- flow_channelName of flow channel component to connect to
C++ Type:std::string
Controllable:No
Description:Name of flow channel component to connect to
- hsHeat structure name
C++ Type:std::string
Controllable:No
Description:Heat structure name
- hs_sideHeat structure side
C++ Type:MooseEnum
Controllable:No
Description:Heat structure side
HeatTransferFromHeatStructure1Phase
This component is both a single-phase heat transfer component and a heat structure boundary. It specifies a convective heat exchange between a FlowChannel1Phase and a 2D heat structure.
Usage
The user must supply the name of the connected flow channel via the parameter "flow_channel".
The parameter "P_hf" is optional and specifies the heated perimeter ; if unspecified, this is computed from the cross-sectional area assuming a circular cross section.
The parameter "Hw" is optional and specifies the heat transfer coefficient ; if unspecified, it is computed using the selected closures. Note that depending on the type of heat transfer and the chosen closures, it may not be relevant.
The parameter "hs" specifies the name of the connected heat structure, and "hs_side" specifies the side of the connected heat structure that is coupled to the flow channel.
The flow channel axis must be parallel to the heat structure axis and have the same discretization along their axes.
Input Parameters
- HwConvective heat transfer coefficient [W/(m^2-K)]
C++ Type:FunctionName
Controllable:Yes
Description:Convective heat transfer coefficient [W/(m^2-K)]
- P_hfHeat flux perimeter [m]
C++ Type:FunctionName
Controllable:Yes
Description:Heat flux perimeter [m]
- P_hf_transferredFalseIs heat flux perimeter transferred from an external source?
Default:False
C++ Type:bool
Controllable:No
Description:Is heat flux perimeter transferred from an external source?
- var_typenodalThe type of wall temperature variable (nodal, elemental).
Default:nodal
C++ Type:MooseEnum
Options:nodal, elemental
Controllable:No
Description:The type of wall temperature variable (nodal, elemental).
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Formulation
This component implements a convective heat exchange between the flow channel and heat structure, with the flow channel receiving the following wall heat flux:
where is the heat transfer coefficient, is the heat structure surface temperature, and is the fluid temperature. On the heat structure side, the incoming boundary flux is the opposite of that going into the flow channel:
Input Files
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_y.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/jac.1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/test.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/err.no_phf.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.heat_structure_multiple_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/surrogate_power_profile.i)
- (modules/thermal_hydraulics/test/tests/base/component_groups/test.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/steady_state.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.conservation_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_z.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_x.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
- (modules/thermal_hydraulics/test/tests/base/simulation/loop_identification.i)
flow_channel
C++ Type:std::string
Controllable:No
Description:Name of flow channel component to connect to
P_hf
C++ Type:FunctionName
Controllable:Yes
Description:Heat flux perimeter [m]
Hw
C++ Type:FunctionName
Controllable:Yes
Description:Convective heat transfer coefficient [W/(m^2-K)]
hs
C++ Type:std::string
Controllable:No
Description:Heat structure name
hs_side
C++ Type:MooseEnum
Options:END, INNER, OUTER, START
Controllable:No
Description:Heat structure side
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_y.i)
# Testing that T_solid gets properly projected onto a pipe
# That's why Hw in pipe1 is set to 0, so we do not have any heat exchange
# Note that the pipe and the heat structure have an opposite orientation, which
# is crucial for this test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
cp = 100.0
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '290 + sin((1 - y) * pi * 1.4)'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0.2 0 0'
orientation = '0 1 0'
length = 1
n_elems = 50
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hs]
type = HeatStructureCylindrical
position = '0.1 1 0'
orientation = '0 -1 0'
length = 1
n_elems = 50
materials = 'wall-mat'
n_part_elems = 3
widths = '0.1'
names = 'wall'
initial_T = T_init
[]
[hxconn]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe1
Hw = 0
P_hf = 6.2831853072e-01
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
num_steps = 1
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T_solid'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/jac.1phase.i)
[GlobalParams]
initial_p = 1.e5
initial_vel = 2
initial_T = 300
scaling_factor_1phase = '1 1 1'
scaling_factor_temperature = '1'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0.1 0'
orientation = '0 0 1'
length = 2
n_elems = 1
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = 2
n_elems = 1
names = 'fuel'
widths = '0.1'
n_part_elems = '1'
materials = 'fuel-mat'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe
Hw = 100
P_hf = 0.029832559676
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-snes_test_err'
petsc_options_value = ' 1e-11'
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/test.i)
