Closures1PhaseSimple
buildconstruction:Undocumented Class
The Closures1PhaseSimple has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Simple 1-phase closures
Overview
Example Input File Syntax
Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
Input Files
- (modules/thermal_hydraulics/test/tests/components/component/err.setup_status.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/test.i)
- (modules/thermal_hydraulics/test/tests/controls/delay_control/test.i)
- (modules/thermal_hydraulics/test/tests/problems/sedov_blast_wave/sedov_blast_wave.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/real_component_parameter_value/non_existent_par_name.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/test.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.T_wall.i)
- (modules/thermal_hydraulics/test/tests/misc/restart_1phase/test.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_pump_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.f_fn.3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/err.no_phf.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.overspecified.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/err.missing_ics.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_3eqn.slave.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.q_wall_transfer_3eqn.slave.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/phy.densityvelocity_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.shower.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.heat_structure_multiple_3eqn.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/test.i)
- (modules/thermal_hydraulics/test/tests/controls/pid_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/clg.test.i)
- (modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub.i)
- (modules/thermal_hydraulics/test/tests/base/component_groups/test.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.deadend.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.unequal_area.i)
- (modules/thermal_hydraulics/test/tests/problems/woodward_colella_blast_wave/woodward_colella_blast_wave.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/clg.velocity_t_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_end.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/controls/set_component_bool_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/misc/displaced_components/displaced_components.i)
- (modules/thermal_hydraulics/test/tests/problems/double_rarefaction/1phase.i)
- (modules/thermal_hydraulics/test/tests/components/geometrical_component/err.2nd_order.i)
- (modules/thermal_hydraulics/test/tests/components/deprecated/gate_valve.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_p0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_pump_1phase/shaft_motor_pump.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/err.non_existent_block.i)
- (modules/thermal_hydraulics/test/tests/output/vector_velocity/test.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/steady_state.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_no_junction.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.Hw.i)
- (modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction.i)
- (modules/thermal_hydraulics/test/tests/controls/copy_postprocessor_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_elem_3eqn.slave.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_mass_energy_conservation.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_enthalpy_1phase/phy.h_rhou_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/deprecated/solid_wall.i)
- (modules/thermal_hydraulics/test/tests/base/simulation/err.no_smp.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/jac.1phase.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_loop.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.reversed_flow.i)
- (modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/conservation.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_pressure_check.i)
- (modules/thermal_hydraulics/test/tests/components/elbow_pipe_1phase/phy.position.i)
- (modules/thermal_hydraulics/test/tests/problems/freefall/freefall.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/clg.densityvelocity_3eqn.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/volume_junction/test.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/heat_rate_convection_1phase/heat_rate_convection_1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/adapt/multiple_blocks.i)
- (modules/thermal_hydraulics/test/tests/problems/square_wave/square_wave.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_flux_1phase/phy.energy_heatflux_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.p0T0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/output/paraview_component_annotation_map/test.i)
- (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/closed_brayton_cycle.i)
- (modules/thermal_hydraulics/test/tests/controls/error_checking/non_existent_control_data.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
- (modules/thermal_hydraulics/test/tests/components/deprecated/junction_one_to_one.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/junction_with_calorifically_imperfect_gas.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/err.not_a_3d_hs.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.reversed_flow.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_test_component/jacobian.i)
- (modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/junction_one_to_one_1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/steady_state.i)
- (modules/thermal_hydraulics/test/tests/controls/set_component_real_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_fp.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/junction_with_calorifically_imperfect_gas.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation.i)
- (modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.par_fn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.conservation_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.sub_discretization.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_x.i)
- (modules/thermal_hydraulics/test/tests/misc/mesh_only/test.i)
- (modules/thermal_hydraulics/test/tests/problems/water_hammer/3eqn.i)
- (modules/thermal_hydraulics/test/tests/controls/set_bool_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_base/err.mixed_heat_modes.i)
- (modules/thermal_hydraulics/test/tests/components/form_loss_from_function_1phase/phy.form_loss_1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/volume_junction/steady_state.i)
- (modules/thermal_hydraulics/test/tests/problems/super_sonic_tube/test.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/specific_impulse_1phase/Isp_1ph.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_compressor_1phase/shaft_motor_compressor.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.massflowrate_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/form_loss_from_external_app_1phase/phy.form_loss_1phase.slave.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.free.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/jac.test.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_with_junction.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_m_dot_3eqn_rdg.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_no_junction.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_steady_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/flow_connection/err.connection_format.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/jac.1phase.i)
- (modules/thermal_hydraulics/test/tests/components/deprecated/free_boundary.i)
- (modules/thermal_hydraulics/test/tests/problems/sod_shock_tube/sod_shock_tube.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.shower.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/flow_junction_flux_1phase/flow_junction_flux_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.unequal_area.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/phy.energy_walltemperature_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/misc/uniform_refine/test.i)
- (modules/thermal_hydraulics/test/tests/components/outlet_1phase/phy.solidwall_outlet_3eqn.i)
- (modules/thermal_hydraulics/test/tests/controls/dependency/test.i)
- (modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/surrogate_power_profile.i)
- (modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/steady_state.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/t_junction_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_T0_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/turbine_startup.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_flux_1phase/phy.q_wall_multiple_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_volumetric_1phase/phy.conservation.1phase.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_T_3eqn_rdg.i)
- (modules/thermal_hydraulics/test/tests/components/outlet_1phase/clg.ctrl_p_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
- (modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/closures/simple_1phase/err.missing_f_1phase.i)
- (modules/thermal_hydraulics/test/tests/controls/get_function_value_control/test.i)
- (modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/no_junction_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_y.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/clg.head.i)
- (modules/thermal_hydraulics/test/tests/components/solid_wall_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/components/gate_valve_1phase/gate_valve_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.form_loss.i)
- (modules/thermal_hydraulics/test/tests/problems/mms/mms_1phase.i)
- (modules/thermal_hydraulics/test/tests/problems/lax_shock_tube/lax_shock_tube.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.conservation.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
- (modules/thermal_hydraulics/test/tests/components/supersonic_inlet/err.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/01_flow_channel.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/err.missing_ics.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/shaft_motor_turbine.i)
- (modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.test.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_transient_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/solid_wall_1phase/phy.3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/flow_connection/err.connecting_to_non_existent_component.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_pump_1phase/pump_coastdown.i)
- (modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_with_junction.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.velocity_t_3eqn.i)
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/pipe_friction_pump_head_balance.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_volumetric_1phase/err.base.i)
- (modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/jac.test.i)
- (modules/thermal_hydraulics/test/tests/components/free_boundary_1phase/phy.conservation_free_boundary_1phase.i)
- (modules/thermal_hydraulics/test/tests/components/deprecated/heat_source_volumetric.i)
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_z.i)
- (modules/thermal_hydraulics/test/tests/postprocessors/flow_boundary_flux_1phase/test.i)
- (modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
- (modules/thermal_hydraulics/test/tests/misc/adapt/single_block.i)
- (modules/thermal_hydraulics/test/tests/components/outlet_1phase/jacobian.i)
- (modules/thermal_hydraulics/test/tests/base/simulation/loop_identification.i)
- (modules/thermal_hydraulics/test/tests/misc/coupling_mD_flow/thm_non_overlapping.i)
- (modules/thermal_hydraulics/test/tests/components/shaft_connected_compressor_1phase/jac.test.i)
(modules/thermal_hydraulics/test/tests/components/component/err.setup_status.i)
# This test tests the setup-status-checking capability of Component. In this
# test, a Pipe component is coupled to a test component, which tries to call
# a Pipe function that retrieves data that has not been set yet. This function
# has the call that is being tested, which should produce an error because it
# is being called before Pipe's init() function was called, due to the test
# component being added before the Pipe.
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[a_test_component]
type = TestSetupStatusComponent
flow_channel = pipe
[]
[pipe]
type = FlowChannel1Phase
fp = fp
closures = simple_closures
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
initial_T = 300
initial_p = 1e5
initial_vel = 0
f = 0
[]
[left_boundary]
type = FreeBoundary
input = 'pipe:in'
[]
[right_boundary]
type = FreeBoundary
input = 'pipe:out'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/test.i)
# Test that the initial conditions read from the exodus file are correct
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
closures = simple_closures
initial_from_file = 'steady_state_out.e'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat1]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_bc]
type = ParsedFunction
value = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
names = 'wall'
n_part_elems = 1
materials = 'mat1'
inner_radius = 0.01
widths = 0.1
[]
[ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = hs
hs_side = INNER
Hw = 10000
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_bc
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/controls/delay_control/test.i)
[GlobalParams]
initial_p = 100.e3
initial_vel = 0
initial_T = 300.
closures = simple_closures
[]
[Functions]
[p0_fn]
type = PiecewiseLinear
x = '0 0.2 0.4 0.6 0.8'
y = '1e5 1.002e5 1.002e5 1.001e5 1.001e5'
[]
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
A = 0.01
D_h = 0.1
f = 0
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[p0_fn_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = p0
function = p0_fn
[]
[delay_ctrl]
type = DelayControl
input = p0_inlet
tau = 0.3
initial_value = 1e5
[]
[]
[Postprocessors]
[p0_inlet_delayed]
type = RealControlDataValuePostprocessor
control_data_name = delay_ctrl:value
execute_on = 'initial timestep_end'
[]
[p0_inlet]
type = FunctionValuePostprocessor
function = p0_fn
execute_on = 'initial timestep_begin'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
start_time = 0.0
end_time = 1.0
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/problems/sedov_blast_wave/sedov_blast_wave.i)
# This test problem is the Sedov blast wave test problem,
# which is a Riemann problem with the following parameters:
# * domain = (0,1)
# * gravity = 0
# * EoS: Ideal gas EoS with gamma = 1.4, R = 0.71428571428571428571
# * interface: x = 0.5
# * typical end time: 0.15
# Left initial values:
# * rho = 0.445
# * vel = 0.692
# * p = 3.52874226
# Right initial values:
# * rho = 0.5
# * vel = 0
# * p = 0.571
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Functions]
[p_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.0025 1'
y = '1.591549333333333e+06 6.666666666666668e-09'
[]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.0025 1'
y = '2.228169066666667e+06 9.333333333333334e-09'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.66666666666666666667
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 400
A = 1.0
# IC
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[left_boundary]
type = SolidWall1Phase
input = 'pipe:in'
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'pipe:out'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
solve_type = LINEAR
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
# run to t = 0.005
start_time = 0.0
dt = 1e-6
num_steps = 5000
abort_on_solve_fail = true
[]
[Outputs]
file_base = 'sedov_blast_wave'
velocity_as_vector = false
execute_on = 'initial timestep_end'
[out]
type = Exodus
show = 'p T vel'
[]
[]
(modules/thermal_hydraulics/test/tests/postprocessors/real_component_parameter_value/non_existent_par_name.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[p_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[outlet_p_fn]
type = GetFunctionValueControl
function = p_fn
[]
[set_outlet_value]
type = SetComponentRealValueControl
component = outlet
parameter = p
value = outlet_p_fn:value
[]
[]
[Postprocessors]
[outlet_p]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = p
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/test.i)
# Test that the initial conditions read from the exodus file are correct
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
closures = simple_closures
initial_from_file = 'steady_state_out.e'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.T_wall.i)
[GlobalParams]
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1e+0 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 50
A = 3.14e-2
f = 0.1
[]
[ht_pipe1]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe1
T_wall = 300
Hw = 0
[]
[inlet1]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.557482499661660
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 0.1e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.05
num_steps = 20
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 30
[]
[Outputs]
csv = true
[]
[Functions]
[T_wall_fn]
type = PiecewiseLinear
x = '0 1'
y = '310 320'
[]
[]
[ControlLogic]
[pipe_T_wall_ctrl]
type = TimeFunctionComponentControl
component = ht_pipe1
parameter = T_wall
function = T_wall_fn
[]
[]
[Postprocessors]
[T_wall]
type = RealComponentParameterValuePostprocessor
component = ht_pipe1
parameter = T_wall
[]
[]
(modules/thermal_hydraulics/test/tests/misc/restart_1phase/test.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat1]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_init]
type = ParsedFunction
value = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 5
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[jct1]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1e-5
[]
[pipe2]
type = FlowChannel1Phase
fp = eos
# geometry
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 5
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[jct2]
type = VolumeJunction1Phase
connections = 'pipe2:out pipe3:in'
position = '2 0 0'
volume = 1e-5
[]
[pipe3]
type = FlowChannel1Phase
fp = eos
# geometry
position = '2 0 0'
orientation = '1 0 0'
length = 1
n_elems = 5
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '1 0.01 0'
orientation = '1 0 0'
length = 1
n_elems = 5
names = '0'
n_part_elems = 1
materials = 'mat1'
widths = 0.1
initial_T = Ts_init
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_init
[]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe1:in'
T = 507
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe3:out'
p = 6e6
[]
[hx3ext]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe3
P_hf = 0.0449254
Hw = 100000
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
automatic_scaling = true
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/jacobian.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 2
scaling_factor_1phase = '1. 1. 1'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 805
vel = 1
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-snes_type -snes_test_err'
petsc_options_value = 'test 1e-11'
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_pump_1phase/jacobian.i)
# Pump data used in this test comes from the LOFT Systems Tests, described in NUREG/CR-0247
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
fp = fp
f = 0
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
A = 1
[]
[pump]
type = ShaftConnectedPump1Phase
inlet = 'fch1:out'
outlet = 'fch2:in'
position = '1 0 0'
volume = 0.3
A_ref = 1
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
omega_rated = 314
speed_cr_I = 1e12
speed_cr_fr = 0
torque_rated = 47.1825
volumetric_rated = 1
head_rated = 58.52
tau_fr_coeff = '0 0 9.084 0'
tau_fr_const = 0
head = head_fcn
torque_hydraulic = torque_fcn
density_rated = 1
[]
[fch2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
A = 1
[]
[shaft]
type = Shaft
connected_components = 'pump'
initial_speed = 1
[]
[]
[Functions]
[head_fcn]
type = PiecewiseLinear
data_file = loft_head_data.csv
format = columns
[]
[torque_fcn]
type = PiecewiseLinear
data_file = loft_torque_data.csv
format = columns
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
num_steps = 1
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = '2e-10'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.f_fn.3eqn.i)
# Tests that friction factor can be provided for 1-phase flow
f = 5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 558
initial_p = 7.0e6
initial_vel = 0
scaling_factor_1phase = '1e0 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[f_func]
type = ConstantFunction
value = ${f}
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1.907720E-04
D_h = 1.698566E-02
f = f_func
fp = eos
[]
[ht_pipe]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe
T_wall = 559
P_hf = 0.0489623493599167
Hw = 50000
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 741.707129779398883
vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7.0e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-2
l_max_its = 30
[]
[Postprocessors]
[f]
type = ADElementIntegralMaterialProperty
mat_prop = f_D
block = pipe
[]
[]
[Outputs]
csv = true
show = 'f'
execute_on = 'timestep_end'
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/err.no_phf.i)
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat]
type = SolidMaterialProperties
k = 1
cp = 2
rho = 3
[]
[]
[Components]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 2
A = 1
closures = simple_closures
fp = fp
f = 0.01
initial_p = 1e5
initial_T = 300
initial_vel = 0
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
names = 'blk'
widths = '0.1'
n_part_elems = '1'
materials = 'mat'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = START
flow_channel = fch1
Hw = 0
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'fch1:in'
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'fch1:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 1
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.overspecified.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_vel = 0
initial_p = 1e5
initial_T = 300
closures = simple_closures
[]
[Modules/FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
[]
[inlet1]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 10
T0 = 10
[]
[inlet2]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 11
T0 = 10
[]
[outlet1]
type = Outlet1Phase
input = 'pipe:out'
p = 10
[]
[outlet2]
type = Outlet1Phase
input = 'pipe:out'
p = 11
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/err.missing_ics.i)
[GlobalParams]
gravity_vector = '0 0 0'
A = 1e-4
f = 0
fp = fp
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 0.1
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${fparse (4 * core_pitch * core_pitch - pi * core_dia * core_dia) / (4 * core_pitch + pi * core_dia)}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[outlet]
type = Outlet1Phase
input = 'core_chan:out'
p = ${press}
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_3eqn.slave.i)
# This is a part of phy.T_wall_transfer_3eqn test. See the master file for details.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 3000
P_hf = 6.2831853072e-01
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.5
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
end_time = 5
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.q_wall_transfer_3eqn.slave.i)
# This is a part of phy.q_wall_transfer_3eqn test. See the master file for details.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppHeatFlux1Phase
flow_channel = pipe1
Hw = 1e3
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.5
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
end_time = 5
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
exodus = true
show = 'q_wall'
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/phy.densityvelocity_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 510
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 3.1415926536e-06
D_h = 2.0000000000e-03
f = 0.1
length = 1
n_elems = 10
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 805
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-1
start_time = 0.0
num_steps = 50
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 5
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'final'
velocity_as_vector = false
show = 'rho vel'
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.shower.i)
# This problem models a "shower": water from two pipes, one hot and one cold,
# mixes together to produce a temperature between the two.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel = 1
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
# global parameters for pipes
fp = eos
orientation = '1 0 0'
length = 1
n_elems = 20
f = 0
scaling_factor_1phase = '1 1 1e-6'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_hot]
type = InletDensityVelocity1Phase
input = 'pipe_hot:in'
# rho @ (p = 1e5, T = 310 K)
rho = 1315.9279785683
vel = 1
[]
[inlet_cold]
type = InletDensityVelocity1Phase
input = 'pipe_cold:in'
# rho @ (p = 1e5, T = 280 K)
rho = 1456.9202619863
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe_warm:out'
p = 1e5
[]
[pipe_hot]
type = FlowChannel1Phase
position = '0 1 0'
A = 1
[]
[pipe_cold]
type = FlowChannel1Phase
position = '0 0 0'
A = 1
[]
[pipe_warm]
type = FlowChannel1Phase
position = '1 0.5 0'
A = 2
initial_vel = 0.5
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe_cold:out pipe_hot:out pipe_warm:in'
position = '1 0.5 0'
volume = 1e-8
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-2
l_max_its = 10
start_time = 0
end_time = 5
dt = 0.05
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the energy flux on
# the warm side of the junction is equal to the sum of the energy
# fluxes of the hot and cold inlets to the junction.
[energy_flux_hot]
type = EnergyFluxIntegral
boundary = pipe_hot:out
arhouA = rhouA
H = H
[]
[energy_flux_cold]
type = EnergyFluxIntegral
boundary = pipe_cold:out
arhouA = rhouA
H = H
[]
[energy_flux_warm]
type = EnergyFluxIntegral
boundary = pipe_warm:in
arhouA = rhouA
H = H
[]
[energy_flux_inlet_sum]
type = SumPostprocessor
values = 'energy_flux_hot energy_flux_cold'
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = energy_flux_warm
value2 = energy_flux_inlet_sum
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '3 4 5'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.heat_structure_multiple_3eqn.i)
# Tests that energy conservation is satisfied in 1-phase flow when there are
# multiple heat structures are connected to the same pipe.
#
# This problem has 2 heat structures with different material properties and
# initial conditions connected to the same flow channel, which has solid wall
# boundary conditions at both ends. An ideal gas equation of state is used for
# the fluid:
# e(T) = cv * T
# From energy conservation, an analytic expression for the steady-state
# temperature results:
# (rho(p,T)*e(T)*V)_fluid + (rho*cp*T*V)_hs1 + (rho*cp*T*V)_hs2 = constant
# The following are constant:
# V_i domain volumes for flow channel and heat structures
# rho_fluid fluid density (due to conservation of mass)
# rho_hsi heat structure densities
# cp_hsi heat structure specific heats
# Furthermore, all volumes are set equal to 1. Therefore the expression for the
# steady-state temperature is the following:
# T = E0 / C0
# where
# E0 = (rho(p0,T0)*e(T0))_fluid + (rho*cp*T0)_hs1 + (rho*cp*T0)_hs2
# C0 = (rho(p0,T0)*cv)_fluid + (rho*cp)_hs1 + (rho*cp)_hs2
#
# An ideal gas is defined by (gamma, R), and the relation between R and cv is as
# follows:
# cp = gamma * R / (gamma - 1)
# cv = cp / gamma = R / (gamma - 1)
# For the EOS parameters
# gamma = 1.0001
# R = 100 J/kg-K
# the relevant specific heat is
# cv = 1e6 J/kg-K
#
# For the initial conditions
# p = 100 kPa
# T = 300 K
# the density and specific internal energy should be
# rho = 3.3333333333333 kg/m^3
# e = 300000000 J/kg
#
# The following heat structure parameters are used:
# T0_hs1 = 290 K T0_hs2 = 310 K
# rho_hs1 = 8000 kg/m^3 rho_hs2 = 6000 kg/m^3
# cp_hs1 = 500 J/kg-K cp_hs2 = 600 J/kg-K
#
# E0 = 1e9 + 8000 * 500 * 290 + 6000 * 600 * 310
# = 3276000000 J
# C0 = 3.3333333333333e6 + 8000 * 500 + 6000 * 600
# = 10933333.3333333 J/K
# T = E0 / C0
# = 3276000000 / 10933333.3333333
# = 299.6341463414643 K
#
T1 = 290
k1 = 50
rho1 = 8000
cp1 = 500
T2 = 310
k2 = 100
rho2 = 6000
cp2 = 600
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 100e3
initial_vel = 0
scaling_factor_1phase = '1e-3 1e-3 1e-8'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.0001
molar_mass = 0.083144598
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hs1_mat]
type = SolidMaterialProperties
k = ${k1}
rho = ${rho1}
cp = ${cp1}
[]
[hs2_mat]
type = SolidMaterialProperties
k = ${k2}
rho = ${rho2}
cp = ${cp2}
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
fp = fp
[]
[hs1]
type = HeatStructurePlate
position = '0 -1 0'
orientation = '1 0 0'
length = 1
depth = 1
n_elems = 10
materials = 'hs1_mat'
n_part_elems = '5'
widths = '1'
names = 'solid'
initial_T = ${T1}
[]
[hs2]
type = HeatStructurePlate
position = '0 -1 0'
orientation = '1 0 0'
length = 1
depth = 1
n_elems = 10
materials = 'hs2_mat'
n_part_elems = '5'
widths = '1'
names = 'solid'
initial_T = ${T2}
[]
[ht1]
type = HeatTransferFromHeatStructure1Phase
hs = hs1
hs_side = outer
flow_channel = pipe
Hw = 1e5
P_hf = 0.5
[]
[ht2]
type = HeatTransferFromHeatStructure1Phase
hs = hs2
hs_side = outer
flow_channel = pipe
Hw = 1e5
P_hf = 0.5
[]
[left]
type = SolidWall1Phase
input = 'pipe:in'
[]
[right]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Preconditioning]
[preconditioner]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
end_time = 4e5
dt = 1e4
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Postprocessors]
[T_steady_state_predicted]
type = FunctionValuePostprocessor
# This value is computed in the input file description
function = 299.6341463414643
[]
[T_fluid_average]
type = ElementAverageValue
variable = T
block = pipe
[]
[relative_error]
type = RelativeDifferencePostprocessor
value1 = T_steady_state_predicted
value2 = T_fluid_average
[]
[]
[Outputs]
[out]
type = CSV
show = 'relative_error'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
# heat exchanger parameters
hx_dia_inner = ${units 10. cm -> m}
hx_wall_thickness = ${units 5. mm -> m}
hx_dia_outer = ${units 50. cm -> m}
hx_radius_wall = ${fparse hx_dia_inner / 2. + hx_wall_thickness}
hx_length = 1 # m
hx_n_elems = 10
m_dot_sec_in = 1 # kg/s
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Functions]
[m_dot_sec_fn]
type = PiecewiseLinear
xy_data = '
0 0
100 ${m_dot_sec_in}'
[]
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out hx/pri:in'
volume = 1e-3
[]
[hx]
[pri]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * hx_dia_inner * hx_dia_inner / 4.}
D_h = ${hx_dia_inner}
[]
[ht_pri]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = inner
flow_channel = hx/pri
Hw = 0.97
[]
[wall]
type = HeatStructureCylindrical
position = '1 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
widths = '${hx_wall_thickness}'
n_part_elems = '3'
materials = 'steel'
names = '0'
inner_radius = ${fparse hx_dia_inner / 2.}
[]
[ht_sec]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
hs_side = outer
flow_channel = hx/sec
P_hf = ${fparse 2 * pi * hx_radius_wall}
Hw = 36
[]
[sec]
type = FlowChannel1Phase
position = '${fparse 1 + hx_wall_thickness} 0 2'
orientation = '0 0 -1'
length = ${hx_length}
n_elems = ${hx_n_elems}
A = ${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}
D_h = ${fparse hx_dia_outer - (2 * hx_radius_wall)}
fp = water
f = 0.075
[]
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'hx/pri:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[inlet_sec]
type = InletMassFlowRateTemperature1Phase
input = 'hx/sec:out'
m_dot = 0
T = 300
[]
[outlet_sec]
type = Outlet1Phase
input = 'hx/sec:in'
p = ${press}
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[m_dot_sec_inlet_ctrl]
type = GetFunctionValueControl
function = m_dot_sec_fn
[]
[set_m_dot_sec_ctrl]
type = SetComponentRealValueControl
component = inlet_sec
parameter = m_dot
value = m_dot_sec_inlet_ctrl:value
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = hx/pri:out
variable = T
[]
[hx_sec_T_in]
type = SideAverageValue
boundary = inlet_sec
variable = T
[]
[hx_sec_T_out]
type = SideAverageValue
boundary = outlet_sec
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
[TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1
[]
dtmax = 100
end_time = 50000
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/test.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_from_file = 'steady_state_out.e'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '16 356 6.5514e3'
[]
[]
[Functions]
[Ts_bc]
type = ParsedFunction
value = '2*sin(x*pi/2)+2*sin(pi*y) +507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '-1 0 -2.5'
orientation = '1 0 0'
length = 2
n_elems = 2
A = 0.3
D_h = 0.1935483871
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'pipe'
hs = blk
boundary = blk:right
P_hf = 3
Hw = 1000
[]
[blk]
type = HeatStructureFromFile3D
file = box.e
position = '0 0 0'
[]
[right_bnd]
type = HSBoundarySpecifiedTemperature
hs = blk
boundary = blk:bottom
T = Ts_bc
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial'
[]
(modules/thermal_hydraulics/test/tests/controls/pid_control/test.i)
# This test "measures" the liquid temperature at location (10, 0, 0) on a 15 meters
# long pipe and adjusts the inlet stagnation temperature using a PID controller with
# set point at 340 K. The pipe is filled with water at T = 350 K. The purpose is to
# make sure that the channel fills with colder liquid and levels at the set point
# value. In steady state there should be a flat temperature profile at ~340 K.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 105.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[T_set_point]
type = GetFunctionValueControl
function = 340
[]
[pid_ctrl]
type = PIDControl
input = T_reading
set_point = T_set_point:value
K_i = 0.05
K_p = 0.2
K_d = 0.1
initial_value = 340
[]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = pid_ctrl:output
[]
[]
[Postprocessors]
[T_reading]
type = PointValue
point = '10 0 0'
variable = T
execute_on = timestep_begin
[]
[T_inlet]
type = PointValue
point = '0 0 0'
variable = T
execute_on = timestep_begin
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
start_time = 0.0
end_time = 300.0
[]
[Outputs]
[out]
type = CSV
execute_on = 'final'
[]
[console]
type = Console
max_rows = 1
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/clg.test.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 1.0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = fp
closures = simple_closures
gravity_vector = '0 0 0'
automatic_scaling = true
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.43
cv = 1040.0
q = 2.03e6
p_inf = 0.0
q_prime = -2.3e4
k = 0.026
mu = 134.4e-7
M = 0.01801488
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[W_dot_fn]
type = PiecewiseLinear
xy_data = '
0 0
1 10'
[]
[]
[Components]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe1:in'
vel = 1
T = 517
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
A_ref = 1.0
K = 0
on = true
power = 0
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e6
[]
[]
[ControlLogic]
[W_dot_ctrl]
type = TimeFunctionComponentControl
component = turbine
parameter = power
function = W_dot_fn
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
dt = 0.1
num_steps = 10
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-3
nl_max_its = 5
l_tol = 1e-4
abort_on_solve_fail = true
[]
[Postprocessors]
[W_dot]
type = ScalarVariable
variable = turbine:W_dot
[]
[]
[Outputs]
[csv]
type = CSV
show = 'W_dot'
[]
[]
(modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub.i)
# This is a part of T_wall_action test. See the master file for details.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[AuxVariables]
[Hw]
family = monomial
order = constant
block = pipe1
[]
[]
[AuxKernels]
[Hw_ak]
type = ADMaterialRealAux
variable = Hw
property = 'Hw'
[]
[]
[UserObjects]
[T_uo]
type = LayeredAverage
direction = y
variable = T
num_layers = 10
block = pipe1
[]
[Hw_uo]
type = LayeredAverage
direction = y
variable = Hw
num_layers = 10
block = pipe1
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 10
A = 1.28584e-01
D_h = 8.18592e-01
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 10000
P_hf = 6.28319e-01
initial_T_wall = 300.
