- solutionThe SolutionUserObject to extract data from.
C++ Type:UserObjectName
Description:The SolutionUserObject to extract data from.
SolutionFunction
The SolutionFunction has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
# SolutionFunction
!syntax description /Functions/SolutionFunction
## Overview
!! Replace these lines with information regarding the SolutionFunction object.
## Example Input File Syntax
!! Describe and include an example of how to use the SolutionFunction object.
!syntax parameters /Functions/SolutionFunction
!syntax inputs /Functions/SolutionFunction
!syntax children /Functions/SolutionFunction
Function for reading a solution from file.
Input Parameters
- add_factor0Add this value (b) to the solution (x): ax+b, where a is the 'scale_factor'
Default:0
C++ Type:double
Options:
Description:Add this value (b) to the solution (x): ax+b, where a is the 'scale_factor'
- from_variableThe name of the variable in the file that is to be extracted
C++ Type:std::string
Options:
Description:The name of the variable in the file that is to be extracted
- scale_factor1Scale factor (a) to be applied to the solution (x): ax+b, where b is the 'add_factor'
Default:1
C++ Type:double
Options:
Description:Scale factor (a) to be applied to the solution (x): ax+b, where b is the 'add_factor'
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Options:
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Options:
Description:Set the enabled status of the MooseObject.
Advanced Parameters
Input Files
- (test/tests/auxkernels/solution_aux/thread_xda.i)
- (modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
- (examples/ex14_pps/ex14_compare_solutions_2.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xdr.i)
- (test/tests/functions/solution_function/solution_function_exodus_test.i)
- (test/tests/functions/solution_function/solution_function_rot1.i)
- (test/tests/functions/solution_function/solution_function_grad_p2.i)
- (test/tests/functions/solution_function/solution_function_test.i)
- (test/tests/functions/solution_function/solution_function_rot3.i)
- (modules/porous_flow/examples/groundwater/ex02_steady_state.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xda.i)
- (test/tests/functions/solution_function/solution_function_exodus_interp_test.i)
- (test/tests/functions/solution_function/solution_function_scale_mult.i)
- (test/tests/functions/solution_function/solution_function_rot2.i)
- (modules/porous_flow/examples/groundwater/ex02_abstraction.i)
- (test/tests/functions/solution_function/solution_function_scale_transl.i)
- (test/tests/functions/solution_function/solution_function_rot4.i)
- (test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i)
(test/tests/auxkernels/solution_aux/thread_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with ParallelMesh.
type = GeneratedMesh
parallel_type = REPLICATED
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Postprocessors]
[./unorm]
type = ElementL2Norm
variable = u
[../]
[./uerror]
type = ElementL2Error
variable = u
function = u_xda_func
[../]
[]
[Outputs]
csv = true
[]
(modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, the mesh is not identical to the mesh used in gravityeq.i. Rather, it is
# generated so that it is more refined near the injection boundary and at the top of
# the model, as that is where the gas plume will be present.
#
# To use the hydrostatic pressure calculated using the gravity equilibrium run as the initial
# condition for the pressure, a SolutionUserObject is used, along with a SolutionFunction to
# interpolate the pressure from the gravity equilibrium run to the initial condition for liqiud
# porepressure in this example.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we use a mesh shifted 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
type = GeneratedMesh
dim = 2
ny = 25
nx = 50
ymax = 100
xmin = 0.1
xmax = 5000
bias_x = 1.05
bias_y = 0.95
[]
[Problem]
coord_type = RZ
rz_coord_axis = Y
[]
[GlobalParams]
PorousFlowDictator = dictator
gravity = '0 -9.81 0'
temperature_unit = Celsius
[]
[Variables]
[pp_liq]
[]
[sat_gas]
initial_condition = 0
[]
[]
[ICs]
[ppliq_ic]
type = FunctionIC
variable = pp_liq
function = ppliq_ic
[]
[]
[AuxVariables]
[temperature]
initial_condition = 50
[]
[xnacl]
initial_condition = 0.1
[]
[brine_density]
family = MONOMIAL
order = CONSTANT
[]
[methane_density]
family = MONOMIAL
order = CONSTANT
[]
[massfrac_ph0_sp0]
initial_condition = 1
[]