# Test that the initial conditions read from the exodus file are correct
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
closures = simple_closures
initial_from_file = 'steady_state_out.e'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat1]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_bc]
type = ParsedFunction
value = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
names = 'wall'
n_part_elems = 1
materials = 'mat1'
inner_radius = 0.01
widths = 0.1
[]
[ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = hs
hs_side = INNER
Hw = 10000
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_bc
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
[GlobalParams]
initial_p = 15.5e6
initial_vel = 2
initial_T = 560
scaling_factor_1phase = '1 1 1'
scaling_factor_temperature = '1'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.865
n_elems = 1
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = inlet # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[hx2]
type = HeatTransferFromHeatStructure1Phase
hs = asdf # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 15.5e6
T0 = 560
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 15e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 1
l_tol = 1e-3
l_max_its = 30
start_time = 0.0
num_steps = 20
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/err.no_phf.i)
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat]
type = SolidMaterialProperties
k = 1
cp = 2
rho = 3
[]
[]
[Components]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 2
A = 1
closures = simple_closures
fp = fp
f = 0.01
initial_p = 1e5
initial_T = 300
initial_vel = 0
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
names = 'blk'
widths = '0.1'
n_part_elems = '1'
materials = 'mat'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = START
flow_channel = fch1
Hw = 0
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'fch1:in'
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'fch1:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 1
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out cooling_pipe:in'
volume = 1e-3
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
Hw = 0.97
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'cooling_pipe:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${fparse (4 * core_pitch * core_pitch - pi * core_dia * core_dia) / (4 * core_pitch + pi * core_dia)}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[outlet]
type = Outlet1Phase
input = 'core_chan:out'
p = ${press}
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
# heat exchanger parameters
hx_dia_inner = ${units 10. cm -> m}
hx_wall_thickness = ${units 5. mm -> m}
hx_dia_outer = ${units 50. cm -> m}
hx_radius_wall = ${fparse hx_dia_inner / 2. + hx_wall_thickness}
hx_length = 1 # m
hx_n_elems = 10
m_dot_sec_in = 1 # kg/s
flow_blocks = 'core_chan up_pipe top_pipe hx/pri hx/sec down_pipe bottom_b bottom_a'
ht_blocks = 'core_chan hx/pri hx/sec'
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = no_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
100 ${m_dot_sec_in}'
[]
[]
[Materials]
[f_mat]
type = ADWallFrictionChurchillMaterial
block = ${flow_blocks}
D_h = D_h
f_D = f_D
mu = mu
rho = rho
vel = vel
[]
[Hw_mat]
type = ADWallHeatTransferCoefficient3EqnDittusBoelterMaterial
block = ${ht_blocks}
D_h = D_h
rho = rho
vel = vel
T = T
T_wall = T_wall
cp = cp
mu = mu
k = k
[]
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[no_closures]
type = Closures1PhaseNone
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out hx/pri:in'
volume = 1e-3
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * hx_dia_inner * hx_dia_inner / 4.}
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
materials = 'steel'
names = '0'
inner_radius = ${fparse hx_dia_inner / 2.}
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = ${fparse 2 * pi * hx_radius_wall}
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}
D_h = ${fparse hx_dia_outer - (2 * hx_radius_wall)}
fp = water
[]
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'hx/pri:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:out'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:in'
p = ${press}
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[]
dtmax = 100
end_time = 50000
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
# heat exchanger parameters
hx_dia_inner = ${units 10. cm -> m}
hx_wall_thickness = ${units 5. mm -> m}
hx_dia_outer = ${units 50. cm -> m}
hx_radius_wall = ${fparse hx_dia_inner / 2. + hx_wall_thickness}
hx_length = 1 # m
hx_n_elems = 10
m_dot_sec_in = 1 # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
100 ${m_dot_sec_in}'
[]
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out hx/pri:in'
volume = 1e-3
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * hx_dia_inner * hx_dia_inner / 4.}
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
Hw = 0.97
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
materials = 'steel'
names = '0'
inner_radius = ${fparse hx_dia_inner / 2.}
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = ${fparse 2 * pi * hx_radius_wall}
Hw = 36
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}
D_h = ${fparse hx_dia_outer - (2 * hx_radius_wall)}
fp = water
f = 0.075
[]
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'hx/pri:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:out'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:in'
p = ${press}
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[]
dtmax = 100
end_time = 50000
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.heat_structure_multiple_3eqn.i)