var_type = elemental
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 400
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Postprocessors]
[T_wall_avg]
type = ElementAverageValue
variable = T_wall
execute_on = 'INITIAL TIMESTEP_END'
[]
[htc_avg]
type = ElementAverageValue
variable = Hw
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T Hw'
[]
[]
(modules/thermal_hydraulics/test/tests/base/component_groups/test.i)
[GlobalParams]
closures = simple_closures
initial_p = 1e6
initial_T = 300
initial_vel = 0
[]
[Modules/FluidProperties]
[fp_liquid]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hx:wall]
type = SolidMaterialProperties
k = 1
cp = 1
rho = 1
[]
[]
[Components]
[pri_inlet]
type = SolidWall1Phase
input = 'hx/primary:out'
[]
[pri_outlet]
type = SolidWall1Phase
input = 'hx/primary:in'
[]
# heat exchanger
[hx]
n_elems = 2
length = 1
[primary]
type = FlowChannel1Phase
position = '0 1 0'
orientation = '1 0 0'
n_elems = ${n_elems}
length = ${length}
A = 1
f = 1
fp = fp_liquid
[]
[wall]
type = HeatStructurePlate
position = '0 0 0'
orientation = '1 0 0'
materials = hx:wall
n_elems = ${n_elems}
length = ${length}
n_part_elems = 1
names = 0
widths = 1
depth = 1
initial_T = 300
[]
[ht_primary]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
flow_channel = hx/primary
hs_side = outer
Hw = 0
[]
[ht_secondary]
type = HeatTransferFromHeatStructure1Phase
hs = hx/wall
flow_channel = hx/secondary
hs_side = inner
Hw = 0
[]
[secondary]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
n_elems = ${n_elems}
length = ${length}
A = 1
f = 1
fp = fp_liquid
[]
[]
[sec_inlet]
type = SolidWall1Phase
input = 'hx/secondary:out'
[]
[sec_outlet]
type = SolidWall1Phase
input = 'hx/secondary:in'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
[console]
type = Console
system_info = ''
enable = false
[]
[]
[Debug]
print_component_loops = true
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.deadend.i)
# Junction between 3 pipes, 1 of which goes to a dead-end. In the steady-state,
# no flow should go into the dead-end pipe.
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
initial_T = 250
initial_p = 1e5
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
closures = simple_closures
[]
[AuxVariables]
[p0]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[p0_kernel]
type = StagnationPressureAux
variable = p0
fp = eos
e = e
v = v
vel = vel
[]
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
q = 0
q_prime = 0
p_inf = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = ParsedFunction
value = 'if (x < 1, 300 + 50 * sin(2*pi*x + 1.5*pi), 250)'
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'inlet_pipe:in'
rho = 1.37931034483
vel = 1
[]
[inlet_pipe]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
f = 0
initial_T = T0
initial_p = 1e5
initial_vel = 1
n_elems = 20
[]
[junction1]
type = VolumeJunction1Phase
connections = 'inlet_pipe:out deadend_pipe:in outlet_pipe:in'
position = '1 0 0'
volume = 1e-8
[]
[outlet_pipe]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 1
f = 0
initial_T = 250
initial_p = 1e5
initial_vel = 1
n_elems = 20
[]
[outlet]
type = Outlet1Phase
input = 'outlet_pipe:out'
p = 1e5
[]
[deadend_pipe]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '0 1 0'
length = 1
A = 1
f = 0
initial_T = 250
initial_p = 1e5
initial_vel = 0
n_elems = 20
[]
[deadend]
type = SolidWall1Phase
input = 'deadend_pipe:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-6
l_max_its = 10
start_time = 0
end_time = 5
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used for testing that the stagnation pressure in
# the dead-end pipe is equal to the inlet stagnation pressure.
[p0_inlet]
type = SideAverageValue
variable = p0
boundary = inlet_pipe:in
[]
[p0_deadend]
type = SideAverageValue
variable = p0
boundary = deadend_pipe:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = p0_deadend
value2 = p0_inlet
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '1 2 3 4 5'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/phy.unequal_area.i)
# Junction between 2 pipes where the second has half the area of the first.
# The momentum density of the second should be twice that of the first.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel_x = 50
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = eos
scaling_factor_1phase = '1 1e-2 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 250
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
n_elems = 20
initial_vel = 20
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
scaling_factor_rhouV = 1e-4
scaling_factor_rhoEV = 1e-5
position = '1 0 0'
volume = 1e-8
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 0.5
n_elems = 20
initial_vel = 15
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-10
l_max_its = 10
start_time = 0
end_time = 3
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the outlet side of the junction,
# which has half the area of the inlet side, has twice the momentum density
# that the inlet side does.
[rhouA_pipe1]
type = SideAverageValue
variable = rhouA
boundary = pipe1:out
[]
[rhouA_pipe2]
type = SideAverageValue
variable = rhouA
boundary = pipe2:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = rhouA_pipe1
value2 = rhouA_pipe2
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/thermal_hydraulics/test/tests/problems/woodward_colella_blast_wave/woodward_colella_blast_wave.i)
# Woodward-Colella blast wave problem
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Functions]
[p_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.1 0.9 1.0'
y = '1000 0.01 100'
[]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.1 0.9 1.0'
y = '1400 0.014 140'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 500
A = 1.0
# IC
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[left_wall]
type = SolidWall1Phase
input = 'pipe:in'
[]
[right_wall]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
solve_type = LINEAR
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
# run to t = 0.038
start_time = 0.0
dt = 1e-5
num_steps = 3800
abort_on_solve_fail = true
[]
[Outputs]
file_base = 'woodward_colella_blast_wave'
velocity_as_vector = false
execute_on = 'initial timestep_end'
[out]
type = Exodus
show = 'p T vel'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/clg.velocity_t_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
f = 0.0
length = 1
n_elems = 100
[]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe:in'
vel = 1.0
T = 444.447
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Functions]
[inlet_vel_fn]
type = PiecewiseLinear
x = '0 1 2'
y = '0 0.1 1'
[]
[inlet_T_fn]
type = PiecewiseLinear
x = '0 1 2'
y = '300 400 440'
[]
[]
[ControlLogic]
[inlet_vel_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = vel
function = inlet_vel_fn
[]
[inlet_T_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = T
function = inlet_T_fn
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
num_steps = 20
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[]
[Postprocessors]
[vel_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = vel
[]
[T_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T
[]
[]
[Outputs]
[out]
type = CSV
[]
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_end.i)
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1. 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[barotropic]
type = LinearFluidProperties
p_0 = 1.e5 # Pa
rho_0 = 1.e3 # kg/m^3
a2 = 1.e7 # m^2/s^2
beta = .46e-3 # K^{-1}
cv = 4.18e3 # J/kg-K, could be a global parameter?
e_0 = 1.254e6 # J/kg
T_0 = 300 # K
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = barotropic
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:asdf' # this is an error we are checking for
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 9.5e4
[]
[]
[Preconditioning]
[FDP_PJFNK]
type = FDP
full = true
petsc_options_iname = '-mat_fd_coloring_err'
petsc_options_value = '1.e-10'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/jacobian.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 2
gravity_vector = '9.81 0 0'
scaling_factor_1phase = '1. 1. 1'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 2
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 1
T = 300
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-snes_type -snes_test_err'
petsc_options_value = 'test 1e-11'
[]
(modules/thermal_hydraulics/test/tests/controls/set_component_bool_value_control/test.i)
# This is testing that the values set by SetComponentBoolValueControl are used.
# The `trip_ctrl` component produces a boolean value that is set in the
# `turbine` component to switch it on/off.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'fch1:in'
p0 = 100.e3
T0 = 350.
[]
[fch1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[turbine]
type = SimpleTurbine1Phase
position = '1 0 0'
connections = 'fch1:out fch2:in'
volume = 1
on = false
power = 1
[]
[fch2]
type = FlowChannel1Phase
fp = fp
position = '1 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[outlet]
type = Outlet1Phase
input = 'fch2:out'
p = 100.0e3
[]
[]
[Functions]
[trip_fn]
type = PiecewiseLinear
xy_data = '
0 1
1 2'
[]
[]
[ControlLogic]
[trip_ctrl]
type = UnitTripControl
condition = 'val > 1.5'
vars = 'val'
vals = 'trip_fn'
[]
[set_comp_value]
type = SetComponentBoolValueControl
component = turbine
parameter = on
value = trip_ctrl:state
[]
[]
[Postprocessors]
[on_ctrl]
type = BoolComponentParameterValuePostprocessor
component = turbine
parameter = on
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
start_time = 0.0
end_time = 1
[]
[Outputs]
[out]
type = CSV
show = 'on_ctrl'
[]
[]
(modules/thermal_hydraulics/test/tests/misc/displaced_components/displaced_components.i)
[GlobalParams]
initial_T = 300
initial_p = 1e5
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1.e0 1.e-4 1.e-6'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 10
[]
[pipe2]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '0 1 0'
A = 1.
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 10
[]
[pipe3]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '0 0 1'
A = 1.
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 10
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:in pipe2:in pipe3:in'
position = '0 0 0'
volume = 1e-5
[]
[in1]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[in2]
type = SolidWall1Phase
input = 'pipe2:out'
[]
[in3]
type = SolidWall1Phase
input = 'pipe3:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-5
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
show = 'A'
[]
(modules/thermal_hydraulics/test/tests/problems/double_rarefaction/1phase.i)
# Riemann problem that has a double-rarefaction solution
[GlobalParams]
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
closures = simple_closures
[]
[Functions]
[vel_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = ' 0.0 0.1'
y = '-1.0 1.0'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '-1 0 0'
orientation = '1 0 0'
length = 2.0
n_elems = 100
A = 1.0
# IC
initial_T = 0.04
initial_p = 0.2
initial_vel = vel_ic_fn
f = 0
[]
[left_boundary]
type = FreeBoundary1Phase
input = 'pipe:in'
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'pipe:out'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
solve_type = LINEAR
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
# run to t = 0.6
start_time = 0.0
dt = 1e-3
num_steps = 600
abort_on_solve_fail = true
[]
[Outputs]
file_base = '1phase'
velocity_as_vector = false
execute_on = 'initial timestep_end'
[out]
type = Exodus
show = 'p T vel'
[]
[]
(modules/thermal_hydraulics/test/tests/components/geometrical_component/err.2nd_order.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e6
initial_T = 353.1
initial_vel = 0.0
2nd_order_mesh = true
closures = simple_closures
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hs-mat]
type = SolidMaterialProperties
k = 1
cp = 1
rho = 1
[]
[]
[Components]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
names = 'blk'
widths = '1'
n_part_elems = '2'
materials = 'hs-mat'
initial_T = 350
[]
[start]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:start
T = 300
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
dtmin = 1.e-7
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
start_time = 0.0
end_time = 4.0
[Quadrature]
type = TRAP
order = FIRST
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/deprecated/gate_valve.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[valve]
type = GateValve
connections = 'pipe1:out pipe2:in'
open_area_fraction = 1
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_p0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_p0_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = p0
function = inlet_p0_fn
[]
[]
[Postprocessors]
[inlet_p0]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = p0
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_pump_1phase/shaft_motor_pump.i)
# Pump data used in this test comes from the Semiscale Program, summarized in NUREG/CR-4945
initial_T = 393.15
area = 1e-2
dt = 1.e-2
[GlobalParams]
initial_p = 1.4E+07
initial_T = ${initial_T}
initial_vel = 10
initial_vel_x = 10
initial_vel_y = 0
initial_vel_z = 0
A = ${area}
A_ref = ${area}
f = 100
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
fp = fp
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pump]
type = ShaftConnectedPump1Phase
inlet = 'pipe:out'
outlet = 'pipe:in'
position = '0 0 0'
scaling_factor_rhoEV = 1e-5
volume = 0.3
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
omega_rated = 314
speed_cr_I = 1e12
speed_cr_fr = 0
torque_rated = 47.1825
volumetric_rated = 1
head_rated = 58.52
tau_fr_coeff = '0 0 9.084 0'
tau_fr_const = 0
head = head_fcn
torque_hydraulic = torque_fcn
density_rated = 124.2046
[]
[pipe]
type = FlowChannel1Phase
position = '0.6096 0 0'
orientation = '1 0 0'
length = 10
n_elems = 20
[]
[motor]
type = ShaftConnectedMotor
inertia = 2
torque = 47
[]
[shaft]
type = Shaft
connected_components = 'motor pump'
initial_speed = 30
[]
[]
[Functions]
[head_fcn]
type = PiecewiseLinear
data_file = semiscale_head_data.csv
format = columns
[]
[torque_fcn]
type = PiecewiseLinear
data_file = semiscale_torque_data.csv
format = columns
[]
[S_energy_fcn]
type = ParsedFunction
value = '-tau_hyd * omega'
vars = 'tau_hyd omega'
vals = 'pump:hydraulic_torque shaft:omega'
[]
[energy_conservation_fcn]
type = ParsedFunction
value = '(E_change - S_energy * dt) / E_tot'
vars = 'E_change S_energy dt E_tot'
vals = 'E_change S_energy ${dt} E_tot'
[]
[]
[Postprocessors]
# mass conservation
[mass_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[mass_pump]
type = ScalarVariable
variable = pump:rhoV
execute_on = 'initial timestep_end'
[]
[mass_tot]
type = SumPostprocessor
values = 'mass_pipes mass_pump'
execute_on = 'initial timestep_end'
[]
[mass_conservation]
type = ChangeOverTimePostprocessor
postprocessor = mass_tot
change_with_respect_to_initial = true
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
# energy conservation
[E_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[E_pump]
type = ScalarVariable
variable = pump:rhoEV
execute_on = 'initial timestep_end'
[]
[E_tot]
type = LinearCombinationPostprocessor
pp_coefs = '1 1'
pp_names = 'E_pipes E_pump'
execute_on = 'initial timestep_end'
[]
[S_energy]
type = FunctionValuePostprocessor
function = S_energy_fcn
execute_on = 'initial timestep_end'
[]
[E_change]
type = ChangeOverTimePostprocessor
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
# This should also execute on initial. This value is
# lagged by one timestep as a workaround to moose issue #13262.
[energy_conservation]
type = FunctionValuePostprocessor
function = energy_conservation_fcn
execute_on = 'timestep_end'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
dt = ${dt}
num_steps = 6
solve_type = 'NEWTON'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/err.non_existent_block.i)
[GlobalParams]
closures = simple_closures
initial_from_file = 'steady_state_out.e'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[asdf]
type = FlowChannel1Phase
fp = fp
# geometry
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = SolidWall1Phase
input = 'asdf:in'
[]
[outlet]
type = SolidWall1Phase
input = 'asdf:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
[]
(modules/thermal_hydraulics/test/tests/output/vector_velocity/test.i)
[GlobalParams]
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
initial_p = 1e5
initial_T = 300
f = 0.1
closures = simple_closures
fp = fp
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'fch1:in'
m_dot = 1
T = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 1 1'
length = 1.73205
n_elems = 5
A = 1
[]
[junction]
type = VolumeJunction1Phase
position = '1 1 1'
connections = 'fch1:out fch2:out'
volume = 0.1
[]
[fch2]
type = FlowChannel1Phase
position = '2 2 2'
orientation = '-1 -1 -1'
length = 1.73205
n_elems = 5
A = 2
[]
[outlet]
type = Outlet1Phase
input = 'fch2:in'
p = 1e5
[]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 50
solve_type = NEWTON
line_search = basic
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-6
l_tol = 1e-03
automatic_scaling = true
[]
[Outputs]
print_linear_converged_reason = false
print_nonlinear_converged_reason = false
print_linear_residuals = false
[out]
type = Exodus
sync_only = false
sync_times = '0 5 10 15 20 25'
show = 'vel_x vel_y vel_z'
[]
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure_3d/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '16 356 6.5514e3'
[]
[]
[Functions]
[Ts_init]
type = ParsedFunction
value = '2*sin(x*pi/2)+2*sin(pi*y) +507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '-1 0 -2.5'
orientation = '1 0 0'
length = 2
n_elems = 2
A = 0.3
D_h = 0.1935483871
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'pipe'
hs = blk
boundary = blk:right
P_hf = 3
Hw = 1000
[]
[blk]
type = HeatStructureFromFile3D
file = box.e
position = '0 0 0'
initial_T = Ts_init
[]
[right_bnd]
type = HSBoundarySpecifiedTemperature
hs = blk
boundary = blk:bottom
T = Ts_init
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial final'
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_no_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
#
# This input file has no junction and is used for comparison to the results with
# a junction.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 2
initial_T = T0
n_elems = 50
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rhoA]
type = PointValue
variable = rhoA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhouA]
type = PointValue
variable = rhouA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhoEA]
type = PointValue
variable = rhoEA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rho]
type = ScalePostprocessor
value = junction_rhoA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalePostprocessor
value = junction_rhouA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalePostprocessor
value = junction_rhoEA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'junction_rho junction_rhou junction_rhoE'
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/clg.Hw.i)
[GlobalParams]
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1e+0 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 3.14e-2
f = 0.1
[]
[ht_pipe1]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe1
T_wall = 310
Hw = 0
[]
[inlet1]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.557482499661660
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 0.1e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.05
num_steps = 20
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 30
[]
[Outputs]
csv = true
[]
[Functions]
[Hw_fn]
type = PiecewiseLinear
x = '0 1'
y = '10 110'
[]
[]
[ControlLogic]
[pipe_Hw_ctrl]
type = TimeFunctionComponentControl
component = ht_pipe1
parameter = Hw
function = Hw_fn
[]
[]
[Postprocessors]
[Hw]
type = RealComponentParameterValuePostprocessor
component = ht_pipe1
parameter = Hw
[]
[]
(modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction.i)
# This test features air flowing through a channel whose cross-sectional area
# shrinks to half its value in the right half. Assuming incompressible flow
# conditions, such as having a low Mach number, the velocity should approximately
# double from inlet to outlet.
p_outlet = 1e5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = ${p_outlet}
initial_vel = initial_vel_fn
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[A_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 0.5'
[]
[initial_vel_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 2'
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 1.16263315948279 # rho @ (p = 1e5 Pa, T = 300 K)
vel = 1
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 100
A = A_fn
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = ${p_outlet}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.2
[]
steady_state_detection = true
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
exodus = true
velocity_as_vector = false
show = 'A rho vel p'
[]
(modules/thermal_hydraulics/test/tests/controls/copy_postprocessor_value_control/test.i)
# This is testing that the values copied by CopyPostprocessorValueControl are used.
# A postprocessor T_pt samples value at point (0, 0, 0), those values are then
# read in by CopyPostprocessorValueControl and then we output this value. The values
# are lagged by one time step, because controls are executed at the beginning
# of the time step and postprocessors at the end of the time step. Note that
# CopyPostprocessorValueControl is added when a postprocessor is created. That's why
# you do not see the object in this input file.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 340.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Postprocessors]
[T_pt]
type = SideAverageValue
boundary = pipe1:in
variable = T
execute_on = 'initial timestep_end'
[]
[T_ctrl]
type = RealControlDataValuePostprocessor
control_data_name = T_pt
execute_on = timestep_end
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-5
num_steps = 3
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
# This input file is used to demonstrate a simple open-air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 5 segments as illustrated below, where
# - "(I)" denotes the inlet
# - "(C)" denotes the compressor
# - "(T)" denotes the turbine
# - "(O)" denotes the outlet
# - "*" denotes a fictitious junction
#
# Heated section
# (I)-----(C)-----*--------------*-----(T)-----(O)
# 1 2 3 4 5
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
# * 0 - 100 s: motor ramps up torque linearly from zero
# * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
# * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
orientation = '1 0 0'
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
rdg_slope_reconstruction = none
[]
[Functions]
[motor_torque_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 ${motor_torque_max} 0'
[]
[motor_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'motor_torque shaft:omega'
[]
[generator_torque_fn]
type = ParsedFunction
value = 'slope * t'
vars = 'slope'
vals = '${generator_torque_per_shaft_speed}'
[]
[generator_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'generator_torque shaft:omega'
[]
[htc_wall_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 0 1e3'
[]
[]
[Modules/FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = ${p_ambient}
T0 = ${T_ambient}
[]
[pipe1]
type = FlowChannel1Phase
position = '${x1} 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} 0 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe2]
type = FlowChannel1Phase
position = '${x2} 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
[junction2_3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} 0 0'
length = ${L3}
n_elems = ${n_elems3}
A = ${A3}
[]
[junction3_4]
type = JunctionOneToOne1Phase
connections = 'pipe3:out pipe4:in'
[]
[pipe4]
type = FlowChannel1Phase
position = '${x4} 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x5} 0 0'
inlet = 'pipe4:out'
outlet = 'pipe5:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe5]
type = FlowChannel1Phase
position = '${x5} 0 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
[outlet]
type = Outlet1Phase
input = 'pipe5:out'
p = ${p_ambient}
[]
[heating]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe3
T_wall = ${T_hot}
Hw = htc_wall_fn
[]
[]
[ControlLogic]
[motor_ctrl]
type = TimeFunctionComponentControl
component = motor
parameter = torque
function = motor_torque_fn
[]
[]
[Postprocessors]
[heating_rate]
type = ADHeatRateConvection1Phase
block = 'pipe3'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x2_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
function = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x5_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x5_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
function = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe4:out
connection_index = 0
equation = mass
junction = turbine
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.1
cutback_factor = 0.9
[]
dtmin = 1e-5
steady_state_detection = true
steady_state_start_time = ${t2}
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = 'open_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
[]
[]
[Functions]
# compressor pressure ratio
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiency
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
# turbine pressure ratio
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_external_app_1phase/phy.T_wall_transfer_elem_3eqn.slave.i)
# This is a part of phy.T_wall_transfer_elem_3eqn test. See the master file for details.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 3000
P_hf = 6.2831853072e-01
initial_T_wall = 300.
var_type = elemental
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.5
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
end_time = 5
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall'
[]
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_mass_energy_conservation.i)
# This test tests that mass and energy are conserved.
dt = 1.e-2
head = 95.
volume = 1.
