thin beam where shear effects are not significant.
# Beam deflection:
# small strain+rot = 3.998 m (exact 4.0)
# large strain + small rotation = -0.05 m in x and 3.74 m in y
# large rotations + small strain = -0.92 m in x and 2.38 m in y
# large rotations + large strain = -0.954 m in x and 2.37 m in y (exact -1.0 m in x and 2.4 m in y)
# References:
# K. E. Bisshopp and D.C. Drucker, Quaterly of Applied Mathematics, Vol 3, No. 3, 1945.
[Mesh]
type = FileMesh
file = beam_finite_rot_test_2.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = 2
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 2.0 8.0'
y = '0.0 300.0 300.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
nl_max_its = 50
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
l_max_its = 50
dt = 0.05
end_time = 2.1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e4
poissons_ratio = -0.99995
shear_coefficient = 1.0
block = 1
[../]
[./strain]
type = ComputeFiniteBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 0.16
Iz = 0.16
y_orientation = '0.0 1.0 0.0'
large_strain = true
[../]
[./stress]
type = ComputeBeamResultants
block = 1
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./rot_z]
type = PointValue
point = '4.0 0.0 0.0'
variable = rot_z
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/combined/examples/publications/rapid_dev/fig8.i)
#
# Fig. 8 input for 10.1016/j.commatsci.2017.02.017
# D. Schwen et al./Computational Materials Science 132 (2017) 36-45
# Two growing particles with differnet anisotropic Eigenstrains
#
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 2
nx = 80
ny = 40
xmin = -20
xmax = 20
ymin = 0
ymax = 20
elem_type = QUAD4
[../]
[./cnode]
type = ExtraNodesetGenerator
input = gen
coord = '0.0 0.0'
new_boundary = 100
tolerance = 0.1
[../]
[]
[GlobalParams]
# CahnHilliard needs the third derivatives
derivative_order = 3
enable_jit = true
displacements = 'disp_x disp_y'
int_width = 1
[]
# AuxVars to compute the free energy density for outputting
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./cross_energy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./local_free_energy]
type = TotalFreeEnergy
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
additional_free_energy = cross_energy
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./cross_terms]
type = CrossTermGradientFreeEnergy
variable = cross_energy
interfacial_vars = 'eta1 eta2 eta3'
kappa_names = 'kappa11 kappa12 kappa13
kappa21 kappa22 kappa23
kappa31 kappa32 kappa33'
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
# particle x positions and radius
P1X=8
P2X=-4
PR=2
[Variables]
# Solute concentration variable
[./c]
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '${P1X} ${P2X}'
y_positions = '0 0'
z_positions = '0 0'
radii = '${PR} ${PR}'
outvalue = 0.5
invalue = 0.9
[../]
[../]
[./w]
[../]
# Order parameter for the Matrix
[./eta1]
[./InitialCondition]
type = SpecifiedSmoothCircleIC
x_positions = '${P1X} ${P2X}'
y_positions = '0 0'
z_positions = '0 0'
radii = '${PR} ${PR}'
outvalue = 1.0
invalue = 0.0
[../]
[../]
# Order parameters for the 2 different inclusion orientations
[./eta2]
[./InitialCondition]
type = SmoothCircleIC
x1 = ${P2X}
y1 = 0
radius = ${PR}
invalue = 1.0
outvalue = 0.0
[../]
[../]
[./eta3]
[./InitialCondition]
type = SmoothCircleIC
x1 = ${P1X}
y1 = 0
radius = ${PR}
invalue = 1.0
outvalue = 0.0
[../]
[../]
# Lagrange-multiplier
[./lambda]
initial_condition = 1.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
add_variables = true
strain = SMALL
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[Kernels]
# Split Cahn-Hilliard kernels
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
args = 'eta1 eta2 eta3'
kappa_name = kappa_c
w = w
[../]
[./wres]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 1
[./deta1dt]
type = TimeDerivative
variable = eta1
[../]
[./ACBulk1]
type = AllenCahn
variable = eta1
args = 'eta2 eta3 c'
mob_name = L1
f_name = F
[../]
[./ACInterface1]
type = ACMultiInterface
variable = eta1
etas = 'eta1 eta2 eta3'
mob_name = L1
kappa_names = 'kappa11 kappa12 kappa13'
[../]
[./lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 2
[./deta2dt]
type = TimeDerivative
variable = eta2
[../]
[./ACBulk2]
type = AllenCahn
variable = eta2
args = 'eta1 eta3 c'
mob_name = L2
f_name = F
[../]
[./ACInterface2]
type = ACMultiInterface
variable = eta2
etas = 'eta1 eta2 eta3'
mob_name = L2
kappa_names = 'kappa21 kappa22 kappa23'
[../]
[./lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
[../]
# Allen-Cahn and Lagrange-multiplier constraint kernels for order parameter 3
[./deta3dt]
type = TimeDerivative
variable = eta3
[../]
[./ACBulk3]
type = AllenCahn
variable = eta3
args = 'eta1 eta2 c'
mob_name = L3
f_name = F
[../]
[./ACInterface3]
type = ACMultiInterface
variable = eta3
etas = 'eta1 eta2 eta3'
mob_name = L3
kappa_names = 'kappa31 kappa32 kappa33'
[../]
[./lagrange3]
type = SwitchingFunctionConstraintEta
variable = eta3
h_name = h3
lambda = lambda
[../]
# Lagrange-multiplier constraint kernel for lambda
[./lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
etas = 'eta1 eta2 eta3'
h_names = 'h1 h2 h3'
epsilon = 1e-6
[../]
[]
[Materials]
# declare a few constants, such as mobilities (L,M) and interface gradient prefactors (kappa*)
[./consts]
type = GenericConstantMaterial
block = 0
prop_names = 'M kappa_c L1 L2 L3 kappa11 kappa12 kappa13 kappa21 kappa22 kappa23 kappa31 kappa32 kappa33'
prop_values = '0.2 0.5 1 1 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 '
[../]
# We use this to output the level of constraint enforcement
# ideally it should be 0 everywhere, if the constraint is fully enforced
[./etasummat]
type = ParsedMaterial
f_name = etasum
args = 'eta1 eta2 eta3'
material_property_names = 'h1 h2 h3'
function = 'h1+h2+h3-1'
outputs = exodus
[../]
# This parsed material creates a single property for visualization purposes.
# It will be 0 for phase 1, -1 for phase 2, and 1 for phase 3
[./phasemap]
type = ParsedMaterial
f_name = phase
args = 'eta2 eta3'
function = 'if(eta3>0.5,1,0)-if(eta2>0.5,1,0)'
outputs = exodus
[../]
# global mechanical properties
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '400 400'
fill_method = symmetric_isotropic
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# eigenstrain
[./eigenstrain_2]
type = GenericConstantRankTwoTensor
tensor_name = s2
tensor_values = '0 -0.05 0 0 0 0'
[../]
[./eigenstrain_3]
type = GenericConstantRankTwoTensor
tensor_name = s3
tensor_values = '-0.05 0 0 0 0 0'
[../]
[./eigenstrain]
type = CompositeEigenstrain
weights = 'h2 h3'
tensors = 's2 s3'
args = 'eta2 eta3'
eigenstrain_name = eigenstrain
[../]
# switching functions
[./switching1]
type = SwitchingFunctionMaterial
function_name = h1
eta = eta1
h_order = SIMPLE
[../]
[./switching2]
type = SwitchingFunctionMaterial
function_name = h2
eta = eta2
h_order = SIMPLE
[../]
[./switching3]
type = SwitchingFunctionMaterial
function_name = h3
eta = eta3
h_order = SIMPLE
[../]
[./barrier]
type = MultiBarrierFunctionMaterial
etas = 'eta1 eta2 eta3'
[../]
# chemical free energies
[./chemical_free_energy_1]
type = DerivativeParsedMaterial
f_name = Fc1
function = '4*c^2'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_2]
type = DerivativeParsedMaterial
f_name = Fc2
function = '(c-0.9)^2-0.4'
args = 'c'
derivative_order = 2
[../]
[./chemical_free_energy_3]
type = DerivativeParsedMaterial
f_name = Fc3
function = '(c-0.9)^2-0.5'
args = 'c'
derivative_order = 2
[../]
# global chemical free energy
[./chemical_free_energy]
type = DerivativeMultiPhaseMaterial
f_name = Fc
fi_names = 'Fc1 Fc2 Fc3'
hi_names = 'h1 h2 h3'
etas = 'eta1 eta2 eta3'
args = 'c'
W = 3
[../]
# global elastic free energy
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'eta2 eta3'
outputs = exodus
output_properties = Fe
derivative_order = 2
[../]
# Penalize phase 2 and 3 coexistence
[./multi_phase_penalty]
type = DerivativeParsedMaterial
f_name = Fp
function = '50*(eta2*eta3)^2'
args = 'eta2 eta3'
derivative_order = 2
outputs = exodus
output_properties = Fp
[../]
# free energy
[./free_energy]
type = DerivativeSumMaterial
f_name = F
sum_materials = 'Fc Fe Fp'
args = 'c eta1 eta2 eta3'
derivative_order = 2
[../]
[]
[BCs]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = disp_x
value = 0
[../]
# fix side point x coordinate to inhibit rotation
[./angularfix]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
# We monitor the total free energy and the total solute concentration (should be constant)
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
variable = local_energy
execute_on = 'INITIAL TIMESTEP_END'
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
variable = c
execute_on = 'INITIAL TIMESTEP_END'
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type'
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 12.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 8
iteration_window = 1
dt = 0.01
[../]
[]
[Outputs]
print_linear_residuals = false
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
[Debug]
# show_var_residual_norms = true
[]
(test/tests/misc/check_error/kernel_with_vector_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE_VEC
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/misc/check_error/vector_kernel_with_standard_var.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = VectorDiffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/combined/test/tests/ad_power_law_creep/power_law_creep.i)
# 1x1x1 unit cube with uniform pressure on top face
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Variables]
[./temp]
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = ADHeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/rz-x-axial-coord/pipe-flow.i)
# 2d siumulation of a water through a pipe.
mu=1e-3 # Nsm^-2
rho=997.0 # kgm^-3
Re=1000.0
pipe_length=1 # m
pipe_radius=0.1 # m
u_inlet=${fparse (mu * Re)/(2 * pipe_radius * rho)} # ms^-1
[GlobalParams]
integrate_p_by_parts = false
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${pipe_length}
ymin = 0
ymax = ${pipe_radius}
nx = 50
ny = 5
[]
[]
[Problem]
coord_type = 'RZ'
rz_coord_axis = x
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
[]
[p][]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[mass]
type = INSADMass
variable = p
[]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[]
[momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[]
[momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'left'
function_x = ${u_inlet}
function_y = 0
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
set_x_comp = false
function_y = 0
[]
# pressure is not integrated by parts so we cannot remove the nullspace through a natural condition
[p_corner]
type = DirichletBC
boundary = 'right'
value = 0
variable = p
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '${rho} ${mu}'
[]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -sub_pc_factor_levels -ksp_gmres_restart'
petsc_options_value = 'asm 6 200'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
l_max_its = 200
line_search = 'none'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/static_deformations/cosserat_shear.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 6
ny = 6
ymin = 0
ymax = 10
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Postprocessors]
[./disp_y_top]
type = PointValue
point = '0.5 1 0.1'
variable = disp_y
[../]
[./disp_x_top]
type = PointValue
point = '0.5 1 0.1'
variable = disp_x
[../]
[./wc_z_top]
type = PointValue
point = '0.5 1 0.1'
variable = wc_z
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[./wc_z]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
displacements = 'disp_x disp_y disp_z'
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
component = 1
displacements = 'wc_x wc_y wc_z'
base_name = couple
[../]
[./z_couple]
type = StressDivergenceTensors
variable = wc_z
component = 2
displacements = 'wc_x wc_y wc_z'
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[./z_moment]
type = MomentBalancing
variable = wc_z
component = 2
[../]
[]
[BCs]
[./Periodic]
[./xperiodic]
auto_direction = x
variable = 'disp_x disp_y disp_z wc_x wc_y wc_z'
[../]
[./zperiodic]
auto_direction = z
variable = 'disp_x disp_y disp_z wc_x wc_y wc_z'
[../]
[../]
[./ux_equals_zero_on_top]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[./wcx_equals_zero_on_top]
type = DirichletBC
variable = wc_x
boundary = top
value = 0
[../]
[./wcy_equals_zero_on_top]
type = DirichletBC
variable = wc_y
boundary = top
value = 0
[../]
[./wcz_equals_zero_on_top]
type = DirichletBC
variable = wc_z
boundary = top
value = 0
[../]
# following is natural BC
[./top_cauchy_zero]
type = NeumannBC
variable = disp_x
boundary = top
value = 0
[../]
[./ux_bottom]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 1.0
[../]
[./uy_bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./uz_bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./wc_x_bottom]
type = DirichletBC
variable = wc_x
boundary = bottom
value = 0.0
[../]
[./wc_y_bottom]
type = DirichletBC
variable = wc_y
boundary = bottom
value = 0.0
[../]
[./wc_z_bottom]
type = DirichletBC
variable = wc_z
boundary = bottom
value = 0.17
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeCosseratElasticityTensor
B_ijkl = 40
E_ijkl = '5 10 5'
fill_method = 'general_isotropic'
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_3d_points.i)
#This tests the Interaction-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with 2 elements
#through the thickness, and calculates the Interaction-Integrals using options
#to treat it as 3d.
[GlobalParams]
order = FIRST
# order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack3d.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI InteractionIntegralKII InteractionIntegralKIII'
crack_front_points = '0 -10 .5
0 -10 0
0 -10 -.5'
closed_loop = false # if user provides 'crack_front_points' instead of 'boundary', 'closed_loop' should be set by user!
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
radius_inner = '4.0 5.5'
radius_outer = '5.5 7.0'
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
output_q = false
incremental = true
equivalent_k = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_z2]
type = DirichletBC
variable = disp_z
boundary = 510
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-7
l_tol = 1e-3
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = interaction_integral_3d_points_out
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/beam/action/2_block.i)
# Test for LineElementAction on multiple blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = 2_beam_block.e
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 1
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 1
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = 1
value = 0.0
[../]
[]
[NodalKernels]
[./force_1]
type = ConstantRate
variable = disp_y
boundary = 2
rate = 1e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Modules/TensorMechanics/LineElementMaster]
[./block_1]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
Iy = 1e-5
Iz = 1e-5
y_orientation = '0.0 1.0 0.0'
block = 1
[../]
[./block_2]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
Iy = 2e-5
Iz = 2e-5
y_orientation = '0.0 1.0 0.0'
block = 2
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2'
[../]
[]
[Postprocessors]
[./disp_y_1]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_y
[../]
[./disp_y_2]
type = PointValue
point = '1.0 1.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/verify_against_analytical/1D_transient.i)
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 1
nx = 160
xmax = 80
[]
[Variables]
[./T]
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '100*sin(pi*x/80)'
[../]
[]
[Kernels]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = T
[../]
[]
[BCs]
[./sides]
type = DirichletBC
variable = T
boundary = 'left right'
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '0.95' #copper in cal/(cm sec C)
[../]
[./cp]
type = GenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '0.092' #copper in cal/(g C)
[../]
[./rho]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8.92' #copper in g/(cm^3)
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(pi*x/80)*exp(-0.95/(0.092*8.92)*pi^2/80^2*t)'
variable = T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
l_tol = 1e-6
dt = 2
end_time = 100
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/critical_time_step/crit_time_solid_uniform.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 15
xmin = 0
xmax = 2
ymin = 0
ymax = 2
zmin = 0
zmax = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.1
youngs_modulus = 1e6
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-4
l_max_its = 3
start_time = 0.0
dt = 0.1
num_steps = 1
end_time = 1.0
[]
[Postprocessors]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/vectorpostprocessors/side_value_sampler/side_value_sampler.i)
[Mesh]
[mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.5 0.5'
dy = '1'
ix = '5 5'
iy = '10'
subdomain_id = '1 1'
[]
# Limited to 1 side to avoid inconsistencies in parallel
[internal_sideset]
type = ParsedGenerateSideset
combinatorial_geometry = 'y<0.51 & y>0.49 & x<0.11'
new_sideset_name = 'center'
input = 'mesh'
[]
# this keeps numbering continuous so tests dont fail on different ids in CSV
allow_renumbering = false
[]
[Variables]
[u]
[]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[]
[]
[VectorPostprocessors]
inactive = 'internal_sample'
[side_sample]
type = SideValueSampler
variable = 'u v'
boundary = top
sort_by = x
[]
[internal_sample]
type = SideValueSampler
variable = 'u v'
boundary = center
sort_by = 'id'
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[vpp_csv]
type = CSV
[]
[]
(modules/contact/test/tests/pressure/pressurePenalty_mechanical_constraint.i)
# This is a mechanical constraint (contact formulation) version of pressurePenalty.i
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = pressure.e
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
generate_output = 'stress_yy'
[]
[]
[Contact]
[./m20_s10]
primary = 20
secondary = 10
penalty = 1e8
formulation = penalty
tangential_tolerance = 1e-3
tension_release = -1
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 5
value = 0.0
[../]
[./Pressure]
[./press]
boundary = 7
factor = 1e3
[../]
[../]
[./down]
type = DirichletBC
variable = disp_y
boundary = 8
value = -2e-3
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1.0e6
poissons_ratio = 0.0
[../]
[./stiffStuff1_stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
l_max_its = 100
nl_max_its = 10
dt = 1.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht.i)
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
nx = 10
dim = 1
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.4225
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.8
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.4225
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.8
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
zeta = 0.1
alpha = -0.3
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
zeta = 0.1
alpha = -0.3
[../]
[./inertial_force_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 0
variable = disp_x
alpha = -0.3
[../]
[./inertial_force_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 1
variable = disp_y
alpha = -0.3
[../]
[./inertial_force_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 2
variable = disp_z
alpha = -0.3
[../]
[./inertial_force_rot_x]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 3
variable = rot_x
alpha = -0.3
[../]
[./inertial_force_rot_y]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 4
variable = rot_y
alpha = -0.3
[../]
[./inertial_force_rot_z]
type = InertialForceBeam
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.4225
gamma = 0.8
eta = 0.1
area = 0.01
Iy = 1e-4
Iz = 1e-4
Ay = 0.0
Az = 0.0
component = 5
variable = rot_z
alpha = -0.3
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/bcs/periodic/periodic_bc_displaced_problem.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
nz = 0
xmax = 40
ymax = 40
zmax = 0
elem_type = QUAD4
[]
[GlobalParams]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./Periodic]
[./x]
variable = u
primary = 3
secondary = 1
translation = '40 0 0'
[../]
[./y]
variable = u
primary = 0
secondary = 2
translation = '0 40 0'
[../]
[../]
[./disp_0]
type = DirichletBC
variable = disp_x
boundary = '0'
value = 0.01
[../]
[./disp_1]
type = DirichletBC
variable = disp_y
boundary = '0'
value = 0.01
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 20
solve_type = NEWTON
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out_displaced_problem
exodus = true
[]
(modules/porous_flow/test/tests/energy_conservation/heat04_action_KT.i)
# heat04, but using an action with KT stabilization.
# See heat04.i for a full discussion of the results.
# The KT stabilization should have no impact as there is no flow, but this input file checks that MOOSE runs.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[]
[]
[]
[PorousFlowUnsaturated]
coupling_type = ThermoHydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = pp
temperature = temp
dictator_name = Sir
biot_coefficient = 1.0
gravity = '0 0 0'
fp = the_simple_fluid
van_genuchten_alpha = 1.0E-12
van_genuchten_m = 0.5
relative_permeability_type = Corey
relative_permeability_exponent = 0.0
stabilization = KT
flux_limiter_type = superbee
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = Sir
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[pp]
[]
[temp]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[heat_source]
type = BodyForce
function = 1
variable = temp
[]
[]
[Functions]
[err_T_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1'
value = '((1-por0)*exp(rte*temp)*rd*rhc*temp+m0*fhc*temp-source*t)/(source*t)'
[]
[err_pp_fcn]
type = ParsedFunction
vars = 'por0 rte temp rd rhc m0 fhc source bulk pp fte'
vals = '0.5 0.25 t0 5 0.2 1.5 2 1 2 p0 0.5'
value = '(bulk*(fte*temp-log(1+(por0-1)*exp(rte*temp))+log(por0))-pp)/pp'
[]
[]
[AuxVariables]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
biot_coefficient = 1.0
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0 0 0 0 0 0 0 0 0'
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0 0 0 0 0 0 0 0 0'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = pp
[]
[t0]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = temp
[]
[porosity]
type = PointValue
outputs = 'console csv'
execute_on = 'timestep_end'
point = '0 0 0'
variable = porosity
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'timestep_end'
outputs = 'console csv'
[]
[err_T]
type = FunctionValuePostprocessor
function = err_T_fcn
[]
[err_P]
type = FunctionValuePostprocessor
function = err_pp_fcn
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-12 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = heat04_action
csv = true
[]
(test/tests/outputs/error/duplicate_output_files.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
file_base = duplicate_output_files_out
[../]
[./exodus_two]
type = Exodus
file_base = duplicate_output_files_out
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/bc_gap_heat_transfer_displaced_radiation.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[ThermalContact]
[thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 100
secondary = 101
emissivity_primary = 1.0
emissivity_secondary = 1.0
gap_conductivity = 1.0e-12
quadrature = true
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/torque_reaction/disp_about_axis_axial_motion_delayed.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction=true
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Modules/TensorMechanics/Master]
[master]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
add_variables = true
decomposition_method = EigenSolution
use_finite_deform_jacobian = true
[]
[]
[BCs]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
# Because rotation is prescribed about the z axis, the
# DisplacementAboutAxis BC is only needed for the x and y
# displacements.
[./top_x]
type = DisplacementAboutAxis
boundary = top
function = 't'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
[../]
[./top_y]
type = DisplacementAboutAxis
boundary = top
function = 't'
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
[../]
# DisplacementAboutAxis incremental
[./top_x_rate]
type = DisplacementAboutAxis
boundary = top
function = 1
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 0
variable = disp_x
angular_velocity = true
[../]
[./top_y_rate]
type = DisplacementAboutAxis
boundary = top
function = 1
angle_units = degrees
axis_origin = '0. 0. 0.'
axis_direction = '0. 0. 1.'
component = 1
variable = disp_y
angular_velocity = true
[../]
[]
# Engage the incremental DisplacementAboutAxis after 30 seconds
[Controls]
[./c1]
type = TimePeriod
enable_objects = 'BCs::top_x BCs::top_y'
disable_objects = 'BCs::top_x_rate BCs::top_y_rate'
start_time = '0'
end_time = '30'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Postprocessors]
[./disp_x_5]
type = NodalVariableValue
variable = disp_x
nodeid = 5
[../]
[./disp_y_5]
type = NodalVariableValue
variable = disp_y
nodeid = 5
[../]
[./disp_x_6]
type = NodalVariableValue
variable = disp_x
nodeid = 6
[../]
[./disp_y_6]
type = NodalVariableValue
variable = disp_y
nodeid = 6
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 30
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-9
l_tol = 1e-8
start_time = 0.0
dt = 2
dtmin = 2 # die instead of cutting the timestep
end_time = 90
[]
[Outputs]
file_base = disp_about_axis_axial_motion_delayed_out
csv = true
[]
(test/tests/kernels/ad_coupled_convection/ad_coupled_convection.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = ADDiffusion
variable = u
[../]
[./convection]
type = ADCoupledConvection
variable = u
velocity_vector = v
[../]
[./diff_v]
type = ADDiffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-10
nl_rel_tol = 1e-9
nl_max_its = 2
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/elements_along_line/3d.i)
[Mesh]
type = GeneratedMesh
parallel_type = replicated # Until RayTracing.C is fixed
dim = 3
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./elems]
type = ElementsAlongLine
start = '0.05 0.05 0.05'
end = '0.05 0.05 0.405'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
[]
(stork/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_grow_init_dt_restart.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./dt]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = -1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50.0
n_startup_steps = 2
dtmax = 6.0
[./TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 10
dt = 1.0
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Problem]
restart_file_base = adapt_tstep_grow_init_dt_out_cp/LATEST
[]
(modules/xfem/test/tests/moving_interface/cut_mesh_3d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[XFEM]
geometric_cut_userobjects = 'cut_mesh'
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 11
ny = 11
nz = 1
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
elem_type = HEX8
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0.1'
input = gen
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0.1'
input = block1
[]
[]
[UserObjects]
[cut_mesh]
type = InterfaceMeshCut3DUserObject
mesh_file = cylinder_surface.e
interface_velocity_function = vel_func
heal_always = true
block = 2
[]
[]
[Functions]
[vel_func]
type = ConstantFunction
value = 0.011
[]
[]
[Modules/TensorMechanics/Master]
displacements = 'disp_x disp_y disp_z'
[all]
strain = SMALL
add_variables = true
incremental = false
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
displacements = 'disp_x disp_y disp_z'
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[ls]
[]
[]
[AuxKernels]
[ls]
type = MeshCutLevelSetAux
mesh_cut_user_object = cut_mesh
variable = ls
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = 1
[]
[time_deriv]
type = TimeDerivative
variable = u
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[BCs]
[front_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[back_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[box1_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = left
[]
[box1_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = left
[]
[box1_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = left
[]
[box2_x]
type = FunctionDirichletBC
variable = disp_x
function = '0.01*t'
boundary = right
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 20
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 2
end_time = 2
max_xfem_update = 1
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/xfem/test/tests/diffusion_xfem/levelsetcut2d.i)
# 2D: Mesh is cut by level set based cutter
# The level set is a MOOSE variable
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
[../]
[]
[Variables]
[./u]
[../]
[./ls]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '3 5'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_ls]
type = Diffusion
variable = ls
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 3
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./left_ls]
type = DirichletBC
variable = ls
boundary = 3
value = 3
[../]
[./right_ls]
type = DirichletBC
variable = ls
boundary = 1
value = -3
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/relationship_managers/default_ghosting/default_ghosting.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[console]
type = Console
system_info = 'framework mesh aux nonlinear relationship execution'
[]
[]
# Show that we can enable and see that libmesh Ghosting Functors are active
[Problem]
default_ghosting = true
[]
(test/tests/misc/check_error/multiple_bad_ic_test.i)
[Mesh]
file = sq-2blk.e
uniform_refine = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./ic_u_1]
type = ConstantIC
variable = u
value = 42
block = '1'
[../]
[./ic_u_2]
type = ConstantIC
variable = u
value = 24
# Oops - can't have two ICs on the same block
[../]
[./ic_u_aux_1]
type = ConstantIC
variable = u_aux
value = 6.25
block = '1'
[../]
[./ic_u_aux_2]
type = ConstantIC
variable = u_aux
value = 9.99
block = '2'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(examples/ex21_debugging/ex21.i)
[Mesh]
file = reactor.e
#Let's assign human friendly names to the blocks on the fly
block_id = '1 2'
block_name = 'fuel deflector'
boundary_id = '4 5'
boundary_name = 'bottom top'
[]
[Variables]
#Use active lists to help debug problems. Switching on and off
#different Kernels or Variables is extremely useful!
active = 'diffused convected'
[diffused]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
[convected]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[]
[]
[Kernels]
#This Kernel consumes a real-gradient material property from the active material
active = 'convection diff_convected example_diff time_deriv_diffused time_deriv_convected'
[convection]
type = ExampleConvection
variable = convected
[]
[diff_convected]
type = Diffusion
variable = convected
[]
[example_diff]
type = ExampleDiffusion
variable = diffused
coupled_coef = convected
[]
[time_deriv_diffused]
type = TimeDerivative
variable = diffused
[]
[time_deriv_convected]
type = TimeDerivative
variable = convected
[]
[]
[BCs]
[bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 0
[]
[top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 5
[]
[bottom_convected]
type = DirichletBC
variable = convected
boundary = 'bottom'
value = 0
[]
[top_convected]
type = NeumannBC
variable = convected
boundary = 'top'
value = 1
[]
[]
[Materials]
[example]
type = ExampleMaterial
block = 'fuel'
diffusion_gradient = 'diffused'
#Approximate Parabolic Diffusivity
independent_vals = '0 0.25 0.5 0.75 1.0'
dependent_vals = '1e-2 5e-3 1e-3 5e-3 1e-2'
[]
[example1]
type = ExampleMaterial
block = 'deflector'
diffusion_gradient = 'diffused'
# Constant Diffusivity
independent_vals = '0 1.0'
dependent_vals = '1e-1 1e-1'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/kernels/ad_2d_diffusion/2d_diffusion_test.i)
###########################################################
# This is a simple test of the Kernel System.
# It solves the Laplacian equation on a small 2x2 grid.
# The "Diffusion" kernel is used to calculate the
# residuals of the weak form of this operator.
#
# @Requirement F3.30
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = ADDiffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/karthik-eg-1.i)
[Mesh]
type = GeneratedMesh
elem_type = HEX8
dim = 3
nz = 10
xmax = 10
ymax = 10
zmax = 100
[]
[Variables]
[./x_disp]
block = 0
[../]
[./y_disp]
block = 0
[../]
[./z_disp]
block = 0
[../]
[]
[TensorMechanics]
[./solid]
# disp_x = x_disp
# disp_y = y_disp
# disp_z = z_disp
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
active = 'fcrysp'
[./felastic]
type = FiniteStrainElasticMaterial
block = 0
fill_method = symmetric9
disp_x = x_disp
disp_y = y_disp
disp_z = z_disp
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
[../]
[./fcrysp]
type = FiniteStrainCrystalPlasticity
block = 0
disp_y = y_disp
disp_x = x_disp
disp_z = z_disp
flowprops = '1 12 0.001 0.1'
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
nss = 12
hprops = '1.0 541.5 60.8 109.8'
gprops = '1 12 60.8'
fill_method = symmetric9
slip_sys_file_name = input_slip_sys.txt
[../]
[]
[Functions]
[./topdisp]
type = ParsedFunction
value = 0.7*t
[../]
[./tpress]
type = ParsedFunction
value = -200*t
[../]
[]
[BCs]
[./zbc]
type = DirichletBC
variable = z_disp
boundary = back
value = 0
[../]
[./ybc]
type = DirichletBC
variable = y_disp
boundary = bottom
value = 0
[../]
[./xbc]
type = DirichletBC
variable = x_disp
boundary = left
value = 0
[../]
[./zmove]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = topdisp
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 3
index_j = 3
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
rank_two_tensor = lage
variable = e_zz
index_i = 3
index_j = 3
execute_on = timestep_end
block = 0
[../]
[]
[Postprocessors]
[./szz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./ezz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
num_steps = 1000
end_time = 1
dt = 0.02
dtmax = 0.02
dtmin = 0.02
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-08
nl_rel_step_tol = 1e-08
nl_abs_step_tol = 1e-08
abort_on_solve_fail = true
n_startup_steps = 0.0
[]
[Outputs]
file_base = out
exodus = true
csv = true
[]
(modules/combined/test/tests/heat_conduction_xfem/heat.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 6
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Variables]
[./temp]
initial_condition = 300.0 # set initial temp to ambient
[../]
[]
[Functions]
[./temp_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./heat] # gradient term in heat conduction equation
type = HeatConduction
variable = temp
[../]
[]
[BCs]
# Define boundary conditions
[./left_temp]
type = FunctionDirichletBC
variable = temp
boundary = 3
function = temp_left
[../]
[./right_temp]
type = DirichletBC
variable = temp
boundary = 1
value = 0
[../]
[]
[Materials]
[./fuel_thermal]
type = HeatConductionMaterial
block = 0
temp = temp
thermal_conductivity = 5.0
specific_heat = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
l_max_its = 100
l_tol = 8e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
num_steps = 2
[]
[Outputs]
# Define output file(s)
file_base = heat_out
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/cross_material/convergence/plastic_j2.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.02
max = 0.02
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.02
max = 0.02
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.02
max = 0.02
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[UserObjects]
[./str]
type = TensorMechanicsHardeningPowerRule
value_0 = 100.0
epsilon0 = 1.0
exponent = 1.0
[../]
[./j2]
type = TensorMechanicsPlasticJ2
yield_strength = str
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-9
[../]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianWrappedStress
[]
[compute_stress_base]
type = ComputeMultiPlasticityStress
plastic_models = j2
ep_plastic_tolerance = 1E-9
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(test/tests/mesh/adapt_weight/adapt_weight_test.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
weight_names = 'u'
weight_values = '1.0'
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/functional_expansion_tools/test/tests/standard_use/volume_coupled.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = volume_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/geomsearch/3d_moving_penetration_smoothing/pl_test3ns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test3.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
# [./element_id]
# [../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
# [./penetrate17]
# type = PenetrationAux
# variable = element_id
# boundary = 11
# paired_boundary = 12
# quantity = element_id
# [../]
#
# [./penetrate18]
# type = PenetrationAux
# variable = element_id
# boundary = 12
# paired_boundary = 11
# quantity = element_id
# [../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[]
[Outputs]
file_base = pl_test3ns_out
exodus = true
[]
(test/tests/outputs/csv_final_and_latest/final.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.25
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# Vector Postprocessor System
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
execute_on = 'timestep_end final'
variable = 'u'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
[../]
[]
[Outputs]
[./out]
type = CSV
execute_on = 'TIMESTEP_END FINAL'
create_final_symlink = true
[../]
[]
(modules/tensor_mechanics/test/tests/static_deformations/beam_cosserat_01.i)
# Beam bending. One end is clamped and the other end is subjected to
# a surface traction.
# The joint normal and shear stiffnesses are set very large, so
# that this situation should be identical to the standard (non-Cosserat)
# isotropic elasticity case.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
xmax = 10
ny = 1
nz = 4
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
variable = wc_y
component = 1
[../]
[]
[BCs]
# zmin is called back
# zmax is called front
# ymin is called bottom
# ymax is called top
# xmin is called left
# xmax is called right
[./no_dispy]
type = DirichletBC
variable = disp_y
boundary = 'bottom top'
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'bottom top back front left right'
value = 0.0
[../]
[./clamp_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./clamp_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./end_traction]
type = VectorNeumannBC
variable = disp_z
vector_value = '-2E-4 0 0'
boundary = right
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_xz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_yz]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zx]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zy]
family = MONOMIAL
order = CONSTANT
[../]
[./couple_stress_zz]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./couple_stress_xx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xx
index_i = 0
index_j = 0
[../]
[./couple_stress_xy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xy
index_i = 0
index_j = 1
[../]
[./couple_stress_xz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_xz
index_i = 0
index_j = 2
[../]
[./couple_stress_yx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yx
index_i = 1
index_j = 0
[../]
[./couple_stress_yy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yy
index_i = 1
index_j = 1
[../]
[./couple_stress_yz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_yz
index_i = 1
index_j = 2
[../]
[./couple_stress_zx]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zx
index_i = 2
index_j = 0
[../]
[./couple_stress_zy]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zy
index_i = 2
index_j = 1
[../]
[./couple_stress_zz]
type = RankTwoAux
rank_two_tensor = couple_stress
variable = couple_stress_zz
index_i = 2
index_j = 2
[../]
[]
[VectorPostprocessors]
[./soln]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'disp_x disp_z stress_xx stress_xz stress_zx stress_zz wc_x wc_y couple_stress_xx couple_stress_xz couple_stress_zx couple_stress_zz'
start_point = '0 0 0.5'
end_point = '10 0 0.5'
num_points = 11
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeLayeredCosseratElasticityTensor
young = 1.2
poisson = 0.3
layer_thickness = 1
joint_normal_stiffness = 1E16
joint_shear_stiffness = 1E16
[../]
[./strain]
type = ComputeCosseratSmallStrain
[../]
[./stress]
type = ComputeCosseratLinearElasticStress
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm lu 1E-10 1E-14 10 1E-15 1E-10 NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
num_steps = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = beam_cosserat_01
csv = true
exodus = true
[]
(test/tests/test_harness/500_num_steps.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 500
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_2/ring2_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/action/material_output_order.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
origin = '0 0 2'
direction = '0 0 1'
polar_moment_of_inertia = pmi
factor = t
[]
[Mesh]
[ring]
type = AnnularMeshGenerator
nr = 1
nt = 30
rmin = 0.95
rmax = 1
[]
[extrude]
type = MeshExtruderGenerator
input = ring
extrusion_vector = '0 0 2'
bottom_sideset = 'bottom'
top_sideset = 'top'
num_layers = 5
[]
[]
[AuxVariables]
[alpha_var]
[]
[shear_stress_var]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[alpha]
type = RotationAngle
variable = alpha_var
[]
[shear_stress]
type = ParsedAux
variable = shear_stress_var
args = 'stress_yz stress_xz'
function = 'sqrt(stress_yz^2 + stress_xz^2)'
[]
[]
[BCs]
# fix bottom
[fix_x]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0
[]
[fix_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[]
[fix_z]
type = DirichletBC
boundary = bottom
variable = disp_z
value = 0
[]
# twist top
[twist_x]
type = Torque
boundary = top
variable = disp_x
[]
[twist_y]
type = Torque
boundary = top
variable = disp_y
[]
[twist_z]
type = Torque
boundary = top
variable = disp_z
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = SMALL
generate_output = 'vonmises_stress stress_yz stress_xz'
[]
[]
[Postprocessors]
[pmi]
type = PolarMomentOfInertia
boundary = top
# execute_on = 'INITIAL NONLINEAR'
execute_on = 'INITIAL'
[]
[alpha]
type = SideAverageValue
variable = alpha_var
boundary = top
[]
[shear_stress]
type = ElementAverageValue
variable = shear_stress_var
[]
[]
[Materials]
[stress]
type = ComputeLinearElasticStress
[]
[elastic]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 0.3
shear_modulus = 100
[]
[]
[Executioner]
# type = Steady
type = Transient
num_steps = 1
solve_type = PJFNK
petsc_options_iname = '-pctype'
petsc_options_value = 'lu'
nl_max_its = 150
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined5.i)
# Plastic deformation, shear failure, with inclined normal direction = (1, 0, 0)
# With Young = 10, poisson=0.25 (Lame lambda=4, mu=4)
# applying the following
# deformation to the xmax surface of a unit cube:
# disp_x = 5*t/6
# disp_y = 6*t
# disp_z = 8*t
# should yield trial stress:
# stress_xx = 10*t
# stress_xz = 32*t
# stress_xy = 24*t (so q_trial = 40*t)
# Use tan(friction_angle) = 0.5 and tan(dilation_angle) = 1/6, and cohesion=20,
# the system should return to p=0, q=20, ie stress_xx=0, stress_zx=16,
# stress_yx=12 on the first time step (t=1)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = 5*t/6
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = 6*t
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = right
function = 8*t
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 20
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '4 4'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '1 0 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_inclined5
csv = true
[]
(test/tests/vectorpostprocessors/histogram_vector_postprocessor/histogram_vector_postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[VectorPostprocessors]
[./constant]
type = ConstantVectorPostprocessor
value = '9 1 1 2 3 2 4 6 3 6 9'
[../]
[./histo]
type = HistogramVectorPostprocessor
vpp = constant
num_bins = 4
[../]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/gravity/gravity_test.i)
#
# Gravity Test
#
# This test is designed to apply a gravity body force.
#
# The mesh is composed of one block with a single element.
# The bottom is fixed in all three directions. Poisson's ratio
# is zero and the density is 20/9.81
# which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
[]
[]
[Kernels]
[gravity_y]
type = Gravity
variable = disp_y
value = -9.81
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[]
[stress]
type = ComputeLinearElasticStress
[]
[density]
type = GenericConstantMaterial
prop_names = density
prop_values = 2.0387
[]
[]
[Executioner]
type = Steady
nl_abs_tol = 1e-10
l_max_its = 20
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(test/tests/userobjects/Terminator/terminator.i)
###########################################################
# This is a test of the UserObject System. The
# Terminator UserObject executes independently after
# each solve and can terminate the solve early due to
# user-defined criteria. (Type: GeneralUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Postprocessors]
[./max_c]
type = NodalExtremeValue
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
[./arnold]
type = Terminator
expression = 'max_c < 0.5'
[../]
[]
[Kernels]
[./cres]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./c]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 100
num_steps = 6
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/console/multiapp/picard_master_both.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v_begin]
[../]
[./v_end]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u_begin]
type = CoupledForce
variable = u
v = v_begin
[../]
[./force_u_end]
type = CoupledForce
variable = u
v = v_end
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[MultiApps]
[./sub_begin]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = picard_sub.i
[../]
[./sub_end]
type = TransientMultiApp
app_type = MooseTestApp
positions = '1 1 1'
input_files = picard_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./v_from_sub_begin]
type = MultiAppNearestNodeTransfer
from_multi_app = sub_begin
source_variable = v
variable = v_begin
[../]
[./u_to_sub_begin]
type = MultiAppNearestNodeTransfer
to_multi_app = sub_begin
source_variable = u
variable = u
[../]
[./v_from_sub_end]
type = MultiAppNearestNodeTransfer
from_multi_app = sub_end
source_variable = v
variable = v_end
[../]
[./u_to_sub_end]
type = MultiAppNearestNodeTransfer
to_multi_app = sub_end
source_variable = u
variable = u
[../]
[]
(modules/heat_conduction/test/tests/homogenization/heatConduction2D.i)
#
# Homogenization of thermal conductivity according to
# Homogenization of Temperature-Dependent Thermal Conductivity in Composite
# Materials, Journal of Thermophysics and Heat Transfer, Vol. 15, No. 1,
# January-March 2001.
#
# The problem solved here is a simple square with two blocks. The square is
# divided vertically between the blocks. One block has a thermal conductivity
# of 10. The other block's thermal conductivity is 100.
#
# The analytic solution for the homogenized thermal conductivity in the
# horizontal direction is found by summing the thermal resistance, recognizing
# that the blocks are in series:
#
# R = L/A/k = R1 + R2 = L1/A1/k1 + L2/A2/k2 = .5/1/10 + .5/1/100
# Since L = A = 1, k_xx = 18.1818.
#
# The analytic solution for the homogenized thermal conductivity in the vertical
# direction is found by summing reciprocals of resistance, recognizing that
# the blocks are in parallel:
#
# 1/R = k*A/L = 1/R1 + 1/R2 = 10*.5/1 + 100*.5/1
# Since L = A = 1, k_yy = 55.0.
#
[Mesh]
file = heatConduction2D.e
[] # Mesh
[Variables]
[./temp_x]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[./temp_y]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[] # Variables
[Kernels]
[./heat_x]
type = HeatConduction
variable = temp_x
[../]
[./heat_y]
type = HeatConduction
variable = temp_y
[../]
[./heat_rhs_x]
type = HomogenizedHeatConduction
variable = temp_x
component = 0
[../]
[./heat_rhs_y]
type = HomogenizedHeatConduction
variable = temp_y
component = 1
[../]
[] # Kernels
[BCs]
[./Periodic]
[./left_right]
primary = 10
secondary = 20
translation = '1 0 0'
[../]
[./bottom_top]
primary = 30
secondary = 40
translation = '0 1 0'
[../]
[../]
[./fix_center_x]
type = DirichletBC
variable = temp_x
value = 100
boundary = 1
[../]
[./fix_center_y]
type = DirichletBC
variable = temp_y
value = 100
boundary = 1
[../]
[] # BCs
[Materials]
[./heat1]
type = HeatConductionMaterial
block = 1
specific_heat = 0.116
thermal_conductivity = 10
[../]
[./heat2]
type = HeatConductionMaterial
block = 2
specific_heat = 0.116
thermal_conductivity = 100
[../]
[] # Materials
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_abs_tol = 1e-11
nl_rel_tol = 1e-10
l_max_its = 20
[] # Executioner
[Outputs]
exodus = true
[] # Outputs
[Postprocessors]
[./k_xx]
type = HomogenizedThermalConductivity
variable = temp_x
temp_x = temp_x
temp_y = temp_y
component = 0
execute_on = 'initial timestep_end'
[../]
[./k_yy]
type = HomogenizedThermalConductivity
variable = temp_y
temp_x = temp_x
temp_y = temp_y
component = 1
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/dampers/bounding_value_element_damper/bounding_value_max_test.i)
# This model tests the BoundingValueElementDamper. The converged solution
# for u starts out in the range from 0 to 1, but after several steps,
# a volumetric source drives it to a value greater than 1, which is
# outside the range of the damper. At that point, the solution can
# no longer converge, and the model errors out with a failure to converge.
# The test verifies that the damper computes the correct value in the first
# nonlinear iteration when the solution exceeds the bounds.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
[]
[Variables]
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./source]
type = BodyForce
variable = u
function = 't'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Dampers]
[./bounding_value_damp]
type = BoundingValueElementDamper
min_value = 0.0
max_value = 1.0
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
end_time = 3.0
dt = 0.5
dtmin = 0.5
nl_max_its = 5
[]
(modules/tensor_mechanics/test/tests/umat/elastic_hardening/linear_strain_hardening.i)
# Testing the UMAT Interface - creep linear strain hardening model using the finite strain formulation - visco-plastic material.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = t/100
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
[constant]
type = AbaqusUMATStress
# Young's modulus, Poisson's Ratio, Yield, Hardening
constant_properties = '1000 0.3 10 100'
plugin = ../../../plugins/linear_strain_hardening
num_state_vars = 3
use_one_based_indexing = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
num_steps = 30
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(test/tests/outputs/csv/csv_restart_part2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./mid]
type = PointValue
variable = u
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./csv]
type = CSV
file_base = csv_restart_part2_out
[../]
[]
[Problem]
restart_file_base = csv_restart_part1_out_cp/0010
[]
(test/tests/executioners/eigen_executioners/ne.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
[]
# the minimum eigenvalue of this problem is 2*(PI/a)^2;
# Its inverse is 0.5*(a/PI)^2 = 5.0660591821169. Here a is equal to 10.
[Variables]
active = 'u'
[./u]
# second order is way better than first order
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff rhs'
[./diff]
type = Diffusion
variable = u
[../]
[./rhs]
type = MassEigenKernel
variable = u
[../]
[]
[BCs]
active = 'homogeneous'
[./homogeneous]
type = DirichletBC
variable = u
preset = false
boundary = '0 1 2 3'
value = 0
[../]
[]
[Executioner]
type = NonlinearEigen
bx_norm = 'unorm'
normalization = 'unorm'
normal_factor = 9.990012561844
free_power_iterations = 2
nl_abs_tol = 1e-12
nl_rel_tol = 1e-50
k0 = 1.0
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'unorm udiff'
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
# execute on residual is important for nonlinear eigen solver!
execute_on = linear
[../]
[./udiff]
type = ElementL2Diff
variable = u
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = ne
exodus = true
[]
(modules/phase_field/test/tests/KKS_system/bug.i)
#
# This test validates the phase concentration calculation for the KKS system
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 0
elem_type = QUAD4
[]
# We set u
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0.1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 0.9
[../]
[]
[Variables]
# primary variable
[./u]
order = FIRST
family = LAGRANGE
[../]
# secondary variable
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./udiff]
type = Diffusion
variable = u
[../]
[./valgebra]
type = AlgebraDebug
variable = v
v = u
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
#solve_type = 'NEWTON'
[]
#[Preconditioning]
# [./mydebug]
# type = FDP
# full = true
# [../]
#[]
[Outputs]
execute_on = 'timestep_end'
file_base = bug
exodus = true
[]
(modules/phase_field/test/tests/KKS_system/kks_phase_concentration.i)
#
# This test validates the phase concentration calculation for the KKS system
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 20
ny = 20
nz = 0
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 0
elem_type = QUAD4
[]
# We set c and eta...
[BCs]
# (and ca for debugging purposes)
[./left]
type = DirichletBC
variable = c
boundary = 'left'
value = 0.1
[../]
[./right]
type = DirichletBC
variable = c
boundary = 'right'
value = 0.9
[../]
[./top]
type = DirichletBC
variable = eta
boundary = 'top'
value = 0.1
[../]
[./bottom]
type = DirichletBC
variable = eta
boundary = 'bottom'
value = 0.9
[../]
[]
[Variables]
# concentration
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[../]
# order parameter
[./eta]
order = FIRST
family = LAGRANGE
initial_condition = 0.1
[../]
# phase concentration a
[./ca]
order = FIRST
family = LAGRANGE
initial_condition = 0.2
[../]
# phase concentration b
[./cb]
order = FIRST
family = LAGRANGE
initial_condition = 0.3
[../]
[]
[Materials]
# simple toy free energy
[./fa]
type = DerivativeParsedMaterial
f_name = Fa
args = 'ca'
function = 'ca^2'
[../]
[./fb]
type = DerivativeParsedMaterial
f_name = Fb
args = 'cb'
function = '(1-cb)^2'
[../]
# h(eta)
[./h_eta]
type = SwitchingFunctionMaterial
h_order = HIGH
eta = eta
outputs = exodus
[../]
[]
[Kernels]
active = 'cdiff etadiff phaseconcentration chempot'
##active = 'cbdiff cdiff etadiff chempot'
#active = 'cadiff cdiff etadiff phaseconcentration'
##active = 'cadiff cbdiff cdiff etadiff'
[./cadiff]
type = Diffusion
variable = ca
[../]
[./cbdiff]
type = Diffusion
variable = cb
[../]
[./cdiff]
type = Diffusion
variable = c
[../]
[./etadiff]
type = Diffusion
variable = eta
[../]
# ...and solve for ca and cb
[./phaseconcentration]
type = KKSPhaseConcentration
ca = ca
variable = cb
c = c
eta = eta
[../]
[./chempot]
type = KKSPhaseChemicalPotential
variable = ca
cb = cb
fa_name = Fa
fb_namee = Fb
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
#solve_type = 'NEWTON'
petsc_options_iname = '-pctype -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu nonzero'
[]
[Preconditioning]
active = 'full'
#active = 'mydebug'
#active = ''
[./full]
type = SMP
full = true
[../]
[./mydebug]
type = FDP
full = true
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = kks_phase_concentration
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/ring_1/ring1_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = ring1_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = ring1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = ring1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/strain_energy_density/incr_model.i)
# Single element test to check the strain energy density calculation
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 2
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress strain_xx strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./Pressure]
[./top]
boundary = 'top'
function = rampConstantUp
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 30e+6
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./strain_energy_density]
type = StrainEnergyDensity
incremental = true
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./epxx]
type = ElementalVariableValue
variable = strain_xx
elementid = 0
[../]
[./epyy]
type = ElementalVariableValue
variable = strain_yy
elementid = 0
[../]
[./epzz]
type = ElementalVariableValue
variable = strain_zz
elementid = 0
[../]
[./sigxx]
type = ElementAverageValue
variable = stress_xx
[../]
[./sigyy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigzz]
type = ElementAverageValue
variable = stress_zz
[../]
[./SED]
type = ElementAverageValue
variable = SED
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/peridynamics/test/tests/failure_tests/2D_bond_status_convergence_H1NOSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
cracks_start = '0.25 0.5 0'
cracks_end = '0.75 0.5 0'
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./critical_stress]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./bond_status]
type = RankTwoBasedFailureCriteriaNOSPD
variable = bond_status
rank_two_tensor = stress
critical_variable = critical_stress
failure_criterion = VonMisesStress
[../]
[]
[UserObjects]
[./shape_singularity]
type = SingularShapeTensorEliminatorUserObjectPD
[../]
[]
[ICs]
[./critical_stretch]
type = ConstantIC
variable = critical_stress
value = 150
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1003
value = 0.0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 1002
value = 0.0
[../]
[./bottom_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1000
function = '-0.002*t'
[../]
[./rbm_x]
type = RBMPresetOldValuePD
variable = disp_x
boundary = 999
[../]
[./rbm_y]
type = RBMPresetOldValuePD
variable = disp_y
boundary = 999
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = NONORDINARY_STATE
stabilization = BOND_HORIZON_I
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.33
[../]
[./strain]
type = ComputeSmallStrainNOSPD
stabilization = BOND_HORIZON_I
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Postprocessors]
[./bond_status_updated_times]
type = BondStatusConvergedPostprocessorPD
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0
dt = 0.5
end_time = 1
fixed_point_max_its = 5
accept_on_max_fixed_point_iteration = true
custom_pp = bond_status_updated_times
custom_abs_tol = 2
disable_picard_residual_norm_check = true
[./Quadrature]
type = GAUSS_LOBATTO
order = FIRST
[../]
[]
[Outputs]
file_base = 2D_bond_status_convergence_H1NOSPD
exodus = true
[]
(test/tests/outputs/subdir_output/subdir_output.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = sub1/sub2/subdir_output_out
exodus = true
[]
(modules/contact/test/tests/check_error/contact_displacements.i)
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Contact]
[./fred]
primary = 1
secondary = 2
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/fvkernels/fv_simple_diffusion/neumann.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[v]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = v
coeff = coeff
[]
[]
[FVBCs]
[left]
type = FVNeumannBC
variable = v
boundary = left
value = 5
[]
[right]
type = FVDirichletBC
variable = v
boundary = right
value = 42
[]
[]
[Materials]
[diff]
type = ADGenericFunctorMaterial
prop_names = 'coeff'
prop_values = '1'
[]
[]
[BCs]
[left]
type = NeumannBC
variable = u
boundary = left
value = 5
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 42
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, employing PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 3D version
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
xmin = 0
xmax = 1
ny = 4
ymin = 0
ymax = 0.5
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(modules/tensor_mechanics/test/tests/ad_linear_elasticity/thermal_expansion.i)
# This input file is designed to test the RankTwoAux and RankFourAux
# auxkernels, which report values out of the Tensors used in materials
# properties.
# Materials properties into AuxVariables - these are elemental variables, not nodal variables.
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmax = 2
ymax = 2
[]
[Modules/TensorMechanics/Master/All]
strain = SMALL
eigenstrain_names = eigenstrain
add_variables = true
generate_output = 'stress_xx stress_yy stress_xy'
use_automatic_differentiation = true
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[./eigenstrain]
type = ADComputeEigenstrain
eigen_base = '1e-4'
eigenstrain_name = eigenstrain
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-14
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/transient_multiapp/dt_from_master_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 1 # This will be constrained by the master solve
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/pressure_pulse/pp02.i)
# investigating pressure pulse in 1D with 1 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Outputs]
file_base = pp02
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(python/peacock/tests/input_tab/InputTree/gold/simple_diffusion.i)
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_mesh_function_transfer/tosub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
positions = '.1 .1 0 0.6 0.6 0 0.6 0.1 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = tosub_sub.i
execute_on = timestep_end
[]
[]
[Transfers]
[to_sub]
source_variable = u
variable = transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
[]
[elemental_to_sub]
source_variable = u
variable = elemental_transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
[]
[]
(modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_finiteStrain_resid.i)
# This tests the save_in_disp residual aux-variables for
# ComputeAxisymmetricRZFiniteStrain, which is generated through the use of the
# TensorMechanics MasterAction. The GeneratedMesh is 1x1, rotated via axisym to
# create a cylinder of height 1, radius 1.
#
# PostProcessor force_z plots the force on the top surface of the cylinder.
#
# Displacement of 0.1 is applied to top of cylinder while other surfaces are
# constrained. Plotting force_z vs stress_z will show a slope of 3.14159 (pi),
# consistent with formula for normal stress:
#
# Stress = force / area
#
# where area is A = pi * r^2 for a circle.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
save_in = 'force_r force_z'
[../]
[]
[AuxVariables]
[./stress_r]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_r]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_z]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_z]
order = CONSTANT
family = MONOMIAL
[../]
[./force_r]
order = FIRST
family = LAGRANGE
[../]
[./force_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_r]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_r
execute_on = timestep_end
[../]
[./strain_r]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 0
index_j = 0
variable = strain_r
execute_on = timestep_end
[../]
[./stress_z]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_z
execute_on = timestep_end
[../]
[./strain_z]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 1
index_j = 1
variable = strain_z
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
[../]
[]
[BCs]
[./no_disp_r_left]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[../]
[./no_disp_r_right]
type = DirichletBC
variable = disp_r
boundary = right
value = 0.0
[../]
[./no_disp_z_bottom]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_z
boundary = top
function = 't'
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
start_time = 0.0
end_time = 0.1
dt = 0.01
[]
[Postprocessors]
[./strainR]
type = ElementAverageValue
variable = strain_r
[../]
[./stressR]
type = ElementAverageValue
variable = stress_r
[../]
[./strainZ]
type = ElementAverageValue
variable = strain_z
[../]
[./stressZ]
type = ElementAverageValue
variable = stress_z
[../]
[./force_r]
type = NodalSum
variable = force_r
boundary = top
[../]
[./force_z]
type = NodalSum
variable = force_z
boundary = top
[../]
[]
[Outputs]
exodus = true
#csv = true
print_linear_residuals = false
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_rz.i)
#
[Mesh]
file = cracking_rz_test.e
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 1 2 3 4'
y = '0 1 0 -1 0'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[BCs]
[./pull]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = displ
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 4.0e7
poissons_ratio = 0.0
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = 1.68e6
softening_models = abrupt_softening
[../]
[./abrupt_softening]
type = AbruptSoftening
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101 '
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-2
l_tol = 1e-5
start_time = 0.0
end_time = 0.1
dt = 0.025
[]
[Outputs]
exodus = true
[]
(tutorials/tutorial02_multiapps/step02_transfers/03_master_uot.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 10
nz = 10
zmax = 3
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[v_average]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[front]
type = DirichletBC
variable = u
boundary = front
value = 0
[]
[back]
type = DirichletBC
variable = u
boundary = back
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[UserObjects]
[layered_integral]
type = NearestPointLayeredIntegral
points = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
direction = z
num_layers = 4
variable = u
[]
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0.15 0.15 0 0.45 0.45 0 0.75 0.75 0'
input_files = '03_sub_uot.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppUserObjectTransfer
to_multi_app = sub_app
variable = u_integral
user_object = layered_integral
[]
[pull_v]
type = MultiAppUserObjectTransfer
from_multi_app = sub_app
variable = v_average
user_object = layered_average
[]
[]
(modules/chemical_reactions/test/tests/aqueous_equilibrium/2species_without_action.i)
# Simple equilibrium reaction example to illustrate the use of the AqueousEquilibriumReactions
# action.
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction specified in the AqueousEquilibriumReactions block as:
#
# reactions = '2a = pa2 2
# a + b = pab -2'
#
# where the 2 is the weight of the equilibrium species, the 2 on the RHS of the first reaction
# refers to the equilibrium constant (log10(Keq) = 2), and the -2 on the RHS of the second
# reaction equates to log10(Keq) = -2.
#
# This example is identical to 2species.i, except that it explicitly includes all AuxKernels
# and Kernels that are set up by the action in 2species.i
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[./a]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[./b]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[../]
[../]
[]
[AuxVariables]
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[./pa2]
[../]
[./pab]
[../]
[]
[AuxKernels]
[./pa2eq]
type = AqueousEquilibriumRxnAux
variable = pa2
v = a
sto_v = 2
log_k = 2
[../]
[./pabeq]
type = AqueousEquilibriumRxnAux
variable = pab
v = 'a b'
sto_v = '1 1'
log_k = -2
[../]
[]
[ICs]
[./pressure]
type = FunctionIC
variable = pressure
function = 2-x
[../]
[]
[Kernels]
[./a_ie]
type = PrimaryTimeDerivative
variable = a
[../]
[./a_diff]
type = PrimaryDiffusion
variable = a
[../]
[./a_conv]
type = PrimaryConvection
variable = a
p = pressure
[../]
[./b_ie]
type = PrimaryTimeDerivative
variable = b
[../]
[./b_diff]
type = PrimaryDiffusion
variable = b
[../]
[./b_conv]
type = PrimaryConvection
variable = b
p = pressure
[../]
[./a1eq]
type = CoupledBEEquilibriumSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1diff]
type = CoupledDiffusionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
[../]
[./a1conv]
type = CoupledConvectionReactionSub
variable = a
log_k = 2
weight = 2
sto_u = 2
p = pressure
[../]
[./a2eq]
type = CoupledBEEquilibriumSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2diff]
type = CoupledDiffusionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./a2conv]
type = CoupledConvectionReactionSub
variable = a
v = b
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[./b2eq]
type = CoupledBEEquilibriumSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2diff]
type = CoupledDiffusionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
[../]
[./b2conv]
type = CoupledConvectionReactionSub
variable = b
v = a
log_k = -2
weight = 1
sto_v = 1
sto_u = 1
p = pressure
[../]
[]
[BCs]
[./a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[../]
[./a_right]
type = ChemicalOutFlowBC
variable = a
boundary = right
[../]
[./b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[../]
[./b_right]
type = ChemicalOutFlowBC
variable = b
boundary = right
[../]
[]
[Materials]
[./porous]
type = GenericConstantMaterial
prop_names = 'diffusivity conductivity porosity'
prop_values = '1e-4 1e-4 0.2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-12
start_time = 0.0
end_time = 100
dt = 10.0
[]
[Outputs]
file_base = 2species_out
exodus = true
perf_graph = true
print_linear_residuals = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/advection_error_testing.i)
velocity=1
[GlobalParams]
u = ${velocity}
pressure = 0
tau_type = mod
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 4
xmax = 1
elem_type = EDGE2
[]
[Variables]
[./c]
family = LAGRANGE
order = FIRST
[../]
[]
[Kernels]
[./adv]
type = Advection
variable = c
forcing_func = 'ffn'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'mu rho'
prop_values = '0 1'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = '1-x^2'
[../]
[./c_func]
type = ParsedFunction
value = 'x-x^3/3'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
[./exodus]
type = Exodus
[../]
[./csv]
type = CSV
[../]
[]
[Postprocessors]
[./L2c]
type = ElementL2Error
variable = c
function = c_func
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./L2cx]
type = ElementL2Error
variable = cx
function = ffn
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
[AuxVariables]
[./cx]
family = MONOMIAL
order = FIRST
[../]
[]
[AuxKernels]
[./cx]
type = VariableGradientComponent
component = x
variable = cx
gradient_variable = c
[../]
[]
(modules/tensor_mechanics/test/tests/scalar_material_damage/scalar_material_damage.i)
# This is a basic test of the system for continuum damage mechanics
# materials. It uses ScalarMaterialDamage for the damage model,
# which simply gets its damage index from another material. In this
# case, we prescribe the evolution of the damage index using a
# function. A single element has a fixed prescribed displacement
# on one side that puts the element in tension, and then the
# damage index evolves from 0 to 1 over time, and this verifies
# that the stress correspondingly drops to 0.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[AuxVariables]
[damage_index]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx strain_xx'
[]
[]
[AuxKernels]
[damage_index]
type = MaterialRealAux
variable = damage_index
property = damage_index_prop
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[axial_load]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[]
[]
[Functions]
[damage_evolution]
type = PiecewiseLinear
xy_data = '0.0 0.0
0.1 0.0
2.1 2.0'
[]
[]
[Materials]
[damage_index]
type = GenericFunctionMaterial
prop_names = damage_index_prop
prop_values = damage_evolution
[]
[damage]
type = ScalarMaterialDamage
damage_index = damage_index_prop
[]
[stress]
type = ComputeDamageStress
damage_model = damage
[]
[elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.2
youngs_modulus = 10e9
[]
[]
[Postprocessors]
[stress_xx]
type = ElementAverageValue
variable = stress_xx
[]
[strain_xx]
type = ElementAverageValue
variable = strain_xx
[]
[damage_index]
type = ElementAverageValue
variable = damage_index
[]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-8
dt = 0.1
dtmin = 0.1
end_time = 1.1
[]
[Outputs]
csv=true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/to_multiple_boundaries_master.i)
# Master mesh and sub mesh are same with 4x4 quad8 elements.
# master mesh has top boundary fixed at u=2 and bottom fixed at u=-1
# sub mesh has top boundary fixed at v=2 and bottom fixed at v=1
# The u variable is transferred to the left and bottom boundaries of the sub,
# while the v variable is transferred to the right and top boundaries of the master.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[from_sub]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = top
value = 2.0
[]
[bottom]
type = DirichletBC
variable = u
boundary = bottom
value = -1.0
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
input_files = to_multiple_boundaries_sub.i
execute_on = timestep_end
[]
[]
[Transfers]
[to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
target_boundary = 'left bottom'
variable = from_master
[]
[from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
target_boundary = 'right top'
variable = from_sub
[]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 1D version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
# Note: this test is the same as theis.i, but uses the tabulated version of the CO2FluidProperties
[Mesh]
type = GeneratedMesh
dim = 1
nx = 80
xmax = 200
bias_x = 1.05
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = tabulated
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[tabulated]
type = TabulatedFluidProperties
fp = co2
fluid_property_file = fluid_properties.csv
[]
[water]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-8 1E-10 20'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 8e2
[TimeStepper]
type = IterationAdaptiveDT
dt = 2
growth_factor = 2
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '200 0 0'
num_points = 1000
variable = 'pgas zi x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '1 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '1 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '1 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '1 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '1 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
file_base = theis_tabulated_csvout
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_creep_plasticity.i)
#
# This test is Example 2 from "A Consistent Formulation for the Integration
# of Combined Plasticity and Creep" by P. Duxbury, et al., Int J Numerical
# Methods in Engineering, Vol. 37, pp. 1277-1295, 1994.
#
# The problem is a one-dimensional bar which is loaded from yield to a value of twice
# the initial yield stress and then unloaded to return to the original stress. The
# bar must harden to the required yield stress during the load ramp, with no
# further yielding during unloading. The initial yield stress (sigma_0) is prescribed
# as 20 with a plastic strain hardening of 100. The mesh is a 1x1x1 cube with symmetry
# boundary conditions on three planes to provide a uniaxial stress field.
#
# In the PowerLawCreep model, the creep strain rate is defined by:
#
# edot = A(sigma)**n * exp(-Q/(RT)) * t**m
#
# The creep law specified in the paper, however, defines the creep strain rate as:
#
# edot = Ao * mo * (sigma)**n * t**(mo-1)
# with the creep parameters given by
# Ao = 1e-7
# mo = 0.5
# n = 5
#
# thus, input parameters for the test were specified as:
# A = Ao * mo = 1e-7 * 0.5 = 0.5e-7
# m = mo-1 = -0.5
# n = 5
# Q = 0
#
# The variation of load P with time is:
# P = 20 + 20t 0 < t < 1
# P = 40 - 40(t-1) 1 < t 1.5
#
# The analytic solution for total strain during the loading period 0 < t < 1 is:
#
# e_tot = (sigma_0 + 20*t)/E + 0.2*t + A * t**0.5 * sigma_0**n * [ 1 + (5/3)*t +
# + 2*t**2 + (10/7)*t**3 + (5/9)**t**4 + (1/11)*t**5 ]
#
# and during the unloading period 1 < t < 1.5:
#
# e_tot = (sigma_1 - 40*(t-1))/E + 0.2 + (4672/693) * A * sigma_0**n +
# A * sigma_0**n * [ t**0.5 * ( 32 - (80/3)*t + 16*t**2 - (40/7)*t**3
# + (10/9)*t**4 - (1/11)*t**5 ) - (11531/693) ]
#
# where sigma_1 is the stress at time t = 1.
#
# Assuming a Young's modulus (E) of 1000 and using the parameters defined above:
#
# e_tot(1) = 2.39734
# e_tot(1.5) = 3.16813
#
#
# The numerically computed solution is:
#
# e_tot(1) = 2.39718 (~0.006% error)
# e_tot(1.5) = 3.15555 (~0.40% error)
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy elastic_strain_yy creep_strain_yy plastic_strain_yy'
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = ' 0 1 1.5'
y = '-20 -40 -20'
[../]
[./dts]
type = PiecewiseLinear
x = '0 0.5 1.0 1.5'
y = '0.015 0.015 0.005 0.005'
[../]
[]
[BCs]
[./u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = 1
function = top_pull
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 1e3
poissons_ratio = 0.3
[../]
[./creep_plas]
type = ComputeMultipleInelasticStress
block = 0
tangent_operator = elastic
inelastic_models = 'creep plas'
max_iterations = 50
absolute_tolerance = 1e-05
combined_inelastic_strain_weights = '0.0 1.0'
[../]
[./creep]
type = PowerLawCreepStressUpdate
block = 0
coefficient = 0.5e-7
n_exponent = 5
m_exponent = -0.5
activation_energy = 0
[../]
[./plas]
type = IsotropicPlasticityStressUpdate
block = 0
hardening_constant = 100
yield_stress = 20
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-5
start_time = 0.0
end_time = 1.5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/materials/ad_material/ad_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusionTest
variable = u
prop_to_use = 'AdAd'
ad_mat_prop = ad_diffusivity
regular_mat_prop = regular_diffusivity
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Materials]
[./ad_coupled_mat]
type = ADCoupledMaterial
coupled_var = u
ad_mat_prop = ad_diffusivity
regular_mat_prop = regular_diffusivity
[../]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-10
nl_rel_tol = 1e-9
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/variable_inner_product/variable_inner_product.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = -1
xmax = 1
ymin = 0
ymax = 1
elem_type = QUAD9
[]
[AuxVariables]
[./f]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = leg2
[../]
[../]
[./g]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = leg1
[../]
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Functions]
[./leg1]
type = ParsedFunction
value = 'x'
[../]
[./leg2]
type = ParsedFunction
value = '0.5*(3.0*x*x-1.0)'
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[./Quadrature]
order = fourth
[]
[]
[Postprocessors]
[./f_dot_g]
type = VariableInnerProduct
variable = f
second_variable = g
[../]
[./f_dot_f]
type = VariableInnerProduct
variable = f
second_variable = f
[../]
[./norm_f]
type = ElementL2Norm
variable = f
[../]
[]
[Outputs]
file_base = variable_inner_product
csv = true
[]
(modules/richards/test/tests/dirac/bh_fu_08.i)
#fullyupwind
[Mesh]
type = FileMesh
file = bh07_input.e
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
sat_UO = Saturation
seff_UO = Seff1VG
SUPG_UO = SUPGstandard
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1000 10000'
x = '100 1000'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./Seff1VG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0
sum_s_res = 0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E8
[../]
[./borehole_total_outflow_mass]
type = RichardsSumQuantity
[../]
[]
[Variables]
active = 'pressure'
[./pressure]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./p_ic]
type = FunctionIC
variable = pressure
function = initial_pressure
[../]
[]
[BCs]
[./fix_outer]
type = DirichletBC
boundary = perimeter
variable = pressure
value = 1E7
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[DiracKernels]
[./bh]
type = RichardsBorehole
bottom_pressure = 0
point_file = bh08.bh
borehole_length = 1
borehole_direction = '0 0 1'
SumQuantityUO = borehole_total_outflow_mass
variable = pressure
unit_weight = '0 0 0'
re_constant = 0.1594
character = 2
fully_upwind = true
[../]
[]
[Postprocessors]
[./bh_report]
type = RichardsPlotQuantity
uo = borehole_total_outflow_mass
execute_on = 'initial timestep_end'
[../]
[./fluid_mass]
type = RichardsMass
variable = pressure
execute_on = 'initial timestep_end'
[../]
[]
[Functions]
[./initial_pressure]
type = ParsedFunction
value = 1E7
[../]
[]
[Materials]
[./all]
type = RichardsMaterial
block = 1
viscosity = 1E-3
mat_porosity = 0.1
mat_permeability = '1E-11 0 0 0 1E-11 0 0 0 1E-11'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = Seff1VG
pressure_vars = pressure
[../]
[]
[Preconditioning]
[./usual]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000 30'
[../]
[]
[Executioner]
type = Transient
end_time = 1000
solve_type = NEWTON
[./TimeStepper]
# get only marginally better results for smaller time steps
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = bh_fu_08
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(test/tests/postprocessors/num_iterations/num_iterations.i)
# This tests if the correct number of nonlinear and linear iterations for a time
# step are recovered for each time integrator scheme.
#
# The gold files for each time integrator scheme were created manually by
# observing the numbers of iterations per time step.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time_der]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
[./TimeIntegrator]
# The time integrator type is provided by the tests file
[../]
num_steps = 2
abort_on_solve_fail = true
dt = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 0
nl_max_its = 5
[]
[Postprocessors]
[./num_nonlinear_iterations]
type = NumNonlinearIterations
[../]
[./num_linear_iterations]
type = NumLinearIterations
[../]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymm_gps_finite.i)
# this test checks the asixymmetric 1D generalized plane strain formulation using finite strains
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = line.e
[]
[Variables]
[./disp_x]
[../]
[./scalar_strain_yy]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
initial_condition = 580.0
[../]
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '580 580 680'
[../]
[./disp_x]
type = PiecewiseLinear
x = '0 1'
y = '0 2e-3'
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps]
[../]
[../]
[../]
[]
[AuxKernels]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_zz
index_i = 2
index_j = 2
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./temp]
type = FunctionAux
variable = temp
function = temp
execute_on = 'timestep_begin'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
boundary = 1
value = 0
variable = disp_x
[../]
[./disp_x]
type = FunctionDirichletBC
boundary = 2
function = disp_x
variable = disp_x
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[../]
[./strain]
type = ComputeAxisymmetric1DFiniteStrain
eigenstrain_names = eigenstrain
scalar_out_of_plane_strain = scalar_strain_yy
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-6
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-6
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0
end_time = 2
num_steps = 2
[]
[Outputs]
exodus = true
console = true
[]
(test/tests/auxkernels/pp_depend/pp_depend.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./pp_aux]
[../]
[]
[Functions]
[./t_func]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[]
[AuxKernels]
[./pp_aux]
type = PostprocessorAux
variable = pp_aux
execute_on = timestep_end
pp = t_pp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./t_pp]
type = FunctionValuePostprocessor
function = t_func
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Transient
solve_type = PJFNK
dt = 1
num_steps = 5
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/scalar_variable/scalar_variable_pps.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[ScalarKernels]
[time]
type = ODETimeDerivative
variable = v
[]
[flux_sink]
type = PostprocessorSinkScalarKernel
variable = v
postprocessor = scale_flux
[]
[]
[BCs]
[right]
type = DirichletBC
value = 0
variable = u
boundary = 'right'
[]
[left]
type = ADMatchedScalarValueBC
variable = u
v = v
boundary = 'left'
[]
[]
[Variables]
[u][]
[v]
family = SCALAR
order = FIRST
initial_condition = 1
[]
[]
[Postprocessors]
[flux]
type = SideDiffusiveFluxIntegral
variable = u
diffusivity = 1
boundary = 'left'
execute_on = 'initial nonlinear linear timestep_end'
[]
[scale_flux]
type = ScalePostprocessor
scaling_factor = -1
value = flux
execute_on = 'initial nonlinear linear timestep_end'
[]
[reporter]
type = ScalarVariable
variable = v
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
dt = .1
end_time = 1
solve_type = PJFNK
nl_rel_tol = 1e-12
[]
[Outputs]
csv = true
[]
(test/tests/bcs/vectorpostprocessor/vectorpostprocessor.i)
[Mesh]
type = GeneratedMesh
nx = 10
ny = 10
xmax = 1
ymax = 1
dim = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./conv]
type = ConservativeAdvection
variable = u
velocity = '0 1 0'
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./src]
type = BodyForce
variable = u
function = ffn
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = bottom
value = 2
[../]
[./right]
type = ChannelGradientBC
variable = u
boundary = right
channel_gradient_pps = channel_gradient
axis = y
h_name = h
[../]
[./top]
type = OutflowBC
variable = u
boundary = top
velocity = '0 1 0'
[../]
[./leftv]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./rightv]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'h'
#Nu = 4
#k = 1
#half_channel_length = 0.5
#h=Nu*k/half_channel_length
prop_values = '8'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
[VectorPostprocessors]
[./lv1]
num_points = 30
start_point = '0 0 0'
end_point = '0 1 0'
sort_by = 'y'
variable = u
type = LineValueSampler
execute_on = 'timestep_begin nonlinear timestep_end linear'
[../]
[./lv2]
num_points = 30
start_point = '1 0 0'
end_point = '1 1 0'
sort_by = 'y'
variable = v
type = LineValueSampler
execute_on = 'timestep_begin nonlinear timestep_end linear'
[../]
[./channel_gradient]
lv1 = lv1
lv2 = lv2
var1 = u
var2 = v
axis = y
type = ChannelGradientVectorPostprocessor
execute_on = 'timestep_begin nonlinear timestep_end linear'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = '1'
[../]
[]
(test/tests/scaling/off-diag-scaling/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
elem_type = quad9
[]
[Problem]
error_on_jacobian_nonzero_reallocation = true
[]
[Variables]
[./u]
[../]
[./v]
[../]
[./w]
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./diff_w]
type = Diffusion
variable = w
[../]
[./ad_coupled_value]
type = ADCoupledValueTest
variable = u
v = v
[../]
[./ad_coupled_value_w]
type = ADCoupledValueTest
variable = u
v = w
[../]
[./ad_coupled_value_x]
type = ADCoupledValueTest
variable = u
# v = 2.0 (Using the default value)
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[./left_w]
type = DirichletBC
variable = w
boundary = left
value = 0
[../]
[./right_w]
type = DirichletBC
variable = w
boundary = right
value = 1
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
automatic_scaling = true
verbose = true
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/ad_mat_diffusion/ad_1D_transient.i)
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 1
nx = 160
xmax = 80
[]
[Variables]
[./T]
[../]
[]
[ICs]
[./T_IC]
type = FunctionIC
variable = T
function = '100*sin(pi*x/80)'
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusion
variable = T
diffusivity = diffusivity
[../]
[./dt]
type = CoefTimeDerivative
variable = T
Coefficient = 0.82064
[../]
[]
[BCs]
[./sides]
type = DirichletBC
variable = T
boundary = 'left right'
value = 0
[../]
[]
[Materials]
[./k]
type = ADGenericConstantMaterial
prop_names = 'diffusivity'
prop_values = '0.95'
[../]
[]
[Executioner]
type = Transient
dt = 1e-2
end_time = 1
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(pi*x/80)*exp(-0.95/(0.092*8.92)*pi^2/80^2*t)'
variable = T
outputs = console
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion/constant_expansion_coeff_restart.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[Problem]
restart_file_base = constant_expansion_coeff_out_cp/LATEST
force_restart = true
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(500.0)+300.0
[../]
[]
[Modules]
[TensorMechanics]
[Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
end_time = 0.1
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
checkpoint = true
[]
[Postprocessors]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[./strain_zz]
type = ElementAverageValue
variable = strain_zz
[../]
[./temperature]
type = AverageNodalVariableValue
variable = temp
[../]
[]
(test/tests/coord_type/coord_type_rz.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_shear/small_deform_harden2.i)
# apply a pure tension, then some shear with compression
# the BCs are designed to map out the yield function, showing
# the affect of the hardening
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = x_disp
boundary = front
function = 'if(t<1E-6,0,3*t)'
[]
[topy]
type = FunctionDirichletBC
variable = y_disp
boundary = front
function = 'if(t<1E-6,0,5*(t-0.01E-6))'
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 'if(t<1E-6,t,2E-6-t)'
[]
[]
[AuxVariables]
[wps_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wps_internal_auxk]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wps_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[int]
type = PointValue
point = '0 0 0'
variable = wps_internal
[]
[]
[UserObjects]
[coh]
type = TensorMechanicsHardeningGaussian
value_0 = 1E3
value_residual = 700
rate = 2E16
[]
[tanphi]
type = TensorMechanicsHardeningGaussian
value_0 = 1
value_residual = 0.577350269
rate = 2E16
[]
[tanpsi]
type = TensorMechanicsHardeningGaussian
value_0 = 0.0874886635
value_residual = 0.01745506
rate = 2E16
[]
[wps]
type = TensorMechanicsPlasticWeakPlaneShear
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
smoother = 500
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '1E9 0.5E9'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wps
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-3
max_NR_iterations = 100
min_stepsize = 1
debug_fspb = crash
[]
[]
[Executioner]
end_time = 2E-6
dt = 1E-7
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/interfacekernels/1d_interface/single_variable_coupled_flux.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain1
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[./interface_again]
type = SideSetsBetweenSubdomainsGenerator
input = interface
primary_block = '1'
paired_block = '0'
new_boundary = 'primary1_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff0]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[../]
[./diff1]
type = CoeffParamDiffusion
variable = u
D = 2
block = 1
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = u
boundary = primary0_interface
D = 4
D_neighbor = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
print_linear_residuals = true
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/preconditioners/smp/smp_single_adapt_test.i)
#
# This is not very strong test since the problem being solved is linear, so the difference between
# full Jacobian and block diagonal preconditioner is not that big
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 5
ny = 5
elem_type = QUAD4
[]
[Functions]
[./exact_v]
type = ParsedFunction
value = sin(pi*x)*sin(pi*y)
[../]
[./force_fn_v]
type = ParsedFunction
value = 2*pi*pi*sin(pi*x)*sin(pi*y)
[../]
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
off_diag_row = 'u'
off_diag_column = 'v'
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./ffn_v]
type = BodyForce
variable = v
function = force_fn_v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./all_v]
type = FunctionDirichletBC
variable = v
boundary = '0 1 2 3'
function = exact_v
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[./Adaptivity]
steps = 3
coarsen_fraction = 0.1
refine_fraction = 0.2
max_h_level = 5
[../]
[]
[Outputs]
exodus = true
print_mesh_changed_info = true
[]
(test/tests/actions/meta_action/meta_action_test.i)
###########################################################
# This is a test of the Action System. An Action is created
# to build other objects pro grammatically. Two blocks in
# the input file have been commented out to demonstrate
# usage.
#
# @Requirement F1.50
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 4
[]
# This is our new custom Convection Diffusion "Meta" block
# that adds multiple kernels into our simulation
#
# Convection and Diffusion kernels on the first variable
# Diffusion kernel on the second variable
# The Convection kernel is coupled to the Diffusion kernel on the second variable
[ConvectionDiffusion]
variables = 'convected diffused'
[]
#[Variables]
# [./convected]
# [../]
# [./diffused]
# [../]
#[]
#
#[Kernels]
# [./diff_v]
# type = Diffusion
# variable = convected
# [../]
# [./diff_u]
# type = Diffusion
# variable = diffused
# [../]
#[]
[BCs]
active = 'left_convected right_convected left_diffused right_diffused'
[./left_convected]
type = DirichletBC
variable = convected
boundary = '3'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = '1'
value = 1
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = '3'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = '1'
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
file_base = out
[]
(tutorials/tutorial02_multiapps/step01_multiapps/07_sub_sub_multilevel.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 40
ny = 40
nz = 40
[]
[Variables]
[v]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = v
[]
[td]
type = TimeDerivative
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = v
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain_hydrostat.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '-5e9 -5e9 -5e9 0 0 0'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err]
type = ScalarL2Error
variable = global_strain
function = -0.02428571 #strain = E*(1-2*nu)/sigma
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_copy_transfer/second_lagrange_to_sub/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
source_variable = u
variable = u
to_multi_app = sub
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
#################################################################
#
# NOTE:
# The mesh for this model is too large for the MOOSE repository
# so is kept in the the large_media submodule
#
#################################################################
#
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = fine.e
[]
[xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
input = file
[]
[xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[]
[ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[]
[ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[]
[zmax]
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
input = ymax
[]
[zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[]
[excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
input = excav
new_boundary = roof
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[wc_x]
[]
[wc_y]
[]
[porepressure]
scaling = 1E-5
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[]
[]
[Kernels]
[cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[]
[x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[]
[y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[]
[x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[]
[y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[]
[gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
use_displaced_mesh = false
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
use_displaced_mesh = false
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[]
[]
[AuxVariables]
[saturation]
order = CONSTANT
family = MONOMIAL
[]
[darcy_x]
order = CONSTANT
family = MONOMIAL
[]
[darcy_y]
order = CONSTANT
family = MONOMIAL
[]
[darcy_z]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[wc_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zx]
order = CONSTANT
family = MONOMIAL
[]
[stress_zy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[perm_xx]
order = CONSTANT
family = MONOMIAL
[]
[perm_yy]
order = CONSTANT
family = MONOMIAL
[]
[perm_zz]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[]
[darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[]
[darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[]
[darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[]
[perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[]
[perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[]
[mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[]
[mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[]
[wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[]
[wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[]
[mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[]
[mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[]
[wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[]
[wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[]
[no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[]
[no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[]
[fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[]
[roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[]
[roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[]
[]
[Functions]
[ini_pp]
type = ParsedFunction
vars = 'bulk p0 g rho0'
vals = '2E3 0.0 1E-5 1E3'
value = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[]
[ini_xx]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[]
[ini_zz]
type = ParsedFunction
vars = 'bulk p0 g rho0 biot'
vals = '2E3 0.0 1E-5 1E3 0.7'
value = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[]
[excav_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval slope'
vals = '0.5 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[]
[density_sideways]
type = ParsedFunction
vars = 'end_t ymin ymax minval maxval'
vals = '0.5 0 1000.0 0 2500'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[]
[roof_conductance]
type = ParsedFunction
vars = 'end_t ymin ymax maxval minval'
vals = '0.5 0 1000.0 1E7 0'
value = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[]
[mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[]
[mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[]
[mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[]
[mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[]
[mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[]
[wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[]
[wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[]
[wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity_for_aux]
type = PorousFlowPorosity
at_nodes = false
fluid = true
mechanical = true
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[]
[permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[]
[permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[]
[elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[]
[elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[]
[strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[]
[stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[]
[wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[]
[undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[]
[undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[]
[min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[]
[min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[]
[min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[]
[max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = perm_zz
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
# best if you don't have mumps:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.0025
end_time = 0.5
[]
[Outputs]
interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
(modules/tensor_mechanics/test/tests/recompute_radial_return/isotropic_plasticity_incremental_strain.i)
# This simulation uses the piece-wise linear strain hardening model
# with the incremental small strain formulation; incremental small strain
# is required to produce the strain_increment for the DiscreteRadialReturnStressIncrement
# class, which handles the calculation of the stress increment to return
# to the yield surface in a J2 (isotropic) plasticity problem.
#
# This test assumes a Poissons ratio of zero and applies a displacement loading
# condition on the top in the y direction while fixing the displacement in the x
# and z directions; thus, only the normal stress and the normal strains in the
# y direction are compared in this problem.
#
# A similar problem was run in Abaqus on a similar 1 element mesh and was used
# to verify the SolidMechanics solution; this TensorMechanics code matches the
# SolidMechanics solution.
#
# Mechanical strain is the sum of the elastic and plastic strains but is different
# from total strain in cases with eigen strains, e.g. thermal strain.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t*(0.01)
[../]
[./hf]
type = PiecewiseLinear
x = '0 0.00004 0.0001 0.1'
y = '50 54 56 60'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy plastic_strain_xx plastic_strain_yy plastic_strain_zz'
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[../]
[./x_sides]
type = DirichletBC
variable = disp_x
boundary = 'left right'
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_sides]
type = DirichletBC
variable = disp_z
boundary = 'back front'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.5e5
poissons_ratio = 0.0
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 25.
