- connectionsJunction connections
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Junction connections
JunctionOneToOne1Phase
This is a flow junction that connects 2 FlowChannel1Phase components that are parallel.
Using this junction between 2 flow channels should be numerically equivalent to having the 2 connected flow channels merged into 1 large flow channel. This junction is useful for cases where a separation in a flow channel is required. One particular example is when a heat structure is connected to a section of an otherwise single flow channel.
Formulation
This junction is treated just like any interface between two elements in the mesh.
Usage
The parameter "connections" specifies ends of flow channel components to connect.
Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/closed_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
- (modules/thermal_hydraulics/test/tests/problems/freefall/freefall.i)
- (modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
- (modules/thermal_hydraulics/test/tests/base/simulation/loop_identification.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/junction_one_to_one_1phase.i)
connections
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Junction connections
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/closed_brayton_cycle.i)
# This input file is used to demonstrate a simple closed, air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 6 segments as illustrated below, where
# - "(C)" denotes the compressor
# - "(T)" denotes the turbine
# - "*" denotes a fictitious junction
#
# Heated section Cooled section
# *-----(C)-----*--------------*-----(T)-----*--------------*
# 1 2 3 4 5 6
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
# * 0 - 100 s: motor ramps up torque linearly from zero
# * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
# * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
D6 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
A6 = ${fparse 0.25 * pi * D6^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
L6 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x6 = ${fparse x5 + L5}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
n_elems6 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_cold = 300
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
orientation = '1 0 0'
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
rdg_slope_reconstruction = none
[]
[Functions]
[motor_torque_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 ${motor_torque_max} 0'
[]
[motor_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'motor_torque shaft:omega'
[]
[generator_torque_fn]
type = ParsedFunction
value = 'slope * t'
vars = 'slope'
vals = '${generator_torque_per_shaft_speed}'
[]
[generator_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'generator_torque shaft:omega'
[]
[htc_wall_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 0 1e3'
[]
[]
[Modules/FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[pipe1]
type = FlowChannel1Phase
position = '${x1} 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} 0 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe2]
type = FlowChannel1Phase
position = '${x2} 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
[junction2_3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} 0 0'
length = ${L3}
n_elems = ${n_elems3}
A = ${A3}
[]
[junction3_4]
type = JunctionOneToOne1Phase
connections = 'pipe3:out pipe4:in'
[]
[pipe4]
type = FlowChannel1Phase
position = '${x4} 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x5} 0 0'
inlet = 'pipe4:out'
outlet = 'pipe5:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe5]
type = FlowChannel1Phase
position = '${x5} 0 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
[junction5_6]
type = JunctionOneToOne1Phase
connections = 'pipe5:out pipe6:in'
[]
[pipe6]
type = FlowChannel1Phase
position = '${x6} 0 0'
length = ${L6}
n_elems = ${n_elems6}
A = ${A6}
[]
[junction6_1]
type = JunctionOneToOne1Phase
connections = 'pipe6:out pipe1:in'
[]
[heating]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe3
T_wall = ${T_hot}
Hw = htc_wall_fn
[]
[cooling]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe6
T_wall = ${T_cold}
Hw = htc_wall_fn
[]
[]
[ControlLogic]
[motor_ctrl]
type = TimeFunctionComponentControl
component = motor
parameter = torque
function = motor_torque_fn
[]
[]
[Postprocessors]
[heating_rate]
type = ADHeatRateConvection1Phase
block = 'pipe3'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[cooling_rate]
type = ADHeatRateConvection1Phase
block = 'pipe6'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x2_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
function = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x5_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x5_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
function = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe4:out
connection_index = 0
equation = mass
junction = turbine
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.1
cutback_factor = 0.9
[]
dtmin = 1e-5
steady_state_detection = true
steady_state_start_time = ${t2}
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = 'closed_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
[]
[]
[Functions]