[massfrac_ph1_sp0]
initial_condition = 0
[]
[pp_gas]
family = MONOMIAL
order = CONSTANT
[]
[sat_liq]
family = MONOMIAL
order = CONSTANT
[]
[]
[Kernels]
[mass0]
type = PorousFlowMassTimeDerivative
variable = pp_liq
[]
[flux0]
type = PorousFlowAdvectiveFlux
variable = pp_liq
[]
[mass1]
type = PorousFlowMassTimeDerivative
variable = sat_gas
fluid_component = 1
[]
[flux1]
type = PorousFlowAdvectiveFlux
variable = sat_gas
fluid_component = 1
[]
[]
[AuxKernels]
[brine_density]
type = PorousFlowPropertyAux
property = density
variable = brine_density
execute_on = 'initial timestep_end'
[]
[methane_density]
type = PorousFlowPropertyAux
property = density
variable = methane_density
phase = 1
execute_on = 'initial timestep_end'
[]
[pp_gas]
type = PorousFlowPropertyAux
property = pressure
phase = 1
variable = pp_gas
execute_on = 'initial timestep_end'
[]
[sat_liq]
type = PorousFlowPropertyAux
property = saturation
variable = sat_liq
execute_on = 'initial timestep_end'
[]
[]
[BCs]
[gas_injection]
type = PorousFlowSink
boundary = left
variable = sat_gas
flux_function = injection_rate
fluid_phase = 1
[]
[brine_out]
type = PorousFlowPiecewiseLinearSink
boundary = right
variable = pp_liq
multipliers = '0 1e9'
pt_vals = '0 1e9'
fluid_phase = 0
flux_function = 1e-6
use_mobility = true
use_relperm = true
mass_fraction_component = 0
[]
[]
[Functions]
[injection_rate]
type = ParsedFunction
vals = injection_area
vars = area
value = '-1/area'
[]
[ppliq_ic]
type = SolutionFunction
solution = soln
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp_liq sat_gas'
number_fluid_phases = 2
number_fluid_components = 2
[]
[pc]
type = PorousFlowCapillaryPressureVG
alpha = 1e-5
m = 0.5
sat_lr = 0.2
pc_max = 1e7
[]
[soln]
type = SolutionUserObject
mesh = gravityeq_out.e
system_variables = porepressure
[]
[]
[Modules]
[FluidProperties]
[brine]
type = BrineFluidProperties
[]
[methane]
type = MethaneFluidProperties
[]
[methane_tab]
type = TabulatedFluidProperties
fp = methane
save_file = false
[]
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
temperature = temperature
[]
[ps]
type = PorousFlow2PhasePS
phase0_porepressure = pp_liq
phase1_saturation = sat_gas
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
[]
[brine]
type = PorousFlowBrine
compute_enthalpy = false
compute_internal_energy = false
xnacl = xnacl
phase = 0
[]
[methane]
type = PorousFlowSingleComponentFluid
compute_enthalpy = false
compute_internal_energy = false
fp = methane_tab
phase = 1
[]
[porosity]
type = PorousFlowPorosityConst
porosity = 0.1
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1e-13 0 0 0 5e-14 0 0 0 1e-13'
[]
[relperm_liq]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 0
s_res = 0.2
sum_s_res = 0.3
[]
[relperm_gas]
type = PorousFlowRelativePermeabilityCorey
n = 2
phase = 1
s_res = 0.1
sum_s_res = 0.3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = ' asm lu NONZERO'
[]
[]
[Executioner]
type = Transient
solve_type = Newton
end_time = 1e8
nl_abs_tol = 1e-12
nl_rel_tol = 1e-06
nl_max_its = 20
dtmax = 1e6
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e1
growth_factor = 1.5
[]
[]
[Postprocessors]
[mass_ph0]
type = PorousFlowFluidMass
fluid_component = 0
execute_on = 'initial timestep_end'
[]
[mass_ph1]
type = PorousFlowFluidMass
fluid_component = 1
execute_on = 'initial timestep_end'
[]
[injection_area]
type = AreaPostprocessor
boundary = left
execute_on = initial
[]
[]
[Outputs]
execute_on = 'initial timestep_end'
exodus = true
perf_graph = true
[]
(examples/ex14_pps/ex14_compare_solutions_2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 11
ny = 11
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
[]
[Variables]
[./forced]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = forced
[../]
[./forcing]
type = BodyForce
variable = forced
function = 'x*x+y*y' # Any object expecting a function name can also receive a ParsedFunction string
[../]
[]
[BCs]
[./all]
type = DirichletBC
variable = forced
boundary = 'bottom right top left'
value = 0
[../]
[]
[UserObjects]
[./fine_solution]
# Read in the fine grid solution
type = SolutionUserObject
system_variables = forced
mesh = ex14_compare_solutions_1_out_0000_mesh.xda
es = ex14_compare_solutions_1_out_0000.xda
[../]
[]
[Functions]
[./fine_function]
# Create a Function out of the fine grid solution
# Note: This references the SolutionUserObject above
type = SolutionFunction
solution = fine_solution
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./Quadrature]