hardening_constant = 1000.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-9
start_time = 0.0
end_time = 0.01875
dt = 0.00125
dtmin = 0.0001
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = GeneratedMesh
parallel_type = replicated
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xda_kernel]
type = SolutionAux
variable = u_aux
solution = xda_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u_aux
execute_on = initial
[../]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xda_func
variable = u
type = FunctionIC
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/action/no_action_1D.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[stress_base]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/multiple_position_files/sub1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/phase_field/test/tests/ADCHSoretDiffusion/simple_transient_diffusion_with_soret.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[./c]
[../]
[./mu]
[../]
[]
[AuxVariables]
[./T]
[./InitialCondition]
type = RampIC
value_left = 900
value_right = 1000
[../]
[../]
[]
[Kernels]
[./conc]
type = ADCHSplitConcentration
variable = c
chemical_potential_var = mu
mobility = chemical_mobility_prop
[../]
[./chempot]
type = ADCHSplitChemicalPotential
variable = mu
chemical_potential = mu_prop
[../]
[./soret]
type = ADCHSoretMobility
variable = c
T = T
mobility = thermal_mobility_prop
[../]
[./time]
type = ADTimeDerivative
variable = c
[../]
[]
[Materials]
[./chemical_potential]
type = ADPiecewiseLinearInterpolationMaterial
property = mu_prop
variable = c
x = '0 1'
y = '0 1'
[../]
[./chemical_mobility_prop]
type = ADGenericConstantMaterial
prop_names = chemical_mobility_prop
prop_values = 0.1
[../]
[./thermal_mobility_prop]
type = ADGenericConstantMaterial
prop_names = thermal_mobility_prop
prop_values = -20
[../]
[]
[BCs]
[./leftc]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[./rightc]
type = DirichletBC
variable = c
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 2'
dt = 0.1
num_steps = 20
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/function_file_test15.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_rows_more_data.csv
xy_in_file_only = false
x_index_in_file = 3 # will generate an error because no forth row of data
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/finite_strain_tensor_mechanics_tests/elastic_rotation.i)
#
# Rotation Test
#
# This test is designed to compute a uniaxial stress and then follow that
# stress as the mesh is rotated 90 degrees.
#
# The mesh is composed of one block with a single element. The nodal
# displacements in the x and y directions are prescribed. Poisson's
# ratio is zero.
#
[Mesh]
file = rotation_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
# Functions
[./x_200]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2*(t-t0)) - 1.0)'
[../]
[./y_200]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, (1.0+delta)*sin(pi/2*(t-t0)))'
[../]
[./x_300]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, delta*t, (1.0+delta)*cos(pi/2.0*(t-t0)) - sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./y_300]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) + (1+delta)*sin(pi/2.0*(t-t0)) - 1.0)'
[../]
[./x_400]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, -sin(pi/2.0*(t-t0)))'
[../]
[./y_400]
type = ParsedFunction
vars = 'delta t0'
vals = '-1e-6 1.0'
value = 'if(t<=1.0, 0.0, cos(pi/2.0*(t-t0)) - 1.0)'
[../]
[]
[Variables]
# Variables
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
# AuxVariables
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
# AuxKernels
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[]
[BCs]
# BCs
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./x_200]
type = FunctionDirichletBC
variable = disp_x
boundary = 200
function = x_200
[../]
[./y_200]
type = FunctionDirichletBC
variable = disp_y
boundary = 200
function = y_200
[../]
[./x_300]
type = FunctionDirichletBC
variable = disp_x
boundary = 300
function = x_300
[../]
[./y_300]
type = FunctionDirichletBC
variable = disp_y
boundary = 300
function = y_300
[../]
[./x_400]
type = FunctionDirichletBC
variable = disp_x
boundary = 400
function = x_400
[../]
[./y_400]
type = FunctionDirichletBC
variable = disp_y
boundary = 400
function = y_400
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = '100 200 300 400'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 1
C_ijkl = '1.0e6 0.0 0.0 1.0e6 0.0 1.0e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 1
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
# Executioner
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'
nl_rel_tol = 1e-30
nl_abs_tol = 1e-20
l_max_its = 20
start_time = 0.0
dt = 0.01
end_time = 2.0
[]
[Outputs]
exodus = true
[] # Outputs
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# when k_anisotropy is not specified.
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[perm_var]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[perm_var]
type = ConstantAux
value = 2
variable = perm_var
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[]
[perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[]
[perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[]
[perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[]
[perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[]
[perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityTensorFromVar
perm = perm_var
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(test/tests/outputs/nemesis/nemesis_elemental.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./proc_id]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./proc_id]
type = ProcessorIDAux
variable = proc_id
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
nemesis = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_1/brick1_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x8]
type = NodalVariableValue
nodeid = 7
variable = disp_x
[../]
[./disp_x13]
type = NodalVariableValue
nodeid = 12
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y8]
type = NodalVariableValue
nodeid = 7
variable = disp_y
[../]
[./disp_y13]
type = NodalVariableValue
nodeid = 12
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick1_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick1_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_x8 disp_x13 disp_x16 disp_y5 disp_y8 disp_y13 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(test/tests/multiapps/sub_cycling_failure/failure_with_max_procs_set.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist '
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '0 0 0'
input_files = sub.i
sub_cycling = true
max_procs_per_app = 1
[../]
[]
(test/tests/postprocessors/num_dofs/num_dofs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[./v_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = PJFNK
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./num_dofs_nl]
type = NumDOFs
system = NL
[../]
[./num_dofs_aux]
type = NumDOFs
system = AUX
[../]
# default
[./num_dofs_all]
type = NumDOFs
system = ALL
[../]
[]
[Outputs]
csv = true
[]
(modules/xfem/test/tests/moving_interface/verification/1D_rz_lsdep1mat.i)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# XFEM Moving Interface Verification Problem
# Dimensionality: quasi-1D
# Coordinate System: rz
# Material Numbers/Types: level set dep 1 material, 2 region
# Element Order: 1st
# Interface Characteristics: u independent, prescribed level set function
# Description:
# A simple transient heat transfer problem in cylindrical coordinates designed
# with the Method of Manufactured Solutions. This problem was developed to
# verify XFEM performance in the presence of a moving interface for linear
# element models that can be exactly evaluated by FEM/Moose. Both the
# temperature solution and level set function are designed to be linear to
# attempt to minimize error between the Moose/exact solution and XFEM results.
# Thermal conductivity is dependent upon the value of the level set function
# at each timestep.
# Results:
# The temperature at the left boundary (x=1) exhibits the largest difference
# between the FEM/Moose solution and XFEM results. We present the XFEM
# results at this location with 10 digits of precision:
# Time Expected Temperature XFEM Calculated Temperature
# 0.2 440 440
# 0.4 480 480.0008131
# 0.6 520 520.0038333
# 0.8 560 560.0088286
# 1.0 600 600.0131612
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 1
xmin = 1.0
xmax = 2.0
ymin = 0.0
ymax = 0.5
elem_type = QUAD4
[]
[XFEM]
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./level_set_cut_uo]
type = LevelSetCutUserObject
level_set_var = ls
heal_always = true
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./ls]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_cond]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[../]
[./vol_heat_src]
type = BodyForce
variable = u
function = src_func
[../]
[./mat_time_deriv]
type = TestMatTimeDerivative
variable = u
mat_prop_value = rhoCp
[../]
[]
[AuxKernels]
[./ls_function]
type = FunctionAux
variable = ls
function = ls_func
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
geometric_cut_userobject = 'level_set_cut_uo'
use_penalty = true
alpha = 1e5
[../]
[]
[Functions]
[./src_func]
type = ParsedFunction
value = '10*(-200*x+400) + (1/x)*(310*t - (10/1.02)*x*t - (1/1.02)*t^2)'
[../]
[./neumann_func]
type = ParsedFunction
value = '((0.05/2.04)*(2.04-x-0.2*t) + 1.5)*200*t'
[../]
[./k_func]
type = ParsedFunction
value = '(0.05/2.04)*(2.04-x-0.2*t) + 1.5'
[../]
[./ls_func]
type = ParsedFunction
value = '2.04 - x -0.2*t'
[../]
[]
[Materials]
[./mat_time_deriv_prop]
type = GenericConstantMaterial
prop_names = 'rhoCp'
prop_values = 10
[../]
[./therm_cond_prop]
type = GenericFunctionMaterial
prop_names = 'diffusion_coefficient'
prop_values = 'k_func'
[../]
[]
[BCs]
[./left_u]
type = FunctionNeumannBC
variable = u
boundary = 'left'
function = neumann_func
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 'right'
value = 400
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
value = 400
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_tol = 1.0e-6
nl_max_its = 15
nl_rel_tol = 1.0e-10
nl_abs_tol = 1.0e-9
start_time = 0.0
dt = 0.2
end_time = 1.0
max_xfem_update = 1
[]
[Outputs]
interval = 1
execute_on = 'initial timestep_end'
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/contact/test/tests/bouncing-block-contact/frictional-mortar-min-lm-mortar-disp.i)
starting_point = 2e-1
# We offset slightly so we avoid the case where the bottom of the secondary block and the top of the
# primary block are perfectly vertically aligned which can cause the backtracking line search some
# issues for a coarse mesh (basic line search handles that fine)
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
# order = SECOND
[../]
[./disp_y]
block = '1 2'
# order = SECOND
[../]
[./normal_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[./tangential_lm]
block = 3
family = MONOMIAL
order = CONSTANT
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalMortarLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
secondary_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
ncp_function_type = min
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_lm]
type = TangentialMortarLMMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_x
secondary_disp_y = disp_y
use_displaced_mesh = true
compute_primal_residuals = false
contact_pressure = normal_lm
friction_coefficient = .1
ncp_function_type = min
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
preset = false
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
preset = false
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(test/tests/vectorpostprocessors/csv_reader/transfer/master.i)
[Mesh]
type = GeneratedMesh
parallel_type = 'replicated'
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[MultiApps]
[./master]
type = FullSolveMultiApp
input_files = 'sub.i'
execute_on = initial
[../]
[]
[Transfers]
[./transfer]
type = MultiAppUserObjectTransfer
to_multi_app = master
user_object = data
variable = aux
[../]
[]
[VectorPostprocessors]
[./data]
type = CSVReader
csv_file = 'example.csv'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_capyramidal_active.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[center_node]
type = BoundingBoxNodeSetGenerator
input = cube
new_boundary = 'center_point'
top_right = '0.51 0.51 0'
bottom_left = '0.49 0.49 0'
[]
[back_edge_y]
type = BoundingBoxNodeSetGenerator
input = center_node
new_boundary = 'back_edge_y'
bottom_left = '0.9 0.5 0'
top_right = '1.1 0.5 0'
[]
[back_edge_x]
type = BoundingBoxNodeSetGenerator
input = back_edge_y
new_boundary = back_edge_x
bottom_left = '0.5 0.9 0'
top_right = '0.5 1.0 0'
[]
[]
[AuxVariables]
[temperature]
initial_condition = 300
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_4]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_8]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_9]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_13]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_14]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_0]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_3]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_4]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_8]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_9]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_13]
order = CONSTANT
family = MONOMIAL
[]
[forest_dislocations_14]
order = CONSTANT
family = MONOMIAL
[]
[substructure_density]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
[]
[AuxKernels]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[tau_0]
type = MaterialStdVectorAux
variable = resolved_shear_stress_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[tau_3]
type = MaterialStdVectorAux
variable = resolved_shear_stress_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[tau_4]
type = MaterialStdVectorAux
variable = resolved_shear_stress_4
property = applied_shear_stress
index = 4
execute_on = timestep_end
[]
[tau_8]
type = MaterialStdVectorAux
variable = resolved_shear_stress_8
property = applied_shear_stress
index = 8
execute_on = timestep_end
[]
[tau_9]
type = MaterialStdVectorAux
variable = resolved_shear_stress_9
property = applied_shear_stress
index = 9
execute_on = timestep_end
[]
[tau_13]
type = MaterialStdVectorAux
variable = resolved_shear_stress_13
property = applied_shear_stress
index = 13
execute_on = timestep_end
[]
[tau_14]
type = MaterialStdVectorAux
variable = resolved_shear_stress_14
property = applied_shear_stress
index = 14
execute_on = timestep_end
[]
[forest_dislocations_0]
type = MaterialStdVectorAux
variable = forest_dislocations_0
property = forest_dislocation_density
index = 0
execute_on = timestep_end
[]
[forest_dislocations_3]
type = MaterialStdVectorAux
variable = forest_dislocations_3
property = forest_dislocation_density
index = 3
execute_on = timestep_end
[]
[forest_dislocations_4]
type = MaterialStdVectorAux
variable = forest_dislocations_4
property = forest_dislocation_density
index = 4
execute_on = timestep_end
[]
[forest_dislocations_8]
type = MaterialStdVectorAux
variable = forest_dislocations_8
property = forest_dislocation_density
index = 8
execute_on = timestep_end
[]
[forest_dislocations_9]
type = MaterialStdVectorAux
variable = forest_dislocations_9
property = forest_dislocation_density
index = 9
execute_on = timestep_end
[]
[forest_dislocations_13]
type = MaterialStdVectorAux
variable = forest_dislocations_13
property = forest_dislocation_density
index = 13
execute_on = timestep_end
[]
[forest_dislocations_14]
type = MaterialStdVectorAux
variable = forest_dislocations_14
property = forest_dislocation_density
index = 14
execute_on = timestep_end
[]
[substructure_density]
type = MaterialRealAux
variable = substructure_density
property = total_substructure_density
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_3]
type = MaterialStdVectorAux
variable = slip_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'center_point back_edge_y'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'center_point back_edge_x'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
euler_angle_1 = 68
euler_angle_2 = 14
euler_angle_3 = -53
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = hcp_aprismatic_capyramidal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e4
initial_substructure_density = 5.0e2
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '1 1.5'
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1e5 2e7'
normalized_slip_activiation_energy_per_mode = '4e-3 3e-2'
slip_energy_proportionality_factor_per_mode = '330 100'
substructure_rate_coefficient_per_mode = '400 100'
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '0 0' #minimize impact
grain_size = 20.0e-3 #20 microns
[]
[]
[Postprocessors]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[tau_0]
type = ElementAverageValue
variable = resolved_shear_stress_0
[]
[tau_3]
type = ElementAverageValue
variable = resolved_shear_stress_3
[]
[tau_4]
type = ElementAverageValue
variable = resolved_shear_stress_4
[]
[tau_8]
type = ElementAverageValue
variable = resolved_shear_stress_8
[]
[tau_9]
type = ElementAverageValue
variable = resolved_shear_stress_9
[]
[tau_13]
type = ElementAverageValue
variable = resolved_shear_stress_13
[]
[tau_14]
type = ElementAverageValue
variable = resolved_shear_stress_14
[]
[forest_dislocation_0]
type = ElementAverageValue
variable = forest_dislocations_0
[]
[forest_dislocation_3]
type = ElementAverageValue
variable = forest_dislocations_3
[]
[forest_dislocation_4]
type = ElementAverageValue
variable = forest_dislocations_4
[]
[forest_dislocation_8]
type = ElementAverageValue
variable = forest_dislocations_8
[]
[forest_dislocation_9]
type = ElementAverageValue
variable = forest_dislocations_9
[]
[forest_dislocation_13]
type = ElementAverageValue
variable = forest_dislocations_13
[]
[forest_dislocation_14]
type = ElementAverageValue
variable = forest_dislocations_14
[]
[substructure_density]
type = ElementAverageValue
variable = substructure_density
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_3]
type = ElementAverageValue
variable = slip_resistance_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.015
dtmin = 1.0e-4
dtmax = 0.1
end_time = 0.15
[]
[Outputs]
csv = true
[]
(test/tests/auxkernels/solution_aux/solution_aux_direct.i)
[Mesh]
type = FileMesh
file = build_out_0001_mesh.xda
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./initial_cond_aux]
type = SolutionAux
solution = soln
variable = u_aux
execute_on = initial
direct = true
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
system_variables = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/intervals/sync_times.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 15
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
verbose = true
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = Exodus
sync_times = '0.15 0.375 0.892'
sync_only = true
[../]
[]
(modules/tensor_mechanics/test/tests/global_strain/global_strain_uniaxial.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
[]
[cnode]
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
new_boundary = 100
input = generated_mesh
[]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./u_z]
[../]
[./global_strain]
order = SIXTH
family = SCALAR
[../]
[]
[AuxVariables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./disp_z]
type = GlobalDisplacementAux
variable = disp_z
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 2
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
displacements = 'u_x u_y u_z'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y z'
variable = ' u_x u_y u_z'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[./centerfix_z]
type = DirichletBC
boundary = 100
variable = u_z
value = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '70e9 0.33'
fill_method = symmetric_isotropic_E_nu
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
applied_stress_tensor = '5e9 0 0 0 0 0'
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./l2err_e00]
type = ElementL2Error
variable = e00
function = 0.07142857 #strain_xx = C1111/sigma_xx
[../]
[./l2err_e11]
type = ElementL2Error
variable = e11
function = -0.07142857*0.33 #strain_yy = -nu*strain_xx
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
nl_rel_tol = 1.0e-10
start_time = 0.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/materials/stateful_coupling/stateful_coupling.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
[Materials]
# This material couples in a stateful property from StatefulTest
[./coupled_mat]
type = CoupledMaterial
mat_prop = 'some_prop'
coupled_mat_prop = 'thermal_conductivity'
use_old_prop = true
[../]
[./stateful_mat]
type = StatefulTest
prop_names = thermal_conductivity
prop_values = 1.0
output_properties = thermal_conductivity
outputs = exodus
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 4
[]
[Outputs]
exodus = true
[]
[Debug]
show_material_props = true
[]
(test/tests/vectorpostprocessors/intersection_points_along_line/2d.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# Ray tracing code is not yet compatible with DistributedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./intersections]
type = IntersectionPointsAlongLine
start = '0.05 0.05 0'
end = '0.05 0.405 0'
[../]
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[Outputs]
csv = true
[]
(test/tests/auxkernels/nodal_aux_var/nodal_sort_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./one]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[./two]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# Intentionally out of order to test sorting capabiilties
active = 'one two'
[./two]
variable = two
type = CoupledAux
value = 2
operator = '/'
coupled = one
[../]
[./one]
variable = one
type = ConstantAux
value = 1
[../]
[./five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/tensor_mechanics/test/tests/beam/static/euler_pipe_axial_disp.i)
# Test for small strain Euler beam axial loading in x direction.
# Modeling a pipe with an OD of 10 inches and ID of 8 inches
# The length of the pipe is 5 feet (60 inches) and E = 30e6
# G = 11.54e6 with nu = 0.3
# The applied axial load is 50000 lb which results in a
# displacement of 3.537e-3 inches at the end
# delta = PL/AE = 50000 * 60 / pi (5^2 - 4^2) * 30e6 = 3.537e-3
# In this analysis the displacement is used as a BC
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 60.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[./appl_disp_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 3.537e-3
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 30e6
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
outputs = exodus
output_properties = 'forces moments'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_y
[../]
[./forces_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = forces_x
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[perm_var]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[perm_var]
type = ConstantAux
value = 2
variable = perm_var
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[]
[perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[]
[perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[]
[perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[]
[perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[]
[perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityTensorFromVar
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
perm = perm_var
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test3qns.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3qns_out
exodus = true
[]
(test/tests/postprocessors/element_integral/element_integral_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./integral]
type = ElementIntegralVariablePostprocessor
variable = u
[../]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(examples/ex16_timestepper/ex16.i)
[Mesh]
file = square.e
uniform_refine = 4
[]
[Variables]
[./convected]
order = FIRST
family = LAGRANGE
[../]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./example_diff]
type = ExampleDiffusion
variable = convected
[../]
[./conv]
type = ExampleConvection
variable = convected
some_variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[./euler]
type = ExampleImplicitEuler
variable = diffused
[../]
[]
[BCs]
[./left_convected]
type = DirichletBC
variable = convected
boundary = 'left'
value = 0
[../]
[./right_convected]
type = DirichletBC
variable = convected
boundary = 'right'
value = 1
[../]
[./left_diffused]
type = DirichletBC
variable = diffused
boundary = 'left'
value = 0
[../]
[./right_diffused]
type = DirichletBC
variable = diffused
boundary = 'right'
value = 1
[../]
[]
[Materials]
[./example]
type = ExampleMaterial
block = 1
diffusivity = 0.5
time_coefficient = 20.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 12
# Use our custom TimeStepper
[./TimeStepper]
type = TransientHalf
ratio = 0.5
min_dt = 0.01
dt = 1
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/contact/test/tests/frictional/single_point_2d/single_point_2d.i)
[Mesh]
file = single_point_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./horizontal_movement]
type = ParsedFunction
value = t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
diag_save_in = 'diag_saved_x diag_saved_y'
[../]
[]
[AuxKernels]
[./incslip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./incslip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./botx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./boty2]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 4
value = -0.005
[../]
[]
[Materials]
[./bottom]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e9
poissons_ratio = 0.3
[../]
[./top]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
petsc_options = '-mat_superlu_dist_iterrefine -mat_superlu_dist_replacetinypivot'
line_search = 'none'
l_max_its = 100
nl_max_its = 200
dt = 0.001
end_time = 0.01
num_steps = 1000
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.001
l_tol = 1e-3
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = coulomb
friction_coefficient = '0.25'
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '2'
secondary = '3'
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/2D/dirichlet.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.01
max = 0.01
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.01
max = 0.01
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '0.5 * t'
[]
[pully]
type = ParsedFunction
value = '-0.3 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = pullx
preset = true
[]
[pull_y]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pully
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 0.2
[]
(test/tests/controls/time_periods/bcs/bcs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./right2]
type = FunctionDirichletBC
variable = u
boundary = right
function = (y*(t-1))+1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./period0]
type = TimePeriod
disable_objects = 'BCs::right2'
start_time = '0'
end_time = '0.95'
execute_on = 'initial timestep_begin'
[../]
[./period2]
type = TimePeriod
disable_objects = 'BCs::right'
start_time = '1'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4qns.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4qns_out
exodus = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ane.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 8
ny = 8
elem_type = QUAD4
[]
[]
# the minimum eigenvalue is (2*PI*(p-1)^(1/p)/a/p/sin(PI/p))^p;
# Its inverse is 35.349726539758187. Here a is equal to 10.
[Variables]
[./u]
[]
[]
# Set an random initial condition is necessary for this problem
# A constant initial condition will not work for this problem since
# the problem is ill-conditioned at a constant vector.
# We observed bad convergence when using a constant initial condition
[ICs]
[./uic]
type = RandomIC
variable = u
[../]
[]
[Kernels]
[./diff]
type = PHarmonic
variable = u
p = 3
[../]
[./rhs]
type = PMassKernel
extra_vector_tags = 'eigen'
variable = u
coefficient = -1.0
p = 3
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 2'
value = 0
[../]
[./eigen]
type = EigenDirichletBC
variable = u
boundary = '0 2'
[../]
[]
[Executioner]
type = Eigenvalue
free_power_iterations = 10
solve_type = PJFNK
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
file_base = ane
execute_on = 'timestep_end'
[]
(test/tests/auxkernels/element_aux_var/element_high_order_aux_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./high_order]
order = NINTH
family = MONOMIAL
[../]
[./one]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
# Coupling of nonlinear to Aux
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = CoupledForce
variable = u
v = one
[../]
[]
[AuxKernels]
[./coupled_high_order]
variable = high_order
type = CoupledAux
value = 2
operator = +
coupled = u
execute_on = 'initial timestep_end'
[../]
[./constant]
variable = one
type = ConstantAux
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./int2_u]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./int2_ho]
type = ElementL2Norm
variable = high_order
execute_on = 'initial timestep_end'
[../]
[./int_u]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[../]
[./int_ho]
type = ElementIntegralVariablePostprocessor
variable = high_order
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
[./ex_out]
type = Exodus
file_base = ho
elemental_as_nodal = true
[../]
[]
(modules/tensor_mechanics/test/tests/2D_geometries/2D-RZ_centerline_VLC.i)
# Simple test to check for use of AxisymmetricCenterlineAverageValue with
# volumetric_locking_correction activated in a tensor mechanics simulation
[Mesh]
type = GeneratedMesh
dim = 2
[]
[GlobalParams]
displacements = 'disp_r disp_z'
volumetric_locking_correction = true
[]
[Problem]
coord_type = RZ
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
[../]
[]
[AuxVariables]
[./temperature]
initial_condition = 298.0
[../]
[]
[BCs]
[./symmetry_x]
type = DirichletBC
variable = disp_r
value = 0
boundary = left
[../]
[./roller_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = bottom
[../]
[./top_load]
type = FunctionDirichletBC
variable = disp_z
function = -0.01*t
boundary = top
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.3
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-6
l_max_its = 50
start_time = 0.0
end_time = 0.3
dt = 0.1
[]
[Postprocessors]
[./center_temperature]
type = AxisymmetricCenterlineAverageValue
variable = temperature
boundary = left
[../]
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_2/plane2_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
file_base = plane2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = plane2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+9
[../]
[]
(modules/tensor_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_implicit.i)
# Test for central difference integration for 1D elements
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
xmin = 0
xmax = 10
nx = 5
dim = 1
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '10 0 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x'
[../]
[]
[NodalKernels]
[./force_x]
type = UserForcingFunctionNodalKernel
variable = disp_x
boundary = right
function = force_x
[../]
[./nodal_masses]
type = NodalTranslationalInertia
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_x'
boundary = 'all'
[../]
[]
[Functions]
[./force_x]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # force
scale_factor = 1e3
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x'
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 2e-10
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Postprocessors]
[./accel_x]
type = PointValue
point = '10.0 0.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_KT.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
# Using KT stabilization
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[ppwater]
initial_condition = 2e6
[]
[sgas]
initial_condition = 0.3
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[ppgas]
family = MONOMIAL
order = FIRST
[]
[]
[Kernels]
[mass_component0]
type = PorousFlowMassTimeDerivative
variable = ppwater
fluid_component = 0
[]
[flux_component0_phase0]
type = PorousFlowFluxLimitedTVDAdvection
variable = ppwater
advective_flux_calculator = afc_component0_phase0
[]
[flux_component0_phase1]
type = PorousFlowFluxLimitedTVDAdvection
variable = ppwater
advective_flux_calculator = afc_component0_phase1
[]
[mass_component1]
type = PorousFlowMassTimeDerivative
variable = sgas
fluid_component = 1
[]
[flux_component1_phase0]
type = PorousFlowFluxLimitedTVDAdvection
variable = sgas
advective_flux_calculator = afc_component1_phase0
[]
[flux_component1_phase1]
type = PorousFlowFluxLimitedTVDAdvection
variable = sgas
advective_flux_calculator = afc_component1_phase1
[]
[]
[AuxKernels]
[ppgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = ppgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater sgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 1e5
[]
[afc_component0_phase0]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
fluid_component = 0
phase = 0
flux_limiter_type = superbee
[]
[afc_component0_phase1]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
fluid_component = 0
phase = 1
flux_limiter_type = superbee
[]
[afc_component1_phase0]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
fluid_component = 1
phase = 0
flux_limiter_type = superbee
[]
[afc_component1_phase1]
type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
fluid_component = 1
phase = 1
flux_limiter_type = superbee
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e7
density0 = 1
thermal_expansion = 0
viscosity = 1e-5
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = ppwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[BCs]
[leftwater]
type = DirichletBC
boundary = left
value = 3e6
variable = ppwater
[]
[rightwater]
type = DirichletBC
boundary = right
value = 2e6
variable = ppwater
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1e3
end_time = 1e4
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'ppwater ppgas'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 11
[]
[]
[Outputs]
file_base = pressure_pulse_1d_2phasePS_KT
print_linear_residuals = false
[csv]
type = CSV
execute_on = final
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/special/rotate.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[angles]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0 1.5707963'
[]
[stretch]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.1 0.1'
[]
[move_y]
type = ParsedFunction
value = 'y*cos(theta) - z * (1 + a)*sin(theta) - y'
vars = 'a theta'
vals = 'stretch angles'
[]
[move_z]
type = ParsedFunction
value = 'y*sin(theta) + z*(1+a)*cos(theta) - z'
vars = 'a theta'
vals = 'stretch angles'
[]
[dts]
type = PiecewiseConstant
x = '0 1 2'
y = '0.1 0.001 0.001'
direction = 'LEFT_INCLUSIVE'
[]
[]
[BCs]
[fix]
type = DirichletBC
preset = true
value = 0.0
boundary = left
variable = disp_x
[]
[front_y]
type = FunctionDirichletBC
boundary = front
variable = disp_y
function = move_y
preset = true
[]
[back_y]
type = FunctionDirichletBC
boundary = back
variable = disp_y
function = move_y
preset = true
[]
[front_z]
type = FunctionDirichletBC
boundary = front
variable = disp_z
function = move_z
preset = true
[]
[back_z]
type = FunctionDirichletBC
boundary = back
variable = disp_z
function = move_z
preset = true
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = stress_xx
[]
[syy]
type = ElementAverageValue
variable = stress_yy
[]
[szz]
type = ElementAverageValue
variable = stress_zz
[]
[syz]
type = ElementAverageValue
variable = stress_yz
[]
[sxz]
type = ElementAverageValue
variable = stress_xz
[]
[sxy]
type = ElementAverageValue
variable = stress_xy
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-4
nl_abs_tol = 1e-6
start_time = 0.0
end_time = 2.0
[TimeStepper]
type = FunctionDT
function = dts
interpolate = False
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence/1D/dirichlet.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[stress_base]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 5.0
[]
[Postprocessors]
[nonlin]
type = NumNonlinearIterations
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/transfers/multiapp_userobject_transfer/main_nearest_sub_app.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
# The MultiAppUserObjectTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./multi_layered_average]
[../]
[./element_multi_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.001 # This will be constrained by the multiapp
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-8
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
positions = '0.3 0.1 0.3 0.7 0.1 0.3'
type = TransientMultiApp
input_files = sub.i
app_type = MooseTestApp
[../]
[]
[Transfers]
[./layered_transfer]
direction = from_multiapp
user_object = layered_average
variable = multi_layered_average
type = MultiAppUserObjectTransfer
multi_app = sub_app
nearest_sub_app = true
[../]
[./element_layered_transfer]
direction = from_multiapp
user_object = layered_average
variable = element_multi_layered_average
type = MultiAppUserObjectTransfer
multi_app = sub_app
nearest_sub_app = true
[../]
[]
(modules/heat_conduction/test/tests/code_verification/cylindrical_test_no3.i)
# Problem II.3
#
# The thermal conductivity of an infinitely long hollow cylinder varies
# linearly with temperature: k = k0(1+beta*u). The tube inside radius is ri and
# outside radius is ro. It has a constant internal heat generation q and
# is exposed to the same constant temperature on both surfaces: u(ri) = u(ro) = uo.
#
# REFERENCE:
# A. Toptan, et al. (Mar.2020). Tech. rep. CASL-U-2020-1939-000, SAND2020-3887 R. DOI:10.2172/1614683.
[Mesh]
[./geom]
type = GeneratedMeshGenerator
dim = 1
elem_type = EDGE2
xmin = 0.2
nx = 4
[../]
[]
[Variables]
[./u]
order = FIRST
[../]
[]
[Problem]
coord_type = RZ
[]
[Functions]
[./exact]
type = ParsedFunction
vars = 'q k0 ri ro beta u0'
vals = '1200 1 0.2 1.0 1e-3 0'
value = 'u0+(1/beta)*( ( 1 + 0.5*beta*((ro^2-x^2)-(ro^2-ri^2) * log(ro/x)/log(ro/ri))*q/k0 )^0.5 - 1)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = u
[../]
[./heatsource]
type = HeatSource
function = 1200
variable = u
[../]
[]
[BCs]
[./uo]
type = DirichletBC
boundary = 'left right'
variable = u
value = 0
[../]
[]
[Materials]
[./property]
type = GenericConstantMaterial
prop_names = 'density specific_heat'
prop_values = '1.0 1.0'
[../]
[./thermal_conductivity]
type = ParsedMaterial
f_name = 'thermal_conductivity'
args = u
function = '1 * (1 + 1e-3*u)'
[../]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./error]
type = ElementL2Error
function = exact
variable = u
[../]
[./h]
type = AverageElementSize
[]
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/velocity_channel/velocity_inletBC_by_parts.i)
# This input file tests outflow boundary conditions for the incompressible NS equations.
[GlobalParams]
gravity = '0 0 0'
integrate_p_by_parts = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 3.0
ymin = 0
ymax = 1.0
nx = 30
ny = 10
elem_type = QUAD9
[]
[Variables]
[./vel_x]
order = SECOND
family = LAGRANGE
[../]
[./vel_y]
order = SECOND
family = LAGRANGE
[../]
[./p]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'left top bottom'
value = 0.0
[../]
[./x_inlet]
type = FunctionDirichletBC
variable = vel_x
boundary = 'left'
function = 'inlet_func'
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * (y - 0.5)^2 + 1'
[../]
[]
(test/tests/executioners/adapt_and_modify/adapt_and_modify.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./rh_uo]
type = RandomHitUserObject
execute_on = 'initial timestep_begin'
num_hits = 1
[../]
[./rhsm]
type = RandomHitSolutionModifier
execute_on = 'custom'
modify = u
random_hits = rh_uo
amount = 1000
[../]
[]
[Executioner]
type = AdaptAndModify
num_steps = 4
dt = 1e-3
solve_type = 'PJFNK'
nl_rel_tol = 1e-15
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
adapt_cycles = 2
[]
[Adaptivity]
marker = rhm # Switch to combo to get the effect of both
[./Indicators]
[./gji]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./rhm]
type = RandomHitMarker
random_hits = rh_uo
[../]
[./efm]
type = ErrorFractionMarker
coarsen = 0.001
indicator = gji
refine = 0.8
[../]
[./combo]
type = ComboMarker
markers = 'efm rhm'
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_linear_fracture_energy.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[./TensorMechanics]
[./Master]
[./mech]
add_variables = true
strain = SMALL
additional_generate_output = 'stress_yy'
save_in = 'resid_x resid_y'
[../]
[../]
[../]
[]
[AuxVariables]
[./resid_x]
[../]
[./resid_y]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = top
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.04 1e-4'
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l * 3 / 4'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[./elastic]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
barrier_energy = 'barrier'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = '3 * gc_prop / (8 * l) * c'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[./barrier_energy]
type = ParsedMaterial
f_name = barrier
material_property_names = 'gc_prop l'
function = '3 * gc_prop / 16 / l'
[../]
[]
[Postprocessors]
[./resid_x]
type = NodalSum
variable = resid_x
boundary = 2
[../]
[./resid_y]
type = NodalSum
variable = resid_y
boundary = 2
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-8
l_max_its = 10
nl_max_its = 20
dt = 1e-4
dtmin = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/transfers/sampler_transfer/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/smeared_cracking/cracking_function.i)
#
# Simple pull test for cracking. This tests the option to prescribe the
# cracking strength using an AuxVariable. In this case, an elemental
# AuxVariable is used, and a function is used to prescribe its value.
# One of the elements is weaker than the others, so the crack localizes
# in that element.
#
[Mesh]
file = plate.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./cracking_stress_fn]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 0.1 0.2 0.3 0.4'
y = '0 0.001 0 -0.001 0'
[../]
[./fstress]
type = ParsedFunction
value = 'if(x > 0.667, 1.1e6, 1.2e6)'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx strain_xx strain_yy strain_xy strain_yz'
[../]
[]
[AuxKernels]
[./cracking_stress_fn]
type = FunctionAux
variable = cracking_stress_fn
function = fstress
execute_on = initial
[../]
[./crack_flags2]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags2
component = 2
[../]
[]
[BCs]
[./pull]
type = FunctionDirichletBC
variable = disp_x
boundary = '3 4'
function = displ
[../]
[./pin_x]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[./pin_y]
type = DirichletBC
variable = disp_y
boundary = '1 4'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 200.0e7
poissons_ratio = 0.0
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = cracking_stress_fn
softening_models = abrupt_softening
[../]
[./abrupt_softening]
type = AbruptSoftening
residual_stress = 0.0
[../]
[]
[Postprocessors]
[./elem_stress_xx]
type = ElementalVariableValue
variable = stress_xx
elementid = 2
[../]
[./elem_strain_xx]
type = ElementalVariableValue
variable = strain_xx
elementid = 2
[../]
[./elem_crack_flags_x]
type = ElementalVariableValue
variable = crack_flags2
elementid = 2
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101 '
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 0.2
dt = 0.0025
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/indicators/analytical_indicator/analytical_indicator_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[solution]
type = ParsedFunction
value = (exp(x)-1)/(exp(1)-1)
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[conv]
type = Convection
variable = u
velocity = '1 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
[Indicators]
[error]
type = AnalyticalIndicator
variable = u
function = solution
[]
[]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/tutorials/introduction/mech_step04a.i)
#
# We study the effects of volumetric locking
# https://mooseframework.inl.gov/modules/tensor_mechanics/tutorials/introduction/answer04b.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
# elem_type applies to the GeneratedMeshGenerator blocks
elem_type = QUAD4
# volumetric_locking_correction applies to the TensorMechanics Master action
volumetric_locking_correction = false
# uniform_refine applies to the final mesh
uniform_refine = 0
[]
[Mesh]
[generated1]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 15
xmin = -0.6
xmax = -0.1
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar1
[]
[generated2]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 15
xmin = 0.1
xmax = 0.6
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar2
boundary_id_offset = 4
[]
[collect_meshes]
type = MeshCollectionGenerator
inputs = 'generated1 generated2'
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[Pressure]
[sides]
boundary = 'pillar1_left pillar2_right'
function = 1e4*t
[]
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
# near incopmpressible material
poissons_ratio = 0.49
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Postprocessors]
[x_deflection]
type = NodalExtremeValue
value_type = max
variable = disp_x
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 0.5
[Predictor]
type = SimplePredictor
scale = 1
[]
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/mesh/split_uniform_refine/3d_diffusion.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 16
ny = 16
nz = 16
dim = 3
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/evolving_mass_density/expand_compress_test_tensors.i)
# Element mass tests
# This series of tests is designed to compute the mass of elements based on
# an evolving mass density calculation. The tests consist of expansion and compression
# of the elastic patch test model along each axis, uniform expansion and compression,
# and shear in each direction. The expansion and compression tests change the volume of
# the elements. The corresponding change in density should compensate for this so the
# mass remains constant. The shear tests should not result in a volume change, and this
# is checked too. The mass calculation is done with the post processor called Mass.
# The tests/file names are as follows:
# Expansion and compression along a single axis
# expand_compress_x_test_out.e
# expand_compress_y_test_out.e
# expand_compress_z_test_out.e
# Volumetric expansion and compression
# uniform_expand_compress_test.i
# Zero volume change shear along each axis
# shear_x_test_out.e
# shear_y_test_out.e
# shear_z_test_out.e
# The resulting mass calculation for these tests should always be = 1.
# This test is a duplicate of the uniform_expand_compress_test.i test for solid mechanics, and the
# output of this tensor mechanics test is compared to the original
# solid mechanics output. The duplication is necessary to test the
# migrated tensor mechanics version while maintaining tests for solid mechanics.
[Mesh]
file = elastic_patch.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
[]
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0.00 1.00 2.0 3.00'
y = '0.00 0.25 0.0 -0.25'
scale_factor = 1
[../]
[] # Functions
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./bot_x]
type = DirichletBC
variable = disp_x
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
value = 0
[../]
[./bot_z]
type = DirichletBC
variable = disp_z
value = 0
[../]
[./top]
type = FunctionDirichletBC
preset = false
function = rampConstant1
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 5 6 7'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./small_strain]
type = ComputeSmallStrain
block = ' 1 2 3 4 5 6 7'
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
block = '1 2 3 4 5 6 7'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 3
end_time = 3.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
[Postprocessors]
[./Mass]
type = Mass
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[]
(test/tests/variables/coupled_scalar/coupled_scalar_default.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_scalar]
order = SECOND
family = SCALAR
[../]
[./coupled]
[../]
[./coupled_1]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./coupled]
type = CoupledScalarAux
variable = coupled
# Using default value
[../]
[./coupled_1]
# Coupling to the "1" component of an aux scalar
type = CoupledScalarAux
variable = coupled_1
component = 1
# Setting explicit default
coupled = 3.14159
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[ICs]
[./aux_scalar_ic]
variable = aux_scalar
values = '1.2 4.3'
type = ScalarComponentIC
[../]
[]
(modules/tensor_mechanics/test/tests/beam/static_vm/ansys_vm12.i)
# This is a reproduction of test number 12 of ANSYS apdl verification manual.
# A 25 foot long bar is subjected to a tranverse load of 250 lb and a torsional
# moment of 9000 pb-in. The state of stress in the beam must be consistent
# with the loads applied to it.
# The radius of the bar is 2.33508 in, its area 17.129844 in, both area
# moments of inertia are I_z = I_y = 23.3505 in^4.
# A single element is used. From the external loading, the stresses are
# shear
# \tau = 9000 lb-in * radius / polar_moment = shear_modulus * theta_x/L * radius
#
# tensile stress due to bending moments
# \sigma = 250lb*300in*radius/moment_inertia = 2* radius * modulus_elast * v_{xx}
# all units inch-lb
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 1
xmin = 0.0
xmax = 300.0
[]
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 17.1298437
Ay = 0.0
Az = 0.0
Iy = 23.3505405
Iz = 23.3505405
y_orientation = '0 1.0 0.0'
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 30.0e6
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'left'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'left'
value = 0.0
[../]
[./fixrx]
type = DirichletBC
variable = rot_x
boundary = 'left'
value = 0.0
[../]
[./fixry]
type = DirichletBC
variable = rot_y
boundary = 'left'
value = 0.0
[../]
[./fixrz]
type = DirichletBC
variable = rot_z
boundary = 'left'
value = 0.0
[../]
[]
[NodalKernels]
[./force_z]
type = ConstantRate
variable = disp_z
boundary = 'right'
rate = 250
[../]
[./force_rx]
type = ConstantRate
variable = rot_x
boundary = 'right'
rate = 9000
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = JFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-06
nl_abs_tol = 1e-06
dt = 1.0
dtmin = 0.001
end_time = 2
[]
[Postprocessors]
[./disp_y]
type = PointValue
point = '300.0 0.0 0.0'
variable = disp_y
[../]
[./disp_z]
type = PointValue
point = '300.0 0.0 0.0'
variable = disp_z
[../]
[./disp_rx]
type = PointValue
point = '300.0 0.0 0.0'
variable = rot_x
[../]
[./disp_ry]
type = PointValue
point = '300.0 0.0 0.0'
variable = rot_y
[../]
[./disp_rz]
type = PointValue
point = '300.0 0.0 0.0'
variable = rot_z
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
csv = true
exodus = false
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/multilevel_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./subsub_average]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = CoupledForce
variable = u
v = subsub_average
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./sub_average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.3
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = multilevel_subsub.i
[../]
[]
[Transfers]
[./subsub_average]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = sub
variable = subsub_average
postprocessor = subsub_average
[../]
[]
(test/tests/transfers/multiapp_postprocessor_to_scalar/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./point_value]
type = PointValue
variable = u
point = '1 1 0'
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/chemical_reactions/test/tests/equilibrium_const/constant.i)
# Test of EquilibriumConstantAux with a single log(K) value.
# The resulting equilibrium constant should simple be constant.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[AuxVariables]
[./logk]
[../]
[]
[AuxKernels]
[./logk]
type = EquilibriumConstantAux
temperature = temperature
temperature_points = 300
logk_points = 1.23
variable = logk
[../]
[]
[Variables]
[./temperature]
[../]
[]
[Kernels]
[./temperature]
type = Diffusion
variable = temperature
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
value = 150
boundary = left
[../]
[./right]
type = DirichletBC
variable = temperature
value = 400
boundary = right
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/patch/large_patch.i)
[Mesh]
[base]
type = FileMeshGenerator
file = 'patch.xda'
[]
[sets]
input = base
type = SideSetsFromPointsGenerator
new_boundary = 'left right bottom top back front'
points = ' 0 0.5 0.5
1 0.5 0.5
0.5 0.0 0.5
'
' 0.5 1.0 0.5
0.5 0.5 0.0
0.5 0.5 1.0'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
large_kinematics = true
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
large_kinematics = true
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
large_kinematics = true
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[left]
type = DirichletBC
preset = true
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[front]
type = DirichletBC
preset = true
variable = disp_z
boundary = front
value = 0.1
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
large_kinematics = true
[]
[compute_strain]
type = ComputeLagrangianStrain
large_kinematics = true
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 1
dtmin = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_mesh_function_transfer/exec_on_mismatch.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[transferred_u]
[]
[elemental_transferred_u]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
positions = '.099 .099 0 .599 .599 0 0.599 0.099 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = fromsub_sub.i
execute_on = 'initial timestep_begin'
[]
[]
[Transfers]
[from_sub]
source_variable = sub_u
variable = transferred_u
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
execute_on = 'initial timestep_end'
[]
[elemental_from_sub]
source_variable = sub_u
variable = elemental_transferred_u
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
[]
[]
(modules/stochastic_tools/test/tests/transfers/monte_carlo/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[left_bc]
type = PointValue
point = '0 0 0'
variable = u
[]
[right_bc]
type = PointValue
point = '1 0 0'
variable = u
[]
[]
[Outputs]
csv = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test14.i)
[Mesh]
[./cmg]
type = CartesianMeshGenerator
dim = 2
dx = '4 2 3'
dy = '1 2'
ix = '10 10 10'
iy = '8 8'
subdomain_id = '1 2 3
2 2 2'
[]
[./ed0]
type = BlockDeletionGenerator
input = cmg
block = '1 3'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/system_info/system_info.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Adaptivity]
marker = marker
max_h_level = 2
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./marker]
type = ErrorFractionMarker
coarsen = 0.1
indicator = indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux_u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_read_slip_prop.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = 0.01*t
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys_prop.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
tan_mod_type = exact
intvar_read_type = slip_sys_file
num_slip_sys_props = 1
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.05
dtmax = 10.0
dtmin = 0.05
num_steps = 10
[]
[Outputs]
file_base = crysp_read_slip_prop_out
exodus = true
[]
(test/tests/meshgenerators/block_deletion_generator/block_deletion_test11.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = pyramid.e
[]
[./sbb2]
type = SubdomainBoundingBoxGenerator
input = fmg
block_id = 2
bottom_left = '-0.5 -0.5 -0.5'
top_right = '0.5 0.5 0.5'
[../]
[./swiss_cheese2]
type = BlockDeletionGenerator
block = 2
input = 'sbb2'
[../]
[./sbb3]
type = SubdomainBoundingBoxGenerator
input = swiss_cheese2
block_id = 3
bottom_left = '-5 -5 -3'
top_right = '-2 -2 -1'
[../]
[./swiss_cheese3]
type = BlockDeletionGenerator
block = 3
input = 'sbb3'
[../]
[./sbb4]
type = SubdomainBoundingBoxGenerator
input = swiss_cheese3
block_id = 4
bottom_left = '-1 2 -2'
top_right = '1 5 0'
[../]
[./swiss_cheese4]
type = BlockDeletionGenerator
block = 4
input = 'sbb4'
[../]
[./sbb5]
type = OrientedSubdomainBoundingBoxGenerator
input = swiss_cheese4
block_id = 5
center = '2.4 -1.4 0.4'
height = 3
length = 8
length_direction = '-2 1 -1'
width = 3
width_direction = '1 2 0'
[../]
[./swiss_cheese5]
type = BlockDeletionGenerator
block = 5
input = 'sbb5'
[../]
[./sbb6]
type = OrientedSubdomainBoundingBoxGenerator
input = swiss_cheese5
block_id = 6
center = '-1 0.4 2.2'
height = 1
length = 8
length_direction = '2 -1 -1'
width = 1
width_direction = '1 2 0'
[../]
[./swiss_cheese6]
type = BlockDeletionGenerator
block = 6
input = 'sbb6'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./dt]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 100
dt = 100
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/block-restriction/two-mats-two-eqn-sets.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 1
nx = 16
ny = 8
elem_type = QUAD9
[]
[./corner_node_0]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node_0'
coord = '0 0 0'
input = gen
[../]
[./corner_node_1]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node_1'
coord = '1 0 0'
input = corner_node_0
[../]
[./subdomain1]
input = corner_node_1
type = SubdomainBoundingBoxGenerator
bottom_left = '1 0 0'
top_right = '2 1 0'
block_id = 1
[../]
[./break_boundary]
input = subdomain1
type = BreakBoundaryOnSubdomainGenerator
[../]
[./interface0]
type = SideSetsBetweenSubdomainsGenerator
input = break_boundary
primary_block = '0'
paired_block = '1'
new_boundary = 'interface0'
[../]
[./interface1]
type = SideSetsBetweenSubdomainsGenerator
input = interface0
primary_block = '1'
paired_block = '0'
new_boundary = 'interface1'
[../]
[]
[Variables]
[velocity0]
order = SECOND
family = LAGRANGE_VEC
block = 0
[]
[T0]
order = SECOND
[InitialCondition]
type = ConstantIC
value = 1.0
[]
block = 0
[]
[p0]
block = 0
[]
[velocity1]
order = SECOND
family = LAGRANGE_VEC
block = 1
[]
[T1]
order = SECOND
[InitialCondition]
type = ConstantIC
value = 1.0
[]
block = 1
[]
[p1]
block = 1
[]
[]
[Kernels]
[./mass0]
type = INSADMass
variable = p0
block = 0
[../]
[./momentum_time0]
type = INSADMomentumTimeDerivative
variable = velocity0
block = 0
[../]
[./momentum_convection0]
type = INSADMomentumAdvection
variable = velocity0
block = 0
[../]
[./momentum_viscous0]
type = INSADMomentumViscous
variable = velocity0
block = 0
[../]
[./momentum_pressure0]
type = INSADMomentumPressure
variable = velocity0
pressure = p0
integrate_p_by_parts = true
block = 0
[../]
[./temperature_time0]
type = INSADHeatConductionTimeDerivative
variable = T0
block = 0
[../]
[./temperature_advection0]
type = INSADEnergyAdvection
variable = T0
block = 0
[../]
[./temperature_conduction0]
type = ADHeatConduction
variable = T0
thermal_conductivity = 'k'
block = 0
[../]
[./mass1]
type = INSADMass
variable = p1
block = 1
[../]
[./momentum_time1]
type = INSADMomentumTimeDerivative
variable = velocity1
block = 1
[../]
[./momentum_convection1]
type = INSADMomentumAdvection
variable = velocity1
block = 1
[../]
[./momentum_viscous1]
type = INSADMomentumViscous
variable = velocity1
block = 1
[../]
[./momentum_pressure1]
type = INSADMomentumPressure
variable = velocity1
pressure = p1
integrate_p_by_parts = true
block = 1
[../]
[./temperature_time1]
type = INSADHeatConductionTimeDerivative
variable = T1
block = 1
[../]
[./temperature_advection1]
type = INSADEnergyAdvection
variable = T1
block = 1
[../]
[./temperature_conduction1]
type = ADHeatConduction
variable = T1
thermal_conductivity = 'k'
block = 1
[../]
[]
[BCs]
[./no_slip0]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'bottom_to_0 interface0 left'
[../]
[./lid0]
type = VectorFunctionDirichletBC
variable = velocity0
boundary = 'top_to_0'
function_x = 'lid_function0'
[../]
[./T_hot0]
type = DirichletBC
variable = T0
boundary = 'bottom_to_0'
value = 1
[../]
[./T_cold0]
type = DirichletBC
variable = T0
boundary = 'top_to_0'
value = 0
[../]
[./pressure_pin0]
type = DirichletBC
variable = p0
boundary = 'pinned_node_0'
value = 0
[../]
[./no_slip1]
type = VectorFunctionDirichletBC
variable = velocity1
boundary = 'bottom_to_1 interface1 right'
[../]
[./lid1]
type = VectorFunctionDirichletBC
variable = velocity1
boundary = 'top_to_1'
function_x = 'lid_function1'
[../]
[./T_hot1]
type = DirichletBC
variable = T1
boundary = 'bottom_to_1'
value = 1
[../]
[./T_cold1]
type = DirichletBC
variable = T1
boundary = 'top_to_1'
value = 0
[../]
[./pressure_pin1]
type = DirichletBC
variable = p1
boundary = 'pinned_node_1'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat0]
type = INSAD3Eqn
velocity = velocity0
pressure = p0
temperature = T0
block = 0
[]
[ins_mat1]
type = INSAD3Eqn
velocity = velocity1
pressure = p1
temperature = T1
block = 1
[]
[]
[Functions]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
[./lid_function0]
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[./lid_function1]
type = ParsedFunction
value = '4*(x-1)*(2-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels -sub_pc_factor_shift_type'
petsc_options_value = 'asm 2 ilu 4 NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
[]
(test/tests/controls/control_connection/control_connection.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[./control]
type = TestControl
execute_on = INITIAL
test_type = 'connection'
parameter = 'Kernels/diff/coef'
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/mohr_coulomb/many_deforms_cap.i)
# apply many large deformations, checking that the algorithm returns correctly to
# the yield surface each time
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = back
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = back
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = front
function = '(sin(0.05*t)+x)/1E0'
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = front
function = '(cos(0.04*t)+x*y)/1E0'
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = 't/1E2'
[../]
[]
[AuxVariables]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./yield_fcn_at_zero]
type = PointValue
point = '0 0 0'
variable = yield_fcn
outputs = 'console'
[../]
[./should_be_zero]
type = FunctionValuePostprocessor
function = should_be_zero_fcn
[../]
[]
[Functions]
[./should_be_zero_fcn]
type = ParsedFunction
value = 'if(a<1E-3,0,a)'
vars = 'a'
vals = 'yield_fcn_at_zero'
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 1E3
[../]
[./mc_phi]
type = TensorMechanicsHardeningConstant
value = 30
convert_to_radians = true
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 5
convert_to_radians = true
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
tip_scheme = cap
mc_tip_smoother = 0.0
cap_start = 1000
cap_rate = 1E-3
mc_edge_smoother = 10
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-6
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
max_NR_iterations = 1000
ep_plastic_tolerance = 1E-6
plastic_models = mc
debug_fspb = crash
deactivation_scheme = safe
[../]
[]
[Executioner]
end_time = 1000
dt = 1
type = Transient
[]
[Outputs]
file_base = many_deforms_cap
exodus = false
[./csv]
type = CSV
[../]
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/convergence/cauchy-elastic.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 4
ny = 4
nz = 4
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.1
max = 0.1
[]
[disp_z]
type = RandomIC
variable = disp_z
min = -0.1
max = 0.1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '4000 * t'
[]
[pully]
type = ParsedFunction
value = '-2000 * t'
[]
[pullz]
type = ParsedFunction
value = '3000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = left
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[pull_z]
type = FunctionNeumannBC
boundary = right
variable = disp_z
function = pullz
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 3
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(test/tests/restart/restart_diffusion/exodus_refined_refined_restart_2_test.i)
[Mesh]
file = exodus_refined_restart_1.e
uniform_refine = 1
# Restart relies on the ExodusII_IO::copy_nodal_solution()
# functionality, which only works with ReplicatedMesh.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
initial_from_file_var = u
initial_from_file_timestep = 2
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = exodus_refined_refined_restart_2
exodus = true
[]
(test/tests/transfers/multiapp_variable_value_sample_transfer/full_domain_primary.i)
[Mesh]
type = MeshGeneratorMesh
[cartesian_basic_mesh]
type = CartesianMeshGenerator
dim = 2
dx = '0.25 0.25 0.25 0.25'
ix = '1 1 1 1 '
dy = '0.25 0.25 0.25 0.25'
iy = '1 1 1 1'
subdomain_id = '1 2 2 2
1 1 2 2
1 1 2 2
1 1 1 2'
[]
[central_node]
type = ExtraNodesetGenerator
coord = '0.5 0.5'
input = cartesian_basic_mesh
new_boundary = 'central_node'
[]
[]
[Variables]
[to_subapp]
initial_condition = -1.0
[]
[]
[AuxKernels]
[discretize_to_subapp]
type = ParsedAux
variable = from_subapp_check
function = 'to_subapp'
args = 'to_subapp'
[]
[subapp_primary_diff]
type = ParsedAux
variable = subapp_primary_diff
function = 'from_subapp_check - from_subapp'
args = 'from_subapp_check from_subapp'
[]
[]
[AuxVariables]
[from_subapp]
family = MONOMIAL
order = CONSTANT
initial_condition = -2.0
[]
[from_subapp_check]
family = MONOMIAL
order = CONSTANT
initial_condition = -2.0
[]
[subapp_primary_diff]
family = MONOMIAL
order = CONSTANT
initial_condition = -2.0
[]
[array_var]
family = MONOMIAL
order = CONSTANT
components = 3
initial_condition = '-2 -1 0'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = to_subapp
[]
[]
[BCs]
[edge]
type = DirichletBC
variable = to_subapp
boundary = 'top right left bottom'
value = 1
[]
[center]
type = DirichletBC
variable = to_subapp
boundary = 'central_node'
value = 0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
num_steps = 3
dt = 1.0
nl_abs_tol = 1e-13
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = CentroidMultiApp
input_files = subapp.i
[]
[]
[Transfers]
[from_primary_to_sub_pp]
type = MultiAppVariableValueSamplePostprocessorTransfer
to_multi_app = sub
source_variable = to_subapp
postprocessor = from_primary_pp
[]
[primary_average]
type = MultiAppVariableValueSamplePostprocessorTransfer
from_multi_app = sub
source_variable = from_subapp
postprocessor = to_primary_pp
[]
[array_var]
type = MultiAppVariableValueSamplePostprocessorTransfer
from_multi_app = sub
source_variable = array_var
source_variable_component = 2
postprocessor = to_primary_pp
[]
[]
(modules/tensor_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_explicit.i)
# One element test to test the central difference time integrator.
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 2
nx = 1
ny = 2
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '1 2 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./x_bot]
type = FunctionDirichletBC
boundary = bottom
variable = disp_x
function = disp
preset = false
[../]
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[]
[NodalKernels]
[./nodal_mass_x]
type = NodalTranslationalInertia
variable = 'disp_x'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[./nodal_mass_y]
type = NodalTranslationalInertia
variable = 'disp_y'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = CentralDifference
[../]
[]
[Postprocessors]
[./accel_2x]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/capillary_pressure/brooks_corey1.i)
# Test Brooks-Corey capillary pressure curve by varying saturation over the mesh
# lambda = 2, sat_lr = 0.1, log_extension = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 500
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[p0]
initial_condition = 1e6
[]
[s1]
[]
[]
[AuxVariables]
[s0aux]
family = MONOMIAL
order = CONSTANT
[]
[s1aux]
family = MONOMIAL
order = CONSTANT
[]
[p0aux]
family = MONOMIAL
order = CONSTANT
[]
[p1aux]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s0]
type = PorousFlowPropertyAux
property = saturation
phase = 0
variable = s0aux
[]
[s1]
type = PorousFlowPropertyAux
property = saturation
phase = 1
variable = s1aux
[]
[p0]
type = PorousFlowPropertyAux
property = pressure
phase = 0
variable = p0aux
[]
[p1]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = p1aux
[]
[]
[Functions]
[s1]
type = ParsedFunction
value = x
[]
[]
[ICs]
[s1]
type = FunctionIC
variable = s1
function = s1
[]
[]
[Kernels]
[p0]
type = Diffusion
variable = p0
[]
[s1]
type = Diffusion
variable = s1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p0 s1'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureBC
lambda = 2
log_extension = false
pe = 1e5
sat_lr = 0.1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = p0
phase1_saturation = s1
capillary_pressure = pc
[]
[kr0]
type = PorousFlowRelativePermeabilityVG
phase = 0
m = 0.5
[]
[kr1]
type = PorousFlowRelativePermeabilityCorey
phase = 1
n = 2
[]
[]
[VectorPostprocessors]
[vpp]
type = LineValueSampler
variable = 's0aux s1aux p0aux p1aux'
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 500
sort_by = id
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-6
[]
[BCs]
[sleft]
type = DirichletBC
variable = s1
value = 0
boundary = left
[]
[sright]
type = DirichletBC
variable = s1
value = 1
boundary = right
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/mesh/mixed_dim/1d_2d_w_matl.i)
# Using different mesh file where 1D elements will come before 2D ones.
# This is important for testing the robustness of re-initializing materials
[Mesh]