A = 1.
g = 9.81
[GlobalParams]
initial_T = 393.15
initial_vel = 0
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
A = ${A}
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[wall_in]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_p = 1.7E+07
n_elems = 10
gravity_vector = '0 0 0'
[]
[pump]
type = Pump1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
initial_p = 1.3e+07
scaling_factor_rhoEV = 1e-5
head = ${head}
A_ref = ${A}
volume = ${volume}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 1
initial_p = 1.3e+07
n_elems = 10
gravity_vector = '0 0 0'
[]
[wall_out]
type = SolidWall1Phase
input = 'pipe2:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
start_time = 0
dt = ${dt}
num_steps = 6
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
# mass conservation
[mass_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoA
block = 'pipe1 pipe2'
execute_on = 'initial timestep_end'
[]
[mass_pump]
type = ScalarVariable
variable = pump:rhoV
execute_on = 'initial timestep_end'
[]
[mass_tot]
type = SumPostprocessor
values = 'mass_pipes mass_pump'
execute_on = 'initial timestep_end'
[]
[mass_tot_change]
type = ChangeOverTimePostprocessor
postprocessor = mass_tot
change_with_respect_to_initial = true
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
# energy conservation
[E_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = 'pipe1 pipe2'
execute_on = 'initial timestep_end'
[]
[E_pump]
type = ScalarVariable
variable = pump:rhoEV
execute_on = 'initial timestep_end'
[]
[E_tot]
type = LinearCombinationPostprocessor
pp_coefs = '1 1'
pp_names = 'E_pipes E_pump'
execute_on = 'initial timestep_end'
[]
[S_energy]
type = FunctionValuePostprocessor
function = S_energy_fcn
execute_on = 'initial timestep_end'
[]
[E_change]
type = ChangeOverTimePostprocessor
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
# this should also execute on initial, this value is
# lagged by one timestep as a workaround to moose issue #13262
[E_conservation]
type = FunctionValuePostprocessor
function = E_conservation_fcn
execute_on = 'timestep_end'
[]
[]
[Functions]
[S_energy_fcn]
type = ParsedFunction
value = 'rhouV * g * head * A / volume'
vars = 'rhouV g head A volume'
vals = 'pump:rhouV ${g} ${head} ${A} ${volume}'
[]
[E_conservation_fcn]
type = ParsedFunction
value = '(E_change - S_energy * dt) / E_tot'
vars = 'E_change S_energy dt E_tot'
vals = 'E_change S_energy ${dt} E_tot'
[]
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'mass_tot_change E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_enthalpy_1phase/phy.h_rhou_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1.e2 1. 1.e-3'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = IdealGasFluidProperties
gamma = 1.41
molar_mass = 28.9662e-3
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.1283791671e-02
f = 0.0
length = 1
n_elems = 100
[]
[inlet]
type = InletStagnationEnthalpyMomentum1Phase
input = 'pipe:in'
H = 296748.357480000
rhou = 41.0009888754850
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1.e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-14
nl_abs_tol = 5e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
start_time = 0.0
end_time = 0.2
[]
(modules/thermal_hydraulics/test/tests/components/deprecated/solid_wall.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in]
type = SolidWall
input = 'pipe:in'
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[out]
type = SolidWall
connections = 'pipe:out'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/base/simulation/err.no_smp.i)
[GlobalParams]
gravity_vector = '0 0 9.81'
initial_p = 1e5
initial_T = 300
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = water
closures = simple_closures
f = 0
[]
[Modules/FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = '1'
A = 1
D_h = 1
n_elems = 2
[]
[jct1]
type = VolumeJunction1Phase
position = '1 0 0'
volume = 1e-3
connections = 'pipe1:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = '1'
A = 1
D_h = 1
n_elems = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 101325
[]
[]
[Executioner]
type = Transient
dt = 0.01
num_steps = 2
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/jac.1phase.i)
[GlobalParams]
initial_p = 1.e5
initial_vel = 2
initial_T = 300
scaling_factor_1phase = '1 1 1'
scaling_factor_temperature = '1'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0.1 0'
orientation = '0 0 1'
length = 2
n_elems = 1
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = 2
n_elems = 1
names = 'fuel'
widths = '0.1'
n_part_elems = '1'
materials = 'fuel-mat'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe
Hw = 100
P_hf = 0.029832559676
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-snes_test_err'
petsc_options_value = ' 1e-11'
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_loop.i)
[GlobalParams]
initial_T = 300
initial_p = 1e5
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_1phase = '1 1 1'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1a]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 0.5
n_elems = 2
[]
[pipe1b]
type = FlowChannel1Phase
fp = fp
position = '0.5 0 0'
orientation = '1 0 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 0.5
n_elems = 2
[]
[pipe2]
type = FlowChannel1Phase
fp = fp
position = '1 0 0'
orientation = '0 1 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 1
n_elems = 3
[]
[pipe3]
type = FlowChannel1Phase
fp = fp
position = '1 1 0'
orientation = '-1 0 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 1
n_elems = 3
[]
[pipe4]
type = FlowChannel1Phase
fp = fp
position = '0 1 0'
orientation = '0 -1 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 1
n_elems = 3
[]
[pipe5]
type = FlowChannel1Phase
fp = fp
position = '1 1 0'
orientation = '0 1 0'
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
D_h = 0.01
f = 0.01
length = 0.5
n_elems = 3
[]
[pump]
type = Pump1Phase
connections = 'pipe1a:out pipe1b:in'
head = 1.0
position = '0.5 0 0'
volume = 0.785398163e-3
A_ref = 0.785398163e-4
[]
[junction1]
type = VolumeJunction1Phase
connections = 'pipe1b:out pipe2:in'
volume = 0.785398163e-3
position = '1 0 0'
[]
[junction2]
type = VolumeJunction1Phase
connections = 'pipe2:out pipe3:in pipe5:in'
volume = 0.785398163e-3
position = '1 1 0'
[]
[junction3]
type = VolumeJunction1Phase
connections = 'pipe3:out pipe4:in'
volume = 0.785398163e-3
position = '0 1 0'
[]
[junction4]
type = VolumeJunction1Phase
connections = 'pipe4:out pipe1a:in'
volume = 0.785398163e-3
position = '0 0 0'
[]
[outlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe5:out'
p0 = 1.e5
T0 = 300
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
num_steps = 10
dt = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = gauss
order = second
[]
[]
[Outputs]
[out]
type = Exodus
show = 'rhouA p'
execute_on = 'initial final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.reversed_flow.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
f = 0.0
length = 1
n_elems = 100
[]
[in]
type = InletVelocityTemperature1Phase
input = 'pipe:in'
vel = -1.0
T = 444.447
[]
[out]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:out'
p0 = 7e6
T0 = 444.447
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
end_time = 5
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[]
[Outputs]
[exodus]
type = Exodus
file_base = phy.reversed_flow
show = 'vel T p'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/constriction_1phase.i)
# This test is used to test the JunctionOneToOne1Phase1Phase component with unequal areas
# at the junction. The downstream flow channel has an area half that of the
# upstream pipe, so there should be a pressure increase just upstream of the
# junction due to the partial wall. The velocity should increase through the
# junction (approximately by a factor of 2, but there are compressibility effects).
[GlobalParams]
gravity_vector = '0 0 0'
fp = fp
closures = simple_closures
f = 0
initial_T = 300
initial_p = 1e5
initial_vel = 1
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_boundary]
type = InletDensityVelocity1Phase
input = 'left_channel:in'
rho = 466.6666667
vel = 1
[]
[left_channel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'left_channel:out right_channel:in'
[]
[right_channel]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
[]
[right_boundary]
type = Outlet1Phase
input = 'right_channel:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.01
num_steps = 10
abort_on_solve_fail = true
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 60
l_tol = 1e-4
[]
[Outputs]
exodus = true
show = 'p T vel'
execute_on = 'initial timestep_end'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/conservation.i)
# Junction between 2 pipes where the second has half the area of the first.
# The momentum density of the second should be twice that of the first.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel = 20
initial_vel_x = 20
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = eos
scaling_factor_1phase = '1 1e-2 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
n_elems = 20
[]
[junction1]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
scaling_factor_rhouV = 1e-4
scaling_factor_rhoEV = 1e-5
position = '1 0 0'
volume = 1e-2
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 0.5
n_elems = 20
[]
[junction2]
type = JunctionParallelChannels1Phase
connections = 'pipe2:out pipe1:in'
scaling_factor_rhouV = 1e-4
scaling_factor_rhoEV = 1e-5
position = '1 0 0'
volume = 1e-2
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.05
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = basic
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 20
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
# mass conservation
[mass_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoA
block = 'pipe1 pipe2'
execute_on = 'initial timestep_end'
[]
[mass_junction1]
type = ScalarVariable
variable = junction1:rhoV
execute_on = 'initial timestep_end'
[]
[mass_junction2]
type = ScalarVariable
variable = junction2:rhoV
execute_on = 'initial timestep_end'
[]
[mass_tot]
type = SumPostprocessor
values = 'mass_pipes mass_junction1 mass_junction2'
execute_on = 'initial timestep_end'
[]
[mass_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = mass_tot
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
# energy conservation
[E_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = 'pipe1 pipe2'
execute_on = 'initial timestep_end'
[]
[E_junction1]
type = ScalarVariable
variable = junction1:rhoEV
execute_on = 'initial timestep_end'
[]
[E_junction2]
type = ScalarVariable
variable = junction2:rhoEV
execute_on = 'initial timestep_end'
[]
[E_tot]
type = SumPostprocessor
values = 'E_pipes E_junction1 E_junction2'
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'mass_tot_change E_tot_change'
[]
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_pressure_check.i)
# This test checks that the expected pressure rise due to the user supplied
# pump head matches the actual pressure rise across the pump.
# The orientation of flow channels in this test have no components in the z-direction
# due to the expected_pressure_rise_fcn not accounting for hydrostatic pressure.
head = 95.
dt = 0.1
g = 9.81
volume = 0.567
[GlobalParams]
initial_T = 393.15
initial_vel = 0.0372
A = 0.567
f = 0
fp = fp
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[expected_pressure_rise_fcn]
type = ParsedFunction
value = 'rhoV * g * head / volume'
vars = 'rhoV g head volume'
vals = 'pump:rhoV ${g} ${head} ${volume}'
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 20
T = 393.15
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_p = 1.318964e+07
n_elems = 10
[]
[pump]
type = Pump1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
initial_p = 1.318964e+07
scaling_factor_rhoEV = 1e-5
head = ${head}
volume = ${volume}
A_ref = 0.567
initial_vel_x = 1
initial_vel_y = 1
initial_vel_z = 0
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '0 2 0'
length = 0.96
initial_p = 1.4072E+07
n_elems = 10
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1.4072E+07
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
start_time = 0
dt = ${dt}
num_steps = 4
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[pump_rhoV]
type = ScalarVariable
variable = pump:rhoV
execute_on = 'initial timestep_end'
[]
[expected_pressure_rise]
type = FunctionValuePostprocessor
function = expected_pressure_rise_fcn
execute_on = 'initial linear'
[]
[p_inlet]
type = SideAverageValue
variable = p
boundary = 'pipe1:out'
execute_on = 'initial linear'
[]
[p_outlet]
type = SideAverageValue
variable = p
boundary = 'pipe2:in'
execute_on = 'initial linear'
[]
[actual_pressure_rise]
type = DifferencePostprocessor
value1 = p_outlet
value2 = p_inlet
execute_on = 'timestep_end'
[]
[pressure_rise_diff]
type = RelativeDifferencePostprocessor
value1 = actual_pressure_rise
value2 = expected_pressure_rise
execute_on = 'timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'pressure_rise_diff'
[]
[]
(modules/thermal_hydraulics/test/tests/components/elbow_pipe_1phase/phy.position.i)
[GlobalParams]
gravity_vector = '0 -9.81 0'
initial_T = 310
initial_p = 1e5
initial_vel = 0
scaling_factor_1phase = '1e0 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = ElbowPipe1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
start_angle = 270
end_angle = 360
radius = 0.25
n_elems = 50
# d = 0.1 m
A = 7.8539816340e-03
D_h = 1.0000000000e-01
f = 0.1
fp = fp
[]
[inlet]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-2
l_max_its = 30
[]
[Outputs]
exodus = true
show = 'A'
[]
(modules/thermal_hydraulics/test/tests/problems/freefall/freefall.i)
# Tests acceleration of a fluid due to gravity. The flow exiting the bottom
# of the flow channel enters the top, so the flow should uniformly accelerate
# at the rate of acceleration due to gravity.
acceleration = -10.0
dt = 0.1
num_steps = 5
time = ${fparse num_steps * dt}
# The expected velocity is the following:
# u = a * t
# = -10 * 0.5
# = -5
[GlobalParams]
gravity_vector = '0 0 ${acceleration}'
initial_p = 1e5
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816
q = -1.167e6
q_prime = 0
p_inf = 1e9
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 1
n_elems = 100
A = 1
f = 0
fp = fp
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'pipe:in pipe:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
end_time = ${time}
dt = ${dt}
num_steps = ${num_steps}
abort_on_solve_fail = true
solve_type = NEWTON
nl_abs_tol = 1e-8
nl_rel_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[]
[Postprocessors]
[vel_avg]
type = ElementAverageValue
variable = 'vel'
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Outputs]
velocity_as_vector = false
[out]
type = CSV
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_density_velocity_1phase/clg.densityvelocity_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 0.1e6
initial_vel = 0
initial_T = 300
scaling_factor_1phase = '1. 1. 1.'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1.907720E-04
f = 0.0
fp = eos
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 996.556340388366266
vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.1e6
[]
[]
[Functions]
[inlet_rho_fn]
type = PiecewiseLinear
x = '0 1 '
y = '996 997'
[]
[inlet_vel_fn]
type = PiecewiseLinear
x = '1 2'
y = '1 2'
[]
[]
[ControlLogic]
[inlet_rho_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = rho
function = inlet_rho_fn
[]
[inlet_vel_ctrl]
type = TimeFunctionComponentControl
component = inlet
parameter = vel
function = inlet_vel_fn
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 20
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Postprocessors]
[rho_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = rho
[]
[vel_inlet]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = vel
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/volume_junction/test.i)
# Test that the initial conditions read from the exodus file are correct
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
closures = simple_closures
initial_from_file = 'steady_state_out.e'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
volume = 1
position = '1 0 0'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-4
[]
[pipe2]
type = FlowChannel1Phase
fp = fp
# geometry
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/postprocessors/heat_rate_convection_1phase/heat_rate_convection_1phase.i)
# Gold value should be the following:
# htc * (T_wall - T) * P_hf * L
T_wall = 350
T = 300
htc = 50
P_hf = 0.3
L = 2.0
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_wall]
type = SolidWall1Phase
input = 'pipe:in'
[]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = ${L}
n_elems = 10
A = 1
f = 0.
initial_p = 1e6
initial_T = ${T}
initial_vel = 0
[]
[right_wall]
type = SolidWall1Phase
input = 'pipe:out'
[]
[heat_flux]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe
Hw = ${htc}
T_wall = ${T_wall}
P_hf = ${P_hf}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0.0
dt = 0.01
num_steps = 0
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[]
[Postprocessors]
[heat_rate]
type = ADHeatRateConvection1Phase
P_hf = P_hf
execute_on = 'INITIAL'
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/misc/adapt/multiple_blocks.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
[]
[pipe2]
type = FlowChannel1Phase
fp = eos
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
volume = 1e-5
position = '1 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# (p0, T0) for p = 1e5, T = 300, vel = 1
p0 = 1.0049827846e+05
T0 = 300.0000099
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[prec]
type = SMP
full = true
petsc_options = '-pc_factor_shift_nonzero'
petsc_options_iname = '-mat_fd_coloring_err'
petsc_options_value = '1.e-10'
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-4
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 0
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Adaptivity]
initial_adaptivity = 0
refine_fraction = 0.60
coarsen_fraction = 0.10
max_h_level = 3
[]
automatic_scaling = true
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/problems/square_wave/square_wave.i)
# Square wave problem
[GlobalParams]
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
closures = simple_closures
[]
[Functions]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.1 0.6 1.0'
y = '2.8 1.4 2.8'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 400
A = 1.0
# IC
initial_T = T_ic_fn
initial_p = 1
initial_vel = 1
f = 0
[]
[left_boundary]
type = FreeBoundary1Phase
input = 'pipe:in'
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'pipe:out'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 2
[]
solve_type = LINEAR
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
# run to t = 0.3
start_time = 0.0
dt = 2e-4
num_steps = 1500
abort_on_solve_fail = true
[]
[Outputs]
file_base = 'square_wave'
velocity_as_vector = false
execute_on = 'initial timestep_end'
[out]
type = Exodus
show = 'p T vel'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_flux_1phase/phy.energy_heatflux_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat flux is specified. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[ht_pipe]
type = HeatTransferFromHeatFlux1Phase
flow_channel = pipe
q_wall = 1.0e5
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Postprocessors]
[E]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
execute_on = 'initial timestep_end'
[]
[E_change]
type = ChangeOverTimePostprocessor
postprocessor = E
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 1
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-7
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
num_steps = 10
[]
[Outputs]
[out]
type = CSV
show = 'E_change'
[]
[console]
type = Console
show = 'E_change'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.p0T0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e6
initial_T = 453.1
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = eos
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e6
T0 = 453.1
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.5e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1.e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
start_time = 0.0
end_time = 0.6
[]
[Outputs]
file_base = 'phy.p0T0_3eqn'
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/output/paraview_component_annotation_map/test.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
f = 0
fp = fp
gravity_vector = '0 0 0'
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[m]
type = SolidMaterialProperties
rho = 1
cp = 1
k = 1
[]
[]
[Components]
[fch1]
type = FlowChannel1Phase
position = '-0.1 0 0'
orientation = '0 0 1'
length = 1
A = 1
n_elems = 10
[]
[wall1i]
type = SolidWall1Phase
input = fch1:in
[]
[wall1o]
type = SolidWall1Phase
input = fch1:out
[]
[hs1]
type = HeatStructureCylindrical
position = '-0.2 0 0'
orientation = '0 0 1'
length = 1
n_elems = 10
names = '1 2'
widths = '0.2 0.3'
materials = 'm m'
n_part_elems = '1 1'
rotation = 90
[]
[fch2]
type = FlowChannel1Phase
position = '0.1 0 0'
orientation = '0 0 1'
length = '0.6 0.4'
A = 1
n_elems = '5 5'
axial_region_names = 'longer shorter'
[]
[wall2i]
type = SolidWall1Phase
input = fch2:in
[]
[wall2o]
type = SolidWall1Phase
input = fch2:out
[]
[hs2]
type = HeatStructureCylindrical
position = '0.2 0 0'
orientation = '0 0 1'
length = '0.6 0.4'
axial_region_names = 'longer shorter'
n_elems = '5 5'
names = '1 2'
widths = '0.2 0.3'
materials = 'm m'
n_part_elems = '1 1'
rotation = 270
[]
[]
[Executioner]
type = Transient
dt = 0.1
num_steps = 1
automatic_scaling = true
nl_abs_tol = 1e-7
[]
[Outputs]
exodus = true
[map]
type = ParaviewComponentAnnotationMap
[]
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/closed_brayton_cycle.i)
# This input file is used to demonstrate a simple closed, air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 6 segments as illustrated below, where
# - "(C)" denotes the compressor
# - "(T)" denotes the turbine
# - "*" denotes a fictitious junction
#
# Heated section Cooled section
# *-----(C)-----*--------------*-----(T)-----*--------------*
# 1 2 3 4 5 6
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
# * 0 - 100 s: motor ramps up torque linearly from zero
# * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
# * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
D6 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
A6 = ${fparse 0.25 * pi * D6^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
L6 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x6 = ${fparse x5 + L5}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
n_elems6 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_cold = 300
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
orientation = '1 0 0'
gravity_vector = '0 0 0'
initial_p = ${p_ambient}
initial_T = ${T_ambient}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
fp = fp_air
closures = closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
rdg_slope_reconstruction = none
[]
[Functions]
[motor_torque_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 ${motor_torque_max} 0'
[]
[motor_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'motor_torque shaft:omega'
[]
[generator_torque_fn]
type = ParsedFunction
value = 'slope * t'
vars = 'slope'
vals = '${generator_torque_per_shaft_speed}'
[]
[generator_power_fn]
type = ParsedFunction
value = 'torque * speed'
vars = 'torque speed'
vals = 'generator_torque shaft:omega'
[]
[htc_wall_fn]
type = PiecewiseLinear
x = '0 ${t1} ${t2}'
y = '0 0 1e3'
[]
[]
[Modules/FluidProperties]
[fp_air]
type = IdealGasFluidProperties
emit_on_nan = none
[]
[]
[Closures]
[closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[shaft]
type = Shaft
connected_components = 'motor compressor turbine generator'
initial_speed = ${speed_initial}
[]
[motor]
type = ShaftConnectedMotor
inertia = ${I_motor}
torque = 0 # controlled
[]
[generator]
type = ShaftConnectedMotor
inertia = ${I_generator}
torque = generator_torque_fn
[]
[pipe1]
type = FlowChannel1Phase
position = '${x1} 0 0'
length = ${L1}
n_elems = ${n_elems1}
A = ${A1}
[]
[compressor]
type = ShaftConnectedCompressor1Phase
position = '${x2} 0 0'
inlet = 'pipe1:out'
outlet = 'pipe2:in'
A_ref = ${A_ref_comp}
volume = ${V_comp}
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_comp}
inertia_coeff = '${I_comp} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe2]
type = FlowChannel1Phase
position = '${x2} 0 0'
length = ${L2}
n_elems = ${n_elems2}
A = ${A2}
[]
[junction2_3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out pipe3:in'
[]
[pipe3]
type = FlowChannel1Phase
position = '${x3} 0 0'
length = ${L3}
n_elems = ${n_elems3}
A = ${A3}
[]
[junction3_4]
type = JunctionOneToOne1Phase
connections = 'pipe3:out pipe4:in'
[]
[pipe4]
type = FlowChannel1Phase
position = '${x4} 0 0'
length = ${L4}
n_elems = ${n_elems4}
A = ${A4}
[]
[turbine]
type = ShaftConnectedCompressor1Phase
position = '${x5} 0 0'
inlet = 'pipe4:out'
outlet = 'pipe5:in'
A_ref = ${A_ref_turb}
volume = ${V_turb}
treat_as_turbine = true
omega_rated = ${speed_rated}
mdot_rated = ${rated_mfr}
c0_rated = ${c0_rated_comp}
rho0_rated = ${rho0_rated_comp}
speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
min_pressure_ratio = 1.0
speed_cr_I = 0
inertia_const = ${I_turb}
inertia_coeff = '${I_turb} 0 0 0'
# assume no shaft friction
speed_cr_fr = 0
tau_fr_const = 0
tau_fr_coeff = '0 0 0 0'
[]
[pipe5]
type = FlowChannel1Phase
position = '${x5} 0 0'
length = ${L5}
n_elems = ${n_elems5}
A = ${A5}
[]
[junction5_6]
type = JunctionOneToOne1Phase
connections = 'pipe5:out pipe6:in'
[]
[pipe6]
type = FlowChannel1Phase
position = '${x6} 0 0'
length = ${L6}
n_elems = ${n_elems6}
A = ${A6}
[]
[junction6_1]
type = JunctionOneToOne1Phase
connections = 'pipe6:out pipe1:in'
[]
[heating]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe3
T_wall = ${T_hot}
Hw = htc_wall_fn
[]
[cooling]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe6
T_wall = ${T_cold}
Hw = htc_wall_fn
[]
[]
[ControlLogic]
[motor_ctrl]
type = TimeFunctionComponentControl
component = motor
parameter = torque
function = motor_torque_fn
[]
[]
[Postprocessors]
[heating_rate]
type = ADHeatRateConvection1Phase
block = 'pipe3'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[cooling_rate]
type = ADHeatRateConvection1Phase
block = 'pipe6'
T = T
T_wall = T_wall
Hw = Hw
P_hf = P_hf
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_torque]
type = RealComponentParameterValuePostprocessor
component = motor
parameter = torque
execute_on = 'INITIAL TIMESTEP_END'
[]
[motor_power]
type = FunctionValuePostprocessor
function = motor_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_torque]
type = ShaftConnectedComponentPostprocessor
quantity = torque
shaft_connected_component_uo = generator:shaftconnected_uo
execute_on = 'INITIAL TIMESTEP_END'
[]
[generator_power]
type = FunctionValuePostprocessor
function = generator_power_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[shaft_speed]
type = ScalarVariable
variable = 'shaft:omega'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_comp]
type = PointValue
variable = p
point = '${x2_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_comp]
type = PointValue
variable = p
point = '${x2_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_comp]
type = ParsedPostprocessor
pp_names = 'p_in_comp p_out_comp'
function = 'p_out_comp / p_in_comp'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_in_turb]
type = PointValue
variable = p
point = '${x5_minus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_out_turb]
type = PointValue
variable = p
point = '${x5_plus} 0 0'
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_ratio_turb]
type = ParsedPostprocessor
pp_names = 'p_in_turb p_out_turb'
function = 'p_in_turb / p_out_turb'
execute_on = 'INITIAL TIMESTEP_END'
[]
[mfr_comp]
type = ADFlowJunctionFlux1Phase
boundary = pipe1:out
connection_index = 0
equation = mass
junction = compressor
[]
[mfr_turb]
type = ADFlowJunctionFlux1Phase
boundary = pipe4:out
connection_index = 0
equation = mass
junction = turbine
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = ${t3}
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.1
cutback_factor = 0.9
[]
dtmin = 1e-5
steady_state_detection = true
steady_state_start_time = ${t2}
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = 'closed_brayton_cycle'
execute_vector_postprocessors_on = 'INITIAL'
[]
[console]
type = Console
show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
[]
[]
[Functions]
# compressor pressure ratio
[rp_comp1]
type = PiecewiseLinear
data_file = 'rp_comp1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp2]
type = PiecewiseLinear
data_file = 'rp_comp2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp3]
type = PiecewiseLinear
data_file = 'rp_comp3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp4]
type = PiecewiseLinear
data_file = 'rp_comp4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_comp5]
type = PiecewiseLinear
data_file = 'rp_comp5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# compressor efficiency
[eff_comp1]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp2]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp3]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp4]
type = ConstantFunction
value = ${eff_comp}
[]
[eff_comp5]
type = ConstantFunction
value = ${eff_comp}
[]
# turbine pressure ratio
[rp_turb0]
type = ConstantFunction
value = 1
[]
[rp_turb1]
type = PiecewiseLinear
data_file = 'rp_turb1.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb2]
type = PiecewiseLinear
data_file = 'rp_turb2.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb3]
type = PiecewiseLinear
data_file = 'rp_turb3.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb4]
type = PiecewiseLinear
data_file = 'rp_turb4.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
[rp_turb5]
type = PiecewiseLinear
data_file = 'rp_turb5.csv'
x_index_in_file = 0
y_index_in_file = 1
format = columns
extrap = true
[]
# turbine efficiency
[eff_turb1]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb2]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb3]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb4]
type = ConstantFunction
value = ${eff_turb}
[]
[eff_turb5]
type = ConstantFunction
value = ${eff_turb}
[]
[]
(modules/thermal_hydraulics/test/tests/controls/error_checking/non_existent_control_data.i)
# This test makes sure that we error out when a control object requests a data
# that were not declared
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 105.e3
T0 = 300.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[ControlLogic]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = wrong # this does not exist
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.5
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out cooling_pipe:in'
volume = 1e-3
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
Hw = 0.97
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'cooling_pipe:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct5]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'down_pipe:out bottom_b:in'
volume = 1e-3
[]
[bottom_b]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[pump]
type = Pump1Phase
position = '0.5 0 0'
connections = 'bottom_b:out bottom_a:in'
volume = 1e-3
A_ref = ${fparse pi * pipe_dia * pipe_dia / 4.}
head = 0
[]
[bottom_a]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '-1 0 0'
length = 0.5
n_elems = 5
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct6]
type = VolumeJunction1Phase
position = '0 0 0'
connections = 'bottom_a:out core_chan:in'
volume = 1e-3
[]
[]
[ControlLogic]
[set_point]
type = GetFunctionValueControl
function = ${m_dot_in}
[]
[pid]
type = PIDControl
initial_value = 0
set_point = set_point:value
input = m_dot_pump
K_p = 250
K_i = 0.5
K_d = 0
[]
[set_pump_head]
type = SetComponentRealValueControl
component = pump
parameter = head
value = pid:output
[]
[]
[Postprocessors]
[m_dot_pump]
type = ADFlowJunctionFlux1Phase
boundary = core_chan:in
connection_index = 1
equation = mass
junction = jct6
[]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/deprecated/junction_one_to_one.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 1
T = 300
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[valve]
type = JunctionOneToOne
connections = 'pipe1:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/junction_with_calorifically_imperfect_gas.i)
