- hsHeat structure in which to apply heat source
C++ Type:std::string
Controllable:No
Description:Heat structure in which to apply heat source
- powerComponent that provides total power
C++ Type:std::string
Controllable:No
Description:Component that provides total power
- regionsHeat structure regions where heat generation is to be applied
C++ Type:std::vector<std::string>
Controllable:No
Description:Heat structure regions where heat generation is to be applied
HeatSourceFromTotalPower
This component is a heat structure heat source from a total power , provided by a power component. A fraction of this total power may be specified, as well as a shape function if a non-uniform distribution is desired.
Usage
The user must supply the name of the heat structure via the parameter "hs" and then the applicable regions of the heat structure using the "regions" parameter. For a 2D heat structure, "regions" may include any set of the heat structure's names
parameter. For HeatStructureFromFile3D, "regions" may include any set of blocks existing in the mesh file.
The user is required to specify the name of a power component via the "power" parameter. This power can be scaled with the parameter "power_fraction". If a non-uniform power distribution is desired, the parameter "power_shape_function" may be used to specify a spatial shape function, which gets normalized internally.
Input Parameters
- power_fraction1Fraction of the total power that goes into the heat structure [-]
Default:1
C++ Type:double
Controllable:Yes
Description:Fraction of the total power that goes into the heat structure [-]
- power_shape_functionAxial power shape [-]
C++ Type:FunctionName
Controllable:No
Description:Axial power shape [-]
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Formulation
The heat conduction equation is the following: where
is density,
is specific heat capacity,
is thermal conductivity,
is temperature, and
is a volumetric heat source.
Multiplying by a test function and integrating by parts over the domain gives where is the boundary of the domain .
The power density from this component is the following:
where denotes the discrete approximation to
where is the heat source domain. Note that the discrete integral of the power density over is exactly equal to .
Input Files
- (modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/phy.rz.i)
- (modules/thermal_hydraulics/test/tests/components/heat_structure_base/err.no_2nd_order_with_trap.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/err.base.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.cylinder_power_shape_fn.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation_from_file_3d.i)
- (modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/phy.rz_mats.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.plate.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
- (modules/thermal_hydraulics/test/tests/components/heat_structure_base/2nd_order.i)
hs
C++ Type:std::string
Controllable:No
Description:Heat structure in which to apply heat source
regions
C++ Type:std::vector<std::string>
Controllable:No
Description:Heat structure regions where heat generation is to be applied
regions
C++ Type:std::vector<std::string>
Controllable:No
Description:Heat structure regions where heat generation is to be applied
regions
C++ Type:std::vector<std::string>
Controllable:No
Description:Heat structure regions where heat generation is to be applied
power
C++ Type:std::string
Controllable:No
Description:Component that provides total power
power_fraction
Default:1
C++ Type:double
Controllable:Yes
Description:Fraction of the total power that goes into the heat structure [-]
power_shape_function
C++ Type:FunctionName
Controllable:No
Description:Axial power shape [-]
(modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/phy.rz.i)
# Tests that cylindrical heat structure geometry can be used.
[Functions]
[power_profile_fn]
type = ParsedFunction
value = '1.570796326794897 * sin(x / 3.6576 * pi)'
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 3.65
cp = 288.734
rho = 1.0412e2
[]
[gap-mat]
type = SolidMaterialProperties
k = 1.084498
cp = 1.0
rho = 1.0
[]
[clad-mat]
type = SolidMaterialProperties
k = 16.48672
cp = 321.384
rho = 6.6e1
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 1'
orientation = '1 0 0'
length = 3.6576
n_elems = 20
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '3 1 1'
materials = 'fuel-mat gap-mat clad-mat'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
power_shape_function = power_profile_fn
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 2
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
[]
[Outputs]
[out]
type = Exodus
[]
[console]
type = Console
execute_scalars_on = none
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_structure_base/err.no_2nd_order_with_trap.i)
[GlobalParams]
initial_p = 15.17e6
initial_vel = 1.
