- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Controllable:No
Description:The name of the variable that this object applies to
- xx-component of the vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:x-component of the vector
VectorMagnitudeAux
Creates a field representing the magnitude of three coupled variables using an Euclidean norm.
Example syntax
We retrieve in this input file the magnitude of the fluid velocity in a cavity problem. The components of the velocity vector are the problem variables.
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this boundary condition applies
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, PRE_DISPLACE, ALWAYS.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, PRE_DISPLACE, ALWAYS
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, PRE_DISPLACE, ALWAYS.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- yy-component of the vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:y-component of the vector
- zz-component of the vector
C++ Type:std::vector<VariableName>
Controllable:No
Description:z-component of the vector
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
- (test/tests/auxkernels/vector_magnitude/vector_magnitude.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/functorfluidprops.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport-action.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-action.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)
- (test/tests/materials/functor_properties/gradients/functor-gradients.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy-action.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/rz-gravity-quiescent-fluid.i)
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)
mu=.01
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport.i)
mu=1
rho=1
k=1e-3
diff=1e-3
cp=1
advected_interp_method='average'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[Problem]
fv_bcs_integrity_check = true
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[energy_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[energy_diffusion]
type = FVDiffusion
coeff = ${k}
variable = T_fluid
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion]
type = FVDiffusion
coeff = ${diff}
variable = scalar
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[scalar_coupled_source]
type = FVCoupledForce
variable = scalar
v = U
coef = 0.1
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = 0
[]
[walls-u]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_x
function = 0
[]
[walls-v]
type = INSFVNoSlipWallBC
boundary = 'top bottom'
variable = vel_y
function = 0
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = 0
[]
[inlet_t]
type = FVDirichletBC
boundary = 'left'
variable = T_fluid
value = 1
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[]
[Materials]
[const]
type = ADGenericFunctorMaterial
prop_names = 'cp'
prop_values = '${cp}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
rho = ${rho}
temperature = 'T_fluid'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/auxkernels/vector_magnitude/vector_magnitude.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 2
ny = 2
nz = 2
[../]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[AuxVariables]
[./vector_x]
initial_condition = 2
[../]
[./vector_y]
initial_condition = 1
[../]
[./vector_z]
initial_condition = 2
[../]
[./magnitude]
[../]
[]
[AuxKernels]
[./vx]
type = ConstantAux
variable = vector_x
value = 2
[../]
[./vy]
type = ConstantAux
variable = vector_y
value = 1
[../]
[./vz]
type = ConstantAux
variable = vector_z
value = 2
[../]
[./magnitude]
type = VectorMagnitudeAux
variable = magnitude
x = vector_x
y = vector_y
z = vector_z
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/transient-lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[pin]
type = ExtraNodesetGenerator
input = gen
new_boundary = 'pin'
nodes = '0'
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[ICs]
[T]
type = ConstantIC
variable = T
value = 1
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = 'u'
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = INSFVEnergyTimeDerivative
variable = T
rho = ${rho}
cp = 'cp'
dcp_dt = 0.0