file = 1d_2d-2.e
# Mixed-dimension meshes don't seem to work with DistributedMesh. The
# program hangs, I can't get a useful stack trace when I attach to
# it. See also #2130.
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[]
[Materials]
[./mat1]
type = MTMaterial
block = '1 2'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 4
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 100
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 101
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_linear_harden.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPLinearHardening
yield_stress = 100
slope = 10
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_linear_harden
exodus = true
csv = false
[]
(test/tests/mesh/gmsh_bcs/gmsh_bc_test.i)
[Mesh]
file = plate_hole.msh
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 12
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 10
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/nonzero-malloc/test.i)
[GlobalParams]
gravity = '0 0 0'
pspg = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 5
ny = 5
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[Variables]
[./vel_x]
[../]
[./vel_y]
[../]
[./T]
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
[../]
[]
[Kernels]
# mass
[./mass]
type = INSMass
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
# x-momentum, time
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
# x-momentum, space
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
# y-momentum, time
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
# y-momentum, space
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
# temperature
[./temperature_time]
type = INSTemperatureTimeDerivative
variable = T
[../]
[./temperature_space]
type = INSTemperature
variable = T
u = vel_x
v = vel_y
[../]
[malloc]
type = MallocKernel
# Variable choice doesn't matter
variable = vel_x
[]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'bottom right left'
value = 0.0
[../]
[./lid]
type = FunctionDirichletBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'bottom right top left'
value = 0.0
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 0
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/check_error/shear_modulus.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = cube.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./2_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./2_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./2_z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = -10.0
poissons_ratio = 0.0
[../]
[./strain]
type = ComputeSmallStrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/controls/pid_control/pid_control.i)
c = 0
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = '${c}'
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
end_time = 20
dt = 1
[]
[Postprocessors]
[integral]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[]
[]
[Controls]
[integral_value]
type = PIDTransientControl
postprocessor = integral
target = 1.5
parameter = 'BCs/left/value'
K_integral = -1
K_proportional = -1
K_derivative = -0.1
execute_on = 'initial timestep_begin'
[]
[]
[Outputs]
file_base = out
exodus = false
csv = true
[]
(test/tests/transfers/multiapp_copy_transfer/constant_monomial_to_sub/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./aux]
type = FunctionAux
function = x*y
variable = aux
execute_on = initial
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
source_variable = aux
variable = u
to_multi_app = sub
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/examples/periodic_strain/global_strain_pfm.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
[]
[./cnode]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0'
new_boundary = 100
[../]
[]
[Variables]
[./u_x]
[../]
[./u_y]
[../]
[./global_strain]
order = THIRD
family = SCALAR
[../]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'sin(2*x*pi)*sin(2*y*pi)*0.05+0.6'
[../]
[../]
[./w]
[../]
[]
[AuxVariables]
[./local_energy]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./s00]
order = CONSTANT
family = MONOMIAL
[../]
[./s01]
order = CONSTANT
family = MONOMIAL
[../]
[./s10]
order = CONSTANT
family = MONOMIAL
[../]
[./s11]
order = CONSTANT
family = MONOMIAL
[../]
[./e00]
order = CONSTANT
family = MONOMIAL
[../]
[./e01]
order = CONSTANT
family = MONOMIAL
[../]
[./e10]
order = CONSTANT
family = MONOMIAL
[../]
[./e11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./disp_x]
type = GlobalDisplacementAux
variable = disp_x
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 0
[../]
[./disp_y]
type = GlobalDisplacementAux
variable = disp_y
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
component = 1
[../]
[./local_free_energy]
type = TotalFreeEnergy
execute_on = 'initial LINEAR'
variable = local_energy
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[./s00]
type = RankTwoAux
variable = s00
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./s01]
type = RankTwoAux
variable = s01
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./s10]
type = RankTwoAux
variable = s10
rank_two_tensor = stress
index_i = 1
index_j = 0
[../]
[./s11]
type = RankTwoAux
variable = s11
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./e00]
type = RankTwoAux
variable = e00
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[../]
[./e01]
type = RankTwoAux
variable = e01
rank_two_tensor = total_strain
index_i = 0
index_j = 1
[../]
[./e10]
type = RankTwoAux
variable = e10
rank_two_tensor = total_strain
index_i = 1
index_j = 0
[../]
[./e11]
type = RankTwoAux
variable = e11
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[../]
[]
[GlobalParams]
derivative_order = 2
enable_jit = true
displacements = 'u_x u_y'
block = 0
[]
[Kernels]
[./TensorMechanics]
[../]
# Cahn-Hilliard kernels
[./c_dot]
type = CoupledTimeDerivative
variable = w
v = c
block = 0
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
block = 0
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
block = 0
[../]
[]
[ScalarKernels]
[./global_strain]
type = GlobalStrain
variable = global_strain
global_strain_uo = global_strain_uo
[../]
[]
[BCs]
[./Periodic]
[./all]
auto_direction = 'x y'
variable = 'c w u_x u_y'
[../]
[../]
# fix center point location
[./centerfix_x]
type = DirichletBC
boundary = 100
variable = u_x
value = 0
[../]
[./centerfix_y]
type = DirichletBC
boundary = 100
variable = u_y
value = 0
[../]
[]
[Materials]
[./consts]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '0.2 0.01 '
[../]
[./shear1]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 0.5'
tensor_name = shear1
[../]
[./shear2]
type = GenericConstantRankTwoTensor
tensor_values = '0 0 0 0 0 -0.5'
tensor_name = shear2
[../]
[./expand3]
type = GenericConstantRankTwoTensor
tensor_values = '1 1 0 0 0 0'
tensor_name = expand3
[../]
[./weight1]
type = DerivativeParsedMaterial
function = '0.3*c^2'
f_name = weight1
args = c
[../]
[./weight2]
type = DerivativeParsedMaterial
function = '0.3*(1-c)^2'
f_name = weight2
args = c
[../]
[./weight3]
type = DerivativeParsedMaterial
function = '4*(0.5-c)^2'
f_name = weight3
args = c
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1'
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeSmallStrain
global_strain = global_strain
eigenstrain_names = eigenstrain
[../]
[./eigenstrain]
type = CompositeEigenstrain
tensors = 'shear1 shear2 expand3'
weights = 'weight1 weight2 weight3'
args = c
eigenstrain_name = eigenstrain
[../]
[./global_strain]
type = ComputeGlobalStrain
scalar_global_strain = global_strain
global_strain_uo = global_strain_uo
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
# chemical free energies
[./chemical_free_energy]
type = DerivativeParsedMaterial
f_name = Fc
function = '4*c^2*(1-c)^2'
args = 'c'
outputs = exodus
output_properties = Fc
[../]
# elastic free energies
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
args = 'c'
outputs = exodus
output_properties = Fe
[../]
# free energy (chemical + elastic)
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
[../]
[]
[UserObjects]
[./global_strain_uo]
type = GlobalStrainUserObject
execute_on = 'Initial Linear Nonlinear'
[../]
[]
[Postprocessors]
[./total_free_energy]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = local_energy
[../]
[./total_solute]
type = ElementIntegralVariablePostprocessor
execute_on = 'initial TIMESTEP_END'
variable = c
[../]
[./min]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = min
variable = c
[../]
[./max]
type = ElementExtremeValue
execute_on = 'initial TIMESTEP_END'
value_type = max
variable = c
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
line_search = basic
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
l_max_its = 30
nl_max_its = 12
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
end_time = 2.0
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.5
cutback_factor = 0.8
optimal_iterations = 9
iteration_window = 2
[../]
[]
[Outputs]
execute_on = 'timestep_end'
print_linear_residuals = false
exodus = true
[./table]
type = CSV
delimiter = ' '
[../]
[]
(test/tests/functions/solution_function/solution_function_grad_p1.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./test_variable]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[Functions]
[./initial_cond_func]
type = ParsedFunction
value = 2*x+4*y
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = solution_function_grad_p1
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictionless-nodal-min-lm-mortar-disp.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[./lm]
type = NormalNodalLMMechanicalContact
secondary = 10
primary = 20
variable = normal_lm
primary_variable = disp_x
disp_y = disp_y
[../]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/3d-mixed.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
constraint_types = 'stress strain stress stress stress strain'
ndim = 3
large_kinematics = false
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = SIXTH
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[szz]
family = MONOMIAL
order = CONSTANT
[]
[syz]
family = MONOMIAL
order = CONSTANT
[]
[sxz]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[ezz]
family = MONOMIAL
order = CONSTANT
[]
[eyz]
family = MONOMIAL
order = CONSTANT
[]
[exz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[zz]
type = RankTwoAux
variable = szz
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[syz]
type = RankTwoAux
variable = syz
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[sxz]
type = RankTwoAux
variable = sxz
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[ezz]
type = RankTwoAux
variable = ezz
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
[]
[eyz]
type = RankTwoAux
variable = eyz
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 2
[]
[exz]
type = RankTwoAux
variable = exz
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'stress11 strain22 stress33 stress23 stress13 strain12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[stress11]
type = ParsedFunction
value = '4.0e2*t'
[]
[strain22]
type = ParsedFunction
value = '-6.0e-2*t'
[]
[stress33]
type = ParsedFunction
value = '8.0e2*t'
[]
[stress23]
type = ParsedFunction
value = '2.0e2*t'
[]
[stress13]
type = ParsedFunction
value = '-7.0e2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[szz]
type = ElementAverageValue
variable = szz
execute_on = 'initial timestep_end'
[]
[syz]
type = ElementAverageValue
variable = syz
execute_on = 'initial timestep_end'
[]
[sxz]
type = ElementAverageValue
variable = sxz
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[ezz]
type = ElementAverageValue
variable = ezz
execute_on = 'initial timestep_end'
[]
[eyz]
type = ElementAverageValue
variable = eyz
execute_on = 'initial timestep_end'
[]
[exz]
type = ElementAverageValue
variable = exz
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/combined/test/tests/adaptive_timestepping/adapt_tstep_function_change_restart2.i)
# This is a test designed to evaluate the cabability of the
# IterationAdaptiveDT TimeStepper to adjust time step size according to
# a function. For example, if the power input function for a BISON
# simulation rapidly increases or decreases, the IterationAdaptiveDT
# TimeStepper should take time steps small enough to capture the
# oscillation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = FIRST
family = LAGRANGE
block = 1
[]
[Mesh]
file = 1hex8_10mm_cube.e
[]
[Functions]
[./Fiss_Function]
type = PiecewiseLinear
x = '0 1e6 2e6 2.001e6 2.002e6'
y = '0 3e8 3e8 12e8 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
volumetric_locking_correction = true
incremental = true
eigenstrain_names = thermal_expansion
decomposition_method = EigenSolution
add_variables = true
generate_output = 'vonmises_stress'
temperature = temp
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[./heat_source]
type = HeatSource
variable = temp
value = 1.0
function = Fiss_Function
[../]
[]
[BCs]
[./bottom_temp]
type = DirichletBC
variable = temp
boundary = 1
value = 300
[../]
[./top_bottom_disp_x]
type = DirichletBC
variable = disp_x
boundary = '1'
value = 0
[../]
[./top_bottom_disp_y]
type = DirichletBC
variable = disp_y
boundary = '1'
value = 0
[../]
[./top_bottom_disp_z]
type = DirichletBC
variable = disp_z
boundary = '1'
value = 0
[../]
[]
[Materials]
[./thermal]
type = HeatConductionMaterial
temp = temp
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 300e6
poissons_ratio = .3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 5e-6
stress_free_temperature = 300.0
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[./density]
type = Density
density = 10963.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
verbose = true
nl_abs_tol = 1e-10
num_steps = 50000
end_time = 2.002e6
[./TimeStepper]
type = IterationAdaptiveDT
timestep_limiting_function = Fiss_Function
max_function_change = 3e7
dt = 1e6
[../]
[]
[Postprocessors]
[./Temperature_of_Block]
type = ElementAverageValue
variable = temp
execute_on = 'timestep_end'
[../]
[./vonMises]
type = ElementAverageValue
variable = vonmises_stress
execute_on = 'timestep_end'
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 10
[../]
[]
[Problem]
restart_file_base = adapt_tstep_function_change_restart1_checkpoint_cp/0065
[]
(test/tests/auxkernels/solution_aux/output_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
xmin = 1
xmax = 4
ymin = 1
ymax = 3
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./initial_cond_aux]
type = SolutionAux
solution = xda_soln
execute_on = initial
variable = u_aux
direct = false
[../]
[]
[UserObjects]
[./xda_soln]
type = SolutionUserObject
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
system_variables = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
xda = true
[]
(modules/richards/test/tests/buckley_leverett/bl01.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2.0E6
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-4
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[AuxKernels]
active = 'calculate_seff'
[./calculate_seff]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_pressure
[../]
[../]
[]
[BCs]
active = 'left'
[./left]
type = DirichletBC
variable = pressure
boundary = left
value = 980000
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Functions]
active = 'initial_pressure'
[./initial_pressure]
type = ParsedFunction
value = max((1000000-x/5*1000000)-20000,-20000)
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20'
[../]
[]
[Executioner]
type = Transient
end_time = 50
dt = 2
snesmf_reuse_base = false
[]
[Outputs]
file_base = bl01
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[]
(modules/combined/test/tests/ad_power_law_creep/power_law_creep_smallstrain.i)
# 1x1x1 unit cube with uniform pressure on top face for the case of small strain.
# This test does not have a solid mechanics analog because there is not an equvialent
# small strain with rotations strain calculator material in solid mechanics
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
use_automatic_differentiation = true
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = ADHeatConduction
variable = temp
[../]
[./heat_ie]
type = ADHeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = ADPressure
variable = disp_y
component = 1
boundary = top
constant = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./radial_return_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
[../]
[./power_law_creep]
type = ADPowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = ADHeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = ADDensity
density = 1.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/beam_eigenstrain_transfer/subapp2_uo_transfer.i)
# This test involves only thermal expansion strains on a 2x2x2 cube of approximate
# steel material. An initial temperature of 25 degrees C is given for the material,
# and an auxkernel is used to calculate the temperature in the entire cube to
# raise the temperature each time step. After the first timestep,in which the
# temperature jumps, the temperature increases by 6.25C each timestep.
# The thermal strain increment should therefore be
# 6.25 C * 1.3e-5 1/C = 8.125e-5 m/m.
# This test is also designed to be used to identify problems with restart files
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 5
xmin = 0.0
xmax = 0.5
ymin = 0.0
ymax = 0.150080
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./temp]
[../]
[./axial_strain]
order = FIRST
family = MONOMIAL
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t*(1000.0)+300.0
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
eigenstrain_names = eigenstrain
[../]
[../]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
[../]
[./axial_strain]
type = RankTwoAux
variable = axial_strain
rank_two_tensor = total_strain
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[]
[BCs]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 298
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.0125
dtmin = 0.0001
[]
[Outputs]
csv = true
exodus = true
[]
[VectorPostprocessors]
[./axial_str]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0.5 0.0 0.0'
end_point = '0.5 0.150080 0.0'
variable = axial_strain
num_points = 11
sort_by = 'id'
[../]
[]
[Postprocessors]
[./end_disp]
type = PointValue
variable = disp_y
point = '0.5 0.150080 0.0'
[../]
[]
(modules/combined/test/tests/phase_field_fracture/void2d_iso.i)
[Mesh]
type = FileMesh
file = void2d_mesh.xda
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = SMALL
additional_generate_output = stress_yy
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = F
mobility = L
kappa = kappa_op
[../]
[../]
[../]
[]
[Functions]
[./tfunc]
type = ParsedFunction
value = t
[../]
[./void_prop_func]
type = ParsedFunction
value = 'rad:=0.2;m:=50;r:=sqrt(x^2+y^2);1-exp(-(r/rad)^m)+1e-8'
[../]
[./gb_prop_func]
type = ParsedFunction
value = 'rad:=0.2;thk:=0.05;m:=50;sgnx:=1-exp(-(x/rad)^m);v:=sgnx*exp(-(y/thk)^m);0.005*(1-v)+0.001*v'
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tfunc
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'l visco'
prop_values = '0.01 0.1'
[../]
[./pfgc]
type = GenericFunctionMaterial
prop_names = 'gc_prop'
prop_values = 'gb_prop_func'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
elasticity_tensor_prefactor = void_prop_func
[../]
[./define_mobility]
type = ParsedMaterial
material_property_names = 'gc_prop visco'
f_name = L
function = '1.0/(gc_prop * visco)'
[../]
[./define_kappa]
type = ParsedMaterial
material_property_names = 'gc_prop l'
f_name = kappa_op
function = 'gc_prop * l'
[../]
[./damage_stress]
type = ComputeLinearElasticPFFractureStress
c = c
E_name = 'elastic_energy'
D_name = 'degradation'
F_name = 'fracture_energy'
decomposition_type = strain_spectral
[../]
[./degradation]
type = DerivativeParsedMaterial
f_name = degradation
args = 'c'
function = '(1.0-c)^2*(1.0 - eta) + eta'
constant_names = 'eta'
constant_expressions = '0.0'
derivative_order = 2
[../]
[./fracture_energy]
type = DerivativeParsedMaterial
f_name = fracture_energy
args = 'c'
material_property_names = 'gc_prop l'
function = 'c^2 * gc_prop / 2 / l'
derivative_order = 2
[../]
[./fracture_driving_energy]
type = DerivativeSumMaterial
args = c
sum_materials = 'elastic_energy fracture_energy'
derivative_order = 2
f_name = F
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm lu 1'
nl_rel_tol = 1e-9
nl_max_its = 10
l_tol = 1e-4
l_max_its = 40
dt = 1e-4
num_steps = 2
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_interior_boundary_penetration_locator/2d_interior_boundary_penetration_locator.i)
[Mesh]
type = FileMesh
file = meshed_gap.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./gap_distance]
[../]
[./gap_value]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[AuxKernels]
[./penetration]
type = PenetrationAux
variable = gap_distance
boundary = 2
paired_boundary = 3
[../]
[./gap_value]
type = GapValueAux
variable = gap_value
boundary = 2
paired_variable = u
paired_boundary = 3
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/test.i)
[GlobalParams]
#displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
use_crack_growth_increment = true
crack_growth_increment = 0.2
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '1.0 0.5 0.3 0.5'
time_start_cut = 0.0
time_end_cut = 2.0
heal_always = true
[../]
[]
[Modules/TensorMechanics/Master]
displacements = 'disp_x disp_y'
[./all]
strain = FINITE
planar_formulation = plane_strain
add_variables = true
displacements = 'disp_x disp_y'
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 50 100'
y='0 0.02 0.1'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = bottom
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0.0
[../]
[./topx]
type = DirichletBC
boundary = top
variable = disp_x
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = pull
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[../]
[./_elastic_strain]
type = ComputeFiniteStrainElasticStress
block = 0
displacements = 'disp_x disp_y'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 2.0
num_steps = 5000
max_xfem_update = 1
[]
[Outputs]
file_base = crack_propagation_2d_out
exodus = true
execute_on = timestep_end
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/central_difference/consistent/2D/2d_consistent_implicit.i)
# Test for the central difference time integrator for a 2D mesh
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 2.0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[]
[BCs]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./x_bot]
type = PresetDisplacement
boundary = bottom
variable = disp_x
beta = 0.25
velocity = vel_x
acceleration = accel_x
function = disp
[../]
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1e4
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_abs_tol = 1e-11
nl_rel_tol = 1e-11
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./accel_2x]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_x
[../]
[./accel_2y]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/tensor_mechanics/test/tests/1D_axisymmetric/axisymmetric_gps_finite.i)
#
# This test checks the generalized plane strain using finite strain formulation.
# since we constrain all the nodes against movement and the applied thermal strain
# is very small, the results are the same as small and incremental small strain formulations
#
[GlobalParams]
displacements = disp_x
scalar_out_of_plane_strain = scalar_strain_yy
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = lines.e
[]
[Variables]
[disp_x]
[]
[temp]
initial_condition = 580.0
[]
[scalar_strain_yy]
order = FIRST
family = SCALAR
[]
[]
[Functions]
[temp100]
type = PiecewiseLinear
x = '0 1'
y = '580 680'
[]
[temp300]
type = PiecewiseLinear
x = '0 1'
y = '580 880'
[]
[]
[Kernels]
[heat]
type = Diffusion
variable = temp
[]
[]
[Modules/TensorMechanics/Master]
[gps]
planar_formulation = GENERALIZED_PLANE_STRAIN
scalar_out_of_plane_strain = scalar_strain_yy
strain = FINITE
generate_output = 'strain_xx strain_yy strain_zz stress_xx stress_yy stress_zz'
eigenstrain_names = eigenstrain
temperature = temp
[]
[]
[BCs]
[no_x]
type = DirichletBC
boundary = 1000
value = 0
variable = disp_x
[]
[temp100]
type = FunctionDirichletBC
variable = temp
function = temp100
boundary = 2
[]
[temp300]
type = FunctionDirichletBC
variable = temp
function = temp300
boundary = 3
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3600
poissons_ratio = 0.2
[]
[thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 1e-8
temperature = temp
stress_free_temperature = 580
eigenstrain_name = eigenstrain
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
line_search = 'none'
l_max_its = 50
l_tol = 1e-08
nl_max_its = 15
nl_abs_tol = 1e-10
start_time = 0
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
console = true
[]
(modules/richards/test/tests/gravity_head_1/gh13.i)
# unsaturated = false
# gravity = false
# supg = true
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 0.1
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh13
exodus = true
[]
(modules/tensor_mechanics/test/tests/notched_plastic_block/biaxial_planar.i)
# Uses non-smoothed Mohr-Coulomb (via ComputeMultiPlasticityStress and TensorMechanicsPlasticMohrCoulombMulti) to simulate the following problem.
# A cubical block is notched around its equator.
# All of its outer surfaces have roller BCs, but the notched region is free to move as needed
# The block is initialised with a high hydrostatic tensile stress
# Without the notch, the BCs do not allow contraction of the block, and this stress configuration is admissible
# With the notch, however, the interior parts of the block are free to move in order to relieve stress, and this causes plastic failure
# The top surface is then pulled upwards (the bottom is fixed because of the roller BCs)
# This causes more failure
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 9
ny = 9
nz = 9
xmin = 0
xmax = 0.1
ymin = 0
ymax = 0.1
zmin = 0
zmax = 0.1
[]
[block_to_remove_xmin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.01 0.11 0.055'
location = INSIDE
block_id = 1
input = generated_mesh
[]
[block_to_remove_xmax]
type = SubdomainBoundingBoxGenerator
bottom_left = '0.09 -0.01 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmin
[]
[block_to_remove_ymin]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 -0.01 0.045'
top_right = '0.11 0.01 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_xmax
[]
[block_to_remove_ymax]
type = SubdomainBoundingBoxGenerator
bottom_left = '-0.01 0.09 0.045'
top_right = '0.11 0.11 0.055'
location = INSIDE
block_id = 1
input = block_to_remove_ymin
[]
[remove_block]
type = BlockDeletionGenerator
block = 1
input = block_to_remove_ymax
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
incremental = true
generate_output = 'max_principal_stress mid_principal_stress min_principal_stress stress_zz'
eigenstrain_names = ini_stress
[]
[]
[Postprocessors]
[uz]
type = PointValue
point = '0 0 0.1'
use_displaced_mesh = false
variable = disp_z
[]
[s_zz]
type = ElementAverageValue
use_displaced_mesh = false
variable = stress_zz
[]
[num_res]
type = NumResidualEvaluations
[]
[nr_its]
type = ElementAverageValue
variable = num_iters
[]
[max_nr_its]
type = ElementExtremeValue
variable = num_iters
[]
[runtime]
type = PerfGraphData
data_type = TOTAL
section_name = 'Root'
[]
[]
[BCs]
# back=zmin, front=zmax, bottom=ymin, top=ymax, left=xmin, right=xmax
[xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[xmax_xzero]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[]
[ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[ymax_yzero]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = back
value = '0'
[]
[zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '1E-6*max(t,0)'
[]
[]
[AuxVariables]
[mc_int]
order = CONSTANT
family = MONOMIAL
[]
[plastic_strain]
order = CONSTANT
family = MONOMIAL
[]
[num_iters]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[]
[plastic_strain_aux]
type = MaterialRankTwoTensorAux
i = 2
j = 2
property = plastic_strain
variable = plastic_strain
[]
[num_iters_auxk] # cannot use plastic_NR_iterations directly as this is zero, since no NR iterations are actually used, since we use a custom algorithm to do the return
type = ParsedAux
args = plastic_strain
function = 'if(plastic_strain>0,1,0)'
variable = num_iters
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[]
[]
[UserObjects]
[mc_coh]
type = TensorMechanicsHardeningConstant
value = 5E6
[]
[mc_phi]
type = TensorMechanicsHardeningConstant
value = 35
convert_to_radians = true
[]
[mc_psi]
type = TensorMechanicsHardeningConstant
value = 10
convert_to_radians = true
[]
[mc]
type = TensorMechanicsPlasticMohrCoulombMulti
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
yield_function_tolerance = 1E-5
internal_constraint_tolerance = 1E-11
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 16E9
poissons_ratio = 0.25
[]
[mc]
type = ComputeMultiPlasticityStress
ep_plastic_tolerance = 1E-11
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[]
[strain_from_initial_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '6E6 0 0 0 6E6 0 0 0 6E6'
eigenstrain_name = ini_stress
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
start_time = -1
end_time = 10
dt = 1
dtmin = 1
solve_type = NEWTON
type = Transient
l_tol = 1E-2
nl_abs_tol = 1E-5
nl_rel_tol = 1E-7
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
perf_graph = true
csv = true
[]
(test/tests/functions/generic_function_material/generic_function_material_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./diff_func]
type = ParsedFunction
value = 1/t
[../]
[]
[Kernels]
[./diff]
type = GenericDiffusion
variable = u
property = diffusion
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./gfm]
type = GenericFunctionMaterial
block = 0
prop_names = diffusion
prop_values = diff_func
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/scalarkernel_vectorpostprocessor/scalarkernel_vectorpostprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./scalar]
order = THIRD
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./constant]
type = ConstantVectorPostprocessor
value = '1.7 2.3 4.7'
execute_on = 'initial'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[ScalarKernels]
[./vppsk]
variable = scalar
vector = value
type = VectorPostprocessorScalarKernel
vpp = constant
[../]
[]
(modules/porous_flow/examples/tidal/barometric_fully_confined.i)
# A fully-confined aquifer is fully saturated with water
# Barometric loading is applied to the aquifer.
# Because the aquifer is assumed to be sandwiched between
# impermeable aquitards, the barometric pressure is not felt
# directly by the porepressure. Instead, the porepressure changes
# only because the barometric loading applies a total stress to
# the top surface of the aquifer.
#
# To replicate standard poroelasticity exactly:
# (1) the PorousFlowBasicTHM Action is used;
# (2) multiply_by_density = false;
# (3) PorousFlowConstantBiotModulus is used
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.6
multiply_by_density = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[fix_x]
type = DirichletBC
variable = disp_x
value = 0.0
boundary = 'left right'
[]
[fix_y]
type = DirichletBC
variable = disp_y
value = 0.0
boundary = 'bottom top'
[]
[fix_z_bottom]
type = DirichletBC
variable = disp_z
value = 0.0
boundary = back
[]
[barometric_loading]
type = FunctionNeumannBC
variable = disp_z
function = -1000.0 # atmospheric pressure increase of 1kPa
boundary = front
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
[]
[]
[]
[PorousFlowBasicTHM]
coupling_type = HydroMechanical
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
gravity = '0 0 0'
fp = the_simple_fluid
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 10.0E9 # drained bulk modulus
poissons_ratio = 0.25
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosityConst # only the initial value of this is ever used
porosity = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
solid_bulk_compliance = 1E-10
fluid_bulk_modulus = 2E9
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-12'
[]
[]
[Postprocessors]
[pp]
type = PointValue
point = '0.5 0.5 0.5'
variable = porepressure
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
console = true
csv = true
[]
(test/tests/userobjects/layered_average/layered_average_block.i)
#
# The mesh consists of two blocks. Block 1 is from y=0 to y=2, and
# block 2 is from y=3 to y=4. Elements are 0.25 high. The solution
# is u = 4y.
#
# Two sets of LayeredAverage values are computed. In both cases, four
# layers are used. In 'unrestricted', the layers span the entire mesh.
# In 'restricted', the layers cover only block 1.
#
# For 'unrestricted', the result is a value of 2 from 0<y<1 , a value
# of 6 from 1<y<2, and a value of 14 from 3<y<4.
#
# For 'restricted', the result is a value of 1 from 0<y<0.5, a value of
# 3 from 0.5<y<1, a value of 5 from 1<y<1.5, and a value of 7 for y>1.5.
#
[Mesh]
file = layered_average_block.e
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./unrestricted]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./restricted]
type = SpatialUserObjectAux
variable = restricted
execute_on = timestep_end
user_object = restricted
[../]
[./unrestricted]
type = SpatialUserObjectAux
variable = unrestricted
execute_on = timestep_end
user_object = unrestricted
[../]
[]
[BCs]
[./ll]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./lu]
type = DirichletBC
variable = u
boundary = 2
value = 8
[../]
[./ul]
type = DirichletBC
variable = u
boundary = 3
value = 12
[../]
[./uu]
type = DirichletBC
variable = u
boundary = 4
value = 16
[../]
[]
[UserObjects]
[./restricted]
type = LayeredAverage
direction = y
num_layers = 4
variable = u
execute_on = linear
block = 1
[../]
[./unrestricted]
type = LayeredAverage
direction = y
num_layers = 4
variable = u
execute_on = linear
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/energy_conservation/heat05.i)
# Demonstrates that porosity is correctly initialised,
# since the residual should be zero in this example.
# If initQpStatefulProperties of the Porosity calculator
# is incorrect then the residual will be nonzero.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0.5
cv = 2
cp = 2
bulk_modulus = 2.0
density0 = 3.0
[]
[]
[]
[GlobalParams]
biot_coefficient = 0.7
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[pp]
initial_condition = 0.5
[]
[temp]
initial_condition = 1.0
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back front'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = pp
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[temp]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[poro_vol_exp_temp]
type = PorousFlowHeatVolumetricExpansion
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[porosity]
type = PorousFlowPorosity
thermal = true
fluid = true
mechanical = true
ensure_positive = false
porosity_zero = 0.5
thermal_expansion_coeff = 0.25
solid_bulk = 2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 0.2
density = 5.0
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
temperature_unit = Kelvin
fp = the_simple_fluid
phase = 0
[]
[]
[Postprocessors]
[should_be_zero]
type = NumNonlinearIterations
[]
[]
[Executioner]
type = Transient
num_steps = 1
nl_abs_tol = 1e-16
[]
[Outputs]
file_base = heat05
csv = true
[]
(modules/porous_flow/test/tests/density/GravDensity01.i)
# Trivial test of PorousFlowTotalGravitationalDensityFullySaturatedFromPorosity
# Porosity = 0.1
# Solid density = 3
# Fluid density = 2
# Fluid bulk modulus = 4
# Fluid pressure = 0
# Bulk density: rho = 3 * (1 - 0.1) + 2 * 0.1 = 2.9
# Derivative wrt fluid pressure: d_rho / d_pp = d_rho / d_rho_f * d_rho_f / d_pp
# = phi * rho_f / B
# where rho_f = rho_0 * exp(pp / B) is fluid density, pp is fluid pressure, phi is
# porosity and B is fluid bulk modulus
# With pp = 0, d_rho / d_pp = phi * rho_0 / B = 0.1 * 2 / 4 = 0.05
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = -1
zmax = 0
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
thermal_expansion = 0
bulk_modulus = 4
density0 = 2
[]
[]
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[dummy]
type = Diffusion
variable = pp
[]
[]
[BCs]
[p]
type = DirichletBC
variable = pp
boundary = 'front back'
value = 0
[]
[]
[AuxVariables]
[density]
order = CONSTANT
family = MONOMIAL
[]
[ddensity_dpp]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[density]
type = MaterialRealAux
property = density
variable = density
[]
[ddensity_dpp]
type = MaterialStdVectorAux
property = ddensity_dvar
variable = ddensity_dpp
index = 0
[]
[]
[Postprocessors]
[density]
type = ElementalVariableValue
elementid = 0
variable = density
execute_on = 'timestep_end'
[]
[ddensity_dpp]
type = ElementalVariableValue
elementid = 0
variable = ddensity_dpp
execute_on = 'timestep_end'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss_qp]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[density]
type = PorousFlowTotalGravitationalDensityFullySaturatedFromPorosity
rho_s = 3
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
[]
[Outputs]
file_base = GravDensity01
csv = true
execute_on = 'timestep_end'
[]
(test/tests/bcs/sin_bc/sin_neumann_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Functions]
[./initial_value]
type = ParsedFunction
value = 'x'
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
# [./InitialCondition]
# type = FunctionIC
# function = initial_value
# [../]
[../]
[]
[Kernels]
active = 'diff ie'
[./diff]
type = Diffusion
variable = u
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = SinNeumannBC
variable = u
boundary = 1
initial = 1.0
final = 2.0
duration = 10.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
num_steps = 10
dt = 1.0
[]
[Outputs]
exodus = true
[]
(test/tests/vectorpostprocessors/material_vector_postprocessor/boundary-err.i)
# check that simulation terminates with an error when trying to use the
# postprocessor on a boundary material.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'prop1 prop2 prop3'
prop_values = '1 2 42'
boundary = 'left'
[../]
[]
[VectorPostprocessors]
[./vpp]
type = MaterialVectorPostprocessor
material = 'mat'
elem_ids = '3 4 7 42 88'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/transfers/multiapp_interpolation_transfer/fromsub_master.i)
###########################################################
# This is a test of the Transfer System. This test
# uses the Multiapp System to solve independent problems
# related geometrically. Solutions are then interpolated
# and transferred from a non-aligned domain.
#
# @Requirement F7.20
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
displacements = 'disp_x disp_y'
# The MultiAppInterpolationTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_sub]
[../]
[./elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[../]
[./radial_from_sub]
[../]
[./radial_elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
initial_condition = 0.2
[../]
[./disp_y]
[../]
[./displaced_target_from_sub]
[../]
[./displaced_source_from_sub]
[../]
[./nodal_from_sub_elemental]
[../]
[./elemental_from_sub_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.6 0 0'
input_files = fromsub_sub.i
[../]
[]
[Transfers]
[./fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = u
variable = from_sub
[../]
[./elemental_fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = u
variable = elemental_from_sub
[../]
[./radial_fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = u
variable = radial_from_sub
interp_type = radial_basis
[../]
[./radial_elemental_fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = u
variable = radial_elemental_from_sub
interp_type = radial_basis
[../]
[./displaced_target_fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = u
variable = displaced_target_from_sub
displaced_target_mesh = true
[../]
[./displaced_source_fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = u
variable = displaced_source_from_sub
displaced_source_mesh = true
[../]
[./elemental_from_sub_elemental]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = elemental
variable = elemental_from_sub_elemental
[../]
[./nodal_from_sub_elemental]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = elemental
variable = nodal_from_sub_elemental
[../]
[]
(modules/porous_flow/test/tests/jacobian/heat_vol_exp01.i)
# Tests the PorousFlowHeatVolumetricExpansion kernel
# Fluid with constant bulk modulus, van-Genuchten capillary, THM porosity
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[temperature]
[]
[]
[ICs]
[disp_x]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_x
[]
[disp_y]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_y
[]
[disp_z]
type = RandomIC
min = -0.1
max = 0.1
variable = disp_z
[]
[p]
type = RandomIC
min = -1
max = 0
variable = porepressure
[]
[t]
type = RandomIC
min = 1
max = 2
variable = temperature
[]
[]
[BCs]
# necessary otherwise volumetric strain rate will be zero
[disp_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[disp_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'left right'
[]
[disp_z]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'left right'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
displacements = 'disp_x disp_y disp_z'
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
displacements = 'disp_x disp_y disp_z'
component = 2
[]
[dummy]
type = TimeDerivative
variable = porepressure
[]
[temp]
type = PorousFlowHeatVolumetricExpansion
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure temperature disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.5
density0 = 1
thermal_expansion = 0
cv = 1.3
[]
[]
[]
[Materials]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '2 3'
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss_nodal]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
thermal = true
porosity_zero = 0.1
biot_coefficient = 0.5
solid_bulk = 1
thermal_expansion_coeff = 0.1
reference_temperature = 0.1
reference_porepressure = 0.2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.1
density = 0.5
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-5
[]
[Outputs]
execute_on = 'timestep_end'
file_base = jacobian2
exodus = false
[]
(test/tests/controls/time_periods/error/control.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Outputs]
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'const_damp'
# Note: These numbers are quoted to get around an issue when
# overriding numeric types with vectors of numeric types
# on the CLI. They are still interpreted as numbers.
start_time = '0.25'
end_time = '0.55'
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/outputs/common/console.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(modules/heat_conduction/test/tests/conjugate_heat_transfer/conjugate_heat_transfer.i)
[Mesh]
type = FileMesh
file = simple_pb.e
[]
[Variables]
[./temp_wall]
block = 'left right'
[../]
[./temp_fluid]
block = 'center'
[../]
[]
[Kernels]
[./wall_conduction]
type = ADHeatConduction
variable = temp_wall
[../]
[./heat_source]
type = HeatSource
value = 1e3 # W/m^3
variable = temp_fluid
block = 'center'
[../]
[./center_conduction]
type = ADHeatConduction
variable = temp_fluid
block = 'center'
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = temp_wall
boundary = 'right'
value = 300
[../]
[./left]
type = DirichletBC
variable = temp_wall
boundary = 'left'
value = 100
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
csv = true
[]
[Materials]
[./walls]
type = ADHeatConductionMaterial
thermal_conductivity = 10 # W/m k
block = 'left right'
specific_heat = .49e3 # J/kg k
[../]
[./pb]
type = ADHeatConductionMaterial
thermal_conductivity = 1
specific_heat = .49e3 # J/kg K
block = 'center'
[../]
[./alpha_wall]
type = ADGenericConstantMaterial
prop_names = 'alpha_wall'
prop_values = '1'
block = 'center'
[../]
[]
[InterfaceKernels]
[./left_center_wrt_center]
type = ConjugateHeatTransfer
variable = temp_fluid
T_fluid = temp_fluid
neighbor_var = 'temp_wall'
boundary = 'left_center_wrt_center'
htc = 'alpha_wall'
[../]
[./right_center_wrt_center]
type = ConjugateHeatTransfer
variable = temp_fluid
T_fluid = temp_fluid
neighbor_var = 'temp_wall'
boundary = 'right_center_wrt_center'
htc = 'alpha_wall'
[../]
[]
[Preconditioning]
[./Hypre]
type = SMP
petsc_options_value = 'lu hypre'
full = true
petsc_options_iname = '-pc_type -pc_hypre_type'
[../]
[]
(test/tests/meshgenerators/sidesets_bounding_box_generator/error_no_elements_in_bounding_box.i)
[Mesh]
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
#parallel_type = replicated
[]
[./createNewSidesetOne]
type = SideSetsFromBoundingBoxGenerator
input = gmg
boundary_id_old = 'left bottom'
boundary_id_new = 10
bottom_left = '-0.1 -0.1 0'
top_right = '0.8 0.2 0'
block_id = 0
[]
[./createNewSidesetTwo]
type = SideSetsFromBoundingBoxGenerator
input = createNewSidesetOne
boundary_id_old = 'right top'
boundary_id_new = 11
bottom_left = '1.7 0.7 0'
top_right = '2.1 1.1 0'
block_id = 0
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./leftBC]
type = DirichletBC
variable = u
boundary = 10
value = 1
[../]
[./rightBC]
type = DirichletBC
variable = u
boundary = 11
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/partitioners/grid_partitioner/grid_partitioner.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[Partitioner]
type = GridPartitioner
nx = 2
ny = 2
nz = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[AuxVariables]
[pid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pid_aux]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
[]
(test/tests/predictors/simple/predictor_skip_old_test.i)
# The purpose of this test is to test the simple predictor. This is a very
# small, monotonically loaded block of material. If things are working right,
# the predictor should come very close to exactly nailing the solution on steps
# after the first step.
#This test checks to see that the predictor is skipped in the last step.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Functions]
[./ramp1]
type = ParsedFunction
value = 't'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bot]
type = DirichletBC
variable = u
boundary = bottom
value = 0.0
[../]
[./ss2_x]
type = FunctionDirichletBC
variable = u
boundary = top
function = ramp1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-14
start_time = 0.0
dt = 0.5
end_time = 1.5
[./Predictor]
type = SimplePredictor
scale = 1.0
skip_times_old = '1.0'
[../]
[]
[Postprocessors]
[./final_residual]
type = Residual
residual_type = final
[../]
[./initial_residual_before]
type = Residual
residual_type = initial_before_preset
[../]
[./initial_residual_after]
type = Residual
residual_type = initial_after_preset
[../]
[]
[Outputs]
csv = true
[]
(test/tests/misc/check_error/missing_function_file_test.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = nonexistent_file #should generate error
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/visco/visco_finite_strain.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./strain_xx]
type = RankTwoAux
variable = strain_xx
rank_two_tensor = total_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./axial_load]
type = NeumannBC
variable = disp_x
boundary = right
value = 10e6
[../]
[]
[Materials]
[./kelvin_voigt]
type = GeneralizedKelvinVoigtModel
creep_modulus = '10e9 10e9'
creep_viscosity = '1 10'
poisson_ratio = 0.2
young_modulus = 10e9
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[../]
[./creep]
type = LinearViscoelasticStressUpdate
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
[../]
[]
[UserObjects]
[./update]
type = LinearViscoelasticityManager
viscoelastic_model = kelvin_voigt
[../]
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./strain_xx]
type = ElementAverageValue
variable = strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[./creep_strain_xx]
type = ElementAverageValue
variable = creep_strain_xx
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
l_max_its = 100
l_tol = 1e-8
nl_max_its = 50
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
end_time = 100
[./TimeStepper]
type = LogConstantDT
first_dt = 0.1
log_dt = 0.1
[../]
[]
[Outputs]
file_base = visco_finite_strain_out
exodus = true
[]
(modules/heat_conduction/test/tests/semiconductor_linear_conductivity/steinhart-hart_linear.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 1.0
ymax = 1.0
[]
[Variables]
[./T]
initial_condition = 400.0 # unit in Kelvin only!!
[../]
[]
[AuxVariables]
[./elec_conduct]
order = FIRST
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = HeatConduction
variable = T
[../]
[]
[AuxKernels]
[./elec_conduct]
type = MaterialRealAux
variable = elec_conduct
property = electrical_conductivity
execute_on = timestep_end
[../]
[]
[BCs]
[./inlet]
type = DirichletBC
variable = T
boundary = left
value = 1000 # K
[../]
[./outlet]
type = DirichletBC
variable = T
boundary = right
value = 400 # K
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '10' # in W/mK
[../]
[./sigma]
type = SemiconductorLinearConductivity
temp = T
sh_coeff_A = 0.002
sh_coeff_B = 0.001
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = 'T elec_conduct'
start_point = '0 0. 0'
end_point = '1.0 0. 0'
num_points = 11
sort_by = id
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-12
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
execute_on = 'initial timestep_end'
csv = true
[]
(test/tests/materials/ad_material/ad_stateful_material.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 2
[]
[Variables]
[./u]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = ADMatDiffusionTest
variable = u
prop_to_use = 'AdAd'
ad_mat_prop = 'diffusivity'
regular_mat_prop = 'unused_diffusivity'
[../]
[]
[Kernels]
[./force]
type = BodyForce
variable = u
value = 1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./constant_material]
type = GenericConstantMaterial
prop_names = 'unused_diffusivity'
prop_values = '0'
[../]
[./ad_stateful]
type = ADStatefulMaterial
u = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
line_search = 'none'
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_tol = 1e-10
nl_rel_tol = 1e-9
[]
[Outputs]
[./exodus]
type = Exodus
show_material_properties = 'diffusivity'
[../]
[]
(modules/combined/test/tests/reference_residual/group_variables.i)
[Mesh]
file = 2squares.e
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
group_variables = 'disp_x disp_y;
scalar_strain_zz1 scalar_strain_zz2'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./saved_scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[Postprocessors]
[./react_z1]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 1
[../]
[./react_z2]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps1]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = '1'
[../]
[./gps2]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = '2'
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
temperature = temp
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
block = '1 2'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./aux_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = aux_strain_zz
index_i = 2
index_j = 2
[../]
[]
[AuxScalarKernels]
[./saved_scalar_strain_zz1_ref_resid]
type = GeneralizedPlaneStrainReferenceResidual
variable = saved_scalar_strain_zz1
generalized_plane_strain = gps1_GeneralizedPlaneStrainUserObject
[../]
[./saved_scalar_strain_zz2_ref_resid]
type = GeneralizedPlaneStrainReferenceResidual
variable = saved_scalar_strain_zz2
generalized_plane_strain = gps2_GeneralizedPlaneStrainUserObject
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom1x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom1y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom2x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./bottom2y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain1]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = 1
eigenstrain_names = eigenstrain
[../]
[./strain2]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = 2
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
block = '1 2'
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/move_node_generator/test2.i)
[Mesh]
allow_renumbering=false
inactive = 'missingNode mismatchSize'
[./eg]
type = CartesianMeshGenerator
dim = 3
dx = '1'
dy = '1'
dz = '1'
ix = '4'
iy = '4'
iz = '4'
subdomain_id = '0'
[]
[modifyNode]
type = MoveNodeGenerator
input = eg
node_id = '0 1 2'
new_position = '0.1 0 0
0.35 0 0
0.6 0 0'
[]
[missingNode]
type = MoveNodeGenerator
input = eg
node_id = '999'
new_position = '0.1 0 0'
[]
[mismatchSize]
type = MoveNodeGenerator
input = eg
node_id = '0 1 2'
new_position = '0.1 0 0'
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/materials/stateful_prop/many_stateful_props.i)
# This test creates several unused stateful properties.
# It's here to make sure that we don't consume too much
# memory if we store them all. With 180x180 elements
# we were previously seeing nearly a Gigabyte of memory
# consumed using TBB's map. We are now using unordered
# map which saves us 6x to 8x on memory.
[Mesh]
type = GeneratedMesh
nx = 10 #180
ny = 10 #180
dim = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./prop1]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = MatDiffusionTest
variable = u
prop_name = thermal_conductivity
prop_state = 'old' # Use the "Old" value to compute conductivity
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./prop1_output]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
[../]
[./prop1_output_init]
type = MaterialRealAux
variable = prop1
property = thermal_conductivity
execute_on = initial
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = left
value = 0.0
[../]
[./top]
type = DirichletBC
variable = u
boundary = right
value = 1.0
[../]
[]
[Materials]
[./stateful1]
type = StatefulTest
prop_names = 'thermal_conductivity'
prop_values = '1'
[../]
[./stateful2]
type = StatefulTest
prop_names = 'foo2'
prop_values = '2'
[../]
[./stateful3]
type = StatefulTest
prop_names = 'foo3'
prop_values = '3'
[../]
[./stateful4]
type = StatefulTest
prop_names = 'foo4'
prop_values = '4'
[../]
[./stateful5]
type = StatefulTest
prop_names = 'foo5'
prop_values = '5'
[../]
[./stateful6]
type = StatefulTest
prop_names = 'foo6'
prop_values = '6'
[../]
[]
[Postprocessors]
[./integral]
type = ElementAverageValue
variable = prop1
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
l_max_its = 10
start_time = 0.0
num_steps = 1
dt = .1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/test_jacobian/jacobian_test_3D.i)
# This test is designed to test the jacobian for a single
# element with/without volumetric locking correction.
# The mesh contains one element whose y displacement is zero at
# the bottom surface (y=0) and -1.0 at the top surface (y=1).
# Result: The hand coded jacobian matches well with the finite
# difference jacobian with an error norm in the order of 1e-15
# for total and incremental small strain cases and with an error
# norm in the order of 1e-8 for finite strain cases.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
[../]
[]
[BCs]
[./y_force]
type = NeumannBC
variable = disp_y
boundary = top
value = -1.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
block = 0
[../]
[./stress]
block = 0
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options = '-snes_check_jacobian -snes_check_jacobian_view'
l_max_its = 100
nl_abs_tol = 1e-4
start_time = 0.0
num_steps = 1
dt = 0.005
dtmin = 0.005
end_time = 0.005
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/ranfs-and-scaling/bouncing-block-ranfs.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = long-bottom-block-no-lower-d-coarse.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = false
use_automatic_differentiation = true
strain = SMALL
[]
[]
[Materials]
[elasticity]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[stress]
type = ADComputeLinearElasticStress
[]
[]
[Constraints]
[./disp_x]
type = RANFSNormalMechanicalContact
secondary = 10
primary = 20
variable = disp_x
primary_variable = disp_x
component = x
normal_smoothing_distance = 0.1
[../]
[./disp_y]
type = RANFSNormalMechanicalContact
secondary = 10
primary = 20
variable = disp_y
primary_variable = disp_y
component = y
normal_smoothing_distance = 0.1
[../]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 100
dt = 5
dtmin = 2.5
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -pc_hypre_type -mat_mffd_err'
petsc_options_value = 'hypre boomeramg 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
automatic_scaling = true
verbose = true
scaling_group_variables = 'disp_x disp_y'
resid_vs_jac_scaling_param = 1
nl_rel_tol = 1e-12
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exo]
type = Exodus
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[nl]
type = NumNonlinearIterations
[]
[lin]
type = NumLinearIterations
[]
[tot_nl]
type = CumulativeValuePostprocessor
postprocessor = nl
[]
[tot_lin]
type = CumulativeValuePostprocessor
postprocessor = lin
[]
[]
(modules/heat_conduction/test/tests/heat_conduction_ortho/heat_conduction_ortho.i)
#
# Three independent cubes are thermally loaded, one in x, one in y, and one in z.
# Each direction has a different thermal conductivity, resulting in a different
# temperature at the side with the Neumann bc.
#
# For x: 100/1000 = 1e-1
# For y: 100/100 = 1e+0
# for z: 100/10 = 1e+1
#
[Mesh]
file = heat_conduction_ortho.e
[]
[Variables]
[./temperature]
[../]
[]
[Kernels]
[./heat]
type = AnisoHeatConduction
variable = temperature
[../]
[]
[BCs]
[./temperatures]
type = DirichletBC
variable = temperature
boundary = 1
value = 0
[../]
[./neum]
type = NeumannBC
variable = temperature
boundary = 2
value = 100
[../]
[]
[Materials]
[./heat]
type = AnisoHeatConductionMaterial
block = 1
specific_heat = 0.116
thermal_conductivity = '10.0 0 0 0 10.0 0 0 0 10.0'
temperature = temperature
[../]
[./density]
type = GenericConstantMaterial
block = 1
prop_names = 'density'
prop_values = 0.283
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_abs_tol = 1e-11
nl_rel_tol = 1e-10
l_max_its = 20
[]
[Outputs]
exodus = true
hide = 'tcx tcy tcz'
[]
[Postprocessors]
[./tcx]
type = FunctionValuePostprocessor
function = 1000
outputs = none
execute_on = 'initial timestep_end'
[../]
[./tcy]
type = FunctionValuePostprocessor
function = 100
outputs = none
execute_on = 'initial timestep_end'
[../]
[./tcz]
type = FunctionValuePostprocessor
function = 10
outputs = none
execute_on = 'initial timestep_end'
[../]
[]
(modules/tensor_mechanics/test/tests/ad_action/two_block_no_action.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
# [Modules/TensorMechanics/Master]
# [./block1]
# strain = FINITE
# add_variables = true
# #block = 1
# use_automatic_differentiation = true
# [../]
# [./block2]
# strain = SMALL
# add_variables = true
# block = 2
# use_automatic_differentiation = true
# [../]
# []
[Kernels]
[./disp_x]
type = ADStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./disp_y]
type = ADStressDivergenceTensors
variable = disp_y
component = 1
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = ADRankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./block_1]
type = ADComputeFiniteStrain
block = 1
[../]
[./block_2]
type = ADComputeSmallStrain
block = 2
[../]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ADComputeLinearElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/fancy_extruder_generator/need-neighbors.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 1
[]
[extrude]
type = FancyExtruderGenerator
input = gmg
heights = '1'
num_layers = '1'
direction = '0 1 0'
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[bottom]
type = DirichletBC
variable = u
boundary = '0'
value = 0
[]
[top]
type = DirichletBC
variable = u
boundary = '1'
value = 1
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/poro_mechanics/borehole_lowres.i)
# Poroelastic response of a borehole.
#
# LOWRES VERSION: this version does not give perfect agreement with the analytical solution
#
# A fully-saturated medium contains a fluid with a homogeneous porepressure,
# but an anisitropic insitu stress. A infinitely-long borehole aligned with
# the $$z$$ axis is instanteously excavated. The borehole boundary is
# stress-free and allowed to freely drain. This problem is analysed using
# plane-strain conditions (no $$z$$ displacement).
#
# The solution in Laplace space is found in E Detournay and AHD Cheng "Poroelastic response of a borehole in a non-hydrostatic stress field". International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 25 (1988) 171-182. In the small-time limit, the Laplace transforms may be performed. There is one typo in the paper. Equation (A4)'s final term should be -(a/r)\sqrt(4ct/(a^2\pi)), and not +(a/r)\sqrt(4ct/(a^2\pi)).
#
# Because realistic parameters are chosen (below),
# the residual for porepressure is much smaller than
# the residuals for the displacements. Therefore the
# scaling parameter is chosen. Also note that the
# insitu stresses are effective stresses, not total
# stresses, but the solution in the above paper is
# expressed in terms of total stresses.
#
# Here are the problem's parameters, and their values:
# Borehole radius. a = 1
# Rock's Lame lambda. la = 0.5E9
# Rock's Lame mu, which is also the Rock's shear modulus. mu = G = 1.5E9
# Rock bulk modulus. K = la + 2*mu/3 = 1.5E9
# Drained Poisson ratio. nu = (3K - 2G)/(6K + 2G) = 0.125
# Rock bulk compliance. 1/K = 0.66666666E-9
# Fluid bulk modulus. Kf = 0.7171315E9
# Fluid bulk compliance. 1/Kf = 1.39444444E-9
# Rock initial porosity. phi0 = 0.3
# Biot coefficient. alpha = 0.65
# Biot modulus. M = 1/(phi0/Kf + (alpha - phi0)(1 - alpha)/K) = 2E9
# Undrained bulk modulus. Ku = K + alpha^2*M = 2.345E9
# Undrained Poisson ratio. nuu = (3Ku - 2G)/(6Ku + 2G) = 0.2364
# Skempton coefficient. B = alpha*M/Ku = 0.554
# Fluid mobility (rock permeability/fluid viscosity). k = 1E-12
[Mesh]
type = FileMesh
file = borehole_lowres_input.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
porepressure = porepressure
block = 1
[]
[GlobalParams]
volumetric_locking_correction=true
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./porepressure]
scaling = 1E9 # Notice the scaling, to make porepressure's kernels roughly of same magnitude as disp's kernels
[../]
[]
[ICs]
[./initial_p]
type = ConstantIC
variable = porepressure
value = 1E6
[../]
[]
[BCs]
[./fixed_outer_x]
type = DirichletBC
variable = disp_x
value = 0
boundary = outer
[../]
[./fixed_outer_y]
type = DirichletBC
variable = disp_y
value = 0
boundary = outer
[../]
[./plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'zmin zmax'
[../]
[./borehole_wall]
type = DirichletBC
variable = porepressure
value = 0
boundary = bh_wall
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./tot_yy]
type = ParsedAux
args = 'stress_yy porepressure'
execute_on = timestep_end
variable = tot_yy
function = 'stress_yy-0.65*porepressure'
[../]
[]
[Kernels]
[./grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[../]
[./grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[../]
[./grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[../]
[./poro_x]
type = PoroMechanicsCoupling
variable = disp_x
component = 0
[../]
[./poro_y]
type = PoroMechanicsCoupling
variable = disp_y
component = 1
[../]
[./poro_z]
type = PoroMechanicsCoupling
variable = disp_z
component = 2
[../]
[./poro_timederiv]
type = PoroFullSatTimeDerivative
variable = porepressure
[../]
[./darcy_flow]
type = CoefDiffusion
variable = porepressure
coef = 1E-12
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '0.5E9 1.5E9'
# bulk modulus is lambda + 2*mu/3 = 0.5 + 2*1.5/3 = 1.5E9
fill_method = symmetric_isotropic
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
initial_stress = '-1.35E6 0 0 0 -3.35E6 0 0 0 0' # remember this is the effective stress
eigenstrain_name = ini_stress
[../]
[./no_plasticity]
type = ComputeFiniteStrainElasticStress
[../]
[./poro_material]
type = PoroFullSatMaterial
porosity0 = 0.3
biot_coefficient = 0.65
solid_bulk_compliance = 0.6666666666667E-9
fluid_bulk_compliance = 1.3944444444444E-9
constant_porosity = false
[../]
[]
[Postprocessors]
[./p00]
type = PointValue
variable = porepressure
point = '1.00 0 0'
outputs = csv_p
[../]
[./p01]
type = PointValue
variable = porepressure
point = '1.01 0 0'
outputs = csv_p
[../]
[./p02]
type = PointValue
variable = porepressure
point = '1.02 0 0'
outputs = csv_p
[../]
[./p03]
type = PointValue
variable = porepressure
point = '1.03 0 0'
outputs = csv_p
[../]
[./p04]
type = PointValue
variable = porepressure
point = '1.04 0 0'
outputs = csv_p
[../]
[./p05]
type = PointValue
variable = porepressure
point = '1.05 0 0'
outputs = csv_p
[../]
[./p06]
type = PointValue
variable = porepressure
point = '1.06 0 0'
outputs = csv_p
[../]
[./p07]
type = PointValue
variable = porepressure
point = '1.07 0 0'
outputs = csv_p
[../]
[./p08]
type = PointValue
variable = porepressure
point = '1.08 0 0'
outputs = csv_p
[../]
[./p09]
type = PointValue
variable = porepressure
point = '1.09 0 0'
outputs = csv_p
[../]
[./p10]
type = PointValue
variable = porepressure
point = '1.10 0 0'
outputs = csv_p
[../]
[./p11]
type = PointValue
variable = porepressure
point = '1.11 0 0'
outputs = csv_p
[../]
[./p12]
type = PointValue
variable = porepressure
point = '1.12 0 0'
outputs = csv_p
[../]
[./p13]
type = PointValue
variable = porepressure
point = '1.13 0 0'
outputs = csv_p
[../]
[./p14]
type = PointValue
variable = porepressure
point = '1.14 0 0'
outputs = csv_p
[../]
[./p15]
type = PointValue
variable = porepressure
point = '1.15 0 0'
outputs = csv_p
[../]
[./p16]
type = PointValue
variable = porepressure
point = '1.16 0 0'
outputs = csv_p
[../]
[./p17]
type = PointValue
variable = porepressure
point = '1.17 0 0'
outputs = csv_p
[../]
[./p18]
type = PointValue
variable = porepressure
point = '1.18 0 0'
outputs = csv_p
[../]
[./p19]
type = PointValue
variable = porepressure
point = '1.19 0 0'
outputs = csv_p
[../]
[./p20]
type = PointValue
variable = porepressure
point = '1.20 0 0'
outputs = csv_p
[../]
[./p21]
type = PointValue
variable = porepressure
point = '1.21 0 0'
outputs = csv_p
[../]
[./p22]
type = PointValue
variable = porepressure
point = '1.22 0 0'
outputs = csv_p
[../]
[./p23]
type = PointValue
variable = porepressure
point = '1.23 0 0'
outputs = csv_p
[../]
[./p24]
type = PointValue
variable = porepressure
point = '1.24 0 0'
outputs = csv_p
[../]
[./p25]
type = PointValue
variable = porepressure
point = '1.25 0 0'
outputs = csv_p
[../]
[./s00]
type = PointValue
variable = disp_x
point = '1.00 0 0'
outputs = csv_s
[../]
[./s01]
type = PointValue
variable = disp_x
point = '1.01 0 0'
outputs = csv_s
[../]
[./s02]
type = PointValue
variable = disp_x
point = '1.02 0 0'
outputs = csv_s
[../]
[./s03]
type = PointValue
variable = disp_x
point = '1.03 0 0'
outputs = csv_s
[../]
[./s04]
type = PointValue
variable = disp_x
point = '1.04 0 0'
outputs = csv_s
[../]
[./s05]
type = PointValue
variable = disp_x
point = '1.05 0 0'
outputs = csv_s
[../]
[./s06]
type = PointValue
variable = disp_x
point = '1.06 0 0'
outputs = csv_s
[../]
[./s07]
type = PointValue
variable = disp_x
point = '1.07 0 0'
outputs = csv_s
[../]
[./s08]
type = PointValue
variable = disp_x
point = '1.08 0 0'
outputs = csv_s
[../]
[./s09]
type = PointValue
variable = disp_x
point = '1.09 0 0'
outputs = csv_s
[../]
[./s10]
type = PointValue
variable = disp_x
point = '1.10 0 0'
outputs = csv_s
[../]
[./s11]
type = PointValue
variable = disp_x
point = '1.11 0 0'
outputs = csv_s
[../]
[./s12]
type = PointValue
variable = disp_x
point = '1.12 0 0'
outputs = csv_s
[../]
[./s13]
type = PointValue
variable = disp_x
point = '1.13 0 0'
outputs = csv_s
[../]
[./s14]
type = PointValue
variable = disp_x
point = '1.14 0 0'
outputs = csv_s
[../]
[./s15]
type = PointValue
variable = disp_x
point = '1.15 0 0'
outputs = csv_s
[../]
[./s16]
type = PointValue
variable = disp_x
point = '1.16 0 0'
outputs = csv_s
[../]
[./s17]
type = PointValue
variable = disp_x
point = '1.17 0 0'
outputs = csv_s
[../]
[./s18]
type = PointValue
variable = disp_x
point = '1.18 0 0'
outputs = csv_s
[../]
[./s19]
type = PointValue
variable = disp_x
point = '1.19 0 0'
outputs = csv_s
[../]
[./s20]
type = PointValue
variable = disp_x
point = '1.20 0 0'
outputs = csv_s
[../]
[./s21]
type = PointValue
variable = disp_x
point = '1.21 0 0'
outputs = csv_s
[../]
[./s22]
type = PointValue
variable = disp_x
point = '1.22 0 0'
outputs = csv_s
[../]
[./s23]
type = PointValue
variable = disp_x
point = '1.23 0 0'
outputs = csv_s
[../]
[./s24]
type = PointValue
variable = disp_x
point = '1.24 0 0'
outputs = csv_s
[../]
[./s25]
type = PointValue
variable = disp_x
point = '1.25 0 0'
outputs = csv_s
[../]
[./t00]
type = PointValue
variable = tot_yy
point = '1.00 0 0'
outputs = csv_t
[../]
[./t01]
type = PointValue
variable = tot_yy
point = '1.01 0 0'
outputs = csv_t
[../]
[./t02]
type = PointValue
variable = tot_yy
point = '1.02 0 0'
outputs = csv_t
[../]
[./t03]
type = PointValue
variable = tot_yy
point = '1.03 0 0'
outputs = csv_t
[../]
[./t04]
type = PointValue
variable = tot_yy
point = '1.04 0 0'
outputs = csv_t
[../]
[./t05]
type = PointValue
variable = tot_yy
point = '1.05 0 0'
outputs = csv_t
[../]
[./t06]
type = PointValue
variable = tot_yy
point = '1.06 0 0'
outputs = csv_t
[../]
[./t07]
type = PointValue
variable = tot_yy
point = '1.07 0 0'
outputs = csv_t
[../]
[./t08]
type = PointValue
variable = tot_yy
point = '1.08 0 0'
outputs = csv_t
[../]
[./t09]
type = PointValue
variable = tot_yy
point = '1.09 0 0'
outputs = csv_t
[../]
[./t10]
type = PointValue
variable = tot_yy
point = '1.10 0 0'
outputs = csv_t
[../]
[./t11]
type = PointValue
variable = tot_yy
point = '1.11 0 0'
outputs = csv_t
[../]
[./t12]
type = PointValue
variable = tot_yy
point = '1.12 0 0'
outputs = csv_t
[../]
[./t13]
type = PointValue
variable = tot_yy
point = '1.13 0 0'
outputs = csv_t
[../]
[./t14]
type = PointValue
variable = tot_yy
point = '1.14 0 0'
outputs = csv_t
[../]
[./t15]
type = PointValue
variable = tot_yy
point = '1.15 0 0'
outputs = csv_t
[../]
[./t16]
type = PointValue
variable = tot_yy
point = '1.16 0 0'
outputs = csv_t
[../]
[./t17]
type = PointValue
variable = tot_yy
point = '1.17 0 0'
outputs = csv_t
[../]
[./t18]
type = PointValue
variable = tot_yy
point = '1.18 0 0'
outputs = csv_t
[../]
[./t19]
type = PointValue
variable = tot_yy
point = '1.19 0 0'
outputs = csv_t
[../]
[./t20]
type = PointValue
variable = tot_yy
point = '1.20 0 0'
outputs = csv_t
[../]
[./t21]
type = PointValue
variable = tot_yy
point = '1.21 0 0'
outputs = csv_t
[../]
[./t22]
type = PointValue
variable = tot_yy
point = '1.22 0 0'
outputs = csv_t
[../]
[./t23]
type = PointValue
variable = tot_yy
point = '1.23 0 0'
outputs = csv_t
[../]
[./t24]
type = PointValue
variable = tot_yy
point = '1.24 0 0'
outputs = csv_t
[../]
[./t25]
type = PointValue
variable = tot_yy
point = '1.25 0 0'
outputs = csv_t
[../]
[./dt]
type = FunctionValuePostprocessor
outputs = console
function = 2*t
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_max_it -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'gmres asm 1E0 1E-10 200 500 lu NONZERO'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 0.3
dt = 0.3
#[./TimeStepper]
# type = PostprocessorDT
# postprocessor = dt
# dt = 0.003
#[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = borehole_lowres
exodus = true
sync_times = '0.003 0.3'
[./csv_p]
file_base = borehole_lowres_p
type = CSV
[../]
[./csv_s]
file_base = borehole_lowres_s
type = CSV
[../]
[./csv_t]
file_base = borehole_lowres_t
type = CSV
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_method_test.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = slip_resistance
index = 0
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_increment
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.01*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[../]
[./trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.05
dtmin = 0.01
dtmax = 10.0
num_steps = 10
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/anisotropic_diffusion/aniso_diffusion.i)
[Mesh]
file = mixed_block.e
uniform_refine=3
[]
[Functions]
[./top_bc]
type = ParsedFunction
value = 'x'
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = AnisotropicDiffusion
variable = u
tensor_coeff = '2 0 0
0 4 0
0 0 0'
[../]
[]
[BCs]
active = 'lower_left top'
[./lower_left]
type = DirichletBC
variable = u
boundary = '1 4'
value = 1
[../]
[./top]
type = FunctionNeumannBC
variable = u
boundary = 3
function = top_bc
[../]
[./right]
type = NeumannBC
variable = u
boundary = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/normal-nodal-lm-tan-tolerance/normal-nodal-lm-tan-tolerance.i)
[GlobalParams]
displacements = 'disp_x disp_y'
preset = false
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap_no1000.e
[]
[primary]
type = LowerDBlockFromSidesetGenerator
input = file
sidesets = '100'
new_block_id = '3'
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
input = primary
sidesets = '101'
new_block_id = '4'
[]
[]
[Modules/TensorMechanics/Master]
[all]
displacements = 'disp_x disp_y'
strain = FINITE
add_variables = true
block = '1 2'
use_automatic_differentiation = true
scaling = 1e-4
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e5
poissons_ratio = 0.345
block = '1 2'
[]
[_elastic_strain]
type = ADComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Variables]
[mortar_normal_lm]
scaling = 1.0e-3
block = '4'
[]
[]
[Constraints]
[frictionless_normal_lm]
type = NormalNodalLMMechanicalContact
secondary = 101
primary = 100
variable = mortar_normal_lm
primary_variable = disp_x
disp_y = disp_y
ncp_function_type = min
c = 1.0e4
tangential_tolerance = .05
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 100
secondary_boundary = 101
primary_subdomain = 3
secondary_subdomain = 4
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 100
secondary_boundary = 101
primary_subdomain = 3
secondary_subdomain = 4
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[]
[Functions]
[disp_bc]
type = PiecewiseLinear
x = '0 10.0'
y = '0 -0.30'
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = 'left'
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'right'
function = disp_bc # '-30e-3 * t'
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'right'
function = 0
[]
[]
[Preconditioning]
[fmp]
type = FDP
full = true
finite_difference_type = standard
[]
[]
[Executioner]
solve_type = NEWTON
type = Transient
num_steps = 10
dt = 1
dtmin = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
petsc_options = '-ksp_monitor_true_residual -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -snes_linesearch_type -pc_factor_shift_type -snes_max_it '
'-ksp_max_it'
petsc_options_value = 'lu basic NONZERO 20 30'
[Predictor]
type = SimplePredictor
scale = 1
[]
[]
[Outputs]
checkpoint = true
exodus = true
print_linear_residuals = false
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard2.i)
# Checking solution of hardening
# A single element is stretched by 1E-6 in z direction.
#
# Young's modulus = 20 MPa. Tensile strength = 10 Exp(-1E6*q) Pa
#
# The trial stress is
# trial_stress_zz = Youngs Modulus*Strain = 2E7*1E-6 = 20 Pa
#
# Therefore the equations we have to solve are
# 0 = f = stress_zz - 10 Exp(-1E6*q)
# 0 = epp = ga - (20 - stress_zz)/2E7
# 0 = intnl = q - ga
#
# The result is
# q = 0.76803905E-6
# stress_zz = 4.6392191 Pa
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[]
[]
[AuxVariables]
[wpt_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 0
rate = 1E6
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/misc/check_error/bad_second_order_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = SECOND
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/misc/petsc_option_left/2d_diffusion_petsc_option.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = "-options_left"
petsc_options_iname = "-pc_type"
petsc_options_value = "hypre"
[]
[Outputs]
exodus = true
[]
(modules/functional_expansion_tools/examples/3D_volumetric_cylindrical_subapp_mesh_refine/main.i)
# Derived from the example '3D_volumetric_cylindrical' with the following differences:
#
# 1) The model mesh is refined in the MasterApp by 1
# 2) Mesh adaptivity is enabled for the SubApp
# 3) Output from the SubApp is enabled so that the mesh changes can be visualized
[Mesh]
type = FileMesh
file = cyl-tet.e
uniform_refine = 1
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom outside'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = CylindricalDuo
orders = '5 3' # Axial first, then (r, t) FX
physical_bounds = '-2.5 2.5 0 0 1' # z_min z_max x_center y_center radius
z = Legendre # Axial in z
disc = Zernike # (r, t) default to unit disc in x-y plane
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
output_sub_cycles = true
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template2.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalSmallStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalSmallStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/tensor_mechanics/test/tests/mohr_coulomb/uni_axial1.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
# back = zmin
# front = zmax
# bottom = ymin
# top = ymax
# left = xmin
# right = xmax
[./xmin_xzero]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = '0'
[../]
[./ymin_yzero]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = '0'
[../]
[./zmin_zzero]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = '0'
[../]
[./zmax_disp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '-1E-3*t'
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_int]
order = CONSTANT
family = MONOMIAL
[../]
[./yield_fcn]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_int_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_internal_parameter
variable = mc_int
[../]
[./yield_fcn_auxk]
type = MaterialStdVectorAux
index = 0
property = plastic_yield_function
variable = yield_fcn
[../]
[]
[Postprocessors]
[./s_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./s_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./s_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./mc_int]
type = PointValue
point = '0 0 0'
variable = mc_int
[../]
[./f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[../]
[]
[UserObjects]
[./mc_coh]
type = TensorMechanicsHardeningConstant
value = 10E6
[../]
[./mc_phi]
type = TensorMechanicsHardeningExponential
value_0 = 0
value_residual = 0.6981317 # 40deg
rate = 10000
[../]
[./mc_psi]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./mc]
type = TensorMechanicsPlasticMohrCoulomb
cohesion = mc_coh
friction_angle = mc_phi
dilation_angle = mc_psi
mc_tip_smoother = 0
mc_edge_smoother = 25
yield_function_tolerance = 1E-3
internal_constraint_tolerance = 1E-10
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '5.77E10 3.85E10' # young = 100Gpa, poisson = 0.3
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./mc]
type = ComputeMultiPlasticityStress
block = 0
ep_plastic_tolerance = 1E-10
plastic_models = mc
max_NR_iterations = 1000
debug_fspb = crash
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
end_time = 0.5
dt = 0.05
solve_type = PJFNK # cannot use NEWTON because we are using ComputeFiniteStrain, and hence the Jacobian contributions will not be correct, even though ComputeMultiPlasticityStress will compute the correct consistent tangent operator for small strains
type = Transient
line_search = 'none'
nl_rel_tol = 1E-10
l_tol = 1E-3
l_max_its = 200
nl_max_its = 10
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
file_base = uni_axial1
exodus = true
[./csv]
type = CSV
[../]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test1qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test1qtt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 0.7 -0.7 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.06
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test1qtt_out
exodus = true
[]
(test/tests/multiapps/grid-sequencing/vi-coarser.i)
l=10
nx=20
num_steps=2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
(test/tests/multiapps/move_and_reset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(python/peacock/tests/input_tab/InputTreeWriter/gold/simple_diffusion.i)
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/multilevel/dt_from_master_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = dt_from_master_subsub.i
[../]
[]
(test/tests/controls/time_periods/constraints/constraints.i)
[Mesh]
type = FileMesh
file = constraints.e
# NearestNodeLocator, which is needed by TiedValueConstraint,
# only works with ReplicatedMesh currently
parallel_type = replicated
[../]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Constraints]
[./complete]
type = TiedValueConstraint
variable = u
secondary = 2
primary = 3
primary_variable = u
[../]
[./lower]
type = TiedValueConstraint
variable = u
secondary = inside_right_lower
primary = inside_left_lower
primary_variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 40
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[Controls]
[./constraints]
type = TimePeriod
disable_objects = 'Constraints/lower Constraint::complete'
start_time = '0.0 2.0'
end_time = '2.0 4.0'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/porous_flow/examples/reservoir_model/regular_grid.i)
# SPE 10 comparative problem - model 1
# Data and description from https://www.spe.org/web/csp/datasets/set01.htm
# Simple input file that just establishes gravity equilibrium in the model
#
# Heterogeneous permeability is included by reading data from an external file
# using the PiecewiseMultilinear function, and saving that data to an elemental
# AuxVariable that is then used in PorousFlowPermeabilityConstFromVar
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 20
xmax = 762
ymax = 15.24
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[porepressure]
initial_condition = 20e6
[]
[]
[Functions]
[perm_md_fcn]
type = PiecewiseMultilinear
data_file = spe10_case1.data
[]
[]
[BCs]
[top]
type = DirichletBC
variable = porepressure
value = 20e6
boundary = top
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[porosity]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.2
[]
[perm_md]
family = MONOMIAL
order = CONSTANT
[]
[perm]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = porepressure
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
variable = porepressure
[]
[]
[AuxKernels]
[perm_md]
type = FunctionAux
function = perm_md_fcn
variable = perm_md
execute_on = initial
[]
[perm]
type = ParsedAux
variable = perm
args = perm_md
function = '9.869233e-16*perm_md'
execute_on = initial
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = porepressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
save_file = false
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow1PhaseFullySaturated
porepressure = porepressure
[]
[massfrac]
type = PorousFlowMassFraction
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
water_fp = watertab
[]
[porosity]
type = PorousFlowPorosityConst
porosity = porosity
[]
[permeability]
type = PorousFlowPermeabilityConstFromVar
perm_xx = perm
perm_yy = perm
perm_zz = perm
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e5
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
steady_state_detection = true
steady_state_tolerance = 1e-12
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e2
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(test/tests/outputs/console/moose_console.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = ConsoleMessageKernel
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
interval = 2
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/convergence-auto/2D/neumann.i)
# Simple 2D plane strain test
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.01
max = 0.01
[]
[disp_y]
type = RandomIC
variable = disp_y
min = -0.01
max = 0.01
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[]
[Functions]
[pullx]
type = ParsedFunction
value = '50000 * t'
[]
[pully]
type = ParsedFunction
value = '-30000 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = left
variable = disp_y
value = 0.0
[]
[pull_x]
type = FunctionNeumannBC
boundary = right
variable = disp_x
function = pullx
[]
[pull_y]
type = FunctionNeumannBC
boundary = top
variable = disp_y
function = pully
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
(test/tests/controls/error/no_parameter_found.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'real'
parameter = 'unknown_param_name'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/porous_flow/examples/tutorial/07.i)
# Darcy flow with a tracer that precipitates causing mineralisation and porosity changes and permeability changes
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
input = annular
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[tracer_concentration]
[]
[]
[PorousFlowFullySaturated]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
mass_fraction_vars = tracer_concentration
number_aqueous_kinetic = 1
temperature = 283.0
stabilization = none # Note to reader: try this with other stabilization and compare the results
[]
[AuxVariables]
[eqm_k]
initial_condition = 0.1
[]
[mineral_conc]
family = MONOMIAL
order = CONSTANT
[]
[initial_and_reference_conc]
initial_condition = 0
[]
[porosity]
family = MONOMIAL
order = CONSTANT
[]
[permeability]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[mineral_conc]
type = PorousFlowPropertyAux
property = mineral_concentration
mineral_species = 0
variable = mineral_conc
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
[]
[permeability]
type = PorousFlowPropertyAux
property = permeability
column = 0
row = 0
variable = permeability
[]
[]
[Kernels]
[precipitation_dissolution]
type = PorousFlowPreDis
mineral_density = 1000.0
stoichiometry = 1
variable = tracer_concentration
[]
[]
[BCs]
[constant_injection_of_tracer]
type = PorousFlowSink
variable = tracer_concentration
flux_function = -5E-3
boundary = injection_area
[]
[constant_outer_porepressure]
type = DirichletBC
variable = porepressure
value = 0
boundary = rmax
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity_mat]
type = PorousFlowPorosity
porosity_zero = 0.1
chemical = true
initial_mineral_concentrations = initial_and_reference_conc
reference_chemistry = initial_and_reference_conc
[]
[permeability_aquifer]
type = PorousFlowPermeabilityKozenyCarman
block = aquifer
k0 = 1E-14
m = 2
n = 3
phi0 = 0.1
poroperm_function = kozeny_carman_phi0
[]
[permeability_caps]
type = PorousFlowPermeabilityKozenyCarman
block = caps
k0 = 1E-15
k_anisotropy = '1 0 0 0 1 0 0 0 0.1'
m = 2
n = 3
phi0 = 0.1
poroperm_function = kozeny_carman_phi0
[]
[precipitation_dissolution_mat]
type = PorousFlowAqueousPreDisChemistry
reference_temperature = 283.0
activation_energy = 1 # irrelevant because T=Tref
equilibrium_constants = eqm_k # equilibrium tracer concentration
kinetic_rate_constant = 1E-8
molar_volume = 1
num_reactions = 1
primary_activity_coefficients = 1
primary_concentrations = tracer_concentration
reactions = 1
specific_reactive_surface_area = 1
[]
[mineral_concentration]
type = PorousFlowAqueousPreDisMineral
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(test/tests/preconditioners/auto_smp/ad_coupled_convection.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[u][]
[v][]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[convection]
type = ADCoupledConvection
variable = u
velocity_vector = v
scale = 100
[]
[diff_v]
type = ADDiffusion
variable = v
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[]
[left_v]
type = DirichletBC
variable = v
preset = false
boundary = left
value = 0
[]
[right_v]
type = DirichletBC
variable = v
preset = false
boundary = right
value = 1
[]
[]
[Preconditioning/smp]
# this block is part of what is being tested, see "tests" file
type = SMP
full = true
[]
[Executioner]
type = Steady
solve_type = NEWTON
nl_abs_tol = 1e-10 # needed to get non-preconditioned version to fail
auto_preconditioning = false # this is part of what is being tested, see "tests" file
[]
[Outputs]
exodus = true
[]
(test/tests/dirackernels/nonlinear_source/nonlinear_source.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./ddt_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ddt_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[DiracKernels]
[./nonlinear_source]
type = NonlinearSource
variable = u
coupled_var = v
scale_factor = 1000
point = '0.2 0.3 0'
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Preconditioning]
[./precond]
type = SMP
# 'full = true' is required for computeOffDiagJacobian() to get
# called. If you comment this out, you should see that this test
# requires more linear and nonlinear iterations.
full = true
# Added to test Jacobian contributions for Dirac Kernels
# Options that do not seem to do anything for this problem? -snes_check_jacobian -snes_check_jacobian_view
# petsc_options = '-snes_test_display' # print out all the matrix entries
# petsc_options_iname = '-snes_type'
# petsc_options_value = 'test'
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON' # NEWTON provides a more stringent test of off-diagonal Jacobians
num_steps = 5
dt = 1
dtmin = 1
l_max_its = 100
nl_max_its = 6
nl_abs_tol = 1.e-13
[]
[Postprocessors]
# A PointValue postprocessor at the Dirac point location
[./point_value]
type = PointValue
variable = u
point = '0.2 0.3 0'
[../]
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/gravity/grav01b.i)
# Checking that gravity head is established
# 1phase, vanGenuchten, constant and large fluid-bulk, constant viscosity, constant permeability, Corey relperm
# fully saturated
# For better agreement with the analytical solution (ana_pp), just increase nx
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[Kernels]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '-1 0 0'
[]
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1E3 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e3
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 2 0 0 0 3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = grav01b
[csv]
type = CSV
[]
[]
(test/tests/multiapps/loose_couple_time_adapt/adaptiveDT.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.006
[./TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 6
[../]
nl_abs_tol = 1.0e-8
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/pressure_pulse/pp_fu_lumped_22.i)
# investigating pressure pulse in 1D with 2 phase
# transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-5
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-5
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 3
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./water_ic]
type = ConstantIC
value = 2E6
variable = pwater
[../]
[./gas_ic]
type = ConstantIC
value = 2E6
variable = pgas
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pwater
[../]
[./left_gas]
type = DirichletBC
boundary = left
value = 3E6
variable = pgas
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas pconstraint'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[./pconstraint]
type = RichardsPPenalty
variable = pgas
a = 1E-8
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = '1E-3 1E-5'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_monitor -snes_linesearch_monitor'
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'nonzero'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
dtmin = 1E3
end_time = 1E4
l_tol = 1.e-4
nl_rel_tol = 1.e-7
nl_max_its = 10
l_max_its = 20
line_search = 'none'
[]
[Outputs]
file_base = pp_fu_lumped_22
execute_on = 'initial timestep_end final'
interval = 10000
exodus = true
[./console]
type = Console
interval = 1
[../]
[]
(test/tests/transfers/transfer_with_reset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./t]
[../]
[./u_from_master]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./t]
type = FunctionAux
variable = t
function = t
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/pressure/pressurePenalty.i)
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = pressure.e
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_yy'
[]
[]
[Contact]
[./m20_s10]
primary = 20
secondary = 10
penalty = 1e8
formulation = penalty
tangential_tolerance = 1e-3
tension_release = -1
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 5
value = 0.0
[../]
[./Pressure]
[./press]
boundary = 7
factor = 1e3
[../]
[../]
[./down]
type = DirichletBC
variable = disp_y
boundary = 8
value = -2e-3
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1.0e6
poissons_ratio = 0.0
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
l_max_its = 100
nl_max_its = 10
dt = 1.0
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/markers/value_threshold_marker/value_threshold_marker_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
[./Markers]
[./marker]
type = ValueThresholdMarker
coarsen = 0.3
variable = u
refine = 0.7
[../]
[./inverted_marker]
type = ValueThresholdMarker
invert = true
coarsen = 0.7
refine = 0.3
variable = u
third_state = DO_NOTHING
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/jacobian/simple.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./s]
[../]
[./t]
[../]
[./u]
[../]
[./u2]
[../]
[./v]
[../]
[]
[AuxVariables]
[./w]
[../]
[]
[Kernels]
[./diffs]
type = WrongJacobianDiffusion
variable = s
jfactor = 0.995
[../]
[./difft]
type = WrongJacobianDiffusion
variable = t
jfactor = 2.0
[../]
[./diffu]
type = WrongJacobianDiffusion
variable = u
error = factor
jfactor = 0.0
[../]
[./diffu2]
type = WrongJacobianDiffusion
variable = u2
rfactor = 0.0
[../]
[./diffv]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(modules/richards/test/tests/gravity_head_1/gh_fu_03.i)
# unsaturated = false
# gravity = true
# supg = false
# transient = false
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = 0
max = 1
[../]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
viscosity = 1E-3
gravity = '-1 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh_fu_03
exodus = true
[]
(test/tests/functions/generic_function_material/generic_function_vector_material_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Functions]
[diff_func_x]
type = ParsedFunction
value = 1/t
[]
[diff_func_y]
type = ParsedFunction
value = 't*t + x'
[]
[]
[Kernels]
[diff]
type = VectorMatDiffusion
variable = u
coef = diffusion
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = '0'
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = '1'
[]
[]
[Materials]
[gfm]
type = GenericFunctionVectorMaterial
block = 0
prop_names = diffusion
prop_values = 'diff_func_x diff_func_y 0'
[]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard3.i)
# Checking evolution tensile strength
# A single element is stretched by 1E-6*t in z direction, and
# the yield-surface evolution is mapped out
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[]
[]
[AuxVariables]
[wpt_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningExponential
value_0 = 10
value_residual = 4
rate = 1E6
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[]
[]
[Executioner]
end_time = 4
dt = 0.5
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/kernels/jxw_grad_test_dep_on_displacements/jxw-cylindrical.i)
[GlobalParams]
displacements = 'disp_r disp_z'
order = SECOND
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
elem_type = QUAD9
[]
[Problem]
coord_type = RZ
[]
[Variables]
[./disp_r]
[../]
[./disp_z]
[../]
[./u]
order = FIRST
[../]
[./v]
[../]
[]
[Kernels]
[./disp_r]
type = Diffusion
variable = disp_r
[../]
[./disp_z]
type = Diffusion
variable = disp_z
[../]
[./u]
type = ADDiffusion
variable = u
use_displaced_mesh = true
[../]
[./v]
type = ADDiffusion
variable = v
use_displaced_mesh = true
[../]
[]
[BCs]
# BCs cannot be preset due to Jacobian tests
[./u_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = u
[../]
[./u_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = u
[../]
[./v_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = v
[../]
[./v_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = v
[../]
[./disp_r_left]
type = DirichletBC
preset = false
value = 0
boundary = 'left'
variable = disp_r
[../]
[./disp_r_right]
type = DirichletBC
preset = false
value = 1
boundary = 'right'
variable = disp_r
[../]
[./disp_z_left]
type = DirichletBC
preset = false
value = 0
boundary = 'bottom'
variable = disp_z
[../]
[./disp_z_right]
type = DirichletBC
preset = false
value = 1
boundary = 'top'
variable = disp_z
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
[./dofmap]
type = DOFMap
execute_on = 'initial'
[../]
exodus = true
[]
[ICs]
[./disp_r]
type = RandomIC
variable = disp_r
min = 0.01
max = 0.09
[../]
[./disp_z]
type = RandomIC
variable = disp_z
min = 0.01
max = 0.09
[../]
[./u]
type = RandomIC
variable = u
min = 0.1
max = 0.9
[../]
[./v]
type = RandomIC
variable = v
min = 0.1
max = 0.9
[../]
[]
(tutorials/tutorial02_multiapps/step02_transfers/02_master_nearestnode.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[tv]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[force]
type = BodyForce
variable = u
value = 1.