# This input file tests compatibility of JunctionParallelChannels1Phase and CaloricallyImperfectGas.
T_in = 523.0
vel = -1
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = ${vel}
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[Functions]
[e_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '783.9 2742.3 2958.6 3489.2 4012.7 4533.3 5053.8 5574 6095.1 7140.2 8192.9 9256.3 10333.6 12543.9 14836.6 17216.3 19688.4 22273.7 25018.3 28042.3 31544.2 35818.1 41256.5 100756.5'
scale_factor = 1e3
[]
[mu_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '85.42 85.42 89.53 99.44 108.9 117.98 126.73 135.2 143.43 159.25 174.36 188.9 202.96 229.88 255.5 280.05 303.67 326.45 344.97 366.49 387.87 409.48 431.86 431.86'
scale_factor = 1e-7
[]
[k_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '186.82 186.82 194.11 212.69 231.55 250.38 268.95 287.19 305.11 340.24 374.92 409.66 444.75 511.13 583.42 656.44 733.32 826.53 961.15 1180.38 1546.31 2135.49 3028.08 3028.08'
scale_factor = 1e-3
[]
[]
[Modules/FluidProperties]
[fp]
type = CaloricallyImperfectGas
molar_mass = 0.002
e = e_fn
k = k_fn
mu = mu_fn
min_temperature = 100
max_temperature = 5000
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletVelocityTemperature1Phase
input = 'inlet:in'
vel = ${vel}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 3
[]
[inlet_plenum]
type = JunctionParallelChannels1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'inlet:out channel1:in channel2:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = JunctionParallelChannels1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'channel1:out channel2:out outlet:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 200
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = none
nl_rel_tol = 1e-8
nl_abs_tol = 2e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/err.not_a_3d_hs.i)
[GlobalParams]
scaling_factor_1phase = '1 1 1e-3'
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'blk:0'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1000 100 30'
[]
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '1000*y+300+30*z'
[]
[]
[Components]
[fch]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 6
length = 1
initial_T = 300
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
D_h = 0.2
f = 0.01
[]
[in]
type = InletVelocityTemperature1Phase
input = 'fch:in'
vel = 1
T = 300
[]
[out]
type = Outlet1Phase
input = 'fch:out'
p = 1.01e5
[]
[blk]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
widths = 0.1
inner_radius = 0.1
length = 1
n_elems = 6
n_part_elems = 1
initial_T = T_init
materials = 'mat'
names = blk
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch'
hs = blk
boundary = blk:inner
Hw = 10000
P_hf = 0.156434465
[]
[]
[Postprocessors]
[energy_hs]
type = HeatStructureEnergy3D
block = blk:0
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_fch]
type = ElementIntegralVariablePostprocessor
block = fch
variable = rhoEA
execute_on = 'INITIAL TIMESTEP_END'
[]
[total_energy]
type = SumPostprocessor
values = 'energy_fch energy_hs'
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = total_energy
compute_relative_change = false
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1
solve_type = PJFNK
line_search = basic
num_steps = 1000
steady_state_detection = true
steady_state_tolerance = 1e-08
nl_abs_tol = 1e-8
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.reversed_flow.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.1
length = 1
n_elems = 20
[]
[in]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = -0.18
T = 444.447
[]
[out]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:out'
p0 = 7e6
T0 = 444.447
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
num_steps = 30
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[]
[Outputs]
[exodus]
type = Exodus
file_base = phy.reversed_flow
show = 'rhouA T p'
[]
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_test_component/jacobian.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
fp = fp
f = 0
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[sw1]
type = SolidWall1Phase
input = fch1:in
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
A = 1
[]
[test_comp]
type = ShaftConnectedTestComponent
position = '1 0 0'
volume = 1
connections = 'fch1:out fch2:in'
[]
[fch2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
A = 1
[]
[sw2]
type = SolidWall1Phase
input = fch2:out
[]
[shaft]
type = Shaft
connected_components = 'test_comp'
initial_speed = 1
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
num_steps = 1
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-9'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
(modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/junction_one_to_one_1phase.i)
# This input file simulates the Sod shock tube using a junction in the middle
# of the domain. The solution should be exactly equivalent to the problem with
# no junction. This test examines the solutions at the junction connections
# and compares them to gold values generated from a version of this input file
# that has no junction.
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Functions]
[p_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 0.1'
[]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.4 1.12'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_boundary]
type = FreeBoundary1Phase
input = 'left_channel:in'
[]
[left_channel]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'left_channel:out right_channel:in'
[]
[right_channel]
type = FlowChannel1Phase
fp = fp
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1.0
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'right_channel:out'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 60
l_tol = 1e-4
start_time = 0.0
dt = 1e-3
num_steps = 5
abort_on_solve_fail = true
[]
[Postprocessors]
[rhoA_left]
type = SideAverageValue
variable = rhoA
boundary = left_channel:out
execute_on = 'initial timestep_end'
[]
[rhouA_left]
type = SideAverageValue
variable = rhouA
boundary = left_channel:out
execute_on = 'initial timestep_end'
[]
[rhoEA_left]
type = SideAverageValue
variable = rhoEA
boundary = left_channel:out
execute_on = 'initial timestep_end'
[]
[rhoA_right]
type = SideAverageValue
variable = rhoA
boundary = right_channel:in
execute_on = 'initial timestep_end'
[]
# rhouA_right is added by tests file
[rhoEA_right]
type = SideAverageValue
variable = rhoEA
boundary = right_channel:in
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
show = 'rhoA_left rhouA_left rhoEA_left rhoA_right rhouA_right rhoEA_right'
execute_on = 'initial timestep_end'
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/flow_channel/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial final'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/controls/set_component_real_value_control/test.i)
# This is testing that the values set by SetComponentRealValueControl are used.
# Function T0_fn prescribes values for T0 at inlet. We output the function
# values via a postprocessor `T_fn` and the inlet values via another
# postprocessor `T_ctrl`. Those two values have to be equal.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[set_inlet_value]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = T_inlet_fn:value
[]
[]
[Postprocessors]
[T_fn]
type = FunctionValuePostprocessor
function = T0_fn
[]
[T_ctrl]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
start_time = 0.0
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.wrong_fp.i)
[GlobalParams]
closures = simple_closures
initial_p = 1e5
initial_T = 300
initial_vel = 0
[]
[Modules/FluidProperties]
[fp_2phase]
type = StiffenedGasTwoPhaseFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
fp = fp_2phase # this is wrong
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 9.5e4
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 1
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/junction_with_calorifically_imperfect_gas.i)
# This input file tests compatibility of VolumeJunction1Phase and CaloricallyImperfectGas.
T_in = 523.0
vel = -1
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = ${vel}
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[Functions]
[e_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '783.9 2742.3 2958.6 3489.2 4012.7 4533.3 5053.8 5574 6095.1 7140.2 8192.9 9256.3 10333.6 12543.9 14836.6 17216.3 19688.4 22273.7 25018.3 28042.3 31544.2 35818.1 41256.5 100756.5'
scale_factor = 1e3
[]
[mu_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '85.42 85.42 89.53 99.44 108.9 117.98 126.73 135.2 143.43 159.25 174.36 188.9 202.96 229.88 255.5 280.05 303.67 326.45 344.97 366.49 387.87 409.48 431.86 431.86'
scale_factor = 1e-7
[]
[k_fn]
type = PiecewiseLinear
x = '100 280 300 350 400 450 500 550 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 5000'
y = '186.82 186.82 194.11 212.69 231.55 250.38 268.95 287.19 305.11 340.24 374.92 409.66 444.75 511.13 583.42 656.44 733.32 826.53 961.15 1180.38 1546.31 2135.49 3028.08 3028.08'
scale_factor = 1e-3
[]
[]
[Modules/FluidProperties]
[fp]
type = CaloricallyImperfectGas
molar_mass = 0.002
e = e_fn
k = k_fn
mu = mu_fn
min_temperature = 100
max_temperature = 5000
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletVelocityTemperature1Phase
input = 'inlet:in'
vel = ${vel}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 5
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'inlet:out channel1:in channel2:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = ${vel}
connections = 'channel1:out channel2:out outlet:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 5
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = none
nl_rel_tol = 1e-8
nl_abs_tol = 2e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
# Testing energy conservation at steady state
P_hf = ${fparse 0.6 * sin (pi/24)}
[GlobalParams]
scaling_factor_1phase = '1 1 1e-3'
gravity_vector = '0 0 0'
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'blk:0'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1000 10 30'
[]
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in1]
type = InletVelocityTemperature1Phase
input = 'fch1:in'
vel = 1
T = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0.15 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 300
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
f = 0.0
[]
[out1]
type = Outlet1Phase
input = 'fch1:out'
p = 1.01e5
[]
[in2]
type = InletVelocityTemperature1Phase
input = 'fch2:in'
vel = 1
T = 350
[]
[fch2]
type = FlowChannel1Phase
position = '0 0.15 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 350
initial_p = 1.01e5
initial_vel = 1
closures = simple_closures
A = 0.00314159
f = 0
[]
[out2]
type = Outlet1Phase
input = 'fch2:out'
p = 1.01e5
[]
[blk]
type = HeatStructureFromFile3D
file = mesh.e
position = '0 0 0'
initial_T = 325
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch1 fch2'
hs = blk
boundary = blk:rmin
Hw = 10000
P_hf = ${P_hf}
[]
[]
[Postprocessors]
[E_in1]
type = ADFlowBoundaryFlux1Phase
boundary = in1
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out1]
type = ADFlowBoundaryFlux1Phase
boundary = out1
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe1]
type = ADHeatRateConvection1Phase
block = fch1
T_wall = T_wall
T = T
Hw = Hw
P_hf = ${P_hf}
execute_on = 'initial timestep_end'
[]
[E_diff1]
type = DifferencePostprocessor
value1 = E_in1
value2 = E_out1
execute_on = 'initial timestep_end'
[]
[E_conservation1]
type = SumPostprocessor
values = 'E_diff1 hf_pipe1'
[]
[E_in2]
type = ADFlowBoundaryFlux1Phase
boundary = in2
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out2]
type = ADFlowBoundaryFlux1Phase
boundary = out2
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe2]
type = ADHeatRateConvection1Phase
block = fch2
T_wall = T_wall
T = T
Hw = Hw
P_hf = ${P_hf}
execute_on = 'initial timestep_end'
[]
[E_diff2]
type = DifferencePostprocessor
value1 = E_in2
value2 = E_out2
execute_on = 'initial timestep_end'
[]
[E_conservation2]
type = SumPostprocessor
values = 'E_diff2 hf_pipe2'
[]
[E_conservation_hs]
type = SumPostprocessor
values = 'hf_pipe1 hf_pipe2'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 5
end_time = 100
solve_type = NEWTON
line_search = basic
abort_on_solve_fail = true
nl_abs_tol = 1e-8
[]
[Outputs]
file_base = 'phy.conservation_ss'
[csv]
type = CSV
show = 'E_conservation1 E_conservation2 E_conservation_hs'
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation.i)
# Testing energy conservation with fluid at rest
P_hf = ${fparse 0.6 * sin (pi/24)}
[GlobalParams]
gravity_vector = '0 0 0'
[]
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'blk:0'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1000 100 30'
[]
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '1000*y+300+30*z'
[]
[]
[Components]
[in1]
type = SolidWall1Phase
input = 'fch1:in'
[]
[fch1]
type = FlowChannel1Phase
position = '0.15 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 300
initial_p = 1.01e5
initial_vel = 0
closures = simple_closures
A = 0.00314159
f = 0.0
[]
[out1]
type = SolidWall1Phase
input = 'fch1:out'
[]
[in2]
type = SolidWall1Phase
input = 'fch2:in'
[]
[fch2]
type = FlowChannel1Phase
position = '0 0.15 0'
orientation = '0 0 1'
fp = fp
n_elems = 10
length = 1
initial_T = 350
initial_p = 1.01e5
initial_vel = 0
closures = simple_closures
A = 0.00314159
f = 0.0
[]
[out2]
type = SolidWall1Phase
input = 'fch2:out'
[]
[blk]
type = HeatStructureFromFile3D
file = mesh.e
position = '0 0 0'
initial_T = T_init
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch1 fch2'
hs = blk
boundary = blk:rmin
Hw = 10000
P_hf = ${P_hf}
[]
[]
[Postprocessors]
[energy_hs]
type = ADHeatStructureEnergy3D
block = blk:0
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_fch1]
type = ElementIntegralVariablePostprocessor
block = fch1
variable = rhoEA
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_fch2]
type = ElementIntegralVariablePostprocessor
block = fch2
variable = rhoEA
execute_on = 'INITIAL TIMESTEP_END'
[]
[total_energy]
type = SumPostprocessor
values = 'energy_fch1 energy_fch2 energy_hs'
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = total_energy
compute_relative_change = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
num_steps = 10
solve_type = NEWTON
line_search = basic
abort_on_solve_fail = true
nl_abs_tol = 1e-8
[]
[Outputs]
file_base = 'phy.conservation'
[csv]
type = CSV
show = 'energy_change'
execute_on = 'FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
# This is testing that the values set by SetRealValueControl are used.
# The values of function T0_fn are set into an aux-field `aux`. Then,
# we compute the average value of this field in a postprocessor. It
# should be equal to the value of T0_fn.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[AuxVariables]
[aux]
[]
[]
[AuxKernels]
[aux_kernel]
type = ConstantAux
variable = aux
value = 350
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[set_inlet_value]
type = SetRealValueControl
parameter = AuxKernels/aux_kernel/value
value = T_inlet_fn:value
[]
[]
[Postprocessors]
[aux]
type = ElementAverageValue
variable = aux
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
start_time = 0.0
end_time = 1
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.par_fn.i)
#
# Tests the ability to set the hydraulic diameter by function.
#
D_h = 5
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e6
initial_T = 453.1
initial_vel = 0.0
closures = simple_closures
[]
[Functions]
[dh_fn]
type = ConstantFunction
value = ${D_h}
[]
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_wall]
type = SolidWall1Phase
input = pipe:in
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1.0e-4
D_h = dh_fn
f = 0.0
fp = eos
[]
[right_wall]
type = SolidWall1Phase
input = pipe:out
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Postprocessors]
[D_h]
type = ADElementIntegralMaterialProperty
mat_prop = D_h
block = pipe
[]
[]
[Outputs]
csv = true
show = 'D_h'
execute_on = 'timestep_end'
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.conservation_1phase.i)
# Tests conservation for heat transfer between a cylindrical heat structure and
# a 1-phase flow channel
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1e-3 1e-3 1e-8'
scaling_factor_temperature = 1e-3
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[main-material]
type = SolidMaterialProperties
k = 1e4
cp = 500.0
rho = 100.0
[]
[]
[Functions]
[T0_fn]
type = ParsedFunction
value = '290 + 20 * (y - 1)'
[]
[]
[Components]
[left_wall]
type = SolidWall1Phase
input = 'pipe:in'
[]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 2 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
A = 1.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
f = 0
[]
[right_wall]
type = SolidWall1Phase
input = 'pipe:out'
[]
[heat_transfer]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = heat_structure
hs_side = inner
Hw = 1e3
[]
[heat_structure]
#type = set externally
num_rods = 5
position = '0 2 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
names = 'main'
materials = 'main-material'
widths = '1.0'
n_part_elems = '5'
initial_T = T0_fn
[]
[]
[Postprocessors]
[E_pipe]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = pipe
execute_on = 'initial timestep_end'
[]
[E_heat_structure]
block = 'heat_structure:main'
n_units = 5
execute_on = 'initial timestep_end'
[]
[E_tot]
type = SumPostprocessor
values = 'E_pipe E_heat_structure'
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
file_base = 'phy.conservation_1phase_cylinder'
csv = true
show = 'E_tot_change'
execute_on = 'final'
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/phy.sub_discretization.i)
#
# Testing the ability to discretize the Pipe by dividing it into
# subsections
#
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
axial_region_names = 'r1 r2'
length = '1 1'
n_elems = '1 2'
A = 1
f = 0
fp = eos
[]
[inlet]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 0
[]
[Outputs]
[out]
type = Exodus
show = 'A'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_x.i)
# Testing that T_solid gets properly projected onto a pipe
# That's why Hw in pipe1 is set to 0, so we do not have any heat exchange
# Note that the pipe and the heat structure have an opposite orientation, which
# is crucial for this test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
cp = 100.0
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '290 + sin((1 - x) * pi * 1.4)'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 -0.2 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hs]
type = HeatStructureCylindrical
position = '1 -0.1 0'
orientation = '-1 0 0'
length = 1
n_elems = 50
#rotation = 90
materials = 'wall-mat'
n_part_elems = 3
widths = '0.1'
names = 'wall'
initial_T = T_init
[]
[hxconn]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe1
Hw = 0
P_hf = 6.2831853072e-01
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
num_steps = 1
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T_solid'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/misc/mesh_only/test.i)
[GlobalParams]
initial_T = 300
initial_p = 1e5
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1.e0 1.e-4 1.e-6'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hs_mat]
type = SolidMaterialProperties
rho = 1
cp = 1
k = 1
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 10
[]
[hs1]
type = HeatStructurePlate
fp = eos
position = '0 0 0'
orientation = '1 0 0'
n_elems = 10
length = 1
depth = 0.1
names = 'blk'
materials = 'hs_mat'
n_part_elems = 1
widths = '0.1'
[]
[pipe2]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '0 1 0'
A = 1.
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 10
[]
[hs2]
type = HeatStructurePlate
fp = eos
position = '0 0 0'
orientation = '0 1 0'
n_elems = 10
length = 1
depth = 0.1
names = 'blk'
materials = 'hs_mat'
n_part_elems = 1
widths = '0.1'
[]
[pipe3]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '0 0 1'
A = 1.
D_h = 1.12837916709551
f = 0
length = 1
n_elems = 10
[]
[hs3]
type = HeatStructurePlate
fp = eos
position = '0 0 0'
orientation = '0 0 1'
n_elems = 10
length = 1
depth = 0.1
names = 'blk'
materials = 'hs_mat'
n_part_elems = 1
widths = '0.1'
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:in pipe2:in pipe3:in'
position = '0 0 0'
volume = 1e-5
[]
[in1]
type = SolidWall
input = 'pipe1:out'
[]
[in2]
type = SolidWall
input = 'pipe2:out'
[]
[in3]
type = SolidWall
input = 'pipe3:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-5
num_steps = 1
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/problems/water_hammer/3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 517.252072255516
initial_vel = 0
scaling_factor_1phase = '1.e0 1.e0 1.e-2'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[p_fn]
type = PiecewiseConstant
axis = x
x = '0 0.5 1'
y = '7.5e6 6.5e6 6.5e6'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 200
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.
initial_p = p_fn
[]
# BCs
[left]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[right]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-5
num_steps = 10
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
velocity_as_vector = false
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/controls/set_bool_value_control/test.i)
# This is testing that the values set by SetBoolValueControl are used.
# The values of function T0_fn are compared to a threshold and the boolean
# result is stored into an aux field via `BooleanValueTestAux`.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[AuxVariables]
[aux]
[]
[]
[AuxKernels]
[aux_kernel]
type = BooleanValueTestAux
variable = aux
value = 1
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[threshold_ctrl]
type = UnitTripControl
condition = 'T > 347.5'
vars = 'T'
vals = 'T_inlet_fn:value'
[]
[set_bool_value]
type = SetBoolValueControl
parameter = AuxKernels/aux_kernel/value
value = 'threshold_ctrl:state'
[]
[]
[Postprocessors]
[aux]
type = ElementAverageValue
variable = aux
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
start_time = 0.0
end_time = 1
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_base/err.mixed_heat_modes.i)
# Tests that an error is thrown if the user specifies a mixture of heat source
# types (temperature and heat flux).
[GlobalParams]
initial_T = 300
initial_p = 100e3
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp_water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp_water
position = '0 0 0'
orientation = '1 0 0'
A = 1
f = 0
length = 1
n_elems = 1
[]
[ht1]
type = HeatTransferFromHeatFlux1Phase
flow_channel = pipe
q_wall = 1
P_hf = 1
Hw = 1
[]
[ht2]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe
T_wall = 300
P_hf = 1
Hw = 1
[]
[left]
type = SolidWall
input = 'pipe:in'
[]
[right]
type = SolidWall
input = 'pipe:out'
[]
[]
[Preconditioning]
[preconditioner]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu mumps'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 1
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 5
l_tol = 1e-10
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
(modules/thermal_hydraulics/test/tests/components/form_loss_from_function_1phase/phy.form_loss_1phase.i)
# Tests the form loss kernel for 1-phase flow.
#
# This test uses the following parameters and boundary data:
# Inlet: (rho = 996.5563397 kg/m^3, vel = 0.5 m/s)
# Outlet: p_out = 100 kPa
# Length: L = 2 m
# Form loss coefficient: K = 0.5, => K_prime = 0.25 m^-1 (uniform along length)
#
# The inlet pressure is
#
# p_in = p_out + dp ,
#
# where dp is given by the definition of the form loss coefficient:
#
# dp = K * 0.5 * rho * u^2
# = 0.5 * 0.5 * 996.5563397 * 0.5^2
# = 62.28477123125 Pa
#
# This value is output to CSV.
p_out = 100e3
[GlobalParams]
initial_p = ${p_out}
initial_vel = 0.5
initial_T = 300.0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 2
A = 1
n_elems = 5
f = 0
[]
[form_loss]
type = FormLossFromFunction1Phase
flow_channel = pipe
K_prime = 0.25
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe:in'
rho = 996.5563397
vel = 0.5
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = ${p_out}
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 5e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 20
start_time = 0.0
num_steps = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
# this is not the right value, should be the value from the inlet ghost cell
[p_in]
type = SideAverageValue
boundary = inlet
variable = p
execute_on = TIMESTEP_END
[]
[p_out]
type = FunctionValuePostprocessor
function = ${p_out}
execute_on = TIMESTEP_END
[]
[dp]
type = DifferencePostprocessor
value1 = p_in
value2 = p_out
execute_on = TIMESTEP_END
[]
[]
[Outputs]
[out]
type = CSV
show = 'dp'
execute_postprocessors_on = final
[]
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/volume_junction/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
volume = 1
position = '1 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-4
[]
[pipe2]
type = FlowChannel1Phase
fp = fp
# geometry
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
exodus = true
execute_on = 'initial final'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/problems/super_sonic_tube/test.i)
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1e-2 1e-4'
initial_p = 101325
initial_T = 300
initial_vel = 522.676
closures = simple_closures
spatial_discretization = cg
[]
[Modules/FluidProperties]
[ig]
type = IdealGasFluidProperties
gamma = 1.41
molar_mass = 0.028966206103678928
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = ig
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.0
length = 1
n_elems = 100
[]
[inlet]
type = SupersonicInlet
input = 'pipe:in'
p = 101325
T = 300.0
vel = 522.676
[]
[outlet]
type = FreeBoundary1Phase
input = 'pipe:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-5
num_steps = 10
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = TRAP
order = FIRST
[]
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/postprocessors/specific_impulse_1phase/Isp_1ph.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 6e6
initial_T = 600
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = IdealGasFluidProperties
gamma = 1.3066
molar_mass = 2.016e-3
k = 0.437
mu = 3e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = eos
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 0.1
f = 0.