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = 'top'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu NONZERO 200'
line_search = 'none'
nl_rel_tol = 1e-12
nl_max_its = 6
l_max_its = 200
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy.i)
mu = 1
rho = 1
k = .01
cp = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[T_fluid]
type = INSFVEnergyVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 'lid_function'
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T_fluid
boundary = 'bottom'
value = 1
[]
[T_cold]
type = FVDirichletBC
variable = T_fluid
boundary = 'top'
value = 0
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/functorfluidprops.i)
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 4
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 2
ymin = 0
ymax = 1
nx = 5
ny = 5
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 2
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[FVKernels]
[u_time]
type = FVTimeKernel
variable = u
[]
[v_time]
type = FVTimeKernel
variable = v
[]
[p_time]
type = FVTimeKernel
variable = pressure
[]
[T_time]
type = FVTimeKernel
variable = T
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T'
speed = 'velocity_norm'
# For porous flow
characteristic_length = 2
porosity = 'porosity'
[]
[]
[AuxVariables]
[velocity_norm]
type = MooseVariableFVReal
[]
[porosity]
type = MooseVariableFVReal
initial_condition = 0.4
[]
[rho_var]
type = MooseVariableFVReal
[]
[drho_dp_var]
type = MooseVariableFVReal
[]
[drho_dT_var]
type = MooseVariableFVReal
[]
[rho_dot_var]
type = MooseVariableFVReal
[]
[cp_var]
type = MooseVariableFVReal
[]
[dcp_dp_var]
type = MooseVariableFVReal
[]
[dcp_dT_var]
type = MooseVariableFVReal
[]
[cp_dot_var]
type = MooseVariableFVReal
[]
[cv_var]
type = MooseVariableFVReal
[]
[mu_var]
type = MooseVariableFVReal
[]
[dmu_dp_var]
type = MooseVariableFVReal
[]
[dmu_dT_var]
type = MooseVariableFVReal
[]
[k_var]
type = MooseVariableFVReal
[]
[dk_dp_var]
type = MooseVariableFVReal
[]
[dk_dT_var]
type = MooseVariableFVReal
[]
[Pr_var]
type = MooseVariableFVReal
[]
[dPr_dp_var]
type = MooseVariableFVReal
[]
[dPr_dT_var]
type = MooseVariableFVReal
[]
[Re_var]
type = MooseVariableFVReal
[]
[dRe_dp_var]
type = MooseVariableFVReal
[]
[dRe_dT_var]
type = MooseVariableFVReal
[]
[Re_h_var]
type = MooseVariableFVReal
[]
[Re_i_var]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[speed]
type = VectorMagnitudeAux
variable = 'velocity_norm'
x = u
y = v
[]
# To output the functor material properties
[rho_out]
type = ADFunctorElementalAux
functor = 'rho'
variable = 'rho_var'
execute_on = 'timestep_begin'
[]
[drho_dp_out]
type = FunctorElementalAux
functor = 'drho/dpressure'
variable = 'drho_dp_var'
execute_on = 'timestep_begin'
[]
[drho_dT_out]
type = FunctorElementalAux
functor = 'drho/dT_fluid'
variable = 'drho_dT_var'
execute_on = 'timestep_begin'
[]
[drho_dt_out]
type = ADFunctorElementalAux
functor = 'drho_dt'
variable = 'rho_dot_var'
execute_on = 'timestep_begin'
[]
[cp_out]
type = ADFunctorElementalAux
functor = 'cp'
variable = 'cp_var'
execute_on = 'timestep_begin'
[]
[dcp_dp_out]
type = FunctorElementalAux
functor = 'dcp/dpressure'
variable = 'dcp_dp_var'
execute_on = 'timestep_begin'
[]
[dcp_dT_out]
type = FunctorElementalAux
functor = 'dcp/dT_fluid'
variable = 'dcp_dT_var'
execute_on = 'timestep_begin'
[]
[dcp_dt_out]
type = ADFunctorElementalAux
functor = 'dcp_dt'
variable = 'cp_dot_var'
execute_on = 'timestep_begin'
[]
[cv_out]
type = ADFunctorElementalAux
functor = 'cv'
variable = 'cv_var'
execute_on = 'timestep_begin'
[]
[mu_out]
type = ADFunctorElementalAux
functor = 'mu'
variable = 'mu_var'
execute_on = 'timestep_begin'
[]
[dmu_dp_out]
type = FunctorElementalAux
functor = 'dmu/dpressure'
variable = 'dmu_dp_var'
execute_on = 'timestep_begin'
[]
[dmu_dT_out]
type = FunctorElementalAux
functor = 'dmu/dT_fluid'
variable = 'dmu_dT_var'
execute_on = 'timestep_begin'
[]
[k_out]
type = ADFunctorElementalAux
functor = 'k'
variable = 'k_var'
execute_on = 'timestep_begin'
[]
[dk_dp_out]
type = FunctorElementalAux
functor = 'dk/dpressure'
variable = 'dk_dp_var'
execute_on = 'timestep_begin'
[]
[dk_dT_out]
type = FunctorElementalAux
functor = 'dk/dT_fluid'
variable = 'dk_dT_var'
execute_on = 'timestep_begin'
[]
[Pr_out]
type = ADFunctorElementalAux