initial_T = 564.15
2nd_order_mesh = true
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 3.65
cp = 288.734
rho = 1.0412e2
[]
[gap-mat]
type = SolidMaterialProperties
k = 1.084498
cp = 1.0
rho = 1.0
[]
[clad-mat]
type = SolidMaterialProperties
k = 16.48672
cp = 321.384
rho = 6.6e1
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '1 1 1'
materials = 'fuel-mat gap-mat clad-mat'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
dtmin = 1e-1
solve_type = 'PJFNK'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
start_time = 0.0
end_time = 2.0
[Quadrature]
type = TRAP
order = FIRST
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
# heat exchanger parameters
hx_dia_inner = ${units 10. cm -> m}
hx_wall_thickness = ${units 5. mm -> m}
hx_dia_outer = ${units 50. cm -> m}
hx_radius_wall = ${fparse hx_dia_inner / 2. + hx_wall_thickness}
hx_length = 1 # m
hx_n_elems = 10
m_dot_sec_in = 1 # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
100 ${m_dot_sec_in}'
[]
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out hx/pri:in'
volume = 1e-3
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * hx_dia_inner * hx_dia_inner / 4.}
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
Hw = 0.97
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
materials = 'steel'
names = '0'
inner_radius = ${fparse hx_dia_inner / 2.}
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = ${fparse 2 * pi * hx_radius_wall}
Hw = 36
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}
D_h = ${fparse hx_dia_outer - (2 * hx_radius_wall)}
fp = water
f = 0.075
[]
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'hx/pri:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:out'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:in'
p = ${press}
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[]
dtmax = 100
end_time = 50000
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/err.base.i)
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[reactor]
type = TotalPower
power = 10
[]
[hs]
type = HeatStructureCylindrical
position = '0 -0.024748 0'
orientation = '0 0 1'
length = 3.865
n_elems = 1
names = 'fuel'
widths = '0.004096'
n_part_elems = '1'
materials = 'fuel-mat'
initial_T = 559.15
[]
[hgen]
type = HeatSourceFromTotalPower
power_fraction = 1
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 3.7
cp = 3.e2
rho = 10.42e3
[]
[gap-mat]
type = SolidMaterialProperties
k = 0.7
cp = 5e3
rho = 1.0
[]
[clad-mat]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Components]
[reactor]
type = TotalPower
power = 1e3
[]
[core:pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[core:solid]
type = HeatStructureCylindrical
position = '0 -0.0071501 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
names = 'FUEL GAP CLAD'
widths = '6.057900E-03 1.524000E-04 9.398000E-04'
n_part_elems = '5 1 2'
materials = 'fuel-mat gap-mat clad-mat'
initial_T = 513
[]
[core:hgen]
type = HeatSourceFromTotalPower
hs = core:solid
regions = 'FUEL'
power = reactor
power_fraction = 1
[]
[core:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core:pipe
hs = core:solid
hs_side = outer
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'core:pipe:in'
rho = 817.382210128610836
vel = 2.4
[]
[outlet]
type = Outlet1Phase
input = 'core:pipe:out'
p = 7e6
[]
[]
[Postprocessors]
[E_in]
type = ADFlowBoundaryFlux1Phase
boundary = inlet
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out]
type = ADFlowBoundaryFlux1Phase
boundary = outlet
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = core:pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[E_diff]
type = DifferencePostprocessor
value1 = E_in
value2 = E_out
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = SumPostprocessor
values = 'E_diff hf_pipe'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 5
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
end_time = 260
[]
[Outputs]
[out]
type = CSV
execute_on = final
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.cylinder_power_shape_fn.i)
[GlobalParams]
scaling_factor_temperature = 1e0
[]
[Functions]
[psf]
type = ParsedFunction
value = 1
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 16
cp = 191.67
rho = 1.4583e4
[]
[gap-mat]
type = SolidMaterialProperties
k = 64
cp = 1272
rho = 865
[]
[clad-mat]
type = SolidMaterialProperties
k = 26
cp = 638
rho = 7.646e3
[]
[]
[Components]
[reactor]
type = TotalPower
power = 3.0e4
[]
[CH1:solid]
type = HeatStructureCylindrical
position = '0 -0.024 0'
orientation = '0 0 1'
length = 0.8