# compressor pressure ratio
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiency
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
# turbine pressure ratio
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
# This test is used to test the JunctionOneToOne1Phase1Phase component with unequal areas
# at the junction. The downstream flow channel has an area half that of the
# upstream pipe, so there should be a pressure increase just upstream of the
# junction due to the partial wall. The velocity should increase through the
# junction (approximately by a factor of 2, but there are compressibility effects).
[GlobalParams]
gravity_vector = '0 0 0'
fp = fp
closures = simple_closures
f = 0
initial_T = 300
initial_p = 1e5
initial_vel = 1
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_boundary]
type = InletDensityVelocity1Phase
input = 'left_channel:in'
rho = 466.6666667
vel = 1
[]
[left_channel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'left_channel:out right_channel:in'
[]
[right_channel]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
[]
[right_boundary]
type = Outlet1Phase
input = 'right_channel:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.01
num_steps = 10
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 60
l_tol = 1e-4
[]
[Outputs]
exodus = true
show = 'p T vel'
execute_on = 'initial timestep_end'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/problems/freefall/freefall.i)
# Tests acceleration of a fluid due to gravity. The flow exiting the bottom
# of the flow channel enters the top, so the flow should uniformly accelerate
# at the rate of acceleration due to gravity.
acceleration = -10.0
dt = 0.1
num_steps = 5
time = ${fparse num_steps * dt}
# The expected velocity is the following:
# u = a * t
# = -10 * 0.5
# = -5
[GlobalParams]
gravity_vector = '0 0 ${acceleration}'
initial_p = 1e5
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816
q = -1.167e6
q_prime = 0
p_inf = 1e9
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 1
n_elems = 100
A = 1
f = 0
fp = fp
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'pipe:in pipe:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
end_time = ${time}
dt = ${dt}
num_steps = ${num_steps}
abort_on_solve_fail = true
solve_type = NEWTON
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[]
[Postprocessors]
[vel_avg]
type = ElementAverageValue
variable = 'vel'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Outputs]
velocity_as_vector = false
[out]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
# This test features air flowing through a channel whose cross-sectional area
# shrinks to half its value in the right half. Assuming incompressible flow
# conditions, such as having a low Mach number, the velocity should approximately
# double from inlet to outlet. In this version of the test, the area discontinuity
# is achieved by connecting two flow channels with a junction.
p_outlet = 1e5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = ${p_outlet}
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 1.16263315948279 # rho @ (p = 1e5 Pa, T = 300 K)
vel = 1
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1
initial_vel = 1
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'pipe1:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
initial_vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = ${p_outlet}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.2
[]
steady_state_detection = true
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
exodus = true
velocity_as_vector = false
show = 'A rho vel p'
[]
(modules/thermal_hydraulics/test/tests/base/simulation/loop_identification.i)
# This test tests the loop identification function, which creates a map of component
# names to a loop name. "Loops" are defined to be sets of components which are
# physically connected - heat exchanger connections do not constitute physical
# connections in this sense. Note that this test is not meant to actually perform
# any physical computations, so dummy values are provided for the required parameters.
#
# The test configuration for this test is the following:
#
# pipe1 -> corechannel:pipe -> pipe2 -> hx:primary -> pipe1
# j1 j2 j3 j4
#
# inlet -> hx:secondary -> outlet
#
# This test uses the command-line option "--print-component-loops" to print out
# the lists of components in each loop, with the desired output being the
# following:
#
# Loop 1:
#
# corechannel:pipe
# hx:primary
# j1
# j2
# j3
# j4
# pipe1
# pipe2
#
# Loop 2:
#
# hx:secondary
# inlet
# outlet
[GlobalParams]
closures = simple_closures
initial_p = 1e6
initial_T = 300
initial_vel = 0
[]
[Modules/FluidProperties]
[fp_liquid]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hx:wall]
type = SolidMaterialProperties
k = 1
cp = 1
rho = 1
[]
[]
[Components]
# PRIMARY LOOP
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j1]
type = JunctionOneToOne1Phase
connections = 'pipe1:out corechannel:in'
[]
[corechannel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j2]
type = JunctionOneToOne1Phase
connections = 'corechannel:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out hx:primary:in'
[]
[hx:primary]
type = FlowChannel1Phase
position = '0 1 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j4]
type = JunctionOneToOne1Phase
connections = 'hx:primary:out pipe1:in'
[]
# HEAT EXCHANGER
[hs]
type = HeatStructurePlate
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
materials = hx:wall
n_part_elems = 1
names = 0
widths = 1
depth = 1
initial_T = 300
[]
[ht_primary]
type = HeatTransferFromHeatStructure1Phase
hs = hs
flow_channel = hx:primary
hs_side = outer
Hw = 0
[]
[ht_secondary]
type = HeatTransferFromHeatStructure1Phase
hs = hs