# Tests that energy conservation is satisfied in 1-phase flow when there are
# multiple heat structures are connected to the same pipe.
#
# This problem has 2 heat structures with different material properties and
# initial conditions connected to the same flow channel, which has solid wall
# boundary conditions at both ends. An ideal gas equation of state is used for
# the fluid:
# e(T) = cv * T
# From energy conservation, an analytic expression for the steady-state
# temperature results:
# (rho(p,T)*e(T)*V)_fluid + (rho*cp*T*V)_hs1 + (rho*cp*T*V)_hs2 = constant
# The following are constant:
# V_i domain volumes for flow channel and heat structures
# rho_fluid fluid density (due to conservation of mass)
# rho_hsi heat structure densities
# cp_hsi heat structure specific heats
# Furthermore, all volumes are set equal to 1. Therefore the expression for the
# steady-state temperature is the following:
# T = E0 / C0
# where
# E0 = (rho(p0,T0)*e(T0))_fluid + (rho*cp*T0)_hs1 + (rho*cp*T0)_hs2
# C0 = (rho(p0,T0)*cv)_fluid + (rho*cp)_hs1 + (rho*cp)_hs2
#
# An ideal gas is defined by (gamma, R), and the relation between R and cv is as
# follows:
# cp = gamma * R / (gamma - 1)
# cv = cp / gamma = R / (gamma - 1)
# For the EOS parameters
# gamma = 1.0001
# R = 100 J/kg-K
# the relevant specific heat is
# cv = 1e6 J/kg-K
#
# For the initial conditions
# p = 100 kPa
# T = 300 K
# the density and specific internal energy should be
# rho = 3.3333333333333 kg/m^3
# e = 300000000 J/kg
#
# The following heat structure parameters are used:
# T0_hs1 = 290 K T0_hs2 = 310 K
# rho_hs1 = 8000 kg/m^3 rho_hs2 = 6000 kg/m^3
# cp_hs1 = 500 J/kg-K cp_hs2 = 600 J/kg-K
#
# E0 = 1e9 + 8000 * 500 * 290 + 6000 * 600 * 310
# = 3276000000 J
# C0 = 3.3333333333333e6 + 8000 * 500 + 6000 * 600
# = 10933333.3333333 J/K
# T = E0 / C0
# = 3276000000 / 10933333.3333333
# = 299.6341463414643 K
#
T1 = 290
k1 = 50
rho1 = 8000
cp1 = 500
T2 = 310
k2 = 100
rho2 = 6000
cp2 = 600
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 100e3
initial_vel = 0
scaling_factor_1phase = '1e-3 1e-3 1e-8'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.0001
molar_mass = 0.083144598
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hs1_mat]
type = SolidMaterialProperties
k = ${k1}
rho = ${rho1}
cp = ${cp1}
[]
[hs2_mat]
type = SolidMaterialProperties
k = ${k2}
rho = ${rho2}
cp = ${cp2}
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
fp = fp
[]
[hs1]
type = HeatStructurePlate
position = '0 -1 0'
orientation = '1 0 0'
length = 1
depth = 1
n_elems = 10
materials = 'hs1_mat'
n_part_elems = '5'
widths = '1'
names = 'solid'
initial_T = ${T1}
[]
[hs2]
type = HeatStructurePlate
position = '0 -1 0'
orientation = '1 0 0'
length = 1
depth = 1
n_elems = 10
materials = 'hs2_mat'
n_part_elems = '5'
widths = '1'
names = 'solid'
initial_T = ${T2}
[]
[ht1]
type = HeatTransferFromHeatStructure1Phase
hs = hs1
hs_side = outer
flow_channel = pipe
Hw = 1e5
P_hf = 0.5
[]
[ht2]
type = HeatTransferFromHeatStructure1Phase
hs = hs2
hs_side = outer
flow_channel = pipe
Hw = 1e5
P_hf = 0.5
[]
[left]
type = SolidWall1Phase
input = 'pipe:in'
[]
[right]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Preconditioning]
[preconditioner]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
end_time = 4e5
dt = 1e4
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Postprocessors]
[T_steady_state_predicted]
type = FunctionValuePostprocessor
# This value is computed in the input file description
function = 299.6341463414643
