- internal_constraint_toleranceThe Newton-Raphson process is only deemed converged if the internal constraint is less than this.
C++ Type:double
Description:The Newton-Raphson process is only deemed converged if the internal constraint is less than this.
- strengthYield function = a*mean_stress - strength
C++ Type:UserObjectName
Description:Yield function = a*mean_stress - strength
- yield_function_toleranceIf the yield function is less than this amount, the (stress, internal parameter) are deemed admissible.
C++ Type:double
Description:If the yield function is less than this amount, the (stress, internal parameter) are deemed admissible.
TensorMechanicsPlasticMeanCap
The TensorMechanicsPlasticMeanCap has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Class that limits the mean stress. Yield function = a*mean_stress - strength. mean_stress = (stress_xx + stress_yy + stress_zz)/3
Overview
Example Input File Syntax
Input Parameters
- a1Yield function = a*mean_stress - strength
Default:1
C++ Type:double
Description:Yield function = a*mean_stress - strength
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
- force_preauxFalseForces the GeneralUserObject to be executed in PREAUX
Default:False
C++ Type:bool
Description:Forces the GeneralUserObject to be executed in PREAUX
- force_preicFalseForces the GeneralUserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Description:Forces the GeneralUserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.