- variableThe name of the variable that this object operates on
C++ Type:std::vector<VariableName>
Description:The name of the variable that this object operates on
NearestPointIntegralVariablePostprocessor
The domain is virtually divided into a number of subdomains according to the nearest points provided by users. And then the variable integral is taken over each individual subdomain separately.
Compute element variable integrals for nearest-point based subdomains
Input Parameters
- axiszThe axis around which the radius is determined
Default:z
C++ Type:MooseEnum
Description:The axis around which the radius is determined
- blockThe list of block ids (SubdomainID) that this object will be applied
C++ Type:std::vector<SubdomainName>
Description:The list of block ids (SubdomainID) that this object will be applied
- contains_complete_historyFalseSet this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation
Default:False
C++ Type:bool
Description:Set this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation
- dist_normpointTo specify whether the distance is defined based on point or radius
Default:point
C++ Type:MooseEnum
Description:To specify whether the distance is defined based on point or radius
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM.
- parallel_typeREPLICATEDSet how the data is represented within the VectorPostprocessor (VPP); 'distributed' indicates that data within the VPP is distributed and no auto communication is preformed, this setting will result in parallel output within the CSV output; 'replicated' indicates that the data within the VPP is correct on processor 0, the data will automatically be broadcast to all processors unless the '_auto_broadcast' param is set to false within the validParams function.
Default:REPLICATED
C++ Type:MooseEnum
Description:Set how the data is represented within the VectorPostprocessor (VPP); 'distributed' indicates that data within the VPP is distributed and no auto communication is preformed, this setting will result in parallel output within the CSV output; 'replicated' indicates that the data within the VPP is correct on processor 0, the data will automatically be broadcast to all processors unless the '_auto_broadcast' param is set to false within the validParams function.
- pointsComputations will be lumped into values at these points.
C++ Type:std::vector<libMesh::Point>
Description:Computations will be lumped into values at these points.
- points_fileA filename that should be looked in for points. Each set of 3 values in that file will represent a Point. This and 'points' cannot be both supplied.
C++ Type:FileName
Description:A filename that should be looked in for points. Each set of 3 values in that file will represent a Point. This and 'points' cannot be both supplied.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Description:Determines whether this object is calculated using an implicit or explicit form
- outputsVector of output names were you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.