n_elems = 16
initial_T = 628.15
names = 'fuel gap clad'
widths = '0.003015 0.000465 0.00052'
n_part_elems = '20 2 2'
materials = 'fuel-mat gap-mat clad-mat'
[]
[CH1:hgen]
type = HeatSourceFromTotalPower
hs = CH1:solid
regions = 'fuel'
power = reactor
power_shape_function = psf
power_fraction = 1
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-3
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-7
nl_max_its = 40
l_tol = 1e-5
l_max_its = 50
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out cooling_pipe:in'
volume = 1e-3
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
Hw = 0.97
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'cooling_pipe:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[outlet]
type = Outlet1Phase
input = 'down_pipe:out'
p = ${press}
[]
[]
[Postprocessors]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out cooling_pipe:in'
volume = 1e-3
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
Hw = 0.97
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'cooling_pipe:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation_from_file_3d.i)
# Tests energy conservation for HeatStructureFromFile3D in combination with HeatSourceFromTotalPower
power = 1e5
power_fraction = 0.3
t = 1
energy_change = ${fparse power_fraction * power * t}
[Functions]
[power_shape]
type = ConstantFunction
value = 0.4
[]
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'heat_structure:rgn1 heat_structure:rgn2'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '100 500 1e4'
[]
[]
[Components]
[heat_structure]
type = HeatStructureFromFile3D
file = box.e
position = '0 0 0'
initial_T = 300
[]
[heat_generation]
type = HeatSourceFromTotalPower
hs = heat_structure
regions = 'rgn1'
power = total_power
power_fraction = ${power_fraction}
[]
[total_power]
type = TotalPower
power = ${power}
[]
[]
[Postprocessors]
[E_tot]
type = ADHeatStructureEnergy3D
block = 'heat_structure:rgn1 heat_structure:rgn2'
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
[E_tot_change_rel_err]
type = RelativeDifferencePostprocessor
value1 = E_tot_change
value2 = ${energy_change}
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = ${t}
num_steps = 1
abort_on_solve_fail = true
[]
[Outputs]
csv = true
show = 'E_tot_change_rel_err'
execute_on = 'final'
[]
(modules/thermal_hydraulics/test/tests/components/heat_structure_cylindrical/phy.rz_mats.i)
# Tests that cylindrical heat structure geometry can be used with Materials block
[Functions]
[power_profile_fn]
type = ParsedFunction
value = '1.570796326794897 * sin(x / 3.6576 * pi)'
[]
[]
[Materials]
[fuel-mat]
type = ADGenericConstantMaterial
block = hs:FUEL
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '3.65 288.734 1.0412e2'
[]
[gap-mat]
type = ADGenericConstantMaterial
block = hs:GAP
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.084498 1.0 1.0'
[]
[clad-mat]
type = ADGenericConstantMaterial
block = hs:CLAD
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '16.48672 321.384 6.6e1'
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 1'
orientation = '1 0 0'
length = 3.6576
n_elems = 20
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '3 1 1'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
power_shape_function = power_profile_fn
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 2
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
[]
[Outputs]
exodus = true
[console]
type = Console
execute_scalars_on = none
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.plate.i)
[GlobalParams]
scaling_factor_temperature = 1e0
[]
[Functions]
[psf]
type = ParsedFunction
value = 1
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 16
cp = 191.67
rho = 1.4583e4
[]
[gap-mat]
type = SolidMaterialProperties
k = 64
cp = 1272
rho = 865
[]
[clad-mat]
type = SolidMaterialProperties
k = 26
cp = 638
rho = 7.646e3
[]
[]
[Components]
[reactor]
type = TotalPower
power = 3.0e4
[]
[CH1:solid]
type = HeatStructurePlate
position = '0 -0.024 0'
orientation = '0 0 1'
length = 0.8
n_elems = 16
initial_T = 628.15
names = 'fuel gap clad'
widths = '0.003015 0.000465 0.00052'
depth = 1
n_part_elems = '20 2 2'
materials = 'fuel-mat gap-mat clad-mat'
[]
[CH1:hgen]
type = HeatSourceFromTotalPower
hs = CH1:solid
regions = 'fuel'
power = reactor
power_fraction = 1
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-3
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-7
nl_max_its = 40
l_tol = 1e-5
l_max_its = 50
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_total_power/phy.conservation.i)
