- displacementsThe nonlinear displacement variables for the problem
C++ Type:std::vector<VariableName>
Description:The nonlinear displacement variables for the problem
Tensor Mechanics Master Action System
Set up dynamic stress divergence kernels
The TensorMechanics Dynamic Master Action is a convenience object that simplifies part of the dynamic mechanics system setup. It performs
Input Parameters
- accelerationsaccel_x accel_y accel_z Names of the acceleration variables
Default:accel_x accel_y accel_z
C++ Type:std::vector<AuxVariableName>
Description:Names of the acceleration variables
- active__all__ If specified only the blocks named will be visited and made active
Default:__all__
C++ Type:std::vector<std::string>
Description:If specified only the blocks named will be visited and made active
- add_variablesFalseAdd the displacement variables
Default:False
C++ Type:bool
Description:Add the displacement variables
- automatic_eigenstrain_namesFalseCollects all material eigenstrains and passes to required strain calculator within TMA internally.
Default:False
C++ Type:bool
Description:Collects all material eigenstrains and passes to required strain calculator within TMA internally.
- base_nameMaterial property base name
C++ Type:std::string
Description:Material property base name
- cylindrical_axis_point1Starting point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Description:Starting point for direction of axis of rotation for cylindrical stress/strain.
- cylindrical_axis_point2Ending point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Description:Ending point for direction of axis of rotation for cylindrical stress/strain.
- decomposition_methodTaylorExpansionMethods to calculate the finite strain and rotation increments
Default:TaylorExpansion
C++ Type:MooseEnum
Description:Methods to calculate the finite strain and rotation increments
- densitydensityName of Material Property that provides the density
Default:density
C++ Type:MaterialPropertyName
Description:Name of Material Property that provides the density
- directionDirection stress/strain is calculated in
C++ Type:libMesh::Point
Description:Direction stress/strain is calculated in
- eigenstrain_namesList of eigenstrains to be applied in this strain calculation
C++ Type:std::vector<MaterialPropertyName>
Description:List of eigenstrains to be applied in this strain calculation
- extra_vector_tagsThe tag names for extra vectors that residual data should be saved into
C++ Type:std::vector<TagName>
Description:The tag names for extra vectors that residual data should be saved into
- global_strainName of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
C++ Type:MaterialPropertyName
Description:Name of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
- inactiveIf specified blocks matching these identifiers will be skipped.
C++ Type:std::vector<std::string>
Description:If specified blocks matching these identifiers will be skipped.
- incrementalFalseUse incremental or total strain
Default:False
C++ Type:bool
Description:Use incremental or total strain
- mass_damping_coefficient0Name of material property or a constant real number defining mass Rayleigh parameter (eta).
Default:0
C++ Type:MaterialPropertyName
Description:Name of material property or a constant real number defining mass Rayleigh parameter (eta).
- scalingThe scaling to apply to the displacement variables
C++ Type:double
Description:The scaling to apply to the displacement variables
- static_initializationFalseSet to true get the system to equilibrium under gravity by running a quasi-static analysis (by solving Ku = F) in the first time step.
Default:False
C++ Type:bool
Description:Set to true get the system to equilibrium under gravity by running a quasi-static analysis (by solving Ku = F) in the first time step.
- stiffness_damping_coefficient0Name of material property or a constant real number defining stiffness Rayleigh parameter (zeta).
Default:0
C++ Type:MaterialPropertyName
Description:Name of material property or a constant real number defining stiffness Rayleigh parameter (zeta).
- strainSMALLStrain formulation
Default:SMALL
C++ Type:MooseEnum
Description:Strain formulation
- strain_base_nameThe base name used for the strain. If not provided, it will be set equal to base_name
C++ Type:std::string
Description:The base name used for the strain. If not provided, it will be set equal to base_name
- temperatureThe temperature
C++ Type:std::vector<VariableName>
Description:The temperature
- use_automatic_differentiationFalseFlag to use automatic differentiation (AD) objects when possible
Default:False
C++ Type:bool
Description:Flag to use automatic differentiation (AD) objects when possible
- use_finite_deform_jacobianFalseJacobian for corrotational finite strain
Default:False
C++ Type:bool
Description:Jacobian for corrotational finite strain
- velocitiesvel_x vel_y vel_z Names of the velocity variables
Default:vel_x vel_y vel_z
C++ Type:std::vector<AuxVariableName>
Description:Names of the velocity variables
- verboseFalseDisplay extra information.
Default:False
C++ Type:bool
Description:Display extra information.
- volumetric_locking_correctionFalseFlag to correct volumetric locking
Default:False
C++ Type:bool
Description:Flag to correct volumetric locking
Optional Parameters
- additional_generate_outputAdd scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
C++ Type:MultiMooseEnum
Description:Add scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
- additional_material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the family of FE shape functions to use for this variable.
- additional_material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the order of the FE shape function to use for this variable.
- generate_outputAdd scalar quantity output for stress and/or strain
C++ Type:MultiMooseEnum
Description:Add scalar quantity output for stress and/or strain
- material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the family of FE shape functions to use for this variable.
- material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the order of the FE shape function to use for this variable.
Output Parameters
- blockThe list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
C++ Type:std::vector<SubdomainName>
Description:The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
- diag_save_inThe displacement diagonal preconditioner terms
C++ Type:std::vector<AuxVariableName>
Description:The displacement diagonal preconditioner terms
- save_inThe displacement residuals
C++ Type:std::vector<AuxVariableName>
Description:The displacement residuals
Advanced Parameters
- hht_alpha0alpha parameter for mass dependent numerical damping induced by HHT time integration scheme
Default:0
C++ Type:double
Description:alpha parameter for mass dependent numerical damping induced by HHT time integration scheme
- newmark_beta0.25beta parameter for Newmark Time integration
Default:0.25
C++ Type:double
Description:beta parameter for Newmark Time integration
- newmark_gamma0.5gamma parameter for Newmark Time integration
Default:0.5
C++ Type:double
Description:gamma parameter for Newmark Time integration
Time Integration Parameters Parameters
- out_of_plane_directionzThe direction of the out-of-plane strain.
Default:z
C++ Type:MooseEnum
Description:The direction of the out-of-plane strain.
- out_of_plane_pressure_functionFunction used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
C++ Type:FunctionName
Description:Function used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
- out_of_plane_pressure_material0Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
Default:0
C++ Type:MaterialPropertyName
Description:Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
- out_of_plane_strainVariable for the out-of-plane strain for plane stress models
C++ Type:VariableName
Description:Variable for the out-of-plane strain for plane stress models
- planar_formulationNONEOut-of-plane stress/strain formulation
Default:NONE
C++ Type:MooseEnum
Description:Out-of-plane stress/strain formulation
- pressure_factorScale factor applied to prescribed out-of-plane pressure (both material and function)
C++ Type:double
Description:Scale factor applied to prescribed out-of-plane pressure (both material and function)
- scalar_out_of_plane_strainScalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
C++ Type:VariableName
Description:Scalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
Out-Of-Plane Stress/Strain Parameters
Associated Actions
Available Actions
- Tensor Mechanics App
- CommonTensorMechanicsActionStore common tensor mechanics parameters
- TensorMechanicsActionSet up stress divergence kernels with coordinate system aware logic