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
m_dot = 0.1
T = 800
input = 'pipe1:in'
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 6e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
growth_factor = 1.4
optimal_iterations = 6
iteration_window = 2
[]
start_time = 0.0
end_time = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[]
[Postprocessors]
# hand calcs show that Isp should start at 274.3 at 600 K
# and rise to 316.7 at 800 K.
[Isp]
type = ADSpecificImpulse1Phase
p_exit = 1e6
fp = eos
boundary = outlet
[]
[Isp_inst]
type = ADSpecificImpulse1Phase
p_exit = 1e6
fp = eos
cumulative = false
boundary = outlet
[]
[outletT]
type = SideAverageValue
variable = T
boundary = pipe1:out
[]
[]
[Outputs]
[out]
type = CSV
show = 'Isp Isp_inst'
execute_on = 'INITIAL FINAL'
[]
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_compressor_1phase/shaft_motor_compressor.i)
area = 0.2359
dt = 1.e-3
[GlobalParams]
initial_p = 1e5
initial_T = 288
initial_vel = 60
initial_vel_x = 60
initial_vel_y = 0
initial_vel_z = 0
A = ${area}
A_ref = ${area}
f = 100
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
fp = fp
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[compressor]
type = ShaftConnectedCompressor1Phase
inlet = 'pipe:out'
outlet = 'pipe:in'
position = '0 0 0'
scaling_factor_rhoEV = 1e-5
volume = ${fparse area*0.45}
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
speed_cr_I = 1e12
speed_cr_fr = 0
tau_fr_coeff = '0 0 0 0'
tau_fr_const = 0
omega_rated = 200
mdot_rated = 21.74
rho0_rated = 1.1812
c0_rated = 340
speeds = '0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 2'
Rp_functions = 'Rp00 Rp04 Rp05 Rp06 Rp07 Rp08 Rp09 Rp10 Rp11 Rp11'
eff_functions = 'eff00 eff04 eff05 eff06 eff07 eff08 eff09 eff10 eff11 eff11'
[]
[pipe]
type = FlowChannel1Phase
position = '0.1 0 0'
orientation = '1 0 0'
length = 10
n_elems = 20
[]
[motor]
type = ShaftConnectedMotor
inertia = 1e2
torque = 100
[]
[shaft]
type = Shaft
connected_components = 'motor compressor'
initial_speed = 100
[]
[]
[Functions]
[Rp00]
type = PiecewiseLinear
x = '0 0.3736 0.4216'
y = '1 0.9701 0.9619'
[]
[eff00]
type = PiecewiseLinear
x = '0 0.3736 0.4216'
y = '0.001 0.8941 0.6641'
[]
[Rp04]
type = PiecewiseLinear
x = '0.3736 0.3745 0.3753 0.3762 0.3770 0.3919 0.4067 0.4216 0.4826'
y = '1.0789 1.0779 1.0771 1.0759 1.0749 1.0570 1.0388 1.0204 0.9450'
[]
[eff04]
type = PiecewiseLinear
x = '0.3736 0.3745 0.3753 0.3762 0.3770 0.3919 0.4067 0.4216 0.4826'
y = '0.8941 0.8929 0.8925 0.8915 0.8901 0.8601 0.7986 0.6641 0.1115'
[]
[Rp05]
type = PiecewiseLinear
x = '0.3736 0.4026 0.4106 0.4186 0.4266 0.4346 0.4426 0.4506 0.4586 0.4666 0.4746 0.4826 0.5941'
y = '1.2898 1.2442 1.2316 1.2189 1.2066 1.1930 1.1804 1.1677 1.1542 1.1413 1.1279 1.1150 0.9357'
[]
[eff05]
type = PiecewiseLinear
x = '0.3736 0.4026 0.4106 0.4186 0.4266 0.4346 0.4426 0.4506 0.4586 0.4666 0.4746 0.4826 0.5941'
y = '0.9281 0.9263 0.9258 0.9244 0.9226 0.9211 0.9195 0.9162 0.9116 0.9062 0.8995 0.8914 0.7793'
[]
[Rp06]
type = PiecewiseLinear
x = '0.4026 0.4613 0.4723 0.4834 0.4945 0.5055 0.5166 0.5277 0.5387 0.5609 0.5719 0.583 0.5941 0.7124'
y = '1.5533 1.4438 1.4232 1.4011 1.3793 1.3589 1.3354 1.3100 1.2867 1.2376 1.2131 1.1887 1.1636 0.896'
[]
[eff06]
type = PiecewiseLinear
x = '0.4026 0.4613 0.4723 0.4834 0.4945 0.5055 0.5166 0.5277 0.5387 0.5609 0.5719 0.583 0.5941 0.7124'
y = '0.9148 0.9255 0.9275 0.9277 0.9282 0.9295 0.9290 0.9269 0.9242 0.9146 0.9080 0.900 0.8920 0.8061'
[]
[Rp07]
type = PiecewiseLinear
x = '0.4613 0.5447 0.5587 0.5726 0.5866 0.6006 0.6145 0.6285 0.6425 0.6565 0.6704 0.6844 0.6984 0.7124 0.8358'
y = '1.8740 1.6857 1.6541 1.6168 1.5811 1.5430 1.5067 1.4684 1.4292 1.3891 1.3479 1.3061 1.2628 1.2208 0.8498'
[]
[eff07]
type = PiecewiseLinear
x = '0.4613 0.5447 0.5587 0.5726 0.5866 0.6006 0.6145 0.6285 0.6425 0.6565 0.6704 0.6844 0.6984 0.7124 0.8358'
y = '0.9004 0.9232 0.9270 0.9294 0.9298 0.9312 0.9310 0.9290 0.9264 0.9225 0.9191 0.9128 0.9030 0.8904 0.7789'
[]
[Rp08]
type = PiecewiseLinear
x = '0.5447 0.6638 0.6810 0.6982 0.7154 0.7326 0.7498 0.7670 0.7842 0.8014 0.8186 0.8358 0.9702'
y = '2.3005 1.9270 1.8732 1.8195 1.7600 1.7010 1.6357 1.5697 1.5019 1.4327 1.3638 1.2925 0.7347'
[]
[eff08]
type = PiecewiseLinear
x = '0.5447 0.6638 0.6810 0.6982 0.7154 0.7326 0.7498 0.7670 0.7842 0.8014 0.8186 0.8358 0.9702'
y = '0.9102 0.9276 0.9301 0.9313 0.9319 0.9318 0.9293 0.9256 0.9231 0.9153 0.9040 0.8933 0.8098'
[]
[Rp09]
type = PiecewiseLinear
x = '0.6638 0.7762 0.7938 0.8115 0.8291 0.8467 0.8644 0.8820 0.8997 0.9173 0.9349 0.9526 0.9702 1.1107 1.25120'
y = '2.6895 2.2892 2.2263 2.1611 2.0887 2.0061 1.9211 1.8302 1.7409 1.6482 1.5593 1.4612 1.3586 0.5422 -0.2742'
[]
[eff09]
type = PiecewiseLinear
x = '0.6638 0.7762 0.7938 0.8115 0.8291 0.8467 0.8644 0.8820 0.8997 0.9173 0.9349 0.9526 0.9702 1.1107 1.2512'
y = '0.8961 0.9243 0.9288 0.9323 0.9330 0.9325 0.9319 0.9284 0.9254 0.9215 0.9134 0.9051 0.8864 0.7380 0.5896'
[]
[Rp10]
type = PiecewiseLinear
x = '0.7762 0.9255 0.9284 0.9461 0.9546 0.9816 0.9968 1.0170 1.039 1.0525 1.0812 1.0880 1.1056 1.1107 1.2511'
y = '3.3162 2.6391 2.6261 2.5425 2.5000 2.3469 2.2521 2.1211 1.974 1.8806 1.6701 1.6169 1.4710 1.4257 0.1817'
[]
[eff10]
type = PiecewiseLinear
x = '0.7762 0.9255 0.9284 0.9461 0.9546 0.9816 0.9968 1.0170 1.0390 1.0525 1.0812 1.0880 1.1056 1.1107 1.2511'
y = '0.8991 0.9276 0.9281 0.9308 0.9317 0.9329 0.9318 0.9291 0.9252 0.9223 0.9116 0.9072 0.8913 0.8844 0.6937'
[]
[Rp11]
type = PiecewiseLinear
x = '0.9255 1.0749 1.134 1.2511'
y = '3.9586 2.9889 2.605 1.4928'
[]
[eff11]
type = PiecewiseLinear
x = '0.9255 1.0749 1.1340 1.2511'
y = '0.9257 0.9308 0.9328 0.8823'
[]
[S_energy_fcn]
type = ParsedFunction
value = '-(tau_isen+tau_diss)*omega'
vars = 'tau_isen tau_diss omega'
vals = 'compressor:isentropic_torque compressor:dissipation_torque shaft:omega'
[]
[energy_conservation_fcn]
type = ParsedFunction
value = '(E_change - S_energy * dt) / E_tot'
vars = 'E_change S_energy dt E_tot'
vals = 'E_change S_energy ${dt} E_tot'
[]
[]
[Postprocessors]
# mass conservation
[mass_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[mass_compressor]
type = ScalarVariable
variable = compressor:rhoV
execute_on = 'initial timestep_end'
[]
[mass_tot]
type = SumPostprocessor
values = 'mass_pipes mass_compressor'
execute_on = 'initial timestep_end'
[]
[mass_conservation]
type = ChangeOverTimePostprocessor
postprocessor = mass_tot
change_with_respect_to_initial = true
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
# energy conservation
[E_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[E_compressor]
type = ScalarVariable
variable = compressor:rhoEV
execute_on = 'initial timestep_end'
[]
[E_tot]
type = LinearCombinationPostprocessor
pp_coefs = '1 1'
pp_names = 'E_pipes E_compressor'
execute_on = 'initial timestep_end'
[]
[S_energy]
type = FunctionValuePostprocessor
function = S_energy_fcn
execute_on = 'initial timestep_end'
[]
[E_change]
type = ChangeOverTimePostprocessor
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
# This should also execute on initial. This value is
# lagged by one timestep as a workaround to moose issue #13262.
[energy_conservation]
type = FunctionValuePostprocessor
function = energy_conservation_fcn
execute_on = 'timestep_end'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
dt = ${dt}
num_steps = 6
solve_type = 'NEWTON'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/phy.massflowrate_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.1
length = 1
n_elems = 20
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.18
T = 444.447
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
num_steps = 30
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
file_base = 'phy.massflowrate_3eqn'
[exodus]
type = Exodus
show = 'rhouA T p'
[]
[]
(modules/thermal_hydraulics/test/tests/components/form_loss_from_external_app_1phase/phy.form_loss_1phase.slave.i)
[GlobalParams]
initial_p = 1e5
initial_vel = 0.5
initial_T = 300.0
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 2
A = 1
n_elems = 10
f = 0
[]
[form_loss]
type = FormLossFromExternalApp1Phase
flow_channel = pipe
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 680
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
abort_on_solve_fail = true
timestep_tolerance = 5e-14
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 5e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 20
start_time = 0.0
end_time = 4.0
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
exodus = true
show = 'K_prime p'
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/err.free.i)
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1. 1. 1.'
initial_vel = 0
initial_p = 1e5
initial_T = 300
closures = simple_closures
[]
[Modules/FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
D_h = 1.12837916709551
f = 0.01
length = 1
n_elems = 100
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[]
[Outputs]
[out]
type = Exodus
[]
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/jac.test.i)
[GlobalParams]
initial_p = 2e5
initial_T = 500
initial_vel = 100
initial_vel_x = 100
initial_vel_y = 0
initial_vel_z = 0
length = 1
n_elems = 2
A = 0.1
A_ref = 0.1
closures = simple_closures
fp = fp
f = 0.01
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[sw1]
type = SolidWall1Phase
input = fch1:in
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
initial_p = 2e6
[]
[turbine]
type = ShaftConnectedTurbine1Phase
inlet = 'fch1:out'
outlet = 'fch2:in'
position = '1 0 0'
volume = 0.3
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
speed_cr_I = 1e12
speed_cr_fr = 0
tau_fr_coeff = '0 0 12 0'
tau_fr_const = 0
omega_rated = 295
D_wheel = 0.4
head_coefficient = head
power_coefficient = power
[]
[fch2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
[]
[sw2]
type = SolidWall1Phase
input = fch2:out
[]
[shaft]
type = Shaft
connected_components = 'turbine'
initial_speed = 300
[]
[]
[Functions]
[head]
type = PiecewiseLinear
x = '0 0.1 1'
y = '0 15 20'
[]
[power]
type = PiecewiseLinear
x = '0 0.1 1'
y = '0 0.05 0.18'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.001
num_steps = 1
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-9'
automatic_scaling = true
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_with_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_T = T0
n_elems = 25
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 1.0
initial_T = T0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
initial_T = T0
n_elems = 24
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rho]
type = ScalarVariable
variable = junction:rhoV
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalarVariable
variable = junction:rhouV
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalarVariable
variable = junction:rhoEV
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_m_dot_3eqn_rdg.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_m_dot_fn]
type = PiecewiseLinear
x = '0 1'
y = '0 0.5'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = m_dot
function = inlet_m_dot_fn
[]
[]
[Postprocessors]
[inlet_m_dot]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = m_dot
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/equal_area_no_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
#
# This input file has no junction and is used for comparison to the results with
# a junction.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 2
initial_T = T0
n_elems = 50
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rhoA]
type = PointValue
variable = rhoA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhouA]
type = PointValue
variable = rhouA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rhoEA]
type = PointValue
variable = rhoEA
point = '1.02 0 0'
execute_on = 'initial timestep_end'
[]
[junction_rho]
type = ScalePostprocessor
value = junction_rhoA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalePostprocessor
value = junction_rhouA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalePostprocessor
value = junction_rhoEA
scaling_factor = 0.04
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'junction_rho junction_rhou junction_rhoE'
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_steady_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 34.84507
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
f = 0.0
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 102041.128
T0 = 300.615
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-4
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/flow_connection/err.connection_format.i)
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 28.964e-3
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_wall]
type = SolidWall1Phase
[]
[pipe]
type = FlowChannel1Phase
fp = fp
closures = simple_closures
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 5
A = 1.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
f = 0
[]
[right_wall]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = 0.01
num_steps = 1
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/jacobian.i)
[GlobalParams]
initial_T = 393.15
initial_vel = 0
initial_p = 17e+06
f = 0
fp = fp
closures = simple_closures
A = 1
gravity_vector = '0 0 0'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
gravity_vector = '0 0 0'
[]
[pump]
type = Pump1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
head = 95
A_ref = 1
volume = 1
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-9'
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/jac.1phase.i)
[Materials]
[mat]
type = ADGenericConstantMaterial
block = 'blk:0'
prop_names = 'density specific_heat thermal_conductivity'
prop_values = '1000 100 30'
[]
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '1000*y+300+30*z'
[]
[]
[GlobalParams]
scaling_factor_1phase = '1 1 1e-3'
gravity_vector = '0 0 0'
[]
[Components]
[fch]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
fp = fp
n_elems = 6
length = 1
initial_T = T_init
initial_p = 1.01e5
initial_vel = 0
closures = simple_closures
A = 0.00314159
D_h = 0.2
f = 0.01
[]
[in]
type = InletVelocityTemperature1Phase
input = 'fch:in'
vel = 1
T = 300
[]
[out]
type = Outlet1Phase
input = 'fch:out'
p = 1.01e5
[]
[blk]
type = HeatStructureFromFile3D
file = mesh.e
position = '0 0 0'
initial_T = T_init
[]
[ht]
type = HeatTransferFromHeatStructure3D1Phase
flow_channels = 'fch'
hs = blk
boundary = blk:rmin
Hw = 10000
P_hf = 0.1564344650402309
[]
[]
[Postprocessors]
[energy_hs]
type = ADHeatStructureEnergy3D
block = blk:0
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_fch]
type = ElementIntegralVariablePostprocessor
block = fch
variable = rhoEA
execute_on = 'INITIAL TIMESTEP_END'
[]
[total_energy]
type = SumPostprocessor
values = 'energy_fch energy_hs'
execute_on = 'INITIAL TIMESTEP_END'
[]
[energy_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = total_energy
compute_relative_change = true
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
petsc_options_iname = '-snes_test_err'
petsc_options_value = ' 1e-9'
[]
[]
[Executioner]
type = Transient
scheme = bdf2
dt = 0.1
num_steps = 1
solve_type = PJFNK
line_search = basic
abort_on_solve_fail = true
nl_abs_tol = 1e-8
[]
[Outputs]
file_base = 'phy.conservation'
csv = true
show = 'energy_change'
execute_on = 'final'
[]
(modules/thermal_hydraulics/test/tests/components/deprecated/free_boundary.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in]
type = FreeBoundary
input = 'pipe:in'
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[out]
type = FreeBoundary
input = 'pipe:out'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/problems/sod_shock_tube/sod_shock_tube.i)
# This test problem is the classic Sod shock tube test problem,
# which is a Riemann problem with the following parameters:
# * domain = (0,1)
# * gravity = 0
# * EoS: Ideal gas EoS with gamma = 1.4, R = 0.71428571428571428571
# * interface: x = 0.5
# * typical end time: 0.2
# Left initial values:
# * rho = 1
# * vel = 0
# * p = 1
# Right initial values:
# * rho = 0.125
# * vel = 0
# * p = 0.1
#
# The output can be viewed by opening Paraview with the state file `plot.pvsm`:
# paraview --state=plot.pvsm
# This will plot the numerical solution against the analytical solution
[GlobalParams]
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
closures = simple_closures
[]
[Functions]
[p_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 0.1'
[]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.4 1.12'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 100
A = 1.0
# IC
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[left_boundary]
type = FreeBoundary1Phase
input = 'pipe:in'
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'pipe:out'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
[]
solve_type = LINEAR
l_tol = 1e-4
nl_rel_tol = 1e-20
nl_abs_tol = 1e-8
nl_max_its = 60
# run to t = 0.2
start_time = 0.0
dt = 1e-3
num_steps = 200
abort_on_solve_fail = true
[]
[Outputs]
file_base = 'sod_shock_tube'
velocity_as_vector = false
execute_on = 'initial timestep_end'
[out]
type = Exodus
show = 'rho p vel'
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.shower.i)
# This problem models a "shower": water from two pipes, one hot and one cold,
# mixes together to produce a temperature between the two.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 1e5
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
# global parameters for pipes
fp = eos
orientation = '1 0 0'
length = 1
n_elems = 20
f = 0
scaling_factor_1phase = '1 1 1e-6'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_hot]
type = InletDensityVelocity1Phase
input = 'pipe_hot:in'
# rho @ (p = 1e5, T = 310 K)
rho = 1315.9279785683
vel = 1
[]
[inlet_cold]
type = InletDensityVelocity1Phase
input = 'pipe_cold:in'
# rho @ (p = 1e5, T = 280 K)
rho = 1456.9202619863
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe_warm:out'
p = 1e5
[]
[pipe_hot]
type = FlowChannel1Phase
position = '0 1 0'
A = 1
[]
[pipe_cold]
type = FlowChannel1Phase
position = '0 0 0'
A = 1
[]
[pipe_warm]
type = FlowChannel1Phase
position = '1 0.5 0'
A = 2
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe_cold:out pipe_hot:out pipe_warm:in'
position = '1 0.5 0'
volume = 1e-8
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-5
nl_max_its = 10
l_tol = 1e-2
l_max_its = 10
start_time = 0
end_time = 5
dt = 0.05
# abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the energy flux on
# the warm side of the junction is equal to the sum of the energy
# fluxes of the hot and cold inlets to the junction.
[energy_flux_hot]
type = EnergyFluxIntegral
boundary = pipe_hot:out
arhouA = rhouA
H = H
[]
[energy_flux_cold]
type = EnergyFluxIntegral
boundary = pipe_cold:out
arhouA = rhouA
H = H
[]
[energy_flux_warm]
type = EnergyFluxIntegral
boundary = pipe_warm:in
arhouA = rhouA
H = H
[]
[energy_flux_inlet_sum]
type = SumPostprocessor
values = 'energy_flux_hot energy_flux_cold'
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = energy_flux_warm
value2 = energy_flux_inlet_sum
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
sync_only = true
sync_times = '3 4 5'
[]
[console]
type = Console
max_rows = 1
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/postprocessors/flow_junction_flux_1phase/flow_junction_flux_1phase.i)
# This input file tests mass conservation at steady-state by looking at the
# net mass flux into the domain.
T_in = 523.0
m_dot = 100
p_out = 7e6
[GlobalParams]
initial_p = ${p_out}
initial_vel = 1
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 3
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletMassFlowRateTemperature1Phase
input = 'inlet:in'
m_dot = ${m_dot}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 3
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 1
connections = 'inlet:out channel1:in channel2:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
[]
[channel1]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 4
D_h = 1
[]
[K_bypass]
type = FormLossFromFunction1Phase
K_prime = 500
flow_channel = channel1
[]
[channel2]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 10
A = 1
D_h = 1
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 1
connections = 'channel1:out channel2:out outlet:in'
volume = 1
scaling_factor_rhoEV = '1e-5'
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${p_out}
input = 'outlet:out'
[]
[]
[Postprocessors]
[inlet_in_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet_bc'
equation = mass
[]
[inlet_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'inlet:out'
connection_index = 0
junction = inlet_plenum
equation = mass
[]
[channel1_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:in'
connection_index = 1
junction = inlet_plenum
equation = mass
[]
[channel1_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel1:out'
connection_index = 0
junction = outlet_plenum
equation = mass
[]
[channel2_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:in'
connection_index = 2
junction = inlet_plenum
equation = mass
[]
[channel2_out_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'channel2:out'
connection_index = 1
junction = outlet_plenum
equation = mass
[]
[outlet_in_m_dot]
type = ADFlowJunctionFlux1Phase
boundary = 'outlet:in'
connection_index = 2
junction = outlet_plenum
equation = mass
[]
[outlet_out_m_dot]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet_bc'
equation = mass
[]
[net_mass_flow_rate_domain]
type = LinearCombinationPostprocessor
pp_names = 'inlet_in_m_dot outlet_out_m_dot'
pp_coefs = '1 -1'
[]
[net_mass_flow_rate_volume_junction]
type = LinearCombinationPostprocessor
pp_names = 'inlet_out_m_dot channel1_in_m_dot channel2_in_m_dot'
pp_coefs = '1 -1 -1'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
end_time = 10000
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.01
optimal_iterations = 8
iteration_window = 2
[]
timestep_tolerance = 1e-6
abort_on_solve_fail = true
line_search = none
nl_rel_tol = 1e-8
nl_abs_tol = 2e-8
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
[out]
type = CSV
execute_on = 'FINAL'
show = 'net_mass_flow_rate_domain net_mass_flow_rate_volume_junction'
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.unequal_area.i)
# Junction between 2 pipes where the second has half the area of the first.
# The momentum density of the second should be twice that of the first.
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 250
initial_p = 1e5
initial_vel = 1
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
f = 0
fp = eos
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 1.37931034483
vel = 1
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 1
n_elems = 20
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1e-8
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
A = 0.5
n_elems = 20
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-10
l_max_its = 10
start_time = 0
end_time = 3
dt = 0.1
abort_on_solve_fail = true
[]
[Postprocessors]
# These post-processors are used to test that the outlet side of the junction,
# which has half the area of the inlet side, has twice the momentum density
# that the inlet side does.
[rhouA_pipe1]
type = SideAverageValue
variable = rhouA
boundary = pipe1:out
[]
[rhouA_pipe2]
type = SideAverageValue
variable = rhouA
boundary = pipe2:out
[]
[test_rel_err]
type = RelativeDifferencePostprocessor
value1 = rhouA_pipe1
value2 = rhouA_pipe2
[]
[]
[Outputs]
[out]
type = CSV
show = test_rel_err
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/phy.energy_walltemperature_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when
# wall temperature is specified. Conservation is checked by comparing the
# integral of the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[ht_pipe]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = pipe
T_wall = 550
Hw = 1.0e3
P_hf = 4.4925e-2
[]
[inlet]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Postprocessors]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[heat_added]
type = TimeIntegratedPostprocessor
value = hf_pipe
execute_on = 'initial timestep_end'
[]
[E]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
execute_on = 'initial timestep_end'
[]
[E_change]
type = ChangeOverTimePostprocessor
postprocessor = E
change_with_respect_to_initial = true
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = DifferencePostprocessor
value1 = heat_added
value2 = E_change
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = crank-nicolson
abort_on_solve_fail = true
dt = 1e-1
solve_type = 'NEWTON'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
num_steps = 10
[]
[Outputs]
[out]
type = CSV
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/misc/uniform_refine/test.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
rdg_slope_reconstruction = FULL
f = 0
fp = eos
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat1]
type = SolidMaterialProperties
rho = 10
cp = 1
k = 1
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
A = 1
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
volume = 1e-5
position = '1 0 0'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe2:out'
[]
[hs]
type = HeatStructureCylindrical
position = '0 1 0'
orientation = '1 0 0'
length = '1'
n_elems = '2'
names = '0'
widths = 0.5
n_part_elems = '1'
materials = 'mat1'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-4
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-7
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
automatic_scaling = true
[]
[Outputs]
exodus = true
show = 'A'
[]
[Debug]
show_actions = true
[]
(modules/thermal_hydraulics/test/tests/components/outlet_1phase/phy.solidwall_outlet_3eqn.i)
# This test problem simulates a tube filled with steam that is suddenly opened
# on one end to an environment with a lower pressure.
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.43
cv = 1040.0
q = 2.03e6
p_inf = 0.0
q_prime = -2.3e4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 100
A = 1.0
# IC
initial_T = 400
initial_p = 1e5
initial_vel = 0
f = 0
[]
[left_wall]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 0.95e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-5
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
end_time = 0.2
dt = 0.01
abort_on_solve_fail = true
automatic_scaling = true
[]
[Outputs]
file_base = 'phy.solidwall_outlet_3eqn'
velocity_as_vector = false
[exodus]
type = Exodus
show = 'p T vel'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/dependency/test.i)
# This is testing that controls are executed in the correct order
#
# If controls are executed in the right order, then T_inlet_ctrl
# reads the value of temperature (T = 345 K) from a function. Then
# this value is set into the BC and then is it sampled by a
# postprocessor whose value is then written into a CSV file.
#
# If controls were executed in the wrong order, we would sample the
# stagnation temperature function at time t = 0, which would give
# T = 360 K back, and we would see this value in the CSV file instead.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 355.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
# Stagnation temperature in time
[T0_fn]
type = PiecewiseLinear
x = '0 1e-5'
y = '360 345'
[]
[]
[ControlLogic]
[set_inlet_value_ctrl]
type = SetComponentRealValueControl
component = inlet
parameter = T0
value = T_inlet_ctrl:value
[]
[T_inlet_ctrl]
type = GetFunctionValueControl
function = T0_fn
[]
[]
[Postprocessors]
[T_ctrl]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-5
num_steps = 1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/misc/surrogate_power_profile/surrogate_power_profile.i)
# This takes an exodus file with a power profile and uses that in a heat structure
# of a core channel as power density. This tests the capability of taking a
# rattlesnake generated power profile and using it in RELAP-7.
[GlobalParams]
initial_p = 15.5e6
initial_vel = 0.
initial_T = 559.15
gravity_vector = '0 -9.8 0'
scaling_factor_1phase = '1 1 1e-4'
scaling_factor_temperature = 1e-2
closures = simple_closures
[]
[Modules/FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[gap-mat]
type = SolidMaterialProperties
k = 0.6
cp = 1.
rho = 1.