# Tests energy conservation for HeatGeneration component when a power component is used
n_units = 5
power = 1e5
power_fraction = 0.3
t = 1
energy_change = ${fparse power_fraction * power * t}
[GlobalParams]
scaling_factor_temperature = 1e-3
[]
[Functions]
[power_shape]
type = ConstantFunction
value = 0.4
[]
[]
[HeatStructureMaterials]
[main-material]
type = SolidMaterialProperties
k = 1e4
cp = 500.0
rho = 100.0
[]
[]
[Components]
[heat_structure]
type = HeatStructureCylindrical
num_rods = ${n_units}
position = '0 1 0'
orientation = '1 0 0'
length = 0.8
n_elems = 100
names = 'rgn1 rgn2 rgn3'
materials = 'main-material main-material main-material'
widths = '0.4 0.1 0.5'
n_part_elems = '2 2 2'
initial_T = 300
[]
[heat_generation]
type = HeatSourceFromTotalPower
hs = heat_structure
regions = 'rgn1 rgn2'
power = total_power
power_fraction = ${power_fraction}
[]
[total_power]
type = TotalPower
power = ${power}
[]
[]
[Postprocessors]
[E_tot]
type = ADHeatStructureEnergyRZ
block = 'heat_structure:rgn1 heat_structure:rgn2 heat_structure:rgn3'
n_units = ${n_units}
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
[E_tot_change_rel_err]
type = RelativeDifferencePostprocessor
value1 = E_tot_change
value2 = ${energy_change}
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = ${t}
num_steps = 1
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
show = 'E_tot_change_rel_err'
execute_on = 'final'
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${fparse (4 * core_pitch * core_pitch - pi * core_dia * core_dia) / (4 * core_pitch + pi * core_dia)}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[outlet]
type = Outlet1Phase
input = 'core_chan:out'
p = ${press}
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
# heat exchanger parameters
hx_dia_inner = ${units 10. cm -> m}
hx_wall_thickness = ${units 5. mm -> m}
hx_dia_outer = ${units 50. cm -> m}
hx_radius_wall = ${fparse hx_dia_inner / 2. + hx_wall_thickness}
hx_length = 1 # m
hx_n_elems = 10
m_dot_sec_in = 1 # kg/s
flow_blocks = 'core_chan up_pipe top_pipe hx/pri hx/sec down_pipe bottom_b bottom_a'
ht_blocks = 'core_chan hx/pri hx/sec'
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = no_closures
fp = he
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
100 ${m_dot_sec_in}'
[]
[]
[Materials]
[f_mat]
type = ADWallFrictionChurchillMaterial
block = ${flow_blocks}
D_h = D_h
f_D = f_D
mu = mu
rho = rho
vel = vel
[]
[Hw_mat]
type = ADWallHeatTransferCoefficient3EqnDittusBoelterMaterial
block = ${ht_blocks}
D_h = D_h
rho = rho
vel = vel
T = T
T_wall = T_wall
cp = cp
mu = mu
k = k
[]
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[no_closures]
type = Closures1PhaseNone
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out hx/pri:in'
volume = 1e-3
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * hx_dia_inner * hx_dia_inner / 4.}
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
materials = 'steel'
names = '0'
inner_radius = ${fparse hx_dia_inner / 2.}
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = ${fparse 2 * pi * hx_radius_wall}
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}
D_h = ${fparse hx_dia_outer - (2 * hx_radius_wall)}
fp = water
[]
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'hx/pri:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:out'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:in'
p = ${press}
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[]
dtmax = 100
end_time = 50000
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_structure_base/2nd_order.i)
# This tests ensures that 2nd-order meshes can be used; it checks for the
# "Solve Converged" string at the end of a time step.
[GlobalParams]
2nd_order_mesh = true
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 3.65
cp = 288.734
rho = 1.0412e2
[]
[gap-mat]
type = SolidMaterialProperties
k = 1.084498
cp = 1.0
rho = 1.0
[]
[clad-mat]
type = SolidMaterialProperties
k = 16.48672
cp = 321.384
rho = 6.6e1
[]
[]
[Components]
[reactor]
type = TotalPower
power = 296153.84615384615385
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
names = 'FUEL GAP CLAD'
widths = '0.0046955 0.0000955 0.000673'
n_part_elems = '1 1 1'
materials = 'fuel-mat gap-mat clad-mat'
initial_T = 564.15
[]
[hg]
type = HeatSourceFromTotalPower
hs = hs
regions = 'FUEL'
power_fraction = 3.33672612e-1
power = reactor
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = 600
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-4
l_max_its = 300
[]