functor = 'Pr'
variable = 'Pr_var'
execute_on = 'timestep_begin'
[]
[dPr_dp_out]
type = FunctorElementalAux
functor = 'dPr/dpressure'
variable = 'dPr_dp_var'
execute_on = 'timestep_begin'
[]
[dPr_dT_out]
type = FunctorElementalAux
functor = 'dPr/dT_fluid'
variable = 'dPr_dT_var'
execute_on = 'timestep_begin'
[]
[Re_out]
type = ADFunctorElementalAux
functor = 'Re'
variable = 'Re_var'
execute_on = 'timestep_begin'
[]
[dRe_dp_out]
type = FunctorElementalAux
functor = 'dRe/dpressure'
variable = 'dRe_dp_var'
execute_on = 'timestep_begin'
[]
[dRe_dT_out]
type = FunctorElementalAux
functor = 'dRe/dT_fluid'
variable = 'dRe_dT_var'
execute_on = 'timestep_begin'
[]
[Re_h_out]
type = ADFunctorElementalAux
functor = 'Re_h'
variable = 'Re_h_var'
execute_on = 'timestep_begin'
[]
[Re_i_out]
type = ADFunctorElementalAux
functor = 'Re_i'
variable = 'Re_i_var'
execute_on = 'timestep_begin'
[]
[]
[Executioner]
type = Transient
end_time = 0.1
dt = 0.1
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
alpha = 1
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# rayleigh=1e3
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = 0
ymax = 10
nx = 64
ny = 64
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[rho_out]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
function = 'u'
execute_on = 'initial timestep_end'
args = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
function = 'v'
execute_on = 'initial timestep_end'
args = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
function = 'T'
execute_on = 'initial timestep_end'
args = 'T'
[]
[rho_out]
type = ADFunctorElementalAux
functor = 'rho'
variable = 'rho_out'
execute_on = 'initial timestep_end'
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
phi0 = 1e5
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'alpha'
prop_values = '${alpha}'
[]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-scalar-transport-action.i)
mu=1
rho=1
k=1e-3
diff=1e-3
cp=1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 10
ymin = -1
ymax = 1
nx = 100
ny = 20
[]
[]
[Variables]
inactive = 'vel_x vel_y pressure T_fluid scalar'
[vel_x]
type = 'INSFVVelocityVariable'
initial_condition = 1
block=0
[]
[vel_y]
type = 'INSFVVelocityVariable'
initial_condition = 1
block=0
[]
[pressure]
type = 'INSFVPressureVariable'
initial_condition = 0
block=0
[]
[T_fluid]
type = 'INSFVEnergyVariable'
initial_condition = 0
[]
[scalar]
type = MooseVariableFVReal
initial_condition = 0
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'incompressible'
add_energy_equation = true
passive_scalar_names = 'scalar'
density = ${rho}
dynamic_viscosity = ${mu}
thermal_conductivity = ${k}
specific_heat = ${cp}
passive_scalar_diffusivity = ${diff}
passive_scalar_source = 0.1
passive_scalar_coupled_source = U
passive_scalar_coupled_source_coeff = 0.1
initial_velocity = '1 1 0'
initial_pressure = 0.0
initial_temperature = 0.0
inlet_boundaries = 'left'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = '1 0'
energy_inlet_types = 'fixed-temperature'
energy_inlet_function = '1'
passive_scalar_inlet_types = 'fixed-value'
passive_scalar_inlet_function = '1'
wall_boundaries = 'top bottom'
momentum_wall_types = 'noslip noslip'
energy_wall_types = 'heatflux heatflux'
energy_wall_function = '0 0'
outlet_boundaries = 'right'
momentum_outlet_types = 'fixed-pressure'
pressure_function = '0'
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/boussinesq/transient-wcnsfv.i)
mu = 1
rho = 'rho'
k = 1
cp = 1
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
cold_temp=300
hot_temp=310
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = ${l}
nx = 16
ny = 16
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = 1e5
[]
[T]
type = INSFVEnergyVariable
scaling = 1e-4
initial_condition = ${cold_temp}
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[vel_x]
order = FIRST
family = MONOMIAL
[]
[vel_y]
order = FIRST
family = MONOMIAL
[]
[viz_T]
order = FIRST
family = MONOMIAL
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
execute_on = 'initial timestep_end'
[]
[vel_x]
type = ParsedAux
variable = vel_x
function = 'u'
execute_on = 'initial timestep_end'
args = 'u'
[]
[vel_y]
type = ParsedAux
variable = vel_y
function = 'v'
execute_on = 'initial timestep_end'