[]
[clad-mat]
type = SolidMaterialProperties
k = 21.5
cp = 350.
rho = 6.55e3
[]
[]
[Components]
[CCH1:pipe]
type = FlowChannel1Phase
position = '0.02 0 0'
orientation = '0 1 0'
length = 3.865
n_elems = 20
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = water
[]
[CCH1:solid]
type = HeatStructureCylindrical
position = '0.024748 0 0'
orientation = '0 1 0'
length = 3.865
n_elems = 20
initial_T = 559.15
names = 'fuel gap clad'
widths = '0.004096 0.0001 0.000552'
n_part_elems = '5 1 2'
materials = 'fuel-mat gap-mat clad-mat'
[]
[CCH1:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = CCH1:pipe
hs = CCH1:solid
hs_side = outer
Hw = 5.33e4
P_hf = 2.9832563838489e-2
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'CCH1:pipe:in'
m_dot = 0.1
T = 559.15
[]
[outlet]
type = Outlet1Phase
input = 'CCH1:pipe:out'
p = 15.5e6
[]
[]
[UserObjects]
[reactor_power_density_uo]
type = SolutionUserObject
mesh = 'power_profile.e'
system_variables = power_density
translation = '0. 0. 0.'
[]
[]
[Functions]
[power_density_fn]
type = SolutionFunction
from_variable = power_density
solution = reactor_power_density_uo
[]
[]
[AuxVariables]
[power_density]
family = MONOMIAL
order = CONSTANT
block = 'CCH1:solid:fuel'
[]
[]
[AuxKernels]
[power_density_aux]
type = FunctionAux
variable = power_density
function = power_density_fn
block = 'CCH1:solid:fuel'
execute_on = 'timestep_begin'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
num_steps = 10
dt = 1e-2
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-9
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/misc/initial_from_file/heat_transfer_from_heat_structure/steady_state.i)
[GlobalParams]
scaling_factor_1phase = '1. 1.e-2 1.e-4'
scaling_factor_temperature = 1e-2
initial_T = 500
initial_p = 6.e6
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[mat1]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Functions]
[Ts_init]
type = ParsedFunction
value = '2*sin(x*pi)+507'
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.1
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 3
names = 'wall'
n_part_elems = 1
materials = 'mat1'
inner_radius = 0.01
widths = 0.1
initial_T = Ts_init
[]
[ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = pipe
hs = hs
hs_side = INNER
Hw = 10000
[]
[temp_outside]
type = HSBoundarySpecifiedTemperature
hs = hs
boundary = hs:outer
T = Ts_init
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 500
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 6e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1
num_steps = 100
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
exodus = true
execute_on = 'initial final'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/t_junction_1phase.i)
# Junction between 3 pipes, 1 of which goes to a dead-end. All ends are walls,
# and 1 of the pipes is pressurized higher than the others.
A_big = 1
A_small = 0.5
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
initial_T = 300
initial_vel = 0
n_elems = 20
length = 1
f = 0
fp = fp
rdg_slope_reconstruction = minmod
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
q = 0
q_prime = 0
p_inf = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
A = ${A_big}
# This pipe is pressurized higher than the others.
initial_p = 1.05e5
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
A = ${A_big}
initial_p = 1e5
[]
[pipe3]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '0 1 0'
# This pipe is smaller than the others.
A = ${A_small}
initial_p = 1e5
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in pipe3:in'
position = '1 0 0'
volume = 0.37
initial_p = 1e5
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[pipe1_wall]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[pipe2_wall]
type = SolidWall1Phase
input = 'pipe2:out'
[]
[pipe3_wall]
type = SolidWall1Phase
input = 'pipe3:out'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
end_time = 5
dt = 0.05
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
# mass conservation
[mass_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoA
block = 'pipe1 pipe2 pipe3'
execute_on = 'initial timestep_end'
[]
[mass_junction]
type = ScalarVariable
variable = junction:rhoV
execute_on = 'initial timestep_end'
[]
[mass_tot]
type = SumPostprocessor
values = 'mass_pipes mass_junction'
execute_on = 'initial timestep_end'
[]
[mass_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = mass_tot
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
# energy conservation
[E_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = 'pipe1 pipe2 pipe3'
execute_on = 'initial timestep_end'
[]
[E_junction]
type = ScalarVariable
variable = junction:rhoEV
execute_on = 'initial timestep_end'
[]
[E_tot]
type = SumPostprocessor
values = 'E_pipes E_junction'
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
show = 'mass_tot_change E_tot_change'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/clg.ctrl_T0_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1.01e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 350'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = T0
function = inlet_T0_fn
[]
[]
[Postprocessors]
[inlet_T0]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T0
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/turbine_startup.i)
# This test tests that the turbine can startup from rest and reach full power.
# The mass flow rate for the inlet component is ramped up over 10s. The dyno
# component and pid_ctrl controler are used to maintain the turbine's rated shaft
# speed. The turbine should supply ~1e6 W of power to the shaft by the end of the test.
omega_rated = 450
mdot = 5.0
T_in = 1000.0
p_out = 1e6
[GlobalParams]
f = 1
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
n_elems = 20
initial_T = ${T_in}
initial_p = ${p_out}
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[Modules/FluidProperties]
[eos]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[ch_in]
type = FlowChannel1Phase
position = '-1 0 0'
orientation = '1 0 0'
length = 1
A = 0.1
D_h = 1
fp = eos
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'ch_in:in'
m_dot = 0
T = ${T_in}
[]
[turbine]
type = ShaftConnectedTurbine1Phase
inlet = 'ch_in:out'
outlet = 'ch_out:in'
position = '0 0 0'
scaling_factor_rhoEV = 1e-5
A_ref = 0.1
volume = 0.0002
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
speed_cr_I = 1e12
speed_cr_fr = 0
tau_fr_coeff = '0 0 0 0'
tau_fr_const = 0
omega_rated = ${omega_rated}
D_wheel = 0.4
head_coefficient = head
power_coefficient = power
[]
[ch_out]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 0.1
D_h = 1
fp = eos
[]
[outlet]
type = Outlet1Phase
input = 'ch_out:out'
p = ${p_out}
[]
[dyno]
type = ShaftConnectedMotor
inertia = 10
torque = -450
[]
[shaft]
type = Shaft
connected_components = 'turbine dyno'
initial_speed = ${omega_rated}
[]
[]
[Functions]
[head]
type = PiecewiseLinear
x = '0 7e-3 1e-2'
y = '0 15 20'
[]
[power]
type = PiecewiseLinear
x = '0 6e-3 1e-2'
y = '0 0.05 0.18'
[]
[mfr_fn]
type = PiecewiseLinear
x = '0 10'
y = '1e-6 ${mdot}'
[]
[dts]
type = PiecewiseConstant
y = '5e-3 1e-2 5e-2 5e-1'
x = '0 0.5 1 10'
[]
[]
[ControlLogic]
[mfr_cntrl]
type = TimeFunctionComponentControl
component = inlet
parameter = m_dot
function = mfr_fn
[]
[speed_set_point]
type = GetFunctionValueControl
function = ${omega_rated}
[]
[pid_ctrl]
type = PIDControl
input = omega
set_point = speed_set_point:value
K_i = 2
K_p = 5
K_d = 5
initial_value = -450
[]
[set_torque_value]
type = SetComponentRealValueControl
component = dyno
parameter = torque
value = pid_ctrl:output
[]
[]
[Postprocessors]
[omega]
type = ScalarVariable
variable = shaft:omega
execute_on = 'initial timestep_end'
[]
[flow_coefficient]
type = ScalarVariable
variable = turbine:flow_coeff
execute_on = 'initial timestep_end'
[]
[delta_p]
type = ScalarVariable
variable = turbine:delta_p
execute_on = 'initial timestep_end'
[]
[power]
type = ScalarVariable
variable = turbine:power
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
start_time = 0
[TimeStepper]
type = FunctionDT
function = dts
[]
end_time = 20
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-4
nl_max_its = 30
l_tol = 1e-4
l_max_its = 20
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[console]
type = Console
max_rows = 1
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_flux_1phase/phy.q_wall_multiple_3eqn.i)
# Tests that energy conservation is satisfied in 1-phase flow when there are
# multiple heat transfer components connected to the same pipe, using specified
# wall heat flux.
#
# This problem has 2 wall heat flux sources, each with differing parameters.
# Solid wall boundary conditions are imposed such that there should be no flow,
# and the solution should be spatially uniform. With no other sources, the
# energy balance is
# (rho*e*A)^{n+1} = (rho*e*A)^n + dt * [(q1*P1) + (q2*P2)]
# Note that spatial integration is dropped here due to spatial uniformity, and
# E has been replaced with e since velocity should be zero.
#
# For the initial conditions
# p = 100 kPa
# T = 300 K
# the density and specific internal energy should be
# rho = 1359.792245 kg/m^3
# e = 1.1320645935e+05 J/kg
#
# With the following heat source parameters:
# q1 = 10 MW/m^2 P1 = 0.2 m
# q2 = 20 MW/m^2 P2 = 0.4 m
# and A = 1 m^2 and dt = 2 s, the new energy solution value should be
# (rho*e*A)^{n+1} = 1359.792245 * 1.1320645935e+05 * 1 + 2 * (10e6 * 0.2 + 20e6 * 0.4)
# = 173937265.50803775 J/m
#
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = 100e3
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
A = 1
f = 0
# length and number of elements should be arbitrary for the test
length = 10
n_elems = 1
[]
[ht1]
type = HeatTransferFromHeatFlux1Phase
flow_channel = pipe
q_wall = 10e6
P_hf = 0.2
Hw = 1
[]
[ht2]
type = HeatTransferFromHeatFlux1Phase
flow_channel = pipe
q_wall = 20e6
P_hf = 0.4
Hw = 1
[]
[left]
type = SolidWall1Phase
input = 'pipe:in'
[]
[right]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Preconditioning]
[preconditioner]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 5
l_tol = 1e-10
l_max_its = 10
[]
[Postprocessors]
[rhoEA_predicted]
type = ElementAverageValue
variable = rhoEA
block = pipe
[]
[]
[Outputs]
[out]
type = CSV
show = 'rhoEA_predicted'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_volumetric_1phase/phy.conservation.1phase.i)
# Tests energy conservation for HeatSourceVolumetric component with 1-phase flow
[GlobalParams]
scaling_factor_1phase = '1 1e-2 1e-4'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[flow_channel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
fp = fp
closures = simple_closures
initial_T = 310
initial_p = 1e5
initial_vel = 0
[]
[wall1]
type = SolidWall1Phase
input = flow_channel:in
[]
[wall2]
type = SolidWall1Phase
input = flow_channel:out
[]
[heat_source]
type = HeatSourceVolumetric1Phase
flow_channel = flow_channel
q = 1e3
[]
[]
[Postprocessors]
[E_tot]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = 0.1
end_time = 1
abort_on_solve_fail = true
[]
[Outputs]
csv = true
show = 'E_tot_change'
execute_on = 'final'
[]
(modules/thermal_hydraulics/test/tests/components/inlet_mass_flow_rate_1phase/clg.ctrl_T_3eqn_rdg.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 0.1
T = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[inlet_T_fn]
type = PiecewiseLinear
x = '0 1'
y = '300 350'
[]
[]
[ControlLogic]
[set_inlet_value]
type = TimeFunctionComponentControl
component = inlet
parameter = T
function = inlet_T_fn
[]
[]
[Postprocessors]
[inlet_T]
type = RealComponentParameterValuePostprocessor
component = inlet
parameter = T
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/outlet_1phase/clg.ctrl_p_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0.0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 50
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = fp
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Functions]
[outlet_p_fn]
type = PiecewiseLinear
x = '0 1'
y = '1e5 1.001e5'
[]
[]
[ControlLogic]
[set_outlet_value]
type = TimeFunctionComponentControl
component = outlet
parameter = p
function = outlet_p_fn
[]
[]
[Postprocessors]
[outlet_p]
type = RealComponentParameterValuePostprocessor
component = outlet
parameter = p
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0.0
dt = 0.25
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-5
nl_abs_tol = 1e-6
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.1phase.i)
[GlobalParams]
initial_p = 1e5
initial_vel = 0
initial_T = 300
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0.1 0'
orientation = '0 0 1'
length = 4
n_elems = 2
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = 4
n_elems = 2
names = 'fuel'
widths = '0.1'
n_part_elems = '1'
materials = 'fuel-mat'
initial_T = 300
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 1e5
T0 = 300
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-5
solve_type = 'NEWTON'
num_steps = 1
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/flow_channel_1phase/jacobian.i)
[GlobalParams]
initial_p = 9.5e4
initial_T = 310
initial_vel = 2
gravity_vector = '9.81 0 0'
scaling_factor_1phase = '1. 1. 1.'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.12837916709551
f = 0.0
length = 1
n_elems = 2
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-snes_type -snes_test_err'
petsc_options_value = 'test 1e-11'
[]
(modules/thermal_hydraulics/test/tests/closures/simple_1phase/err.missing_f_1phase.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_vel = 0
initial_p = 1e5
initial_T = 300
closures = simple_closures
[]
[Modules/FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = water
position = '0 0 0'
orientation = '1 0 0'
A = 1.
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 10
T0 = 10
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 10
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1e-4
dtmin = 1.e-7
solve_type = 'PJFNK'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-8
l_max_its = 100
start_time = 0.0
num_steps = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/controls/get_function_value_control/test.i)
# This is testing that the values obtained by GetFunctionValueControl are used.
# Function T0_fn prescribes values for T_inlet_fn control. We output the function
# values via a postprocessor `T_fn` and the control data values via another
# postprocessor `T_ctrl`. Those two values have to be equal.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
scaling_factor_1phase = '1 1e-2 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[]
[Postprocessors]
[T_fn]
type = FunctionValuePostprocessor
function = T0_fn
[]
[T_ctrl]
type = RealControlDataValuePostprocessor
control_data_name = T_inlet_fn:value
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
start_time = 0.0
end_time = 1
[]
[Outputs]
csv = true
[]
(modules/thermal_hydraulics/test/tests/components/junction_one_to_one_1phase/no_junction_1phase.i)
# This input file is used to generate gold values for the junction_one_to_one_1phase.i
# test. Unlike junction_one_to_one_1phase.i, this file has no junction in the
# middle of the domain. In junction_one_to_one_1phase.i, the post-processors are
# side post-processors, but in this input file, side post-processors cannot be
# used to obtain the solution at these positions since there are no sides there.
# Therefore, the solution is sampled at points just to the left and right of
# the middle to obtain the piecewise constant solution values to either side of
# the interface.
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Functions]
[p_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.0 0.1'
[]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '1.4 1.12'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[left_boundary]
type = FreeBoundary1Phase
input = 'channel:in'
[]
[channel]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 100
A = 1.0
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = 0
f = 0
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'channel:out'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 60
l_tol = 1e-4
start_time = 0.0
dt = 1e-3
num_steps = 5
abort_on_solve_fail = true
[]
[Postprocessors]
[rhoA_left]
type = PointValue
variable = rhoA
point = '0.4999 0 0'
execute_on = 'initial timestep_end'
[]
[rhouA_left]
type = PointValue
variable = rhouA
point = '0.4999 0 0'
execute_on = 'initial timestep_end'
[]
[rhoEA_left]
type = PointValue
variable = rhoEA
point = '0.4999 0 0'
execute_on = 'initial timestep_end'
[]
[rhoA_right]
type = PointValue
variable = rhoA
point = '0.5001 0 0'
execute_on = 'initial timestep_end'
[]
[rhouA_right]
type = PointValue
variable = rhouA
point = '0.5001 0 0'
execute_on = 'initial timestep_end'
[]
[rhoEA_right]
type = PointValue
variable = rhoEA
point = '0.5001 0 0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
file_base = 'junction_one_to_one_1phase_out'
execute_on = 'initial timestep_end'
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_y.i)
# Testing that T_solid gets properly projected onto a pipe
# That's why Hw in pipe1 is set to 0, so we do not have any heat exchange
# Note that the pipe and the heat structure have an opposite orientation, which
# is crucial for this test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
cp = 100.0
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '290 + sin((1 - y) * pi * 1.4)'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0.2 0 0'
orientation = '0 1 0'
length = 1
n_elems = 50
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hs]
type = HeatStructureCylindrical
position = '0.1 1 0'
orientation = '0 -1 0'
length = 1
n_elems = 50
materials = 'wall-mat'
n_part_elems = 3
widths = '0.1'
names = 'wall'
initial_T = T_init
[]
[hxconn]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe1
Hw = 0
P_hf = 6.2831853072e-01
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
num_steps = 1
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T_solid'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/clg.head.i)
[GlobalParams]
initial_T = 393.15
initial_vel = 0.0372
f = 0
fp = fp
scaling_factor_1phase = '1e-2 1e-2 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[pump_head_fn]
type = PiecewiseLinear
x = '0 0.5'
y = '0 1 '
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 20
T = 393.15
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 0.567
initial_p = 1.318964e+07
[]
[pump]
type = Pump1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
head = 0
volume = 0.567
A_ref = 0.567
initial_p = 1.318964e+07
initial_vel_x = 0.0372
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhoEV = 1e-5
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 10
A = 0.567
initial_p = 1.4072e+07
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1.4072e+07
[]
[]
[ControlLogic]
[pump_head_ctrl]
type = TimeFunctionComponentControl
component = pump
parameter = head
function = pump_head_fn
[]
[]
[Postprocessors]
[pump_head]
type = RealComponentParameterValuePostprocessor
component = pump
parameter = head
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.1
num_steps = 10
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[out]
type = CSV
show = 'pump_head'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/solid_wall_1phase/jacobian.i)
[GlobalParams]
initial_p = 9.5e4
initial_T = 310
initial_vel = 2
gravity_vector = '9.81 0 0'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.12837916709551
f = 0.0
length = 1
n_elems = 3
[]
[inlet]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-snes_type -snes_test_err'
petsc_options_value = 'test 1e-11'
[]
(modules/thermal_hydraulics/test/tests/components/gate_valve_1phase/gate_valve_1phase.i)
# This input file is used to test the gate valve component.
# This problem consists of a T junction of 3 pipes. The inlet pipe is one of the
# 2 pipes of the "top" of the T. The other 2 pipes each have a gate valve.
# Initially, one of the 2 outlet pipes has an open valve and the other has a
# closed valve. Later in the transient, the valves gradually open/close to switch
# the outlet flow direction.
p = 1.0e5
T = 300.0
rho = 1.161430436 # @ 1e5 Pa, 300 K
D = 0.1
A = ${fparse pi * D^2 / 4.0}
V_junction = ${fparse pi * D^3 / 4.0}
vel_in = 2.0
m_dot = ${fparse rho * vel_in * A}
t_begin = 0.3
delta_t_open = 0.1
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = ${T}
initial_p = ${p}
initial_vel = 0
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[pipe3_open_fn]
type = TimeRampFunction
initial_value = 1
final_value = 0
initial_time = ${t_begin}
ramp_duration = ${delta_t_open}
[]
[pipe2_open_fn]
type = ParsedFunction
value = '1 - pipe3_phi'
vars = 'pipe3_phi'
vals = 'pipe3_open_fn'
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = ${m_dot}
T = ${T}
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 50
A = ${A}
[]
[volume_junction]
type = VolumeJunction1Phase
position = '1 0 0'
connections = 'pipe1:out pipe2A:in pipe3A:in'
volume = ${V_junction}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
[]
[pipe2A]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '0 1 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe2_valve]
type = GateValve1Phase
connections = 'pipe2A:out pipe2B:in'
open_area_fraction = 0 # (controlled via 'pipe2_valve_control')
[]
[pipe2B]
type = FlowChannel1Phase
position = '1 0.5 0'
orientation = '0 1 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe2_outlet]
type = Outlet1Phase
input = 'pipe2B:out'
p = ${p}
[]
[pipe3A]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe3_valve]
type = GateValve1Phase
connections = 'pipe3A:out pipe3B:in'
open_area_fraction = 0 # (controlled via 'pipe3_valve_control')
[]
[pipe3B]
type = FlowChannel1Phase
position = '1.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 25
A = ${A}
[]
[pipe3_outlet]
type = Outlet1Phase
input = 'pipe3B:out'
p = ${p}
[]
[]
[ControlLogic]
[pipe2_valve_control]
type = TimeFunctionComponentControl
component = pipe2_valve
parameter = open_area_fraction
function = pipe2_open_fn
[]
[pipe3_valve_control]
type = TimeFunctionComponentControl
component = pipe3_valve
parameter = open_area_fraction
function = pipe3_open_fn
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = PJFNK
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
[Outputs]
exodus = true
show = 'p T vel'
velocity_as_vector = false
print_linear_residuals = false
[console]
type = Console
max_rows = 1
[]
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/phy.form_loss.i)
# This test measures the pressure drop across the volume junction with K=1.
A = 0.1
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-5'
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
initial_T = 300
initial_p = 1e5
initial_vel = 1
n_elems = 20
length = 1
f = 0
fp = fp
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
q = 0
q_prime = 0
p_inf = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
A = ${A}
[]
[pipe2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
A = ${A}
initial_p = 1e5
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 0.005
initial_p = 1e5
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
[]
[pipe1_in]
type = InletVelocityTemperature1Phase
input = 'pipe1:in'
vel = 1
T = 300
[]
[pipe2_out]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Postprocessors]
[pJ_in]
type = SideAverageValue
variable = p
boundary = pipe1:out
[]
[pJ_out]
type = SideAverageValue
variable = p
boundary = pipe2:in
[]
[dpJ]
type = DifferencePostprocessor
value1 = pJ_in
value2 = pJ_out
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
end_time = 20
dt = 0.5
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 0
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
csv = true
execute_on = 'final'
show = 'dpJ'
[]
(modules/thermal_hydraulics/test/tests/problems/mms/mms_1phase.i)