# The integration of the error happens on the coarse mesh
# To reduce integration error of the finer solution we can
# raise the integration order.
# Note: This will slow down the calculation a bit
order = SIXTH
[../]
[]
[Postprocessors]
[./error]
# Compute the error between the computed solution and the fine-grid solution
type = ElementL2Error
variable = forced
function = fine_function
[../]
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xdr.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = GeneratedMesh
parallel_type = replicated
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xdr_func]
type = SolutionFunction
solution = xdr_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xdr_kernel]
type = SolutionAux
variable = u_aux
solution = xdr_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xdr_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_xdr_0001_mesh.xdr
es = aux_nonlinear_solution_xdr_0001.xdr
execute_on = initial
[../]
[./xdr_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_xdr_0001_mesh.xdr
es = aux_nonlinear_solution_xdr_0001.xdr
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xdr_func
variable = u
type = FunctionIC
[../]
[]
(test/tests/functions/solution_function/solution_function_exodus_test.i)
# [Executioner]
# type = Steady
# petsc_options = '-snes'
# l_max_its = 800
# nl_rel_tol = 1e-10
# []
[Mesh]
type = FileMesh
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
# [./ne]
# order = FIRST
# family = LAGRANGE
# [../]
# [./ee]
# order = CONSTANT
# family = MONOMIAL
# [../]
[./nn]
order = FIRST
family = LAGRANGE
[../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
# [./sourcee]
# type = SolutionFunction
# file_type = exodusII
# mesh = cubesource.e
# variable = source_element
# [../]
[./sourcen]
type = SolutionFunction
scale_factor = 2.0
solution = cube_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# [./ne]
# type = FunctionAux
# variable = ne
# function = sourcee
# [../]
# [./ee]
# type = FunctionAux
# variable = ee
# function = sourcee
# [../]
[./nn]
type = FunctionAux
variable = nn
function = sourcen
[../]
[./en]
type = FunctionAux
variable = en
function = sourcen
[../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[UserObjects]
[./cube_soln]
type = SolutionUserObject
timestep = 2
system_variables = source_nodal
mesh = cubesource.e
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/functions/solution_function/solution_function_rot1.i)
# checking rotation of points by 45 deg about z axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = LATEST
system_variables = u
rotation0_vector = '0 0 1'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot1
exodus = true
[]
(test/tests/functions/solution_function/solution_function_grad_p2.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0.0
xmax = 1.0
ymin = 0.0
ymax = 1.0
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./test_variable_x]
order = FIRST
family = LAGRANGE
[../]
[./test_variable_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./test_variable_x_aux]
type = FunctionDerivativeAux
variable = test_variable_x
component = x
function = solution_function
[../]
[./test_variable_y_aux]
type = FunctionDerivativeAux
variable = test_variable_y
component = y
function = solution_function
[../]
[]
[UserObjects]
[./ex_soln]
type = SolutionUserObject
system_variables = test_variable
mesh = solution_function_grad_p1.e
[../]
[]
[Functions]
[./solution_function]
type = SolutionFunction
solution = ex_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = solution_function_grad_p2
exodus = true
[]
(test/tests/functions/solution_function/solution_function_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[AuxVariables]
[./u_aux]
order = FIRST
family = LAGRANGE
[./InitialCondition]
type = FunctionIC
function = initial_cond_func
[../]
[../]
[]
[Functions]
[./initial_cond_func]
type = SolutionFunction
solution = ex_soln
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[UserObjects]
[./ex_soln]
type = SolutionUserObject
system_variables = u
mesh = build_out_0001_mesh.xda
es = build_out_0001.xda
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