args = 'v'
[]
[viz_T]
type = ParsedAux
variable = viz_T
function = 'T'
execute_on = 'initial timestep_end'
args = 'T'
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'x'
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
gravity = '0 -1 0'
rho = ${rho}
momentum_component = 'y'
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'left right top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'left right top bottom'
function = 0
[]
[T_hot]
type = FVDirichletBC
variable = T
boundary = left
value = ${hot_temp}
[]
[T_cold]
type = FVDirichletBC
variable = T
boundary = right
value = ${cold_temp}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[]
[Materials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = ${rho}
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
steady_state_detection = true
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-5
optimal_iterations = 6
[]
nl_abs_tol = 1e-9
normalize_solution_diff_norm_by_dt = false
nl_max_its = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-action.i)
mu=.01
rho=1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'incompressible'
density = ${rho}
dynamic_viscosity = ${mu}
initial_pressure = 0.0
inlet_boundaries = 'top'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = '1 0'
wall_boundaries = 'left right bottom'
momentum_wall_types = 'noslip noslip noslip'
pin_pressure = true
pinned_pressure_type = average
pinned_pressure_value = 0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/materials/2d-transient.i)
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
rho = 'rho'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[velocity_norm]
type = MooseVariableFVReal
[]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = 'rho'
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = u
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = 'rho'
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = v
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = 'rho'
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T
cp = cp
rho = rho
drho_dt = drho_dt
dcp_dt = dcp_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T
v = power_density
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = u
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = v
boundary = 'top bottom'
function = 0
[]
# Inlet
[inlet_u]
type = INSFVInletVelocityBC
variable = u
boundary = 'left'
function = ${inlet_v}
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = v
boundary = 'left'
function = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T
boundary = 'left'
value = ${inlet_temp}
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
[]
[Modules]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[]
[Materials]
[ins_fv]
type = INSFVEnthalpyMaterial
temperature = 'T'
rho = 'rho'
[]
[fluid_props_to_mat_props]
type = GeneralFunctorFluidProps
fp = fp
pressure = 'pressure'
T_fluid = 'T'
speed = 'velocity_norm'
# even though we provide rho from the parameters, we
# want to get rho from the fluid properties
force_define_density = true
# To initialize with a high viscosity
mu_rampdown = 'mu_rampdown'
# For porous flow
characteristic_length = 1
porosity = 1
[]
[]
[AuxKernels]
[speed]
type = VectorMagnitudeAux
variable = 'velocity_norm'
x = u
y = v
[]
[]
[Functions]
[mu_rampdown]
type = PiecewiseLinear
x = '1 2 3 4'
y = '1e3 1e2 1e1 1'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-12
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven.i)
mu=.01
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = .1
ymin = 0
ymax = .1
nx = 20
ny = 20
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
[]
[vel_y]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVIntegralValueConstraint
variable = pressure
lambda = lambda
phi0 = 0.0
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[FVBCs]
[top_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top'
function = 1
[]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'left right bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'left right top bottom'
function = 0
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(test/tests/materials/functor_properties/gradients/functor-gradients.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 5