[]
[T_fluid_average]
type = ElementAverageValue
variable = T
block = pipe
[]
[relative_error]
type = RelativeDifferencePostprocessor
value1 = T_steady_state_predicted
value2 = T_fluid_average
[]
[]
[Outputs]
[out]
type = CSV
show = 'relative_error'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 3.7
cp = 3.e2
rho = 10.42e3
[]
[gap-mat]
type = SolidMaterialProperties
k = 0.7
cp = 5e3
rho = 1.0
[]
[clad-mat]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Components]
[reactor]
type = TotalPower
power = 1e3
[]
[core:pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[core:solid]
type = HeatStructureCylindrical
position = '0 -0.0071501 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
names = 'FUEL GAP CLAD'
widths = '6.057900E-03 1.524000E-04 9.398000E-04'
n_part_elems = '5 1 2'
materials = 'fuel-mat gap-mat clad-mat'
initial_T = 513
[]
[core:hgen]
type = HeatSourceFromTotalPower
hs = core:solid
regions = 'FUEL'
power = reactor
power_fraction = 1
[]
[core:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core:pipe
hs = core:solid
hs_side = outer
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'core:pipe:in'
rho = 817.382210128610836
vel = 2.4
[]
[outlet]
type = Outlet1Phase
input = 'core:pipe:out'
p = 7e6
[]
[]
[Postprocessors]
[E_in]
type = ADFlowBoundaryFlux1Phase
boundary = inlet
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out]
type = ADFlowBoundaryFlux1Phase
boundary = outlet
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = core:pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[E_diff]
type = DifferencePostprocessor
value1 = E_in
value2 = E_out
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = SumPostprocessor
values = 'E_diff hf_pipe'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 5
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
end_time = 260
[]
[Outputs]
[out]
type = CSV
execute_on = final
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/surrogate_power_profile.i)
# This takes an exodus file with a power profile and uses that in a heat structure
# of a core channel as power density. This tests the capability of taking a
# rattlesnake generated power profile and using it in RELAP-7.
[GlobalParams]
initial_p = 15.5e6
initial_vel = 0.
initial_T = 559.15
gravity_vector = '0 -9.8 0'
scaling_factor_1phase = '1 1 1e-4'
scaling_factor_temperature = 1e-2
closures = simple_closures
[]
[Modules/FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[gap-mat]
type = SolidMaterialProperties
k = 0.6
cp = 1.
rho = 1.
[]
[clad-mat]
type = SolidMaterialProperties
k = 21.5
cp = 350.
rho = 6.55e3
[]
[]
[Components]
[CCH1:pipe]
type = FlowChannel1Phase
position = '0.02 0 0'
orientation = '0 1 0'
length = 3.865
n_elems = 20
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = water
[]
[CCH1:solid]
type = HeatStructureCylindrical
position = '0.024748 0 0'
orientation = '0 1 0'
length = 3.865
n_elems = 20
initial_T = 559.15
names = 'fuel gap clad'
widths = '0.004096 0.0001 0.000552'
n_part_elems = '5 1 2'
materials = 'fuel-mat gap-mat clad-mat'
[]
[CCH1:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = CCH1:pipe
hs = CCH1:solid
hs_side = outer
Hw = 5.33e4
P_hf = 2.9832563838489e-2
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'CCH1:pipe:in'
m_dot = 0.1
T = 559.15
[]
[outlet]
type = Outlet1Phase
input = 'CCH1:pipe:out'
p = 15.5e6
[]
[]
[UserObjects]
[reactor_power_density_uo]
type = SolutionUserObject
mesh = 'power_profile.e'
system_variables = power_density
translation = '0. 0. 0.'