[]
[td]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
end_time = 2
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
positions = '0.1 0.1 0 0.4 0.4 0 0.7 0.7 0'
input_files = '02_sub_nearestnode.i'
execute_on = timestep_end
output_in_position = true
[]
[]
[Transfers]
[push_u]
type = MultiAppNearestNodeTransfer
# Transfer to the sub-app from this app
to_multi_app = sub_app
# The name of the variable in this app
source_variable = u
# The name of the auxiliary variable in the sub-app
variable = tu
[]
[]
(test/tests/controls/time_periods/error/steady_error.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
# The TimeDerivative existing in a Steady calculation will trigger an error itself!
# [./time]
# type = TimeDerivative
# variable = u
# [../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Dampers]
[./const_damp]
type = ConstantDamper
damping = 0.9
[../]
[]
[Outputs]
exodus = true
[]
[Controls]
[./damping_control]
type = TimePeriod
disable_objects = 'const_damp'
start_time = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
(test/tests/multiapps/relaxation/picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
initial_condition = 1
[../]
[./inverse_v]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = inverse_v
[../]
[]
[AuxKernels]
[./invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = picard_relaxed_sub.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/xfem/test/tests/moving_interface/phase_transition_2d.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 11
ny = 1
xmin = 0.0
xmax = 20.0
ymin = 0.0
ymax = 5.0
elem_type = QUAD4
[]
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[velocity]
type = XFEMPhaseTransitionMovingInterfaceVelocity
diffusivity_at_positive_level_set = 5
diffusivity_at_negative_level_set = 1
equilibrium_concentration_jump = 1
value_at_interface_uo = value_uo
[]
[value_uo]
type = NodeValueAtXFEMInterface
variable = 'u'
interface_mesh_cut_userobject = 'cut_mesh'
execute_on = TIMESTEP_END
level_set_var = ls
[]
[cut_mesh]
type = InterfaceMeshCut2DUserObject
mesh_file = flat_interface_1d.e
interface_velocity_uo = velocity
heal_always = true
[]
[]
[Variables]
[u]
[]
[]
[ICs]
[ic_u]
type = FunctionIC
variable = u
function = 'if(x<5.01, 2, 1)'
[]
[]
[AuxVariables]
[ls]
order = FIRST
family = LAGRANGE
[]
[]
[Constraints]
[u_constraint]
type = XFEMEqualValueAtInterface
geometric_cut_userobject = 'cut_mesh'
use_displaced_mesh = false
variable = u
value = 2
alpha = 1e6
[]
[]
[Kernels]
[diff]
type = MatDiffusion
variable = u
diffusivity = diffusion_coefficient
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[ls]
type = MeshCutLevelSetAux
mesh_cut_user_object = cut_mesh
variable = ls
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Materials]
[diffusivity_A]
type = GenericConstantMaterial
prop_names = A_diffusion_coefficient
prop_values = 5
[]
[diffusivity_B]
type = GenericConstantMaterial
prop_names = B_diffusion_coefficient
prop_values = 1
[]
[diff_combined]
type = LevelSetBiMaterialReal
levelset_positive_base = 'A'
levelset_negative_base = 'B'
level_set_var = ls
prop_name = diffusion_coefficient
[]
[]
[BCs]
# Define boundary conditions
[left_u]
type = DirichletBC
variable = u
value = 2
boundary = left
[]
[right_u]
type = NeumannBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
start_time = 0.0
dt = 1
num_steps = 5
max_xfem_update = 1
[]
[Outputs]
execute_on = timestep_end
exodus = true
perf_graph = true
csv = true
[]
(test/tests/parser/param_substitution/param_substitution_in_file.i)
# Here we define a global parameter to be used for substitutions within this file
FILENAME = 'special_string'
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
# Here we use the GetPot "DBE" function to perform a substitution.
# The parameter "FILENAME" can either exist in this file or
# be provided on the CLI
file_base = out_${FILENAME}
[]
(test/tests/materials/material/material_block_bound_check.i)
###########################################################
# This is a simple test of the Material System. A
# user-defined Material (MTMaterial) is providing a
# Real property named "matp" that varies spatially
# throughout the domain. This property is used as a
# coefficient by MatDiffusionTest.
#
# This test verifies that when a material is restricted
# to a boundary, that MOOSE correctly reports that the
# volumetric material is missing.
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 2
[../]
[]
# Materials System
[Materials]
[./mat]
type = MTMaterial
boundary = 'bottom'
[../]
[]
[Executioner]
type = Steady
[]
# No output, this test is designed to produce an error
(modules/tensor_mechanics/test/tests/umat/elastic_hardening/elastic.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = t/100
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.0
[]
[]
[Materials]
# this input file is used to compare the MOOSE and UMAT models, activating
# specific ones with cli args.
# 1. active for umat calculation
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic'
num_state_vars = 0
use_one_based_indexing = true
[]
# 2. active for moose built-in finite strain elasticity reference
[elastic]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
num_steps = 30
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/grid-sequencing/vi-coarse.i)
l=10
nx=40
num_steps=2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bound]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bound]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
[MultiApps]
[./coarser]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = vi-coarser.i
[../]
[]
[Transfers]
[./mesh_function_begin]
type = MultiAppMeshFunctionTransfer
from_multi_app = coarser
source_variable = u
variable = u
execute_on = timestep_begin
[../]
[]
(modules/heat_conduction/test/tests/heat_conduction/2d_quadrature_gap_heat_transfer/perfect.i)
[Mesh]
file = perfect.e
[]
[Variables]
[./temp]
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = leftleft
value = 300
[../]
[./right]
type = DirichletBC
variable = temp
boundary = rightright
value = 400
[../]
[]
[ThermalContact]
[./left_to_right]
secondary = leftright
quadrature = true
primary = rightleft
emissivity_primary = 0
emissivity_secondary = 0
variable = temp
type = GapHeatTransfer
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = 'left right'
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/except6.i)
# Plastic deformation, tensile failure, with normal=(1,0,0)
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = t
# should yield trial stress:
# stress_xx = 2*t
# Use tensile strength = 1, we should return to stress_xx = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = right
function = 0
[../]
[]
[AuxVariables]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = strainp_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = strainp_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = strainp_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = strainp_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = strainp_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = strainp_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = straint_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = straint_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = straint_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = straint_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = straint_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = straint_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '0 0 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = except6
csv = true
[]
(tutorials/darcy_thermo_mech/step02_darcy_pressure/problems/step2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables/pressure]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
permeability = 0.8451e-9 # (m^2) 1mm spheres.
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First data point for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/move/multilevel_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub.i
output_in_position = true
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
[../]
[]
(test/tests/time_integrators/actually_explicit_euler/actually_explicit_euler.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.001
l_tol = 1e-12
[./TimeIntegrator]
type = ActuallyExplicitEuler
[../]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./T]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./temperature_time]
type = INSADHeatConductionTimeDerivative
variable = T
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = T
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = T
thermal_conductivity = 'k'
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSAD3Eqn
velocity = velocity
pressure = p
temperature = T
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
value = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
(modules/combined/examples/phase_field-mechanics/Conserved.i)
#
# Example 1
# Illustrating the coupling between chemical and mechanical (elastic) driving forces.
# An oversized precipitate deforms under a uniaxial compressive stress
# Check the file below for comments and suggestions for parameter modifications.
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
nz = 0
xmin = 0
xmax = 50
ymin = 0
ymax = 50
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = SmoothCircleIC
x1 = 0
y1 = 0
radius = 25.0
invalue = 1.0
outvalue = 0.0
int_width = 50.0
[../]
[../]
[./w]
order = FIRST
family = LAGRANGE
[../]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./c_res]
type = SplitCHParsed
variable = c
f_name = F
kappa_name = kappa_c
w = w
[../]
[./w_res]
type = SplitCHWRes
variable = w
mob_name = M
[../]
[./time]
type = CoupledTimeDerivative
variable = w
v = c
[../]
[]
#
# The AuxVariables and AuxKernels below are added to visualize the xx and yy stress tensor components
#
[AuxVariables]
[./sigma11_aux]
order = CONSTANT
family = MONOMIAL
[../]
[./sigma22_aux]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./matl_sigma11]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = sigma11_aux
[../]
[./matl_sigma22]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = sigma22_aux
[../]
[]
[Materials]
[./pfmobility]
type = GenericConstantMaterial
prop_names = 'M kappa_c'
prop_values = '1 5'
block = 0
#kappa = 0.1
#mob = 1e-3
[../]
# simple chemical free energy with a miscibility gap
[./chemical_free_energy]
type = DerivativeParsedMaterial
block = 0
f_name = Fc
args = 'c'
constant_names = 'barr_height cv_eq'
constant_expressions = '0.1 1.0e-2'
function = 16*barr_height*(c-cv_eq)^2*(1-cv_eq-c)^2
enable_jit = true
derivative_order = 2
[../]
# undersized solute (voidlike)
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
# lambda, mu values
C_ijkl = '7 7'
# Stiffness tensor is created from lambda=7, mu=7 using symmetric_isotropic fill method
fill_method = symmetric_isotropic
# See RankFourTensor.h for details on fill methods
# '15 15' results in a high stiffness (the elastic free energy will dominate)
# '7 7' results in a low stiffness (the chemical free energy will dominate)
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
# eigenstrain coefficient
# -0.1 will result in an undersized precipitate
# 0.1 will result in an oversized precipitate
function = 0.1*c
args = c
f_name = var_dep
enable_jit = true
derivative_order = 2
[../]
[./eigenstrain]
type = ComputeVariableEigenstrain
block = 0
eigen_base = '1 1 1 0 0 0'
prefactor = var_dep
#outputs = exodus
args = 'c'
eigenstrain_name = eigenstrain
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y'
eigenstrain_names = eigenstrain
[../]
[./elastic_free_energy]
type = ElasticEnergyMaterial
f_name = Fe
block = 0
args = 'c'
derivative_order = 2
[../]
# Sum up chemical and elastic contributions
[./free_energy]
type = DerivativeSumMaterial
block = 0
f_name = F
sum_materials = 'Fc Fe'
args = 'c'
derivative_order = 2
[../]
[]
[BCs]
[./bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = 'top'
# prescribed displacement
# -5 will result in a compressive stress
# 5 will result in a tensile stress
value = -5
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[]
[Preconditioning]
# active = ' '
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -sub_pc_type '
petsc_options_value = 'asm lu'
l_max_its = 30
nl_max_its = 10
l_tol = 1.0e-4
nl_rel_tol = 1.0e-8
nl_abs_tol = 1.0e-10
start_time = 0.0
num_steps = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[../]
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(test/tests/controls/tag_based_naming_access/system_object_param.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
# use odd numbers so points do not fall on element boundaries
nx = 31
ny = 31
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[DiracKernels]
[./test_object]
type = MaterialPointSource
point = '0.5 0.5 0'
variable = diffused
control_tags = 'tag'
[../]
[]
[BCs]
[./bottom_diffused]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 2
[../]
[./top_diffused]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = 'matp'
prop_values = '1'
block = 0
[../]
[]
[Postprocessors]
[./test_object]
type = FunctionValuePostprocessor
function = '2*(x+y)'
point = '0.5 0.5 0'
[../]
[./other_point_test_object]
type = FunctionValuePostprocessor
function = '3*(x+y)'
point = '0.5 0.5 0'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
[Controls]
[./point_control]
type = TestControl
test_type = 'point'
parameter = 'tag/*/point'
execute_on = 'initial'
[../]
[]
(test/tests/misc/check_error/function_file_test7.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
x = '1'
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/shell/dynamics/shell_dynamics_bending_moment.i)
# Test that models bending of a cantilever beam using shell elements
# A cantilever beam of length 10 m (in Y direction) and cross-section
# 1 m x 0.1 m is modeled using 4 shell elements placed along the length
# (Figure 6a from Dvorkin and Bathe, 1984). All displacements and
# X rotations are fixed on the bottom boundary. E = 2100000 and v = 0.0.
# A load of 0.5 N (in the Z direction) is applied at each node on the top
# boundary resulting in a total load of 1 N.
# The analytical solution for displacement at tip using small strain/rotations # is PL^3/3EI + PL/AG = 1.90485714 m
# The FEM solution using 4 shell elements is 1.875095 m with a relative error
# of 1.5%.
# Similarly, the analytical solution for slope at tip is PL^2/2EI = 0.285714286
# The FEM solution is 0.2857143 and the relative error is 5e-6%.
# The stress_yy for the four elements at z = -0.57735 * (t/2) (first qp below mid-surface of shell) are:
# 3031.089 Pa, 2165.064 Pa, 1299.038 Pa and 433.0127 Pa.
# Note the above values are the average stresses in each element.
# Analytically, stress_yy decreases linearly from y = 0 to y = 10 m.
# The maximum value of stress_yy at y = 0 is Mz/I = PL * 0.57735*(t/2)/I = 3464.1 Pa
# Therefore, the analytical value of stress at z = -0.57735 * (t/2) at the mid-point
# of the four elements are:
# 3031.0875 Pa, 2165.0625 Pa, 1299.0375 Pa ,433.0125 Pa
# The relative error in stress_yy is in the order of 5e-5%.
# The stress_yz at z = -0.57735 * (t/2) at all four elements from the simulation is 10 Pa.
# The analytical solution for the shear stress is: V/2/I *((t^2)/4 - z^2), where the shear force (V)
# is 1 N at any y along the length of the beam. Therefore, the analytical shear stress at
# z = -0.57735 * (t/2) is 10 Pa at any location along the length of the beam.
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 4
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
# aux variables for dynamics
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
variable = stress_yz
rank_two_tensor = global_stress_t_points_0
index_i = 1
index_j = 2
[../]
# Kernels for dynamics
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 'bottom'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = 'bottom'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = 'bottom'
value = 0.0
[../]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0.0
[../]
[]
[Functions]
[./force_function]
type = PiecewiseLinear
x = '0.0 1.0'
y = '0.0 0.5'
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_z
boundary = 'top'
function = force_function
[../]
[]
[Kernels]
[./solid_disp_x]
type = ADStressDivergenceShell
block = '0'
component = 0
variable = disp_x
through_thickness_order = SECOND
[../]
[./solid_disp_y]
type = ADStressDivergenceShell
block = '0'
component = 1
variable = disp_y
through_thickness_order = SECOND
[../]
[./solid_disp_z]
type = ADStressDivergenceShell
block = '0'
component = 2
variable = disp_z
through_thickness_order = SECOND
[../]
[./solid_rot_x]
type = ADStressDivergenceShell
block = '0'
component = 3
variable = rot_x
through_thickness_order = SECOND
[../]
[./solid_rot_y]
type = ADStressDivergenceShell
block = '0'
component = 4
variable = rot_y
through_thickness_order = SECOND
[../]
[./inertial_force_x]
type = ADInertialForceShell
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 0
variable = disp_x
thickness = 0.1
[../]
[./inertial_force_y]
type = ADInertialForceShell
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 1
variable = disp_y
thickness = 0.1
[../]
[./inertial_force_z]
type = ADInertialForceShell
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 2
variable = disp_z
thickness = 0.1
[../]
[./inertial_force_rot_x]
type = ADInertialForceShell
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 3
variable = rot_x
thickness = 0.1
[../]
[./inertial_force_rot_y]
type = ADInertialForceShell
block = 0
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y'
rotational_accelerations = 'rot_accel_x rot_accel_y'
component = 4
variable = rot_y
thickness = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensorShell
youngs_modulus = 2100000
poissons_ratio = 0.0
block = 0
through_thickness_order = SECOND
[../]
[./strain]
type = ADComputeIncrementalShellStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y'
thickness = 0.1
through_thickness_order = SECOND
[../]
[./stress]
type = ADComputeShellStress
block = 0
through_thickness_order = SECOND
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Postprocessors]
[./disp_z_tip]
type = PointValue
point = '1.0 10.0 0.0'
variable = disp_z
[../]
[./rot_x_tip]
type = PointValue
point = '0.0 10.0 0.0'
variable = rot_x
[../]
[./stress_yy_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yy
[../]
[./stress_yy_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yy
[../]
[./stress_yy_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yy
[../]
[./stress_yy_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yy
[../]
[./stress_yz_el_0]
type = ElementalVariableValue
elementid = 0
variable = stress_yz
[../]
[./stress_yz_el_1]
type = ElementalVariableValue
elementid = 1
variable = stress_yz
[../]
[./stress_yz_el_2]
type = ElementalVariableValue
elementid = 2
variable = stress_yz
[../]
[./stress_yz_el_3]
type = ElementalVariableValue
elementid = 3
variable = stress_yz
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_max_its = 2
nl_rel_tol = 1e-10
nl_abs_tol = 5e-8
dt = 0.0005
dtmin = 0.0005
end_time = 1
[TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[]
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/rates/truesdell_shear.i)
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[Functions]
[shearme]
type = PiecewiseLinear
x = '0 10'
y = '0 20'
[]
[]
[BCs]
[back]
type = DirichletBC
preset = true
variable = disp_z
boundary = back
value = 0.0
[]
[bottom_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = bottom
value = 0.0
[]
[bottom_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = bottom
value = 0.0
[]
[shear]
type = FunctionDirichletBC
variable = disp_x
boundary = top
function = shearme
preset = true
[]
[hmm]
type = DirichletBC
preset = true
variable = disp_y
boundary = top
value = 0.0
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
objective_rate = truesdell
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Postprocessors]
[exy]
type = ElementAverageValue
variable = strain_xy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = stress_xy
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'newton'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
end_time = 4
[]
[Outputs]
exodus = false
csv = true
[]
(modules/porous_flow/test/tests/actions/fullsat_brine_except2.i)
# Check error when using PorousFlowFullySaturated action,
# attempting to use both brine and single-component fluids
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
block = '0'
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = pp
temperature = temp
mass_fraction_vars = "nacl"
fluid_properties_type = PorousFlowBrine
nacl_name = nacl
fp = simple_fluid
dictator_name = dictator
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Variables]
[pp]
initial_condition = 20E6
[]
[temp]
initial_condition = 323.15
[]
[nacl]
initial_condition = 0.1047
[]
[]
[Kernels]
# All provided by PorousFlowFullySaturated action
[]
[BCs]
[t_bdy]
type = DirichletBC
variable = temp
boundary = 'left right'
value = 323.15
[]
[p_bdy]
type = DirichletBC
variable = pp
boundary = 'left right'
value = 20E6
[]
[nacl_bdy]
type = DirichletBC
variable = nacl
boundary = 'left right'
value = 0.1047
[]
[]
[Materials]
# Thermal conductivity
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
wet_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
[]
# Specific heat capacity
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 850
density = 2700
[]
# Permeability
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-13 0 0 0 1E-13 0 0 0 1E-13'
[]
# Porosity
[porosity]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = fullsat_brine_except2
[]
(test/tests/postprocessors/print_perf_data/print_perf_data.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./elapsed]
type = PerfGraphData
section_name = "Root"
data_type = total
[../]
[./res_calls]
type = PerfGraphData
section_name = "FEProblem::computeResidualInternal"
data_type = calls
[../]
[./jac_calls]
type = PerfGraphData
section_name = "FEProblem::computeJacobianInternal"
data_type = calls
[../]
[./jac_total_time]
type = PerfGraphData
section_name = "FEProblem::computeJacobianInternal"
data_type = self
[../]
[./jac_average_time]
type = PerfGraphData
section_name = "FEProblem::computeJacobianInternal"
data_type = total_avg
[../]
[./jac_total_time_with_sub]
type = PerfGraphData
section_name = "FEProblem::computeJacobianInternal"
data_type = total
[../]
[./jac_average_time_with_sub]
type = PerfGraphData
section_name = "FEProblem::computeJacobianInternal"
data_type = total_avg
[../]
[./jac_percent_of_active_time]
type = PerfGraphData
section_name = "FEProblem::computeJacobianInternal"
data_type = self_percent
[../]
[./jac_percent_of_active_time_with_sub]
type = PerfGraphData
section_name = "FEProblem::computeJacobianInternal"
data_type = total_percent
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/weak_plane_stress_small.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/variables/output_vars_hidden_shown_check.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Postprocessors]
[./x]
type = ScalarVariable
variable = x
execute_on = timestep_end
[../]
[./y]
type = ScalarVariable
variable = y
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 10
[]
[Outputs]
file_base = out_hidden
exodus = true
hide = 'u elemental nodal x'
show = u
[]
(modules/peridynamics/test/tests/generalized_plane_strain/planestrain_prescribed_OSPD.i)
[GlobalParams]
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz
[]
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[../]
[./gpd]
type = MeshGeneratorPD
input = gmg
retain_fe_mesh = false
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./scalar_strain_zz]
order = FIRST
family = SCALAR
[../]
[./strain_zz]
[../]
[]
[Modules/Peridynamics/Mechanics/Master]
[./all]
formulation = ORDINARY_STATE
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = NodalRankTwoPD
variable = strain_zz
rank_two_tensor = total_strain
output_type = component
index_i = 2
index_j = 2
[../]
[]
[AuxScalarKernels]
[./scalar_strain_zz]
type = FunctionScalarAux
variable = scalar_strain_zz
function = scalar_strain_zz_func
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[./scalar_strain_zz_func]
type = PiecewiseLinear
xy_data = '0 0
1 7.901e-5
2 1.103021e-2'
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
boundary = 1000
variable = disp_x
value = 0.0
[../]
[./bottom_y]
type = DirichletBC
boundary = 1000
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./force_density]
type = ComputeSmallStrainConstantHorizonMaterialOSPD
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
start_time = 0.0
end_time = 2.0
[]
[Outputs]
exodus = true
file_base = planestrain_prescribed_OSPD
[]
(test/tests/functions/solution_function/solution_function_exodus_test.i)
# [Executioner]
# type = Steady
# petsc_options = '-snes'
# l_max_its = 800
# nl_rel_tol = 1e-10
# []
[Mesh]
type = FileMesh
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
# [./ne]
# order = FIRST
# family = LAGRANGE
# [../]
# [./ee]
# order = CONSTANT
# family = MONOMIAL
# [../]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
# [./sourcee]
# type = SolutionFunction
# file_type = exodusII
# mesh = cubesource.e
# variable = source_element
# [../]
[./sourcen]
type = SolutionFunction
scale_factor = 2.0
solution = cube_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# [./ne]
# type = FunctionAux
# variable = ne
# function = sourcee
# [../]
# [./ee]
# type = FunctionAux
# variable = ee
# function = sourcee
# [../]
[./nn]
type = FunctionAux
variable = nn
function = sourcen
[../]
[./en]
type = FunctionAux
variable = en
function = sourcen
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[UserObjects]
[./cube_soln]
type = SolutionUserObject
timestep = 2
system_variables = source_nodal
mesh = cubesource.e
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/transfers/multiapp_nearest_node_transfer/tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
elem_type = QUAD8
[]
[Variables]
[./u]
family = LAGRANGE
order = FIRST
[../]
[]
[AuxVariables]
[./nodal_source_from_master_nodal]
family = LAGRANGE
order = FIRST
[../]
[./nodal_source_from_master_elemental]
family = MONOMIAL
order = CONSTANT
[../]
[./elemental_source_from_master_nodal]
family = LAGRANGE
order = FIRST
[../]
[./elemental_source_from_master_elemental]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/bad_scaling_scalar_kernels/ill_conditioned_field_scalar_system.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
[../]
[v]
family = SCALAR
initial_condition = 1
[]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[scalar]
type = ScalarLagrangeMultiplier
variable = u
lambda = v
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[ScalarKernels]
[reaction]
type = ParsedODEKernel
function = '10^20 * v'
variable = v
[]
[time]
type = ODETimeDerivative
variable = v
[]
[]
[Executioner]
type = Transient
num_steps = 1
dtmin = 1
solve_type = NEWTON
petsc_options = '-pc_svd_monitor -ksp_view_pmat -snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -snes_stol'
petsc_options_value = 'svd 0'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/homogenization/small-tests/3d-strain.i)
# 2D test with just strain control
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
constraint_types = 'strain strain strain strain strain strain'
ndim = 3
large_kinematics = false
macro_gradient = hvar
[]
[Mesh]
[base]
type = FileMeshGenerator
file = '3d.exo'
[]
[sidesets]
type = SideSetsFromNormalsGenerator
input = base
normals = '-1 0 0
1 0 0
0 -1 0
0 1 0
'
' 0 0 -1
0 0 1'
fixed_normal = true
new_boundary = 'left right bottom top back front'
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[hvar]
family = SCALAR
order = SIXTH
[]
[]
[AuxVariables]
[sxx]
family = MONOMIAL
order = CONSTANT
[]
[syy]
family = MONOMIAL
order = CONSTANT
[]
[sxy]
family = MONOMIAL
order = CONSTANT
[]
[szz]
family = MONOMIAL
order = CONSTANT
[]
[syz]
family = MONOMIAL
order = CONSTANT
[]
[sxz]
family = MONOMIAL
order = CONSTANT
[]
[exx]
family = MONOMIAL
order = CONSTANT
[]
[eyy]
family = MONOMIAL
order = CONSTANT
[]
[exy]
family = MONOMIAL
order = CONSTANT
[]
[ezz]
family = MONOMIAL
order = CONSTANT
[]
[eyz]
family = MONOMIAL
order = CONSTANT
[]
[exz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sxx]
type = RankTwoAux
variable = sxx
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[syy]
type = RankTwoAux
variable = syy
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[sxy]
type = RankTwoAux
variable = sxy
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[zz]
type = RankTwoAux
variable = szz
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[syz]
type = RankTwoAux
variable = syz
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[sxz]
type = RankTwoAux
variable = sxz
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[exx]
type = RankTwoAux
variable = exx
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 0
[]
[eyy]
type = RankTwoAux
variable = eyy
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 1
[]
[exy]
type = RankTwoAux
variable = exy
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 1
[]
[ezz]
type = RankTwoAux
variable = ezz
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
[]
[eyz]
type = RankTwoAux
variable = eyz
rank_two_tensor = mechanical_strain
index_i = 1
index_j = 2
[]
[exz]
type = RankTwoAux
variable = exz
rank_two_tensor = mechanical_strain
index_i = 0
index_j = 2
[]
[]
[UserObjects]
[integrator]
type = HomogenizationConstraintIntegral
targets = 'strain11 strain22 strain33 strain23 strain13 strain12'
execute_on = 'initial linear'
[]
[]
[Kernels]
[sdx]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = HomogenizedTotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[ScalarKernels]
[enforce]
type = HomogenizationConstraintScalarKernel
variable = hvar
integrator = integrator
[]
[]
[Functions]
[strain11]
type = ParsedFunction
value = '4.0e-2*t'
[]
[strain22]
type = ParsedFunction
value = '-2.0e-2*t'
[]
[strain33]
type = ParsedFunction
value = '8.0e-2*t'
[]
[strain23]
type = ParsedFunction
value = '2.0e-2*t'
[]
[strain13]
type = ParsedFunction
value = '-7.0e-2*t'
[]
[strain12]
type = ParsedFunction
value = '1.0e-2*t'
[]
[]
[BCs]
[Periodic]
[x]
variable = disp_x
auto_direction = 'x y z'
[]
[y]
variable = disp_y
auto_direction = 'x y z'
[]
[z]
variable = disp_z
auto_direction = 'x y z'
[]
[]
[fix1_x]
type = DirichletBC
boundary = "fix_all"
variable = disp_x
value = 0
[]
[fix1_y]
type = DirichletBC
boundary = "fix_all"
variable = disp_y
value = 0
[]
[fix1_z]
type = DirichletBC
boundary = "fix_all"
variable = disp_z
value = 0
[]
[fix2_x]
type = DirichletBC
boundary = "fix_xy"
variable = disp_x
value = 0
[]
[fix2_y]
type = DirichletBC
boundary = "fix_xy"
variable = disp_y
value = 0
[]
[fix3_z]
type = DirichletBC
boundary = "fix_z"
variable = disp_z
value = 0
[]
[]
[Materials]
[elastic_tensor_1]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
block = '1'
[]
[elastic_tensor_2]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 120000.0
poissons_ratio = 0.21
block = '2'
[]
[elastic_tensor_3]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 80000.0
poissons_ratio = 0.4
block = '3'
[]
[elastic_tensor_4]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 76000.0
poissons_ratio = 0.11
block = '4'
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
homogenization_gradient_names = 'homogenization_gradient'
[]
[compute_homogenization_gradient]
type = ComputeHomogenizedLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[sxx]
type = ElementAverageValue
variable = sxx
execute_on = 'initial timestep_end'
[]
[syy]
type = ElementAverageValue
variable = syy
execute_on = 'initial timestep_end'
[]
[sxy]
type = ElementAverageValue
variable = sxy
execute_on = 'initial timestep_end'
[]
[szz]
type = ElementAverageValue
variable = szz
execute_on = 'initial timestep_end'
[]
[syz]
type = ElementAverageValue
variable = syz
execute_on = 'initial timestep_end'
[]
[sxz]
type = ElementAverageValue
variable = sxz
execute_on = 'initial timestep_end'
[]
[exx]
type = ElementAverageValue
variable = exx
execute_on = 'initial timestep_end'
[]
[eyy]
type = ElementAverageValue
variable = eyy
execute_on = 'initial timestep_end'
[]
[exy]
type = ElementAverageValue
variable = exy
execute_on = 'initial timestep_end'
[]
[ezz]
type = ElementAverageValue
variable = ezz
execute_on = 'initial timestep_end'
[]
[eyz]
type = ElementAverageValue
variable = eyz
execute_on = 'initial timestep_end'
[]
[exz]
type = ElementAverageValue
variable = exz
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
#automatic_scaling = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
dtmin = 0.2
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/functional_expansion_tools/test/tests/errors/multiapp_bad_user_object.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[./AnotheruserObject]
type = EmptyPostprocessor
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = multiapp_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = AnotheruserObject
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/transfers/multiapp_interpolation_transfer/fromrestrictedsub_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
# The MultiAppInterpolationTransfer object only works with ReplicatedMesh
parallel_type = replicated
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[elemental_from_sub]
order = CONSTANT
family = MONOMIAL
[]
[nodal_from_sub]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.05 0.5 0 0.55 0.5 0'
input_files = fromrestrictedsub_sub.i
output_in_position = true
[]
[]
[Transfers]
[elemental_fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = elemental
variable = elemental_from_sub
[]
[nodal_fromsub]
type = MultiAppInterpolationTransfer
from_multi_app = sub
source_variable = nodal
variable = nodal_from_sub
[]
[]
(test/tests/transfers/multiapp_conservative_transfer/primary_negative_adjuster.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[var]
family = MONOMIAL
order = THIRD
[]
[]
[ICs]
[var_ic]
type = FunctionIC
variable = var
function = '-exp(x * y)'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
input_files = secondary_negative_adjuster.i
execute_on = timestep_end
[]
[]
[Postprocessors]
[from_postprocessor]
type = ElementIntegralVariablePostprocessor
variable = var
[]
[]
[Transfers]
[to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = var
variable = var
to_multi_app = sub
from_postprocessors_to_be_preserved = 'from_postprocessor'
to_postprocessors_to_be_preserved = 'to_postprocessor'
[]
[]
[Outputs]
exodus = true
[]
(test/tests/functions/linear_combination_function/lcf_vector.i)
# use the vectorValue of a LinearCombinationFunction
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./conductivity_1]
type = ParsedVectorFunction
value_y = '0.1+x'
value_x = '0.5*(1+x*y)'
[../]
[./conductivity_2]
type = ParsedVectorFunction
value_y = '0.1+2*x'
value_x = '0.2+x*y'
[../]
[./conductivity]
type = LinearCombinationFunction # yields value_y=0.1, value_x=0.8
functions = 'conductivity_1 conductivity_2'
w = '2 -1'
[../]
[]
[Kernels]
[./diff]
type = DiffTensorKernel
variable = u
conductivity = conductivity
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/multiple_position_files/sub2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/common/exodus.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/restart/restart_transient_from_steady/steady_with_2subs.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = 'replicated'
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2'
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 50
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
execute_on = 'initial final'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
execute_on = 'initial final'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
execute_on = 'initial final'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
fixed_point_rel_tol = 1E-7
fixed_point_abs_tol = 1.0e-07
fixed_point_max_its = 12
[]
[MultiApps]
[sub]
type = FullSolveMultiApp
app_type = MooseTestApp
positions = '0 0 0
0.5 0 0'
input_files = steady_with_sub_sub.i
execute_on = 'timestep_end'
[]
[]
[Transfers]
[p_to_sub]
type = MultiAppProjectionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppInterpolationTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
checkpoint = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
(python/chigger/tests/input/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
uniform_refine = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[AuxKernels]
[./aux_kernel]
type = FunctionAux
variable = aux
function = sin(2*pi*x)*sin(2*pi*y)
execute_on = 'initial'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
# Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/critical_time_step/timoshenko_smallstrain_critstep.i)
# Test for small strain timoshenko beam bending in y direction
# A unit load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 2.60072400269
# Shear modulus (G) = 1.00027846257
# Poisson's ratio (nu) = 0.3
# Shear coefficient (k) = 0.85
# Cross-section area (A) = 0.554256
# Iy = 0.0141889 = Iz
# Length = 4 m
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 204.3734
# The small deformation analytical deflection of the beam is given by
# delta = PL^3/3EI * (1 + 3.0 / alpha) = 5.868e-4 m
# Using 10 elements to discretize the beam element, the FEM solution is 5.852e-2m.
# This deflection matches the FEM solution given in Prathap and Bhashyam (1982).
# References:
# Prathap and Bhashyam (1982), International journal for numerical methods in engineering, vol. 18, 195-210.
# Note that the force is scaled by 1e-4 compared to the reference problem.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 1.0e-4
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 1
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.60072400269
poissons_ratio = 0.3
shear_coefficient = 0.85
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.554256
Ay = 0.0
Az = 0.0
Iy = 0.0141889
Iz = 0.0141889
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8050.0'
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./time_step]
type = CriticalTimeStep
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/material_limit_time_step/damage/scalar_material_damage_timestep_limit.i)
# This is a basic test of the system for continuum damage mechanics
# materials. It uses ScalarMaterialDamage for the damage model,
# which simply gets its damage index from another material. In this
# case, we prescribe the evolution of the damage index using a
# function. A single element has a fixed prescribed displacement
# on one side that puts the element in tension, and then the
# damage index evolves from 0 to 1 over time, and this verifies
# that the stress correspondingly drops to 0.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
elem_type = HEX8
[]
[AuxVariables]
[damage_index]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx strain_xx'
[]
[]
[AuxKernels]
[damage_index]
type = MaterialRealAux
variable = damage_index
property = damage_index_prop
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[axial_load]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[]
[]
[Functions]
[damage_evolution]
type = PiecewiseLinear
xy_data = '0.0 0.0
0.1 0.0
2.1 2.0'
[]
[]
[Materials]
[damage_index]
type = GenericFunctionMaterial
prop_names = damage_index_prop
prop_values = damage_evolution
[]
[damage]
type = ScalarMaterialDamage
damage_index = damage_index_prop
[]
[stress]
type = ComputeDamageStress
damage_model = damage
[]
[elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.2
youngs_modulus = 10e9
[]
[]
[Postprocessors]
[stress_xx]
type = ElementAverageValue
variable = stress_xx
[]
[strain_xx]
type = ElementAverageValue
variable = strain_xx
[]
[damage_index]
type = ElementAverageValue
variable = damage_index
[]
[time_step_limit]
type = MaterialTimeStepPostprocessor
[]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-8
dt = 0.1
dtmin = 0.001
end_time = 1.1
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
growth_factor = 2.0
cutback_factor = 0.5
timestep_limiting_postprocessor = time_step_limit
[]
[]
[Outputs]
csv=true
[]
(test/tests/time_steppers/iteration_adaptive/adapt_tstep_shrink_init_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmax = 5
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[dt]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 10
[]
[right]
type = NeumannBC
variable = u
boundary = right
value = -1
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
start_time = 0.0
dtmin = 1.0
end_time = 10.0
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 1
linear_iteration_ratio = 1
dt = 5.0
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
checkpoint = true
[]
(test/tests/multiapps/multilevel/dt_from_master_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.25
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./out]
type = Console
output_file = true
[../]
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = dt_from_master_sub.i
[../]
[]
(test/tests/postprocessors/execution_attribute_reporter/execution_attribute_reporter.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = TestSteady
test_type = addAttributeReporter
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/adapt/adapt_time_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 7
dt = 0.1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
start_time = 0.2
stop_time = 0.4
[../]
[]
[Outputs]
file_base = out_time
exodus = true
print_mesh_changed_info = true
[]
(test/tests/geomsearch/nearest_node_locator/nearest_node_locator.i)
###########################################################
# This is a test of the Geometric Search System. This test
# uses the nearest node locator through the
# NearestNodeDistanceAux Auxilary Kernel to record the
# distance to the nearest nodes along paired
# boundaries.
#
# @Requirement F6.50
###########################################################
[Mesh]
file = 2dcontact_collide.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./distance]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./distance]
type = NearestNodeDistanceAux
variable = distance
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[./pgraph]
type = PerfGraphOutput
heaviest_branch = true
heaviest_sections = 5
level = 2
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/monolithic_material_based/rot-eg1.i)
#
# Rotation Test
#
# This test is designed to compute a uniaxial stress and then follow that
# stress as the mesh is rotated 90 degrees.
#
# The mesh is composed of one block with a single element. The nodal
# displacements in the x and y directions are prescribed. Poisson's
# ratio is zero.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[./side1n1]
input = gen
type = ExtraNodesetGenerator
coord = '0.0 0.0 0.0'
boundary = 6
[../]
[./side1n2]
input = side1n1
type = ExtraNodesetGenerator
coord = '1.0 0.0 0.0'
boundary = 7
[../]
[./side2n1]
input = side1n2
type = ExtraNodesetGenerator
coord = '0.0 1.0 0.0'
boundary = 8
[../]
[./side2n2]
input = side2n1
type = ExtraNodesetGenerator
coord = '1.0 1.0 0.0'
boundary = 9
[../]
[./side3n1]
input = side2n2
type = ExtraNodesetGenerator
coord = '0.0 1.0 1.0'
boundary = 10
[../]
[./side3n2]
input = side3n1
type = ExtraNodesetGenerator
coord = '1.0 1.0 1.0'
boundary = 11
[../]
[./side4n1]
input = side3n2
type = ExtraNodesetGenerator
coord = '0.0 0.0 1.0'
boundary = 12
[../]
[./side4n2]
input = side4n1
type = ExtraNodesetGenerator
coord = '1.0 0.0 1.0'
boundary = 13
[../]
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Functions]
[./side2uxfunc]
type = ParsedFunction
value = cos(pi/2*t)-1
[../]
[./side2uyfunc]
type = ParsedFunction
value = sin(pi/2*t)
[../]
[./side3uxfunc]
type = ParsedFunction
value = cos(pi/2*t)-sin(pi/2*t)-1
[../]
[./side3uyfunc]
type = ParsedFunction
value = cos(pi/2*t)+sin(pi/2*t)-1
[../]
[./side4uxfunc]
type = ParsedFunction
value = -sin(pi/2*t)
[../]
[./side4uyfunc]
type = ParsedFunction
value = cos(pi/2*t)-1
[../]
[]
[BCs]
active = 'bcside1 bcside2ux bcside2uy bcside4ux bcside4uy bcside3uy bcside3ux bcx'
[./bcside1]
type = DirichletBC
variable = 'uy uz'
boundary = '6 7'
value = 0
[../]
[./bcside2ux]
type = FunctionDirichletBC
variable = uy
boundary = '8 9'
function = side2uxfunc
[../]
[./bcside2uy]
type = FunctionDirichletBC
variable = uz
boundary = '8 9'
function = side2uyfunc
[../]
[./bcside3ux]
type = FunctionDirichletBC
variable = uy
boundary = '10 11'
function = side3uxfunc
[../]
[./bcside3uy]
type = FunctionDirichletBC
variable = uz
boundary = '10 11'
function = side3uyfunc
[../]
[./bcside4ux]
type = FunctionDirichletBC
variable = uy
boundary = '12 13'
function = side4uxfunc
[../]
[./bcside4uy]
type = FunctionDirichletBC
variable = uz
boundary = '12 13'
function = side4uyfunc
[../]
[./bot]
type = DirichletBC
variable = 'ux uy uz'
boundary = back
value = 0
[../]
[./topxz]
type = DirichletBC
variable = 'ux uz'
boundary = front
value = 0
[../]
[./topy]
type = DirichletBC
variable = uy
boundary = front
value = 1
[../]
[./bcx]
type = DirichletBC
variable = ux
boundary = '6 7 8 9 10 11 12 13'
value = 0
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
disp_y = uy
disp_x = ux
slip_sys_file_name = input_slip_sys.txt
disp_z = uz
flowprops = ' 1 12 0.001 0.1'
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 .754e5 .754e5 .754e5'
nss = 12
hprops = '1 541.5 60.8 109.8'
gprops = '1 12 60.8'
fill_method = symmetric9
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 0.01
end_time = 1
dtmin = 0.01
[]
[Outputs]
file_base = rot_eg1
solution_history = true
[./exodus]
type = Exodus
use_displaced = true
[../]
[]
[TensorMechanics]
[./tensormech]
disp_z = uz
disp_y = uy
disp_x = ux
[../]
[]
(modules/porous_flow/test/tests/numerical_diffusion/fltvd_none.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek
# No antidiffusion, so this is identical to full-upwinding
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculator
flux_limiter_type = none
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-1
nl_abs_tol = 1E-8
nl_max_its = 500
timestep_tolerance = 1E-3
[]
[Outputs]
csv = true
execute_on = final
[]
(test/tests/mesh/stitched_mesh/stitched_mesh.i)
[Mesh]
type = StitchedMesh
files = 'left.e center.e right.e'
stitch_boundaries = 'right left right left'
parallel_type = 'replicated'
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/interaction_integral/interaction_integral_2d_rot.i)
#This tests the Interaction-Integral evaluation capability.
#This is a 2d nonlinear-plane strain model
[GlobalParams]
order = FIRST
# order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[Mesh]
file = crack2d_rot.e
displacements = 'disp_x disp_y'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI InteractionIntegralKII InteractionIntegralKIII'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '0 1 0'
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
output_q = false
incremental = true
equivalent_k = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_y
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = interaction_integral_2d_rot_out
exodus = true
csv = true
[]
(test/tests/meshgenerators/distributed_rectilinear/ghosting_elements/num_layers.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 10
ny = 10
partition="linear"
num_side_layers = 2
[]
[]
[AuxVariables]
[ghosting0]
order = CONSTANT
family = MONOMIAL
[]
[ghosting1]
order = CONSTANT
family = MONOMIAL
[]
[ghosting2]
order = CONSTANT
family = MONOMIAL
[]
[evaluable0]
order = CONSTANT
family = MONOMIAL
[]
[evaluable1]
order = CONSTANT
family = MONOMIAL
[]
[evaluable2]
order = CONSTANT
family = MONOMIAL
[]
[proc]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[ghosting0]
type = ElementUOAux
variable = ghosting0
element_user_object = ghosting_uo0
field_name = "ghosted"
execute_on = initial
[]
[ghosting1]
type = ElementUOAux
variable = ghosting1
element_user_object = ghosting_uo1
field_name = "ghosted"
execute_on = initial
[]
[ghosting2]
type = ElementUOAux
variable = ghosting2
element_user_object = ghosting_uo2
field_name = "ghosted"
execute_on = initial
[]
[evaluable0]
type = ElementUOAux
variable = evaluable0
element_user_object = ghosting_uo0
field_name = "evaluable"
execute_on = initial
[]
[evaluable1]
type = ElementUOAux
variable = evaluable1
element_user_object = ghosting_uo1
field_name = "evaluable"
execute_on = initial
[]
[evaluable2]
type = ElementUOAux
variable = evaluable2
element_user_object = ghosting_uo2
field_name = "evaluable"
execute_on = initial
[]
[proc]
type = ProcessorIDAux
variable = proc
execute_on = initial
[]
[]
[UserObjects]
[ghosting_uo0]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 0
[]
[ghosting_uo1]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 1
[]
[ghosting_uo2]
type = ElemSideNeighborLayersGeomTester
execute_on = initial
element_side_neighbor_layers = 2
rank = 2
[]
[]
[Variables]
[./u]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = left
value = -0.01
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.01
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = left
value = -0.01
[../]
[./right_y]
type = DirichletBC
variable = disp_y
boundary = right
value = 0.01
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/truss/truss_2d.i)
#
# Truss in two dimensional space
#
# The truss is made of five equilateral triangles supported at each end.
# The truss starts at (0,0). At (1,0), there is a point load of 25.
# The reactions are therefore
# Ryleft = 2/3 * 25 = 16.7
# Ryright = 1/3 * 25 = 8.33
# The area of each member is 0.8.
# Statics gives the stress in each member. For example, for element 6 (from
# (0,0) to (1/2,sqrt(3)/2)), the force is
# f = 2/3 * 25 * 2/sqrt(3) = 100/3/sqrt(3) (compressive)
# and the stress is
# s = -100/3/sqrt(3)/0.8 = -24.06
#
[Mesh]
type = FileMesh
file = truss_2d.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixy4]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '1 0 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = 1
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = 1
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = 1
variable = area
value = 0.8
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[./solid_x]
type = StressDivergenceTensorsTruss
block = 1
displacements = 'disp_x disp_y'
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[./solid_y]
type = StressDivergenceTensorsTruss
block = 1
displacements = 'disp_x disp_y'
component = 1
variable = disp_y
area = area
save_in = react_y
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = 1
youngs_modulus = 1e6
displacements = 'disp_x disp_y'
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/patterned_mesh/mesh_tester.i)
[Mesh]
type = FileMesh
file = patterned_mesh_in.e
dim = 2
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = conductivity
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = conductivity
prop_values = 100
[../]
[./mat2]
type = GenericConstantMaterial
block = 2
prop_names = conductivity
prop_values = 1e-4
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/num_adaptivity_cycles/num_adaptivity_cycles.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = 'PJFNK'
[]
[Adaptivity]
cycles_per_step = 1
marker = box
max_h_level = 2
initial_steps = 4
initial_marker = initial_box
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = dont_mark
type = BoxMarker
[../]
[./initial_box]
type = BoxMarker
bottom_left = '0.8 0.1 0'
top_right = '0.9 0.2 0'
inside = refine
outside = dont_mark
[../]
[../]
[]
[Postprocessors]
[./adaptivity_cycles]
type = NumAdaptivityCycles
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/sinks/s09.i)
# Apply a piecewise-linear sink flux to the right-hand side and watch fluid flow to it
#
# This test has a single phase with two components. The test initialises with
# the porous material fully filled with component=1. The left-hand side is fixed
# at porepressure=1 and mass-fraction of the zeroth component being unity.
# The right-hand side has a very strong piecewise-linear flux that keeps the
# porepressure~0 at that side. Fluid mass is extracted by this flux in proportion
# to the fluid component mass fraction.
#
# Therefore, the zeroth fluid component will flow from left to right (down the
# pressure gradient).
#
# The important DE is
# porosity * dc/dt = (perm / visc) * grad(P) * grad(c)
# which is true for c = mass-fraction, and very large bulk modulus of the fluid.
# For grad(P) constant in time and space (as in this example) this is just the
# advection equation for c, with velocity = perm / visc / porosity. The parameters
# are chosen to velocity = 1 m/s.
# In the numerical world, and especially with full upwinding, the advection equation
# suffers from diffusion. In this example, the diffusion is obvious when plotting
# the mass-fraction along the line, but the average velocity of the front is still
# correct at 1 m/s.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp frac'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Variables]
[pp]
[]
[frac]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = 1-x
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = frac
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pp
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
gravity = '0 0 0'
variable = frac
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
gravity = '0 0 0'
variable = pp
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e10 # need large in order for constant-velocity advection
density0 = 1 # almost irrelevant, except that the ability of the right BC to keep P fixed at zero is related to density_P0
thermal_expansion = 0
viscosity = 11
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = frac
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 1.1 0 0 0 1.1'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2 # irrelevant in this fully-saturated situation
phase = 0
[]
[]
[BCs]
[lhs_fixed_a]
type = DirichletBC
boundary = 'left'
variable = frac
value = 1
[]
[lhs_fixed_b]
type = DirichletBC
boundary = 'left'
variable = pp
value = 1
[]
[flux0]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '-100 100'
multipliers = '-1 1'
variable = frac # the zeroth comonent
mass_fraction_component = 0
use_mobility = false
use_relperm = false
fluid_phase = 0
flux_function = 1E4
[]
[flux1]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '-100 100'
multipliers = '-1 1'
variable = pp # comonent 1
mass_fraction_component = 1
use_mobility = false
use_relperm = false
fluid_phase = 0
flux_function = 1E4
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu 10000 NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-2
end_time = 1
nl_rel_tol = 1E-12
nl_abs_tol = 1E-12
[]
[VectorPostprocessors]
[mf]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 100
sort_by = x
variable = frac
[]
[]
[Outputs]
file_base = s09
[console]
type = Console
execute_on = 'nonlinear linear'
[]
[csv]
type = CSV
sync_times = '0.1 0.5 1'
sync_only = true
[]
interval = 10
[]
(test/tests/markers/dont_mark/dont_mark_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Adaptivity]
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.3 0.3 0'
top_right = '0.6 0.6 0'
inside = refine
outside = coarsen
[../]
[./combo]
type = ComboMarker
markers = 'box box2'
[../]
[./box2]
type = BoxMarker
bottom_left = '0.5 0.5 0'
top_right = '0.8 0.8 0'
inside = dont_mark
outside = refine
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/DiffuseCreep/stress_based_chem_pot.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 2
[]
[Variables]
[./c]
[./InitialCondition]
type = FunctionIC
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);0.1+0.1*v'
[../]
[../]
[./mu]
[../]
[./jx]
[../]
[./jy]
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./gb]
family = LAGRANGE
order = FIRST
[../]
[./creep_strain_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xx]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./stress_xy]
family = MONOMIAL
order = CONSTANT
[../]
[./mu_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./mech_prop]
family = MONOMIAL
order = CONSTANT
[../]
[./total_potential]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./conc]
type = CHSplitConcentration
variable = c
mobility = mobility_prop
chemical_potential_var = mu
[../]
[./chempot]
type = CHSplitChemicalPotential
variable = mu
chemical_potential_prop = total_potential
c = c
[../]
[./flux_x]
type = CHSplitFlux
variable = jx
component = 0
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./flux_y]
type = CHSplitFlux
variable = jy
component = 1
mobility_name = mobility_prop
mu = mu
c = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[./TensorMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[AuxKernels]
[./gb]
type = FunctionAux
variable = gb
function = 'x0:=5.0;thk:=0.5;m:=2;r:=abs(x-x0);v:=exp(-(r/thk)^m);v'
[../]
[./creep_strain_xx]
type = RankTwoAux
variable = creep_strain_xx
rank_two_tensor = creep_strain
index_i = 0
index_j = 0
[../]
[./stress_xx]
type = RankTwoAux
variable = stress_xx
rank_two_tensor = stress
index_i = 0
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_i = 1
index_j = 1
[../]
[./stress_xy]
type = RankTwoAux
variable = stress_xy
rank_two_tensor = stress
index_i = 0
index_j = 1
[../]
[./mu_prop]
type = MaterialRealAux
property = mu_prop
variable = mu_prop
[../]
[./mech_prop]
type = MaterialRealAux
property = mech_prop
variable = mech_prop
[../]
[./total_potential]
type = MaterialRealAux
property = total_potential
variable = total_potential
[../]
[]
[Materials]
[./chemical_potential]
type = DerivativeParsedMaterial
block = 0
f_name = mu_prop
args = c
function = 'c'
derivative_order = 1
[../]
[./mechanical_potential]
type = StressBasedChemicalPotential
property_name = mech_prop
stress_name = stress
direction_tensor_name = aniso_tensor
prefactor_name = 1.0
[../]
[./total_potential]
type = DerivativeSumMaterial
block = 0
f_name = total_potential
sum_materials = 'mu_prop mech_prop'
args = 'c'
derivative_order = 2
[../]
[./var_dependence]
type = DerivativeParsedMaterial
block = 0
function = 'c*(1.0-c)'
args = c
f_name = var_dep
derivative_order = 1
[../]
[./mobility]
type = CompositeMobilityTensor
block = 0
M_name = mobility_prop
tensors = diffusivity
weights = var_dep
args = c
[../]
[./phase_normal]
type = PhaseNormalTensor
phase = gb
normal_tensor_name = gb_normal
[../]
[./aniso_tensor]
type = GBDependentAnisotropicTensor
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = aniso_tensor
[../]
[./diffusivity]
type = GBDependentDiffusivity
gb = gb
bulk_parameter = 0.1
gb_parameter = 1
gb_normal_tensor_name = gb_normal
gb_tensor_prop_name = diffusivity
[../]
[./diffuse_strain_increment]
type = FluxBasedStrainIncrement
xflux = jx
yflux = jy
gb = gb
property_name = diffuse
[../]
[./diffuse_creep_strain]
type = SumTensorIncrements
tensor_name = creep_strain
coupled_tensor_increment_names = diffuse
[../]
[./strain]
type = ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y'
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
inelastic_strain_names = creep_strain
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
[../]
[]
[BCs]
[./Periodic]
[./cbc]
auto_direction = 'x y'
variable = c
[../]
[../]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_grmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
nl_rel_tol = 1e-10
nl_max_its = 5
l_tol = 1e-4
l_max_its = 20
dt = 1
num_steps = 5
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/grid-sequencing/vi-fine.i)
l=10
nx=80
num_steps=2
[Mesh]
type = GeneratedMesh
dim = 1
xmax = ${l}
nx = ${nx}
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[bounds][]
[]
[Bounds]
[./u_upper_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = upper
bound_value = ${l}
[../]
[./u_lower_bounds]
type = ConstantBoundsAux
variable = bounds
bounded_variable = u
bound_type = lower
bound_value = 0
[../]
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = 'x'
[]
[]
[Kernels]
[time]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = 'if(x<5,-1,1)'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 0
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = ${l}
variable = u
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
num_steps = ${num_steps}
solve_type = NEWTON
dtmin = 1
petsc_options = '-snes_vi_monitor'
petsc_options_iname = '-snes_max_linear_solve_fail -ksp_max_it -pc_type -sub_pc_factor_levels -snes_linesearch_type -snes_type'
petsc_options_value = '0 30 asm 16 basic vinewtonrsls'
[]
[Outputs]
exodus = true
[csv]
type = CSV
execute_on = 'nonlinear timestep_end'
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
active = 'upper_violations lower_violations'
[upper_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = ${fparse 10+1e-8}
comparator = 'greater'
[]
[lower_violations]
type = GreaterThanLessThanPostprocessor
variable = u
execute_on = 'nonlinear timestep_end'
value = -1e-8
comparator = 'less'
[]
[nls]
type = NumNonlinearIterations
[]
[cum_nls]
type = CumulativeValuePostprocessor
postprocessor = nls
[]
[]
[MultiApps]
[./coarse]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = vi-coarse.i
[../]
[]
[Transfers]
[./mesh_function_begin]
type = MultiAppMeshFunctionTransfer
from_multi_app = coarse
source_variable = u
variable = u
execute_on = timestep_begin
[../]
[]
(modules/tensor_mechanics/test/tests/power_law_creep/ad_exception.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
[]
[]
[Modules/TensorMechanics/Master]
[finite]
add_variables = true
strain = FINITE
use_automatic_differentiation = true
[]
[]
[BCs]
[no_x]
type = ADDirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[top]
type = ADDirichletBC
variable = disp_x
boundary = 'top'
value = 1e-4
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e11
poissons_ratio = 0.3
[]
[elastic_stress]
type = ADComputeMultipleInelasticStress
inelastic_models = 'creep'
outputs = all
[]
[creep]
type = ADPowerLawCreepTest
coefficient = 10e-22
n_exponent = 2
activation_energy = 0
[]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
snesmf_reuse_base = false # prevents segfault on mac in dbg
line_search = none
num_steps = 2
[]
[Outputs]
[]
(modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/fracture_only_aperture_changing.i)
# Cold water injection into one side of the fracture network, and production from the other side
injection_rate = 10 # kg/s
[Mesh]
uniform_refine = 0
[cluster34]
type = FileMeshGenerator
file = 'Cluster_34.exo'
[]
[injection_node]
type = BoundingBoxNodeSetGenerator
input = cluster34
bottom_left = '-1000 0 -1000'
top_right = '1000 0.504 1000'
new_boundary = injection_node
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 -9.81E-6' # Note the value, because of pressure_unit
[]
[Variables]
[frac_P]
scaling = 1E6
[]
[frac_T]
initial_condition = 473
[]
[]
[ICs]
[frac_P]
type = FunctionIC
variable = frac_P
function = insitu_pp
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = frac_P
temperature = frac_T
fp = water
pressure_unit = MPa
[]
[Kernels]
[toMatrix]
type = PorousFlowHeatMassTransfer
variable = frac_T
v = transferred_matrix_T
transfer_coefficient = heat_transfer_coefficient
save_in = joules_per_s
[]
[]
[AuxVariables]
[heat_transfer_coefficient]
family = MONOMIAL
order = CONSTANT
initial_condition = 0.0
[]
[transferred_matrix_T]
initial_condition = 473
[]
[joules_per_s]
[]
[normal_dirn_x]
family = MONOMIAL
order = CONSTANT
[]
[normal_dirn_y]
family = MONOMIAL
order = CONSTANT
[]
[normal_dirn_z]
family = MONOMIAL
order = CONSTANT
[]
[enclosing_element_normal_length]
family = MONOMIAL
order = CONSTANT
[]
[enclosing_element_normal_thermal_cond]
family = MONOMIAL
order = CONSTANT
[]
[aperture]
family = MONOMIAL
order = CONSTANT
[]
[perm_times_app]
family = MONOMIAL
order = CONSTANT
[]
[density]
family = MONOMIAL
order = CONSTANT
[]
[viscosity]
family = MONOMIAL
order = CONSTANT
[]
[insitu_pp]
[]
[]
[AuxKernels]
[normal_dirn_x_auxk]
type = PorousFlowElementNormal
variable = normal_dirn_x
component = x
[]
[normal_dirn_y]
type = PorousFlowElementNormal
variable = normal_dirn_y
component = y
[]
[normal_dirn_z]
type = PorousFlowElementNormal
variable = normal_dirn_z
component = z
[]
[heat_transfer_coefficient_auxk]
type = ParsedAux
variable = heat_transfer_coefficient
args = 'enclosing_element_normal_length enclosing_element_normal_thermal_cond'
constant_names = h_s
constant_expressions = 1E3 # should be much bigger than thermal_conductivity / L ~ 1
function = 'if(enclosing_element_normal_length = 0, 0, h_s * enclosing_element_normal_thermal_cond * 2 * enclosing_element_normal_length / (h_s * enclosing_element_normal_length * enclosing_element_normal_length + enclosing_element_normal_thermal_cond * 2 * enclosing_element_normal_length))'
[]
[aperture]
type = PorousFlowPropertyAux
variable = aperture
property = porosity
[]
[perm_times_app]
type = PorousFlowPropertyAux
variable = perm_times_app
property = permeability
row = 0
column = 0
[]
[density]
type = PorousFlowPropertyAux
variable = density
property = density
phase = 0
[]
[viscosity]
type = PorousFlowPropertyAux
variable = viscosity
property = viscosity
phase = 0
[]
[insitu_pp]
type = FunctionAux
execute_on = initial
variable = insitu_pp
function = insitu_pp
[]
[]
[BCs]
[inject_heat]
type = DirichletBC
boundary = injection_node
variable = frac_T
value = 373
[]
[]
[DiracKernels]
[inject_fluid]
type = PorousFlowPointSourceFromPostprocessor
mass_flux = ${injection_rate}
point = '58.8124 0.50384 74.7838'
variable = frac_P
[]
[withdraw_fluid]
type = PorousFlowPeacemanBorehole
SumQuantityUO = kg_out_uo
bottom_p_or_t = 10.6 # 1MPa + approx insitu at production point, to prevent aperture closing due to low porepressures
character = 1
line_length = 1
point_file = production.xyz
unit_weight = '0 0 0'
fluid_phase = 0
use_mobility = true
variable = frac_P
[]
[withdraw_heat]
type = PorousFlowPeacemanBorehole
SumQuantityUO = J_out_uo
bottom_p_or_t = 10.6 # 1MPa + approx insitu at production point, to prevent aperture closing due to low porepressures
character = 1
line_length = 1
point_file = production.xyz
unit_weight = '0 0 0'
fluid_phase = 0
use_mobility = true
use_enthalpy = true
variable = frac_T
[]
[]
[UserObjects]
[kg_out_uo]
type = PorousFlowSumQuantity
[]
[J_out_uo]
type = PorousFlowSumQuantity
[]
[]
[Modules]
[FluidProperties]
[true_water]
type = Water97FluidProperties
[]
[water]
type = TabulatedFluidProperties
fp = true_water
temperature_min = 275 # K
temperature_max = 600
interpolated_properties = 'density viscosity enthalpy internal_energy'
fluid_property_file = water97_tabulated.csv
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityLinear
porosity_ref = 1E-4 # fracture porosity = 1.0, but must include fracture aperture of 1E-4 at P = insitu_pp
P_ref = insitu_pp
P_coeff = 1E-3 # this is in metres/MPa, ie for P_ref = 1/P_coeff, the aperture becomes 1 metre
porosity_min = 1E-5
[]
[permeability]
type = PorousFlowPermeabilityKozenyCarman
k0 = 1E-15 # fracture perm = 1E-11 m^2, but must include fracture aperture of 1E-4
poroperm_function = kozeny_carman_phi0
m = 0
n = 3
phi0 = 1E-4
[]
[internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2700 # kg/m^3
specific_heat_capacity = 0 # basically no rock inside the fracture
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '0.6E-4 0 0 0 0.6E-4 0 0 0 0.6E-4' # thermal conductivity of water times fracture aperture. This should increase linearly with aperture, but is set constant in this model
[]
[]
[Functions]
[kg_rate]
type = ParsedFunction
vals = 'dt kg_out'
vars = 'dt kg_out'
value = 'kg_out/dt'
[]
[insitu_pp]
type = ParsedFunction
value = '10 - 0.847E-2 * z' # Approximate hydrostatic in MPa
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
outputs = 'none'
[]
[kg_out]
type = PorousFlowPlotQuantity
uo = kg_out_uo
[]
[kg_per_s]
type = FunctionValuePostprocessor
function = kg_rate
[]
[J_out]
type = PorousFlowPlotQuantity
uo = J_out_uo
[]
[TK_out]
type = PointValue
variable = frac_T
point = '101.705 160.459 39.5722'
[]
[P_out]
type = PointValue
variable = frac_P
point = '101.705 160.459 39.5722'
[]
[P_in]
type = PointValue
variable = frac_P
point = '58.8124 0.50384 74.7838'
[]
[]
[VectorPostprocessors]
[heat_transfer_rate]
type = NodalValueSampler
outputs = none
sort_by = id
variable = joules_per_s
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
optimal_iterations = 10
growth_factor = 1.5
timestep_limiting_postprocessor = 1E8
[]
end_time = 1E8
nl_abs_tol = 1E-3
nl_max_its = 20
[]
[Outputs]
print_linear_residuals = false
csv = true
[ex]
type = Exodus
sync_times = '1 10 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 30000 50000 70000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000 1900000 2000000 2100000 2200000 2300000 2400000 2500000 2600000 2700000 2800000 2900000'
sync_only = true
[]
[]
(test/tests/auxkernels/solution_aux/solution_aux_exodus_interp_direct.i)
[Mesh]
type = FileMesh
file = cubesource.e
# The SolutionUserObject uses the copy_nodal_solution() capability
# of the Exodus reader, and therefore won't work if the initial mesh
# has been renumbered (it will be reunumbered if you are running with
# DistributedMesh in parallel). Hence, we restrict this test to run with
# ReplicatedMesh only.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = SolutionAux
variable = nn
solution = soln
direct = true
from_variable = source_nodal
[../]
[]
[UserObjects]
[./soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/thermal_expansion_function/instantaneous.i)
# This test checks the thermal expansion calculated via a instantaneous thermal expansion coefficient.
# The coefficient is selected so as to result in a 1e-4 strain in the x-axis, and to cross over
# from positive to negative strain.
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 3
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = '1 + t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
thermal_expansion_function = 4e-4
stress_free_temperature = 1.5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Postprocessors]
[./disp_x_max]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./temp_avg]
type = ElementAverageValue
variable = temp
[../]
[]
[Executioner]
type = Transient
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/slow_sub/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[pg]
type = PerfGraphOutput
level = 3
[]
[]
[MultiApps]
[really_slow]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'sub.i'
positions = '0 0 0'
[]
[]
(test/tests/auxkernels/nodal_aux_boundary/nodal_aux_boundary.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./boundary_aux]
type = CoupledAux
variable = aux
value = 2
coupled = u
boundary = top
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/convergence-auto/1D/dirichlet.i)
# Simple 1D plane strain test
[GlobalParams]
displacements = 'disp_x'
large_kinematics = true
stabilize_strain = true
[]
[Variables]
[disp_x]
[]
[]
[ICs]
[disp_x]
type = RandomIC
variable = disp_x
min = -0.1
max = 0.1
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[]
[Functions]
[pull]
type = ParsedFunction
value = '0.06 * t'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[pull]
type = FunctionDirichletBC
boundary = left
variable = disp_x
function = pull
preset = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 5.0
dtmin = 5.0
end_time = 5.0
[]
(modules/tensor_mechanics/test/tests/isotropic_elasticity_tensor/bulk_modulus_shear_modulus_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./stress_11]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
[../]
[]
[AuxKernels]
[./stress_11]
type = RankTwoAux
variable = stress_11
rank_two_tensor = stress
index_j = 1
index_i = 1
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.001
[../]
[]
[Materials]
[./stress]
type = ComputeLinearElasticStress
[../]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 416666
shear_modulus = 454545
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
l_max_its = 20
nl_max_its = 10
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/solid_mechanics_basic/square_branch_tri_2d.i)
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = TRI3
[]
[UserObjects]
[./line_seg_cut_uo0]
type = LineSegmentCutUserObject
cut_data = '-1.0000e-10 6.6340e-01 6.6340e-01 -1.0000e-10'
time_start_cut = 0.0
time_end_cut = 1.0
[../]
[./line_seg_cut_uo1]
type = LineSegmentCutUserObject
cut_data = '3.3120e-01 3.3200e-01 1.0001e+00 3.3200e-01'
time_start_cut = 1.0
time_end_cut = 2.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
planar_formulation = PLANE_STRAIN
add_variables = true
[../]
[]
[Functions]
[./right_disp_x]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[./top_disp_y]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[]
[BCs]
[./right_x]
type = FunctionDirichletBC
boundary = 1
variable = disp_x
function = right_disp_x
[../]
[./top_y]
type = FunctionDirichletBC
boundary = 2
variable = disp_y
function = top_disp_y
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./left_x]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 2.2
num_steps = 5000
[]
[Outputs]
file_base = square_branch_tri_2d_out
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/porous_flow/test/tests/infiltration_and_drainage/rd02.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 120
ny = 1
xmin = 0
xmax = 6
ymin = 0
ymax = 0.05
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Functions]
[dts]
type = PiecewiseLinear
y = '1E-2 1 10 500 5000 50000'
x = '0 10 100 1000 10000 500000'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = pressure
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.336
alpha = 1.43e-4
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e7
viscosity = 1.01e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[massfrac]
type = PorousFlowMassFraction
[]
[temperature]
type = PorousFlowTemperature
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pressure
capillary_pressure = pc
[]
[relperm]
type = PorousFlowRelativePermeabilityVG
m = 0.336
seff_turnover = 0.99
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.33
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.295E-12 0 0 0 0.295E-12 0 0 0 0.295E-12'
[]
[]
[Variables]
[pressure]
initial_condition = 0.0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pressure
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pressure
gravity = '-10 0 0'
[]
[]
[AuxVariables]
[SWater]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[SWater]
type = MaterialStdVectorAux
property = PorousFlow_saturation_qp
index = 0
variable = SWater
[]
[]
[BCs]
[base]
type = DirichletBC
boundary = left
value = 0.0
variable = pressure
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 10'
[]
[]
[VectorPostprocessors]
[swater]
type = LineValueSampler
warn_discontinuous_face_values = false
variable = SWater
start_point = '0 0 0'
end_point = '6 0 0'
sort_by = x
num_points = 121
execute_on = timestep_end
[]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 345600
[TimeStepper]
type = FunctionDT
function = dts
[]
[]
[Outputs]
file_base = rd02
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[along_line]
type = CSV
execute_on = final
[]
[]
(modules/xfem/test/tests/moment_fitting/diffusion_moment_fitting_six_points.i)
# Test for a diffusion problem which uses six points moment_fitting approach.
# To use six points rule, add Quadrature block with order = FOURTH and type = MONOMIAL.
# See this paper (https://doi.org/10.1007/s00466-018-1544-2) for more details about moment_fitting approach.
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 6
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
geometric_cut_userobjects = 'line_seg_cut_uo'
qrule = moment_fitting
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 3
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
[./Quadrature]
order = FOURTH
type = MONOMIAL
[../]
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/porous_flow/examples/flow_through_fractured_media/fine_thick_fracture_steady.i)
# Using a single-dimensional mesh
# Steady-state porepressure distribution along a fracture in a porous matrix
# This is used to initialise the transient solute-transport simulation
[Mesh]
type = FileMesh
# The gold mesh is used to reduce the number of large files in the MOOSE repository.
# The porepressure is not read from the gold mesh
file = 'gold/fine_thick_fracture_steady_out.e'
block_id = '1 2 3'
block_name = 'fracture matrix1 matrix2'
boundary_id = '1 2'
boundary_name = 'bottom top'
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = ConstantIC
variable = pp
value = 1e6
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = top
value = 1e6
[]
[pbottom]
type = DirichletBC
variable = pp
boundary = bottom
value = 1.002e6
[]
[]
[Kernels]
[adv0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pp
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[permeability1]
type = PorousFlowPermeabilityConst
permeability = '3e-8 0 0 0 3e-8 0 0 0 3e-8' # the true permeability is used without scaling by aperture
block = 'fracture'
[]
[permeability2]
type = PorousFlowPermeabilityConst
permeability = '1e-20 0 0 0 1e-20 0 0 0 1e-20'
block = 'matrix1 matrix2'
[]
[]
[Preconditioning]
active = basic
[mumps_is_best_for_parallel_jobs]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[basic]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2 '
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
# controls for nonlinear iterations
nl_abs_tol = 1e-9
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
# Two phase nonisothermal Theis problem: Flow from single source.
# Constant rate injection 2 kg/s of cold CO2 into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmin = 0.1
xmax = 200
bias_x = 1.05
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[temperature]
initial_condition = 70
scaling = 1e-4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heatadv]
type = PorousFlowHeatAdvection
variable = temperature
[]
[conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl temperature'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2]
type = CO2FluidProperties
[]
[brine]
type = BrineFluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature = temperature
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[rockheat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '50 0 0 0 50 0 0 0 50'
[]
[]
[BCs]
[cold_gas]
type = DirichletBC
boundary = left
variable = temperature
value = 20
[]
[gas_injecton]
type = PorousFlowSink
boundary = left
variable = zi
flux_function = -0.159155
[]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[righttemp]
type = DirichletBC
boundary = right
value = 70
variable = temperature
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e4
nl_abs_tol = 1e-7
nl_rel_tol = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '2 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '2 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '2 0 0'
variable = zi
[]
[temperature]
type = PointValue
point = '2 0 0'
variable = temperature
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '2 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '2 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
csv = true
[]
(test/tests/materials/material_dependency/diff_kernel_aux_mat_dep.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'diff'
[../]
[]
[AuxKernels]
[./error]
type = ElementLpNormAux
variable = error
coupled_variable = u
[../]
[]
[AuxVariables]
[./error]
family = MONOMIAL
order = FIRST
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 1
[../]
[]
[Materials]
[./call_me_mat]
type = IncrementMaterial
prop_names = 'diff'
prop_values = '1'
block = 0
outputs = exodus
output_properties = 'mat_prop'
[../]
[]
[Executioner]
