- displacementsThe nonlinear displacement variables for the problem
C++ Type:std::vector<VariableName>
Description:The nonlinear displacement variables for the problem
Legacy Kernel-Only Tensor Mechanics Action
Set up stress divergence kernels with coordinate system aware logic
This legacy action will soon be deprecated in favor of the more inclusive TensorMechanics/MasterAction. See the description, example use, and parameters on the TensorMechanics/Master action system page.
Description
The LegacyTensorMechanicsAction
is a convenience object that simplifies part of the tensor mechanics system setup. It adds StressDivergence Kernels (for the current coordinate system).
Constructed MooseObjects
The Legacy Tensor Mechanics Action is used to construct the kernels for the specified coordinate system.
Table 1: Correspondence Among Action Functionality and MooseObjects for the Tensor Mechanics Master
Action
Functionality | Replaced Classes | Associated Parameters |
---|---|---|
Calculate stress divergence equilibrium for the given coordinate system | StressDivergenceTensors or StressDivergenceRZTensors or StressDivergenceRSphericalTensors | displacements : a string of the displacement field variables |
Note that there are many variations for the calculation of the stress divergence. Review the theoretical introduction for the Stress Divergence. Pay particular attention to the setting of the use_displaced_mesh
parameter discussion; this parameter depends on the strain formulation used in the simulation.
We recommend that users employ the TensorMechanics/MasterAction whenever possible to ensure consistency between the test function gradients and the strain formulation selected.
Example Input File Syntax
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
[../]
[]
(modules/tensor_mechanics/test/tests/elastic_patch/elastic_patch.i)Input Parameters
- active__all__ If specified only the blocks named will be visited and made active
Default:__all__
C++ Type:std::vector<std::string>
Description:If specified only the blocks named will be visited and made active
- add_variablesFalseAdd the displacement variables
Default:False
C++ Type:bool
Description:Add the displacement variables
- automatic_eigenstrain_namesFalseCollects all material eigenstrains and passes to required strain calculator within TMA internally.
Default:False
C++ Type:bool
Description:Collects all material eigenstrains and passes to required strain calculator within TMA internally.
- base_nameMaterial property base name
C++ Type:std::string
Description:Material property base name
- cylindrical_axis_point1Starting point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Description:Starting point for direction of axis of rotation for cylindrical stress/strain.
- cylindrical_axis_point2Ending point for direction of axis of rotation for cylindrical stress/strain.
C++ Type:libMesh::Point
Description:Ending point for direction of axis of rotation for cylindrical stress/strain.
- decomposition_methodTaylorExpansionMethods to calculate the finite strain and rotation increments
Default:TaylorExpansion
C++ Type:MooseEnum
Description:Methods to calculate the finite strain and rotation increments
- directionDirection stress/strain is calculated in
C++ Type:libMesh::Point
Description:Direction stress/strain is calculated in
- eigenstrain_namesList of eigenstrains to be applied in this strain calculation
C++ Type:std::vector<MaterialPropertyName>
Description:List of eigenstrains to be applied in this strain calculation
- extra_vector_tagsThe tag names for extra vectors that residual data should be saved into
C++ Type:std::vector<TagName>
Description:The tag names for extra vectors that residual data should be saved into
- global_strainName of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
C++ Type:MaterialPropertyName
Description:Name of the global strain material to be applied in this strain calculation. The global strain tensor is constant over the whole domain and allows visualization of the deformed shape with the periodic BC
- inactiveIf specified blocks matching these identifiers will be skipped.
C++ Type:std::vector<std::string>
Description:If specified blocks matching these identifiers will be skipped.
- incrementalFalseUse incremental or total strain
Default:False
C++ Type:bool
Description:Use incremental or total strain
- scalingThe scaling to apply to the displacement variables
C++ Type:double
Description:The scaling to apply to the displacement variables
- strainSMALLStrain formulation
Default:SMALL
C++ Type:MooseEnum
Description:Strain formulation
- strain_base_nameThe base name used for the strain. If not provided, it will be set equal to base_name
C++ Type:std::string
Description:The base name used for the strain. If not provided, it will be set equal to base_name
- temperatureThe temperature
C++ Type:std::vector<VariableName>
Description:The temperature
- use_automatic_differentiationFalseFlag to use automatic differentiation (AD) objects when possible
Default:False
C++ Type:bool
Description:Flag to use automatic differentiation (AD) objects when possible
- use_displaced_meshFalseWhether to use displaced mesh in the kernels
Default:False
C++ Type:bool
Description:Whether to use displaced mesh in the kernels
- use_finite_deform_jacobianFalseJacobian for corrotational finite strain
Default:False
C++ Type:bool
Description:Jacobian for corrotational finite strain
- verboseFalseDisplay extra information.
Default:False
C++ Type:bool
Description:Display extra information.
- volumetric_locking_correctionFalseFlag to correct volumetric locking
Default:False
C++ Type:bool
Description:Flag to correct volumetric locking
Optional Parameters
- additional_generate_outputAdd scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
C++ Type:MultiMooseEnum
Description:Add scalar quantity output for stress and/or strain (will be appended to the list in `generate_output`)
- additional_material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the family of FE shape functions to use for this variable.
- additional_material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the order of the FE shape function to use for this variable.
- generate_outputAdd scalar quantity output for stress and/or strain
C++ Type:MultiMooseEnum
Description:Add scalar quantity output for stress and/or strain
- material_output_familySpecifies the family of FE shape functions to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the family of FE shape functions to use for this variable.
- material_output_orderSpecifies the order of the FE shape function to use for this variable.
C++ Type:MultiMooseEnum
Description:Specifies the order of the FE shape function to use for this variable.
Output Parameters
- blockThe list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
C++ Type:std::vector<SubdomainName>
Description:The list of ids of the blocks (subdomain) that the stress divergence kernels will be applied to
- diag_save_inThe displacement diagonal preconditioner terms
C++ Type:std::vector<AuxVariableName>
Description:The displacement diagonal preconditioner terms
- save_inThe displacement residuals
C++ Type:std::vector<AuxVariableName>
Description:The displacement residuals
Advanced Parameters
- out_of_plane_directionzThe direction of the out-of-plane strain.
Default:z
C++ Type:MooseEnum
Description:The direction of the out-of-plane strain.
- out_of_plane_pressure_functionFunction used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
C++ Type:FunctionName
Description:Function used to prescribe pressure (applied toward the body) in the out-of-plane direction (y for 1D Axisymmetric or z for 2D Cartesian problems)
- out_of_plane_pressure_material0Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
Default:0
C++ Type:MaterialPropertyName
Description:Material used to prescribe pressure (applied toward the body) in the out-of-plane direction
- out_of_plane_strainVariable for the out-of-plane strain for plane stress models
C++ Type:VariableName
Description:Variable for the out-of-plane strain for plane stress models
- planar_formulationNONEOut-of-plane stress/strain formulation
Default:NONE
C++ Type:MooseEnum
Description:Out-of-plane stress/strain formulation
- pressure_factorScale factor applied to prescribed out-of-plane pressure (both material and function)
C++ Type:double
Description:Scale factor applied to prescribed out-of-plane pressure (both material and function)
- scalar_out_of_plane_strainScalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
C++ Type:VariableName
Description:Scalar variable for the out-of-plane strain (in y direction for 1D Axisymmetric or in z direction for 2D Cartesian problems)
Out-Of-Plane Stress/Strain Parameters
Associated Actions
Available Actions
- Tensor Mechanics App
- LegacyTensorMechanicsActionSet up stress divergence kernels with coordinate system aware logic