# Method of manufactured solutions (MMS) problem for 1-phase flow model.
#
# The python script mms_derivation.py derives the MMS sources used in this
# input file.
#
# To perform a convergence study, run this input file with different values of
# 'refinement_level', starting with 0. Manually create a CSV file (call it the
# "convergence CSV file") to store the error vs. mesh size data. It should have
# the columns specified in the plot script plot_convergence_1phase.py. Copy the
# CSV output from each run into the convergence CSV file. After all of the runs,
# run the plot script using python.
refinement_level = 0 # 0 is initial
n_elems_coarse = 10
n_elems = ${fparse int(n_elems_coarse * 2^refinement_level)}
dt = 1e-6
t_end = ${fparse dt * 10}
area = 1.0
gamma = 2.0
M = 0.05
A = 1
B = 1
C = 1
aA = ${fparse area}
R_univ = 8.3144598
R = ${fparse R_univ / M}
cp = ${fparse gamma * R / (gamma - 1.0)}
cv = ${fparse cp / gamma}
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
[]
[Functions]
# solutions
[rho_fn]
type = ParsedFunction
value = 'A * (sin(B*x + C*t) + 2)'
vars = 'A B C'
vals = '${A} ${B} ${C}'
[]
[vel_fn]
type = ParsedFunction
value = 'A * t * sin(pi * x)'
vars = 'A'
vals = '${A}'
[]
[p_fn]
type = ParsedFunction
value = 'A * (cos(B*x + C*t) + 2)'
vars = 'A B C'
vals = '${A} ${B} ${C}'
[]
[T_fn]
type = ParsedFunction
value = '(cos(B*x + C*t) + 2)/(cv*(gamma - 1)*(sin(B*x + C*t) + 2))'
vars = 'B C gamma cv'
vals = '${B} ${C} ${gamma} ${cv}'
[]
# MMS sources
[rho_src_fn]
type = ParsedFunction
value = 'A^2*B*t*sin(pi*x)*cos(B*x + C*t) + pi*A^2*t*(sin(B*x + C*t) + 2)*cos(pi*x) + A*C*cos(B*x + C*t)'
vars = 'A B C'
vals = '${A} ${B} ${C}'
[]
[rhou_src_fn]
type = ParsedFunction
value = 'A^3*B*t^2*sin(pi*x)^2*cos(B*x + C*t) + 2*pi*A^3*t^2*(sin(B*x + C*t) + 2)*sin(pi*x)*cos(pi*x) + A^2*C*t*sin(pi*x)*cos(B*x + C*t) + A^2*(sin(B*x + C*t) + 2)*sin(pi*x) - A*B*sin(B*x + C*t)'
vars = 'A B C'
vals = '${A} ${B} ${C}'
[]
[rhoE_src_fn]
type = ParsedFunction
value = 'A*C*(A^2*t^2*sin(pi*x)^2/2 + (cos(B*x + C*t) + 2)/((gamma - 1)*(sin(B*x + C*t) + 2)))*cos(B*x + C*t) + pi*A*t*(A*(A^2*t^2*sin(pi*x)^2/2 + (cos(B*x + C*t) + 2)/((gamma - 1)*(sin(B*x + C*t) + 2)))*(sin(B*x + C*t) + 2) + A*(cos(B*x + C*t) + 2))*cos(pi*x) + A*t*(A*B*(A^2*t^2*sin(pi*x)^2/2 + (cos(B*x + C*t) + 2)/((gamma - 1)*(sin(B*x + C*t) + 2)))*cos(B*x + C*t) - A*B*sin(B*x + C*t) + A*(sin(B*x + C*t) + 2)*(pi*A^2*t^2*sin(pi*x)*cos(pi*x) - B*sin(B*x + C*t)/((gamma - 1)*(sin(B*x + C*t) + 2)) - B*(cos(B*x + C*t) + 2)*cos(B*x + C*t)/((gamma - 1)*(sin(B*x + C*t) + 2)^2)))*sin(pi*x) + A*(sin(B*x + C*t) + 2)*(A^2*t*sin(pi*x)^2 - C*sin(B*x + C*t)/((gamma - 1)*(sin(B*x + C*t) + 2)) - C*(cos(B*x + C*t) + 2)*cos(B*x + C*t)/((gamma - 1)*(sin(B*x + C*t) + 2)^2))'
vars = 'A B C gamma'
vals = '${A} ${B} ${C} ${gamma}'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = ${gamma}
molar_mass = ${M}
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = ${n_elems}
A = ${area}
# IC
initial_p = p_fn
initial_T = T_fn
initial_vel = 0
f = 0
[]
[left_boundary]
type = InletFunction1Phase
input = 'pipe:in'
p = p_fn
rho = rho_fn
vel = vel_fn
[]
[right_boundary]
type = InletFunction1Phase
input = 'pipe:out'
p = p_fn
rho = rho_fn
vel = vel_fn
[]
[]
[Kernels]
[rho_src]
type = BodyForce
variable = rhoA
function = rho_src_fn
value = ${aA}
[]
[rhou_src]
type = BodyForce
variable = rhouA
function = rhou_src_fn
value = ${aA}
[]
[rhoE_src]
type = BodyForce
variable = rhoEA
function = rhoE_src_fn
value = ${aA}
[]
[]
[Postprocessors]
[rho_err]
type = ElementL1Error
variable = rho
function = rho_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[vel_err]
type = ElementL1Error
variable = vel
function = vel_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[p_err]
type = ElementL1Error
variable = p
function = p_fn
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
order = 3
[]
start_time = 0
dt = ${dt}
end_time = ${t_end}
abort_on_solve_fail = true
[Quadrature]
type = GAUSS
order = FIRST
[]
[]
[Outputs]
csv = true
execute_on = 'FINAL'
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/problems/lax_shock_tube/lax_shock_tube.i)
# This test problem is the Lax shock tube test problem,
# which is a Riemann problem with the following parameters:
# * domain = (0,1)
# * gravity = 0
# * EoS: Ideal gas EoS with gamma = 1.4, R = 0.71428571428571428571
# * interface: x = 0.5
# * typical end time: 0.15
# Left initial values:
# * rho = 0.445
# * vel = 0.692
# * p = 3.52874226
# Right initial values:
# * rho = 0.5
# * vel = 0
# * p = 0.571
[GlobalParams]
gravity_vector = '0 0 0'
rdg_slope_reconstruction = minmod
closures = simple_closures
[]
[Functions]
[p_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '3.52874226 0.571'
[]
[T_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '11.1016610426966 1.5988'
[]
[vel_ic_fn]
type = PiecewiseConstant
axis = x
direction = right
x = '0.5 1.0'
y = '0.692 0.0'
[]
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 11.64024372
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 100
A = 1.0
# IC
initial_T = T_ic_fn
initial_p = p_ic_fn
initial_vel = vel_ic_fn
f = 0
[]
[left_boundary]
type = FreeBoundary1Phase
input = 'pipe:in'
[]
[right_boundary]
type = FreeBoundary1Phase
input = 'pipe:out'
[]
[]
[Executioner]
type = Transient
[TimeIntegrator]
type = ExplicitSSPRungeKutta
# add order via 'cli_args' in 'tests'
[]
solve_type = LINEAR
l_tol = 1e-4
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 60
# run to t = 0.15
start_time = 0.0
dt = 1e-3
num_steps = 150
abort_on_solve_fail = true
[]
[Outputs]
file_base = 'lax_shock_tube'
velocity_as_vector = false
execute_on = 'initial timestep_end'
[out]
type = Exodus
show = 'rho p vel'
[]
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.conservation.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 4.3
initial_vel_x = 4.3
initial_vel_y = 0
initial_vel_z = 0
fp = fp
closures = simple_closures
f = 0
rdg_slope_reconstruction = minmod
gravity_vector = '0 0 0'
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.01
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 517
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
A_ref = 1.0
K = 0
on = true
power = 1000
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e6
[]
[]
[Postprocessors]
[mass_in]
type = ADFlowBoundaryFlux1Phase
equation = mass
boundary = inlet
[]
[mass_out]
type = ADFlowBoundaryFlux1Phase
equation = mass
boundary = outlet
[]
[mass_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1'
pp_names = 'mass_in mass_out'
[]
[p_in]
type = SideAverageValue
boundary = pipe1:in
variable = p
[]
[vel_in]
type = SideAverageValue
boundary = pipe1:in
variable = vel_x
[]
[momentum_in]
type = ADFlowBoundaryFlux1Phase
equation = momentum
boundary = inlet
[]
[momentum_out]
type = ADFlowBoundaryFlux1Phase
equation = momentum
boundary = outlet
[]
[dP]
type = ParsedPostprocessor
pp_names = 'p_in W_dot'
function = 'p_in * (1 - (1-W_dot/(10*2910.06*517))^(1.4/0.4))'
[]
[momentum_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1 -1'
pp_names = 'momentum_in momentum_out dP' # momentum source = -dP * A and A=1
[]
[energy_in]
type = ADFlowBoundaryFlux1Phase
equation = energy
boundary = inlet
[]
[energy_out]
type = ADFlowBoundaryFlux1Phase
equation = energy
boundary = outlet
[]
[W_dot]
type = ScalarVariable
variable = turbine:W_dot
[]
[energy_diff]
type = LinearCombinationPostprocessor
pp_coefs = '1 -1 -1'
pp_names = 'energy_in energy_out W_dot'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
dt = 1
num_steps = 30
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-7
nl_abs_tol = 2e-6
nl_max_its = 10
l_tol = 1e-3
[]
[Outputs]
[csv]
type = CSV
show = 'mass_diff energy_diff momentum_diff'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/err.not_a_hs.i)
[GlobalParams]
initial_p = 15.5e6
initial_vel = 2
initial_T = 560
scaling_factor_1phase = '1 1 1'
scaling_factor_temperature = '1'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.865
n_elems = 1
A = 8.78882e-5
D_h = 0.01179
f = 0.01
fp = fp
[]
[hx]
type = HeatTransferFromHeatStructure1Phase
hs = inlet # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[hx2]
type = HeatTransferFromHeatStructure1Phase
hs = asdf # wrong
hs_side = outer
flow_channel = pipe
Hw = 5.33e4
P_hf = 0.029832559676
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 15.5e6
T0 = 560
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 15e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
dtmin = 1.e-2
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 1
l_tol = 1e-3
l_max_its = 30
start_time = 0.0
num_steps = 20
[]
(modules/thermal_hydraulics/test/tests/components/supersonic_inlet/err.i)
[GlobalParams]
gravity_vector = '0 0 0'
closures = simple_closures
fp = fp
f = 0.0
initial_T = 300
initial_p = 1e5
initial_vel = 0
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.02897
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in]
type = SupersonicInlet
input = 'pipe:in'
vel = 500
T = 300
p = 1e5
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 0'
length = 0.5
n_elems = 2
A = 0.1
[]
[out]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 20
l_tol = 1e-4
start_time = 0.0
end_time = 1.0
dt = 0.01
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/01_flow_channel.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 1
n_elems = 10
A = 7.2548e-3
D_h = 7.0636e-2
f = 1.6
[]
[outlet]
type = Outlet1Phase
input = 'core_chan:out'
p = ${press}
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/err.missing_ics.i)
[GlobalParams]
gravity_vector = '0 0 0'
A = 1e-4
f = 0
fp = fp
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'pipe1:out pipe2:in'
position = '1.02 0 0'
volume = 0.1
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
n_elems = 2
initial_p = 1e5
initial_T = 250
initial_vel = 0
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_turbine_1phase/shaft_motor_turbine.i)
area = 0.2359
dt = 1.e-3
[GlobalParams]
initial_p = 2e5
initial_T = 600
initial_vel = 100
initial_vel_x = 100
initial_vel_y = 0
initial_vel_z = 0
A = ${area}
A_ref = ${area}
f = 100
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
fp = fp
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[turbine]
type = ShaftConnectedTurbine1Phase
inlet = 'pipe:out'
outlet = 'pipe:in'
position = '0 0 0'
volume = 0.2
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
speed_cr_I = 1e12
speed_cr_fr = 0
tau_fr_coeff = '0 0 0 0'
tau_fr_const = 0
omega_rated = 100
D_wheel = 0.4
head_coefficient = head
power_coefficient = power
[]
[pipe]
type = FlowChannel1Phase
position = '0.1 0 0'
orientation = '1 0 0'
length = 10
n_elems = 20
initial_p = 2e6
[]
[dyno]
type = ShaftConnectedMotor
inertia = 1e2
torque = -1e3
[]
[shaft]
type = Shaft
connected_components = 'dyno turbine'
initial_speed = 300
[]
[]
[Functions]
[head]
type = PiecewiseLinear
x = '0 7e-3 1e-2'
y = '0 15 20'
[]
[power]
type = PiecewiseLinear
x = '0 6e-3 1e-2'
y = '0 0.05 0.18'
[]
[S_energy_fcn]
type = ParsedFunction
value = '-(tau_driving+tau_fr)*omega'
vars = 'tau_driving tau_fr omega'
vals = 'turbine:driving_torque turbine:friction_torque shaft:omega'
[]
[energy_conservation_fcn]
type = ParsedFunction
value = '(E_change - S_energy * dt) / E_tot'
vars = 'E_change S_energy dt E_tot'
vals = 'E_change S_energy ${dt} E_tot'
[]
[]
[Postprocessors]
# mass conservation
[mass_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[mass_turbine]
type = ScalarVariable
variable = turbine:rhoV
execute_on = 'initial timestep_end'
[]
[mass_tot]
type = SumPostprocessor
values = 'mass_pipes mass_turbine'
execute_on = 'initial timestep_end'
[]
[mass_conservation]
type = ChangeOverTimePostprocessor
postprocessor = mass_tot
change_with_respect_to_initial = true
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
# energy conservation
[E_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[E_turbine]
type = ScalarVariable
variable = turbine:rhoEV
execute_on = 'initial timestep_end'
[]
[E_tot]
type = LinearCombinationPostprocessor
pp_coefs = '1 1'
pp_names = 'E_pipes E_turbine'
execute_on = 'initial timestep_end'
[]
[S_energy]
type = FunctionValuePostprocessor
function = S_energy_fcn
execute_on = 'initial timestep_end'
[]
[E_change]
type = ChangeOverTimePostprocessor
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
# This should also execute on initial. This value is
# lagged by one timestep as a workaround to moose issue #13262.
[energy_conservation]
type = FunctionValuePostprocessor
function = energy_conservation_fcn
execute_on = 'timestep_end'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'implicit-euler'
dt = ${dt}
num_steps = 6
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/problems/area_constriction/area_constriction_junction.i)
# This test features air flowing through a channel whose cross-sectional area
# shrinks to half its value in the right half. Assuming incompressible flow
# conditions, such as having a low Mach number, the velocity should approximately
# double from inlet to outlet. In this version of the test, the area discontinuity
# is achieved by connecting two flow channels with a junction.
p_outlet = 1e5
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 300
initial_p = ${p_outlet}
fp = fp
closures = simple_closures
f = 0
scaling_factor_1phase = '1 1 1e-5'
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 1.16263315948279 # rho @ (p = 1e5 Pa, T = 300 K)
vel = 1
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 1
initial_vel = 1
[]
[junction]
type = JunctionOneToOne1Phase
connections = 'pipe1:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0.5 0 0'
orientation = '1 0 0'
length = 0.5
n_elems = 50
A = 0.5
initial_vel = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = ${p_outlet}
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
end_time = 10
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.001
optimal_iterations = 5
iteration_window = 1
growth_factor = 1.2
[]
steady_state_detection = true
solve_type = PJFNK
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
[]
[Outputs]
exodus = true
velocity_as_vector = false
show = 'A rho vel p'
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/phy.test.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 1.0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
fp = fp
closures = simple_closures
f = 0
gravity_vector = '0 0 0'
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.4
molar_mass = 0.01
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 517
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
on = true
power = 1000
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e6
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
dt = 1
num_steps = 10
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-5
nl_max_its = 5
l_tol = 1e-4
[]
[Outputs]
exodus = true
show = 'p T vel'
velocity_as_vector = false
interval = 5
[]
(modules/thermal_hydraulics/test/tests/components/inlet_stagnation_p_t_1phase/phy.stagnation_p_T_transient_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.
f = 0.0
length = 1
n_elems = 10
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe:in'
p0 = 102041.128
T0 = 300.615
reversible = false
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 101325
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-4
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-7
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/solid_wall_1phase/phy.3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 101325
initial_T = 300
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.0
fp = eos
[]
[inlet]
type = SolidWall1Phase
input = 'pipe:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1e-4
num_steps = 10
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
nl_max_its = 30
l_tol = 1e-3
l_max_its = 100
[]
[Outputs]
[out]
type = Exodus
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/flow_connection/err.connecting_to_non_existent_component.i)
# Tests that we report an error if users try to connect to a non-existent component
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[water]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = water
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 2
A = 1e-4
f = 0
[]
[inlet_1p]
type = InletMassFlowRateTemperature1Phase
input = 'pipe:in'
m_dot = 1
T = 300
[]
[outlet_1p]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Executioner]
type = Transient
dt = 0.01
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_pump_1phase/pump_coastdown.i)
# Pump data used in this test comes from the Semiscale Program, summarized in NUREG/CR-4945
initial_T = 393.15
area = 1e-2
dt = 0.005
[GlobalParams]
initial_p = 1.4E+07
initial_T = ${initial_T}
initial_vel = 0.01
initial_vel_x = 0.01
initial_vel_y = 0
initial_vel_z = 0
A = ${area}
A_ref = ${area}
f = 100
scaling_factor_1phase = '1 1 1e-3'
closures = simple_closures
rdg_slope_reconstruction = minmod
fp = fp
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pump]
type = ShaftConnectedPump1Phase
inlet = 'pipe:out'
outlet = 'pipe:in'
position = '0 0 0'
scaling_factor_rhoEV = 1e-5
volume = 0.3
inertia_coeff = '1 1 1 1'
inertia_const = 0.5
omega_rated = 314
speed_cr_I = 1e12
speed_cr_fr = 0.001
torque_rated = 47.1825
volumetric_rated = 1
head_rated = 58.52
tau_fr_coeff = '4 0 80 0'
tau_fr_const = 8
head = head_fcn
torque_hydraulic = torque_fcn
density_rated = 124.2046
[]
[pipe]
type = FlowChannel1Phase
position = '0.6096 0 0'
orientation = '1 0 0'
length = 10
n_elems = 20
[]
[shaft]
type = Shaft
connected_components = 'pump'
initial_speed = 1
[]
[]
[Functions]
[head_fcn]
type = PiecewiseLinear
data_file = semiscale_head_data.csv
format = columns
[]
[torque_fcn]
type = PiecewiseLinear
data_file = semiscale_torque_data.csv
format = columns
[]
[S_energy_fcn]
type = ParsedFunction
value = '-tau_hyd * omega'
vars = 'tau_hyd omega'
vals = 'pump:hydraulic_torque shaft:omega'
[]
[energy_conservation_fcn]
type = ParsedFunction
value = '(E_change - S_energy * dt) / E_tot'
vars = 'E_change S_energy dt E_tot'
vals = 'E_change S_energy ${dt} E_tot'
[]
[]
[Postprocessors]
# mass conservation
[mass_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[mass_pump]
type = ScalarVariable
variable = pump:rhoV
execute_on = 'initial timestep_end'
[]
[mass_tot]
type = SumPostprocessor
values = 'mass_pipes mass_pump'
execute_on = 'initial timestep_end'
[]
[mass_conservation]
type = ChangeOverTimePostprocessor
postprocessor = mass_tot
change_with_respect_to_initial = true
compute_relative_change = true
execute_on = 'initial timestep_end'
[]
# energy conservation
[E_pipes]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
block = 'pipe'
execute_on = 'initial timestep_end'
[]
[E_pump]
type = ScalarVariable
variable = pump:rhoEV
execute_on = 'initial timestep_end'
[]
[E_tot]
type = LinearCombinationPostprocessor
pp_coefs = '1 1'
pp_names = 'E_pipes E_pump'
execute_on = 'initial timestep_end'
[]
[S_energy]
type = FunctionValuePostprocessor
function = S_energy_fcn
execute_on = 'initial timestep_end'
[]
[E_change]
type = ChangeOverTimePostprocessor
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
# This should also execute on initial. This value is
# lagged by one timestep as a workaround to moose issue #13262.
[energy_conservation]
type = FunctionValuePostprocessor
function = energy_conservation_fcn
execute_on = 'timestep_end'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = ${dt}
num_steps = 40
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
velocity_as_vector = false
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/volume_junction_1phase/equal_area_with_junction.i)
# Tests a junction between 2 flow channels of equal area and orientation. A
# sinusoidal density shape is advected to the right and should not be affected
# by the junction; the solution should be identical to the equivalent
# no-junction solution.
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_vel = 1
A = 25
f = 0
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Functions]
[T0]
type = CosineHumpFunction
axis = x
hump_center_position = 1
hump_width = 0.5
hump_begin_value = 250
hump_center_value = 300
[]
[]
[Components]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
# Stagnation property with p = 1e5 Pa, T = 250 K, vel = 1 m/s
p0 = 100000.68965687
T0 = 250.00049261084
[]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
initial_T = T0
n_elems = 25
[]
[junction]
type = VolumeJunction1Phase
connections = 'pipe1:out pipe2:in'
# NOTE: volume parameters are added via command-line arguments by tests file.
position = '1.02 0 0'
initial_T = T0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhovV = 1
scaling_factor_rhowV = 1
scaling_factor_rhoEV = 1e-5
[]
[pipe2]
type = FlowChannel1Phase
position = '1.04 0 0'
orientation = '1 0 0'
length = 0.96
initial_T = T0
n_elems = 24
[]
[outlet]
type = Outlet1Phase
input = 'pipe2:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.01
num_steps = 5
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Postprocessors]
[junction_rho]
type = ScalarVariable
variable = junction:rhoV
execute_on = 'initial timestep_end'
[]
[junction_rhou]
type = ScalarVariable
variable = junction:rhouV
execute_on = 'initial timestep_end'
[]
[junction_rhoE]
type = ScalarVariable
variable = junction:rhoEV
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
[out]
type = CSV
execute_scalars_on = 'none'
execute_on = 'initial timestep_end'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
initial_p = 7.0e6
initial_vel = 0
initial_T = 513
gravity_vector = '0.0 0.0 0.0'
scaling_factor_1phase = '1 1 1e-4'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[fuel-mat]
type = SolidMaterialProperties
k = 3.7
cp = 3.e2
rho = 10.42e3
[]
[gap-mat]
type = SolidMaterialProperties
k = 0.7
cp = 5e3
rho = 1.0
[]
[clad-mat]
type = SolidMaterialProperties
k = 16
cp = 356.
rho = 6.551400E+03
[]
[]
[Components]
[reactor]
type = TotalPower
power = 1e3
[]
[core:pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
A = 1.907720E-04
D_h = 1.698566E-02
f = 0.0
fp = eos
[]
[core:solid]
type = HeatStructureCylindrical
position = '0 -0.0071501 0'
orientation = '0 0 1'
length = 3.66
n_elems = 10
names = 'FUEL GAP CLAD'
widths = '6.057900E-03 1.524000E-04 9.398000E-04'
n_part_elems = '5 1 2'
materials = 'fuel-mat gap-mat clad-mat'
initial_T = 513
[]
[core:hgen]
type = HeatSourceFromTotalPower
hs = core:solid
regions = 'FUEL'
power = reactor
power_fraction = 1
[]
[core:hx]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core:pipe
hs = core:solid
hs_side = outer
Hw = 1.0e4
P_hf = 4.4925e-2
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'core:pipe:in'
rho = 817.382210128610836
vel = 2.4
[]
[outlet]
type = Outlet1Phase
input = 'core:pipe:out'
p = 7e6
[]
[]
[Postprocessors]
[E_in]
type = ADFlowBoundaryFlux1Phase
boundary = inlet
equation = energy
execute_on = 'initial timestep_end'
[]
[E_out]
type = ADFlowBoundaryFlux1Phase
boundary = outlet
equation = energy
execute_on = 'initial timestep_end'
[]
[hf_pipe]
type = ADHeatRateConvection1Phase
block = core:pipe
T_wall = T_wall
T = T
Hw = Hw
P_hf = P_hf
execute_on = 'initial timestep_end'
[]
[E_diff]
type = DifferencePostprocessor
value1 = E_in
value2 = E_out
execute_on = 'initial timestep_end'
[]
[E_conservation]
type = SumPostprocessor
values = 'E_diff hf_pipe'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
abort_on_solve_fail = true
dt = 5
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
nl_max_its = 50
l_tol = 1e-3
l_max_its = 60
start_time = 0
end_time = 260
[]
[Outputs]
[out]
type = CSV
execute_on = final
show = 'E_conservation'
[]
[console]
type = Console
show = 'E_conservation'
[]
[]
(modules/thermal_hydraulics/test/tests/components/inlet_velocity_t_1phase/phy.velocity_t_3eqn.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_T = 444.447
initial_p = 7e6
initial_vel = 0
scaling_factor_1phase = '1 1 1e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = fp
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1.0000000000e-04
f = 0.0
length = 1
n_elems = 100
[]
[inlet]
type = InletVelocityTemperature1Phase
input = 'pipe:in'
vel = 1.0
T = 444.447
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 7e6
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
start_time = 0.0
end_time = 5.5
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
abort_on_solve_fail = true
[]
[Outputs]
file_base = 'phy.velocity_t_3eqn'
[exodus]
type = Exodus
show = 'vel T p'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pipe_friction_pump_head_balance.i)
# This test balances the pipe friction pressure drop with the pump head pressure rise and runs to steady state.
[GlobalParams]
initial_T = 393.15
initial_vel = 0.0
A = 0.567
fp = fp
scaling_factor_1phase = '0.04 0.04 0.04e-5'
closures = simple_closures
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 10
initial_p = 1.35e+07
n_elems = 20
f = 5000
gravity_vector = '0 0 0'
[]
[pump]
type = Pump1Phase
connections = 'pipe1:out pipe1:in'
position = '1.02 0 0'
initial_p = 1.3e+07
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
scaling_factor_rhoV = 1
scaling_factor_rhouV = 1
scaling_factor_rhoEV = 1e-5
head = 8
volume = 0.567
A_ref = 0.567
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 1.e-3
num_steps = 38
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[Quadrature]
type = GAUSS
order = SECOND
[]
[]
[Outputs]
[out_x]
type = Exodus
show = 'p T vel'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_volumetric_1phase/err.base.i)
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[total_power]
type = TotalPower
power = 1
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = 1
n_elems = 2
A = 1
f = 0.1
fp = fp
closures = simple_closures
initial_T = 300
initial_p = 1e05
initial_vel = 0
[]
[hs]
type = HeatSourceVolumetric1Phase
flow_channel = fch1
q = 1
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = fch1:in
m_dot = 1
T = 300
[]
[outlet]
type = Outlet1Phase
input = fch1:out
p = 1e-5
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
[]
(modules/thermal_hydraulics/test/tests/components/simple_turbine_1phase/jacobian.i)
[GlobalParams]
initial_p = 1e6
initial_T = 517
initial_vel = 1.0
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
fp = fp
closures = simple_closures
f = 0
gravity_vector = '0 0 0'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.43
cv = 1040.0
q = 2.03e6
p_inf = 0.0
q_prime = -2.3e4
k = 0.026
mu = 134.4e-7
M = 0.01801488
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
A = 1
[]
[turbine]
type = SimpleTurbine1Phase
connections = 'pipe1:out pipe2:in'
position = '1 0 0'
volume = 1
A_ref = 1.0
K = 0
on = false
power = 1000
[]
[pipe2]
type = FlowChannel1Phase
position = '1. 0 0'
orientation = '1 0 0'
length = 1
n_elems = 2
A = 1
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
dt = 1
num_steps = 1
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = ' 1e-11'
[]
(modules/thermal_hydraulics/test/tests/components/junction_parallel_channels_1phase/jac.test.i)
# Pump data used in this test comes from the LOFT Systems Tests, described in NUREG/CR-0247
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 1
closures = simple_closures
fp = fp
f = 0
scaling_factor_1phase = '1e-2 1e-2 1e-5'
scaling_factor_rhoEV = 1e-5
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[in]
type = InletStagnationPressureTemperature1Phase
input = fch1:in
p0 = 1.1e5
T0 = 300
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
[]
[junction]
type = JunctionParallelChannels1Phase
connections = 'fch1:out fch2:in'
position = '1 0 0'
volume = 0.3
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 0
[]
[fch2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1.5
[]
[out]
type = Outlet1Phase
input = fch2:out
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
num_steps = 1
abort_on_solve_fail = true
dt = 0.1
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-9'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]
(modules/thermal_hydraulics/test/tests/components/free_boundary_1phase/phy.conservation_free_boundary_1phase.i)