type = Steady
# This test counts the number of residual evaluations that
# may slightly change from a PETSc version to another.
# For instance, starts from PETSc-3.8.4, the number of
# residual evaluating is reduced by one in a linear solver
# for each Newton iteration. This change causes this test
# fail. It better to restrict the test
# count the residual evaluations in the nonlinear level only.
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/user_object_based/use_substep_dt.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 4
ny = 4
nz = 4
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
[../]
[./uy]
[../]
[./uz]
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = pk2
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = lage
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_rate_gss
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./pushy]
type = FunctionDirichletBC
variable = uy
boundary = top
function = '-0.1*t'
[../]
[./pullz]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.1*t'
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
block = 0
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[./uy_avg_top]
type = SideAverageValue
variable = uy
boundary = top
[]
[./uz_avg_front]
type = SideAverageValue
variable = uz
boundary = front
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1.0
num_steps = 5
dtmin = 0.001
nl_abs_step_tol = 1e-10
[]
[Outputs]
csv = true
[]
(test/tests/transfers/multiapp_mesh_function_transfer/missing_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
positions = '0.9 0.5 0'
type = TransientMultiApp
app_type = MooseTestApp
input_files = tosub_sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
source_variable = u
variable = transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
error_on_miss = true
[../]
[./elemental_to_sub]
source_variable = u
variable = elemental_transferred_u
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
error_on_miss = true
[../]
[]
(modules/xfem/test/tests/corner_nodes_cut/corner_node_cut_twice.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '-0.0 0.3 1.0 0.7'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
[../]
[]
[BCs]
[./top_x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./top_y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.1
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = -0.1
[../]
[./bottom_x]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-9
# time control
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_rot.i)
#This problem from [Wilson 1979] tests the thermal strain term in the
#interaction integral
#
#theta_e = 10 degrees C; a = 252; E = 207000; nu = 0.3; alpha = 1.35e-5
#
#With uniform_refine = 3, KI converges to
#KI = 5.602461e+02 (interaction integral)
#KI = 5.655005e+02 (J-integral)
#
#Both are in good agreement with [Shih 1986]:
#average_value = 0.4857 = KI / (sigma_theta * sqrt(pi * a))
#sigma_theta = E * alpha * theta_e / (1 - nu)
# = 207000 * 1.35e-5 * 10 / (1 - 0.3) = 39.9214
#KI = average_value * sigma_theta * sqrt(pi * a) = 5.656e+02
#
#References:
#W.K. Wilson, I.-W. Yu, Int J Fract 15 (1979) 377-387
#C.F. Shih, B. Moran, T. Nakamura, Int J Fract 30 (1986) 79-102
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = False
[]
[Mesh]
displacements = 'disp_x disp_y'
[file_mesh]
type = FileMeshGenerator
file = crack2d.e
[]
[rotate]
type = TransformGenerator
transform = ROTATE
vector_value = '0 0 90'
input = file_mesh
[]
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = 10.0*(2*y/504)
[../]
[]
[DomainIntegral]
integrals = 'KFromJIntegral InteractionIntegralKI'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '0 1 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
symmetry_plane = 0
incremental = true
# interaction integral parameters
disp_x = disp_x
disp_y = disp_y
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
temperature = temp
eigenstrain_names = thermal_expansion
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
eigenstrain_names = thermal_expansion
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
block = 1
[../]
[]
[BCs]
[./crack_x]
type = DirichletBC
variable = disp_x
boundary = 100
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 400
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = 900
value = 0.0
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 0.0
thermal_expansion_coeff = 1.35e-5
temperature = temp
eigenstrain_name = thermal_expansion
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = interaction_integral_2d_rot_out
exodus = true
csv = true
[]
[Preconditioning]
active = 'smp'
[./smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[../]
[]
(test/tests/constraints/equal_value_boundary_constraint/adaptivity.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
[]
[Adaptivity]
marker = 'box'
[Markers]
[box]
type = BoxMarker
bottom_left = '0 0 0'
top_right = '1 1 0 '
inside = 'refine'
outside = 'do_nothing'
[]
[]
[]
[Variables]
[diffused]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = 'diffused'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = 'diffused'
boundary = 'left'
value = 1.0
[]
[right]
type = DirichletBC
variable = 'diffused'
boundary = 'right'
value = 0.0
[]
[]
[Constraints]
[y_top]
type = EqualValueBoundaryConstraint
variable = 'diffused'
primary = '45'
secondary = 'top'
penalty = 10e6
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
num_steps = 3
nl_rel_tol = 1e-06
nl_abs_tol = 1e-08
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/misc/check_error/deprecated_param_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./nan]
type = NanKernel
variable = u
timestep_to_nan = 1000
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/mesh_modifiers/assign_element_subdomain_id/tri_with_subdomainid_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = TRI3
[]
[subdomain_id]
type = ElementSubdomainIDGenerator
input = gen
subdomain_ids = '0 1 1 1
1 1 1 0'
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
active = 'left right'
# Mesh Generation produces boundaries in counter-clockwise fashion
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_tri_subdomain_id
exodus = true
[]
(test/tests/interfaces/random/random.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./random_nodal]
[../]
[./random_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./random_nodal]
type = RandomAux
variable = random_nodal
execute_on = 'LINEAR'
[../]
[./random_elemental]
type = RandomAux
variable = random_elemental
generate_integers = true
execute_on = 'LINEAR'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/action/no_block.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
# parameters that apply to all subblocks are specified at this level. But
# no subblocks are present. This should trigger a warning.
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = RankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ne-coupled-scaling.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[u][]
[T][]
[]
[AuxVariables]
[power][]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
mat_prop = diffusion
offset = 0.0
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[./diff_T]
type = CoefDiffusion
variable = T
coef = 1e30
[../]
[./src_T]
type = CoupledForce
variable = T
v = power
coef = 1e30
[../]
[]
[AuxKernels]
[./power_ak]
type = NormalizationAux
variable = power
source_variable = u
normalization = unorm
# this coefficient will affect the eigenvalue.
normal_factor = 10
execute_on = linear
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigenU]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[./homogeneousT]
type = DirichletBC
variable = T
boundary = '0 1 2 3'
value = 0
[../]
[]
[Materials]
[./dc]
type = VarCouplingMaterial
var = T
block = 0
base = 1.0
coef = 1.0
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
automatic_scaling = true
petsc_options = '-pc_svd_monitor'
petsc_options_iname = '-pc_type'
petsc_options_value = 'svd'
verbose = true
[]
[Postprocessors]
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
exodus = true
csv = true
execute_on = 'timestep_end'
[]
(modules/tensor_mechanics/test/tests/j_integral_vtest/j_int_surfbreak_ellip_crack_sym_mm.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = ellip_crack_4sym_norad_mm.e
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[./resid_z]
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1'
scale_factor = -68.95 #MPa
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 1001
crack_direction_method = CurvedCrackFront
crack_end_direction_method = CrackDirectionVector
crack_direction_vector_end_1 = '0.0 1.0 0.0'
crack_direction_vector_end_2 = '1.0 0.0 0.0'
radius_inner = '12.5 25.0 37.5'
radius_outer = '25.0 37.5 50.0'
intersecting_boundary = '1 2'
symmetry_plane = 2
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 12
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 5
function = rampConstantUp
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
# Two sets of linesearch options are for petsc 3.1 and 3.3 respectively
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
# petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
nl_rel_tol = 1e-11
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./nl_its]
type = NumNonlinearIterations
[../]
[./lin_its]
type = NumLinearIterations
[../]
[./react_z]
type = NodalSum
variable = resid_z
boundary = 5
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = j_int_surfbreak_ellip_crack_sym_mm_out
exodus = true
csv = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/special/area.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[Kernels]
[sdx]
type = UpdatedLagrangianStressDivergence
variable = disp_x
component = 0
use_displaced_mesh = true
[]
[sdy]
type = UpdatedLagrangianStressDivergence
variable = disp_y
component = 1
use_displaced_mesh = true
[]
[sdz]
type = UpdatedLagrangianStressDivergence
variable = disp_z
component = 2
use_displaced_mesh = true
[]
[]
[AuxVariables]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[zstress]
type = PiecewiseLinear
x = '0 1'
y = '0 500'
[]
[constant]
type = ConstantFunction
value = 1.0
[]
[ratio]
type = ParsedFunction
vars = 'sd su'
vals = 's_def s_undef'
value = 'sd / su'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[boty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_z]
type = FunctionNeumannBC
boundary = front
variable = disp_z
function = zstress
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s_undef]
type = SideIntegralVariablePostprocessor
variable = stress_zz
boundary = front
[]
[s_def]
type = SideIntegralVariablePostprocessor
variable = stress_zz
boundary = front
use_displaced_mesh = true
[]
[area_calc]
type = FunctionValuePostprocessor
function = ratio
[]
[area]
type = AreaPostprocessor
boundary = front
use_displaced_mesh = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/richards/test/tests/pressure_pulse/pp_fu_01.i)
# investigating pressure pulse in 1D with 1 phase
# steadystate
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGstandard
sat_UO = Saturation
seff_UO = SeffVG
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E9
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1E-5
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1E3
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
initial_condition = 2E6
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = 3E6
variable = pressure
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[]
[Kernels]
active = 'richardsf'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFullyUpwindFlux
variable = pressure
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffVG
pressure_vars = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Steady
solve_type = Newton
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_fu_01
exodus = true
[]
(modules/tensor_mechanics/test/tests/radial_disp_aux/sphere_3d_cartesian.i)
# The purpose of this set of tests is to check the values computed
# by the RadialDisplacementAux AuxKernel. They should match the
# radial component of the displacment for a cylindrical or spherical
# model.
# This particular model is of a sphere subjected to uniform thermal
# expansion represented using a 3D Cartesian model.
[Mesh]
type = FileMesh
file = sphere_sector_3d.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
order = SECOND
family = LAGRANGE
[]
[AuxVariables]
[./temp]
[../]
[./rad_disp]
[../]
[]
[Functions]
[./temperature_load]
type = ParsedFunction
value = t+300.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = temperature_load
use_displaced_mesh = false
[../]
[./raddispaux]
type = RadialDisplacementSphereAux
variable = rad_disp
origin = '0 0 0'
[../]
[]
[BCs]
[./x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./z]
type = DirichletBC
variable = disp_z
boundary = 3
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 300
thermal_expansion_coeff = 1.3e-5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '51'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
start_time = 0.0
end_time = 1
dt = 1
dtmin = 1
[]
[Outputs]
csv = true
exodus = true
[]
#[Postprocessors]
# [./strain_xx]
# type = SideAverageValue
# variable =
# block = 0
# [../]
#[]
(test/tests/postprocessors/find_value_on_line/findvalueonline.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 20
xmin = 0
xmax = 10
[]
[Variables]
[./phi]
[./InitialCondition]
type = FunctionIC
function = if(x<1,1-x,0)
[../]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = phi
[../]
[./dt]
type = TimeDerivative
variable = phi
[../]
[]
[BCs]
[./influx]
type = NeumannBC
boundary = left
variable = phi
value = 1
[../]
[./fix]
type = DirichletBC
boundary = right
variable = phi
value = 0
[../]
[]
[Postprocessors]
[./pos]
type = FindValueOnLine
target = 0.5
v = phi
start_point = '0 0 0'
end_point = '10 0 0'
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 2.5
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/energy_conservation/heat04_rz.i)
# The sample is a single unit element in RZ coordinates
# A constant velocity is applied to the outer boundary is free to move as a source injects heat and fluid into the system
# There is no fluid flow or heat flow.
# Heat energy conservation is checked.
# Mass conservation is checked
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 1
xmax = 2
ymin = -0.5
ymax = 0.5
[]
[Problem]
coord_type = RZ
[]
[GlobalParams]
displacements = 'disp_r disp_z'
PorousFlowDictator = dictator
block = 0
biot_coefficient = 0.3
[]
[Variables]
[disp_r]
[]
[disp_z]
[]
[pp]
initial_condition = 0.1
[]
[temp]
initial_condition = 10
[]
[]
[BCs]
[plane_strain]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'bottom top'
[]
[rmin_fixed]
type = DirichletBC
variable = disp_r
value = 0
boundary = left
[]
[contract]
type = FunctionDirichletBC
variable = disp_r
function = -0.01*t
boundary = right
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydroMechanical
porepressure = pp
temperature = temp
fp = simple_fluid
[]
[DiracKernels]
[heat_source]
type = PorousFlowPointSourceFromPostprocessor
point = '1.5 0 0'
variable = temp
mass_flux = 10
[]
[fluid_source]
type = PorousFlowPointSourceFromPostprocessor
point = '1.5 0 0'
variable = pp
mass_flux = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 0.5
density0 = 1
viscosity = 1
thermal_expansion = 0
cv = 1.3
[]
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeAxisymmetricRZSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 2.2
density = 0.5
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '0.5 0 0 0 0.5 0 0 0 0.5'
[]
[thermal_cond]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '1 0 0 0 1 0 0 0 1'
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = pp
[]
[t0]
type = PointValue
outputs = 'console csv'
execute_on = 'initial timestep_end'
point = '1 0 0'
variable = temp
[]
[rdisp]
type = PointValue
outputs = 'csv console'
point = '2 0 0'
use_displaced_mesh = false
variable = disp_r
[]
[fluid_mass]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[total_heat]
type = PorousFlowHeatEnergy
phase = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[rock_heat]
type = PorousFlowHeatEnergy
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[fluid_heat]
type = PorousFlowHeatEnergy
include_porous_skeleton = false
phase = 0
execute_on = 'initial timestep_end'
outputs = 'console csv'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 2
end_time = 10
[]
[Outputs]
execute_on = 'initial timestep_end'
[csv]
type = CSV
[]
[]
(modules/tensor_mechanics/test/tests/pressure/pressure_test.i)
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[Mesh]
type = FileMesh
file = pressure_test.e
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 1.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 1
function = rampConstant
displacements = 'disp_x disp_y disp_z'
[../]
[./Side2]
boundary = 2
function = zeroRamp
displacements = 'disp_x disp_y disp_z'
factor = 2.0
[../]
[./Side3]
boundary = 3
function = rampUnramp
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 1
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
block = 1
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/combined/test/tests/gravity/gravity_rz_quad8.i)
# Gravity Test
#
# This test is designed to exercise the gravity body force rz kernel.
#
# The mesh for this problem is a rectangle 10 units by 1 unit.
#
# The boundary conditions for this problem are as follows. The
# displacement is zero at the top. The acceleration of gravity is 20.
#
# The material has a Young's modulus of 1e6 and a density of 2.
#
# The analytic solution for the displacement along the bar is:
#
# u(y) = -b*y^2/(2*E)+b*L*y/E
#
# The displacement at y=L is b*L^2/(2*E) = 2*20*10*10/(2*1e6) = 0.002.
#
# The analytic solution for the stress along the bar assuming linear
# elasticity is:
#
# S(y) = b*(L-y)
#
# The stress at x=0 is b*L = 2*20*10 = 400.
#
# Note: The simulation does not measure stress at y=0. The stress
# is reported at element centers. The element closest to y=0 sits
# at y = 1/4 and has a stress of 390. This matches the linear
# stress distribution that is expected. The same situation applies
# at y = L where the stress is zero analytically. The nearest
# element is at y=9.75 where the stress is 10.
#
[GlobalParams]
displacements = 'disp_x disp_y'
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = gravity_rz_quad8_test.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master/All]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_xy'
[]
[Kernels]
[./gravity]
type = Gravity
variable = disp_y
value = 20
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 0.5e6
lambda = 0.0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./density]
type = Density
density = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = gravity_rz_quad8_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/auxkernels/grad_component/grad_component.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./grad_u_x]
order = CONSTANT
family = MONOMIAL
[../]
[./grad_u_y]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./grad_u_x_aux]
type = VariableGradientComponent
variable = grad_u_x
component = x
gradient_variable = u
[../]
[./grad_u_y_aux]
type = VariableGradientComponent
variable = grad_u_y
component = y
gradient_variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/meshed_gap_thermal_contact/meshed_gap_thermal_contact_constant_conductance.i)
[Mesh]
[fmesh]
type = FileMeshGenerator
file = meshed_gap.e
[]
[block0]
type = SubdomainBoundingBoxGenerator
input = fmesh
bottom_left = '.5 -.5 0'
top_right = '.7 .5 0'
block_id = 4
[]
[]
[Variables]
[./temp]
block = '1 3'
initial_condition = 1.0
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
block = '1 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 4
value = 2
[../]
[]
[ThermalContact]
[./gap_conductance]
type = GapHeatTransfer
variable = temp
primary = 2
secondary = 3
emissivity_primary = 0
emissivity_secondary = 0
gap_conductance = 2.5
[../]
[]
[Materials]
[./hcm]
type = HeatConductionMaterial
block = '1 3'
temp = temp
thermal_conductivity = 1
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
material_coverage_check = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
(test/tests/materials/output/output_steady.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./bc_func]
type = ParsedFunction
value = 0.5*y
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
block = 0
coef = 0.1
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = bc_func
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./k]
type = OutputTestMaterial
block = 0
outputs = all
variable = u
output_properties = 'real_property vector_property tensor_property'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/transfers/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./average]
type = ElementAverageValue
variable = u
[../]
[]
[Executioner]
type = Transient
num_steps = 5
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./pp_sub]
app_type = MooseTestApp
positions = '0.5 0.5 0 0.7 0.7 0'
execute_on = timestep_end
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./pp_transfer]
type = MultiAppPostprocessorToAuxScalarTransfer
to_multi_app = pp_sub
from_postprocessor = average
to_aux_scalar = from_master_app
[../]
[]
[Controls]
[./transfers]
type = TimePeriod
enable_objects = Transfer::pp_transfer
start_time = 2
execute_on = 'initial timestep_begin'
[../]
[]
(modules/functional_expansion_tools/examples/3D_volumetric_Cartesian_direct/main.i)
# Derived from the example '3D_volumetric_Cartesian' with the following differences:
#
# 1) The coupling is performed via BodyForce instead of the
# FunctionSeriesToAux+CoupledForce approach
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
zmin = 2.0
zmax = 12.0
nz = 35
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = BodyForce
variable = m
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right front back'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4 5'
physical_bounds = '0.0 10.0 1.0 11.0 2.0 12.0'
x = Legendre
y = Legendre
z = Legendre
enable_cache = true
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/tensor_mechanics/test/tests/action/action_multi_eigenstrain_same_conditions.i)
# This tests a thermal expansion coefficient function using defined on both
# blocks. There two blocks, each containing a single element, and these use
# automatic_eigenstrain_names function of the TensorMechanicsAction to ensure
# the names are passed correctly.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Problem]
solve = false
[]
[Modules/TensorMechanics/Master]
[./block1]
block = 1
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[./block2]
block = 2
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = '1 2'
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
vars = 'tsf tref scale' #stress free temp, reference temp, scale factor
vals = '0.0 0.5 1e-4'
value = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[ppwater]
initial_condition = 2e6
[]
[sgas]
initial_condition = 0.3
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[ppgas]
family = MONOMIAL
order = FIRST
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = ppwater
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = sgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sgas
fluid_component = 1
[]
[]
[AuxKernels]
[ppgas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = ppgas
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater sgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1e-4
sat_lr = 0.3
pc_max = 1e6
log_extension = false
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e7
density0 = 1
thermal_expansion = 0
viscosity = 1e-5
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
phase0_porepressure = ppwater
phase1_saturation = sgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[BCs]
[leftwater]
type = DirichletBC
boundary = left
value = 3e6
variable = ppwater
[]
[rightwater]
type = DirichletBC
boundary = right
value = 2e6
variable = ppwater
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1e3
end_time = 1e4
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
variable = 'ppwater ppgas'
start_point = '0 0 0'
end_point = '100 0 0'
num_points = 11
[]
[]
[Outputs]
file_base = pressure_pulse_1d_2phasePSVG
print_linear_residuals = false
[csv]
type = CSV
execute_on = final
[]
[]
(test/tests/problems/eigen_problem/eigensolvers/ne_coupled_picard.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
elem_type = QUAD4
nx = 8
ny = 8
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
# set this so that the Picard initial norm is not zero
initial_condition = 1
[../]
[]
[AuxVariables]
[./T]
order = FIRST
family = LAGRANGE
# set this so that the Picard initial norm is not zero
initial_condition = 1
[../]
[./power]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = DiffMKernel
variable = u
mat_prop = diffusion
offset = 0.0
[../]
[./rhs]
type = CoefReaction
variable = u
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[AuxKernels]
[./power_ak]
type = NormalizationAux
variable = power
source_variable = u
normalization = unorm
# this coefficient will affect the eigenvalue.
normal_factor = 10
execute_on = timestep_end
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
[../]
[./eigenU]
type = EigenDirichletBC
variable = u
boundary = '0 1 2 3'
[../]
[]
[Materials]
[./dc]
type = VarCouplingMaterial
var = T
block = 0
base = 1.0
coef = 1.0
[../]
[]
[Executioner]
type = Eigenvalue
solve_type = PJFNK
nl_abs_tol = 1e-8
nl_rel_tol = 1e-6
fixed_point_max_its = 10
fixed_point_rel_tol = 1e-6
[]
[Postprocessors]
[./unorm]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
exodus =true
execute_on = 'timestep_end'
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = ne_coupled_picard_sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./T_from_sub]
type = MultiAppMeshFunctionTransfer
from_multi_app = sub
source_variable = T
variable = T
[../]
[./power_to_sub]
type = MultiAppMeshFunctionTransfer
to_multi_app = sub
source_variable = power
variable = power
[../]
[]
(modules/tensor_mechanics/test/tests/finite_strain_elastic/finite_strain_elastic_new_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./tdisp]
type = ParsedFunction
value = '0.01 * t'
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = FINITE
add_variables = true
[../]
[../]
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = tdisp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.05
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/buckley_leverett/bl22_lumped.i)
# two-phase version
# super-sharp front version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-4 1E-3 1E-2 2E-2 5E-2 6E-2 0.1 0.2'
x = '0 1E-2 1E-1 1 5 20 40 41'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E6
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-4
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-4
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[./bounds_dummy]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./richardsppenalty]
type = RichardsPPenalty
variable = pgas
a = 1E-18
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_water
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_gas
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = pwater
boundary = left
value = 1E6
[../]
[./left_g]
type = DirichletBC
variable = pgas
boundary = left
value = 1000
[../]
[./right_w]
type = DirichletBC
variable = pwater
boundary = right
value = -100000
[../]
[./right_g]
type = DirichletBC
variable = pgas
boundary = right
value = 0
[../]
[]
[Functions]
[./initial_water]
type = ParsedFunction
value = 1000000*(1-min(x/5,1))-if(x<5,0,100000)
[../]
[./initial_gas]
type = ParsedFunction
value = 1000
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
viscosity = '1E-3 1E-6'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./standard]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 20 1E-10 1E-100'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = bl22_lumped
[./exodus]
type = Exodus
interval = 100000
hide = 'pgas bounds_dummy'
execute_on = 'initial final timestep_end'
[../]
[]
(modules/functional_expansion_tools/examples/2D_volumetric_Cartesian/main.i)
# Basic example coupling a master and sub app in a 2D Cartesian volume.
#
# The master app provides field values to the sub app via Functional Expansions, which then performs
# its calculations. The sub app's solution field values are then transferred back to the master app
# and coupled into the solution of the master app solution.
#
# This example couples Functional Expansions via AuxVariable.
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0.0
xmax = 10.0
nx = 15
ymin = 1.0
ymax = 11.0
ny = 25
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = HeatConduction
variable = m
[../]
[./time_diff_m]
type = HeatConductionTimeDerivative
variable = m
[../]
[./s_in] # Add in the contribution from the SubApp
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[Materials]
[./Unobtanium]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'top bottom left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3 4'
physical_bounds = '0.0 10.0 1.0 11.0'
x = Legendre
y = Legendre
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(test/tests/ics/bounding_box_ic/bounding_box_ic_diffuse_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.1
y1 = 0.1
x2 = 0.6
y2 = 0.6
inside = 2.3
outside = 4.6
int_width = 0.2
[../]
[../]
[]
[AuxVariables]
active = 'u_aux'
[./u_aux]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = BoundingBoxIC
x1 = 0.1
y1 = 0.1
x2 = 0.6
y2 = 0.6
inside = 1.34
outside = 6.67
int_width = 0.2
[../]
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/gravity_head_1/gh10.i)
# unsaturated = true
# gravity = false
# supg = false
# transient = true
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
xmin = -1
xmax = 1
[]
[BCs]
[./left]
type = DirichletBC
boundary = left
value = -1
variable = pressure
[../]
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = pressure
[../]
[./DensityConstBulk]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 1.0E3
[../]
[./SeffVG]
type = RichardsSeff1VG
m = 0.8
al = 1
[../]
[./RelPermPower]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./Saturation]
type = RichardsSat
s_res = 0.1
sum_s_res = 0.1
[../]
[./SUPGnone]
type = RichardsSUPGnone
[../]
[]
[Variables]
[./pressure]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = RandomIC
block = 0
min = -1
max = 0
[../]
[../]
[]
[Kernels]
active = 'richardsf richardst'
[./richardst]
type = RichardsMassChange
variable = pressure
[../]
[./richardsf]
type = RichardsFlux
variable = pressure
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.1
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = DensityConstBulk
relperm_UO = RelPermPower
SUPG_UO = SUPGnone
sat_UO = Saturation
seff_UO = SeffVG
viscosity = 1E-3
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E10
end_time = 1E10
[]
[Outputs]
execute_on = 'timestep_end'
file_base = gh10
exodus = true
[]
(test/tests/outputs/console/console_warning.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./screen]
type = Console
[../]
[./screen2]
type = Console
[../]
[./screen3]
type = Console
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(modules/contact/test/tests/verification/patch_tests/cyl_2/cyl2_template2.i)
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/tensor_mechanics/test/tests/cohesive_zone_model/bilinear_mixed.i)
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
xmax = 1
ymax = 2
nx = 1
ny = 2
[]
[block1]
type = SubdomainBoundingBoxGenerator
input = 'msh'
bottom_left = '0 0 0'
top_right = '1 1 0'
block_id = 1
block_name = 'block1'
[]
[block2]
type = SubdomainBoundingBoxGenerator
input = 'block1'
bottom_left = '0 1 0'
top_right = '1 2 0'
block_id = 2
block_name = 'block2'
[]
[split]
type = BreakMeshByBlockGenerator
input = block2
[]
[top_node]
type = ExtraNodesetGenerator
coord = '0 2 0'
input = split
new_boundary = top_node
[]
[bottom_node]
type = ExtraNodesetGenerator
coord = '0 0 0'
input = top_node
new_boundary = bottom_node
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules]
[TensorMechanics]
[Master]
generate_output = 'stress_yy'
[all]
strain = FINITE
add_variables = true
use_automatic_differentiation = true
decomposition_method = TaylorExpansion
save_in = 'resid_x resid_y'
[]
[]
[]
[]
[BCs]
[fix_x]
type = DirichletBC
preset = true
value = 0.0
boundary = bottom_node
variable = disp_x
[]
[fix_top]
type = DirichletBC
preset = true
boundary = top
variable = disp_x
value = 0
[]
[top]
type = FunctionDirichletBC
boundary = top
variable = disp_y
function = 'if(t<=0.3,t,if(t<=0.6,0.3-(t-0.3),0.6-t))'
preset = true
[]
[bottom]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
preset = true
[]
[]
[AuxVariables]
[resid_x]
[]
[resid_y]
[]
[]
[Modules/TensorMechanics/CohesiveZoneMaster]
[czm_ik]
boundary = 'interface'
[]
[]
[Materials]
[stress]
type = ADComputeFiniteStrainElasticStress
[]
[elasticity_tensor]
type = ADComputeElasticityTensor
fill_method = symmetric9
C_ijkl = '1.684e5 0.176e5 0.176e5 1.684e5 0.176e5 1.684e5 0.754e5 0.754e5 0.754e5'
[]
[czm]
type = BiLinearMixedModeTraction
boundary = 'interface'
penalty_stiffness = 1e6
GI_C = 1e3
GII_C = 1e2
normal_strength = 1e4
shear_strength = 1e3
displacements = 'disp_x disp_y'
eta = 2.2
viscosity = 1e-3
[]
[]
[Postprocessors]
[resid_x]
type = NodalSum
variable = resid_x
boundary = top
[]
[resid_y]
type = NodalSum
variable = resid_y
boundary = top
[]
[disp_y]
type = SideAverageValue
variable = disp_y
boundary = top
[]
[disp_x]
type = SideAverageValue
variable = disp_x
boundary = top
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
automatic_scaling = true
l_max_its = 2
l_tol = 1e-14
nl_max_its = 30
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
start_time = 0.0
dt = 0.1
end_time = 1.0
dtmin = 0.1
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test3q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test3q.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
preset = false
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-9
l_max_its = 10
start_time = 0.0
dt = 0.025
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test3q_out
exodus = true
[]
(test/tests/kernels/array_kernels/array_diffusion_reaction_other_coupling.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 4
ny = 4
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
components = 2
[]
[v]
[]
[]
[Kernels]
[diff]
type = ArrayDiffusion
variable = u
diffusion_coefficient = dc
[]
[reaction]
type = ArrayReaction
variable = u
reaction_coefficient = rc
[]
[diffv]
type = Diffusion
variable = v
[]
[vu]
type = ArrayCoupledForce
variable = u
v = v
coef = '0 0.5'
[]
[uv]
type = CoupledArrayForce
variable = v
v = u
coef = '0.05 0'
[]
[]
[BCs]
[left]
type = ArrayDirichletBC
variable = u
boundary = 1
values = '0 0'
[]
[right]
type = ArrayDirichletBC
variable = u
boundary = 2
values = '1 2'
[]
[leftv]
type = DirichletBC
variable = v
boundary = 1
value = 0
[]
[rightv]
type = DirichletBC
variable = v
boundary = 2
value = 2
[]
[]
[Materials]
[dc]
type = GenericConstantArray
prop_name = dc
prop_value = '1 1'
[]
[rc]
type = GenericConstant2DArray
prop_name = rc
prop_value = '1 0; -0.1 1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[intu0]
type = ElementIntegralArrayVariablePostprocessor
variable = u
component = 0
[]
[intu1]
type = ElementIntegralArrayVariablePostprocessor
variable = u
component = 1
[]
[intv]
type = ElementIntegralVariablePostprocessor
variable = v
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/nodal_aux_var/multi_update_var_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./tt]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[./ten]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[./2k]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./do-no-1]
variable = ten
type = SelfAux
[../]
[./do-no-2]
variable = 2k
type = SelfAux
[../]
[./all]
variable = tt
type = MultipleUpdateAux
u = u
var1 = ten
var2 = 2k
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_multi_var
exodus = true
[]
(test/tests/mesh/checkpoint/checkpoint_split.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/iterative/output_end_step.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
[./out]
type = Exodus
end_step = 5
[../]
[]
(test/tests/controls/error/multiple_parameters_found.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./diff2]
type = CoefDiffusion
variable = u
coef = 0.2
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Functions]
[./func_coef]
type = ParsedFunction
value = '2*t + 0.1'
[../]
[]
[Controls]
[./func_control]
type = TestControl
test_type = 'real'
parameter = '*/*/coef'
[../]
[]
(test/tests/vectorpostprocessors/line_material_sampler/line_material_real_sampler.i)
[Mesh]
[genmesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 4
ny = 4
[]
[mesh0]
type = SubdomainBoundingBoxGenerator
input = genmesh
block_id = 0
location = INSIDE
bottom_left = '0 0 0'
top_right = '1 0.5 0'
[]
[mesh01]
type = SubdomainBoundingBoxGenerator
input = mesh0
block_id = 1
location = INSIDE
bottom_left = '0 0.5 0'
top_right = '1 1 0'
[]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./mat]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = matp
[../]
[]
[AuxKernels]
[./mat]
type = MaterialRealAux
variable = mat
property = matp
execute_on = timestep_end
[../]
[]
[VectorPostprocessors]
[./mat]
type = LineMaterialRealSampler
start = '0.125 0.375 0.0'
end = '0.875 0.375 0.0'
property = matp
sort_by = id
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right]
type = MTBC
variable = u
boundary = 1
grad = 8
prop_name = matp
[../]
[]
[Materials]
[./mat]
type = MTMaterial
block = '0 1'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
execute_on = 'timestep_end'
file_base = out
csv = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_mortar/modular_gap_heat_transfer_mortar_displaced_conduction_function.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 2blk-gap.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
sidesets = '101'
new_block_id = 10001
new_block_name = 'secondary_lower'
input = file
[]
[primary]
type = LowerDBlockFromSidesetGenerator
sidesets = '100'
new_block_id = 10000
new_block_name = 'primary_lower'
input = secondary
[]
allow_renumbering = false
[]
[Problem]
kernel_coverage_check = false
material_coverage_check = false
[]
[AuxVariables]
[dummy]
order = FIRST
family = LAGRANGE
initial_condition = 1.0
[]
[]
[Functions]
[function]
type = ParsedFunction
value = 'if(t > 100.0, 0.0, t)'
[]
[]
[Variables]
[temp]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_x]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[disp_y]
order = FIRST
family = LAGRANGE
block = '1 2'
[]
[lm]
order = FIRST
family = LAGRANGE
block = 'secondary_lower'
[]
[]
[Materials]
[left]
type = ADHeatConductionMaterial
block = 1
thermal_conductivity = 0.01
specific_heat = 1
[]
[right]
type = ADHeatConductionMaterial
block = 2
thermal_conductivity = 0.005
specific_heat = 1
[]
[]
[Kernels]
[hc_displaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = true
block = '1'
[]
[hc_undisplaced_block]
type = ADHeatConduction
variable = temp
use_displaced_mesh = false
block = '2'
[]
[disp_x]
type = Diffusion
variable = disp_x
block = '1 2'
[]
[disp_y]
type = Diffusion
variable = disp_y
block = '1 2'
[]
[]
[UserObjects]
[conduction]
type = GapFluxModelConduction
temperature = temp
boundary = 100
gap_conductivity = 10.0
gap_conductivity_function_variable = dummy
gap_conductivity_function = function
[]
[]
[Constraints]
[ced]
type = ModularGapConductanceConstraint
variable = lm
secondary_variable = temp
use_displaced_mesh = true
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001
gap_flux_models = conduction
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 100
[]
[right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[]
[left_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'left'
value = .1
[]
[right_disp_x]
type = DirichletBC
preset = false
variable = disp_x
boundary = 'right'
value = 0
[]
[bottom_disp_y]
type = DirichletBC
preset = false
variable = disp_y
boundary = 'bottom'
value = 0
[]
[]
[Preconditioning]
[fmp]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-11
nl_abs_tol = 1.0e-10
[]
[VectorPostprocessors]
[NodalTemperature]
type = NodalValueSampler
sort_by = id
boundary = '100 101'
variable = 'temp'
[]
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/mesh/custom_partitioner/custom_linear_partitioner_test.i)
###########################################################
# This is a test of the custom partitioner system. It
# demonstrates the usage of a linear partitioner on the
# elements of a mesh.
#
# @Requirement F2.30
###########################################################
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 100
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
# Custom linear partitioner
[./Partitioner]
type = LibmeshPartitioner
partitioner = linear
[../]
parallel_type = replicated
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./proc_id]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./proc_id]
type = ProcessorIDAux
variable = proc_id
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = custom_linear_partitioner_test_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/source_boundary_sub.i)
[Mesh]
[drmg]
type = DistributedRectilinearMeshGenerator
dim = 2
nx = 30
ny = 30
elem_type = QUAD4
partition = square
[]
[]
[Variables]
[u][]
[]
[Kernels]
[conduction]
type = Diffusion
variable = u
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 5
[]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-6
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/gravity/fully_saturated_upwinded_grav01c_action.i)
# Checking that gravity head is established
# 1phase, 2-component, constant fluid-bulk, constant viscosity, constant permeability
# fully saturated with fully-saturated Kernel with upwinding
# For better agreement with the analytical solution (ana_pp), just increase nx
# This is the Action version of fully_saturated_upwinded_grav01c.i
# NOTE: this test is numerically delicate because the steady-state configuration is independent of the mass fraction, so the frac variable can assume any value as long as mass-fraction is conserved
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = -1
xmax = 0
[]
[Variables]
[pp]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[frac]
[InitialCondition]
type = RandomIC
min = 0
max = 1
[]
[]
[]
[PorousFlowFullySaturated]
porepressure = pp
mass_fraction_vars = frac
fp = simple_fluid
gravity = '-1 0 0'
multiply_by_density = true
[]
[Functions]
[ana_pp]
type = ParsedFunction
vars = 'g B p0 rho0'
vals = '1 1.2 0 1'
value = '-B*log(exp(-p0/B)+g*rho0*x/B)' # expected pp at base
[]
[]
[BCs]
[z]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1.2
density0 = 1
viscosity = 1
thermal_expansion = 0
[]
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityConst
PorousFlowDictator = dictator
permeability = '1 0 0 0 2 0 0 0 3'
[]
[]
[Postprocessors]
[pp_base]
type = PointValue
variable = pp
point = '-1 0 0'
[]
[pp_analytical]
type = FunctionValuePostprocessor
function = ana_pp
point = '-1 0 0'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
nl_rel_tol = 1E-12
petsc_options_iname = '-pc_factor_shift_type'
petsc_options_value = 'NONZERO'
nl_max_its = 100
[]
[Outputs]
csv = true
[]
(test/tests/materials/types/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./real]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec0]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec1]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec0_qp0]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec0_qp1]
order = CONSTANT
family = MONOMIAL
[../]
[./realvec0]
order = CONSTANT
family = MONOMIAL
[../]
[./realvec1]
order = CONSTANT
family = MONOMIAL
[../]
[./realvec2]
order = CONSTANT
family = MONOMIAL
[../]
[./densemat00]
order = CONSTANT
family = MONOMIAL
[../]
[./densemat01]
order = CONSTANT
family = MONOMIAL
[../]
[./tensor00]
order = CONSTANT
family = MONOMIAL
[../]
[./tensor11]
order = CONSTANT
family = MONOMIAL
[../]
[./tensor22]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad00]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad01]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad02]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad10]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad11]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad12]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./real0]
type = MaterialRealAux
variable = real
property = real_prop
execute_on = timestep_end
[../]
[./stdvec0]
type = MaterialStdVectorAux
variable = stdvec0
property = stdvec_prop
index = 0
execute_on = timestep_end
[../]
[./stdvec1]
type = MaterialStdVectorAux
variable = stdvec1
property = stdvec_prop
index = 1
execute_on = timestep_end
[../]
[./stdvec0_qp0]
type = MaterialStdVectorAux
variable = stdvec0_qp0
property = stdvec_prop_qp
index = 0
selected_qp = 0
execute_on = timestep_end
[../]
[./stdvec0_qp1]
type = MaterialStdVectorAux
variable = stdvec0_qp1
property = stdvec_prop_qp
index = 0
selected_qp = 1
execute_on = timestep_end
[../]
[./densemat00]
type = MaterialRealDenseMatrixAux
variable = densemat00
property = matrix_prop
row = 0
column = 0
execute_on = timestep_end
[../]
[./densemat01]
type = MaterialRealDenseMatrixAux
variable = densemat01
property = matrix_prop
row = 0
column = 1
execute_on = timestep_end
[../]
[./realvec0]
type = MaterialRealVectorValueAux
variable = realvec0
property = realvec_prop
component = 0
execute_on = timestep_end
[../]
[./realvec1]
type = MaterialRealVectorValueAux
variable = realvec1
property = realvec_prop
component = 1
execute_on = timestep_end
[../]
[./realvec2]
type = MaterialRealVectorValueAux
variable = realvec2
property = realvec_prop
component = 2
execute_on = timestep_end
[../]
[./realtensor00]
type = MaterialRealTensorValueAux
variable = tensor00
property = tensor_prop
row = 0
column = 0
execute_on = timestep_end
[../]
[./realtensor11]
type = MaterialRealTensorValueAux
variable = tensor11
property = tensor_prop
row = 1
column = 1
execute_on = timestep_end
[../]
[./realtensor22]
type = MaterialRealTensorValueAux
variable = tensor22
property = tensor_prop
row = 2
column = 2
execute_on = timestep_end
[../]
[./stdvecgrad00]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad00
property = stdvec_grad_prop
[../]
[./stdvecgrad01]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad01
property = stdvec_grad_prop
component = 1
[../]
[./stdvecgrad02]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad02
property = stdvec_grad_prop
component = 2
[../]
[./stdvecgrad10]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad10
index = 1
property = stdvec_grad_prop
[../]
[./stdvecgrad11]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad11
index = 1
component = 1
property = stdvec_grad_prop
[../]
[./stdvecgrad12]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad12
index = 1
component = 2
property = stdvec_grad_prop
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Materials]
[./mat]
type = TypesMaterial
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
file_base = test_out
exodus = true
[]
(test/tests/dirackernels/point_caching/point_caching.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
uniform_refine = 4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[DiracKernels]
active = 'point_source'
[./point_source]
type = CachingPointSource
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/bad_kernel_action.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
# Note: the BadKernels syntax is set up to incorrectly call addIndicator()
# when it should actually call addKernel() to test that we can detect when
# people call the wrong FEProblem methods in their Actions.
[BadKernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/combined_creep_plasticity/combined_creep_plasticity_start_time.i)
#
# This test is Example 2 from "A Consistent Formulation for the Integration
# of Combined Plasticity and Creep" by P. Duxbury, et al., Int J Numerical
# Methods in Engineering, Vol. 37, pp. 1277-1295, 1994.
#
# The problem is a one-dimensional bar which is loaded from yield to a value of twice
# the initial yield stress and then unloaded to return to the original stress. The
# bar must harden to the required yield stress during the load ramp, with no
# further yielding during unloading. The initial yield stress (sigma_0) is prescribed
# as 20 with a plastic strain hardening of 100. The mesh is a 1x1x1 cube with symmetry
# boundary conditions on three planes to provide a uniaxial stress field.
#
# In the PowerLawCreep model, the creep strain rate is defined by:
#
# edot = A(sigma)**n * exp(-Q/(RT)) * t**m
#
# The creep law specified in the paper, however, defines the creep strain rate as:
#
# edot = Ao * mo * (sigma)**n * t**(mo-1)
# with the creep parameters given by
# Ao = 1e-7
# mo = 0.5
# n = 5
#
# thus, input parameters for the test were specified as:
# A = Ao * mo = 1e-7 * 0.5 = 0.5e-7
# m = mo-1 = -0.5
# n = 5
# Q = 0
#
# The variation of load P with time is:
# P = 20 + 20t 0 < t < 1
# P = 40 - 40(t-1) 1 < t 1.5
#
# The analytic solution for total strain during the loading period 0 < t < 1 is:
#
# e_tot = (sigma_0 + 20*t)/E + 0.2*t + A * t**0.5 * sigma_0**n * [ 1 + (5/3)*t +
# + 2*t**2 + (10/7)*t**3 + (5/9)**t**4 + (1/11)*t**5 ]
#
# and during the unloading period 1 < t < 1.5:
#
# e_tot = (sigma_1 - 40*(t-1))/E + 0.2 + (4672/693) * A * sigma_0**n +
# A * sigma_0**n * [ t**0.5 * ( 32 - (80/3)*t + 16*t**2 - (40/7)*t**3
# + (10/9)*t**4 - (1/11)*t**5 ) - (11531/693) ]
#
# where sigma_1 is the stress at time t = 1.
#
# Assuming a Young's modulus (E) of 1000 and using the parameters defined above:
#
# e_tot(1) = 2.39734
# e_tot(1.5) = 3.16813
#
#
# The numerically computed solution is:
#
# e_tot(1) = 2.39718 (~0.006% error)
# e_tot(1.5) = 3.15555 (~0.40% error)
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy elastic_strain_yy creep_strain_yy plastic_strain_yy'
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = ' 10 11 11.5'
y = '-20 -40 -20'
[../]
[./dts]
type = PiecewiseLinear
x = '10 10.5 11.0 11.5'
y = '0.015 0.015 0.005 0.005'
[../]
[]
[BCs]
[./u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = 1
function = top_pull
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 1e3
poissons_ratio = 0.3
[../]
[./creep_plas]
type = ComputeMultipleInelasticStress
block = 0
tangent_operator = elastic
inelastic_models = 'creep plas'
max_iterations = 50
absolute_tolerance = 1e-05
combined_inelastic_strain_weights = '0.0 1.0'
[../]
[./creep]
type = PowerLawCreepStressUpdate
block = 0
coefficient = 0.5e-7
n_exponent = 5
m_exponent = -0.5
activation_energy = 0
start_time = 10
[../]
[./plas]
type = IsotropicPlasticityStressUpdate
block = 0
hardening_constant = 100
yield_stress = 20
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 6
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
l_tol = 1e-5
start_time = 10.0
end_time = 11.5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/kernels/tag_errors/no_tags/no_tags.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
vector_tags = ''
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/time_periods/transfers/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master_app]
order = FIRST
family = SCALAR
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.01
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Postprocessors]
[./from_master]
type = ScalarVariable
variable = from_master_app
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
hide = from_master_app
[]
(test/tests/postprocessors/old_vpp_value/old_vpp_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./point_sample]
type = PointValueSampler
variable = 'u'
points = '0.1 0.1 0'
sort_by = x
outputs = none
[../]
[]
[Postprocessors]
[./old_vpp_value]
type = UseOldVectorPostprocessor
vpp = point_sample
vector_name = u
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
(test/tests/restart/restart_transient_from_steady/restart_trans_with_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Problem]
restart_file_base = steady_with_sub_out_cp/LATEST
skip_additional_restart_data = true
[]
[AuxVariables]
[Tf]
[]
[]
[Variables]
[power_density]
[]
[]
[Functions]
[pwr_func]
type = ParsedFunction
value = '1e3*x*(1-x)+5e2' # increase this function to drive transient
[]
[]
[Kernels]
[timedt]
type = TimeDerivative
variable = power_density
[]
[diff]
type = Diffusion
variable = power_density
[]
[coupledforce]
type = BodyForce
variable = power_density
function = pwr_func
[]
[]
[BCs]
[left]
type = DirichletBC
variable = power_density
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = power_density
boundary = right
value = 1e3
[]
[]
[Postprocessors]
[pwr_avg]
type = ElementAverageValue
block = '0'
variable = power_density
execute_on = 'initial timestep_end'
[]
[temp_avg]
type = ElementAverageValue
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_max]
type = ElementExtremeValue
value_type = max
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[temp_min]
type = ElementExtremeValue
value_type = min
variable = Tf
block = '0'
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 3
dt = 1.0
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart '
petsc_options_value = 'hypre boomeramg 100'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
fixed_point_rel_tol = 1e-7
fixed_point_abs_tol = 1e-07
fixed_point_max_its = 4
line_search = none
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0'
input_files = restart_trans_with_sub_sub.i
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[p_to_sub]
type = MultiAppMeshFunctionTransfer
source_variable = power_density
variable = power_density
to_multi_app = sub
execute_on = 'timestep_end'
[]
[t_from_sub]
type = MultiAppMeshFunctionTransfer
source_variable = temp
variable = Tf
from_multi_app = sub
execute_on = 'timestep_end'
[]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/peridynamics/test/tests/nodalkernels/penalty_dirichlet_old_value.i)
#In order to compare the solution generated using preset Dirichlet BC, the penalty was set to 1e10.
#Large penalty number should be used with caution.
[Mesh]
type = PeridynamicsMesh
horizon_number = 3
[./gfm]
type = GeneratedMeshGenerator
dim = 2
xmin = -1.1
xmax = 1.1
ymin = -1.1
ymax = 1.1
nx = 11
ny = 11
elem_type = QUAD4
[../]
[./gpd]
type = MeshGeneratorPD
input = gfm
retain_fe_mesh = false
[../]
[]
[Variables]
[./temp]
[../]
[]
[AuxVariables]
[./bond_status]
initial_condition = 1
[../]
[]
[Kernels]
[./heat]
type = HeatConductionBPD
variable = temp
[../]
[./source]
type = HeatSourceBPD
variable = temp
power_density = '-4'
[../]
[]
[Materials]
[./thermal_material]
type = ThermalConstantHorizonMaterialBPD
thermal_conductivity = 1
temperature = temp
[../]
[]
[NodalKernels]
[./bc_all]
type = PenaltyDirichletOldValuePD
variable = temp
boundary = 'pd_nodes_top pd_nodes_left pd_nodes_right pd_nodes_bottom'
penalty = 1e10
[../]
[]
# [BCs]
# [./fix]
# type = DirichletBC
# variable = temp
# value = 0
# boundary = 'pd_nodes_top pd_nodes_left pd_nodes_right pd_nodes_bottom'
# [../]
# []
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0
end_time = 1
nl_rel_tol = 1e-14
[]
[Outputs]
file_base = preset_bc_out
exodus = true
[]
(test/tests/materials/output/output_warning.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmax = 10
ymax = 10
uniform_refine = 1
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 10
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./test_material]
type = OutputTestMaterial
block = 0
variable = u
stdvector_property_name = vec
outputs = all
[../]
[]
[Executioner]
type = Transient
num_steps = 2
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/incomplete_kernel_block_coverage_test.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
block = 1
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[]
(test/tests/multiapps/restart_multilevel/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 10
[]
[Functions]
[./u_fn]
type = ParsedFunction
value = t*x
[../]
[./ffn]
type = ParsedFunction
value = x
[../]
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[./fn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = FunctionDirichletBC
variable = u
boundary = right
function = u_fn
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub_app]
app_type = MooseTestApp
type = TransientMultiApp
input_files = 'subsub.i'
execute_on = timestep_end
positions = '0 -1 0'
[../]
[]
[Transfers]
[./from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub_app
source_variable = u
variable = v
[../]
[]
(test/tests/mesh/concentric_circle_mesh/concentric_circle_mesh.i)
[Mesh]
type = ConcentricCircleMesh
num_sectors = 6
radii = '0.2546 0.3368 0.3600 0.3818 0.3923 0.4025 0.4110 0.4750'
rings = '10 6 4 4 4 2 2 6 10'
inner_mesh_fraction = 0.6
has_outer_square = on
pitch = 1.42063
#portion = left_half
preserve_volumes = off
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/meshgenerators/patterned_mesh_generator/patterned_mesh_generator.i)
[Mesh]
[./fmg]
type = FileMeshGenerator
file = quad_mesh.e
[]
[./fmg2]
type = FileMeshGenerator
file = tri_mesh.e
[]
[./pmg]
type = PatternedMeshGenerator
inputs = 'fmg fmg2'
pattern = '0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
0 1 1 0 0 0 0 0 0 0 0 1 1 0 ;
0 1 1 1 0 0 0 0 0 0 1 1 1 0 ;
0 1 0 1 1 0 0 0 0 1 1 0 1 0 ;
0 1 0 0 1 1 0 0 1 1 0 0 1 0 ;
0 1 0 0 0 1 1 1 1 0 0 0 1 0 ;
0 1 0 0 0 0 1 1 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 0'
bottom_boundary = 1
right_boundary = 2
top_boundary = 3
left_boundary = 4
[]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = MatCoefDiffusion
variable = u
conductivity = conductivity
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Materials]
[./mat1]
type = GenericConstantMaterial
block = 1
prop_names = conductivity
prop_values = 100
[../]
[./mat2]
type = GenericConstantMaterial
block = 2
prop_names = conductivity
prop_values = 1e-4
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_integral/average_sample.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 30
nz = 6
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_integral]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./liaux]
type = SpatialUserObjectAux
variable = layered_integral
execute_on = timestep_end
user_object = layered_integral
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[UserObjects]
[./layered_integral]
type = LayeredIntegral
direction = y
num_layers = 5
variable = u
execute_on = linear
sample_type = average
average_radius = 2
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/scaling/residual-based/residual-based-two-var.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[ICs]
[u]
type = FunctionIC
variable = u
function = '1000 * (1 - x)'
[]
[v]
type = FunctionIC
variable = v
function = '1e-3 * (1 - x)'
[]
[]
[Variables]
[u][]
[v][]
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
extra_vector_tags = 'ref'
[../]
[rxn]
type = PReaction
power = 2
variable = u
extra_vector_tags = 'ref'
[]
[./diff_v]
type = Diffusion
variable = v
extra_vector_tags = 'ref'
[../]
[rxn_v]
type = PReaction
power = 2
variable = v
extra_vector_tags = 'ref'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1000
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1e-3
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
verbose = true
automatic_scaling = true
resid_vs_jac_scaling_param = 1
[]
[Outputs]
exodus = true
[]
(test/tests/partitioners/hierarchical_grid_partitioner/hierarchical_grid_partitioner.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 8
ny = 8
[Partitioner]
type = HierarchicalGridPartitioner
nx_nodes = 2
ny_nodes = 2
nx_procs = 2
ny_procs = 2
[]
[]
[Variables/u]
[]
[Kernels/diff]
type = Diffusion
variable = u
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
[AuxVariables/pid]
family = MONOMIAL
order = CONSTANT
[]
[Problem]
solve = false
[]
[AuxKernels/pid]
type = ProcessorIDAux
variable = pid
execute_on = 'INITIAL'
[]
(python/peacock/tests/input_tab/InputTree/gold/simple_diffusion_vp.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[]
[]
[Executioner]
# Preconditioned JFNK (default)
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[VectorPostprocessors]
[foo]
type = LineValueSampler
num_points = 10
end_point = '1 0 0'
start_point = '0 0 0'
[]
[]
(modules/xfem/test/tests/second_order_elements/diffusion_3d_hex20.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 4
nz = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.2
elem_type = HEX20
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./square_planar_cut_uo]
type = RectangleCutUserObject
cut_data = ' 0.35 1.01 -0.001
0.35 0.49 -0.001
0.35 0.49 0.201
0.35 1.01 0.201'
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = left
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 1.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/strain_energy_density/nonAD_rate_model_weak_plane.i)
# Single element test to check the strain energy density calculation
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = true
out_of_plane_strain = strain_zz
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 2
[]
[Variables]
[./strain_zz]
[]
[]
[AuxVariables]
[./SERD]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstantUp]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -100
[../]
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress strain_xx strain_yy'
planar_formulation = WEAK_PLANE_STRESS
[../]
[]
[AuxKernels]
[./SERD]
type = MaterialRealAux
variable = SERD
property = strain_energy_rate_density
execute_on = timestep_end
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0.0
[../]
[./Pressure]
[./top]
boundary = 'top'
function = rampConstantUp
[../]
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 206800
poissons_ratio = 0.0
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'powerlawcrp'
[../]
[./powerlawcrp]
type = PowerLawCreepStressUpdate
coefficient = 3.125e-21 # 7.04e-17 #
n_exponent = 4.0
m_exponent = 0.0
activation_energy = 0.0
# max_inelastic_increment = 0.01
[../]
[./strain_energy_rate_density]
type = StrainEnergyRateDensity
inelastic_models = 'powerlawcrp'
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 3e-7
nl_rel_tol = 1e-12
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Postprocessors]
[./SERD]
type = ElementAverageValue
variable = SERD
[../]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/contact/test/tests/mortar_aux_kernels/frictional-mortar-3d-status.i)
starting_point = 0.04
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[AuxVariables]
[mortar_tangent_x]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_y]
family = LAGRANGE
order = FIRST
[]
[mortar_tangent_z]
family = LAGRANGE
order = FIRST
[]
[frictional_status]
family = LAGRANGE
order = FIRST
[]
[]
[AuxKernels]
[friction_x_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_x
component = 0
boundary = 'top_bottom'
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_y
component = 1
boundary = 'top_bottom'
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
tangent_one = mortar_tangential_lm
tangent_two = mortar_tangential_3d_lm
variable = mortar_tangent_z
component = 2
boundary = 'top_bottom'
[]
[frictional_state]
type = MortarFrictionalStateAux
tangent_one = mortar_tangential_lm
boundary = 'top_bottom'
contact_pressure = mortar_normal_lm
variable = frictional_status
mu = 0.4
[]
[]
[Mesh]
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 1
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
uniform_refine = 0
allow_renumbering = false
[]
[Variables]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
scaling = 1.0e2
[]
[mortar_tangential_lm]
block = 'secondary_lower'
use_dual = true
scaling = 1.0e2
[]
[mortar_tangential_3d_lm]
block = 'secondary_lower'
use_dual = true
scaling = 1.0e2
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
[]
[]
[Materials]
[tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e2
# We should try with nonzero Poisson ratio
poissons_ratio = 0.0
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Constraints]
[friction]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
mu = 0.4
c = 1e1
c_t = 1.0e1
friction_lm = mortar_tangential_lm
friction_lm_dir = mortar_tangential_3d_lm
interpolate_normals = false
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_x]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_y]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[tangential_dir_z]
type = TangentialMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_tangential_3d_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
interpolate_normals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = FunctionDirichletBC
variable = disp_x
boundary = 'top_top'
function = '0.16*t'
[]
[topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 'top_top'
function = '0.1*t'
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 0.4 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = 0.1
dt = .02
dtmin = .02
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-13 1e-7'
l_max_its = 15
nl_max_its = 90
nl_rel_tol = 1e-11
nl_abs_tol = 1e-11
line_search = 'basic'
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'contact'
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[frictional-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[frictional-pressure-3d]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangential_3d_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[tangent_x]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_x
sort_by = 'id'
execute_on = NONLINEAR
[]
[tangent_y]
type = NodalValueSampler
block = secondary_lower
variable = mortar_tangent_y
sort_by = 'id'
execute_on = NONLINEAR
[]
[]
(modules/contact/test/tests/hertz_spherical/hertz_contact_rz_quad8.i)
# Hertz Contact: Sphere on sphere
# Spheres have the same radius, Young's modulus, and Poisson's ratio.
# Define E:
# 1/E = (1-nu1^2)/E1 + (1-nu2^2)/E2
#
# Effective radius R:
# 1/R = 1/R1 + 1/R2
#
# F is the applied compressive load.
#
# Area of contact a::
# a^3 = 3FR/4E
#
# Depth of indentation d:
# d = a^2/R
#
#
# Let R1 = R2 = 2. Then R = 1.
#
# Let nu1 = nu2 = 0.25, E1 = E2 = 1.40625e7. Then E = 7.5e6.
#
# Let F = 10000. Then a = 0.1, d = 0.01.
#
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]#Comment
file = hertz_contact_rz_quad8.e
displacements = 'disp_x disp_y'
allow_renumbering = false
[] # Mesh
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 795.77471545947674 # 10000/pi/2^2
[../]
[./disp_y]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.01 -0.01'
[../]
[] # Functions
[Variables]
[./disp_x]
order = SECOND
family = LAGRANGE
[../]
[./disp_y]
order = SECOND
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./hydrostatic]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = SMALL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 0
variable = stress_xx
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 1
variable = stress_yy
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
index_i = 0
index_j = 1
variable = stress_xy
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 1
index_j = 2
variable = stress_yz
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 0
variable = stress_zx
[../]
[] # AuxKernels
[BCs]
[./base_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0.0
[../]
[./symm_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./disp_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[] # BCs
[Contact]
[./dummy_name]
primary = 1000
secondary = 100
# normal_smoothing_distance = 0.01
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+10
[../]
[]
[Materials]
[./tensor]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.40625e7
poissons_ratio = 0.25
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1'
[../]
[./tensor_1000]
type = ComputeIsotropicElasticityTensor
block = '1000'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./stress_1000]
type = ComputeLinearElasticStress
block = '1000'
[../]
[] # Materials
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
l_abs_tol = 1e-9
l_max_its = 200
start_time = 0.0
dt = 0.5
end_time = 2.0
[./Quadrature]
order = FIFTH
[../]
[] # Executioner
[Postprocessors]
[./maxdisp]
type = NodalVariableValue
nodeid = 103 # 104-1 where 104 is the exodus node number of the top-left node
variable = disp_y
[../]
[]
[Outputs]
[./out]
type = Exodus
[../]
[] # Output
(modules/tensor_mechanics/test/tests/weak_plane_tensile/except1.i)
# checking for small deformation
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_xz stress_zx stress_yz stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 1E-6
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 1E-6
[]
[topz]
type = DirichletBC
variable = z_disp
boundary = front
value = 1E-6
[]
[]
[AuxVariables]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[yield_fcn_auxk]
type = MaterialRealAux
property = weak_plane_tensile_yield_function
variable = yield_fcn
[]
[]
[Postprocessors]
[s_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[]
[s_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningConstant
value = -1.0
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-5
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E6'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-5
[]
[]
[Executioner]
end_time = 1
dt = 1
type = Transient
[]
(test/tests/materials/get_material_property_names/get_material_property_any_block_id.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[./add_subdomain]
input = gen
type = SubdomainBoundingBoxGenerator
top_right = '1 1 0'
bottom_left = '0 0.5 0'
block_id = 100
block_name = 'top'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Materials]
[./block]
type = GenericConstantMaterial
prop_names = block_prop
block = ANY_BLOCK_ID
prop_values = 12345
[../]
[]
[UserObjects]
[./get_material_block_names_test]
type = GetMaterialPropertyBoundaryBlockNamesTest
expected_names = 'ANY_BLOCK_ID'
property_name = 'block_prop'
test_type = 'block'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/executioners/nl_divergence_tolerance/nl_divergence_tolerance.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 15
ny = 15
[]
[Variables]
[./u]
scaling = 1e-5
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
preset = false
boundary = left
value = -1000
[../]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = right
value = 100000
[../]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
line_search = 'none'
solve_type = PJFNK
l_max_its = 20
nl_max_its = 20
nl_div_tol = 10
dt = 1
num_steps = 3
petsc_options = '-snes_converged_reason -ksp_converged_reason '
petsc_options_iname = '-pc_type -pc_hypre_type '
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/weak_plane_tensile/small_deform_hard_cubic.i)
# Checking evolution tensile strength for cubic hardening
# A single element is stretched by 1E-6*t in z direction, and
# the yield-surface evolution is mapped out
[GlobalParams]
displacements = 'x_disp y_disp z_disp'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = 'stress_zz'
[]
[BCs]
[bottomx]
type = DirichletBC
variable = x_disp
boundary = back
value = 0.0
[]
[bottomy]
type = DirichletBC
variable = y_disp
boundary = back
value = 0.0
[]
[bottomz]
type = DirichletBC
variable = z_disp
boundary = back
value = 0.0
[]
[topx]
type = DirichletBC
variable = x_disp
boundary = front
value = 0
[]
[topy]
type = DirichletBC
variable = y_disp
boundary = front
value = 0
[]
[topz]
type = FunctionDirichletBC
variable = z_disp
boundary = front
function = 1E-6*t
[]
[]
[AuxVariables]
[wpt_internal]
order = CONSTANT
family = MONOMIAL
[]
[yield_fcn]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[wpt_internal]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = wpt_internal
[]
[yield_fcn_auxk]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = yield_fcn
[]
[]
[Postprocessors]
[wpt_internal]
type = PointValue
point = '0 0 0'
variable = wpt_internal
[]
[s_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[]
[f]
type = PointValue
point = '0 0 0'
variable = yield_fcn
[]
[]
[UserObjects]
[str]
type = TensorMechanicsHardeningCubic
value_0 = 10
value_residual = 4
internal_limit = 0.000003
[]
[wpt]
type = TensorMechanicsPlasticWeakPlaneTensile
tensile_strength = str
yield_function_tolerance = 1E-6
internal_constraint_tolerance = 1E-11
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1E7'
[]
[mc]
type = ComputeMultiPlasticityStress
plastic_models = wpt
transverse_direction = '0 0 1'
ep_plastic_tolerance = 1E-11
[]
[]
[Executioner]
end_time = 4
dt = 0.5
type = Transient
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/pps_interval/pps_bad_interval2.i)
[Mesh]
file = square-2x2-nodeids.e
# This test can only be run with renumering disabled, so the
# NodalVariableValue postprocessor's node id is well-defined.
allow_renumbering = false
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '1'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '2'
value = 0
[../]
[]
[Postprocessors]
active = 'l2 node1 node4'
[./l2]
type = ElementL2Error
variable = u
function = exact_fn
[../]
[./node1]
type = NodalVariableValue
variable = u
nodeid = 15
[../]
[./node4]
type = NodalVariableValue
variable = v
nodeid = 10
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 1
[]
[Outputs]
file_base = ignore_bad
exodus = true
[./console]
type = Console
interval = 2
[../]
[]
(modules/richards/test/tests/buckley_leverett/bl22_lumped_fu.i)
# two-phase version
# super-sharp front version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-4 1E-3 1E-2 2E-2 5E-2 6E-2 0.1 0.2'
x = '0 1E-2 1E-1 1 5 20 40 41'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E6
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-4
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-4
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[./bounds_dummy]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsLumpedMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFullyUpwindFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsLumpedMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFullyUpwindFlux
variable = pgas
[../]
[./richardsppenalty]
type = RichardsPPenalty
variable = pgas
a = 1E-18
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_water
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_gas
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = pwater
boundary = left
value = 1E6
[../]
[./left_g]
type = DirichletBC
variable = pgas
boundary = left
value = 1000
[../]
[./right_w]
type = DirichletBC
variable = pwater
boundary = right
value = -100000
[../]
[./right_g]
type = DirichletBC
variable = pgas
boundary = right
value = 0
[../]
[]
[Functions]
[./initial_water]
type = ParsedFunction
value = 1000000*(1-min(x/5,1))-if(x<5,0,100000)
[../]
[./initial_gas]
type = ParsedFunction
value = 1000
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
viscosity = '1E-3 1E-6'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./standard]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-10 1E-10 20 1E-10 1E-100'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = bl22_lumped_fu
[./exodus]
type = Exodus
interval = 100000
hide = 'pgas bounds_dummy'
execute_on = 'initial final timestep_end'
[../]
[]
(test/tests/kernels/ad_value/ad_value.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./u_jac]
[../]
[./v_jac]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./value_test_v]
type = ValueTest
variable = v
diag_save_in = v_jac
[../]
[./ad_value_test]
type = ADValueTest
variable = u
diag_save_in = u_jac
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'Newton'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh/custom_partitioner/custom_linear_partitioner_restart_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 10.0
[]
[./Partitioner]
type = LibmeshPartitioner
partitioner = linear
[../]
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'bodyforce ie'
[./bodyforce]
type = BodyForce
variable = u
value = 10.0
[../]
[./ie]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 10
dt = .1
[]
[Outputs]
file_base = custom_linear_partitioner_restart_test_out
exodus = true
[]
(modules/contact/test/tests/mortar_tm/2d/frictionless_first/finite_rr.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD4
order = FIRST
name = 'finite_rr'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 13.5
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
nl_abs_tol = 1e-7
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_init_test.i)
#
# Testing nodal aux variables that are computed only at the end of the time step
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 5
[../]
[]
[AuxVariables]
active = 'aux1 aux2'
[./aux1]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[./aux2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff force'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = aux2
[../]
[]
[AuxKernels]
active = 'constant field'
#Simple Aux Kernel
[./constant]
variable = aux1
type = ConstantAux
value = 1
execute_on = nonlinear
[../]
#AuxKernel that is setup only before the simulation starts
[./field]
variable = aux2
type = CoupledAux
value = 2
coupled = u
execute_on = initial
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 2
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
file_base = out_init
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_as_2d_topo_q_func.i)
#This tests the J-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with one element
#through the thickness, and calculates the J-Integrals using options
#to treat it as 2d.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack_3d_as_2d.e
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
q_function_type = Topology
ring_first = 1
ring_last = 3
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
# Two sets of linesearch options are for petsc 3.1 and 3.3 respectively
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_3d_as_2d_topo_q_func_out
exodus = true
csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_3comp_action.i)
# Pressure pulse in 1D with 1 phase but 3 components (viscosity, relperm, etc are independent of mass-fractions) - transient
# This input file uses the PorousFlowFullySaturated Action. For the non-Action version, see pressure_pulse_1d_3comp.i
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
initial_condition = 2E6
[]
[massfrac0]
initial_condition = 0.1
[]
[massfrac1]
initial_condition = 0.3
[]
[]
[PorousFlowFullySaturated]
porepressure = pp
mass_fraction_vars = 'massfrac0 massfrac1'
gravity = '0 0 0'
fp = simple_fluid
stabilization = Full
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 3E6
variable = pp
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p000]
type = PointValue
variable = pp
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = pp
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = pp
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = pp
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = pp
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = pp
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = pp
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = pp
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = pp
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = pp
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = pp
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[mf_0_010]
type = PointValue
variable = massfrac0
point = '10 0 0'
execute_on = 'timestep_end'
[]
[mf_1_010]
type = PointValue
variable = massfrac1
point = '10 0 0'
execute_on = 'timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_3comp
print_linear_residuals = true
csv = true
[]
(test/tests/restart/pointer_restart_errors/pointer_load_error2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[UserObjects]
[./restartable_types]
type = PointerLoadError
[../]
[]
[Problem]
type = FEProblem
solve = false
restart_file_base = pointer_load_error_out_cp/0001
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[./out]
type = Checkpoint
num_files = 1
[../]
[]
(modules/tensor_mechanics/test/tests/beam/dynamic/dyn_euler_small_rayleigh_hht_action.i)
# Test for damped small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# density (rho) = 1.0
# mass proportional rayleigh damping(eta) = 0.1
# stiffness proportional rayleigh damping(eta) = 0.1
# HHT time integration parameter (alpha) = -0.3
# Corresponding Newmark beta time integration parameters beta = 0.4225 and gamma = 0.8
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.2 0.019898364318588 0.18838688112273 1.1774180070171
# 0.4 0.045577003505278 0.087329917525455 -0.92596052423724
# 0.6 0.063767907208218 0.084330765885995 0.21274543331268
# 0.8 0.073602908614573 0.020029576220975 -0.45506879373455
# 1.0 0.06841704414745 -0.071840076837194 -0.46041813317992
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = right
function = force
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.2 0.4 10.0'
y = '0.0 0.01 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-11
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 0.2
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Modules/TensorMechanics/LineElementMaster]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.01
Iy = 1e-4
Iz = 1e-4
y_orientation = '0.0 1.0 0.0'
# dynamic simulation using consistent mass/inertia matrix
dynamic_consistent_inertia = true
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
density = 1.0
beta = 0.4225 # Newmark time integraion parameter
gamma = 0.8 # Newmark time integraion parameter
# optional parameters for numerical (alpha) and Rayleigh damping
alpha = -0.3 # HHT time integration parameter
eta = 0.1 # Mass proportional Rayleigh damping
zeta = 0.1 # Stiffness proportional Rayleigh damping
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_rayleigh_hht_out'
exodus = true
csv = true
perf_graph = true
[]
(test/tests/postprocessors/cumulative_value_postprocessor/cumulative_value_postprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./time_derivative]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Transient
scheme = implicit-euler
[./TimeStepper]
type = ConstantDT
dt = 0.01
[../]
start_time = 0.0
num_steps = 2
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Postprocessors]
[./nonlin_it]
type = NumNonlinearIterations
[../]
[./cumulative_nonlin_it]
type = CumulativeValuePostprocessor
postprocessor = nonlin_it
[../]
[]
[Outputs]
csv = true
[]
(test/tests/outputs/exodus/variable_output_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./aux]
family = SCALAR
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = PJFNK
[]
[Adaptivity]
steps = 1
marker = box
max_h_level = 2
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = do_nothing
type = BoxMarker
[../]
[../]
[]
[Postprocessors]
[./aux_pp]
type = ScalarVariable
variable = aux
outputs = none
[../]
[]
[Outputs]
execute_on = 'timestep_end'
[./exodus]
type = Exodus
file_base = new_out
hide_variables = 'u box aux_pp'
scalar_as_nodal = true
execute_scalars_on = none
[../]
[./console]
Type = Console
[../]
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/exception.i)
[GlobalParams]
displacements = 'ux uy uz'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[./pk2]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./slip_increment]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = slip_resistance
index = 0
execute_on = timestep_end
[../]
[./slip_inc]
type = MaterialStdVectorAux
variable = slip_increment
property = slip_increment
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.1*t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
maximum_substep_iteration = 1
[../]
[./trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./pk2]
type = ElementAverageValue
variable = pk2
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[./slip_increment]
type = ElementAverageValue
variable = slip_increment
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/cyl_4/cyl4_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl4_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 stress_yy stress_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/multiapps/picard_sub_cycling/picard_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./v]
[../]
[]
[AuxVariables]
[./u]
[../]
[]
[Kernels]
[./diff_v]
type = Diffusion
variable = v
[../]
[./force_v]
type = CoupledForce
variable = v
v = u
[../]
[./td_v]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_abs_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_postprocessor_interpolation_transfer/master_quad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./pp_aux]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./quad]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0.1 0.1 0 0.9 0.1 0 0.1 0.9 0 0.9 0.9 0'
input_files = 'quad_sub1.i quad_sub1.i quad_sub2.i quad_sub2.i'
[../]
[]
[Transfers]
[./sub_to_master_pp]
type = MultiAppPostprocessorInterpolationTransfer
from_multi_app = quad
variable = pp_aux
postprocessor = pp
[../]
[]
(modules/tensor_mechanics/test/tests/umat/predef/predef_multiple_mat.i)
# Testing the UMAT Interface - linear elastic model using the large strain formulation.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[]
[Functions]
[top_pull]
type = ParsedFunction
value = -t*10
[]
[right_pull]
type = ParsedFunction
value = -t*0.5
[]
[]
[AuxVariables]
[strain_yy]
family = MONOMIAL
order = FIRST
[]
[strain_xx]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Modules/TensorMechanics/Master]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[Pressure]
[bc_presssure_top]
boundary = top
function = top_pull
[]
[bc_presssure_right]
boundary = right
function = right_pull
[]
[]
[x_bot]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[z_bot]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[Materials]
# 1. Active for UMAT
[strain_xx]
type = RankTwoCartesianComponent
property_name = strain_xx
rank_two_tensor = total_strain
index_i = 0
index_j = 0
[]
[strain_yy]
type = RankTwoCartesianComponent
property_name = strain_yy
rank_two_tensor = total_strain
index_i = 1
index_j = 1
[]
[umat]
type = AbaqusUMATStress
constant_properties = '1000 0.3'
plugin = '../../../plugins/elastic_multiple_predef'
num_state_vars = 0
external_properties = 'strain_xx strain_yy'
use_one_based_indexing = true
[]
# 2. Active for reference MOOSE computations
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
base_name = 'base'
youngs_modulus = 1e3
poissons_ratio = 0.3
[]
[strain_dependent_elasticity_tensor]
type = CompositeElasticityTensor
args = 'strain_yy strain_xx'
tensors = 'base'
weights = 'prefactor_material'
[]
[prefactor_material_block]
type = DerivativeParsedMaterial
f_name = prefactor_material
material_property_names = 'strain_yy strain_xx'
function = '1.0/(1.0 + strain_yy + strain_xx)'
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 30
dt = 1.0
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/diffusion_xfem/diffusion.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 6
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.5'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./u_left]
type = PiecewiseLinear
x = '0 2'
y = '0 0.1'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = FunctionDirichletBC
variable = u
boundary = 3
function = u_left
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/usability/bad.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
# Missing [] here
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/perf_graph/perf_graph.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 20
ny = 20
nz = 20
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./num_dofs]
type = NumElems
[../]
[../]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
# perf_graph = true
[./pgraph]
type = PerfGraphOutput
level = 1
heaviest_branch = true
heaviest_sections = 10
[]
[]
(modules/tensor_mechanics/test/tests/thermal_expansion_function/dilatation.i)
# This test checks the thermal expansion calculated via an dilatation function.
# The coefficient is selected so as to result in a 1e-4 strain in the x-axis, and to cross over
# from positive to negative strain.
[Mesh]
[./gen]
type = GeneratedMeshGenerator
dim = 3
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
function = '1 + t'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[./thermal_expansion_strain]
type = ComputeDilatationThermalExpansionFunctionEigenstrain
dilatation_function = cte_dilatation
stress_free_temperature = 1.5
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_dilatation]
type = PiecewiseLinear
x = '1 2'
y = '-1e-4 1e-4'
[../]
[]
[Postprocessors]
[./disp_x_max]
type = SideAverageValue
variable = disp_x
boundary = right
[../]
[./temp_avg]
type = ElementAverageValue
variable = temp
[../]
[]
[Executioner]
type = Transient
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/dynamics/time_integration/hht_test_action.i)
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/DynamicMaster]
[all]
add_variables = true
hht_alpha = 0.11
newmark_beta = 0.25
newmark_gamma = 0.5
density = 7750
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
hht_alpha = 0.11
displacements = 'disp_x disp_y disp_z'
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_3/brick3_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
maximum_lagrangian_update_iterations = 200
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x28]
type = NodalVariableValue
nodeid = 27
variable = disp_x
[../]
[./disp_x33]
type = NodalVariableValue
nodeid = 32
variable = disp_x
[../]
[./disp_y28]
type = NodalVariableValue
nodeid = 27
variable = disp_y
[../]
[./disp_y33]
type = NodalVariableValue
nodeid = 32
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x28 disp_y28 disp_x33 disp_y33 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+7
al_penetration_tolerance = 1e-8
[../]
[]
(modules/contact/test/tests/verification/hertz_cyl/quart_symm_q8/hertz_cyl_qsym_1deg_template1.i)
[GlobalParams]
order = SECOND
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_qsym_1deg_q8.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_zero]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0.0 0.0'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 4
paired_boundary = 3
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./disp_x281]
type = NodalVariableValue
nodeid = 280
variable = disp_x
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 3'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = disp_ramp_vert
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 50
nl_max_its = 100
start_time = 0.0
dt = 0.1
dtmin = 0.1
num_steps = 10
end_time = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '4'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x281 top_react_x top_react_y x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
primary = 3
secondary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+11
[../]
[]
(modules/tensor_mechanics/test/tests/j_integral/j_integral_3d_as_2d.i)
#This tests the J-Integral evaluation capability.