ny = 4
xmax = 2
[]
[Variables]
[u]
type = MooseVariableFVReal
[]
[]
[AuxVariables]
[sink]
type = MooseVariableFVReal
[]
[diffusive_flux_x]
type = MooseVariableFVReal
[]
[diffusive_flux_y]
type = MooseVariableFVReal
[]
[diffusive_flux_magnitude]
type = MooseVariableFVReal
[]
[]
[ICs]
[sink]
type = FunctionIC
variable = sink
function = 'x^3'
[]
[]
[FVKernels]
[diff]
type = FVDiffusion
variable = u
coeff = 1.1
[]
[sink]
type = FVFunctorElementalKernel
variable = u
functor_name = 'sink_mat'
[]
[]
[FVBCs]
[bounds]
type = FVDirichletBC
variable = u
boundary = 'left right top bottom'
value = 0
[]
[]
[Materials]
[functor_properties]
type = ADGenericFunctorMaterial
prop_names = 'sink_mat diffusive_coef'
prop_values = 'sink 4.5'
[]
[gradient_of_u]
type = ADGenericFunctorGradientMaterial
prop_names = 'grad_u'
prop_values = 'u'
[]
[]
# Compute the diffusive flux magnitude
[AuxKernels]
[diffusive_flux_x]
type = ADFunctorVectorElementalAux
variable = 'diffusive_flux_x'
functor = 'grad_u'
factor = 'diffusive_coef'
component = 0
[]
[diffusive_flux_y]
type = ADFunctorVectorElementalAux
variable = 'diffusive_flux_y'
functor = 'grad_u'
factor = 'diffusive_coef'
component = 1
[]
[diffusive_flux_magnitude]
type = VectorMagnitudeAux
variable = 'diffusive_flux_magnitude'
x = 'diffusive_flux_x'
y = 'diffusive_flux_y'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/lid-driven-with-energy-action.i)
mu = 1
rho = 1
k = .01
cp = 1
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 32
ny = 32
[]
[]
[Modules]
[NavierStokesFV]
compressibility = 'incompressible'
add_energy_equation = true
density = 'rho'
dynamic_viscosity = 'mu'
thermal_conductivity = 'k'
specific_heat = 'cp'
initial_pressure = 0.0
initial_temperature = 0.0
inlet_boundaries = 'top'
momentum_inlet_types = 'fixed-velocity'
momentum_inlet_function = 'lid_function 0'
energy_inlet_types = 'fixed-temperature'
energy_inlet_function = '0'
wall_boundaries = 'left right bottom'
momentum_wall_types = 'noslip noslip noslip'
energy_wall_types = 'heatflux heatflux fixed-temperature'
energy_wall_function = '0 0 1'
pin_pressure = true
pinned_pressure_type = average
pinned_pressure_value = 0
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = vel_x
y = vel_y
[]
[]
[Materials]
[functor_constants]
type = ADGenericFunctorMaterial
prop_names = 'cp k rho mu'
prop_values = '${cp} ${k} ${rho} ${mu}'
[]
[]
[Functions]
[lid_function]
type = ParsedFunction
value = '4*x*(1-x)'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 300 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/lid-driven/rz-gravity-quiescent-fluid.i)
mu=.01
rho=1
[GlobalParams]
velocity_interp_method = 'rc'
advected_interp_method = 'average'
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 1
xmax = 2
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[]
[Problem]
coord_type = 'RZ'
[]
[Variables]
[u]
type = INSFVVelocityVariable
[]
[v]
type = INSFVVelocityVariable
[]
[pressure]
type = INSFVPressureVariable
[]
[lambda]
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
[U]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[AuxKernels]
[mag]
type = VectorMagnitudeAux
variable = U
x = u
y = v
[]
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[mean_zero_pressure]
type = FVScalarLagrangeMultiplier
variable = pressure
lambda = lambda
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = 'mu'
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[u_gravity]
type = INSFVMomentumGravity
variable = u
momentum_component = 'x'
rho = ${rho}
gravity = '0 -1 0'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = 'mu'
momentum_component = 'y'
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[v_gravity]
type = INSFVMomentumGravity
variable = v
momentum_component = 'y'
rho = ${rho}
gravity = '0 -1 0'
[]
[]
[FVBCs]
[free_slip_x]
type = INSFVNaturalFreeSlipBC
variable = u
boundary = 'left right top bottom'
momentum_component = 'x'
[]
[free_slip_y]
type = INSFVNaturalFreeSlipBC
variable = v
boundary = 'left right top bottom'
momentum_component = 'y'
[]
[]
[Materials]
[mu]
type = ADGenericFunctorMaterial
prop_names = 'mu'
prop_values = '${mu}'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 100 lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]