# This test tests conservation of mass, momentum, and energy on a transient
# problem with an inlet and outlet (using free boundaries for each). This test
# takes 1 time step with Crank-Nicolson and some boundary flux integral
# post-processors needed for the full conservation statement. Lastly, the
# conservation quantities are shown on the console, which should ideally be zero
# for full conservation.
[GlobalParams]
gravity_vector = '0 0 0'
scaling_factor_1phase = '1 1 1e-6'
closures = simple_closures
[]
[Functions]
[T_fn]
type = ParsedFunction
value = '300 + 10 * (cos(2*pi*x + pi))'
[]
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = FreeBoundary1Phase
input = pipe:in
[]
[pipe]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1.0
n_elems = 10
A = 1.0
initial_T = T_fn
initial_p = 1e5
initial_vel = 1
f = 0
fp = fp
[]
[outlet]
type = FreeBoundary1Phase
input = pipe:out
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = crank-nicolson
start_time = 0.0
end_time = 0.01
dt = 0.01
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-4
nl_max_its = 10
l_tol = 1e-2
l_max_its = 20
[]
[Postprocessors]
# MASS
[massflux_left]
type = MassFluxIntegral
boundary = inlet
arhouA = rhouA
[]
[massflux_right]
type = MassFluxIntegral
boundary = outlet
arhouA = rhouA
[]
[massflux_difference]
type = DifferencePostprocessor
value1 = massflux_right
value2 = massflux_left
[]
[massflux_integral]
type = TimeIntegratedPostprocessor
value = massflux_difference
[]
[mass]
type = ElementIntegralVariablePostprocessor
variable = rhoA
execute_on = 'initial timestep_end'
[]
[mass_change]
type = ChangeOverTimePostprocessor
postprocessor = mass
change_with_respect_to_initial = true
execute_on = 'initial timestep_end'
[]
[mass_conservation]
type = SumPostprocessor
values = 'mass_change massflux_integral'
[]
# MOMENTUM
[momentumflux_left]
type = MomentumFluxIntegral
boundary = inlet
arhouA = rhouA
vel = vel
p = p
A = A
[]
[momentumflux_right]
type = MomentumFluxIntegral
boundary = outlet
arhouA = rhouA
vel = vel
p = p
A = A
[]
[momentumflux_difference]
type = DifferencePostprocessor
value1 = momentumflux_right
value2 = momentumflux_left
[]
[momentumflux_integral]
type = TimeIntegratedPostprocessor
value = momentumflux_difference
[]
[momentum]
type = ElementIntegralVariablePostprocessor
variable = rhouA
execute_on = 'initial timestep_end'
[]
[momentum_change]
type = ChangeOverTimePostprocessor
postprocessor = momentum
change_with_respect_to_initial = true
execute_on = 'initial timestep_end'
[]
[momentum_conservation]
type = SumPostprocessor
values = 'momentum_change momentumflux_integral'
[]
# ENERGY
[energyflux_left]
type = EnergyFluxIntegral
boundary = inlet
arhouA = rhouA
H = H
[]
[energyflux_right]
type = EnergyFluxIntegral
boundary = outlet
arhouA = rhouA
H = H
[]
[energyflux_difference]
type = DifferencePostprocessor
value1 = energyflux_right
value2 = energyflux_left
[]
[energyflux_integral]
type = TimeIntegratedPostprocessor
value = energyflux_difference
[]
[energy]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
execute_on = 'initial timestep_end'
[]
[energy_change]
type = ChangeOverTimePostprocessor
postprocessor = energy
change_with_respect_to_initial = true
execute_on = 'initial timestep_end'
[]
[energy_conservation]
type = SumPostprocessor
values = 'energy_change energyflux_integral'
[]
[]
[Outputs]
[console]
type = Console
show = 'mass_conservation momentum_conservation energy_conservation'
[]
velocity_as_vector = false
[]
(modules/thermal_hydraulics/test/tests/components/deprecated/heat_source_volumetric.i)
[GlobalParams]
scaling_factor_1phase = '1 1e-2 1e-4'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[flow_channel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 10
A = 1
f = 0
fp = fp
closures = simple_closures
initial_T = 310
initial_p = 1e5
initial_vel = 0
[]
[wall1]
type = SolidWall1Phase
input = flow_channel:in
[]
[wall2]
type = SolidWall1Phase
input = flow_channel:out
[]
[heat_source]
type = HeatSourceVolumetric
flow_channel = flow_channel
q = 1e3
[]
[]
[Postprocessors]
[E_tot]
type = ElementIntegralVariablePostprocessor
variable = rhoEA
execute_on = 'initial timestep_end'
[]
[E_tot_change]
type = ChangeOverTimePostprocessor
change_with_respect_to_initial = true
postprocessor = E_tot
execute_on = 'initial timestep_end'
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 0
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-3
l_max_its = 10
start_time = 0.0
dt = 0.1
end_time = 1
abort_on_solve_fail = true
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.T_wall_transfer_3eqn_z.i)
# Testing that T_solid gets properly projected onto a pipe
# That's why Hw in pipe1 is set to 0, so we do not have any heat exchange
# Note that the pipe and the heat structure have an opposite orientation, which
# is crucial for this test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
cp = 100.0
[]
[]
[Functions]
[T_init]
type = ParsedFunction
value = '290 + sin((1 - z) * pi * 1.4)'
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0.2 0 0'
orientation = '0 0 1'
length = 1
n_elems = 50
A = 9.6858407346e-01
D_h = 6.1661977237e+00
f = 0.01
fp = eos
[]
[hs]
type = HeatStructureCylindrical
position = '0.1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 50
rotation = 90
materials = 'wall-mat'
n_part_elems = 2
widths = '0.1'
names = 'wall'
initial_T = T_init
[]
[hxconn]
type = HeatTransferFromHeatStructure1Phase
hs = hs
hs_side = outer
flow_channel = pipe1
Hw = 0
P_hf = 6.2831853072e-01
[]
[inlet]
type = SolidWall1Phase
input = 'pipe1:in'
[]
[outlet]
type = SolidWall1Phase
input = 'pipe1:out'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
num_steps = 1
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T_solid'
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/postprocessors/flow_boundary_flux_1phase/test.i)
T_in = 300
p_out = 1e5
[GlobalParams]
initial_p = ${p_out}
initial_T = ${T_in}
initial_vel = 0
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 50
f = 0
scaling_factor_1phase = '1 1e-2 1e-4'
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'channel:in'
m_dot = 0.1
T = ${T_in}
[]
[channel]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 1
A = 3
[]
[outlet]
type = Outlet1Phase
p = ${p_out}
input = 'channel:out'
[]
[]
[Postprocessors]
[m_dot_in]
type = ADFlowBoundaryFlux1Phase
boundary = 'inlet'
equation = mass
[]
[m_dot_out]
type = ADFlowBoundaryFlux1Phase
boundary = 'outlet'
equation = mass
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
start_time = 0
num_steps = 10
dt = 0.1
solve_type = NEWTON
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 25
l_tol = 1e-3
l_max_its = 5
[]
[Outputs]
[out]
type = CSV
show = 'm_dot_in m_dot_out'
execute_on = 'final'
[]
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
T_in = 300. # K
m_dot_in = 1e-4 # kg/s
press = 1e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 10
core_dia = ${units 2. cm -> m}
core_pitch = ${units 8.7 cm -> m}
# pipe parameters
pipe_dia = ${units 10. cm -> m}
tot_power = 100 # W
[GlobalParams]
initial_p = ${press}
initial_vel = 0
initial_T = ${T_in}
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
rdg_slope_reconstruction = full
closures = simple_closures
fp = he
f = 0.4
[]
[Modules/FluidProperties]
[he]
type = IdealGasFluidProperties
molar_mass = 4e-3
gamma = 1.67
k = 0.2556
mu = 3.22639e-5
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[steel]
type = SolidMaterialProperties
rho = 8050
k = 45
cp = 466
[]
[]
[Components]
[total_power]
type = TotalPower
power = ${tot_power}
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'core_chan:in'
m_dot = ${m_dot_in}
T = ${T_in}
[]
[core_chan]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
A = ${fparse core_pitch * core_pitch - pi * core_dia * core_dia / 4.}
D_h = ${core_dia}
f = 1.6
[]
[core_hs]
type = HeatStructureCylindrical
position = '0 0 0'
orientation = '0 0 1'
length = ${core_length}
n_elems = ${core_n_elems}
names = 'block'
widths = '${fparse core_dia / 2.}'
materials = 'steel'
n_part_elems = 3
[]
[core_heating]
type = HeatSourceFromTotalPower
hs = core_hs
regions = block
power = total_power
[]
[core_ht]
type = HeatTransferFromHeatStructure1Phase
flow_channel = core_chan
hs = core_hs
hs_side = outer
P_hf = ${fparse pi * core_dia}
Hw = 1.36
[]
[jct1]
type = JunctionParallelChannels1Phase
position = '0 0 1'
connections = 'core_chan:out up_pipe:in'
volume = 1e-3
[]
[up_pipe]
type = FlowChannel1Phase
position = '0 0 1'
orientation = '0 0 1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct2]
type = VolumeJunction1Phase
position = '0 0 2'
connections = 'up_pipe:out top_pipe:in'
volume = 1e-3
[]
[top_pipe]
type = FlowChannel1Phase
position = '0 0 2'
orientation = '1 0 0'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[jct3]
type = VolumeJunction1Phase
position = '1 0 2'
connections = 'top_pipe:out cooling_pipe:in'
volume = 1e-3
[]
[cooling_pipe]
type = FlowChannel1Phase
position = '1 0 2'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[cold_wall]
type = HeatTransferFromSpecifiedTemperature1Phase
flow_channel = cooling_pipe
T_wall = 300
Hw = 0.97
[]
[jct4]
type = VolumeJunction1Phase
position = '1 0 1'
connections = 'cooling_pipe:out down_pipe:in'
volume = 1e-3
[]
[down_pipe]
type = FlowChannel1Phase
position = '1 0 1'
orientation = '0 0 -1'
length = 1
n_elems = 10
A = ${fparse pi * pipe_dia * pipe_dia / 4.}
D_h = ${pipe_dia}
[]
[outlet]
type = Outlet1Phase
input = 'down_pipe:out'
p = ${press}
[]
[]
[Postprocessors]
[core_T_out]
type = SideAverageValue
boundary = core_chan:out
variable = T
[]
[hx_pri_T_out]
type = SideAverageValue
boundary = cooling_pipe:out
variable = T
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 1000
dt = 10
line_search = basic
solve_type = NEWTON
nl_rel_tol = 1e-5
nl_abs_tol = 1e-5
nl_max_its = 5
[]
[Outputs]
exodus = true
[console]
type = Console
max_rows = 1
outlier_variable_norms = false
[]
print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/misc/adapt/single_block.i)
[GlobalParams]
gravity_vector = '0 0 0'
initial_p = 1e5
initial_T = 300
initial_vel = 0
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
# geometry
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 20
A = 1.0000000000e-04
D_h = 1.1283791671e-02
f = 0.
fp = eos
[]
[inlet]
type = InletDensityVelocity1Phase
input = 'pipe1:in'
rho = 996.561962436227759
vel = 1
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Outputs]
exodus = true
show = 'rhoA rhouA rhoEA'
[console]
type = Console
print_mesh_changed_info = true
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0.0
dt = 1e-5
num_steps = 5
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-8
nl_max_its = 10
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[Adaptivity]
initial_adaptivity = 0 # There seems to be a bug with non-zero initial adaptivity
refine_fraction = 0.60
coarsen_fraction = 0.30
max_h_level = 4
[]
[]
(modules/thermal_hydraulics/test/tests/components/outlet_1phase/jacobian.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 2
gravity_vector = '9.81 0 0'
scaling_factor_1phase = '1. 1. 1'
closures = simple_closures
[]
[Modules/FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
cv = 1816.0
q = -1.167e6
p_inf = 1.0e9
q_prime = 0
k = 0.5
mu = 281.8e-6
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe]
type = FlowChannel1Phase
fp = eos
# geometry
position = '0 0 0'
orientation = '1 0 0'
A = 1e-4
D_h = 1.12837916709551
f = 0.1
length = 1
n_elems = 2
[]
[outlet]
type = Outlet1Phase
input = 'pipe:out'
p = 1e5
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1e-2
num_steps = 1
abort_on_solve_fail = true
solve_type = 'NEWTON'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
nl_max_its = 5
l_tol = 1e-3
l_max_its = 100
petsc_options_iname = '-snes_type -snes_test_err'
petsc_options_value = 'test 1e-11'
[]
(modules/thermal_hydraulics/test/tests/base/simulation/loop_identification.i)
# This test tests the loop identification function, which creates a map of component
# names to a loop name. "Loops" are defined to be sets of components which are
# physically connected - heat exchanger connections do not constitute physical
# connections in this sense. Note that this test is not meant to actually perform
# any physical computations, so dummy values are provided for the required parameters.
#
# The test configuration for this test is the following:
#
# pipe1 -> corechannel:pipe -> pipe2 -> hx:primary -> pipe1
# j1 j2 j3 j4
#
# inlet -> hx:secondary -> outlet
#
# This test uses the command-line option "--print-component-loops" to print out
# the lists of components in each loop, with the desired output being the
# following:
#
# Loop 1:
#
# corechannel:pipe
# hx:primary
# j1
# j2
# j3
# j4
# pipe1
# pipe2
#
# Loop 2:
#
# hx:secondary
# inlet
# outlet
[GlobalParams]
closures = simple_closures
initial_p = 1e6
initial_T = 300
initial_vel = 0
[]
[Modules/FluidProperties]
[fp_liquid]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[HeatStructureMaterials]
[hx:wall]
type = SolidMaterialProperties
k = 1
cp = 1
rho = 1
[]
[]
[Components]
# PRIMARY LOOP
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j1]
type = JunctionOneToOne1Phase
connections = 'pipe1:out corechannel:in'
[]
[corechannel]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j2]
type = JunctionOneToOne1Phase
connections = 'corechannel:out pipe2:in'
[]
[pipe2]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j3]
type = JunctionOneToOne1Phase
connections = 'pipe2:out hx:primary:in'
[]
[hx:primary]
type = FlowChannel1Phase
position = '0 1 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[j4]
type = JunctionOneToOne1Phase
connections = 'hx:primary:out pipe1:in'
[]
# HEAT EXCHANGER
[hs]
type = HeatStructurePlate
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
materials = hx:wall
n_part_elems = 1
names = 0
widths = 1
depth = 1
initial_T = 300
[]
[ht_primary]
type = HeatTransferFromHeatStructure1Phase
hs = hs
flow_channel = hx:primary
hs_side = outer
Hw = 0
[]
[ht_secondary]
type = HeatTransferFromHeatStructure1Phase
hs = hs
flow_channel = hx:secondary
hs_side = inner
Hw = 0
[]
# SECONDARY LOOP
[inlet]
type = SolidWall1Phase
input = 'hx:secondary:out'
[]
[hx:secondary]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
length = 1
n_elems = 1
A = 1
f = 1
fp = fp_liquid
[]
[outlet]
type = SolidWall1Phase
input = 'hx:secondary:in'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Transient
num_steps = 1
[]
[Outputs]
[console]
type = Console
system_info = ''
enable = false
[]
[]
(modules/thermal_hydraulics/test/tests/misc/coupling_mD_flow/thm_non_overlapping.i)
T_in = 523.0
mdot = 10
pout = 7e6
[GlobalParams]
initial_p = ${pout}
initial_vel = 1
initial_T = ${T_in}
gravity_vector = '0 0 0'
closures = simple_closures
n_elems = 5
scaling_factor_1phase = '1 1e-2 1e-5'
f = 1
[]
[Modules/FluidProperties]
[fp]
type = IdealGasFluidProperties
gamma = 1.66
molar_mass = 0.004
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[inlet_bc]
type = InletMassFlowRateTemperature1Phase
input = 'inlet:in'
m_dot = ${mdot}
T = ${T_in}
[]
[inlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 11'
orientation = '0 0 -1'
length = 1
A = 1
[]
[inlet_plenum]
type = VolumeJunction1Phase
position = '0 0 10'
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 1
connections = 'inlet:out bypass:in core_top:in'
volume = 1
[]
[bypass]
type = FlowChannel1Phase
fp = fp
position = '2 0 10'
orientation = '0 0 -1'
length = 10
A = 0.01
[]
[core_top]
type = FlowChannel1Phase
fp = fp
position = '0 0 10'
orientation = '0 0 -1'
length = 0.1
A = 9
[]
[core_top_bc]
type = Outlet1Phase
p = ${pout}
input = 'core_top:out'
[]
[core_bottom_bc]
type = InletMassFlowRateTemperature1Phase
input = 'core_bottom:in'
m_dot = ${mdot}
T = ${T_in}
[]
[core_bottom]
type = FlowChannel1Phase
fp = fp
position = '0 0 0.1'
orientation = '0 0 -1'
length = 0.1
A = 9
[]
[outlet_plenum]
type = VolumeJunction1Phase
position = '0 0 0'
initial_vel_x = 1
initial_vel_y = 0
initial_vel_z = 1
connections = 'bypass:out core_bottom:out outlet:in'
volume = 1
[]
[outlet]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '0 0 -1'
length = 1
A = 1
[]
[outlet_bc]
type = Outlet1Phase
p = ${pout}
input = 'outlet:out'
[]
[]
[ControlLogic]
[set_core_inlet_pressure]
type = SetComponentRealValueControl
component = core_top_bc
parameter = p
value = core_inlet_pressure
[]
[set_core_outlet_mdot]
type = SetComponentRealValueControl
component = core_bottom_bc
parameter = m_dot
value = core_outlet_mdot
[]
[set_core_outlet_temperature]
type = SetComponentRealValueControl
component = core_bottom_bc
parameter = T
value = core_outlet_temperature
[]
[]
[Postprocessors]
[core_inlet_pressure]
type = Receiver
default = ${pout}
[]
[core_outlet_mdot]
type = Receiver
default = ${mdot}
[]
[core_outlet_temperature]
type = Receiver
default = ${T_in}
[]
[core_outlet_pressure]
type = SideAverageValue
variable = p
boundary = 'core_bottom:in'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[core_inlet_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'core_top:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[core_inlet_temperature]
type = SideAverageValue
variable = T
boundary = 'core_top:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[bypass_inlet_pressure]
type = SideAverageValue
variable = p
boundary = 'bypass:in'
[]
[bypass_outlet_pressure]
type = SideAverageValue
variable = p
boundary = 'bypass:out'
[]
[bypass_pressure_drop]
type = DifferencePostprocessor
value1 = bypass_inlet_pressure
value2 = bypass_outlet_pressure
[]
[bypass_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'bypass:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[inlet_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'inlet:in'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[outlet_mdot]
type = SideAverageValue
variable = rhouA
boundary = 'outlet:out'
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
timestep_tolerance = 1e-6
start_time = 0
end_time = 100
dt = 0.01
line_search = l2
nl_rel_tol = 1e-6
nl_abs_tol = 1e-4
nl_max_its = 25
l_tol = 1e-3
l_max_its = 20
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/components/shaft_connected_compressor_1phase/jac.test.i)
[GlobalParams]
initial_p = 1e5
initial_T = 300
initial_vel = 0
initial_vel_x = 0
initial_vel_y = 0
initial_vel_z = 0
length = 1
n_elems = 1
A = 0.1
A_ref = 0.1
closures = simple_closures
fp = fp
f = 0
scaling_factor_1phase = '1e-2 1e-2 1e-5'
scaling_factor_rhoEV = 1e-5
[]
[Modules/FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 1.4
cv = 725
p_inf = 0
q = 0
q_prime = 0
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[sw1]
type = SolidWall1Phase
input = fch1:in
[]
[fch1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '1 0 0'
[]
[compressor]
type = ShaftConnectedCompressor1Phase
inlet = 'fch1:out'
outlet = 'fch2:in'
position = '1 0 0'
volume = 0.3
inertia_coeff = '1 1 1 1'
inertia_const = 1.61397
speed_cr_I = 1e12
speed_cr_fr = 0
tau_fr_coeff = '0 0 9.084 0'
tau_fr_const = 0
omega_rated = 1476.6
mdot_rated = 2
rho0_rated = 1.3
c0_rated = 350
speeds = '-1.0 0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.5'
Rp_functions = 'Rp00 Rp00 Rp04 Rp05 Rp06 Rp07 Rp08 Rp09 Rp10 Rp11 Rp11'
eff_functions = 'eff00 eff00 eff04 eff05 eff06 eff07 eff08 eff09 eff10 eff11 eff11'
[]
[fch2]
type = FlowChannel1Phase
position = '1 0 0'
orientation = '1 0 0'
[]
[sw2]
type = SolidWall1Phase
input = fch2:out
[]
[shaft]
type = Shaft
connected_components = 'compressor'
initial_speed = 1476.6
[]
[]
[Functions]
[Rp00]
type = PiecewiseLinear
x = '0 0.3736 0.4216'
y = '1 0.9701 0.9619'
[]
[eff00]
type = PiecewiseLinear
x = '0 0.3736 0.4216'
y = '0.001 0.8941 0.6641'
[]
[Rp04]
type = PiecewiseLinear
x = '0.3736 0.3745 0.3753 0.3762 0.3770 0.3919 0.4067 0.4216 0.4826'
y = '1.0789 1.0779 1.0771 1.0759 1.0749 1.0570 1.0388 1.0204 0.9450'
[]
[eff04]
type = PiecewiseLinear
x = '0.3736 0.3745 0.3753 0.3762 0.3770 0.3919 0.4067 0.4216 0.4826'
y = '0.8941 0.8929 0.8925 0.8915 0.8901 0.8601 0.7986 0.6641 0.1115'
[]
[Rp05]
type = PiecewiseLinear
x = '0.3736 0.4026 0.4106 0.4186 0.4266 0.4346 0.4426 0.4506 0.4586 0.4666 0.4746 0.4826 0.5941'
y = '1.2898 1.2442 1.2316 1.2189 1.2066 1.1930 1.1804 1.1677 1.1542 1.1413 1.1279 1.1150 0.9357'
[]
[eff05]
type = PiecewiseLinear
x = '0.3736 0.4026 0.4106 0.4186 0.4266 0.4346 0.4426 0.4506 0.4586 0.4666 0.4746 0.4826 0.5941'
y = '0.9281 0.9263 0.9258 0.9244 0.9226 0.9211 0.9195 0.9162 0.9116 0.9062 0.8995 0.8914 0.7793'
[]
[Rp06]
type = PiecewiseLinear
x = '0.4026 0.4613 0.4723 0.4834 0.4945 0.5055 0.5166 0.5277 0.5387 0.5609 0.5719 0.583 0.5941 0.7124'
y = '1.5533 1.4438 1.4232 1.4011 1.3793 1.3589 1.3354 1.3100 1.2867 1.2376 1.2131 1.1887 1.1636 0.896'
[]
[eff06]
type = PiecewiseLinear
x = '0.4026 0.4613 0.4723 0.4834 0.4945 0.5055 0.5166 0.5277 0.5387 0.5609 0.5719 0.583 0.5941 0.7124'
y = '0.9148 0.9255 0.9275 0.9277 0.9282 0.9295 0.9290 0.9269 0.9242 0.9146 0.9080 0.900 0.8920 0.8061'
[]
[Rp07]
type = PiecewiseLinear
x = '0.4613 0.5447 0.5587 0.5726 0.5866 0.6006 0.6145 0.6285 0.6425 0.6565 0.6704 0.6844 0.6984 0.7124 0.8358'
y = '1.8740 1.6857 1.6541 1.6168 1.5811 1.5430 1.5067 1.4684 1.4292 1.3891 1.3479 1.3061 1.2628 1.2208 0.8498'
[]
[eff07]
type = PiecewiseLinear
x = '0.4613 0.5447 0.5587 0.5726 0.5866 0.6006 0.6145 0.6285 0.6425 0.6565 0.6704 0.6844 0.6984 0.7124 0.8358'
y = '0.9004 0.9232 0.9270 0.9294 0.9298 0.9312 0.9310 0.9290 0.9264 0.9225 0.9191 0.9128 0.9030 0.8904 0.7789'
[]
[Rp08]
type = PiecewiseLinear
x = '0.5447 0.6638 0.6810 0.6982 0.7154 0.7326 0.7498 0.7670 0.7842 0.8014 0.8186 0.8358 0.9702'
y = '2.3005 1.9270 1.8732 1.8195 1.7600 1.7010 1.6357 1.5697 1.5019 1.4327 1.3638 1.2925 0.7347'
[]
[eff08]
type = PiecewiseLinear
x = '0.5447 0.6638 0.6810 0.6982 0.7154 0.7326 0.7498 0.7670 0.7842 0.8014 0.8186 0.8358 0.9702'
y = '0.9102 0.9276 0.9301 0.9313 0.9319 0.9318 0.9293 0.9256 0.9231 0.9153 0.9040 0.8933 0.8098'
[]
[Rp09]
type = PiecewiseLinear
x = '0.6638 0.7762 0.7938 0.8115 0.8291 0.8467 0.8644 0.8820 0.8997 0.9173 0.9349 0.9526 0.9702 1.1107 1.25120'
y = '2.6895 2.2892 2.2263 2.1611 2.0887 2.0061 1.9211 1.8302 1.7409 1.6482 1.5593 1.4612 1.3586 0.5422 -0.2742'
[]
[eff09]
type = PiecewiseLinear
x = '0.6638 0.7762 0.7938 0.8115 0.8291 0.8467 0.8644 0.8820 0.8997 0.9173 0.9349 0.9526 0.9702 1.1107 1.2512'
y = '0.8961 0.9243 0.9288 0.9323 0.9330 0.9325 0.9319 0.9284 0.9254 0.9215 0.9134 0.9051 0.8864 0.7380 0.5896'
[]
[Rp10]
type = PiecewiseLinear
x = '0.7762 0.9255 0.9284 0.9461 0.9546 0.9816 0.9968 1.0170 1.039 1.0525 1.0812 1.0880 1.1056 1.1107 1.2511'
y = '3.3162 2.6391 2.6261 2.5425 2.5000 2.3469 2.2521 2.1211 1.974 1.8806 1.6701 1.6169 1.4710 1.4257 0.1817'
[]
[eff10]
type = PiecewiseLinear
x = '0.7762 0.9255 0.9284 0.9461 0.9546 0.9816 0.9968 1.0170 1.0390 1.0525 1.0812 1.0880 1.1056 1.1107 1.2511'
y = '0.8991 0.9276 0.9281 0.9308 0.9317 0.9329 0.9318 0.9291 0.9252 0.9223 0.9116 0.9072 0.8913 0.8844 0.6937'
[]
[Rp11]
type = PiecewiseLinear
x = '0.9255 1.0749 1.134 1.2511'
y = '3.9586 2.9889 2.605 1.4928'
[]
[eff11]
type = PiecewiseLinear
x = '0.9255 1.0749 1.1340 1.2511'
y = '0.9257 0.9308 0.9328 0.8823'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
start_time = 0
dt = 0.001
num_steps = 1
abort_on_solve_fail = true
solve_type = 'newton'
line_search = 'basic'
petsc_options_iname = '-snes_test_err'
petsc_options_value = '1e-10'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15
l_tol = 1e-4
l_max_its = 10
[]