#This is a 3d extrusion of a 2d plane strain model with one element
#through the thickness, and calculates the J-Integrals using options
#to treat it as 2d.
#The analytic solution for J1 is 2.434. This model
#converges to that solution with a refined mesh.
#Reference: National Agency for Finite Element Methods and Standards (U.K.):
#Test 1.1 from NAFEMS publication "Test Cases in Linear Elastic Fracture
#Mechanics" R0020.
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
file = crack_3d_as_2d.e
partitioner = centroid
centroid_partitioner_direction = z
[]
[AuxVariables]
[./SED]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1.'
y = '0. 1.'
scale_factor = -1e2
[../]
[]
[DomainIntegral]
integrals = JIntegral
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '4.0 4.5 5.0 5.5 6.0'
radius_outer = '4.5 5.0 5.5 6.0 6.5'
output_q = false
incremental = true
[]
[Modules/TensorMechanics/Master]
[./master]
strain = FINITE
add_variables = true
incremental = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
[../]
[]
[AuxKernels]
[./SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[../]
[]
[BCs]
[./crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 500
value = 0.0
[../]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 700
value = 0.0
[../]
[./Pressure]
[./Side1]
boundary = 400
function = rampConstant
[../]
[../]
[] # BCs
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
# Two sets of linesearch options are for petsc 3.1 and 3.3 respectively
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 20
nl_abs_tol = 1e-5
l_tol = 1e-2
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
file_base = j_integral_3d_as_2d_out
exodus = true
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_3/brick3_mu_0_2_pen.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x28]
type = NodalVariableValue
nodeid = 27
variable = disp_x
[../]
[./disp_x33]
type = NodalVariableValue
nodeid = 32
variable = disp_x
[../]
[./disp_y28]
type = NodalVariableValue
nodeid = 27
variable = disp_y
[../]
[./disp_y33]
type = NodalVariableValue
nodeid = 32
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick3_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick3_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x28 disp_y28 disp_x33 disp_y33 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+6
[../]
[]
(test/tests/userobjects/setup_interface_count/side.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[]
[./right_side]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '0 0 0'
top_right = '1 0.5 0'
block_id = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[./initial] # 1 per simulation
type = SideSetupInterfaceCount
count_type = 'initial'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./timestep] # once per timestep
type = SideSetupInterfaceCount
count_type = 'timestep'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./subdomain] # 1 on initial and for each timestep
type = SideSetupInterfaceCount
count_type = 'subdomain'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./initialize] # 1 for initial and 2 for each timestep
type = SideSetupInterfaceCount
count_type = 'initialize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./finalize] # 1 for initial and 2 for each timestep
type = SideSetupInterfaceCount
count_type = 'finalize'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./execute] # 4 for initial and 8 for each timestep
type = SideSetupInterfaceCount
count_type = 'execute'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[./threadjoin] # 1 for initial and 2 for each timestep
type = SideSetupInterfaceCount
count_type = 'threadjoin'
execute_on = 'initial timestep_begin timestep_end'
boundary = '1 2'
[../]
[]
[Outputs]
csv = true
[]
(test/tests/multiapps/move_and_reset/multilevel_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_end
positions = '1 1 0'
input_files = multilevel_sub.i
output_in_position = true
reset_apps = 0
reset_time = 0.05
move_time = 0.05
move_positions = '2 2 0'
move_apps = 0
[../]
[]
(test/tests/restrictable/undefined_ids/undefined_block_kernel.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./kernel_with_undefined_block]
type = Diffusion
variable = u
block = 10
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/controls/dependency/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./a]
family = SCALAR
order = FIRST
[../]
[]
[AuxScalarKernels]
[./a_sk]
type = ConstantScalarAux
variable = a
value = 0
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
csv = true
[]
[Functions]
[./func_coef]
type = ParsedFunction
value = 1
[../]
[]
[Controls]
# We start with a = 0, control2 sets its value to 1 and then control1 will multiply it by 3,
# so the end value has to be 3. If dependecy is broken, we multiply by 3 and then set to 1,
# which is wrong
[./control1]
type = TestControl
parameter = 'AuxScalarKernels/a_sk/value'
test_type = MULT
execute_on = 'initial timestep_begin'
depends_on = control2
[../]
[./control2]
type = RealFunctionControl
parameter = 'AuxScalarKernels/a_sk/value'
function = 'func_coef'
execute_on = 'initial timestep_begin'
[../]
[]
(modules/porous_flow/test/tests/basic_advection/except1.i)
# phase number is too high in PorousFlowBasicAdvection
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[P]
[]
[]
[ICs]
[P]
type = FunctionIC
variable = P
function = '2*(1-x)'
[]
[u]
type = FunctionIC
variable = u
function = 'if(x<0.1,1,0)'
[]
[]
[Kernels]
[u_dot]
type = TimeDerivative
variable = u
[]
[u_advection]
type = PorousFlowBasicAdvection
variable = u
phase = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = ''
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 4
thermal_expansion = 0
viscosity = 150.0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = P
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '5 0 0 0 5 0 0 0 5'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0
phase = 0
[]
[darcy_velocity]
type = PorousFlowDarcyVelocityMaterial
gravity = '0.25 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
boundary = left
value = 1
variable = u
[]
[right]
type = DirichletBC
boundary = right
value = 0
variable = u
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
petsc_options_iname = '-pc_type -snes_rtol'
petsc_options_value = ' lu 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 5
[]
[Outputs]
exodus = true
print_linear_residuals = false
[]
(modules/tensor_mechanics/tutorials/basics/part_1.2.i)
#Tensor Mechanics tutorial: the basics
#Step 1, part 2
#2D simulation of uniaxial tension with linear elasticity with visualized stress
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
file = necking_quad4.e
uniform_refine = 1
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = SMALL
add_variables = true
generate_output = 'stress_xx vonmises_stress' #automatically creates the auxvariables and auxkernels
#needed to output these stress quanities
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./top]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0035
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 1 101'
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/problems/eigen_problem/eigensolvers/gipm_ibc.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
nx = 64
ny = 64
displacements = 'x_disp y_disp'
[]
[Variables]
[./u]
order = first
family = LAGRANGE
[../]
[]
[AuxVariables]
[./x_disp]
[../]
[./y_disp]
[../]
[]
[AuxKernels]
[./x_disp]
type = FunctionAux
variable = x_disp
function = x_disp_func
[../]
[./y_disp]
type = FunctionAux
variable = y_disp
function = y_disp_func
[../]
[]
[Functions]
[./x_disp_func]
type = ParsedFunction
value = 0
[../]
[./y_disp_func]
type = ParsedFunction
value = 0
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[./rea]
type = CoefReaction
variable = u
coefficient = 2.0
use_displaced_mesh = true
[../]
[./rhs]
type = CoefReaction
variable = u
use_displaced_mesh = true
coefficient = -1.0
extra_vector_tags = 'eigen'
[../]
[]
[BCs]
[./nbc_homogeneous]
type = DirichletBC
variable = u
boundary = '0'
value = 0
use_displaced_mesh = true
[../]
[./nbc_eigen]
type = EigenDirichletBC
variable = u
boundary = '0'
use_displaced_mesh = true
[../]
[./ibc]
type = VacuumBC
variable = u
boundary = '1 2 3'
extra_vector_tags = 'eigen'
use_displaced_mesh = true
[]
[]
[Executioner]
type = Eigenvalue
eigen_problem_type = gen_non_hermitian
which_eigen_pairs = SMALLEST_MAGNITUDE
n_eigen_pairs = 1
n_basis_vectors = 18
solve_type = jacobi_davidson
petsc_options = '-eps_view'
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[./console]
type = Console
outlier_variable_norms = false
[../]
[]
(modules/level_set/examples/rotating_circle/circle_rotate_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 32
ny = 32
uniform_refine = 2
[]
[AuxVariables]
[./velocity]
family = LAGRANGE_VEC
[../]
[]
[Variables]
[./phi]
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = phi
boundary = 'top bottom left right'
value = 0
[../]
[]
[Functions]
[./phi_exact]
type = LevelSetOlssonBubble
epsilon = 0.03
center = '0 0.5 0'
radius = 0.15
[../]
[./velocity_func]
type = ParsedVectorFunction
value_x = '4*y'
value_y = '-4*x'
[../]
[]
[ICs]
[./phi_ic]
type = FunctionIC
function = phi_exact
variable = phi
[../]
[./vel_ic]
type = VectorFunctionIC
variable = velocity
function = velocity_func
[]
[]
[Kernels]
[./time]
type = TimeDerivative
variable = phi
[../]
[./advection]
type = LevelSetAdvection
velocity = velocity
variable = phi
[../]
[]
[Postprocessors]
[./area]
type = LevelSetVolume
threshold = 0.5
variable = phi
location = outside
execute_on = 'initial timestep_end'
[../]
[./cfl]
type = LevelSetCFLCondition
velocity = velocity
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
start_time = 0
end_time = 1.570796
scheme = crank-nicolson
petsc_options_iname = '-pc_type -pc_sub_type'
petsc_options_value = 'asm ilu'
[./TimeStepper]
type = PostprocessorDT
postprocessor = cfl
scale = 0.8
[../]
[]
[MultiApps]
[./reinit]
type = LevelSetReinitializationMultiApp
input_files = 'circle_rotate_sub.i'
execute_on = 'timestep_end'
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi
to_multi_app = reinit
execute_on = 'timestep_end'
[../]
[./to_sub_init]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi_0
to_multi_app = reinit
execute_on = 'timestep_end'
[../]
[./from_sub]
type = MultiAppCopyTransfer
source_variable = phi
variable = phi
from_multi_app = reinit
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/userobjects/layered_base_restartable/layered_base_restartable.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./np_layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[AuxKernels]
[./np_layered_average]
type = SpatialUserObjectAux
variable = np_layered_average
execute_on = 'timestep_begin'
user_object = npla
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 10
[../]
[./one]
type = DirichletBC
variable = u
boundary = 'right back top'
value = 12
[../]
[]
[UserObjects]
[./npla]
type = NearestPointLayeredAverage
direction = y
points = '0.25 0 0.25 0.75 0 0.25 0.25 0 0.75 0.75 0 0.75'
num_layers = 10
variable = u
execute_on = 'timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 8
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/anisotropic_patch/anisotropic_patch_test.i)
# Patch Test
# This test is designed to compute constant xx, yy, zz, xy, yz, and zx
# stress on a set of irregular hexes. The mesh is composed of one
# block with seven elements. The elements form a unit cube with one
# internal element. There is a nodeset for each exterior node.
# The cube is displaced by 1e-6 units in x, 2e-6 in y, and 3e-6 in z.
# The faces are sheared as well (1e-6, 2e-6, and 3e-6 for xy, yz, and
# zx). This gives a uniform strain/stress state for all six unique
# tensor components.
# With Young's modulus at 1e6 and Poisson's ratio at 0, the shear
# modulus is 5e5 (G=E/2/(1+nu)). Therefore,
#
# stress xx = 1e6 * 1e-6 = 1
# stress yy = 1e6 * 2e-6 = 2
# stress zz = 1e6 * 3e-6 = 3
# stress xy = 2 * 5e5 * 1e-6 / 2 = 0.5
# (2 * G * gamma_xy / 2 = 2 * G * epsilon_xy)
# stress yz = 2 * 5e5 * 2e-6 / 2 = 1
# stress zx = 2 * 5e5 * 3e-6 / 2 = 1.5
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = '1 2 3 4 5 6 7'
[]
[Mesh]#Comment
file = anisotropic_patch_test.e
[] # Mesh
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1e-6
[../]
[./rampConstant2]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 2e-6
[../]
[./rampConstant3]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 3e-6
[../]
[./rampConstant4]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 4e-6
[../]
[./rampConstant6]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 6e-6
[../]
[] # Functions
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[] # Variables
[AuxVariables]
[./elastic_energy]
order = CONSTANT
family = MONOMIAL
[../]
[] # AuxVariables
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx vonmises_stress hydrostatic_stress firstinv_stress secondinv_stress thirdinv_stress'
[../]
[]
[AuxKernels]
[./elastic_energy]
type = ElasticEnergyAux
variable = elastic_energy
[../]
[] # AuxKernels
[BCs]
[./node1_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./node1_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = rampConstant2
[../]
[./node1_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 1
function = rampConstant3
[../]
[./node2_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 2
function = rampConstant1
[../]
[./node2_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = rampConstant2
[../]
[./node2_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = rampConstant6
[../]
[./node3_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 3
function = rampConstant1
[../]
[./node3_y]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./node3_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 3
function = rampConstant3
[../]
[./node4_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./node4_y]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0.0
[../]
[./node4_z]
type = DirichletBC
variable = disp_z
boundary = 4
value = 0.0
[../]
[./node5_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 5
function = rampConstant1
[../]
[./node5_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = rampConstant4
[../]
[./node5_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 5
function = rampConstant3
[../]
[./node6_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 6
function = rampConstant2
[../]
[./node6_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 6
function = rampConstant4
[../]
[./node6_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 6
function = rampConstant6
[../]
[./node7_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 7
function = rampConstant2
[../]
[./node7_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 7
function = rampConstant2
[../]
[./node7_z]
type = FunctionDirichletBC
variable = disp_z
boundary = 7
function = rampConstant3
[../]
[./node8_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 8
function = rampConstant1
[../]
[./node8_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 8
function = rampConstant2
[../]
[./node8_z]
type = DirichletBC
variable = disp_z
boundary = 8
value = 0.0
[../]
[] # BCs
[Materials]
[./elastic_tensor]
type = ComputeElasticityTensor
C_ijkl = '1e6 0.0 0.0 1e6 0.0 1e6 0.5e6 0.5e6 0.5e6'
fill_method = symmetric9
euler_angle_1 = 18.0
euler_angle_2 = 43.0
euler_angle_3 = 177.0
# Isotropic material constants
# The three euler angles do not matter
# youngs_modulus = 1e6
# poissons_ratio = 0.0
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[] # Materials
[Executioner]
type = Transient
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[] # Executioner
[Outputs]
file_base = anisotropic_patch_test_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[] # Outputs
(test/tests/multiapps/relaxation/picard_relaxed_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
initial_condition = 1
[../]
[./inverse_v]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./force_u]
type = CoupledForce
variable = u
v = inverse_v
[../]
[]
[AuxKernels]
[./invert_v]
type = QuotientAux
variable = inverse_v
denominator = v
numerator = 20.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./Neumann_right]
type = NeumannBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[picard_its]
type = NumFixedPointIterations
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_abs_tol = 1e-14
relaxation_factor = 0.95
transformed_variables = u
[]
[Outputs]
exodus = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
execute_on = timestep_begin
positions = '0 0 0'
input_files = picard_relaxed_sub.i
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(test/tests/userobjects/layered_average/layered_average_bounding_block.i)
#
# The mesh consists of two blocks. Block 1 has a height and width of 1 whereas
# block 2 has a height of 2 and width of 1. A gap of 1 exists between the two
# blocks in the x direction. Elements are 0.25 high and 1 wide. The solution
# in block 1 is u = y and block 2 is u = 4y.
#
# Two sets of LayeredAverage values are computed. In both cases, four
# layers are used. In 'bounding_block1', the LayeredAverage values are computed
# on block 1 using the bounds (dimensions of block 2). In 'bounding_block2',
# the LayeredAverage values are computed on block 2 using the bounds (dimensions
# of block 1).
#
# In 'bounding_block1', since the layers are defined by the dimensions of block
# 2 only two layers appear in block one. The values in block 1 are thus:
# 0.25 for 0<y<0.5 and 0.75 for 0.5<y<1.
#
# In 'bounding_block2', since the layers are defined by the dimensions of block
# 1 four layers appear in block two. Any place over and above the top of the
# uppermost layer is included in the uppermost layer. Therefore, the first 3
# layers are 1/4 of the height of block 1 (0.25) whereas the 4th layer has a
# height of 1/4 of block 1 (0.25) plus the additional region in block 2 outside
# the bounds of block 1 (1.0) for a total height of 1.24.
# The values in block 2 are thus:
# 0.5 from 0<y<0.25, 1.5 from 0.25<y<0.5, 2.5 from 0.5<y<0.75, and 5.5 from
# y>0.75.
#
#
[Mesh]
file = layered_average_bounding_block.e
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./bounding_block1]
order = CONSTANT
family = MONOMIAL
[../]
[./bounding_block2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./bounding_block1]
type = SpatialUserObjectAux
block = 1
variable = bounding_block1
execute_on = timestep_end
user_object = bounding_block1
[../]
[./bounding_block2]
type = SpatialUserObjectAux
block = 2
variable = bounding_block2
execute_on = timestep_end
user_object = bounding_block2
[../]
[]
[BCs]
[./ll]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./lu]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./ul]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uu]
type = DirichletBC
variable = u
boundary = 4
value = 8
[../]
[]
[UserObjects]
[./bounding_block1]
type = LayeredAverage
direction = y
num_layers = 4
variable = u
execute_on = linear
block = 1
layer_bounding_block = 2
[../]
[./bounding_block2]
type = LayeredAverage
direction = y
num_layers = 4
block = 2
layer_bounding_block = 1
variable = u
execute_on = linear
[../]
[]
[Executioner]
type = Transient
dt = 1
end_time = 1
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d.i)
#This problem from [Wilson 1979] tests the thermal strain term in the
#interaction integral
#
#theta_e = 10 degrees C; a = 252; E = 207000; nu = 0.3; alpha = 1.35e-5
#
#With uniform_refine = 3, KI converges to
#KI = 5.602461e+02 (interaction integral)
#KI = 5.655005e+02 (J-integral)
#
#Both are in good agreement with [Shih 1986]:
#average_value = 0.4857 = KI / (sigma_theta * sqrt(pi * a))
#sigma_theta = E * alpha * theta_e / (1 - nu)
# = 207000 * 1.35e-5 * 10 / (1 - 0.3) = 39.9214
#KI = average_value * sigma_theta * sqrt(pi * a) = 5.656e+02
#
#References:
#W.K. Wilson, I.-W. Yu, Int J Fract 15 (1979) 377-387
#C.F. Shih, B. Moran, T. Nakamura, Int J Fract 30 (1986) 79-102
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = False
[]
[Mesh]
file = crack2d.e
displacements = 'disp_x disp_y'
# uniform_refine = 3
[]
[AuxVariables]
[SED]
order = CONSTANT
family = MONOMIAL
[]
[temp]
order = FIRST
family = LAGRANGE
[]
[]
[Functions]
[tempfunc]
type = ParsedFunction
value = 10.0*(2*x/504)
[]
[]
[DomainIntegral]
integrals = 'KFromJIntegral InteractionIntegralKI'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
symmetry_plane = 1
incremental = true
# interaction integral parameters
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
temperature = temp
eigenstrain_names = thermal_expansion
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
eigenstrain_names = thermal_expansion
[]
[]
[AuxKernels]
[SED]
type = MaterialRealAux
variable = SED
property = strain_energy_density
execute_on = timestep_end
[]
[tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
block = 1
[]
[]
[BCs]
[crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[]
[no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[]
[elastic_stress]
type = ComputeFiniteStrainElasticStress
[]
[thermal_expansion_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 0.0
thermal_expansion_coeff = 1.35e-5
temperature = temp
eigenstrain_name = thermal_expansion
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/hydrostatic/gravity.i)
[GlobalParams]
gravity = '0 -0.001 0'
convective_term = false
integrate_p_by_parts = false
u = vel_x
v = vel_y
pressure = p
[]
[Mesh]
second_order = true
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 1
ny = 5
ymax = 5
[../]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = top_right
coord = '0 5'
input = gen
[../]
[]
[Variables]
[./vel_x]
order = SECOND
[../]
[./vel_y]
order = SECOND
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSMass
variable = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_x
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceForm
variable = vel_y
component = 1
[../]
[]
[BCs]
[./x_no_slip]
type = DirichletBC
variable = vel_x
boundary = 'top bottom left right'
value = 0.0
[../]
[./y_no_slip]
type = DirichletBC
variable = vel_y
boundary = 'top bottom left right'
value = 0.0
[../]
[./p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
prop_names = 'rho mu'
prop_values = '100 1'
[../]
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = NEWTON
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = '300 bjacobi ilu 4'
line_search = none
nl_rel_tol = 1e-12
nl_max_its = 6
l_tol = 1e-6
l_max_its = 300
[]
[Outputs]
exodus = true
execute_on = TIMESTEP_END
[]
(modules/porous_flow/test/tests/buckley_leverett/bl01.i)
# Buckley-Leverett 1-phase.
# The front starts at (around) x=5, and at t=50 it should
# have moved to x=9.6. The version below has a nonzero
# suction function, and at t=50, the front sits between
# (about) x=9.6 and x=9.9. Changing the van-Genuchten
# al parameter to 1E-4 softens the front so it sits between
# (about) x=9.7 and x=10.4, and the simulation runs much faster.
# With al=1E-2 and nx=600, the front sits between x=9.6 and x=9.8,
# but takes about 100 times longer to run.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
PorousFlowDictator = dictator
compute_enthalpy = false
compute_internal_energy = false
[]
[Variables]
[pp]
[InitialCondition]
type = FunctionIC
function = 'max((1000000-x/5*1000000)-20000,-20000)'
[]
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
gravity = '0 0 0'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = pp
boundary = left
value = 980000
[]
[]
[AuxVariables]
[sat]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sat]
type = MaterialStdVectorAux
variable = sat
execute_on = timestep_end
index = 0
property = PorousFlow_saturation_qp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-3
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e6
viscosity = 1e-3
density0 = 1000
thermal_expansion = 0
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.15
[]
[]
[Preconditioning]
active = andy
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 20'
[]
[]
[Functions]
[timestepper]
type = PiecewiseLinear
x = '0 0.01 0.1 1 1.5 2 20 30 40 50'
y = '0.01 0.1 0.2 0.3 0.1 0.3 0.3 0.4 0.4 0.5'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 50
[TimeStepper]
type = FunctionDT
function = timestepper
[]
[]
[VectorPostprocessors]
[pp]
type = LineValueSampler
start_point = '0 0 0'
end_point = '15 0 0'
num_points = 150
sort_by = x
variable = pp
[]
[sat]
type = LineValueSampler
warn_discontinuous_face_values = false
start_point = '0 0 0'
end_point = '15 0 0'
num_points = 150
sort_by = x
variable = sat
[]
[]
[Outputs]
file_base = bl01
[csv]
type = CSV
sync_only = true
sync_times = '0.01 50'
[]
[exodus]
type = Exodus
execute_on = 'initial final'
[]
[]
(test/tests/problems/no_kernel_coverage_check/no_coverage_check.i)
[Mesh]
file = rectangle.e
[]
[Problem]
kernel_coverage_check = false
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
block = 1
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
block = 1
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[BCs]
active = 'left'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/inelastic_strain/elas_plas/elas_plas_nl1_cycle.i)
#
# Test for effective strain calculation.
# Boundary conditions from NAFEMS test NL1
#
#
# This is not a verification test. The boundary conditions are applied such
# that the first step generates only elastic stresses. The rest of the load
# steps generate cycles of tension and compression in the axial (i.e., y-axis)
# direction. The axial stresses and strains also cycle, however the effective
# plastic strain increases in value throughout the analysis.
#
[GlobalParams]
order = FIRST
family = LAGRANGE
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = one_elem2.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./vonmises]
order = CONSTANT
family = MONOMIAL
[../]
[./pressure]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./elastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./plastic_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./tot_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./eff_plastic_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./vonmises]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = vonmises
scalar_type = VonMisesStress
execute_on = timestep_end
[../]
[./pressure]
type = RankTwoScalarAux
rank_two_tensor = stress
variable = pressure
scalar_type = Hydrostatic
execute_on = timestep_end
[../]
[./elastic_strain_xx]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./elastic_strain_yy]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./elastic_strain_zz]
type = RankTwoAux
rank_two_tensor = elastic_strain
variable = elastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./plastic_strain_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./plastic_strain_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./plastic_strain_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = plastic_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./tot_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./tot_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./tot_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = tot_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./eff_plastic_strain]
type = MaterialRealAux
property = effective_plastic_strain
variable = eff_plastic_strain
[../]
[]
[Functions]
[./appl_dispy]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0'
y = '0.0 0.208e-4 0.50e-4 1.00e-4 0.784e-4 0.50e-4 0.0 0.216e-4 0.5e-4 1.0e-4 0.785e-4 0.50e-4 0.0'
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./origin_x]
type = DirichletBC
variable = disp_x
boundary = 103
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 102
value = 0.0
[../]
[./origin_y]
type = DirichletBC
variable = disp_y
boundary = 103
value = 0.0
[../]
[./top_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 1
function = appl_dispy
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 250e9
poissons_ratio = 0.25
[../]
[./strain]
type = ComputePlaneFiniteStrain
block = 1
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'isoplas'
block = 1
[../]
[./isoplas]
type = IsotropicPlasticityStressUpdate
yield_stress = 5e6
hardening_constant = 0.0
relative_tolerance = 1e-20
absolute_tolerance = 1e-8
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
l_tol = 1e-4
l_max_its = 100
nl_max_its = 20
dt = 1.0
start_time = 0.0
num_steps = 100
end_time = 12.0
[]
[Postprocessors]
[./stress_xx]
type = ElementAverageValue
variable = stress_xx
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./stress_xy]
type = ElementAverageValue
variable = stress_xy
[../]
[./vonmises]
type = ElementAverageValue
variable = vonmises
[../]
[./pressure]
type = ElementAverageValue
variable = pressure
[../]
[./el_strain_xx]
type = ElementAverageValue
variable = elastic_strain_xx
[../]
[./el_strain_yy]
type = ElementAverageValue
variable = elastic_strain_yy
[../]
[./el_strain_zz]
type = ElementAverageValue
variable = elastic_strain_zz
[../]
[./pl_strain_xx]
type = ElementAverageValue
variable = plastic_strain_xx
[../]
[./pl_strain_yy]
type = ElementAverageValue
variable = plastic_strain_yy
[../]
[./pl_strain_zz]
type = ElementAverageValue
variable = plastic_strain_zz
[../]
[./eff_plastic_strain]
type = ElementAverageValue
variable = eff_plastic_strain
[../]
[./tot_strain_xx]
type = ElementAverageValue
variable = tot_strain_xx
[../]
[./tot_strain_yy]
type = ElementAverageValue
variable = tot_strain_yy
[../]
[./tot_strain_zz]
type = ElementAverageValue
variable = tot_strain_zz
[../]
[./disp_x1]
type = NodalVariableValue
nodeid = 0
variable = disp_x
[../]
[./disp_x4]
type = NodalVariableValue
nodeid = 3
variable = disp_x
[../]
[./disp_y1]
type = NodalVariableValue
nodeid = 0
variable = disp_y
[../]
[./disp_y4]
type = NodalVariableValue
nodeid = 3
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[]
[Outputs]
exodus = true
csv = true
[./console]
type = Console
output_linear = true
[../]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest5.i)
# 2D, non-concave
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[SubdomainBoundingBox1]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0 0 0'
top_right = '1 2 1'
[]
[SubdomainBoundingBox2]
type = SubdomainBoundingBoxGenerator
input = SubdomainBoundingBox1
block_id = 1
bottom_left = '1 1 0'
top_right = '3 3 1'
[]
[ed0]
type = BlockDeletionGenerator
input = SubdomainBoundingBox2
block_id = 1
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[top]
type = DirichletBC
variable = u
boundary = bottom
value = 1
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 10
dt = 10
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/examples/parameter_study/nonlin_diff_react/nonlin_diff_react_sub.i)
[Functions]
[source]
type = ParsedFunction
value = "100 * sin(2 * pi * x) * sin(2 * pi * y)"
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 50
xmin = 0
xmax = 1
ny = 50
ymin = 0
ymax = 1
[]
[]
[Variables]
[U]
family = lagrange
order = first
[]
[]
[Kernels]
[diffusion]
type = Diffusion
variable = U
[]
[nonlin_function]
type = ExponentialReaction
variable = U
mu1 = 0.3
mu2 = 9
[]
[source]
type = BodyForce
variable = U
function = source
[]
[]
[BCs]
[dirichlet_all]
type = DirichletBC
variable = U
boundary = 'left right top bottom'
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[max]
type = ElementExtremeValue
variable = U
[]
[min]
type = ElementExtremeValue
variable = U
value_type = min
[]
[average]
type = ElementAverageValue
variable = U
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(test/tests/auxkernels/gap_value/gap_value_subdomain_restricted.i)
[Mesh]
file = nonmatching.e
dim = 2
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in the GeometricSearch system. See #2121 for more
# information.
parallel_type = replicated
[]
[Variables]
[./u]
block = 'left right'
[../]
[]
[AuxVariables]
[./gap_value]
block = left
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = 'leftbottom rightbottom'
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = 'lefttop righttop'
value = 1
[../]
[]
[AuxKernels]
[./gap_value_aux]
type = GapValueAux
variable = gap_value
boundary = leftright
paired_variable = u
paired_boundary = rightleft
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/indicators/gradient_jump_indicator/gradient_jump_indicator_test.i)
###########################################################
# This is a test of the Mesh Indicator System. It computes
# a user-defined "error" for each element in the Mesh.
#
# This test has been verified to give the same error
# calculation as the libMesh kelly_error_estimator. If
# this test is diffing... the diff is wrong!
#
# @Requirement F2.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./solution]
type = ParsedFunction
value = (exp(x)-1)/(exp(1)-1)
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
# Mesh Indicator System
[Adaptivity]
[Indicators]
[error]
type = GradientJumpIndicator
variable = u
[]
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/buckley_leverett/bl22.i)
# two-phase version
# super-sharp front version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 150
xmin = 0
xmax = 15
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '1E-4 1E-3 1E-2 2E-2 5E-2 6E-2 0.1 0.2'
x = '0 1E-2 1E-1 1 5 20 40 41'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater pgas'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 1000
bulk_mod = 2E6
[../]
[./DensityGas]
type = RichardsDensityConstBulk
dens0 = 1
bulk_mod = 2E6
[../]
[./SeffWater]
type = RichardsSeff2waterVG
m = 0.8
al = 1E-4
[../]
[./SeffGas]
type = RichardsSeff2gasVG
m = 0.8
al = 1E-4
[../]
[./RelPermWater]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./RelPermGas]
type = RichardsRelPermPower
simm = 0.0
n = 2
[../]
[./SatWater]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SatGas]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGwater]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[./SUPGgas]
type = RichardsSUPGstandard
p_SUPG = 1E-5
[../]
[]
[Variables]
[./pwater]
order = FIRST
family = LAGRANGE
[../]
[./pgas]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./Seff1VG_Aux]
[../]
[./bounds_dummy]
[../]
[]
[Kernels]
active = 'richardsfwater richardstwater richardsfgas richardstgas'
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstgas]
type = RichardsMassChange
variable = pgas
[../]
[./richardsfgas]
type = RichardsFlux
variable = pgas
[../]
[./richardsppenalty]
type = RichardsPPenalty
variable = pgas
a = 1E-18
lower_var = pwater
[../]
[]
[AuxKernels]
[./Seff1VG_AuxK]
type = RichardsSeffAux
variable = Seff1VG_Aux
seff_UO = SeffWater
pressure_vars = 'pwater pgas'
[../]
[]
[ICs]
[./water_ic]
type = FunctionIC
variable = pwater
function = initial_water
[../]
[./gas_ic]
type = FunctionIC
variable = pgas
function = initial_gas
[../]
[]
[BCs]
[./left_w]
type = DirichletBC
variable = pwater
boundary = left
value = 1E6
[../]
[./left_g]
type = DirichletBC
variable = pgas
boundary = left
value = 1E6
[../]
[./right_w]
type = DirichletBC
variable = pwater
boundary = right
value = -100000
[../]
[./right_g]
type = DirichletBC
variable = pgas
boundary = right
value = 0
[../]
[]
[Functions]
[./initial_water]
type = ParsedFunction
value = 1000000*(1-min(x/5,1))-100000*(max(x-5,0)/max(abs(x-5),1E-10))
[../]
[./initial_gas]
type = ParsedFunction
value = max(1000000*(1-x/5),0)+1000
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.15
mat_permeability = '1E-10 0 0 0 1E-10 0 0 0 1E-10'
density_UO = 'DensityWater DensityGas'
relperm_UO = 'RelPermWater RelPermGas'
SUPG_UO = 'SUPGwater SUPGgas'
sat_UO = 'SatWater SatGas'
seff_UO = 'SeffWater SeffGas'
viscosity = '1E-3 1E-6'
gravity = '0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
[./standard]
type = SMP
full = true
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_rtol -ksp_atol'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 20 1E-20 1E-20'
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 50
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
execute_on = 'timestep_end'
file_base = bl22
print_linear_converged_reason = false
print_nonlinear_converged_reason = false
[./exodus]
type = Exodus
interval = 100000
hide = pgas
execute_on = 'initial final timestep_end'
[../]
[]
(test/tests/preconditioners/hmg/diffusion_hmg.i)
[Mesh]
[./dmg]
type = DistributedRectilinearMeshGenerator
nx = 10
ny = 10
dim = 2
[../]
[]
[Variables]
[u1][]
[u2][]
[u3][]
[]
[Kernels]
[./diff_1]
type = Diffusion
variable = u1
[../]
[./diff_2]
type = Diffusion
variable = u2
[../]
[./diff_3]
type = Diffusion
variable = u3
[../]
[]
[BCs]
[./left_1]
type = DirichletBC
variable = u1
boundary = 'left'
value = 0
[../]
[./right_1]
type = DirichletBC
variable = u1
boundary = 'right'
value = 1
[../]
[./left_2]
type = DirichletBC
variable = u2
boundary = 'left'
value = 0
[../]
[./right_2]
type = DirichletBC
variable = u2
boundary = 'right'
value = 2
[../]
[./left_3]
type = DirichletBC
variable = u3
boundary = 'left'
value = 0
[../]
[./right_3]
type = DirichletBC
variable = u3
boundary = 'right'
value = 3
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hmg_use_subspace_coarsening'
petsc_options_value = 'hmg true'
petsc_options = '-snes_view'
[]
[Outputs]
exodus = true
[]
(test/tests/problems/eigen_problem/eigensolvers/ipm.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 100
ymin = 0
ymax = 100
elem_type = QUAD4
nx = 8
ny = 8
uniform_refine = 0
displacements = 'x_disp y_disp'
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./x_disp]
[../]
[./y_disp]
[../]
[]
[AuxKernels]
[./x_disp]
type = FunctionAux
variable = x_disp
function = x_disp_func
[../]
[./y_disp]
type = FunctionAux
variable = y_disp
function = y_disp_func
[../]
[]
[Functions]
[./x_disp_func]
type = ParsedFunction
value = 0
[../]
[./y_disp_func]
type = ParsedFunction
value = 0
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
use_displaced_mesh = true
[../]
[./rea]
type = CoefReaction
variable = u
coefficient = 2.0
use_displaced_mesh = true
[../]
[]
[BCs]
[./homogeneous]
type = DirichletBC
variable = u
boundary = '0 1 2 3'
value = 0
use_displaced_mesh = true
[../]
[]
[Executioner]
type = Eigenvalue
which_eigen_pairs = largest_magnitude
eigen_problem_type = NON_HERMITIAN
n_eigen_pairs = 5
n_basis_vectors = 15
solve_type = krylovschur
petsc_options = '-eps_view'
[]
[VectorPostprocessors]
[./eigenvalues]
type = Eigenvalues
execute_on = 'timestep_end'
[../]
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[./console]
type = Console
outlier_variable_norms = false
[../]
[]
(test/tests/ics/random_ic_test/random_ic_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 50
ny = 50
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[u_aux]
order = FIRST
family = LAGRANGE
[]
[]
[ICs]
[u]
type = RandomIC
legacy_generator = false
variable = u
[]
[u_aux]
type = RandomIC
legacy_generator = false
variable = u_aux
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_base.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
base_name = test
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = test_stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = test_fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq]
type = MaterialRealAux
variable = peeq
property = ep_eqv
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv
[../]
[./flowrate]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress
base_name = test
[../]
[./ep_eqv]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate
[../]
[./ep_eqv_rate]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
base_name = test
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate'
strength_user_objects = 'flowstress'
internal_var_user_objects = 'ep_eqv'
internal_var_rate_user_objects = 'ep_eqv_rate'
base_name = test
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
base_name = test
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq]
type = ElementAverageValue
variable = peeq
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_base
exodus = true
csv = false
[]
(modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
# Two-phase nonisothermal Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s of cold gas into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 40
xmin = 0.1
xmax = 200
bias_x = 1.05
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[temperature]
initial_condition = 70
scaling = 1e-4
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[energy]
type = PorousFlowEnergyTimeDerivative
variable = temperature
[]
[heatadv]
type = PorousFlowHeatAdvection
variable = temperature
[]
[conduction]
type = PorousFlowHeatConduction
variable = temperature
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi temperature'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowWaterNCG
water_fp = water
gas_fp = methane
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[methane]
type = MethaneFluidProperties
[]
[water]
type = Water97FluidProperties
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[waterncg]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature = temperature
temperature_unit = Celsius
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[rockheat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1000
density = 2500
[]
[rock_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '50 0 0 0 50 0 0 0 50'
[]
[]
[BCs]
[cold_gas]
type = DirichletBC
boundary = left
variable = temperature
value = 20
[]
[gas_injecton]
type = PorousFlowSink
boundary = left
variable = zi
flux_function = -0.159155
[]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[righttemp]
type = DirichletBC
boundary = right
value = 70
variable = temperature
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e4
nl_abs_tol = 1e-7
nl_rel_tol = 1e-5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '2 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '2 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '2 0 0'
variable = zi
[]
[temperature]
type = PointValue
point = '2 0 0'
variable = temperature
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '2 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '2 0 0'
variable = y0
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
csv = true
[]
(modules/contact/test/tests/sliding_block/sliding/frictionless_kinematic.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the kinematic method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+6
normal_smoothing_distance = 0.1
[../]
[]
(examples/ex07_ics/transient.i)
[Mesh]
file = half-cone.e
[]
[Variables]
[./diffused]
order = FIRST
family = LAGRANGE
# Use the initial Condition block underneath the variable
# for which we want to apply this initial condition
[./InitialCondition]
type = ExampleIC
coefficient = 2.0
[../]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = diffused
[../]
[./diff]
type = Diffusion
variable = diffused
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = diffused
boundary = 'top'
value = 2
[../]
[./right]
type = DirichletBC
variable = diffused
boundary = 'bottom'
value = 8
[../]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0
num_steps = 10
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
[]
[Outputs]
# Request that we output the initial condition so we can inspect
# the values with our visualization tool
exodus = true
[]
(test/tests/multiapps/picard/pseudo_transient_picard_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
parallel_type = replicated
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./force_u]
type = CoupledForce
variable = u
v = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./vnorm]
type = ElementL2Norm
variable = v
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
fixed_point_rel_tol = 1e-6
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = pseudo_transient_picard_sub.i
no_backup_and_restore = true
[../]
[]
[Transfers]
[./v_from_sub]
type = MultiAppNearestNodeTransfer
from_multi_app = sub
source_variable = v
variable = v
[../]
[./u_to_sub]
type = MultiAppNearestNodeTransfer
to_multi_app = sub
source_variable = u
variable = u
[../]
[]
(modules/combined/test/tests/gravity/gravity_rz.i)
# Gravity Test
#
# This test is designed to exercise the gravity body force rz kernel.
#
# The mesh for this problem is a rectangle 10 units by 1 unit.
#
# The boundary conditions for this problem are as follows. The
# displacement is zero at the top. The acceleration of gravity is 20.
#
# The material has a Young's modulus of 1e6 and a density of 2.
#
# The analytic solution for the displacement along the bar is:
#
# u(y) = -b*y^2/(2*E)+b*L*y/E
#
# The displacement at y=L is b*L^2/(2*E) = 2*20*10*10/(2*1e6) = 0.002.
#
# The analytic solution for the stress along the bar assuming linear
# elasticity is:
#
# S(y) = b*(L-y)
#
# The stress at x=0 is b*L = 2*20*10 = 400.
#
# Note: The simulation does not measure stress at y=0. The stress
# is reported at element centers. The element closest to y=0 sits
# at y = 1/4 and has a stress of 390. This matches the linear
# stress distribution that is expected. The same situation applies
# at y = L where the stress is zero analytically. The nearest
# element is at y=9.75 where the stress is 10.
#
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = gravity_rz_test.e
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master/All]
volumetric_locking_correction = true
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_xy'
[]
[Kernels]
[./gravity]
type = Gravity
variable = disp_y
value = 20
[../]
[]
[BCs]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 0.5e6
lambda = 0.0
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./density]
type = Density
density = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
end_time = 1.0
[]
[Outputs]
file_base = gravity_rz_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/lower_limit.i)
temp = 800.0160634
disp = 1.0053264195e6
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temperature]
initial_condition = ${temp}
[../]
[]
[Functions]
[./temp_weight]
type = ParsedFunction
vars = 'lower_limit avg'
vals = '800.0160634 temp_avg'
value = 'val := 2 * avg / lower_limit - 1;
clamped := if(val <= -1, -0.99999, if(val >= 1, 0.99999, val));
plus := exp(-2 / (1 + clamped));
minus := exp(-2 / (1 - clamped));
plus / (plus + minus)'
[../]
[./stress_weight]
type = ParsedFunction
vars = 'lower_limit avg'
vals = '2.010652839e6 vonmises_stress'
value = 'val := 2 * avg / lower_limit - 1;
clamped := if(val <= -1, -0.99999, if(val >= 1, 0.99999, val));
plus := exp(-2 / (1 + clamped));
minus := exp(-2 / (1 - clamped));
plus / (plus + minus)'
[../]
[./creep_rate_exact]
type = ParsedFunction
vars = 'lower_limit_strain temp_weight stress_weight'
vals = '3.370764e-12 temp_weight stress_weight'
value = 'lower_limit_strain * temp_weight * stress_weight'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = vonmises_stress
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./pressure_x]
type = Pressure
variable = disp_x
boundary = right
factor = ${disp}
[../]
[./pressure_y]
type = Pressure
variable = disp_y
boundary = top
factor = -${disp}
[../]
[./pressure_z]
type = Pressure
variable = disp_z
boundary = front
factor = -${disp}
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3.30e11
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[../]
[./rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
outputs = all
apply_strain = false
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
automatic_scaling = true
compute_scaling_once = false
num_steps = 1
dt = 1e5
[]
[Postprocessors]
[./creep_rate_exact]
type = FunctionValuePostprocessor
function = creep_rate_exact
[../]
[./creep_rate_avg]
type = ElementAverageValue
variable = creep_rate
[../]
[./creep_rate_diff]
type = DifferencePostprocessor
value1 = creep_rate_exact
value2 = creep_rate_avg
[../]
[./temp_avg]
type = ElementAverageValue
variable = temperature
[../]
[./cell_dislocations]
type = ElementAverageValue
variable = cell_dislocations
[../]
[./wall_disloactions]
type = ElementAverageValue
variable = wall_dislocations
[../]
[./vonmises_stress]
type = ElementAverageValue
variable = vonmises_stress
[../]
[]
[Outputs]
csv = true
[]
(test/tests/mesh/adapt/adapt_test.i)
[Mesh]
type = GeneratedMesh
nx = 2
ny = 2
dim = 2
uniform_refine = 3
[]
[Variables]
active = 'u v'
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uconv uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uconv]
type = Convection
variable = u
velocity = '10 1 0'
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/auxkernels/vector_magnitude/vector_magnitude.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 2
ny = 2
nz = 2
[../]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[AuxVariables]
[./vector_x]
initial_condition = 2
[../]
[./vector_y]
initial_condition = 1
[../]
[./vector_z]
initial_condition = 2
[../]
[./magnitude]
[../]
[]
[AuxKernels]
[./vx]
type = ConstantAux
variable = vector_x
value = 2
[../]
[./vy]
type = ConstantAux
variable = vector_y
value = 1
[../]
[./vz]
type = ConstantAux
variable = vector_z
value = 2
[../]
[./magnitude]
type = VectorMagnitudeAux
variable = magnitude
x = vector_x
y = vector_y
z = vector_z
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/exodus/exodus.i)
###########################################################
# This is a simple test demonstrating the ability to create
# a user-defined output type (ExodusII format).
#
# @Requirement F1.70
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
# Demonstration of using an Exodus Outputter
[./out]
type = Exodus
[../]
[]
[Debug]
show_var_residual_norms = true
#show_actions = true
[]
(modules/combined/test/tests/combined_plasticity_temperature/plasticity_temperature_dep_yield.i)
#
# This is a test of the piece-wise linear strain hardening model using the
# small strain formulation. This test exercises the temperature-dependent
# yield stress.
#
# Test procedure:
# 1. The element is pulled to and then beyond the yield stress for a given
# temperature.
# 2. The displacement is then constant while the temperature increases and
# the yield stress decreases. This results in a lower stress with more
# plastic strain.
# 3. The temperature decreases beyond its original value giving a higher
# yield stress. The displacement increases, causing increases stress to
# the new yield stress.
# 4. The temperature and yield stress are constant with increasing
# displacement giving a constant stress and more plastic strain.
#
# Plotting total_strain_yy on the x axis and stress_yy on the y axis shows
# the stress history in a clear way.
#
# s |
# t | *****
# r | *
# e | ***** *
# s | * * *
# s | * *
# |*
# +------------------
# total strain
#
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
incremental = true
add_variables = true
generate_output = 'stress_yy plastic_strain_xx plastic_strain_yy plastic_strain_zz'
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1 2 4 5 6'
y = '0 0.025 0.05 0.05 0.06 0.085'
[../]
[./yield]
type = PiecewiseLinear
x = '400 500 600'
y = '6e3 5e3 4e3'
[../]
[./temp]
type = PiecewiseLinear
x = '0 1 2 3 4'
y = '500 500 500 600 400'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp]
type = FunctionDirichletBC
variable = temp
function = temp
boundary = left
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 0
youngs_modulus = 2.0e5
poissons_ratio = 0.3
[../]
[./creep_plas]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
block = 0
inelastic_models = 'plasticity'
max_iterations = 50
absolute_tolerance = 1e-05
[../]
[./plasticity]
type = IsotropicPlasticityStressUpdate
block = 0
hardening_constant = 0
yield_stress_function = yield
temperature = temp
[../]
[./heat_conduction]
type = HeatConductionMaterial
block = 0
specific_heat = 1
thermal_conductivity = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 6
dt = 0.1
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/vectorpostprocessor/vectorpostprocessor.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./vpp_0]
order = CONSTANT
family = MONOMIAL
[../]
[./vpp_1]
order = CONSTANT
family = MONOMIAL
[../]
[./vpp_2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./vpp_0]
type = VectorPostprocessorAux
variable = vpp_0
index = 0
vector = value
vpp = constant
[../]
[./vpp_1]
type = VectorPostprocessorAux
variable = vpp_1
index = 1
vector = value
vpp = constant
[../]
[./vpp_2]
type = VectorPostprocessorAux
variable = vpp_2
index = 2
vector = value
vpp = constant
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[VectorPostprocessors]
[./constant]
type = ConstantVectorPostprocessor
value = '1.2 3.4 9.6'
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/updated/thermal_expansion/constrained.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = false
eigenstrain_names = "thermal_contribution"
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[control_temperature]
type = FunctionAux
variable = temperature
function = temperature_control
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[rightx]
type = DirichletBC
preset = true
boundary = right
variable = disp_x
value = 0.0
[]
[lefty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[leftz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[]
[Functions]
[temperature_control]
type = ParsedFunction
value = '100*t'
[]
[]
[Modules]
[TensorMechanics]
[Master]
[all]
strain = SMALL
new_system = true
formulation = UPDATED
volumetric_locking_correction = false
generate_output = 'cauchy_stress_xx cauchy_stress_yy cauchy_stress_zz cauchy_stress_xy '
'cauchy_stress_xz cauchy_stress_yz strain_xx strain_yy strain_zz strain_xy '
'strain_xz strain_yz'
[]
[]
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100000.0
poissons_ratio = 0.3
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[thermal_expansion]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 1.0e-3
eigenstrain_name = thermal_contribution
stress_free_temperature = 0.0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = NEWTON
end_time = 1
dt = 1
type = Transient
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/richards/test/tests/rogers_stallybrass_clements/rsc01.i)
# RSC test with high-res time and spatial resolution
[Mesh]
type = GeneratedMesh
dim = 2
nx = 600
ny = 1
xmin = 0
xmax = 10 # x is the depth variable, called zeta in RSC
ymin = 0
ymax = 0.05
[]
[GlobalParams]
richardsVarNames_UO = PPNames
[]
[Functions]
[./dts]
type = PiecewiseLinear
y = '3E-3 3E-2 0.05'
x = '0 1 5'
[../]
[]
[UserObjects]
[./PPNames]
type = RichardsVarNames
richards_vars = 'pwater poil'
[../]
[./DensityWater]
type = RichardsDensityConstBulk
dens0 = 10
bulk_mod = 2E9
[../]
[./DensityOil]
type = RichardsDensityConstBulk
dens0 = 20
bulk_mod = 2E9
[../]
[./SeffWater]
type = RichardsSeff2waterRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./SeffOil]
type = RichardsSeff2gasRSC
oil_viscosity = 2E-3
scale_ratio = 2E3
shift = 10
[../]
[./RelPerm]
type = RichardsRelPermMonomial
simm = 0
n = 1
[../]
[./Saturation]
type = RichardsSat
s_res = 0.0
sum_s_res = 0.0
[../]
[./SUPGstandard]
type = RichardsSUPGstandard
p_SUPG = 1.0E-2
[../]
[]
[Variables]
[./pwater]
[../]
[./poil]
[../]
[]
[ICs]
[./water_init]
type = ConstantIC
variable = pwater
value = 0
[../]
[./oil_init]
type = ConstantIC
variable = poil
value = 15
[../]
[]
[Kernels]
[./richardstwater]
type = RichardsMassChange
variable = pwater
[../]
[./richardsfwater]
type = RichardsFlux
variable = pwater
[../]
[./richardstoil]
type = RichardsMassChange
variable = poil
[../]
[./richardsfoil]
type = RichardsFlux
variable = poil
[../]
[]
[AuxVariables]
[./SWater]
[../]
[./SOil]
[../]
[]
[AuxKernels]
[./Seff1VGwater_AuxK]
type = RichardsSeffAux
variable = SWater
seff_UO = SeffWater
pressure_vars = 'pwater poil'
[../]
[./Seff1VGoil_AuxK]
type = RichardsSeffAux
variable = SOil
seff_UO = SeffOil
pressure_vars = 'pwater poil'
[../]
[]
[BCs]
# we are pumping water into a system that has virtually incompressible fluids, hence the pressures rise enormously. this adversely affects convergence because of almost-overflows and precision-loss problems. The fixed things help keep pressures low and so prevent these awful behaviours. the movement of the saturation front is the same regardless of the fixed things.
active = 'recharge fixedoil fixedwater'
[./recharge]
type = RichardsPiecewiseLinearSink
variable = pwater
boundary = 'left'
pressures = '-1E10 1E10'
bare_fluxes = '-1 -1'
use_mobility = false
use_relperm = false
[../]
[./fixedwater]
type = DirichletBC
variable = pwater
boundary = 'right'
value = 0
[../]
[./fixedoil]
type = DirichletBC
variable = poil
boundary = 'right'
value = 15
[../]
[]
[Materials]
[./rock]
type = RichardsMaterial
block = 0
mat_porosity = 0.25
mat_permeability = '1E-5 0 0 0 1E-5 0 0 0 1E-5'
density_UO = 'DensityWater DensityOil'
relperm_UO = 'RelPerm RelPerm'
SUPG_UO = 'SUPGstandard SUPGstandard'
sat_UO = 'Saturation Saturation'
seff_UO = 'SeffWater SeffOil'
viscosity = '1E-3 2E-3'
gravity = '0E-0 0 0'
linear_shape_fcns = true
[../]
[]
[Preconditioning]
active = 'andy'
[./andy]
type = SMP
full = true
petsc_options = ''
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-10 1E-10 10000'
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options = '-snes_converged_reason'
end_time = 5
[./TimeStepper]
type = FunctionDT
function = dts
[../]
[]
[Outputs]
file_base = rsc01
interval = 100000
execute_on = 'initial final'
exodus = true
[]
(python/peacock/tests/common/simple_diffusion2.i)
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
[]
[new_block]
type = SubdomainBoundingBoxGenerator
input = generate
bottom_left = '0.25 0.25 0'
top_right = '0.75 0.75 0'
block_id = 1980
[]
[]
[Variables]
[not_u]
[]
[]
[AuxVariables]
[aux]
initial_condition = 1980
[]
[u]
initial_condition = 624
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = not_u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = not_u
boundary = left
value = 4
[]
[right]
type = DirichletBC
variable = not_u
boundary = right
value = 6
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/gap_heat_transfer_convex/gap_heat_transfer_convex_gap_offsets.i)
#The two blocks were moved apart by the value of 0.005 in the y-direction, respectively.
#This value was compensated by the gap offsets from both secondary and primary sides
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
[]
[Mesh]
file = gap_heat_transfer_convex_gap_offsets.e
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0 2.0'
y = '0 1.0'
[../]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '200 200'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./primary_gap_offset]
[../]
[./secondary_gap_offset]
[../]
[./mapped_primary_gap_offset]
[../]
[]
[AuxKernels]
[./primary_gap_offset]
type = ConstantAux
variable = primary_gap_offset
value = -0.005
boundary = 2
[../]
[./mapped_primary_gap_offset]
type = GapValueAux
variable = mapped_primary_gap_offset
paired_variable = primary_gap_offset
boundary = 3
paired_boundary = 2
[../]
[./secondary_gap_offset]
type = ConstantAux
variable = secondary_gap_offset
value = -0.005
boundary = 3
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 2
secondary = 3
emissivity_primary = 0
emissivity_secondary = 0
secondary_gap_offset = secondary_gap_offset
mapped_primary_gap_offset = mapped_primary_gap_offset
[../]
[]
[Modules/TensorMechanics/Master/All]
volumetric_locking_correction = true
strain = FINITE
eigenstrain_names = eigenstrain
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./move_right]
type = FunctionDirichletBC
boundary = '3'
variable = disp_x
function = disp
[../]
[./fixed_x]
type = DirichletBC
boundary = '1'
variable = disp_x
value = 0
[../]
[./fixed_y]
type = DirichletBC
boundary = '1 2 3 4'
variable = disp_y
value = 0
[../]
[./fixed_z]
type = DirichletBC
boundary = '1 2 3 4'
variable = disp_z
value = 0
[../]
[./temp_bottom]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_top]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 100
thermal_expansion_coeff = 0
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./heat1]
type = HeatConductionMaterial
block = 1
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./heat2]
type = HeatConductionMaterial
block = 2
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
block = '1 2'
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
dt = 0.1
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/beam/fric_constraint/2_block_common_cross_stick.i)
# Test for LineElementAction on multiple blocks by placing parameters
# common to all blocks outside of the individual action blocks
# 2 beams of length 1m are fixed at one end and a force of 1e-4 N
# is applied at the other end of the beams. Beam 1 is in block 1
# and beam 2 is in block 2. All the material properties for the two
# beams are identical. The moment of inertia of beam 2 is twice that
# of beam 1.
# Since the end displacement of a cantilever beam is inversely proportional
# to the moment of inertia, the y displacement at the end of beam 1 should be twice
# that of beam 2.
[Mesh]
type = FileMesh
file = test_fric_cross.e
#displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '1 3'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '1 2 3'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '1 2 3'
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = '1 2 3'
value = 0.0
[../]
[./move_z4]
type = FunctionDirichletBC
variable = disp_z
boundary = 2
function = pull
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0'
y = '0.0 0.0 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 5e-5
l_max_its = 10
dt = 1
dtmin = 1
end_time = 13
[]
[Modules/TensorMechanics/LineElementMaster]
# parameters common to all blocks
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.5
y_orientation = '0.0 1.0 0.0'
[./block_1]
Iy = 1e-5
Iz = 1e-5
block = 1
[../]
[./block_2]
Iy = 8e-4
Iz = 8e-4
block = '2 3'
[../]
[]
[Materials]
[./stress]
type = ComputeBeamResultants
block = '1 2 3'
[../]
[./elasticity_1]
type = ComputeElasticityBeam
youngs_modulus = 2.0
poissons_ratio = 0.3
shear_coefficient = 1.0
block = '1 2 3'
[../]
[]
[Constraints]
[./tie_z]
type = NodalStickConstraint
penalty = 1e8
boundary = 6
secondary = 4
variable = disp_z
formulation = kinematic
[../]
[./tie_z2]
type = NodalStickConstraint
penalty = 1e8
boundary = 6
secondary = 5
variable = disp_z
formulation = kinematic
[../]
[]
[Postprocessors]
[./disp_x_1]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x_2]
type = NodalVariableValue
nodeid = 2
variable = disp_x
[../]
[./disp_z_1]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[../]
[./disp_z_2]
type = NodalVariableValue
nodeid = 2
variable = disp_z
[../]
[]
[Outputs]
#file_base = '2_block_out'
exodus = true
[]
(modules/contact/test/tests/frictional/sliding_elastic_blocks_2d/sliding_elastic_blocks_2d.i)
[Mesh]
file = sliding_elastic_blocks_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
value = -t
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
diag_save_in = 'diag_saved_x diag_saved_y'
[../]
[]
[AuxKernels]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip]
type = PenetrationAux
variable = accum_slip
execute_on = timestep_end
quantity = accumulated_slip
boundary = 3
paired_boundary = 2
[../]
[./tangential_force_x]
type = PenetrationAux
variable = tang_force_x
execute_on = timestep_end
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tangential_force_y]
type = PenetrationAux
variable = tang_force_y
execute_on = timestep_end
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.005
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.0e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.05
num_steps = 1000
nl_rel_tol = 1e-16
nl_abs_tol = 1e-09
dtmin = 0.01
l_tol = 1e-3
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
file_base = sliding_elastic_blocks_2d_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
friction_coefficient = '0.25'
penalty = 1e6
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
secondary = 3
primary = 2
[../]
[]
(test/tests/mesh_modifiers/block_deleter/BlockDeleterTest12.i)
# 2D, concave block
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 8
ny = 8
xmin = 0
xmax = 4
ymin = 0
ymax = 4
[]
[mark]
type = SubdomainBoundingBoxGenerator
input = gen
block_id = 1
bottom_left = '0.9 0.9 0'
top_right = '3.1 3.1 0'
[]
[delete]
type = BlockDeletionGenerator
input = mark
block = 1
new_boundary = cut_surface
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[dt]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[outer]
type = DirichletBC
variable = u
boundary = 'top bottom left right'
value = 1
[]
[inner]
type = DirichletBC
variable = u
boundary = cut_surface
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/actions/fullsat_brine_except3.i)
# Check error when using PorousFlowFullySaturated action,
# attempting to use both brine and single-component fluids
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[GlobalParams]
block = '0'
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = pp
temperature = temp
mass_fraction_vars = "nacl"
fluid_properties_type = PorousFlowSingleComponentFluid
nacl_name = nacl
fp = simple_fluid
dictator_name = dictator
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Variables]
[pp]
initial_condition = 20E6
[]
[temp]
initial_condition = 323.15
[]
[nacl]
initial_condition = 0.1047
[]
[]
[Kernels]
# All provided by PorousFlowFullySaturated action
[]
[BCs]
[t_bdy]
type = DirichletBC
variable = temp
boundary = 'left right'
value = 323.15
[]
[p_bdy]
type = DirichletBC
variable = pp
boundary = 'left right'
value = 20E6
[]
[nacl_bdy]
type = DirichletBC
variable = nacl
boundary = 'left right'
value = 0.1047
[]
[]
[Materials]
# Thermal conductivity
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
wet_thermal_conductivity = '3 0 0 0 3 0 0 0 3'
[]
# Specific heat capacity
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 850
density = 2700
[]
# Permeability
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-13 0 0 0 1E-13 0 0 0 1E-13'
[]
# Porosity
[porosity]
type = PorousFlowPorosityConst
porosity = 0.3
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1
end_time = 1
[]
[Outputs]
file_base = fullsat_brine_except2
[]
(test/tests/mesh/named_entities/named_entities_test.i)
[Mesh]
file = named_entities.e
uniform_refine = 1
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
block = '1 center_block 3'
[./InitialCondition]
type = ConstantIC
value = 20
block = 'center_block 3'
[../]
[../]
[]
[AuxVariables]
[./reporter]
order = CONSTANT
family = MONOMIAL
block = 'left_block 3'
[../]
[]
[ICs]
[./reporter_ic]
type = ConstantIC
variable = reporter
value = 10
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
# Note we are using both names and numbers here
block = 'left_block 2 right_block'
[../]
[./body_force]
type = BodyForce
variable = u
block = 'center_block'
value = 10
[../]
[]
[AuxKernels]
[./hardness]
type = MaterialRealAux
variable = reporter
property = 'hardness'
block = 'left_block 3'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left_side'
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right_side'
value = 1
[../]
[]
[Postprocessors]
[./elem_average]
type = ElementAverageValue
variable = u
block = 'center_block'
execute_on = 'initial timestep_end'
[../]
[./side_average]
type = SideAverageValue
variable = u
boundary = 'right_side'
execute_on = 'initial timestep_end'
[../]
[]
[Materials]
[./constant]
type = GenericConstantMaterial
prop_names = 'hardness'
prop_values = 10
block = '1 right_block'
[../]
[./empty]
type = MTMaterial
block = 'center_block'
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_copy_transfer/third_monomial_to_sub/master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = THIRD
[../]
[]
[AuxKernels]
[./aux]
type = FunctionAux
function = x*y
variable = aux
execute_on = initial
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[MultiApps]
[./sub]
type = FullSolveMultiApp
input_files = sub.i
execute_on = timestep_end
[../]
[]
[Transfers]
[./to_sub]
type = MultiAppCopyTransfer
source_variable = aux
variable = u
to_multi_app = sub
[../]
[]
[Outputs]
hide = 'u'
exodus = true
[]
(modules/porous_flow/test/tests/numerical_diffusion/pffltvd.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, employing PorousFlow Kernels and UserObjects, with superbee flux-limiter
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[porepressure]
[]
[tracer]
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = '1 - x'
[]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = tracer
[]
[flux0]
type = PorousFlowFluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = advective_flux_calculator_0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = porepressure
[]
[flux1]
type = PorousFlowFluxLimitedTVDAdvection
variable = porepressure
advective_flux_calculator = advective_flux_calculator_1
[]
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1
boundary = left
[]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_component_1]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 1
use_mobility = true
flux_function = 1E3
[]
[remove_component_0]
type = PorousFlowPiecewiseLinearSink
variable = tracer
boundary = right
fluid_phase = 0
pt_vals = '0 1E3'
multipliers = '0 1E3'
mass_fraction_component = 0
use_mobility = true
flux_function = 1E3
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
thermal_expansion = 0
viscosity = 1.0
density0 = 1000.0
[]
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure tracer'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[advective_flux_calculator_0]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 0
[]
[advective_flux_calculator_1]
type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
flux_limiter_type = superbee
fluid_component = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = tracer
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = the_simple_fluid
phase = 0
[]
[relperm]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-2 0 0 0 1E-2 0 0 0 1E-2'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 101
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
timestep_tolerance = 1E-3
[]
[Outputs]
[out]
type = CSV
execute_on = final
[]
[]
(modules/combined/test/tests/evolving_mass_density/uniform_expand_compress_test_tensors.i)
# Element mass tests
# This series of tests is designed to compute the mass of elements based on
# an evolving mass density calculation. The tests consist of expansion and compression
# of the elastic patch test model along each axis, uniform expansion and compression,
# and shear in each direction. The expansion and compression tests change the volume of
# the elements. The corresponding change in density should compensate for this so the
# mass remains constant. The shear tests should not result in a volume change, and this
# is checked too. The mass calculation is done with the post processor called Mass.
# The tests/file names are as follows:
# Expansion and compression along a single axis
# expand_compress_x_test_out.e
# expand_compress_y_test_out.e
# expand_compress_z_test_out.e
# Volumetric expansion and compression
# uniform_expand_compress_test.i
# Zero volume change shear along each axis
# shear_x_test_out.e
# shear_y_test_out.e
# shear_z_test_out.e
# The resulting mass calculation for these tests should always be = 1.
# This test is a duplicate of the uniform_expand_compress_test.i test for solid mechanics, and the
# output of this tensor mechanics test is compared to the original
# solid mechanics output. The duplication is necessary to test the
# migrated tensor mechanics version while maintaining tests for solid mechanics.
[Mesh]
file = elastic_patch.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant2]
type = PiecewiseLinear
x = '0.00 1.00 2.0 3.00'
y = '0.00 0.25 0.0 -0.25'
scale_factor = 1
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./9_y]
type = DirichletBC
variable = disp_y
boundary = 9
value = 0
[../]
[./10_y]
type = DirichletBC
variable = disp_x
boundary = 10
value = 0
[../]
[./14_y]
type = DirichletBC
variable = disp_z
boundary = 14
value = 0
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 11
function = rampConstant2
[../]
[./front]
type = FunctionDirichletBC
variable = disp_z
preset = false
boundary = 13
function = rampConstant2
[../]
[./side]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 12
function = rampConstant2
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 5 6 7'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./small_strain]
type = ComputeSmallStrain
block = ' 1 2 3 4 5 6 7'
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
block = '1 2 3 4 5 6 7'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 3
end_time =3.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
file_base = uniform_expand_compress_test_out
[../]
[]
[Postprocessors]
[./Mass]
type = Mass
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[]
(modules/tensor_mechanics/examples/cframe_iga/cframe_iga.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[igafile]
type = FileMeshGenerator
file = cframe_iga_coarse.e
clear_spline_nodes = true
[]
[]
[Variables]
[disp_x]
order = SECOND
family = RATIONAL_BERNSTEIN
[]
[disp_y]
order = SECOND
family = RATIONAL_BERNSTEIN
[]
[disp_z]
order = SECOND
family = RATIONAL_BERNSTEIN
[]
[]
[Kernels]
[TensorMechanics]
#Stress divergence kernels
displacements = 'disp_x disp_y disp_z'
[]
[]
[AuxVariables]
[von_mises]
#Dependent variable used to visualize the von Mises stress
order = SECOND
family = MONOMIAL
[]
[Max_Princ]
#Dependent variable used to visualize the Hoop stress
order = SECOND
family = MONOMIAL
[]
[stress_xx]
order = SECOND
family = MONOMIAL
[]
[stress_yy]
order = SECOND
family = MONOMIAL
[]
[stress_zz]
order = SECOND
family = MONOMIAL
[]
[]
[AuxKernels]
[von_mises_kernel]
#Calculates the von mises stress and assigns it to von_mises
type = RankTwoScalarAux
variable = von_mises
rank_two_tensor = stress
scalar_type = VonMisesStress
[]
[MaxPrin]
type = RankTwoScalarAux
variable = Max_Princ
rank_two_tensor = stress
scalar_type = MaxPrincipal
[]
[stress_xx]
type = RankTwoAux
index_i = 0
index_j = 0
rank_two_tensor = stress
variable = stress_xx
[]
[stress_yy]
type = RankTwoAux
index_i = 1
index_j = 1
rank_two_tensor = stress
variable = stress_yy
[]
[stress_zz]
type = RankTwoAux
index_i = 2
index_j = 2
rank_two_tensor = stress
variable = stress_zz
[]
[]
[BCs]
[Pressure]
[load]
#Applies the pressure
boundary = '3'
factor = 2000 # psi
[]
[]
[anchor_x]
#Anchors the bottom and sides against deformation in the x-direction
type = DirichletBC
variable = disp_x
boundary = '2'
value = 0.0
[]
[anchor_y]
#Anchors the bottom and sides against deformation in the y-direction
type = DirichletBC
variable = disp_y
boundary = '2'
value = 0.0
[]
[anchor_z]
#Anchors the bottom and sides against deformation in the z-direction
type = DirichletBC
variable = disp_z
boundary = '2'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor_AL]
#Creates the elasticity tensor using concrete parameters
youngs_modulus = 24e6 #psi
poissons_ratio = 0.33
type = ComputeIsotropicElasticityTensor
[]
[strain]
#Computes the strain, assuming small strains
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
#Computes the stress, using linear elasticity
type = ComputeLinearElasticStress
[]
[density_AL]
#Defines the density of steel
type = GenericConstantMaterial
prop_names = density
prop_values = 6.99e-4 # lbm/in^3
[]
[]
[Preconditioning]
[SMP]
#Creates the entire Jacobian, for the Newton solve
type = SMP
full = true
[]
[]
[Postprocessors]
[max_principal_stress]
type = PointValue
point = '0.000000 -1.500000 -4.3'
variable = Max_Princ
use_displaced_mesh = false
[]
[maxPrincStress]
type = ElementExtremeValue
variable = Max_Princ
[]
[]
[Executioner]
# We solve a steady state problem using Newton's iteration
type = Steady
solve_type = NEWTON
nl_rel_tol = 1e-9
l_max_its = 300
l_tol = 1e-4
nl_max_its = 30
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 31'
[]
[Outputs]
vtk = true
[]
(modules/tensor_mechanics/test/tests/pressure/cantilever.i)
#
#
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[MeshGenerator]
type = GeneratedMeshGenerator
dim = 3
nx = 1
xmin = 0
xmax = 10
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[move_nodes]
type = MoveNodeGenerator
input = MeshGenerator
node_id = 6
new_position = '9.9 1.1 1'
[]
[]
[Functions]
[pressure]
type = ParsedFunction
value = 100*t
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Kernels]
[TensorMechanics]
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[]
[Pressure]
[top]
boundary = 'top front right'
function = pressure
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
petsc_options = '-snes_test_jacobian -snes_test_jacobian_view'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 10
end_time = 2.0
[]
[Outputs]
[out]
type = Exodus
[]
[]
(test/tests/multiapps/reset/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/3tile_json.i)
# Tests the tile and partition assembly for overlapping partitions and
# a variety of different overlapping tile conditions.
# Creep_rate should always be 2.718281828459
endtime = 1.9
[Mesh]
type = GeneratedMesh
dim = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
[]
[]
[AuxKernels]
[temp_aux]
type = FunctionAux
variable = temperature
function = temp_fcn
execute_on = 'initial timestep_begin'
[]
[]
[Functions]
[rhom_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12 5.7e12'
direction = LEFT_INCLUSIVE
[]
[rhoi_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11 4.83e11'
direction = LEFT_INCLUSIVE
[]
[vmJ2_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '25.68 25.68 45.0 55.28 63.0 67.12 85.0 85.0 85.0 85.0 85.0 85.0 55.28 63.0 67.12 63.0 63.0 55.28 96.72 63.0'
direction = LEFT_INCLUSIVE
[]
[evm_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01'
direction = LEFT_INCLUSIVE
[]
[temp_fcn]
type = PiecewiseConstant
x = '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9'
y = '940.0 940.0 940.0 940.0 940.0 940.0 940.0 905.0 897.0 881.0 860.0 821.0 860.0 881.0 897.0 897.0 905.0 897.0 860.0 860.0'
direction = LEFT_INCLUSIVE
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pull_x]
type = DirichletBC
variable = disp_x
boundary = right
value = 1e-5 # This is required to make a non-zero effective trial stress so radial return is engaged
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
shear_modulus = 1e13
poissons_ratio = 0.3
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[rom_stress_prediction]
type = LAROMANCEPartitionStressUpdate
model = laromance/test/3tile.json
temperature = temperature
effective_inelastic_strain_name = effective_creep_strain
internal_solve_full_iteration_history = true
apply_strain = false
outputs = all
verbose = true
wall_dislocation_density_forcing_function = rhoi_fcn
cell_dislocation_density_forcing_function = rhom_fcn
old_creep_strain_forcing_function = evm_fcn
wall_input_window_low_failure = ERROR
wall_input_window_high_failure = ERROR
cell_input_window_low_failure = ERROR
cell_input_window_high_failure = ERROR
temperature_input_window_low_failure = DONOTHING
temperature_input_window_high_failure = ERROR
stress_input_window_low_failure = DONOTHING
stress_input_window_high_failure = ERROR
old_strain_input_window_low_failure = ERROR
old_strain_input_window_high_failure = ERROR
environment_input_window_low_failure = ERROR
environment_input_window_high_failure = ERROR
effective_stress_forcing_function = vmJ2_fcn
initial_cell_dislocation_density = 4.0e12
max_relative_cell_dislocation_increment = 0.5
initial_wall_dislocation_density = 5.0e12
max_relative_wall_dislocation_increment = 0.5
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-1 # Nothing is really being solved here, so loose tolerances are okay
dt = 0.1
end_time = ${endtime}
timestep_tolerance = 1e-3
[]
[Postprocessors]
[extrapolation]
type = ElementAverageValue
variable = ROM_extrapolation
outputs = console
[]
[old_strain_in]
type = FunctionValuePostprocessor
function = evm_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[partition_weight]
type = ElementAverageMaterialProperty
mat_prop = partition_weight
[]
[rhom_in]
type = FunctionValuePostprocessor
function = rhom_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[rhoi_in]
type = FunctionValuePostprocessor
function = rhoi_fcn
execute_on = 'TIMESTEP_END initial'
outputs = console
[]
[vmJ2_in]
type = FunctionValuePostprocessor
function = vmJ2_fcn
execute_on = 'TIMESTEP_END initial'
[]
[creep_rate]
type = ElementAverageMaterialProperty
mat_prop = creep_rate
[]
[rhom_rate]
type = ElementAverageMaterialProperty
mat_prop = cell_dislocation_rate
[]
[rhoi_rate]
type = ElementAverageMaterialProperty
mat_prop = wall_dislocation_rate
[]
[]
[Outputs]
csv = true
execute_on = 'INITIAL TIMESTEP_END FINAL'
[]
(test/tests/bcs/1d_neumann/1d_neumann.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = NeumannBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/transfers/multiapp_interpolation_transfer/tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
displacements = 'disp_x disp_y'
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master]
[../]
[./elemental_from_master]
order = CONSTANT
family = MONOMIAL
[../]
[./radial_from_master]
[../]
[./radial_elemental_from_master]
order = CONSTANT
family = MONOMIAL
[../]
[./disp_x]
initial_condition = -0.2
[../]
[./disp_y]
[../]
[./displaced_target_from_master]
[../]
[./displaced_source_from_master]
[../]
[./elemental_from_master_elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal_from_master_elemental]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/thm_solve_postprocessor_control/test.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Functions]
[active_fn]
type = PiecewiseConstant
direction = right
xy_data = '
0.2 0
0.4 1
0.6 0'
[]
[]
[Postprocessors]
[active]
type = FunctionValuePostprocessor
function = active_fn
[]
[]
[Components]
[]
[ControlLogic]
[solve_on_off]
type = THMSolvePostprocessorControl
postprocessor = active
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 6
abort_on_solve_fail = true
[]
[Outputs]
csv = true
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/generalized_plane_strain_squares.i)
[Mesh]
file = 2squares.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./scalar_strain_zz1]
order = FIRST
family = SCALAR
[../]
[./scalar_strain_zz2]
order = FIRST
family = SCALAR
[../]
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[./saved_x]
order = FIRST
family = LAGRANGE
[../]
[./saved_y]
order = FIRST
family = LAGRANGE
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./aux_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z1]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 1
[../]
[./react_z2]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
block = 2
[../]
[]
[Modules]
[./TensorMechanics]
[./GeneralizedPlaneStrain]
[./gps1]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = '1'
[../]
[./gps2]
use_displaced_mesh = true
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = '2'
[../]
[../]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = false
displacements = 'disp_x disp_y'
temperature = temp
save_in = 'saved_x saved_y'
block = '1 2'
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xx
index_i = 0
index_j = 0
[../]
[./strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_xy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[../]
[./aux_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = aux_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottom1x]
type = DirichletBC
boundary = 1
variable = disp_x
value = 0.0
[../]
[./bottom1y]
type = DirichletBC
boundary = 1
variable = disp_y
value = 0.0
[../]
[./bottom2x]
type = DirichletBC
boundary = 2
variable = disp_x
value = 0.0
[../]
[./bottom2y]
type = DirichletBC
boundary = 2
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elastic_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
block = '1 2'
[../]
[./strain1]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz1
block = 1
eigenstrain_names = eigenstrain
[../]
[./strain2]
type = ComputePlaneSmallStrain
displacements = 'disp_x disp_y'
scalar_out_of_plane_strain = scalar_strain_zz2
block = 2
eigenstrain_names = eigenstrain
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
block = '1 2'
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-10
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
num_steps = 5000
[]
[Outputs]
exodus = true
[]
(test/tests/time_steppers/calc_const_dt/calc_const_dt.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
end_time = 2
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
# Two phase Theis problem: Flow from single source.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
#
# This test takes a few minutes to run, so is marked heavy
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2000
xmax = 2000
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[AuxVariables]
[saturation_gas]
order = CONSTANT
family = MONOMIAL
[]
[x1]
order = CONSTANT
family = MONOMIAL
[]
[y0]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_gas]
type = PorousFlowPropertyAux
variable = saturation_gas
property = saturation
phase = 1
execute_on = timestep_end
[]
[x1]
type = PorousFlowPropertyAux
variable = x1
property = mass_fraction
phase = 0
fluid_component = 1
execute_on = timestep_end
[]
[y0]
type = PorousFlowPropertyAux
variable = y0
property = mass_fraction
phase = 1
fluid_component = 0
execute_on = timestep_end
[]
[]
[Variables]
[pgas]
initial_condition = 20e6
[]
[zi]
initial_condition = 0
[]
[xnacl]
initial_condition = 0.1
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pgas
[]
[flux0]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pgas
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = zi
[]
[flux1]
type = PorousFlowAdvectiveFlux
fluid_component = 1
variable = zi
[]
[mass2]
type = PorousFlowMassTimeDerivative
fluid_component = 2
variable = xnacl
[]
[flux2]
type = PorousFlowAdvectiveFlux
fluid_component = 2
variable = xnacl
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pgas zi xnacl'
number_fluid_phases = 2
number_fluid_components = 3
[]
[pc]
type = PorousFlowCapillaryPressureConst
pc = 0
[]
[fs]
type = PorousFlowBrineCO2
brine_fp = brine
co2_fp = co2
capillary_pressure = pc
[]
[]
[Modules]
[FluidProperties]
[co2sw]
type = CO2FluidProperties
[]
[co2]
type = TabulatedFluidProperties
fp = co2sw
[]
[water]
type = Water97FluidProperties
[]
[watertab]
type = TabulatedFluidProperties
fp = water
temperature_min = 273.15
temperature_max = 573.15
fluid_property_file = water_fluid_properties.csv
save_file = false
[]
[brine]
type = BrineFluidProperties
water_fp = watertab
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 20
[]
[brineco2]
type = PorousFlowFluidState
gas_porepressure = pgas
z = zi
temperature_unit = Celsius
xnacl = xnacl
capillary_pressure = pc
fluid_state = fs
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.1
sum_s_res = 0.1
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
[]
[]
[BCs]
[rightwater]
type = DirichletBC
boundary = right
value = 20e6
variable = pgas
[]
[]
[DiracKernels]
[source]
type = PorousFlowSquarePulsePointSource
point = '0 0 0'
mass_flux = 2
variable = zi
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
end_time = 1e5
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.5
[]
[]
[VectorPostprocessors]
[line]
type = LineValueSampler
warn_discontinuous_face_values = false
sort_by = x
start_point = '0 0 0'
end_point = '2000 0 0'
num_points = 10000
variable = 'pgas zi xnacl x1 saturation_gas'
execute_on = 'timestep_end'
[]
[]
[Postprocessors]
[pgas]
type = PointValue
point = '4 0 0'
variable = pgas
[]
[sgas]
type = PointValue
point = '4 0 0'
variable = saturation_gas
[]
[zi]
type = PointValue
point = '4 0 0'
variable = zi
[]
[massgas]
type = PorousFlowFluidMass
fluid_component = 1
[]
[x1]
type = PointValue
point = '4 0 0'
variable = x1
[]
[y0]
type = PointValue
point = '4 0 0'
variable = y0
[]
[xnacl]
type = PointValue
point = '4 0 0'
variable = xnacl
[]
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
[csvout]
type = CSV
execute_on = timestep_end
execute_vector_postprocessors_on = final
[]
[]
(test/tests/markers/uniform_marker/uniform_marker.i)
