1 Definitions

We employ the following definitions for working with equations in cylindrical coordinates
(see also: Wikipedial). Note that we use the spelled-out form of the operators (grad , div)
to differentiate them from the related operators in Cartesian space.

1. Unit vectors: é,, ég, €,.

2. Components of a vector, v
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3. Components of a tensor, S:
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4. Gradient of a scalar g:
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5. Divergence of a vector -
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6. Gradient of a vector v:
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7. Divergence of a tensor S:
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8. “Convective” operator acting on a scalar, g:

. 3 v Oq dq
(U-grad)g = Uy, + T +o Vi (7)
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9. The usual “product” rule and divergence theorem

div (gv) = g(divv) 4+ grad g - ¥ (8)
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still hold in the cylindrical coordinate system using the preceding definitions.
10. The “tensor” form of the product rule,
div (87) = 7 -divS + 87: grad v/ (10)

also holds, where the “double-contraction” operator has the usual coordinate-system-
independent definition, A:B = A;;B;;. This identity is cumbersome to check for
general ¥, but we can e.g. verify it for the special case of ¥ = (v,,0,0). In this case,
the second term on the right-hand side of (10) expands to:
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Meanwhile, the term on the left-hand side of (10) is:
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Finally, taking (12)—(11) yields:
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It is then easy to see that (13) = ¢'- div .S, for our special choice of ¥, based on the
definition of the divergence of a tensor given in (6). An analogous argument can be
used to confirm the identity for @ = (0, vg,0) and ¥ = (0,0, v,), if desired. These three
particular cases taken together then confirm (10).
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2 Navier-Stokes Equations in Cylindrical Coordinates

In cylindrical coordinates, the Navier-Stokes equations are:
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where p is density, « is velocity, f is a body force, and o is the total stress tensor, defined

by:

o=-pl+T1
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where I is the identity matrix.

Consider a cylindrical domain 2. with radius R and height L. Multiplying Eqns. (14),
(15) by test functions (7, ¢), integrating over €., and applying the divergence theorem yields
the variational formulation of the problem, find (u, p) such that:
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holds for all admissible (¥, q).

3 Axisymmetric Navier-Stokes Equations

Suppose that the velocity field is axisymmetric, that is:
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and there is no forcing the the tangential direction (fy = 0). Then, we can ignore the 6-
component of (17), and “generate” the r and z-components of the momentum equation by
selecting test functions ¥ = (¢, 0,0) and ¥ = (0, 0,), respectively. The resulting component
equations are then: find (u,,u,,p) such that
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holds for all admissible test functions (1, ¢). In the axisymmetric case, the viscous stress
tensor from (16) reduces to:
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Then, (20)—(21) can be further simplified and combined with the axi-symmetric mass con-
servation equation to give:
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where the components of the simplified 7 matrix are given by (22), and we have also expanded
the pressure term in (23). We can now see that (23)—(25) are equivalent to the Cartesian
two-dimensional Navier-Stokes equations plus the highlighted terms, —pw qu;w, and “r in
the r-momentum and mass conservation equations.