[]
[]
[Functions]
[power_density_fn]
type = SolutionFunction
from_variable = power_density
solution = reactor_power_density_uo
[]
[]
[AuxVariables]
[power_density]
family = MONOMIAL
order = CONSTANT
block = 'CCH1:solid:fuel'
[]
[]
[AuxKernels]
[power_density_aux]
type = FunctionAux
variable = power_density
function = power_density_fn
block = 'CCH1:solid:fuel'
execute_on = 'timestep_begin'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
num_steps = 10
dt = 1e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-9
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/base/component_groups/test.i)
[GlobalParams]
closures = simple_closures
initial_p = 1e6
initial_T = 300
initial_vel = 0
[]
[Modules/FluidProperties]
[fp_liquid]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hx:wall]
type = SolidMaterialProperties
k = 1
cp = 1
rho = 1
[]
[]
[Components]
[pri_inlet]
type = SolidWall1Phase
input = 'hx/primary:out'
[]
[pri_outlet]
type = SolidWall1Phase
input = 'hx/primary:in'
[]
# heat exchanger
[hx]
n_elems = 2
length = 1
[primary]
type = FlowChannel1Phase
position = '0 1 0'
orientation = '1 0 0'
n_elems = ${n_elems}
length = ${length}
A = 1
f = 1
fp = fp_liquid
[]
[wall]
type = HeatStructurePlate
position = '0 0 0'
orientation = '1 0 0'
materials = hx:wall
n_elems = ${n_elems}
length = ${length}
n_part_elems = 1
names = 0
widths = 1
depth = 1
initial_T = 300
[]
[ht_primary]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
flow_channel = hx/primary
hs_side = outer
Hw = 0
[]
[ht_secondary]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
flow_channel = hx/secondary
hs_side = inner
Hw = 0
[]
[secondary]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
n_elems = ${n_elems}
length = ${length}
A = 1
f = 1
fp = fp_liquid
[]
[]
[sec_inlet]
type = SolidWall1Phase
input = 'hx/secondary:out'
[]
[sec_outlet]
type = SolidWall1Phase
input = 'hx/secondary:in'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
[console]
type = Console
system_info = ''
enable = false
[]
[]
[Debug]
print_component_loops = true
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat1]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_init]
type = ParsedFunction
value = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
names = 'wall'
n_part_elems = 1
materials = 'mat1'
inner_radius = 0.01
widths = 0.1
initial_T = Ts_init
[]
[ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = hs
hs_side = INNER
Hw = 10000
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_init
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial final'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.conservation_1phase.i)
# Tests conservation for heat transfer between a cylindrical heat structure and
# a 1-phase flow channel
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1e-3 1e-3 1e-8'
scaling_factor_temperature = 1e-3
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[main-material]
type = SolidMaterialProperties
k = 1e4
cp = 500.0
rho = 100.0
[]
[]
[Functions]
[T0_fn]
type = ParsedFunction
value = '290 + 20 * (y - 1)'
[]
[]
[Components]
[left_wall]
type = SolidWall1Phase
input = 'pipe:in'
[]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 2 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
A = 1.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
f = 0
[]
[right_wall]
type = SolidWall1Phase
input = 'pipe:out'
[]
[heat_transfer]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = heat_structure
hs_side = inner
Hw = 1e3
[]
[heat_structure]
#type = set externally
num_rods = 5
position = '0 2 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
names = 'main'
materials = 'main-material'
widths = '1.0'
n_part_elems = '5'
initial_T = T0_fn
[]
[]
[Postprocessors]
[E_pipe]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = pipe
execute_on = 'initial timestep_end'
[]
[E_heat_structure]
block = 'heat_structure:main'
n_units = 5
execute_on = 'initial timestep_end'
[]
[E_tot]
type = SumPostprocessor
values = 'E_pipe E_heat_structure'
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
file_base = 'phy.conservation_1phase_cylinder'
csv = true
show = 'E_tot_change'
execute_on = 'final'
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_z.i)
# Testing that T_solid gets properly projected onto a pipe
# That's why Hw in pipe1 is set to 0, so we do not have any heat exchange
# Note that the pipe and the heat structure have an opposite orientation, which
# is crucial for this test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
cp = 100.0
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '290 + sin((1 - z) * pi * 1.4)'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0.2 0 0'
orientation = '0 0 1'
length = 1
n_elems = 50
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hs]