###########################################################
# This is a test of the Mesh Marker System. It marks
# elements with flags indicating whether they should be
# refined, coarsened, or left alone. This system
# has the ability to use the Mesh Indicator System.
#
# @Requirement F2.50
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
# Mesh Marker System
[Adaptivity]
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/phi_zero/simple_transient_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 3
ny = 3
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./dummy]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[./phi_zero]
type = PhiZeroKernel
variable = dummy
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(test/tests/reporters/iteration_info/iteration_info.i)
[Mesh]
[generate]
type = GeneratedMeshGenerator
dim = 1
nx = 10
[]
[]
[Variables/u][]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[time]
type = ADTimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 10
[]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 1
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Reporters/iteration_info]
type = IterationInfo
[]
[Outputs]
[out]
type = JSON
execute_system_information_on = NONE
[]
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phase.i)
# Pressure pulse in 1D with 2 phases (with one having zero saturation), 2components - transient
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 100
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[ppwater]
initial_condition = 2E6
[]
[ppgas]
initial_condition = 2E6
[]
[]
[AuxVariables]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = ppwater
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = ppwater
gravity = '0 0 0'
fluid_component = 0
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = ppgas
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = ppgas
gravity = '0 0 0'
fluid_component = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'ppwater ppgas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid0]
type = SimpleFluidProperties
bulk_modulus = 2e9
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[simple_fluid1]
type = SimpleFluidProperties
bulk_modulus = 2e6
density0 = 1
thermal_expansion = 0
viscosity = 1e-5
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePP
phase0_porepressure = ppwater
phase1_porepressure = ppgas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid0
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid1
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-15'
[]
[relperm_water]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 0
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 1
phase = 1
[]
[]
[BCs]
[leftwater]
type = DirichletBC
boundary = left
value = 3E6
variable = ppwater
[]
[leftgas]
type = DirichletBC
boundary = left
value = 3E6
variable = ppgas
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres asm lu NONZERO 2 1E-15 1E-20 20'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E3
end_time = 1E4
[]
[Postprocessors]
[p000]
type = PointValue
variable = ppwater
point = '0 0 0'
execute_on = 'initial timestep_end'
[]
[p010]
type = PointValue
variable = ppwater
point = '10 0 0'
execute_on = 'initial timestep_end'
[]
[p020]
type = PointValue
variable = ppwater
point = '20 0 0'
execute_on = 'initial timestep_end'
[]
[p030]
type = PointValue
variable = ppwater
point = '30 0 0'
execute_on = 'initial timestep_end'
[]
[p040]
type = PointValue
variable = ppwater
point = '40 0 0'
execute_on = 'initial timestep_end'
[]
[p050]
type = PointValue
variable = ppwater
point = '50 0 0'
execute_on = 'initial timestep_end'
[]
[p060]
type = PointValue
variable = ppwater
point = '60 0 0'
execute_on = 'initial timestep_end'
[]
[p070]
type = PointValue
variable = ppwater
point = '70 0 0'
execute_on = 'initial timestep_end'
[]
[p080]
type = PointValue
variable = ppwater
point = '80 0 0'
execute_on = 'initial timestep_end'
[]
[p090]
type = PointValue
variable = ppwater
point = '90 0 0'
execute_on = 'initial timestep_end'
[]
[p100]
type = PointValue
variable = ppwater
point = '100 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
file_base = pressure_pulse_1d_2phase
print_linear_residuals = false
csv = true
[]
(modules/tensor_mechanics/test/tests/crystal_plasticity/stress_update_material_based/substep.i)
[GlobalParams]
displacements = 'ux uy uz'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./e_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Modules/TensorMechanics/Master/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = slip_resistance
index = 0
execute_on = timestep_end
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = 0.01*t
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensorConstantRotationCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[../]
[./stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
maximum_substep_iteration = 10
[../]
[./trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
resistance_tol = 1.0e-2
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
[../]
[./e_zz]
type = ElementAverageValue
variable = e_zz
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 2.0
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.5
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
csv = true
gnuplot = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/RZ_cone_by_parts.i)
# This input file tests several different things:
# .) The axisymmetric (RZ) form of the governing equations.
# .) An open boundary.
# .) Integrating the pressure by parts.
# .) Natural boundary condition at the outlet.
[GlobalParams]
gravity = '0 0 0'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
console = true
[./out]
type = Exodus
[../]
[]
[Variables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./u_in]
type = DirichletBC
boundary = bottom
variable = vel_x
value = 0
[../]
[./v_in]
type = FunctionDirichletBC
boundary = bottom
variable = vel_y
function = 'inlet_func'
[../]
[./u_axis_and_walls]
type = DirichletBC
boundary = 'left right'
variable = vel_x
value = 0
[../]
[./v_no_slip]
type = DirichletBC
boundary = 'right'
variable = vel_y
value = 0
[../]
[]
[Kernels]
[./x_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_x
[../]
[./y_momentum_time]
type = INSMomentumTimeDerivative
variable = vel_y
[../]
[./mass]
type = INSMassRZ
variable = p
u = vel_x
v = vel_y
pressure = p
[../]
[./x_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_x
u = vel_x
v = vel_y
pressure = p
component = 0
[../]
[./y_momentum_space]
type = INSMomentumLaplaceFormRZ
variable = vel_y
u = vel_x
v = vel_y
pressure = p
component = 1
[../]
[]
[Materials]
[./const]
type = GenericConstantMaterial
block = 'volume'
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
value = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console csv'
execute_on = 'timestep_end'
[../]
[]
(tutorials/tutorial01_app_development/step06_input_params/test/tests/kernels/simple_diffusion/simple_diffusion.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/small_deform_inclined2.i)
# Plastic deformation, tensile failure, with normal=(1,0,0)
# With Lame lambda=0 and Lame mu=1, applying the following
# deformation to the zmax surface of a unit cube:
# disp_x = t
# should yield trial stress:
# stress_xx = 2*t
# Use tensile strength = 1, we should return to stress_xx = 1
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
incremental = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_yz stress_zz plastic_strain_xx plastic_strain_xy plastic_strain_xz plastic_strain_yy plastic_strain_yz plastic_strain_zz strain_xx strain_xy strain_xz strain_yy strain_yz strain_zz'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottomy]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./bottomz]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./topx]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = t
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = right
function = 0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = right
function = 0
[../]
[]
[AuxVariables]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[Postprocessors]
[./stress_xx]
type = PointValue
point = '0 0 0'
variable = stress_xx
[../]
[./stress_xy]
type = PointValue
point = '0 0 0'
variable = stress_xy
[../]
[./stress_xz]
type = PointValue
point = '0 0 0'
variable = stress_xz
[../]
[./stress_yy]
type = PointValue
point = '0 0 0'
variable = stress_yy
[../]
[./stress_yz]
type = PointValue
point = '0 0 0'
variable = stress_yz
[../]
[./stress_zz]
type = PointValue
point = '0 0 0'
variable = stress_zz
[../]
[./strainp_xx]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xx
[../]
[./strainp_xy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xy
[../]
[./strainp_xz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_xz
[../]
[./strainp_yy]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yy
[../]
[./strainp_yz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_yz
[../]
[./strainp_zz]
type = PointValue
point = '0 0 0'
variable = plastic_strain_zz
[../]
[./straint_xx]
type = PointValue
point = '0 0 0'
variable = strain_xx
[../]
[./straint_xy]
type = PointValue
point = '0 0 0'
variable = strain_xy
[../]
[./straint_xz]
type = PointValue
point = '0 0 0'
variable = strain_xz
[../]
[./straint_yy]
type = PointValue
point = '0 0 0'
variable = strain_yy
[../]
[./straint_yz]
type = PointValue
point = '0 0 0'
variable = strain_yz
[../]
[./straint_zz]
type = PointValue
point = '0 0 0'
variable = strain_zz
[../]
[./f_shear]
type = PointValue
point = '0 0 0'
variable = f_shear
[../]
[./f_tensile]
type = PointValue
point = '0 0 0'
variable = f_tensile
[../]
[./f_compressive]
type = PointValue
point = '0 0 0'
variable = f_compressive
[../]
[./intnl_shear]
type = PointValue
point = '0 0 0'
variable = intnl_shear
[../]
[./intnl_tensile]
type = PointValue
point = '0 0 0'
variable = intnl_tensile
[../]
[./iter]
type = PointValue
point = '0 0 0'
variable = iter
[../]
[./ls]
type = PointValue
point = '0 0 0'
variable = ls
[../]
[]
[UserObjects]
[./coh]
type = TensorMechanicsHardeningConstant
value = 30
[../]
[./tanphi]
type = TensorMechanicsHardeningConstant
value = 0.5
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.1111077
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 1
[../]
[./c_strength]
type = TensorMechanicsHardeningConstant
value = 40
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 1'
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakInclinedPlaneStressUpdate
normal_vector = '1 0 0'
cohesion = coh
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-5
[../]
[]
[Executioner]
end_time = 2
dt = 1
type = Transient
[]
[Outputs]
file_base = small_deform_inclined2
csv = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/REG_finite_strain_power_law_creep.i)
[GlobalParams]
displacements = 'disp_r disp_z'
[]
[Problem]
coord_type = RZ
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 1
xmax = 2
nx = 50
ny = 50
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
eigenstrain_names = 'thermal'
use_automatic_differentiation = false
[]
[]
[AuxVariables]
[temp]
initial_condition = 1000.0
[]
[]
[AuxKernels]
[cooling]
type = FunctionAux
variable = temp
function = '1000-10*t*x'
[]
[]
[BCs]
[top_pull]
type = FunctionNeumannBC
variable = disp_z
boundary = top
function = '1e7*t'
use_displaced_mesh = true
[]
[bottom_fix]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[left_fix]
type = DirichletBC
variable = disp_r
boundary = left
value = 0.0
[]
[]
[Materials]
[eigenstrain]
type = ComputeThermalExpansionEigenstrain
eigenstrain_name = 'thermal'
stress_free_temperature = 1000
thermal_expansion_coeff = 1e-4
temperature = temp
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'creep'
[]
[creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[]
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
end_time = 10
dt = 1
automatic_scaling = true
[]
[Outputs]
print_linear_converged_reason = false
print_nonlinear_converged_reason = false
print_linear_residuals = false
perf_graph = true
exodus = true
[]
(modules/contact/test/tests/3d-mortar-contact/frictionless-mortar-3d-test-derivative-trimming.i)
starting_point = 0.25
offset = 0.00
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
second_order = false
[top_block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = -0.25
xmax = 0.25
ymin = -0.25
ymax = 0.25
zmin = -0.25
zmax = 0.25
elem_type = HEX8
[]
[rotate_top_block]
type = TransformGenerator
input = top_block
transform = ROTATE
vector_value = '0 0 0'
[]
[top_block_sidesets]
type = RenameBoundaryGenerator
input = rotate_top_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'top_bottom top_back top_right top_front top_left top_top'
[]
[top_block_id]
type = SubdomainIDGenerator
input = top_block_sidesets
subdomain_id = 1
[]
[bottom_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -.5
xmax = .5
ymin = -.5
ymax = .5
zmin = -.3
zmax = -.25
elem_type = HEX8
[]
[bottom_block_id]
type = SubdomainIDGenerator
input = bottom_block
subdomain_id = 2
[]
[bottom_block_change_boundary_id]
type = RenameBoundaryGenerator
input = bottom_block_id
old_boundary = '0 1 2 3 4 5'
new_boundary = '100 101 102 103 104 105'
[]
[combined]
type = MeshCollectionGenerator
inputs = 'top_block_id bottom_block_change_boundary_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'top_block bottom_block'
[]
[bottom_right_sideset]
type = SideSetsAroundSubdomainGenerator
input = block_rename
new_boundary = bottom_right
block = bottom_block
normal = '1 0 0'
[]
[bottom_left_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_right_sideset
new_boundary = bottom_left
block = bottom_block
normal = '-1 0 0'
[]
[bottom_top_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_left_sideset
new_boundary = bottom_top
block = bottom_block
normal = '0 0 1'
[]
[bottom_bottom_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_top_sideset
new_boundary = bottom_bottom
block = bottom_block
normal = '0 0 -1'
[]
[bottom_front_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_bottom_sideset
new_boundary = bottom_front
block = bottom_block
normal = '0 1 0'
[]
[bottom_back_sideset]
type = SideSetsAroundSubdomainGenerator
input = bottom_front_sideset
new_boundary = bottom_back
block = bottom_block
normal = '0 -1 0'
[]
[secondary]
input = bottom_back_sideset
type = LowerDBlockFromSidesetGenerator
sidesets = 'top_bottom' # top_back top_left'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[primary]
input = secondary
type = LowerDBlockFromSidesetGenerator
sidesets = 'bottom_top'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[disp_x]
block = '1 2'
[]
[disp_y]
block = '1 2'
[]
[disp_z]
block = '1 2'
[]
[mortar_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[ICs]
[disp_z]
block = 1
variable = disp_z
value = '${fparse offset}'
type = ConstantIC
[]
[disp_x]
block = 1
variable = disp_x
value = 0
type = ConstantIC
[]
[disp_y]
block = 1
variable = disp_y
value = 0
type = ConstantIC
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
[]
[disp_y]
type = MatDiffusion
variable = disp_y
[]
[disp_z]
type = MatDiffusion
variable = disp_z
[]
[]
[Constraints]
[normal_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
c = 1.0e4
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'bottom_top'
secondary_boundary = 'top_bottom'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = mortar_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[botx]
type = DirichletBC
variable = disp_x
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[boty]
type = DirichletBC
variable = disp_y
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[botz]
type = DirichletBC
variable = disp_z
boundary = 'bottom_left bottom_right bottom_front bottom_back'
value = 0.0
[]
[topx]
type = DirichletBC
variable = disp_x
boundary = 'top_top'
value = 0.0
[]
[topy]
type = DirichletBC
variable = disp_y
boundary = 'top_top'
value = 0.0
[]
[topz]
type = FunctionDirichletBC
variable = disp_z
boundary = 'top_top'
function = '-${starting_point} * sin(2 * pi / 40 * t) + ${offset}'
[]
[]
[Executioner]
type = Transient
end_time = 1
dt = .5
dtmin = .01
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor '
'-snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 1e-5'
l_max_its = 100
nl_max_its = 30
# nl_rel_tol = 1e-6
nl_abs_tol = 1e-12
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
active = 'num_nl cumulative contact'
[num_nl]
type = NumNonlinearIterations
[]
[cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[]
[contact]
type = ContactDOFSetSize
variable = mortar_normal_lm
subdomain = 'secondary_lower'
execute_on = 'nonlinear timestep_end'
[]
[]
[VectorPostprocessors]
[contact-pressure]
type = NodalValueSampler
block = secondary_lower
variable = mortar_normal_lm
sort_by = 'id'
execute_on = NONLINEAR
[]
[]
(modules/tensor_mechanics/test/tests/temperature_dependent_hardening/temp_dep_hardening.i)
#
# This is a test of the piece-wise linear strain hardening model using the
# small strain formulation. This test exercises the temperature-dependent
# hardening curve capability.
#
# Test procedure:
# 1. The element is pulled to and then beyond the yield stress for a given
# temperature.
# 2. The displacement is then constant while the temperature increases and
# the yield stress decreases. This results in a lower stress with more
# plastic strain.
# 3. The temperature decreases beyond its original value giving a higher
# yield stress. The displacement increases, causing increases stress to
# the new yield stress.
# 4. The temperature and yield stress are constant with increasing
# displacement giving a constant stress and more plastic strain.
#
# Plotting total_strain_yy on the x axis and stress_yy on the y axis shows
# the stress history in a clear way.
#
# s |
# t | *****
# r | *
# e | ***** *
# s | * * *
# s | * *
# |*
# +------------------
# total strain
#
# The exact same problem was run in Abaqus with exactly the same result.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
# This test uses ElementalVariableValue postprocessors on specific
# elements, so element numbering needs to stay unchanged
allow_renumbering = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 500.0
[../]
[]
[AuxKernels]
[./temp_aux]
type = FunctionAux
variable = temp
function = temp_hist
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1 2 4 5 6'
y = '0 0.025 0.05 0.05 0.06 0.085'
[../]
[./hf1]
type = PiecewiseLinear
x = '0.0 0.01 0.02 0.03 0.1'
y = '5000 5030 5060 5090 5300'
[../]
[./hf2]
type = PiecewiseLinear
x = '0.0 0.01 0.02 0.03 0.1'
y = '4000 4020 4040 4060 4200'
[../]
[./temp_hist]
type = PiecewiseLinear
x = '0 1 2 3 4'
y = '500 500 500 600 400'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy strain_yy plastic_strain_xx plastic_strain_yy plastic_strain_zz'
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 3
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 0
value = 0.0
[../]
[]
[Postprocessors]
[./stress_yy_el]
type = ElementalVariableValue
variable = stress_yy
elementid = 0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e5
poissons_ratio = 0.3
[../]
[./temp_dep_hardening]
type = TemperatureDependentHardeningStressUpdate
hardening_functions = 'hf1 hf2'
temperatures = '300.0 800.0'
relative_tolerance = 1e-25
absolute_tolerance = 1e-5
temperature = temp
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'temp_dep_hardening'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 6
dt = 0.1
[]
[Outputs]
[./out]
type = Exodus
[../]
[]
(modules/tensor_mechanics/test/tests/generalized_plane_strain/plane_strain.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
block = 0
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[AuxVariables]
[./temp]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[]
[Functions]
[./tempfunc]
type = ParsedFunction
value = '(1-x)*t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
add_variables = true
temperature = temp
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy strain_zz'
planar_formulation = PLANE_STRAIN
eigenstrain_names = eigenstrain
save_in = 'saved_x saved_y'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
temperature = temp
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-8
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/examples/hyper_elastic_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
use_displaced_mesh = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Functions]
[./top_displacement]
type = ParsedFunction
value = t
[../]
[]
[BCs]
[./bottom_x]
type = DirichletBC
variable = 'disp_x'
boundary = bottom
value = 0
[../]
[./bottom_y]
type = DirichletBC
variable = 'disp_y'
boundary = bottom
value = 0
[../]
[./bottom_z]
type = DirichletBC
variable = 'disp_z'
boundary = bottom
value = 0
[../]
[./top_x]
type = DirichletBC
variable = 'disp_x'
boundary = top
value = 0
[../]
[./top_y]
type = FunctionDirichletBC
variable = 'disp_y'
boundary = top
function = top_displacement
[../]
[./top_z]
type = DirichletBC
variable = 'disp_z'
boundary = top
value = 0
[../]
[]
[Kernels]
[./x]
type = ADStressDivergenceTensors
variable = disp_x
component = 0
[../]
[./y]
type = ADStressDivergenceTensors
variable = disp_y
component = 1
[../]
[./z]
type = ADStressDivergenceTensors
variable = disp_z
component = 2
[../]
[]
[Materials]
[./rubber_elasticity]
type = ComputeIsotropicElasticityTensor
# lambda = 1.2e7
# shear_modulus = 1.2e7
youngs_modulus = 1
poissons_ratio = 0.45 # the closer this gets to 0.5 the worse the problem becomes
[../]
[]
[Materials]
[./strain]
type = ADComputeGreenLagrangeStrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
dt = 0.05
dtmin = 0.05
nl_abs_tol = 1e-10
num_steps = 500
[]
[Outputs]
execute_on = 'INITIAL TIMESTEP_END'
exodus = true
print_linear_residuals = false
[]
(test/tests/userobjects/layered_side_integral/layered_side_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 6
ny = 6
nz = 6
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_side_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[]
[AuxKernels]
[./lsia]
type = SpatialUserObjectAux
variable = layered_side_average
boundary = right
user_object = layered_side_average
[../]
[]
[UserObjects]
[./layered_side_average]
type = LayeredSideAverage
direction = y
num_layers = 3
variable = u
execute_on = linear
boundary = right
[../]
[]
[VectorPostprocessors]
[avg]
type = SpatialUserObjectVectorPostprocessor
userobject = layered_side_average
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/nodalkernels/constant_rate/constant_rate.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./nodal_ode]
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[NodalKernels]
[./td]
type = TimeDerivativeNodalKernel
variable = nodal_ode
[../]
[./constant_rate]
type = ConstantRate
variable = nodal_ode
rate = 1.0
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/hertz_cyl/half_symm_q8/hertz_cyl_half_1deg_template3.i)
[GlobalParams]
order = SECOND
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = hertz_cyl_half_1deg.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. -0.0020 -0.0020'
[../]
[./disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 11.'
y = '0. 0.0 0.0014'
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 2
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 2
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 2
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 4
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 4
[../]
[./disp_x639]
type = NodalVariableValue
nodeid = 638
variable = disp_x
[../]
[./disp_y639]
type = NodalVariableValue
nodeid = 638
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[../]
[./top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[../]
[./top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[../]
[]
[Materials]
[./stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[../]
[./stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff2_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[./stuff3_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '3'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff3_strain]
type = ComputeFiniteStrain
block = '3'
[../]
[./stuff3_stress]
type = ComputeFiniteStrainElasticStress
block = '3'
[../]
[./stuff4_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '4'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff4_strain]
type = ComputeFiniteStrain
block = '4'
[../]
[./stuff4_stress]
type = ComputeFiniteStrainElasticStress
block = '4'
[../]
[./stuff5_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '5'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff5_strain]
type = ComputeFiniteStrain
block = '5'
[../]
[./stuff5_stress]
type = ComputeFiniteStrainElasticStress
block = '5'
[../]
[./stuff6_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '6'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff6_strain]
type = ComputeFiniteStrain
block = '6'
[../]
[./stuff6_stress]
type = ComputeFiniteStrainElasticStress
block = '6'
[../]
[./stuff7_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stuff7_strain]
type = ComputeFiniteStrain
block = '7'
[../]
[./stuff7_stress]
type = ComputeFiniteStrainElasticStress
block = '7'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 200
start_time = 0.0
end_time = 2.0
l_tol = 5e-4
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'x_disp y_disp cont_press'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./chkfile2]
type = CSV
show = 'bot_react_x bot_react_y disp_x639 disp_y639 top_react_x top_react_y'
start_time = 0.9
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./interface]
primary = 2
secondary = 3
model = coulomb
friction_coefficient = 0.0
formulation = penalty
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '2'
secondary = '3'
[../]
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/sphere2DRZ.i)
#
# 2DRZ Spherical Gap Heat Transfer Test.
#
# This test exercises 2D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of an inner solid sphere of radius = 1 unit, and outer
# hollow sphere with an inner radius of 2. In other words, the gap between
# them is 1 radial unit in length.
#
# The conductivity of both spheres is set very large to achieve a uniform
# temperature in each sphere. The temperature of the center node of the
# inner sphere is ramped from 100 to 200 over one time unit. The
# temperature of the outside of the outer, hollow sphere is held fixed
# at 100.
#
# A simple analytical solution is possible for the integrated heat flux
# between the inner and outer spheres:
#
# Integrated Flux = (T_left - T_right) * (gapK/(r^2*((1/r1)-(1/r2)))) * Area
#
# For gapK = 1 (default value)
#
# The area is taken as the area of the secondary (inner) surface:
#
# Area = 4 * pi * 1^2 (4*pi*r^2)
#
# The integrated heat flux across the gap at time 1 is then:
#
# 4*pi*k*delta_T/((1/r1)-(1/r2))
# 4*pi*1*100/((1/1) - (1/2)) = 2513.3 watts
#
# For comparison, see results from the integrated flux post processors.
# This simulation makes use of symmetry, so only 1/2 of the spheres is meshed
# As such, the integrated flux from the post processors is 1/2 of the total,
# or 1256.6 watts... i.e. 400*pi.
# The value coming from the post processor is slightly less than this
# but converges as mesh refinement increases.
#
# Simulating contact is challenging. Regression tests that exercise
# contact features can be difficult to solve consistently across multiple
# platforms. While designing these tests, we felt it worth while to note
# some aspects of these tests. The following applies to:
# sphere3D.i, sphere2DRZ.i, cyl2D.i, and cyl3D.i.
# 1. We decided that to perform consistently across multiple platforms we
# would use very small convergence tolerance. In this test we chose an
# nl_rel_tol of 1e-12.
# 2. Due to such a high value for thermal conductivity (used here so that the
# domains come to a uniform temperature) the integrated flux at time = 0
# was relatively large (the value coming from SideIntegralFlux =
# -_diffusion_coef[_qp]*_grad_u[_qp]*_normals[_qp] where the diffusion coefficient
# here is thermal conductivity).
# Even though _grad_u[_qp] is small, in this case the diffusion coefficient
# is large. The result is a number that isn't exactly zero and tends to
# fail exodiff. For this reason the parameter execute_on = initial should not
# be used. That parameter is left to default settings in these regression tests.
#
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Problem]
coord_type = RZ
[]
[Mesh]
file = cyl2D.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '100 200'
[../]
[]
[Variables]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_conductance]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temp
[../]
[]
[AuxKernels]
[./gap_cond]
type = MaterialRealAux
property = gap_conductance
variable = gap_conductance
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 1000000.0
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 1
quadrature = true
gap_geometry_type = SPHERE
sphere_origin = '0 0 0'
[../]
[]
[BCs]
[./mid]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
dt = 1
dtmin = 0.01
end_time = 1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-7
[./Quadrature]
order = fifth
side_order = seventh
[../]
[]
[Outputs]
exodus = true
[./Console]
type = Console
[../]
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
[../]
[]
(modules/tensor_mechanics/test/tests/gravity/material_vector_body_force.i)
#
# MaterialVectorBodyForce Test
#
# This test is designed to apply gravity using the MaterialVectorBodyForce kernel/action.
#
# The mesh is composed of one block with a single element.
# The bottom is fixed in all three directions. Poisson's ratio
# is zero, which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Modules/TensorMechanics]
[Master/all]
add_variables = true
[]
[MaterialVectorBodyForce/all]
body_force = force_density
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[]
[stress]
type = ComputeLinearElasticStress
[]
[force_density]
type = GenericConstantVectorMaterial
prop_names = force_density
prop_values = '0 -19.9995 0'
[]
[]
[Executioner]
type = Steady
nl_abs_tol = 1e-10
l_max_its = 20
[]
[Outputs]
[out]
type = Exodus
elemental_as_nodal = true
[]
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/stabilization/cook_large.i)
[GlobalParams]
displacements = 'disp_x disp_y'
large_kinematics = true
stabilize_strain = true
[]
[Mesh]
type = FileMesh
file = cook_mesh.exo
dim = 2
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[]
[AuxVariables]
[strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = pk1_stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[strain_xx]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[strain_xy]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[strain_xz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[strain_yz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
variable = strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[]
[BCs]
[fixed_x]
type = DirichletBC
preset = true
variable = disp_x
boundary = canti
value = 0.0
[]
[fixed_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = canti
value = 0.0
[]
[pull]
type = NeumannBC
variable = disp_y
boundary = loading
value = 0.1
[]
[]
[Materials]
[compute_stress]
type = ComputeNeoHookeanStress
lambda = 416666611.0991259
mu = 8300.33333888888926
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'newton'
line_search = 'none'
petsc_options_iname = -pc_type
petsc_options_value = lu
nl_max_its = 500
nl_abs_tol = 1e-5
nl_rel_tol = 1e-6
[]
[Postprocessors]
[value]
type = PointValue
variable = disp_y
point = '48 60 0'
use_displaced_mesh = false
[]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/heat_conduction/test/tests/NAFEMS/transient/T3/nafems_t3_edge_template.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
xmin = 0.0
xmax = 0.1
elem_type = EDGE2
[]
[Variables]
[./temp]
initial_condition = 0.0
[../]
[]
[BCs]
[./FixedTempLeft]
type = DirichletBC
variable = temp
boundary = left
value = 0.0
[../]
[./FunctionTempRight]
type = FunctionDirichletBC
variable = temp
boundary = right
function = '100.0 * sin(pi*t/40)'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[Materials]
[./density]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '35.0 440.5 7200.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
l_tol = 1e-5
nl_max_its = 50
nl_rel_tol = 1e-10
nl_abs_tol = 1e-12
dt = 1
end_time = 32.0
[]
[Postprocessors]
[./target_temp]
type = NodalVariableValue
variable = temp
nodeid = 4
[../]
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/cyl_2/cyl2_template1.i)
#
# This input file is a template for both the frictionless and glued test
# variations for the current problem geometry. In order to create an input
# file to run outside the runtest framework, look at the tests file and add the
# appropriate input file lines from the cli_args line.
#
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = cyl2_mesh.e
[]
[Problem]
type = FEProblem
coord_type = RZ
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[] # AuxKernels
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeAxisymmetricRZIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-7
nl_rel_tol = 1e-6
l_max_its = 100
nl_max_its = 1000
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-4
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/multiapps/max_procs_per_app/sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/chemistry/2species_predis.i)
# PorousFlow analogy of chemical_reactions/test/tests/solid_kinetics/2species_without_action.i
#
# Simple equilibrium reaction example to illustrate the use of PorousFlowAqueousPreDisChemistry
#
# In this example, two primary species a and b diffuse towards each other from
# opposite ends of a porous medium, reacting when they meet to form a mineral
# precipitate. The kinetic reaction is
#
# a + b = mineral
#
# where a and b are the primary species (reactants), and mineral is the precipitate.
# At the time of writing, the results of this test differ from chemical_reactions because
# in PorousFlow the mineral_concentration is measured in m^3 (precipitate) / m^3 (porous_material)
# in chemical_reactions the mineral_concentration is measured in m^3 (precipitate) / m^3 (fluid)
# ie, PorousFlow_mineral_concentration = porosity * chemical_reactions_mineral_concentration
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 1
ymax = 1
nx = 40
[]
[Variables]
[a]
order = FIRST
family = LAGRANGE
initial_condition = 0
[]
[b]
order = FIRST
family = LAGRANGE
initial_condition = 0
[]
[]
[AuxVariables]
[eqm_k]
initial_condition = 1E-6
[]
[pressure]
[]
[mineral]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[mineral]
type = PorousFlowPropertyAux
property = mineral_concentration
mineral_species = 0
variable = mineral
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Kernels]
[mass_a]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = a
[]
[diff_a]
type = PorousFlowDispersiveFlux
variable = a
fluid_component = 0
disp_trans = 0
disp_long = 0
[]
[predis_a]
type = PorousFlowPreDis
variable = a
mineral_density = 1000
stoichiometry = 1
[]
[mass_b]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = b
[]
[diff_b]
type = PorousFlowDispersiveFlux
variable = b
fluid_component = 1
disp_trans = 0
disp_long = 0
[]
[predis_b]
type = PorousFlowPreDis
variable = b
mineral_density = 1000
stoichiometry = 1
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'a b'
number_fluid_phases = 1
number_fluid_components = 3
number_aqueous_kinetic = 1
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9 # huge, so mimic chemical_reactions
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = 298.15
[]
[ppss]
type = PorousFlow1PhaseFullySaturated
porepressure = pressure
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'a b'
[]
[chem]
type = PorousFlowAqueousPreDisChemistry
primary_concentrations = 'a b'
num_reactions = 1
equilibrium_constants = eqm_k
primary_activity_coefficients = '1 1'
reactions = '1 1'
specific_reactive_surface_area = '1.0'
kinetic_rate_constant = '1.0e-8'
activation_energy = '1.5e4'
molar_volume = 1
gas_constant = 8.314
reference_temperature = 298.15
[]
[mineral_conc]
type = PorousFlowAqueousPreDisMineral
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.4
[]
[permeability]
type = PorousFlowPermeabilityConst
# porous_flow permeability / porous_flow viscosity = chemical_reactions conductivity = 4E-3
permeability = '4E-6 0 0 0 4E-6 0 0 0 4E-6'
[]
[relp]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[diff]
type = PorousFlowDiffusivityConst
# porous_flow diffusion_coeff * tortuousity * porosity = chemical_reactions diffusivity = 5E-4
diffusion_coeff = '12.5E-4 12.5E-4 12.5E-4'
tortuosity = 1.0
[]
[]
[BCs]
[a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[]
[a_right]
type = DirichletBC
variable = a
boundary = right
value = 0
[]
[b_left]
type = DirichletBC
variable = b
boundary = left
value = 0
[]
[b_right]
type = DirichletBC
variable = b
boundary = right
value = 1.0e-2
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 5
end_time = 50
[]
[Outputs]
print_linear_residuals = true
exodus = true
perf_graph = true
[]
(test/tests/bcs/ad_1d_neumann/from_cubit.i)
[Mesh]
file = 1d_line.e
construct_side_list_from_node_list = true
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = ADNeumannBC
variable = u
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/mesh_modifiers/assign_element_subdomain_id/quad_with_subdomainid_test.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
nz = 0
zmin = 0
zmax = 0
elem_type = QUAD4
[]
[subdomain_id]
type = ElementSubdomainIDGenerator
input = gen
subdomain_ids = '0 1
1 1'
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff'
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
active = 'left right'
# Mesh Generation produces boundaries in counter-clockwise fashion
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_quad_subdomain_id
exodus = true
[]
(modules/porous_flow/test/tests/sinks/s09_fully_saturated.i)
# Apply a piecewise-linear sink flux to the right-hand side and watch fluid flow to it
#
# This test has a single phase with two components. The test initialises with
# the porous material fully filled with component=1. The left-hand side is fixed
# at porepressure=1 and mass-fraction of the zeroth component being unity.
# The right-hand side has a very strong piecewise-linear flux that keeps the
# porepressure~0 at that side. Fluid mass is extracted by this flux in proportion
# to the fluid component mass fraction.
#
# Therefore, the zeroth fluid component will flow from left to right (down the
# pressure gradient).
#
# The important DE is
# porosity * dc/dt = (perm / visc) * grad(P) * grad(c)
# which is true for c = mass-fraction, and very large bulk modulus of the fluid.
# For grad(P) constant in time and space (as in this example) this is just the
# advection equation for c, with velocity = perm / visc / porosity. The parameters
# are chosen to velocity = 1 m/s.
# In the numerical world, and especially with full upwinding, the advection equation
# suffers from diffusion. In this example, the diffusion is obvious when plotting
# the mass-fraction along the line, but the average velocity of the front is still
# correct at 1 m/s.
# This test uses the FullySaturated version of the flow Kernel. This does not
# suffer from as much numerical diffusion as the standard PorousFlow Kernel since
# it does not employ any upwinding.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp frac'
number_fluid_phases = 1
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Variables]
[pp]
[]
[frac]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = 1-x
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = frac
[]
[mass1]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = pp
[]
[flux0]
type = PorousFlowFullySaturatedDarcyFlow
fluid_component = 0
gravity = '0 0 0'
variable = frac
[]
[flux1]
type = PorousFlowFullySaturatedDarcyFlow
fluid_component = 1
gravity = '0 0 0'
variable = pp
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 1e10 # need large in order for constant-velocity advection
density0 = 1 # almost irrelevant, except that the ability of the right BC to keep P fixed at zero is related to density_P0
thermal_expansion = 0
viscosity = 11
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = frac
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 1.1 0 0 0 1.1'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2 # irrelevant in this fully-saturated situation
phase = 0
[]
[]
[BCs]
[lhs_fixed_a]
type = DirichletBC
boundary = 'left'
variable = frac
value = 1
[]
[lhs_fixed_b]
type = DirichletBC
boundary = 'left'
variable = pp
value = 1
[]
[flux0]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '-100 100'
multipliers = '-1 1'
variable = frac # the zeroth comonent
mass_fraction_component = 0
use_mobility = false
use_relperm = false
fluid_phase = 0
flux_function = 1E4
[]
[flux1]
type = PorousFlowPiecewiseLinearSink
boundary = 'right'
pt_vals = '-100 100'
multipliers = '-1 1'
variable = pp # comonent 1
mass_fraction_component = 1
use_mobility = false
use_relperm = false
fluid_phase = 0
flux_function = 1E4
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -snes_max_it -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = 'gmres asm lu 10000 NONZERO 2'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E-2
end_time = 1
nl_rel_tol = 1E-11
nl_abs_tol = 1E-11
[]
[VectorPostprocessors]
[mf]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 100
sort_by = x
variable = frac
[]
[]
[Outputs]
file_base = s09_fully_saturated
[console]
type = Console
execute_on = 'nonlinear linear'
[]
[csv]
type = CSV
sync_times = '0.1 0.5 1'
sync_only = true
[]
interval = 10
[]
(modules/contact/test/tests/normalized_penalty/normalized_penalty_kin.i)
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[Mesh]
file = normalized_penalty.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Functions]
[./left_x]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.02 0'
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
add_variables = true
strain = FINITE
generate_output = 'stress_xx'
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[]
[]
[Contact]
[./m3_s2]
primary = 3
secondary = 2
penalty = 1e10
normalize_penalty = true
tangential_tolerance = 1e-3
[../]
[]
[BCs]
[./left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 1
function = left_x
[../]
[./y]
type = DirichletBC
variable = disp_y
boundary = '1 2 3 4'
value = 0.0
[../]
[./right]
type = DirichletBC
variable = disp_x
boundary = '3 4'
value = 0
[../]
[]
[Materials]
[./stiffStuff1]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 1000'
youngs_modulus = 3e8
poissons_ratio = 0.0
[../]
[./stiffStuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2 3 4 1000'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'lu 101'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 3e-8
l_max_its = 100
nl_max_its = 20
dt = 0.5
num_steps = 4
[]
[Outputs]
exodus = true
[]
(test/tests/multiapps/transient_multiapp/dt_from_master.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./td]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.2
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[sub_app]
type = TransientMultiApp
app_type = MooseTestApp
input_files = 'dt_from_master_sub.i'
positions = '0 0 0
0.5 0.5 0
0.6 0.6 0
0.7 0.7 0'
[]
[]
(modules/tensor_mechanics/test/tests/recompute_radial_return/isotropic_plasticity_finite_strain.i)
# This simulation uses the piece-wise linear strain hardening model
# with the incremental small strain formulation; incremental small strain
# is required to produce the strain_increment for the DiscreteRadialReturnStressIncrement
# class, which handles the calculation of the stress increment to return
# to the yield surface in a J2 (isotropic) plasticity problem.
#
# This test assumes a Poissons ratio of 0.3 and applies a displacement loading
# condition on the top in the y direction.
#
# An identical problem was run in Abaqus on a similar 1 element mesh and was used
# to verify the SolidMechanics solution; this TensorMechanics code matches the
# SolidMechanics solution.
#
# Mechanical strain is the sum of the elastic and plastic strains but is different
# from total strain in cases with eigen strains, e.g. thermal strain.
[Mesh]
file = 1x1x1cube.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./top_pull]
type = ParsedFunction
value = t*(0.0625)
[../]
[./hf]
type = PiecewiseLinear
x = '0 0.001 0.003 0.023'
y = '50 52 54 56'
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_yy plastic_strain_xx plastic_strain_yy plastic_strain_zz'
[../]
[]
[BCs]
[./y_pull_function]
type = FunctionDirichletBC
variable = disp_y
boundary = 5
function = top_pull
[../]
[./x_bot]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = 3
value = 0.0
[../]
[./z_bot]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2.1e5
poissons_ratio = 0.3
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 50.0
hardening_function = hf
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 50
nl_max_its = 50
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-9
start_time = 0.0
end_time = 0.075
dt = 0.00125
dtmin = 0.0001
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/multiapps/multilevel/dt_from_sub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 0.3
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
[MultiApps]
[./sub]
type = TransientMultiApp
app_type = MooseTestApp
positions = '0 0 0 0.5 0.5 0'
input_files = dt_from_sub_subsub.i
[../]
[]
(modules/tensor_mechanics/test/tests/capped_weak_plane/pull_and_shear_1step.i)
# Part of the bottom (minimum z) is pulled down by a Preset displacement
# This causes tensile failure in the elements immediately above.
# Because only the bottom row of elements ever fail, and because these
# fail in the first nonlinear step, Moose correctly converges in
# 1 nonlinear step, despite this problem being inelastic.
# (If the problem had lower cohesion, then the top row would also
# fail, but in the second nonlinear step, and so the simulation
# would require at least two nonlinear steps.)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 1
nz = 2
xmin = -10
xmax = 10
ymin = -10
ymax = 10
zmin = -100
zmax = 0
[]
[bottomz_middle]
type = BoundingBoxNodeSetGenerator
new_boundary = bottomz_middle
bottom_left = '-1 -15 -105'
top_right = '1 15 -95'
input = generated_mesh
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./no_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.0
[../]
[./no_x1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./no_y1]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./no_y2]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[../]
[./z_fixed_sides_xmin]
type = DirichletBC
variable = disp_z
boundary = left
value = 0
[../]
[./z_fixed_sides_xmax]
type = DirichletBC
variable = disp_z
boundary = right
value = 0
[../]
[./bottomz]
type = FunctionDirichletBC
variable = disp_z
boundary = bottomz_middle
function = -1
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./strainp_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./straint_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./f_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./f_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./f_compressive]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./intnl_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./iter]
order = CONSTANT
family = MONOMIAL
[../]
[./ls]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./strainp_xx]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xx
index_i = 0
index_j = 0
[../]
[./strainp_xy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xy
index_i = 0
index_j = 1
[../]
[./strainp_xz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_xz
index_i = 0
index_j = 2
[../]
[./strainp_yy]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yy
index_i = 1
index_j = 1
[../]
[./strainp_yz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_yz
index_i = 1
index_j = 2
[../]
[./strainp_zz]
type = RankTwoAux
rank_two_tensor = plastic_strain
variable = strainp_zz
index_i = 2
index_j = 2
[../]
[./straint_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xx
index_i = 0
index_j = 0
[../]
[./straint_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xy
index_i = 0
index_j = 1
[../]
[./straint_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_xz
index_i = 0
index_j = 2
[../]
[./straint_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yy
index_i = 1
index_j = 1
[../]
[./straint_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_yz
index_i = 1
index_j = 2
[../]
[./straint_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = straint_zz
index_i = 2
index_j = 2
[../]
[./f_shear]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 0
variable = f_shear
[../]
[./f_tensile]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 1
variable = f_tensile
[../]
[./f_compressive]
type = MaterialStdVectorAux
property = plastic_yield_function
index = 2
variable = f_compressive
[../]
[./intnl_shear]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 0
variable = intnl_shear
[../]
[./intnl_tensile]
type = MaterialStdVectorAux
property = plastic_internal_parameter
index = 1
variable = intnl_tensile
[../]
[./iter]
type = MaterialRealAux
property = plastic_NR_iterations
variable = iter
[../]
[./ls]
type = MaterialRealAux
property = plastic_linesearch_needed
variable = ls
[../]
[]
[UserObjects]
[./coh_irrelevant]
type = TensorMechanicsHardeningCubic
value_0 = 1E60
value_residual = 1E60
internal_limit = 0.01E8
[../]
[./tanphi]
type = TensorMechanicsHardeningCubic
value_0 = 0.5
value_residual = 0.2
internal_limit = 0.01E8
[../]
[./tanpsi]
type = TensorMechanicsHardeningConstant
value = 0.166666666667
[../]
[./t_strength]
type = TensorMechanicsHardeningConstant
value = 0
[../]
[./c_strength]
type = TensorMechanicsHardeningCubic
value_0 = 1E80
value_residual = 1E80
internal_limit = 0.01
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '6.4E9 6.4E9' # young 16MPa, Poisson 0.25
[../]
[./strain]
type = ComputeIncrementalSmallStrain
[../]
[./admissible]
type = ComputeMultipleInelasticStress
inelastic_models = stress
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress]
type = CappedWeakPlaneStressUpdate
cohesion = coh_irrelevant
tan_friction_angle = tanphi
tan_dilation_angle = tanpsi
tensile_strength = t_strength
compressive_strength = c_strength
max_NR_iterations = 1
tip_smoother = 0
smoothing_tol = 0
yield_function_tol = 1E-2
perfect_guess = true
min_step_size = 1
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[../]
[]
[Executioner]
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
line_search = bt
nl_abs_tol = 1E1
nl_rel_tol = 1e-5
l_tol = 1E-10
l_max_its = 100
nl_max_its = 100
end_time = 1.0
dt = 1.0
type = Transient
[]
[Outputs]
file_base = pull_and_shear_1step
exodus = true
[]
(modules/tensor_mechanics/test/tests/rom_stress_update/creep_ramp_sub_false.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[temperature]
initial_condition = 889
[]
[effective_inelastic_strain]
order = FIRST
family = MONOMIAL
[]
[cell_dislocations]
order = FIRST
family = MONOMIAL
[]
[wall_dislocations]
order = FIRST
family = MONOMIAL
[]
[number_of_substeps]
order = FIRST
family = MONOMIAL
[]
[]
[AuxKernels]
[effective_inelastic_strain]
type = MaterialRealAux
variable = effective_inelastic_strain
property = effective_creep_strain
[]
[cell_dislocations]
type = MaterialRealAux
variable = cell_dislocations
property = cell_dislocations
[]
[wall_dislocations]
type = MaterialRealAux
variable = wall_dislocations
property = wall_dislocations
[]
[number_of_substeps]
type = MaterialRealAux
variable = number_of_substeps
property = number_of_substeps
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'vonmises_stress'
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[pressure_x]
type = Pressure
variable = disp_x
boundary = right
factor = -0.5
function = shear_function
[]
[pressure_y]
type = Pressure
variable = disp_y
boundary = top
factor = -0.5
function = shear_function
[]
[pressure_z]
type = Pressure
variable = disp_z
boundary = front
factor = 0.5
function = shear_function
[]
[]
[Functions]
[shear_function]
type = ParsedFunction
value = 'timeToDoubleInHours := 10;
if(t<=28*60*60, 15.0e6, '
'15.0e6*(t-28*3600)/3600/timeToDoubleInHours+15.0e6)'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.68e11
poissons_ratio = 0.31
[]
[stress]
type = ComputeMultipleInelasticStress
inelastic_models = rom_stress_prediction
[]
[mx_phase_fraction]
type = GenericConstantMaterial
prop_names = mx_phase_fraction
prop_values = 5.13e-2 #precipitation bounds: 6e-3, 1e-1
outputs = all
[]
[rom_stress_prediction]
type = SS316HLAROMANCEStressUpdateTest
temperature = temperature
initial_cell_dislocation_density = 6.0e12
initial_wall_dislocation_density = 4.4e11
use_substep = false
max_inelastic_increment = 0.0001
stress_input_window_low_failure = WARN
stress_input_window_high_failure = ERROR
cell_input_window_high_failure = ERROR
cell_input_window_low_failure = ERROR
wall_input_window_low_failure = ERROR
wall_input_window_high_failure = ERROR
temperature_input_window_high_failure = ERROR
temperature_input_window_low_failure = ERROR
environment_input_window_high_failure = ERROR
environment_input_window_low_failure = ERROR
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
nl_abs_tol = 1e-12
nl_rel_tol = 1e-4
automatic_scaling = true
compute_scaling_once = false
dtmin = 0.1
dtmax = 1e5
end_time = 136800
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1 ## This model requires a tiny timestep at the onset for the first 10s
iteration_window = 4
optimal_iterations = 12
time_t = '100800'
time_dt = '1e5'
[]
[]
[Postprocessors]
[effective_strain_avg]
type = ElementAverageValue
variable = effective_inelastic_strain
[]
[temperature]
type = ElementAverageValue
variable = temperature
[]
[cell_dislocations]
type = ElementAverageValue
variable = cell_dislocations
[]
[wall_disloactions]
type = ElementAverageValue
variable = wall_dislocations
[]
[max_vonmises_stress]
type = ElementExtremeValue
variable = vonmises_stress
value_type = max
[]
[number_of_substeps]
type = ElementAverageValue
variable = number_of_substeps
[]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/stochastic_tools/test/tests/reporters/stochastic_reporter/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
error_on_dtmin = false
[]
[Postprocessors]
[pp]
type = Receiver
default = 0
[]
[]
vector_val0 = 0
vector_val1= ${fparse vector_val0 * 10}
vector_val2= ${fparse vector_val0 * 100}
vector_val3= ${fparse vector_val0 * 1000}
[VectorPostprocessors]
[vpp]
type = ConstantVectorPostprocessor
vector_names = 'vec'
value = '${vector_val0} ${vector_val1} ${vector_val2} ${vector_val3}'
[]
[]
[Reporters]
[constant]
type = ConstantReporter
integer_names = 'int'
integer_values = 0
string_names = 'str'
string_values = 'this_value'
[]
[mesh]
type = MeshInfo
items = sidesets
[]
[]
[Outputs]
[]
(test/tests/materials/discrete/recompute2.i)
[Mesh]
[generator]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 1
[]
[left_domain]
type = SubdomainBoundingBoxGenerator
input = generator
bottom_left = '0 0 0'
top_right = '0.5 1 0'
block_id = 10
[]
[]
[Variables]
[./u]
initial_condition = 2
[../]
[]
[Kernels]
[./diff]
type = MatDiffusionTest
variable = u
prop_name = 'p'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 2
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 3
[../]
[]
[Materials]
[./recompute_props]
type = RecomputeMaterial
block = 0
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
outputs = all
output_properties = 'f f_prime p'
constant = 3
compute = false # make this material "discrete"
[../]
[./newton]
type = NewtonMaterial
block = 0
outputs = all
f_name = 'f'
f_prime_name = 'f_prime'
p_name = 'p'
material = 'recompute_props'
[../]
[./left]
type = GenericConstantMaterial
prop_names = 'f f_prime p'
prop_values = '1 0.5 1.2345'
block = 10
outputs = all
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_linear_residuals = true
perf_graph = true
[]
(test/tests/postprocessors/postprocessor_dependency/element_side_pp.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
elem_type = QUAD9
[]
[Variables]
active = 'u v'
[./u]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 2.8
[../]
[../]
[./v]
order = SECOND
family = LAGRANGE
[./InitialCondition]
type = ConstantIC
value = 5.4
[../]
[../]
[]
[Functions]
active = 'force_fn exact_fn left_bc'
[./force_fn]
type = ParsedFunction
value = '1-x*x+2*t'
[../]
[./exact_fn]
type = ParsedFunction
value = '(1-x*x)*t'
[../]
[./left_bc]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
active = '
time_u diff_u ffn_u
time_v diff_v'
[./time_u]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./ffn_u]
type = BodyForce
variable = u
function = force_fn
[../]
[./time_v]
type = TimeDerivative
variable = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
active = 'all_u left_v right_v'
[./all_u]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[../]
[./left_v]
type = FunctionDirichletBC
variable = v
boundary = '3'
function = left_bc
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = '1'
value = 0
[../]
[]
[Postprocessors]
[./sidepp]
type = SideIntegralVariablePostprocessor
variable = v
execute_on = timestep_end
boundary = '0 1 2 3'
[../]
[./passsidepp]
type = ElementSidePP
side_pp = sidepp
execute_on = timestep_end
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
end_time = 0.3
[]
[Outputs]
file_base = out
csv = true
[]
(test/tests/materials/functor_properties/wrong-type.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[]
[Variables]
[u][]
[]
[Kernels]
[diff_u]
type = FunctorMatDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = 'right'
value = 0
[]
[]
[Materials]
[request_ad]
type = FEFVCouplingMaterial
retrieved_prop_name = 'prop'
[]
[declare_regular]
type = GenericFunctorMaterial
prop_names = 'prop'
prop_values = '1'
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4ns.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
file = pl_test4.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
normal_smoothing_distance = 0.2
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1e-10
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[]
[Outputs]
file_base = pl_test4ns_out
exodus = true
[]
(modules/contact/test/tests/bouncing-block-contact/frictional-nodal-min-lm-mortar-disp.i)
starting_point = 2e-1
offset = 1e-2
[GlobalParams]
displacements = 'disp_x disp_y'
diffusivity = 1e0
scaling = 1e0
[]
[Mesh]
file = long-bottom-block-1elem-blocks.e
[]
[Variables]
[./disp_x]
block = '1 2'
[../]
[./disp_y]
block = '1 2'
[../]
[./normal_lm]
block = 3
[../]
[./tangential_lm]
block = 3
[../]
[]
[ICs]
[./disp_y]
block = 2
variable = disp_y
value = ${fparse starting_point + offset}
type = ConstantIC
[../]
[]
[Kernels]
[./disp_x]
type = MatDiffusion
variable = disp_x
[../]
[./disp_y]
type = MatDiffusion
variable = disp_y
[../]
[]
[Constraints]
[normal_lm]
type = NormalNodalLMMechanicalContact
primary = 20
secondary = 10
variable = normal_lm
primary_variable = disp_x
disp_y = disp_y
ncp_function_type = min
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_lm]
type = TangentialNodalLMMechanicalContact
primary = 20
secondary = 10
variable = tangential_lm
primary_variable = disp_x
disp_y = disp_y
contact_pressure = normal_lm
ncp_function_type = min
mu = .1
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 20
secondary_boundary = 10
primary_subdomain = 4
secondary_subdomain = 3
variable = tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
[]
[]
[BCs]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 40
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 40
value = 0.0
[../]
[./topy]
type = FunctionDirichletBC
variable = disp_y
boundary = 30
function = '${starting_point} * cos(2 * pi / 40 * t) + ${offset}'
[../]
[./leftx]
type = FunctionDirichletBC
variable = disp_x
boundary = 50
function = '1e-2 * t'
[../]
[]
[Executioner]
type = Transient
end_time = 200
dt = 5
dtmin = .1
solve_type = 'PJFNK'
petsc_options = '-snes_converged_reason -ksp_converged_reason -pc_svd_monitor -snes_linesearch_monitor -snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu NONZERO 1e-15 1e-5'
l_max_its = 30
nl_max_its = 20
line_search = 'none'
snesmf_reuse_base = false
[]
[Debug]
show_var_residual_norms = true
[]
[Outputs]
[exodus]
type = Exodus
sync_times = '0 5 10 15 20 25 30 35 40 45 50'
file_base = frictional-nodal-min-lm-mortar-disp_out
[]
[dof]
type = DOFMap
execute_on = 'initial'
[]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Postprocessors]
[./num_nl]
type = NumNonlinearIterations
[../]
[./cumulative]
type = CumulativeValuePostprocessor
postprocessor = num_nl
[../]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = '3'
execute_on = 'nonlinear timestep_end'
[]
[]
(modules/functional_expansion_tools/test/tests/standard_use/volume_coupling_custom_norm.i)
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0.0
xmax = 10.0
nx = 15
[]
[Variables]
[./m]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./s_in]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_m]
type = Diffusion
variable = m
[../]
[./time_diff_m]
type = TimeDerivative
variable = m
[../]
[./s_in]
type = CoupledForce
variable = m
v = s_in
[../]
[]
[AuxKernels]
[./reconstruct_s_in]
type = FunctionSeriesToAux
variable = s_in
function = FX_Basis_Value_Main
[../]
[]
[ICs]
[./start_m]
type = ConstantIC
variable = m
value = 1
[../]
[]
[BCs]
[./surround]
type = DirichletBC
variable = m
value = 1
boundary = 'left right'
[../]
[]
[Functions]
[./FX_Basis_Value_Main]
type = FunctionSeries
series_type = Cartesian
orders = '3'
physical_bounds = '0.0 10.0'
x = Legendre
generation_type = 'sqrt_mu'
expansion_type = 'sqrt_mu'
[../]
[]
[UserObjects]
[./FX_Value_UserObject_Main]
type = FXVolumeUserObject
function = FX_Basis_Value_Main
variable = m
[../]
[]
[Postprocessors]
[./average_value]
type = ElementAverageValue
variable = m
[../]
[./peak_value]
type = ElementExtremeValue
value_type = max
variable = m
[../]
[./picard_iterations]
type = NumFixedPointIterations
[../]
[]
[Executioner]
type = Transient
num_steps = 10
dt = 0.5
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
nl_rel_tol = 1e-8
nl_abs_tol = 1e-9
fixed_point_rel_tol = 1e-8
fixed_point_abs_tol = 1e-9
[]
[Outputs]
exodus = true
file_base = 'volume_coupled_out'
[]
[MultiApps]
[./FXTransferApp]
type = TransientMultiApp
input_files = volume_coupling_custom_norm_sub.i
[../]
[]
[Transfers]
[./ValueToSub]
type = MultiAppFXTransfer
to_multi_app = FXTransferApp
this_app_object_name = FX_Value_UserObject_Main
multi_app_object_name = FX_Basis_Value_Sub
[../]
[./ValueToMe]
type = MultiAppFXTransfer
from_multi_app = FXTransferApp
this_app_object_name = FX_Basis_Value_Main
multi_app_object_name = FX_Value_UserObject_Sub
[../]
[]
(modules/combined/test/tests/evolving_mass_density/shear_test_tensors.i)
# Element mass tests
# This series of tests is designed to compute the mass of elements based on
# an evolving mass density calculation. The tests consist of expansion and compression
# of the elastic patch test model along each axis, uniform expansion and compression,
# and shear in each direction. The expansion and compression tests change the volume of
# the elements. The corresponding change in density should compensate for this so the
# mass remains constant. The shear tests should not result in a volume change, and this
# is checked too. The mass calculation is done with the post processor called Mass.
# The tests/file names are as follows:
# Expansion and compression along a single axis
# expand_compress_x_test_out.e
# expand_compress_y_test_out.e
# expand_compress_z_test_out.e
# Volumetric expansion and compression
# uniform_expand_compress_test.i
# Zero volume change shear along each axis
# shear_x_test_out.e
# shear_y_test_out.e
# shear_z_test_out.e
# The resulting mass calculation for these tests should always be = 1.
# This test is a duplicate of the uniform_expand_compress_test.i test for solid mechanics, and the
# output of this tensor mechanics test is compared to the original
# solid mechanics output. The duplication is necessary to test the
# migrated tensor mechanics version while maintaining tests for solid mechanics.
[Mesh]
file = elastic_patch.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./rampConstant1]
type = PiecewiseLinear
x = '0.00 1.00 2.0 3.00'
y = '0.00 0.25 0.0 -0.25'
scale_factor = 1
[../]
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./TensorMechanics]
[../]
[]
[BCs]
[./bot_x]
type = DirichletBC
variable = disp_x
value = 0.0
[../]
[./bot_y]
type = DirichletBC
variable = disp_y
value = 0
[../]
[./bot_z]
type = DirichletBC
variable = disp_z
value = 0
[../]
[./top_x]
variable = disp_x
preset = false
[../]
[./top_y]
variable = disp_y
preset = false
[../]
[./top_z]
variable = disp_z
preset = false
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2 3 4 5 6 7'
youngs_modulus = 1e6
poissons_ratio = 0.0
[../]
[./small_strain]
type = ComputeSmallStrain
block = ' 1 2 3 4 5 6 7'
[../]
[./elastic_stress]
type = ComputeLinearElasticStress
block = '1 2 3 4 5 6 7'
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 3
end_time = 3.0
[] # Executioner
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[] # Outputs
[Postprocessors]
[./Mass]
type = Mass
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[]
(modules/tensor_mechanics/test/tests/truss/truss_hex.i)
# This test is designed to check
# whether truss element works well with other multi-dimensional element
# e.g. the hex element in this case, by assigning different brock number
# to different types of elements.
[Mesh]
type = FileMesh
file = truss_hex.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./fixx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[./fixDummyHex_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0
[../]
[./fixDummyHex_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0
[../]
[./fixDummyHex_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '0 -2 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area1]
type = ConstantAux
block = 1
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[./area2]
type = ConstantAux
block = 2
variable = area
value = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[./truss_x]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
area = area
save_in = react_x
[../]
[./truss_y]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_y
component = 1
displacements = 'disp_x disp_y disp_z'
area = area
save_in = react_y
[../]
[./truss_z]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_z
component = 2
displacements = 'disp_x disp_y disp_z'
area = area
save_in = react_z
[../]
[./TensorMechanics]
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
# [./hex_x]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_x
# component = 0
# displacements = 'disp_x disp_y disp_z'
# [../]
# [./hex_y]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_y
# component = 1
# displacements = 'disp_x disp_y disp_z'
# [../]
# [./hex_z]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_z
# component = 2
# displacements = 'disp_x disp_y disp_z'
# [../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1000
youngs_modulus = 1e6
poissons_ratio = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1000
[../]
[./linelast]
type = LinearElasticTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
youngs_modulus = 1e6
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/function_file_test11.i)
# Test for usage of missing function
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = ic_function
[../]
[../]
[]
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_columns_more_data.csv #Will generate error because data has more than two columns
format = columns
scale_factor = 1.0
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/postprocessors/relative_solution_difference_norm/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
elem_type = QUAD4
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = '2 - t'
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./ffn]
type = BodyForce
variable = u
function = ffn
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Postprocessors]
[./rsn]
type = RelativeSolutionDifferenceNorm
execute_on = TIMESTEP_END
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/domain_integral_thermal/interaction_integral_2d_eig_grad.i)
#This problem from [Wilson 1979] tests the thermal strain term in the
#interaction integral. In this variant of this test, rather than using the
#standard mechanism for applying thermal strain, the eigenstrain for the
#thermal strain is applied using a generic object, which also supplies its
#gradient. This gradient is used in the interaction integral, with a nearly
#identical result to that from the version of this test that applies that
#in the standard manner.
#
#theta_e = 10 degrees C; a = 252; E = 207000; nu = 0.3; alpha = 1.35e-5
#
#With uniform_refine = 3, KI converges to
#KI = 5.602461e+02 (interaction integral)
#KI = 5.655005e+02 (J-integral)
#
#Both are in good agreement with [Shih 1986]:
#average_value = 0.4857 = KI / (sigma_theta * sqrt(pi * a))
#sigma_theta = E * alpha * theta_e / (1 - nu)
# = 207000 * 1.35e-5 * 10 / (1 - 0.3) = 39.9214
#KI = average_value * sigma_theta * sqrt(pi * a) = 5.656e+02
#
#References:
#W.K. Wilson, I.-W. Yu, Int J Fract 15 (1979) 377-387
#C.F. Shih, B. Moran, T. Nakamura, Int J Fract 30 (1986) 79-102
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = False
[]
[Mesh]
file = crack2d.e
displacements = 'disp_x disp_y'
# uniform_refine = 3
[]
[Functions]
[eigfunc]
type = ParsedFunction
value = 1.35e-5*10.0*(2*x/504)
[]
[]
[DomainIntegral]
integrals = 'InteractionIntegralKI'
boundary = 800
crack_direction_method = CrackDirectionVector
crack_direction_vector = '1 0 0'
2d = true
axis_2d = 2
radius_inner = '60.0 80.0 100.0 120.0'
radius_outer = '80.0 100.0 120.0 140.0'
symmetry_plane = 1
incremental = true
# interaction integral parameters
block = 1
youngs_modulus = 207000
poissons_ratio = 0.3
eigenstrain_gradient = thermal_expansion_gradient
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress'
planar_formulation = PLANE_STRAIN
eigenstrain_names = thermal_expansion
[]
[]
[BCs]
[crack_y]
type = DirichletBC
variable = disp_y
boundary = 100
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 400
value = 0.0
[]
[no_x1]
type = DirichletBC
variable = disp_x
boundary = 900
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 207000
poissons_ratio = 0.3
[]
[elastic_stress]
type = ComputeFiniteStrainElasticStress
[]
[thermal_expansion_strain]
type = FunctionIsotropicEigenstrain
function = eigfunc
eigenstrain_name = thermal_expansion
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 1'
line_search = 'none'
l_max_its = 50
nl_max_its = 40
nl_rel_step_tol= 1e-10
nl_rel_tol = 1e-10
start_time = 0.0
dt = 1
end_time = 1
num_steps = 1
[]
[Outputs]
exodus = true
csv = true
[]
[Preconditioning]
[smp]
type = SMP
pc_side = left
ksp_norm = preconditioned
full = true
[]
[]
(modules/combined/test/tests/power_law_creep/power_law_creep_smallstrain.i)
# 1x1x1 unit cube with uniform pressure on top face for the case of small strain.
# This test does not have a solid mechanics analog because there is not an equvialent
# small strain with rotations strain calculator material in solid mechanics
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 1000.0
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_yy creep_strain_xx creep_strain_yy creep_strain_zz elastic_strain_yy'
[../]
[]
[Functions]
[./top_pull]
type = PiecewiseLinear
x = '0 1'
y = '1 1'
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./heat_ie]
type = HeatConductionTimeDerivative
variable = temp
[../]
[]
[BCs]
[./u_top_pull]
type = Pressure
variable = disp_y
boundary = top
factor = -10.0e6
function = top_pull
[../]
[./u_bottom_fix]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./u_yz_fix]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./u_xy_fix]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./temp_fix]
type = DirichletBC
variable = temp
boundary = 'bottom top'
value = 1000.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 2e11
poissons_ratio = 0.3
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
inelastic_models = 'power_law_creep'
tangent_operator = elastic
[../]
[./power_law_creep]
type = PowerLawCreepStressUpdate
coefficient = 1.0e-15
n_exponent = 4
activation_energy = 3.0e5
temperature = temp
[../]
[./thermal]
type = HeatConductionMaterial
specific_heat = 1.0
thermal_conductivity = 100.