flow_channel = hx:secondary
hs_side = inner
Hw = 0
[]
# SECONDARY LOOP
[inlet]
type = SolidWall1Phase
input = 'hx:secondary:out'
[]
[hx:secondary]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[outlet]
type = SolidWall1Phase
input = 'hx:secondary:in'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
[console]
type = Console
system_info = ''
enable = false
[]
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
# This input file is used to demonstrate a simple open-air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 5 segments as illustrated below, where
# - "(I)" denotes the inlet
# - "(C)" denotes the compressor
# - "(T)" denotes the turbine
# - "(O)" denotes the outlet
# - "*" denotes a fictitious junction
#
# Heated section
# (I)-----(C)-----*--------------*-----(T)-----(O)
# 1 2 3 4 5
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
# * 0 - 100 s: motor ramps up torque linearly from zero
# * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
# * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
orientation = '1 0 0'
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
rdg_slope_reconstruction = none
[]
[Functions]
[motor_torque_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 ${motor_torque_max} 0'
[]
[motor_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'motor_torque shaft:omega'
[]
[generator_torque_fn]
type = ParsedFunction
value = 'slope * t'
vars = 'slope'
vals = '${generator_torque_per_shaft_speed}'
[]
[generator_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'generator_torque shaft:omega'
[]
[htc_wall_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 0 1e3'
[]
[]
[Modules/FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = ${p_ambient}
T0 = ${T_ambient}
[]
[pipe1]
type = FlowChannel1Phase
position = '${x1} 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} 0 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe2]
type = FlowChannel1Phase
position = '${x2} 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
[junction2_3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} 0 0'
length = ${L3}
n_elems = ${n_elems3}
A = ${A3}
[]
[junction3_4]
type = JunctionOneToOne1Phase
connections = 'pipe3:out pipe4:in'
[]
[pipe4]
type = FlowChannel1Phase
position = '${x4} 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x5} 0 0'
inlet = 'pipe4:out'
outlet = 'pipe5:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe5]
type = FlowChannel1Phase
position = '${x5} 0 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
[outlet]
type = Outlet1Phase
input = 'pipe5:out'
p = ${p_ambient}
[]
[heating]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe3
T_wall = ${T_hot}
Hw = htc_wall_fn
[]
[]
[ControlLogic]
[motor_ctrl]
type = TimeFunctionComponentControl
component = motor
parameter = torque
function = motor_torque_fn
[]
[]
[Postprocessors]
[heating_rate]
type = ADHeatRateConvection1Phase
block = 'pipe3'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x2_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
function = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x5_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x5_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
function = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe4:out
connection_index = 0
equation = mass
junction = turbine
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.1
cutback_factor = 0.9
[]
dtmin = 1e-5
steady_state_detection = true
steady_state_start_time = ${t2}
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = 'open_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
[]
[]
[Functions]
# compressor pressure ratio
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiency
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
# turbine pressure ratio
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
(modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/junction_one_to_one_1phase.i)
# This input file simulates the Sod shock tube using a junction in the middle
# of the domain. The solution should be exactly equivalent to the problem with
# no junction. This test examines the solutions at the junction connections
# and compares them to gold values generated from a version of this input file
# that has no junction.
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Functions]
[p_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 0.1'
[]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.4 1.12'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_boundary]
type = FreeBoundary1Phase
input = 'left_channel:in'
[]
[left_channel]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'left_channel:out right_channel:in'
[]
[right_channel]
type = FlowChannel1Phase
fp = fp
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'right_channel:out'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 60
l_tol = 1e-4
start_time = 0.0
dt = 1e-3
num_steps = 5
abort_on_solve_fail = true
[]
[Postprocessors]
[rhoA_left]
type = SideAverageValue
variable = rhoA
boundary = left_channel:out
execute_on = 'initial timestep_end'
[]
[rhouA_left]
type = SideAverageValue
variable = rhouA
boundary = left_channel:out
execute_on = 'initial timestep_end'
[]
[rhoEA_left]
type = SideAverageValue
variable = rhoEA
boundary = left_channel:out
execute_on = 'initial timestep_end'
[]
[rhoA_right]
type = SideAverageValue
variable = rhoA
boundary = right_channel:in
execute_on = 'initial timestep_end'
[]
# rhouA_right is added by tests file
[rhoEA_right]
type = SideAverageValue
variable = rhoEA
boundary = right_channel:in
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
show = 'rhoA_left rhouA_left rhoEA_left rhoA_right rhouA_right rhoEA_right'
execute_on = 'initial timestep_end'
[]