type = HeatStructureCylindrical
position = '0.1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 50
rotation = 90
materials = 'wall-mat'
n_part_elems = 2
widths = '0.1'
names = 'wall'
initial_T = T_init
[]
[hxconn]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe1
Hw = 0
P_hf = 6.2831853072e-01
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
num_steps = 1
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T_solid'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_x.i)
# Testing that T_solid gets properly projected onto a pipe
# That's why Hw in pipe1 is set to 0, so we do not have any heat exchange
# Note that the pipe and the heat structure have an opposite orientation, which
# is crucial for this test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
cp = 100.0
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '290 + sin((1 - x) * pi * 1.4)'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 -0.2 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hs]
type = HeatStructureCylindrical
position = '1 -0.1 0'
orientation = '-1 0 0'
length = 1
n_elems = 50
#rotation = 90
materials = 'wall-mat'
n_part_elems = 3
widths = '0.1'
names = 'wall'
initial_T = T_init
[]
[hxconn]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe1
Hw = 0
P_hf = 6.2831853072e-01
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
num_steps = 1
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T_solid'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out cooling_pipe:in'
volume = 1e-3
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
Hw = 0.97
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'cooling_pipe:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[outlet]
type = Outlet1Phase
input = 'down_pipe:out'
p = ${press}
[]
[]
[Postprocessors]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
[GlobalParams]
initial_p = 1e5
initial_vel = 0
initial_T = 300
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0.1 0'
orientation = '0 0 1'
length = 4
n_elems = 2
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = 4
n_elems = 2
names = 'fuel'
widths = '0.1'
n_part_elems = '1'
materials = 'fuel-mat'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-5
solve_type = 'NEWTON'
num_steps = 1
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/base/simulation/loop_identification.i)
# This test tests the loop identification function, which creates a map of component
# names to a loop name. "Loops" are defined to be sets of components which are
# physically connected - heat exchanger connections do not constitute physical
# connections in this sense. Note that this test is not meant to actually perform
# any physical computations, so dummy values are provided for the required parameters.
#
# The test configuration for this test is the following:
#
# pipe1 -> corechannel:pipe -> pipe2 -> hx:primary -> pipe1
# j1 j2 j3 j4
#
# inlet -> hx:secondary -> outlet
#
# This test uses the command-line option "--print-component-loops" to print out
# the lists of components in each loop, with the desired output being the
# following:
#
# Loop 1:
#
# corechannel:pipe
# hx:primary
# j1
# j2
# j3
# j4
# pipe1
# pipe2
#
# Loop 2:
#
# hx:secondary
# inlet
# outlet
[GlobalParams]
closures = simple_closures
initial_p = 1e6
initial_T = 300
initial_vel = 0
[]
[Modules/FluidProperties]
[fp_liquid]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hx:wall]
type = SolidMaterialProperties
k = 1
cp = 1
rho = 1
[]
[]
[Components]
# PRIMARY LOOP
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j1]
type = JunctionOneToOne1Phase
connections = 'pipe1:out corechannel:in'
[]
[corechannel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j2]
type = JunctionOneToOne1Phase
connections = 'corechannel:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out hx:primary:in'
[]
[hx:primary]
type = FlowChannel1Phase
position = '0 1 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j4]
type = JunctionOneToOne1Phase
connections = 'hx:primary:out pipe1:in'
[]
# HEAT EXCHANGER
[hs]
type = HeatStructurePlate
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
materials = hx:wall
n_part_elems = 1
names = 0
widths = 1
depth = 1
initial_T = 300
[]
[ht_primary]
type = HeatTransferFromHeatStructure1Phase
hs = hs
flow_channel = hx:primary
hs_side = outer
Hw = 0
[]
[ht_secondary]
type = HeatTransferFromHeatStructure1Phase
hs = hs
flow_channel = hx:secondary
hs_side = inner
Hw = 0
[]
# SECONDARY LOOP
[inlet]
type = SolidWall1Phase
input = 'hx:secondary:out'
[]
[hx:secondary]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[outlet]
type = SolidWall1Phase
input = 'hx:secondary:in'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
[console]
type = Console
system_info = ''
enable = false
[]
[]