[../]
[./density]
type = Density
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101'
line_search = 'none'
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 1.0
num_steps = 10
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/xfem/test/tests/single_var_constraint_2d/stationary_jump.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 5
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.5 1.0 0.5 0.0'
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[Constraints]
[./xfem_constraint]
type = XFEMSingleVariableConstraint
variable = u
jump = 0.5
jump_flux = 0
geometric_cut_userobject = 'line_seg_cut_uo'
[../]
[]
[BCs]
# Define boundary conditions
[./left_u]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/material_limit_time_step/damage/elements_changed_timestep_limit.i)
# This is a basic test of the system for continuum damage mechanics
# materials. It uses ScalarMaterialDamage for the damage model,
# which simply gets its damage index from another material. In this
# case, we prescribe the evolution of the damage index using a
# function. A single element has a fixed prescribed displacement
# on one side that puts the element in tension, and then the
# damage index evolves from 0 to 1 over time, and this verifies
# that the stress correspondingly drops to 0.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 10
ny = 1
nz = 1
elem_type = HEX8
[]
[AuxVariables]
[damage_index]
order = CONSTANT
family = MONOMIAL
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = SMALL
incremental = true
add_variables = true
generate_output = 'stress_xx strain_xx'
[]
[]
[AuxKernels]
[damage_index]
type = MaterialRealAux
variable = damage_index
property = damage_index_prop
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[axial_load]
type = DirichletBC
variable = disp_x
boundary = right
value = 0.01
[]
[]
[Functions]
[damage_evolution]
type = ParsedFunction
value = 'min(1.0, max(0.0, t - x * 3.0))'
[]
[]
[Materials]
[damage_index]
type = GenericFunctionMaterial
prop_names = damage_index_prop
prop_values = damage_evolution
[]
[damage]
type = ScalarMaterialDamage
damage_index = damage_index_prop
use_old_damage = true
maximum_damage_increment = 0.5
[]
[stress]
type = ComputeDamageStress
damage_model = damage
[]
[elasticity]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.2
youngs_modulus = 10e9
[]
[]
[Postprocessors]
[stress_xx]
type = ElementAverageValue
variable = stress_xx
[]
[strain_xx]
type = ElementAverageValue
variable = strain_xx
[]
[damage_index]
type = ElementAverageValue
variable = damage_index
[]
[time_step_limit]
type = MaterialTimeStepPostprocessor
use_material_timestep_limit = false
elements_changed_property = damage_index_prop
elements_changed = 4
[]
[]
[Executioner]
type = Transient
l_max_its = 50
l_tol = 1e-8
nl_max_its = 20
nl_rel_tol = 1e-12
nl_abs_tol = 1e-6
dtmin = 0.001
end_time = 4.0
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.2
growth_factor = 2.0
cutback_factor = 0.5
timestep_limiting_postprocessor = time_step_limit
[]
[]
[Outputs]
exodus = true
csv=true
[]
(modules/tensor_mechanics/test/tests/hyperelastic_viscoplastic/one_elem_multi.i)
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
displacements = 'ux uy uz'
[]
[Variables]
[./ux]
block = 0
[../]
[./uy]
block = 0
[../]
[./uz]
block = 0
[../]
[]
[Kernels]
[./TensorMechanics]
displacements = 'ux uy uz'
use_displaced_mesh = true
[../]
[]
[AuxVariables]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq_soft]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./peeq_hard]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_zz]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[AuxKernels]
[./stress_zz]
type = RankTwoAux
variable = stress_zz
rank_two_tensor = stress
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = fp
index_j = 2
index_i = 2
execute_on = timestep_end
block = 0
[../]
[./peeq_soft]
type = MaterialRealAux
variable = peeq_soft
property = ep_eqv1
execute_on = timestep_end
block = 0
[../]
[./peeq_hard]
type = MaterialRealAux
variable = peeq_hard
property = ep_eqv2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = uy
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = ux
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = uz
boundary = back
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = uz
boundary = front
function = '0.01*t'
[../]
[]
[UserObjects]
[./flowstress1]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.1
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv1
[../]
[./flowstress2]
type = HEVPRambergOsgoodHardening
yield_stress = 100
hardening_exponent = 0.3
reference_plastic_strain = 0.002
intvar_prop_name = ep_eqv2
[../]
[./flowrate1]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress1
[../]
[./flowrate2]
type = HEVPFlowRatePowerLawJ2
reference_flow_rate = 0.0001
flow_rate_exponent = 50.0
flow_rate_tol = 1
strength_prop_name = flowstress2
[../]
[./ep_eqv1]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate1
[../]
[./ep_eqv_rate1]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate1
[../]
[./ep_eqv2]
type = HEVPEqvPlasticStrain
intvar_rate_prop_name = ep_eqv_rate2
[../]
[./ep_eqv_rate2]
type = HEVPEqvPlasticStrainRate
flow_rate_prop_name = flowrate2
[../]
[]
[Materials]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'ux uy uz'
[../]
[./viscop]
type = FiniteStrainHyperElasticViscoPlastic
block = 0
resid_abs_tol = 1e-18
resid_rel_tol = 1e-8
maxiters = 50
max_substep_iteration = 5
flow_rate_user_objects = 'flowrate1 flowrate2'
strength_user_objects = 'flowstress1 flowstress2'
internal_var_user_objects = 'ep_eqv1 ep_eqv2'
internal_var_rate_user_objects = 'ep_eqv_rate1 ep_eqv_rate2'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
block = 0
C_ijkl = '2.8e5 1.2e5 1.2e5 2.8e5 1.2e5 2.8e5 0.8e5 0.8e5 0.8e5'
fill_method = symmetric9
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_zz]
type = ElementAverageValue
variable = fp_zz
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq_soft]
type = ElementAverageValue
variable = peeq_soft
block = 'ANY_BLOCK_ID 0'
[../]
[./peeq_hard]
type = ElementAverageValue
variable = peeq_hard
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.02
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
dtmax = 10.0
nl_rel_tol = 1e-10
dtmin = 0.02
num_steps = 10
[]
[Outputs]
file_base = one_elem_multi
exodus = true
csv = false
[]
(test/tests/mesh/high_order_elems/high_order_elems.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/scalar_adr/supg/tauOpt.i)
velocity=1
[GlobalParams]
u = ${velocity}
pressure = 0
tau_type = opt
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 15
xmax = 15
[]
[Variables]
[./c]
[../]
[]
[Kernels]
[./adv]
type = Advection
variable = c
forcing_func = 'ffn'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Materials]
[./mat]
# These Materials are required by the INSBase class; we don't use them for anything.
type = GenericConstantMaterial
prop_names = 'mu rho'
prop_values = '0 1'
[../]
[]
[Functions]
[./ffn]
type = ParsedFunction
value = 'if(x < 6, 1 - .25 * x, if(x < 8, -2 + .25 * x, 0))'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/combined/test/tests/phase_field_fracture/crack2d_computeCrackedStress_finitestrain_plastic.i)
#This input uses PhaseField-Nonconserved Action to add phase field fracture bulk rate kernels
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 40
ny = 20
ymax = 0.5
[]
[./noncrack]
type = BoundingBoxNodeSetGenerator
new_boundary = noncrack
bottom_left = '0.5 0 0'
top_right = '1 0 0'
input = gen
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./elastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./plastic_strain_yy]
family = MONOMIAL
order = CONSTANT
[../]
[./uncracked_stress_yy]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./All]
add_variables = true
strain = FINITE
planar_formulation = PLANE_STRAIN
additional_generate_output = 'stress_yy vonmises_stress'
strain_base_name = uncracked
[../]
[../]
[../]
[./PhaseField]
[./Nonconserved]
[./c]
free_energy = E_el
kappa = kappa_op
mobility = L
[../]
[../]
[../]
[]
[Kernels]
[./solid_x]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_x
component = 0
c = c
[../]
[./solid_y]
type = PhaseFieldFractureMechanicsOffDiag
variable = disp_y
component = 1
c = c
[../]
[./off_disp]
type = AllenCahnElasticEnergyOffDiag
variable = c
displacements = 'disp_x disp_y'
mob_name = L
[../]
[]
[AuxKernels]
[./strain_yy]
type = RankTwoAux
variable = strain_yy
rank_two_tensor = uncracked_mechanical_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./elastic_strain_yy]
type = RankTwoAux
variable = elastic_strain_yy
rank_two_tensor = uncracked_elastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./plastic_strain_yy]
type = RankTwoAux
variable = plastic_strain_yy
rank_two_tensor = uncracked_plastic_strain
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[./uncracked_stress_yy]
type = RankTwoAux
variable = uncracked_stress_yy
rank_two_tensor = uncracked_stress
index_i = 1
index_j = 1
execute_on = TIMESTEP_END
[../]
[]
[BCs]
[./ydisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = 't'
[../]
[./yfix]
type = DirichletBC
variable = disp_y
boundary = noncrack
value = 0
[../]
[./xfix]
type = DirichletBC
variable = disp_x
boundary = right
value = 0
[../]
[]
[Functions]
[./hf]
type = PiecewiseLinear
x = '0 0.001 0.003 0.023'
y = '0.85 1.0 1.25 1.5'
[../]
[]
[Materials]
[./pfbulkmat]
type = GenericConstantMaterial
prop_names = 'gc_prop l visco'
prop_values = '1e-3 0.05 5e-3'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '120.0 80.0'
fill_method = symmetric_isotropic
base_name = uncracked
[../]
[./isotropic_plasticity]
type = IsotropicPlasticityStressUpdate
yield_stress = 0.85
hardening_function = hf
base_name = uncracked
[../]
[./radial_return_stress]
type = ComputeMultipleInelasticStress
tangent_operator = elastic
inelastic_models = 'isotropic_plasticity'
base_name = uncracked
[../]
[./cracked_stress]
type = ComputeCrackedStress
c = c
F_name = E_el
use_current_history_variable = true
uncracked_base_name = uncracked
finite_strain_model = true
[../]
[]
[Postprocessors]
[./av_stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./av_strain_yy]
type = SideAverageValue
variable = disp_y
boundary = top
[../]
[./av_uncracked_stress_yy]
type = ElementAverageValue
variable = uncracked_stress_yy
[../]
[./max_c]
type = ElementExtremeValue
variable = c
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_factor_mat_solving_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-8
l_tol = 1e-4
l_max_its = 100
nl_max_its = 10
dt = 2.0e-5
num_steps = 2
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
# Using a two-phase system (see 2species_equilibrium for the single-phase)
# The saturations, porosity, mass fractions, tortuosity and diffusion coefficients are chosen so that the results are identical to 2species_equilibrium
#
# PorousFlow analogy of chemical_reactions/test/tests/aqueous_equilibrium/2species.i
#
# Simple equilibrium reaction example to illustrate the use of PorousFlowMassFractionAqueousEquilibriumChemistry
#
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction:
#
# reactions = '2a = pa2 rate = 10^2
# a + b = pab rate = 10^-2'
#
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
[]
[Variables]
[a]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[]
[]
[b]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = BoundingBoxIC
x1 = 0.0
y1 = 0.0
x2 = 1.0e-10
y2 = 1
inside = 1.0e-2
outside = 1.0e-10
[]
[]
[]
[AuxVariables]
[eqm_k0]
initial_condition = 1E2
[]
[eqm_k1]
initial_condition = 1E-2
[]
[pressure0]
[]
[saturation1]
initial_condition = 0.25
[]
[a_in_phase0]
initial_condition = 0.0
[]
[b_in_phase0]
initial_condition = 0.0
[]
[pa2]
family = MONOMIAL
order = CONSTANT
[]
[pab]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[pa2]
type = PorousFlowPropertyAux
property = secondary_concentration
secondary_species = 0
variable = pa2
[]
[pab]
type = PorousFlowPropertyAux
property = secondary_concentration
secondary_species = 1
variable = pab
[]
[]
[ICs]
[pressure0]
type = FunctionIC
variable = pressure0
function = 2-x
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Kernels]
[mass_a]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = a
[]
[flux_a]
type = PorousFlowAdvectiveFlux
variable = a
fluid_component = 0
[]
[diff_a]
type = PorousFlowDispersiveFlux
variable = a
fluid_component = 0
disp_trans = '0 0'
disp_long = '0 0'
[]
[mass_b]
type = PorousFlowMassTimeDerivative
fluid_component = 1
variable = b
[]
[flux_b]
type = PorousFlowAdvectiveFlux
variable = b
fluid_component = 1
[]
[diff_b]
type = PorousFlowDispersiveFlux
variable = b
fluid_component = 1
disp_trans = '0 0'
disp_long = '0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'a b'
number_fluid_phases = 2
number_fluid_components = 3
number_aqueous_equilibrium = 2
aqueous_phase_number = 1
[]
[pc]
type = PorousFlowCapillaryPressureConst
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2e9 # huge, so mimic chemical_reactions
density0 = 1000
thermal_expansion = 0
viscosity = 1e-3
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[ppss]
type = PorousFlow2PhasePS
capillary_pressure = pc
phase0_porepressure = pressure0
phase1_saturation = saturation1
[]
[massfrac]
type = PorousFlowMassFractionAqueousEquilibriumChemistry
mass_fraction_vars = 'a_in_phase0 b_in_phase0 a b'
num_reactions = 2
equilibrium_constants = 'eqm_k0 eqm_k1'
primary_activity_coefficients = '1 1'
secondary_activity_coefficients = '1 1'
reactions = '2 0
1 1'
[]
[simple_fluid0]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[simple_fluid1]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.8
[]
[permeability]
type = PorousFlowPermeabilityConst
# porous_flow permeability / porous_flow viscosity = chemical_reactions conductivity = 1E-4
permeability = '1E-7 0 0 0 1E-7 0 0 0 1E-7'
[]
[relp0]
type = PorousFlowRelativePermeabilityConst
phase = 0
[]
[relp1]
type = PorousFlowRelativePermeabilityConst
phase = 1
[]
[diff]
type = PorousFlowDiffusivityConst
# porous_flow diffusion_coeff * tortuousity * porosity = chemical_reactions diffusivity = 1E-4
diffusion_coeff = '5E-4 5E-4 5E-4
5E-4 5E-4 5E-4'
tortuosity = '0.25 0.25'
[]
[]
[BCs]
[a_left]
type = DirichletBC
variable = a
boundary = left
value = 1.0e-2
[]
[b_left]
type = DirichletBC
variable = b
boundary = left
value = 1.0e-2
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 10
end_time = 100
[]
[Outputs]
print_linear_residuals = true
exodus = true
perf_graph = true
[]
(test/tests/geomsearch/2d_moving_penetration/pl_test4q.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4q.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate10]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate13]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate14]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate15]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate16]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_rel_tol = 1.e-9
l_max_its = 10
start_time = 0.0
dt = 0.02
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4q_out
exodus = true
[]
(modules/contact/test/tests/sliding_block/edge_dropping/two_equal_blocks_slide_3d.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Mesh]
[left_block]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -1.0
xmax = 0.0
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
elem_type = HEX8
[]
[left_block_sidesets]
type = RenameBoundaryGenerator
input = left_block
old_boundary = '0 1 2 3 4 5'
new_boundary = 'left_bottom left_back left_right left_front left_left left_top'
[]
[left_block_id]
type = SubdomainIDGenerator
input = left_block_sidesets
subdomain_id = 1
[]
[right_block]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 1.0
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
elem_type = HEX8
[]
[right_block_sidesets]
type = RenameBoundaryGenerator
input = right_block
old_boundary = '0 1 2 3 4 5'
# new_boundary = 'right_bottom right_back right_right right_front right_left right_top'
new_boundary = '100 101 102 103 104 105'
[]
[right_block_sidesets_rename]
type = RenameBoundaryGenerator
input = right_block_sidesets
old_boundary = '100 101 102 103 104 105'
new_boundary = 'right_bottom right_back right_right right_front right_left right_top'
[]
[right_block_id]
type = SubdomainIDGenerator
input = right_block_sidesets_rename
subdomain_id = 2
[]
[combined_mesh]
type = MeshCollectionGenerator
inputs = 'left_block_id right_block_id'
[]
[left_lower]
type = LowerDBlockFromSidesetGenerator
input = combined_mesh
sidesets = 'left_right'
new_block_id = '10001'
new_block_name = 'secondary_lower'
[]
[right_lower]
type = LowerDBlockFromSidesetGenerator
input = left_lower
sidesets = 'right_left'
new_block_id = '10000'
new_block_name = 'primary_lower'
[]
[]
[Variables]
[normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[Modules/TensorMechanics/Master]
[all]
strain = FINITE
incremental = true
add_variables = true
block = '1 2'
[]
[]
[Functions]
[horizontal_movement]
type = PiecewiseLinear
x = '0 0.1 4'
y = '0 0.05 0.05'
[]
[vertical_movement]
type = PiecewiseLinear
x = '0 0.1 4'
y = '0 0 0.3'
[]
[]
[BCs]
[push_left_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 'left_left'
function = horizontal_movement
[]
[push_left_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 'left_left'
function = vertical_movement
[]
[fix_left_z]
type = DirichletBC
variable = disp_z
boundary = 'left_left'
value = 0.0
[]
[fix_right_x]
type = DirichletBC
variable = disp_x
boundary = 'right_right'
value = 0.0
[]
[fix_right_y]
type = DirichletBC
variable = disp_y
boundary = 'right_right'
value = 0.0
[]
[fix_right_z]
type = DirichletBC
variable = disp_z
boundary = 'right_right'
value = 0.0
[]
[]
[Materials]
[elasticity_tensor_left]
type = ComputeIsotropicElasticityTensor
block = 1
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_left]
type = ComputeFiniteStrainElasticStress
block = 1
[]
[elasticity_tensor_right]
type = ComputeIsotropicElasticityTensor
block = 2
youngs_modulus = 1.0e6
poissons_ratio = 0.3
[]
[stress_right]
type = ComputeFiniteStrainElasticStress
block = 2
[]
[]
[Constraints]
[normal_lm]
type = ComputeWeightedGapLMMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
correct_edge_dropping = true
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 'right_left'
secondary_boundary = 'left_right'
primary_subdomain = 'primary_lower'
secondary_subdomain = 'secondary_lower'
variable = normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
correct_edge_dropping = true
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type '
'-pc_factor_shift_amount'
petsc_options_value = 'lu superlu_dist nonzero 1e-10'
line_search = 'none'
dt = 0.1
dtmin = 0.01
end_time = 0.4
l_max_its = 20
nl_max_its = 20
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
snesmf_reuse_base = false
[]
[Outputs]
csv = true
execute_on = 'FINAL'
[]
[Postprocessors]
[contact]
type = ContactDOFSetSize
variable = normal_lm
subdomain = 'secondary_lower'
[]
[normal_lm]
type = ElementAverageValue
variable = normal_lm
block = 'secondary_lower'
[]
[avg_disp_x]
type = ElementAverageValue
variable = disp_x
block = '1 2'
[]
[avg_disp_y]
type = ElementAverageValue
variable = disp_y
block = '1 2'
[]
[max_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
[]
[max_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
[]
[min_disp_x]
type = ElementExtremeValue
variable = disp_x
block = '1 2'
value_type = min
[]
[min_disp_y]
type = ElementExtremeValue
variable = disp_y
block = '1 2'
value_type = min
[]
[]
(test/tests/transfers/multiapp_nearest_node_transfer/boundary_tosub_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
xmin = 0
xmax = 8
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./from_master_1]
[../]
[./from_master_2]
[../]
[./from_master_3]
[../]
[./from_master_4]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 0
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(test/tests/misc/check_error/checked_pointer_param_test.i)
# The extra 'x' before the Mesh section below is intentional.
# We want to catch this type of error.
x[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/fluid_properties/test/tests/auxkernels/stagnation_pressure_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./specific_internal_energy]
[../]
[./specific_volume]
[../]
[./velocity]
[../]
[./stagnation_pressure]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./specific_internal_energy_ak]
type = ConstantAux
variable = specific_internal_energy
value = 1026.2e3
[../]
[./specific_volume_ak]
type = ConstantAux
variable = specific_volume
value = 0.0012192
[../]
[./velocity_ak]
type = ConstantAux
variable = velocity
value = 10.0
[../]
[./stagnation_pressure_ak]
type = StagnationPressureAux
variable = stagnation_pressure
e = specific_internal_energy
v = specific_volume
vel = velocity
fp = eos
[../]
[]
[Modules]
[./FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_2/brick2_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_begin
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 4
paired_boundary = 3
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/geomsearch/3d_moving_penetration/pl_test4qtt.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
[]
[Mesh]
file = pl_test4qtt.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./distance]
[../]
[./tangential_distance]
[../]
[./normal_x]
[../]
[./normal_y]
[../]
[./normal_z]
[../]
[./closest_point_x]
[../]
[./closest_point_y]
[../]
[./closest_point_z]
[../]
[./element_id]
[../]
[./side]
[../]
[]
[Kernels]
[./diff_x]
type = Diffusion
variable = disp_x
[../]
[./diff_y]
type = Diffusion
variable = disp_y
[../]
[./diff_z]
type = Diffusion
variable = disp_z
[../]
[]
[AuxKernels]
[./penetrate]
type = PenetrationAux
variable = distance
boundary = 11 #secondary
paired_boundary = 12 #primary
tangential_tolerance = 0.1
[../]
[./penetrate2]
type = PenetrationAux
variable = distance
boundary = 12 #secondary
paired_boundary = 11 #primary
tangential_tolerance = 0.1
[../]
[./penetrate3]
type = PenetrationAux
variable = tangential_distance
boundary = 11
paired_boundary = 12
quantity = tangential_distance
[../]
[./penetrate4]
type = PenetrationAux
variable = tangential_distance
boundary = 12
paired_boundary = 11
quantity = tangential_distance
[../]
[./penetrate5]
type = PenetrationAux
variable = normal_x
boundary = 11
paired_boundary = 12
quantity = normal_x
[../]
[./penetrate6]
type = PenetrationAux
variable = normal_x
boundary = 12
paired_boundary = 11
quantity = normal_x
[../]
[./penetrate7]
type = PenetrationAux
variable = normal_y
boundary = 11
paired_boundary = 12
quantity = normal_y
[../]
[./penetrate8]
type = PenetrationAux
variable = normal_y
boundary = 12
paired_boundary = 11
quantity = normal_y
[../]
[./penetrate9]
type = PenetrationAux
variable = normal_z
boundary = 11
paired_boundary = 12
quantity = normal_z
[../]
[./penetrate10]
type = PenetrationAux
variable = normal_z
boundary = 12
paired_boundary = 11
quantity = normal_z
[../]
[./penetrate11]
type = PenetrationAux
variable = closest_point_x
boundary = 11
paired_boundary = 12
quantity = closest_point_x
[../]
[./penetrate12]
type = PenetrationAux
variable = closest_point_x
boundary = 12
paired_boundary = 11
quantity = closest_point_x
[../]
[./penetrate13]
type = PenetrationAux
variable = closest_point_y
boundary = 11
paired_boundary = 12
quantity = closest_point_y
[../]
[./penetrate14]
type = PenetrationAux
variable = closest_point_y
boundary = 12
paired_boundary = 11
quantity = closest_point_y
[../]
[./penetrate15]
type = PenetrationAux
variable = closest_point_z
boundary = 11
paired_boundary = 12
quantity = closest_point_z
[../]
[./penetrate16]
type = PenetrationAux
variable = closest_point_z
boundary = 12
paired_boundary = 11
quantity = closest_point_z
[../]
[./penetrate17]
type = PenetrationAux
variable = element_id
boundary = 11
paired_boundary = 12
quantity = element_id
[../]
[./penetrate18]
type = PenetrationAux
variable = element_id
boundary = 12
paired_boundary = 11
quantity = element_id
[../]
[./penetrate19]
type = PenetrationAux
variable = side
boundary = 11
paired_boundary = 12
quantity = side
[../]
[./penetrate20]
type = PenetrationAux
variable = side
boundary = 12
paired_boundary = 11
quantity = side
[../]
[]
[BCs]
[./b1x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./b1y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./b1z]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./b2x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./b2y]
type = FunctionDirichletBC
variable = disp_y
boundary = 2
function = disp_y
[../]
[./b2z]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[]
[Functions]
[./disp_y]
type = PiecewiseLinear
x = '0.0 0.25 0.75 1.0'
y = '0.0 2.0 -2.0 0.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
nl_abs_tol = 1e-7
l_max_its = 10
start_time = 0.0
dt = 0.0125
end_time = 1.0
[./Quadrature]
order = THIRD
[../]
[]
[Outputs]
file_base = pl_test4qtt_out
exodus = true
[]
(test/tests/test_harness/exception_transient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./exception]
type = ExceptionKernel
variable = u
when = residual
# This exception won't be caught and will crash the simulation
throw_std_exception = true
[../]
[./diff]
type = Diffusion
variable = u
[../]
[./time_deriv]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
preset = false
boundary = 2
value = 1
[../]
[./right2]
type = DirichletBC
variable = u
preset = false
boundary = 1
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
dtmin = 0.005
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/plane_stress/ad_weak_plane_stress_finite.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Modules/TensorMechanics/Master]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = FINITE
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
value = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_finite_out'
exodus = true
[]
(test/tests/postprocessors/default_value/real_value_override.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = DefaultPostprocessorDiffusion
variable = u
pps_name = 0.5 # Here we supply a real value to use as the Postprocessor
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
dt = 0.1
num_steps = 10
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/csv/csv_sort.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[AuxVariables]
[./aux0]
order = SECOND
family = SCALAR
[../]
[./aux1]
family = SCALAR
initial_condition = 5
[../]
[./aux2]
family = SCALAR
initial_condition = 10
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = CoefDiffusion
variable = v
coef = 2
[../]
[]
[BCs]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 3
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[]
[Postprocessors]
[./num_vars]
type = NumVars
system = 'NL'
[../]
[./num_aux]
type = NumVars
system = 'AUX'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'timestep_end'
[./out]
type = CSV
sort_columns = true
[../]
[]
[ICs]
[./aux0_IC]
variable = aux0
values = '12 13'
type = ScalarComponentIC
[../]
[]
(test/tests/outputs/vtk/vtk_serial.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./aux]
family = MONOMIAL
order = CONSTANT
[../]
[]
[Kernels]
[./diff]
type = CoefDiffusion
variable = u
coef = 0.1
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
vtk = true
[]
(test/tests/misc/save_in/save_in_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./saved]
[../]
[./bc_saved]
[../]
[./accumulated]
[../]
[./diag_saved]
[../]
[./bc_diag_saved]
[../]
[./saved_dirichlet]
[../]
[./diag_saved_dirichlet]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
save_in = 'saved accumulated saved_dirichlet'
diag_save_in = 'diag_saved diag_saved_dirichlet'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
save_in = saved_dirichlet
diag_save_in = diag_saved_dirichlet
[../]
[./nbc]
type = NeumannBC
variable = u
boundary = right
value = 1
save_in = 'bc_saved accumulated'
diag_save_in = bc_diag_saved
[../]
[]
[Postprocessors]
[./left_flux]
type = NodalSum
variable = saved
boundary = 1
[../]
[./saved_norm]
type = NodalL2Norm
variable = saved
execute_on = timestep_end
block = 0
[../]
[./saved_dirichlet_norm]
type = NodalL2Norm
variable = saved_dirichlet
execute_on = timestep_end
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/total/special/area.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[zstress]
type = PiecewiseLinear
x = '0 1'
y = '0 500'
[]
[constant]
type = ConstantFunction
value = 1.0
[]
[ratio]
type = ParsedFunction
vars = 'sd su'
vals = 's_def s_undef'
value = 'sd / su'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[boty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_z]
type = FunctionNeumannBC
boundary = front
variable = disp_z
function = zstress
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = cauchy_stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000.0
poissons_ratio = 0.25
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Postprocessors]
[s_undef]
type = SideIntegralVariablePostprocessor
variable = stress_zz
boundary = front
[]
[s_def]
type = SideIntegralVariablePostprocessor
variable = stress_zz
boundary = front
use_displaced_mesh = true
[]
[area_calc]
type = FunctionValuePostprocessor
function = ratio
[]
[area]
type = AreaPostprocessor
boundary = front
use_displaced_mesh = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/brick_2/brick2_mu_0_2_pen.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
file = brick2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./diag_saved_z]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./inc_slip_z]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./accum_slip_z]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[./tang_force_z]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y saved_z'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./inc_slip_x]
type = PenetrationAux
variable = inc_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./inc_slip_y]
type = PenetrationAux
variable = inc_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_x]
type = PenetrationAux
variable = accum_slip_x
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./accum_slip_y]
type = PenetrationAux
variable = accum_slip_y
execute_on = timestep_end
boundary = 3
paired_boundary = 4
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 4
[../]
[./tang_force_x]
type = PenetrationAux
variable = tang_force_x
quantity = tangential_force_x
boundary = 3
paired_boundary = 4
[../]
[./tang_force_y]
type = PenetrationAux
variable = tang_force_y
quantity = tangential_force_y
boundary = 3
paired_boundary = 4
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_x26]
type = NodalVariableValue
nodeid = 25
variable = disp_x
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./disp_y26]
type = NodalVariableValue
nodeid = 25
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./back_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeFiniteStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeFiniteStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-8
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-5
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = id
[../]
[./y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '1 3 4 5'
sort_by = id
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = id
[../]
[]
[Outputs]
file_base = brick2_mu_0_2_pen_out
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
file_base = brick2_mu_0_2_pen_check
show = 'bot_react_x bot_react_y disp_x7 disp_y7 disp_x26 disp_y26 stress_yy stress_zz top_react_x top_react_y x_disp y_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
model = coulomb
formulation = penalty
normalize_penalty = true
friction_coefficient = 0.2
penalty = 1e+7
[../]
[]
(modules/porous_flow/test/tests/heterogeneous_materials/vol_expansion_poroperm.i)
# Apply an increasing porepressure, with zero mechanical forces,
# and observe the corresponding volumetric expansion and porosity increase.
# Check that permeability is calculated correctly from porosity.
#
# P = t
# With the Biot coefficient being 1, the effective stresses should be
# stress_xx = stress_yy = stress_zz = t
# With bulk modulus = 1 then should have
# vol_strain = strain_xx + strain_yy + strain_zz = t.
#
# With the biot coefficient being 1, the porosity (phi) # at time t is:
# phi = 1 - (1 - phi0) / exp(vol_strain)
# where phi0 is the porosity at t = 0 and P = 0.
#
# The permeability (k) is
# k = k_anisotropic * f * d^2 * phi^n / (1-phi)^m
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[p]
[]
[]
[BCs]
[p]
type = FunctionDirichletBC
boundary = 'bottom top'
variable = p
function = t
[]
[xmin]
type = DirichletBC
boundary = left
variable = disp_x
value = 0
[]
[ymin]
type = DirichletBC
boundary = bottom
variable = disp_y
value = 0
[]
[zmin]
type = DirichletBC
boundary = back
variable = disp_z
value = 0
[]
[]
[Kernels]
[p_does_not_really_diffuse]
type = Diffusion
variable = p
[]
[TensorMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 1
variable = disp_z
component = 2
[]
[]
[AuxVariables]
[poro0]
order = CONSTANT
family = MONOMIAL
[]
[poro]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[ICs]
[poro0]
type = RandomIC
seed = 0
variable = poro0
max = 0.15
min = 0.05
[]
[]
[AuxKernels]
[poromat]
type = PorousFlowPropertyAux
property = porosity
variable = poro
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'p'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
bulk_modulus = 1
shear_modulus = 1
[]
[strain]
type = ComputeSmallStrain
[]
[stress]
type = ComputeLinearElasticStress
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = p
capillary_pressure = pc
[]
[p_eff]
type = PorousFlowEffectiveFluidPressure
[]
[porosity]
type = PorousFlowPorosity
fluid = true
mechanical = true
porosity_zero = poro0
solid_bulk = 1
biot_coefficient = 1
[]
[permeability]
type = PorousFlowPermeabilityKozenyCarman
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
poroperm_function = kozeny_carman_fd2
f = 0.1
d = 5
m = 2
n = 7
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -ksp_atol -ksp_rtol'
petsc_options_value = 'gmres bjacobi 1E-10 1E-10 10 1E-15 1E-10'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
dt = 0.1
end_time = 1
[]
[Outputs]
exodus = true
execute_on = 'timestep_end'
[]
(modules/contact/test/tests/mortar_tm/2d/frictionless_second/finite.i)
E_block = 1e7
E_plank = 1e7
elem = QUAD9
order = SECOND
name = 'finite'
[Mesh]
patch_size = 80
patch_update_strategy = auto
[plank]
type = GeneratedMeshGenerator
dim = 2
xmin = -0.3
xmax = 0.3
ymin = -10
ymax = 10
nx = 2
ny = 67
elem_type = ${elem}
boundary_name_prefix = plank
[]
[plank_id]
type = SubdomainIDGenerator
input = plank
subdomain_id = 1
[]
[block]
type = GeneratedMeshGenerator
dim = 2
xmin = 0.31
xmax = 0.91
ymin = 7.7
ymax = 8.5
nx = 3
ny = 4
elem_type = ${elem}
boundary_name_prefix = block
boundary_id_offset = 10
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'plank_id block_id'
[]
[block_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'plank block'
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Variables]
[disp_x]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[disp_y]
order = ${order}
block = 'plank block'
scaling = '${fparse 2.0 / (E_plank + E_block)}'
[]
[]
[Modules/TensorMechanics/Master]
[action]
strain = FINITE
generate_output = 'stress_xx stress_yy stress_zz vonmises_stress hydrostatic_stress strain_xx '
'strain_yy strain_zz'
block = 'plank block'
[]
[]
[Contact]
[frictionless]
primary = plank_right
secondary = block_left
formulation = mortar
c_normal = 1e0
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
preset = false
boundary = plank_left
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
preset = false
boundary = plank_bottom
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = block_right
function = '-0.04*sin(4*(t+1.5))+0.02'
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = block_right
function = '-t'
[]
[]
[Materials]
[plank]
type = ComputeIsotropicElasticityTensor
block = 'plank'
poissons_ratio = 0.3
youngs_modulus = ${E_plank}
[]
[block]
type = ComputeIsotropicElasticityTensor
block = 'block'
poissons_ratio = 0.3
youngs_modulus = ${E_block}
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = 'plank block'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason -ksp_converged_reason'
petsc_options_iname = '-pc_type -mat_mffd_err -pc_factor_shift_type -pc_factor_shift_amount'
petsc_options_value = 'lu 1e-5 NONZERO 1e-15'
end_time = 5.0
dt = 0.1
dtmin = 0.1
timestep_tolerance = 1e-6
line_search = 'contact'
l_max_its = 30
[]
[Postprocessors]
[nl_its]
type = NumNonlinearIterations
[]
[total_nl_its]
type = CumulativeValuePostprocessor
postprocessor = nl_its
[]
[l_its]
type = NumLinearIterations
[]
[total_l_its]
type = CumulativeValuePostprocessor
postprocessor = l_its
[]
[contact]
type = ContactDOFSetSize
variable = frictionless_normal_lm
subdomain = frictionless_secondary_subdomain
[]
[avg_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
block = 'block'
[]
[max_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
[]
[min_hydro]
type = ElementExtremeValue
variable = hydrostatic_stress
block = 'block'
value_type = min
[]
[avg_vonmises]
type = ElementAverageValue
variable = vonmises_stress
block = 'block'
[]
[max_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
[]
[min_vonmises]
type = ElementExtremeValue
variable = vonmises_stress
block = 'block'
value_type = min
[]
[]
[Outputs]
exodus = true
file_base = ${name}
[comp]
type = CSV
show = 'contact'
[]
[out]
type = CSV
file_base = '${name}_out'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/porous_flow/test/tests/actions/basicthm_thm.i)
# PorousFlowBasicTHM action with coupling_type = ThermoHydroMechanical
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 3
xmax = 10
ymax = 3
[]
[aquifer]
input = gen
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 1 0'
top_right = '10 2 0'
[]
[injection_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'injection_area'
normal = '-1 0 0'
input = 'aquifer'
[]
[outflow_area]
type = SideSetsAroundSubdomainGenerator
block = 1
new_boundary = 'outflow_area'
normal = '1 0 0'
input = 'injection_area'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caprock aquifer'
input = 'outflow_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
displacements = 'disp_x disp_y'
biot_coefficient = 1.0
[]
[Variables]
[porepressure]
initial_condition = 1e6
[]
[temperature]
initial_condition = 293
scaling = 1e-6
[]
[disp_x]
scaling = 1e-6
[]
[disp_y]
scaling = 1e-6
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
temperature = temperature
coupling_type = ThermoHydroMechanical
gravity = '0 0 0'
fp = simple_fluid
eigenstrain_names = thermal_contribution
use_displaced_mesh = false
add_stress_aux = false
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1.5e6
boundary = injection_area
[]
[constant_injection_temperature]
type = DirichletBC
variable = temperature
value = 313
boundary = injection_area
[]
[constant_outflow_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
boundary = outflow_area
pt_vals = '0 1e9'
multipliers = '0 1e9'
flux_function = 1e-6
PT_shift = 1e6
[]
[constant_outflow_temperature]
type = DirichletBC
variable = temperature
value = 293
boundary = outflow_area
[]
[top_bottom]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'top bottom'
[]
[right]
type = DirichletBC
variable = disp_x
value = 0
boundary = right
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2e-7
fluid_bulk_modulus = 1e7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1e-13 0 0 0 1e-13 0 0 0 1e-13'
[]
[permeability_caprock]
type = PorousFlowPermeabilityConst
block = caprock
permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
[]
[thermal_expansion]
type = PorousFlowConstantThermalExpansionCoefficient
drained_coefficient = 0.003
fluid_coefficient = 0.0002
[]
[rock_internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2500.0
specific_heat_capacity = 1200.0
[]
[thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '10 0 0 0 10 0 0 0 10'
block = 'caprock aquifer'
[]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 5e9
poissons_ratio = 0.0
[]
[strain]
type = ComputeSmallStrain
eigenstrain_names = thermal_contribution
[]
[thermal_contribution]
type = ComputeThermalExpansionEigenstrain
temperature = temperature
thermal_expansion_coeff = 0.001
eigenstrain_name = thermal_contribution
stress_free_temperature = 293
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Preconditioning]
[basic]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e4
dt = 1e3
nl_abs_tol = 1e-12
nl_rel_tol = 1E-10
[]
[Outputs]
exodus = true
[]
(modules/tensor_mechanics/test/tests/lagrangian/materials/correctness/neohookean.i)
# Simple 3D test
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
large_kinematics = true
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 1
[]
[]
[Kernels]
[sdx]
type = TotalLagrangianStressDivergence
variable = disp_x
component = 0
[]
[sdy]
type = TotalLagrangianStressDivergence
variable = disp_y
component = 1
[]
[sdz]
type = TotalLagrangianStressDivergence
variable = disp_z
component = 2
[]
[]
[Functions]
[strain]
type = ParsedFunction
value = 't'
[]
[]
[BCs]
[leftx]
type = DirichletBC
preset = true
boundary = left
variable = disp_x
value = 0.0
[]
[boty]
type = DirichletBC
preset = true
boundary = bottom
variable = disp_y
value = 0.0
[]
[backz]
type = DirichletBC
preset = true
boundary = back
variable = disp_z
value = 0.0
[]
[pull_x]
type = FunctionDirichletBC
boundary = right
variable = disp_x
function = strain
[]
[]
[Materials]
[compute_stress]
type = ComputeNeoHookeanStress
lambda = 4000.0
mu = 6700.0
large_kinematics = true
[]
[compute_strain]
type = ComputeLagrangianStrain
[]
[]
[AuxVariables]
[s11]
family = MONOMIAL
order = CONSTANT
[]
[s21]
family = MONOMIAL
order = CONSTANT
[]
[s31]
family = MONOMIAL
order = CONSTANT
[]
[s12]
family = MONOMIAL
order = CONSTANT
[]
[s22]
family = MONOMIAL
order = CONSTANT
[]
[s32]
family = MONOMIAL
order = CONSTANT
[]
[s13]
family = MONOMIAL
order = CONSTANT
[]
[s23]
family = MONOMIAL
order = CONSTANT
[]
[s33]
family = MONOMIAL
order = CONSTANT
[]
[F11]
family = MONOMIAL
order = CONSTANT
[]
[F21]
family = MONOMIAL
order = CONSTANT
[]
[F31]
family = MONOMIAL
order = CONSTANT
[]
[F12]
family = MONOMIAL
order = CONSTANT
[]
[F22]
family = MONOMIAL
order = CONSTANT
[]
[F32]
family = MONOMIAL
order = CONSTANT
[]
[F13]
family = MONOMIAL
order = CONSTANT
[]
[F23]
family = MONOMIAL
order = CONSTANT
[]
[F33]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[s11]
type = RankTwoAux
variable = s11
rank_two_tensor = pk1_stress
index_i = 0
index_j = 0
[]
[s21]
type = RankTwoAux
variable = s21
rank_two_tensor = pk1_stress
index_i = 1
index_j = 0
[]
[s31]
type = RankTwoAux
variable = s31
rank_two_tensor = pk1_stress
index_i = 2
index_j = 0
[]
[s12]
type = RankTwoAux
variable = s12
rank_two_tensor = pk1_stress
index_i = 0
index_j = 1
[]
[s22]
type = RankTwoAux
variable = s22
rank_two_tensor = pk1_stress
index_i = 1
index_j = 1
[]
[s32]
type = RankTwoAux
variable = s32
rank_two_tensor = pk1_stress
index_i = 2
index_j = 1
[]
[s13]
type = RankTwoAux
variable = s13
rank_two_tensor = pk1_stress
index_i = 0
index_j = 2
[]
[s23]
type = RankTwoAux
variable = s23
rank_two_tensor = pk1_stress
index_i = 1
index_j = 2
[]
[s33]
type = RankTwoAux
variable = s33
rank_two_tensor = pk1_stress
index_i = 2
index_j = 2
[]
[F11]
type = RankTwoAux
variable = F11
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 0
[]
[F21]
type = RankTwoAux
variable = F21
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 0
[]
[F31]
type = RankTwoAux
variable = F31
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 0
[]
[F12]
type = RankTwoAux
variable = F12
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 1
[]
[F22]
type = RankTwoAux
variable = F22
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 1
[]
[F32]
type = RankTwoAux
variable = F32
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 1
[]
[F13]
type = RankTwoAux
variable = F13
rank_two_tensor = deformation_gradient
index_i = 0
index_j = 2
[]
[F23]
type = RankTwoAux
variable = F23
rank_two_tensor = deformation_gradient
index_i = 1
index_j = 2
[]
[F33]
type = RankTwoAux
variable = F33
rank_two_tensor = deformation_gradient
index_i = 2
index_j = 2
[]
[]
[Postprocessors]
[s11]
type = ElementAverageValue
variable = s11
execute_on = 'initial timestep_end'
[]
[s21]
type = ElementAverageValue
variable = s21
execute_on = 'initial timestep_end'
[]
[s31]
type = ElementAverageValue
variable = s31
execute_on = 'initial timestep_end'
[]
[s12]
type = ElementAverageValue
variable = s12
execute_on = 'initial timestep_end'
[]
[s22]
type = ElementAverageValue
variable = s22
execute_on = 'initial timestep_end'
[]
[s32]
type = ElementAverageValue
variable = s32
execute_on = 'initial timestep_end'
[]
[s13]
type = ElementAverageValue
variable = s13
execute_on = 'initial timestep_end'
[]
[s23]
type = ElementAverageValue
variable = s23
execute_on = 'initial timestep_end'
[]
[s33]
type = ElementAverageValue
variable = s33
execute_on = 'initial timestep_end'
[]
[F11]
type = ElementAverageValue
variable = F11
execute_on = 'initial timestep_end'
[]
[F21]
type = ElementAverageValue
variable = F21
execute_on = 'initial timestep_end'
[]
[F31]
type = ElementAverageValue
variable = F31
execute_on = 'initial timestep_end'
[]
[F12]
type = ElementAverageValue
variable = F12
execute_on = 'initial timestep_end'
[]
[F22]
type = ElementAverageValue
variable = F22
execute_on = 'initial timestep_end'
[]
[F32]
type = ElementAverageValue
variable = F32
execute_on = 'initial timestep_end'
[]
[F13]
type = ElementAverageValue
variable = F13
execute_on = 'initial timestep_end'
[]
[F23]
type = ElementAverageValue
variable = F23
execute_on = 'initial timestep_end'
[]
[F33]
type = ElementAverageValue
variable = F33
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'newton'
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
l_max_its = 2
l_tol = 1e-14
nl_max_its = 10
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 1.0
[]
[Outputs]
exodus = false
csv = true
[]
(test/tests/indicators/value_jump_indicator/value_jump_indicator_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Adaptivity]
[./Indicators]
[./error]
type = ValueJumpIndicator
variable = something
[../]
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./leftright]
type = BoundingBoxIC
variable = something
inside = 1
y2 = 1
y1 = 0
x2 = 0.5
x1 = 0
[../]
[]
[AuxVariables]
[./something]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 'right'
value = 1
[../]
[]
[Problem]
type = FEProblem
solve = false
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
exodus = true
[]
(test/tests/outputs/displaced/displaced_adapt_test.i)
# Adaptivity on displaced problem
# - testing initial_refinement and adaptivity as well
#
# variables:
# - u and v_aux are used for displacing the problem
# - v is used to get some refinements
#
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
uniform_refine = 3
displacements = 'u aux_v'
[]
[Functions]
[./aux_v_fn]
type = ParsedFunction
value = x*(y-0.5)/5
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'udiff uie vdiff vconv vie'
[./udiff]
type = Diffusion
variable = u
[../]
[./uie]
type = TimeDerivative
variable = u
[../]
[./vdiff]
type = Diffusion
variable = v
[../]
[./vconv]
type = Convection
variable = v
velocity = '-10 1 0'
[../]
[./vie]
type = TimeDerivative
variable = v
[../]
[]
[BCs]
active = 'uleft uright vleft vright'
[./uleft]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./uright]
type = DirichletBC
variable = u
boundary = 1
value = 0.1
[../]
[./vleft]
type = DirichletBC
variable = v
boundary = 3
value = 1
[../]
[./vright]
type = DirichletBC
variable = v
boundary = 1
value = 0
[../]
[]
[AuxVariables]
[./aux_v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./aux_k_1]
type = FunctionAux
variable = aux_v
function = aux_v_fn
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
num_steps = 2
dt = .1
[./Adaptivity]
refine_fraction = 0.2
coarsen_fraction = 0.3
max_h_level = 4
[../]
[]
[Outputs]
[./out]
type = Exodus
use_displaced = true
[../]
[]
(modules/tensor_mechanics/test/tests/ad_action/two_block.i)
[Mesh]
[generated_mesh]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 4
[]
[block1]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
input = generated_mesh
[]
[block2]
type = SubdomainBoundingBoxGenerator
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
input = block1
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Modules/TensorMechanics/Master]
[./block1]
strain = FINITE
add_variables = true
#block = 1
use_automatic_differentiation = true
[../]
[./block2]
strain = SMALL
add_variables = true
block = 2
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./stress_theta]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_theta]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_theta]
type = ADRankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_theta
execute_on = timestep_end
[../]
[./strain_theta]
type = ADRankTwoAux
rank_two_tensor = total_strain
index_i = 2
index_j = 2
variable = strain_theta
execute_on = timestep_end
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.345
[../]
[./_elastic_stress1]
type = ADComputeFiniteStrainElasticStress
block = 1
[../]
[./_elastic_stress2]
type = ADComputeLinearElasticStress
block = 2
[../]
[]
[BCs]
[./left]
type = DirichletBC
boundary = 'left'
variable = disp_x
value = 0.0
[../]
[./top]
type = DirichletBC
boundary = 'top'
variable = disp_y
value = 0.0
[../]
[./right]
type = DirichletBC
boundary = 'right'
variable = disp_x
value = 0.01
[../]
[./bottom]
type = DirichletBC
boundary = 'bottom'
variable = disp_y
value = 0.01
[../]
[]
[Debug]
show_var_residual_norms = true
[]
[Preconditioning]
[./full]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = ' 201 hypre boomeramg 10'
line_search = 'none'
nl_rel_tol = 5e-9
nl_abs_tol = 1e-10
nl_max_its = 15
l_tol = 1e-3
l_max_its = 50
[]
[Outputs]
exodus = true
[]
(test/tests/interfacekernels/1d_interface/reaction_1D_steady.i)
# Steady-state test for the InterfaceReaction kernel.
#
# Specie M transport from domain 1 (0<=x<=1) to domain 2 (1<x<=2),
# u and v are concentrations in domain 1 and domain 2.
#
# Diffusion in both domains can be described by Ficks law and diffusion
# kernel is applied.
#
# Specie M has different diffusity in different domains, here set as D1=4, D2=2.
#
# Dirichlet boundary conditions are applied, i.e., u(0)=1, v(2)=0
#
# At the interface consider the following
#
# (a) Fluxes are matched from both domains (InterfaceDiffusion kernel)
#
# (b) First-order reaction is R = kf*u - kb*v
#
# Analytical solution is
# u = -0.2*u+1, 0<=u<=1
# v = -0.4*v+0.8, 1<v<=2
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[./subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = 'subdomain1'
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = '0'
[../]
[./v]
order = FIRST
family = LAGRANGE
block = '1'
[../]
[]
[Kernels]
[./diff_u]
type = MatDiffusion
variable = u
block = '0'
diffusivity = D
[../]
[./diff_v]
type = MatDiffusion
variable = v
block = '1'
diffusivity = D
[../]
[]
[InterfaceKernels]
[./interface]
type = InterfaceDiffusion
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
D = D
D_neighbor = D
[../]
[./interface_reaction]
type = InterfaceReaction
variable = u
neighbor_var = 'v'
boundary = 'primary0_interface'
kf = 1 # Forward reaction rate coefficient
kb = 2 # Backward reaction rate coefficient
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[../]
[]
[Materials]
[./block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[../]
[./block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
print_linear_residuals = true
execute_on = 'FINAL'
exodus = true
csv = true
[]
[Debug]
show_var_residual_norms = true
[]
[Postprocessors]
[./elemental_error_u]
type = ElementL2Error
function = -0.2*x+1
variable = 'u'
block = '0'
[../]
[./elemental_error_v]
type = ElementL2Error
function = -0.4*x+0.8
variable = 'v'
block = '1'
[../]
[]
(test/tests/kernels/coupled_time_derivative/ad_coupled_time_derivative_test.i)
###########################################################
# This is a simple test of the CoupledTimeDerivative kernel.
# The expected solution for the variable v is
# v(x) = 1/2 * (x^2 + x)
###########################################################
[Mesh]
type = GeneratedMesh
nx = 5
ny = 5
dim = 2
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./time_u]
type = TimeDerivative
variable = u
[../]
[./fn_u]
type = BodyForce
variable = u
function = 1
[../]
[./time_v]
type = ADCoupledTimeDerivative
variable = v
v = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = v
boundary = 'left'
value = 0
[../]
[./right]
type = DirichletBC
variable = v
boundary = 'right'
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
file_base = coupled_time_derivative_test_out
[]
(test/tests/materials/interface_material/interface_value_material.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 2
xmax = 2
ny = 2
ymax = 2
elem_type = QUAD4
[]
[./subdomain_id]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1 0 0'
top_right = '2 2 0'
block_id = 1
[../]
[./interface]
type = SideSetsBetweenSubdomainsGenerator
input = subdomain_id
primary_block = '0'
paired_block = '1'
new_boundary = 'interface'
[../]
[]
[Variables]
[./u]
block = 0
[../]
[./v]
block = 1
[../]
[]
[Kernels]
[./diff]
type = MatDiffusion
variable = u
diffusivity = 'diffusivity'
block = 0
[../]
[./diff_v]
type = MatDiffusion
variable = v
diffusivity = 'diffusivity'
block = 1
[../]
[]
[InterfaceKernels]
[tied]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
jump_prop_name = "average_jump"
penalty = 1e6
boundary = 'interface'
[]
[]
[BCs]
[u_left]
type = DirichletBC
boundary = 'left'
variable = u
value = 1
[]
[v_right]
type = DirichletBC
boundary = 'right'
variable = v
value = 0
[]
[]
[Materials]
[./stateful1]
type = StatefulMaterial
block = 0
initial_diffusivity = 1
# outputs = all
[../]
[./stateful2]
type = StatefulMaterial
block = 1
initial_diffusivity = 2
# outputs = all
[../]
[./interface_material_avg]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = average
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_primary_minus_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_primary_minus_secondary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_secondary_minus_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_secondary_minus_primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_jump_abs]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = jump_abs
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_primary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
boundary = interface
interface_value_type = primary
mat_prop_var_out_basename = diff_var
nl_var_primary = u
nl_var_secondary = v
[../]
[./interface_material_secondary]
type = InterfaceValueMaterial
mat_prop_primary = diffusivity
mat_prop_secondary = diffusivity
var_primary = diffusivity_var
var_secondary = diffusivity_var
mat_prop_out_basename = diff
mat_prop_var_out_basename = diff_var
boundary = interface
interface_value_type = secondary
nl_var_primary = u
nl_var_secondary = v
[../]
[]
[AuxKernels]
[./interface_material_avg]
type = MaterialRealAux
property = diff_average
variable = diffusivity_average
boundary = interface
[]
[./interface_material_jump_primary_minus_secondary]
type = MaterialRealAux
property = diff_jump_primary_minus_secondary
variable = diffusivity_jump_primary_minus_secondary
boundary = interface
[]
[./interface_material_jump_secondary_minus_primary]
type = MaterialRealAux
property = diff_jump_secondary_minus_primary
variable = diffusivity_jump_secondary_minus_primary
boundary = interface
[]
[./interface_material_jump_abs]
type = MaterialRealAux
property = diff_jump_abs
variable = diffusivity_jump_abs
boundary = interface
[]
[./interface_material_primary]
type = MaterialRealAux
property = diff_primary
variable = diffusivity_primary
boundary = interface
[]
[./interface_material_secondary]
type = MaterialRealAux
property = diff_secondary
variable = diffusivity_secondary
boundary = interface
[]
[diffusivity_var]
type = MaterialRealAux
property = diffusivity
variable = diffusivity_var
[]
[]
[AuxVariables]
[diffusivity_var]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_average]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_primary_minus_secondary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_secondary_minus_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_jump_abs]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_primary]
family = MONOMIAL
order = CONSTANT
[]
[./diffusivity_secondary]
family = MONOMIAL
order = CONSTANT
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/parser/multiple_inputs/diffusion1c.i)
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
(tutorials/darcy_thermo_mech/step03_darcy_material/tests/materials/packed_column/packed_column.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 100
ny = 10
xmax = 0.304 # Length of test chamber
ymax = 0.0257 # Test chamber radius
[]
[Variables]
[pressure]
[]
[]
[Kernels]
[darcy_pressure]
type = DarcyPressure
variable = pressure
# No parameters necessary because the values will come from the material system
[]
[]
[BCs]
[inlet]
type = DirichletBC
variable = pressure
boundary = left
value = 4000 # (Pa) From Figure 2 from paper. First dot for 1mm spheres.
[]
[outlet]
type = DirichletBC
variable = pressure
boundary = right
value = 0 # (Pa) Gives the correct pressure drop from Figure 2 for 1mm spheres
[]
[]
[Materials]
[column]
type = PackedColumn
[]
[]
[Problem]
type = FEProblem
coord_type = RZ
rz_coord_axis = X
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/heat_conduction/test/tests/gap_heat_transfer_htonly/gap_heat_transfer_htonly_test.i)
#
# 1-D Gap Heat Transfer Test without mechanics
#
# This test exercises 1-D gap heat transfer for a constant conductivity gap.
#
# The mesh consists of two element blocks containing one element each. Each
# element is a unit cube. They sit next to one another with a unit between them.
#
# The conductivity of both blocks is set very large to achieve a uniform temperature
# across each block. The temperature of the far left boundary
# is ramped from 100 to 200 over one time unit. The temperature of the far right
# boundary is held fixed at 100.
#
# A simple analytical solution is possible for the heat flux between the blocks:
#
# Flux = (T_left - T_right) * (gapK/gap_width)
#
# The gap conductivity is specified as 1, thus
#
# gapK(Tavg) = 1.0*Tavg
#
#
# The heat flux across the gap at time = 1 is then:
#
# Flux(2) = 100 * (1.0/1.0) = 100
#
# For comparison, see results from the flux post processors
#
# This test has been augmented with a second scalar field that solves nearly
# the same problem. The conductivity has been changed to 10. Thus, the
# flux for the second field is 1000.
#
[Mesh]
file = gap_heat_transfer_htonly_test.e
[]
[Functions]
[./temp]
type = PiecewiseLinear
x = '0 1 2'
y = '100 200 200'
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
[../]
[./awesomium_contact]
type = GapHeatTransfer
variable = awesomium
primary = 3
secondary = 2
emissivity_primary = 0
emissivity_secondary = 0
gap_conductivity = 10
appended_property_name = _awesomium
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[./awesomium]
order = FIRST
family = LAGRANGE
initial_condition = 100
[../]
[]
[AuxVariables]
[./gap_cond]
order = CONSTANT
family = MONOMIAL
[../]
[./gap_cond_awesomium]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[./awe]
type = HeatConduction
variable = awesomium
[../]
[]
[BCs]
[./temp_far_left]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_far_right]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[./awesomium_far_left]
type = FunctionDirichletBC
boundary = 1
variable = awesomium
function = temp
[../]
[./awesomium_far_right]
type = DirichletBC
boundary = 4
variable = awesomium
value = 100
[../]
[]
[AuxKernels]
[./conductance]
type = MaterialRealAux
property = gap_conductance
variable = gap_cond
boundary = 2
[../]
[./conductance_awe]
type = MaterialRealAux
property = gap_conductance_awesomium
variable = gap_cond_awesomium
boundary = 2
[../]
[]
[Materials]
[./heat1]
type = HeatConductionMaterial
block = '1 2'
specific_heat = 1.0
thermal_conductivity = 100000000.0
[../]
[./density]
type = GenericConstantMaterial
block = '1 2'
prop_names = 'density'
prop_values = '1.0'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 4'
line_search = 'none'
nl_rel_tol = 1e-12
l_tol = 1e-3
l_max_its = 100
dt = 1e-1
end_time = 1.0
[]
[Postprocessors]
[./temp_left]
type = SideAverageValue
boundary = 2
variable = temp
execute_on = 'initial timestep_end'
[../]
[./temp_right]
type = SideAverageValue
boundary = 3
variable = temp
execute_on = 'initial timestep_end'
[../]
[./flux_left]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 2
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./flux_right]
type = SideDiffusiveFluxIntegral
variable = temp
boundary = 3
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./awe_left]
type = SideAverageValue
boundary = 2
variable = awesomium
execute_on = 'initial timestep_end'
[../]
[./awe_right]
type = SideAverageValue
boundary = 3
variable = awesomium
execute_on = 'initial timestep_end'
[../]
[./awe_flux_left]
type = SideDiffusiveFluxIntegral
variable = awesomium
boundary = 2
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[./awe_flux_right]
type = SideDiffusiveFluxIntegral
variable = awesomium
boundary = 3
diffusivity = thermal_conductivity
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
exodus = true
[]
(modules/fluid_properties/test/tests/auxkernels/specific_enthalpy_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./pressure]
[../]
[./temperature]
[../]
[./specific_enthalpy]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./pressure_ak]
type = ConstantAux
variable = pressure
value = 10e6
[../]
[./temperature_ak]
type = ConstantAux
variable = temperature
value = 400.0
[../]
[./specific_enthalpy_ak]
type = SpecificEnthalpyAux
variable = specific_enthalpy
fp = eos
p = pressure
T = temperature
[../]
[]
[Modules]
[./FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_average/layered_average_bounds.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./layered_average]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./layered_average]
type = SpatialUserObjectAux
variable = layered_average
execute_on = timestep_end
user_object = average
[../]
[]
[BCs]
[./top]
type = DirichletBC
variable = u
boundary = top
value = 1
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = bottom
value = 0
[../]
[]
[UserObjects]
[./average]
type = LayeredAverage
variable = u
direction = y
bounds = '0 0.2 0.5 1'
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(python/peacock/tests/common/time_data.i)
###############################################################
# The following tests that the CSV output object can include an
# additional .csv file that contains the time and timestep
# data from VectorPostprocessor object.
###############################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[./time]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 0
[../]
[]
[VectorPostprocessors]
[./line_sample]
type = LineValueSampler
variable = 'u v'
start_point = '0 0.5 0'
end_point = '1 0.5 0'
num_points = 11
sort_by = id
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 20
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
execute_on = 'initial timestep_end'
file_base = 'time_data'
[./out]
type = CSV
time_data = true
interval = 2
[../]
[]
(modules/tensor_mechanics/test/tests/central_difference/consistent/2D/2d_consistent_explicit.i)
# Test for the central difference time integrator for a 2D mesh
[Mesh]
type = GeneratedMesh
dim = 2
nx = 1
ny = 2
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 2.0
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[]
[Kernels]
[./DynamicTensorMechanics]
displacements = 'disp_x disp_y'
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[]
[BCs]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./x_bot]
type = FunctionDirichletBC
boundary = bottom
variable = disp_x
function = disp
preset = false
[../]
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalSmallStrain
block = 0
displacements = 'disp_x disp_y'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = density
prop_values = 1e4
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = CentralDifference
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./accel_2x]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_x
[../]
[./accel_2y]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/xfem/test/tests/side_integral/side_integral.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 6
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = QUAD4
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[UserObjects]
[./line_seg_cut_uo]
type = LineSegmentCutUserObject
cut_data = '0.55 1.0 0.55 0.0'
time_start_cut = 0.0
time_end_cut = 0.0
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
# Define boundary conditions
[./top]
type = DirichletBC
variable = u
boundary = 2
value = 3
[../]
[./bottom]
type = DirichletBC
variable = u
boundary = 0
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
line_search = 'none'
l_tol = 1e-3
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
start_time = 0.0
dt = 1.0
end_time = 2.0
[]
[Postprocessors]
[./top_surface]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 2
[../]
[./bottom_surface]
type = SideIntegralVariablePostprocessor
variable = u
boundary = 0
[../]
[]
[Outputs]
interval = 1
execute_on = timestep_end
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/tensor_mechanics/test/tests/beam/constraints/frictionless_constraint.i)
# Test for frictionless beam constraint.
#
# Using a simple L-shaped geometry with a frictionless constraint at the
# corner between the two beams. The longer beam properties and loading is
# taken from an earlier beam regression test for static loading. The maximum
# applied load of 50000 lb should result in a displacement of 3.537e-3. Since
# the constraint is frictionless, the y-dir displacement of the long beam is
# 3.537e-3 and the short beam y-dir displacement is zero.
[Mesh]
file = beam_cons_patch.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = '1001 1003'
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = '1001 1003'
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = '1001 1003'
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = '1001 1003'
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = '1001 1003'
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = '1001 1003'
value = 0.0
[../]
[]
[Constraints]
[./tie_y_fuel]
type = NodalFrictionalConstraint
normal_force = 1000
tangential_penalty = 1.2e6
friction_coefficient = 0.0
boundary = 1005
secondary = 1004
variable = disp_y
[../]
[./tie_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_x
[../]
[./tie_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_z
[../]
[./tie_rot_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_y
[../]
[./tie_rot_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_x
[../]
[./tie_rot_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_z
[../]
[]
[Functions]
[./force_loading]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 50000.0'
[../]
[]
[NodalKernels]
[./force_x2]
type = UserForcingFunctionNodalKernel
variable = disp_y
boundary = '1004'
function = force_loading
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 5
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity_pipe]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 1
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain_pipe]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[../]
[./stress_pipe]
type = ComputeBeamResultants
block = 1
outputs = exodus
output_properties = 'forces moments'
[../]
[./elasticity_cons]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 10e2
poissons_ratio = 0.3
block = 2
outputs = exodus
output_properties = 'material_stiffness material_flexure'
[../]
[./strain_cons]
type = ComputeIncrementalBeamStrain
block = '2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[../]
[./stress_cons]
type = ComputeBeamResultants
block = 2
outputs = exodus
output_properties = 'forces moments'
[../]
[]
[Postprocessors]
[./disp_y_n4]
type = NodalVariableValue
variable = disp_y
nodeid = 3
[../]
[./disp_y_n2]
type = NodalVariableValue
variable = disp_y
nodeid = 1
[../]
[./forces_y]
type = PointValue
point = '10.0 59.9 0.0'
variable = forces_y
[../]
[]
[Outputs]
csv = true
exodus = true
[]
(modules/xfem/test/tests/second_order_elements/square_branch_tri6_2d.i)
[GlobalParams]
order = SECOND
family = LAGRANGE
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[XFEM]
qrule = volfrac
output_cut_plane = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
elem_type = TRI6
[]
[UserObjects]
[./line_seg_cut_set_uo]
type = LineSegmentCutSetUserObject
cut_data = '-1.0000e-10 6.6340e-01 6.6340e-01 -1.0000e-10 0.0 1.0
3.3120e-01 3.3200e-01 1.0001e+00 3.3200e-01 1.0 2.0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[Modules/TensorMechanics/Master]
[./all]
strain = SMALL
[../]
[]
[Functions]
[./right_disp_x]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[./top_disp_y]
type = PiecewiseLinear
x = '0 1.0 2.0 3.0'
y = '0 0.005 0.01 0.01'
[../]
[]
[BCs]
[./right_x]
type = FunctionDirichletBC
boundary = 1
variable = disp_x
function = right_disp_x
[../]
[./top_y]
type = FunctionDirichletBC
boundary = 2
variable = disp_y
function = top_disp_y
[../]
[./bottom_y]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[./left_x]
type = DirichletBC
boundary = 3
variable = disp_x
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-ksp_gmres_restart -pc_type -pc_hypre_type -pc_hypre_boomeramg_max_iter'
petsc_options_value = '201 hypre boomeramg 8'
line_search = 'none'
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
# controls for linear iterations
l_max_its = 100
l_tol = 1e-2
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-16
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
end_time = 2.2
num_steps = 5000
[]
[Outputs]
exodus = true
[./console]
type = Console
output_linear = true
[../]
[]
(modules/porous_flow/examples/tutorial/01.i)
# Darcy flow
[Mesh]
[annular]
type = AnnularMeshGenerator
nr = 10
rmin = 1.0
rmax = 10
growth_r = 1.4
nt = 4
dmin = 0
dmax = 90
[]
[make3D]
type = MeshExtruderGenerator
extrusion_vector = '0 0 12'
num_layers = 3
bottom_sideset = 'bottom'
top_sideset = 'top'
input = annular
[]
[shift_down]
type = TransformGenerator
transform = TRANSLATE
vector_value = '0 0 -6'
input = make3D
[]
[aquifer]
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '0 0 -2'
top_right = '10 10 2'
input = shift_down
[]
[injection_area]
type = ParsedGenerateSideset
combinatorial_geometry = 'x*x+y*y<1.01'
included_subdomain_ids = 1
new_sideset_name = 'injection_area'
input = 'aquifer'
[]
[rename]
type = RenameBlockGenerator
old_block = '0 1'
new_block = 'caps aquifer'
input = 'injection_area'
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[porepressure]
[]
[]
[PorousFlowBasicTHM]
porepressure = porepressure
coupling_type = Hydro
gravity = '0 0 0'
fp = the_simple_fluid
[]
[BCs]
[constant_injection_porepressure]
type = DirichletBC
variable = porepressure
value = 1E6
boundary = injection_area
[]
[]
[Modules]
[FluidProperties]
[the_simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E9
viscosity = 1.0E-3
density0 = 1000.0
[]
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[biot_modulus]
type = PorousFlowConstantBiotModulus
biot_coefficient = 0.8
solid_bulk_compliance = 2E-7
fluid_bulk_modulus = 1E7
[]
[permeability_aquifer]
type = PorousFlowPermeabilityConst
block = aquifer
permeability = '1E-14 0 0 0 1E-14 0 0 0 1E-14'
[]
[permeability_caps]
type = PorousFlowPermeabilityConst
block = caps
permeability = '1E-15 0 0 0 1E-15 0 0 0 1E-16'
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1E6
dt = 1E5
nl_abs_tol = 1E-13
[]
[Outputs]
exodus = true
[]
(test/tests/materials/material/bnd_material_test.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = 0
xmax = 1
ymin = 0
ymax = 1
zmin = 0
zmax = 1
nx = 3
ny = 3
nz = 3
[]
# Nonlinear system
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = MTBC
variable = u
boundary = right
grad = 8
prop_name = matp
[../]
[]
# auxiliary system
[AuxVariables]
[./matp]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./prop]
type = MaterialRealAux
property = matp
variable = matp
boundary = 'left right'
[../]
[]
[Materials]
[./mat_left]
type = MTMaterial
boundary = left
[../]
[./mat_right]
type = MTMaterial
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/postprocessors/num_adaptivity_cycles/num_adaptivity_cycles_toggle_adaptivity.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
nz = 0
zmax = 0
elem_type = QUAD4
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./force]
type = ParsedFunction
value = t
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
function = force
[../]
[]
[BCs]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
num_steps = 4
dt = 1
solve_type = 'PJFNK'
[]
[Adaptivity]
cycles_per_step = 1
marker = box
max_h_level = 2
initial_steps = 4
initial_marker = initial_box
[./Markers]
[./box]
bottom_left = '0.3 0.3 0'
inside = refine
top_right = '0.6 0.6 0'
outside = dont_mark
type = BoxMarker
[../]
[./initial_box]
type = BoxMarker
bottom_left = '0.8 0.1 0'
top_right = '0.9 0.2 0'
inside = refine
outside = dont_mark
[../]
[../]
[]
[UserObjects]
[./toggle_adaptivity]
type = ToggleMeshAdaptivity
mesh_adaptivity = 'off'
[../]
[]
[Postprocessors]
[./adaptivity_cycles]
type = NumAdaptivityCycles
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/test/tests/poro_elasticity/pp_generation_unconfined_constM.i)
# A sample is constrained on all sides, except its top
# and its boundaries are
# also impermeable. Fluid is pumped into the sample via a
# volumetric source (ie kg/second per cubic meter), and the
# rise in the top surface, porepressure, and stress are observed.
#
# In the standard poromechanics scenario, the Biot Modulus is held
# fixed and the source, s, has units m^3/second/m^3. Then the expected result
# is
# strain_zz = disp_z = BiotCoefficient*BiotModulus*s*t/((bulk + 4*shear/3) + BiotCoefficient^2*BiotModulus)
# porepressure = BiotModulus*(s*t - BiotCoefficient*strain_zz)
# stress_xx = (bulk - 2*shear/3)*strain_zz (remember this is effective stress)
# stress_zz = (bulk + 4*shear/3)*strain_zz (remember this is effective stress)
#
# In porous_flow, however, the source has units kg/second/m^3. The ratios remain
# fixed:
# stress_xx/strain_zz = (bulk - 2*shear/3) = 1 (for the parameters used here)
# stress_zz/strain_zz = (bulk + 4*shear/3) = 4 (for the parameters used here)
# porepressure/strain_zz = 13.3333333 (for the parameters used here)
#
# Expect
# disp_z = 0.3*10*s*t/((2 + 4*1.5/3) + 0.3^2*10) = 0.612245*s*t
# porepressure = 10*(s*t - 0.3*0.612245*s*t) = 8.163265*s*t
# stress_xx = (2 - 2*1.5/3)*0.612245*s*t = 0.612245*s*t
# stress_zz = (2 + 4*shear/3)*0.612245*s*t = 2.44898*s*t
# The relationship between the constant poroelastic source
# s (m^3/second/m^3) and the PorousFlow source, S (kg/second/m^3) is
# S = fluid_density * s = s * exp(porepressure/fluid_bulk)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -0.5
ymax = 0.5
zmin = -0.5
zmax = 0.5
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
PorousFlowDictator = dictator
block = 0
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.8
alpha = 1e-5
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[porepressure]
[]
[]
[BCs]
[confinex]
type = DirichletBC
variable = disp_x
value = 0
boundary = 'left right'
[]
[confiney]
type = DirichletBC
variable = disp_y
value = 0
boundary = 'bottom top'
[]
[confinez]
type = DirichletBC
variable = disp_z
value = 0
boundary = 'back'
[]
[]
[Kernels]
[grad_stress_x]
type = StressDivergenceTensors
variable = disp_x
component = 0
[]
[grad_stress_y]
type = StressDivergenceTensors
variable = disp_y
component = 1
[]
[grad_stress_z]
type = StressDivergenceTensors
variable = disp_z
component = 2
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
biot_coefficient = 0.3
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
variable = porepressure
gravity = '0 0 0'
fluid_component = 0
[]
[source]
type = BodyForce
function = '0.1*exp(8.163265306*0.1*t/3.3333333333)'
variable = porepressure
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 3.3333333333
density0 = 1
thermal_expansion = 0
viscosity = 1
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[elasticity_tensor]
type = ComputeElasticityTensor
C_ijkl = '1 1.5'
# bulk modulus is lambda + 2*mu/3 = 1 + 2*1.5/3 = 2
fill_method = symmetric_isotropic
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosityHMBiotModulus
porosity_zero = 0.1
biot_coefficient = 0.3
solid_bulk = 2
constant_fluid_bulk_modulus = 3.3333333333
constant_biot_modulus = 10.0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1 0 0 0 1 0 0 0 1' # unimportant
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Postprocessors]
[p0]
type = PointValue
outputs = csv
point = '0 0 0'
variable = porepressure
[]
[zdisp]
type = PointValue
outputs = csv
point = '0 0 0.5'
variable = disp_z
[]
[stress_xx]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_xx
[]
[stress_yy]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_yy
[]
[stress_zz]
type = PointValue
outputs = csv
point = '0 0 0'
variable = stress_zz
[]
[]
[Functions]
[stress_xx_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_xx zdisp'
[]
[stress_zz_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'stress_zz zdisp'
[]
[p_over_strain_fcn]
type = ParsedFunction
value = a/b
vars = 'a b'
vals = 'p0 zdisp'
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'bcgs bjacobi 1E-14 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
start_time = 0
end_time = 10
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = pp_generation_unconfined_constM
[csv]
type = CSV
[]
[]
(modules/tensor_mechanics/test/tests/ad_elastic/incremental_small_elastic.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 3
ny = 3
nz = 3
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
# scale with one over Young's modulus
[./disp_x]
scaling = 1e-10
[../]
[./disp_y]
scaling = 1e-10
[../]
[./disp_z]
scaling = 1e-10
[../]
[]
[Kernels]
[./stress_x]
type = ADStressDivergenceTensors
component = 0
variable = disp_x
[../]
[./stress_y]
type = ADStressDivergenceTensors
component = 1
variable = disp_y
[../]
[./stress_z]
type = ADStressDivergenceTensors
component = 2
variable = disp_z
[../]
[]
[BCs]
[./symmy]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0
[../]
[./symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[../]
[./symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[../]
[./tdisp]
type = DirichletBC
variable = disp_z
boundary = front
value = 0.1
[../]
[]
[Materials]
[./elasticity]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e10
[../]
[]
[Materials]
[./strain]
type = ADComputeIncrementalSmallStrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.05
solve_type = 'NEWTON'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomeramg
dtmin = 0.05
num_steps = 1
[]
[Outputs]
exodus = true
[]
(test/tests/actions/add_auxkernel_action/flux_average.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[flux]
order = CONSTANT
family = MONOMIAL
[AuxKernel]
type = FluxAverageAux
coupled = u
diffusivity = 0.1
boundary = right
[]
[]
[]
[Functions]
[bc_func]
type = ParsedFunction
value = y+1
[]
[]
[Kernels]
[diff]
type = CoefDiffusion
variable = u
coef = 0.1
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[AuxKernels]
[flux_average]
type = FluxAverageAux
variable = flux
coupled = u
diffusivity = 0.1
boundary = right
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = FunctionDirichletBC
variable = u
boundary = right
function = bc_func
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.1
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/heat_advection/heat_advection_1d.i)
# 1phase, heat advecting with a moving fluid
# Full upwinding is used
[Mesh]
type = GeneratedMesh
dim = 1
nx = 50
xmin = 0
xmax = 1
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 0 0'
[]
[Variables]
[temp]
initial_condition = 200
[]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = '1-x'
[]
[]
[BCs]
[pp0]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[pp1]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[spit_heat]
type = DirichletBC
variable = temp
boundary = left
value = 300
[]
[suck_heat]
type = DirichletBC
variable = temp
boundary = right
value = 200
[]
[]
[Kernels]
[mass_dot]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = pp
[]
[advection]
type = PorousFlowAdvectiveFlux
fluid_component = 0
variable = pp
[]
[energy_dot]
type = PorousFlowEnergyTimeDerivative
variable = temp
[]
[heat_advection]
type = PorousFlowHeatAdvection
variable = temp
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'temp pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.6
alpha = 1.3
[]
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 100
density0 = 1000
viscosity = 4.4
thermal_expansion = 0
cv = 2
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temp
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.2
[]
[rock_heat]
type = PorousFlowMatrixInternalEnergy
specific_heat_capacity = 1.0
density = 125
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1.1 0 0 0 2 0 0 0 3'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
[]
[massfrac]
type = PorousFlowMassFraction
[]
[PS]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
petsc_options_value = 'gmres bjacobi 1E-15 1E-10 10000'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 0.01
end_time = 0.6
[]
[VectorPostprocessors]
[T]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 51
sort_by = x
variable = temp
[]
[]
[Outputs]
[csv]
type = CSV
sync_times = '0.1 0.6'
sync_only = true
[]
[]
(modules/porous_flow/test/tests/flux_limited_TVD_advection/fltvd_1D.i)
# Using Flux-Limited TVD Advection ala Kuzmin and Turek, with antidiffusion from superbee flux limiting
# 1D version
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0
xmax = 1
[]
[Variables]
[tracer]
[]
[]
[ICs]
[tracer]
type = FunctionIC
variable = tracer
function = 'if(x<0.1,0,if(x>0.3,0,1))'
[]
[]
[Kernels]
[mass_dot]
type = MassLumpedTimeDerivative
variable = tracer
[]
[flux]
type = FluxLimitedTVDAdvection
variable = tracer
advective_flux_calculator = fluo
[]
[]
[UserObjects]
[fluo]
type = AdvectiveFluxCalculatorConstantVelocity
flux_limiter_type = superbee
u = tracer
velocity = '0.1 0 0'
[]
[]
[BCs]
[no_tracer_on_left]
type = DirichletBC
variable = tracer
value = 0
boundary = left
[]
[remove_tracer]
# Ideally, an OutflowBC would be used, but that does not exist in the framework
# In 1D VacuumBC is the same as OutflowBC, with the alpha parameter being twice the velocity
type = VacuumBC
boundary = right
alpha = 0.2 # 2 * velocity
variable = tracer
[]
[]
[Preconditioning]
active = basic
[basic]
type = SMP
full = true
petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
petsc_options_value = ' asm lu NONZERO 2'
[]
[preferred_but_might_not_be_installed]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
[]
[]
[VectorPostprocessors]
[tracer]
type = LineValueSampler
start_point = '0 0 0'
end_point = '1 0 0'
num_points = 11
sort_by = x
variable = tracer
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 6
dt = 6E-2
nl_abs_tol = 1E-8
nl_max_its = 500
timestep_tolerance = 1E-3
[]
[Outputs]
print_linear_residuals = false
[out]
type = CSV
execute_on = final
[]
[]
(modules/tensor_mechanics/test/tests/coupled_pressure/coupled_pressure_test.i)
#
# Pressure Test
#
# This test is designed to compute pressure loads on three faces of a unit cube.
# The pressure is computed as an auxiliary variable. It should give the same result
# as pressure_test.i
#
# The mesh is composed of one block with a single element. Symmetry bcs are
# applied to the faces opposite the pressures. Poisson's ratio is zero,
# which makes it trivial to check displacements.
#
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = FileMesh
file = pressure_test.e
[]
[Functions]
[./rampConstant]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 1.'
scale_factor = 1.0
[../]
[./zeroRamp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 0. 1.'
scale_factor = 2.0
[../]
[./rampUnramp]
type = PiecewiseLinear
x = '0. 1. 2.'
y = '0. 1. 0.'
scale_factor = 10.0
[../]
[]
[AuxVariables]
[./pressure_1]
[../]
[./pressure_2]
[../]
[./pressure_3]
[../]
[]
[AuxKernels]
[./side1_pressure_ak]
type = FunctionAux
variable = pressure_1
boundary = 1
function = rampConstant
[../]
[./side2_pressure_ak]
type = FunctionAux
variable = pressure_2
boundary = 2
function = zeroRamp
[../]
[./side3_pressure_ak]
type = FunctionAux
variable = pressure_3
boundary = 3
function = rampUnramp
[../]
[]
[Modules]
[./TensorMechanics]
[./Master]
[./all]
strain = SMALL
add_variables = true
[../]
[../]
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 5
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = 6
value = 0.0
[../]
[./CoupledPressure]
[./Side1]
boundary = '1'
pressure = pressure_1
displacements = 'disp_x disp_y disp_z'
[../]
[./Side2]
boundary = '2'
pressure = pressure_2
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[./side3_x]
type = CoupledPressureBC
variable = 'disp_x'
boundary = '3'
pressure = pressure_3
component = 0
[../]
[./side3_y]
type = CoupledPressureBC
variable = 'disp_y'
boundary = '3'
pressure = pressure_3
component = 1
[../]
[./side3_z]
type = CoupledPressureBC
variable = 'disp_z'
boundary = '3'
pressure = pressure_3
component = 2
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '0 0.5e6'
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
nl_abs_tol = 1e-10
l_max_its = 20
start_time = 0.0
dt = 1.0
num_steps = 2
end_time = 2.0
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/include/bcs/OnOffDirichletBC.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "DirichletBC.h"
class OnOffDirichletBC : public DirichletBC
{
public:
static InputParameters validParams();
OnOffDirichletBC(const InputParameters & parameters);
virtual ~OnOffDirichletBC();
virtual bool shouldApply();
protected:
};
(modules/xfem/include/bcs/CrackTipEnrichmentCutOffBC.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "DirichletBC.h"
#include "CrackFrontDefinition.h"
/**
* CrackTipEnrichmentCutOffBC is used in XFEM Crack Tip Enrichment to fix DOFs to zero for those
* nodes with basis function supports that are far away from any crack tip.
*/
class CrackTipEnrichmentCutOffBC : public DirichletBC
{
public:
static InputParameters validParams();
CrackTipEnrichmentCutOffBC(const InputParameters & parameters);
protected:
virtual bool shouldApply() override;
const Real _cut_off_radius;
private:
const CrackFrontDefinition & _crack_front_definition;
};
(test/include/bcs/CoupledDirichletBC.h)
// This file is part of the MOOSE framework
// https://www.mooseframework.org
//
// All rights reserved, see COPYRIGHT for full restrictions
// https://github.com/idaholab/moose/blob/master/COPYRIGHT
//
// Licensed under LGPL 2.1, please see LICENSE for details
// https://www.gnu.org/licenses/lgpl-2.1.html
#pragma once
#include "DirichletBC.h"
/**
* Implements the Dirichlet boundary condition
* c*u + u^2 + v^2 = _value
* where "u" is the current variable, and "v" is a coupled variable.
* Note: without the constant term, a zero initial guess gives you a
* zero row in the Jacobian, which is a bad thing.
*/
class CoupledDirichletBC : public DirichletBC
{
public:
static InputParameters validParams();
CoupledDirichletBC(const InputParameters & parameters);
protected:
virtual Real computeQpResidual() override;
virtual Real computeQpJacobian() override;
virtual Real computeQpOffDiagJacobian(unsigned int jvar) override;
// The coupled variable
const VariableValue & _v;
/// The id of the coupled variable
unsigned int _v_num;
// The constant (not user-selectable for now)
Real _c;
};