nl_rel_tol = 1e-10
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/functions/solution_function/solution_function_rot3.i)
# checking rotation of points by 90 deg about z axis, then 45 deg about x axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
# the following takes:
# (0.7, 0.7, +/-0.7) -> (-0.7, 0.7, +/-0.7)
# (-0.7, 0.7, +/-0.7) -> (-0.7, -0.7, +/-0.7)
# (0.7, -0.7, +/-0.7) -> (0.7, 0.7, +/-0.7)
# (-0.7, -0.7, +/-0.7) -> (0.7, -0.7, +/-0.7)
rotation0_vector = '0 0 1'
rotation0_angle = 90
# then the following takes:
# (+/-0.7, 0.7, 0.7) -> (+/-0.7, 0, 1)
# (+/-0.7, 0.7, -0.7) -> (+/-0.7, 1, 0)
# (+/-0.7, -0.7, 0.7) -> (+/-0.7, -1, 0)
# (+/-0.7, -0.7, -0.7) -> (+/-0.7, 0, -1)
rotation1_vector = '1 0 0'
rotation1_angle = 45
# so, in total: a point y = +/-0.7 takes values from x = -/+0.7, so solution_function_rot3 should have u = -y
transformation_order = 'rotation0 rotation1'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot3
exodus = true
[]
(modules/porous_flow/examples/groundwater/ex02_steady_state.i)
# Steady-state groundwater model. See groundwater_models.md for a detailed description
[Mesh]
[basic_mesh]
# mesh create by external program: lies within -500<=x<=500 and -200<=y<=200, with varying z
type = FileMeshGenerator
file = ex02_mesh.e
[]
[name_blocks]
type = RenameBlockGenerator
input = basic_mesh
old_block_id = '2 3 4'
new_block_name = 'bot_aquifer aquitard top_aquifer'
[]
[zmax]
type = SideSetsFromNormalsGenerator
input = name_blocks
new_boundary = zmax
normals = '0 0 1'
[]
[xmin_bot_aquifer]
type = ParsedGenerateSideset
input = zmax
included_subdomain_ids = 2
normal = '-1 0 0'
combinatorial_geometry = 'x <= -500.0'
new_sideset_name = xmin_bot_aquifer
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = initial_pp
[]
[]
[BCs]
[rainfall_recharge]
type = PorousFlowSink
boundary = zmax
variable = pp
flux_function = -1E-6 # recharge of 0.1mm/day = 1E-4m3/m2/day = 0.1kg/m2/day ~ 1E-6kg/m2/s
[]
[evapotranspiration]
type = PorousFlowHalfCubicSink
boundary = zmax
variable = pp
center = 0.0
cutoff = -5E4 # roots of depth 5m. 5m of water = 5E4 Pa
use_mobility = true
fluid_phase = 0
# Assume pan evaporation of 4mm/day = 4E-3m3/m2/day = 4kg/m2/day ~ 4E-5kg/m2/s
# Assume that if permeability was 1E-10m^2 and water table at topography then ET acts as pan strength
# Because use_mobility = true, then 4E-5 = maximum_flux = max * perm * density / visc = max * 1E-4, so max = 40
max = 40
[]
[]
[DiracKernels]
[river]
type = PorousFlowPolyLineSink
SumQuantityUO = baseflow
point_file = ex02_river.bh
# Assume a perennial river.
# Assume the river has an incision depth of 1m and a stage height of 1.5m, and these are constant in time and uniform over the whole model. Hence, if groundwater head is 0.5m (5000Pa) there will be no baseflow and leakage.
p_or_t_vals = '-999995000 5000 1000005000'
# Assume the riverbed conductance, k_zz*density*river_segment_length*river_width/riverbed_thickness/viscosity = 1E-6*river_segment_length kg/Pa/s
fluxes = '-1E3 0 1E3'
variable = pp
[]
[]
[Functions]
[initial_pp]
type = SolutionFunction
scale_factor = 1E4
from_variable = cosflow_depth
solution = initial_mesh
[]
[baseflow_rate]
type = ParsedFunction
vars = 'baseflow_kg dt'
vals = 'baseflow_kg dt'
value = 'baseflow_kg / dt * 24.0 * 3600.0 / 400.0'
[]
[]
[PorousFlowUnsaturated]
fp = simple_fluid
porepressure = pp
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[porosity_everywhere]
type = PorousFlowPorosityConst
porosity = 0.05
[]
[permeability_aquifers]
type = PorousFlowPermeabilityConst
block = 'top_aquifer bot_aquifer'
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-13'
[]
[permeability_aquitard]
type = PorousFlowPermeabilityConst
block = aquitard
permeability = '1E-16 0 0 0 1E-16 0 0 0 1E-17'
[]
[]
[UserObjects]
[initial_mesh]
type = SolutionUserObject
execute_on = INITIAL
mesh = ex02_mesh.e
timestep = LATEST
system_variables = cosflow_depth
[]
[baseflow]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[baseflow_kg]
type = PorousFlowPlotQuantity
uo = baseflow
outputs = 'none'
[]
[dt]
type = TimestepSize
outputs = 'none'
[]
[baseflow_l_per_m_per_day]
type = FunctionValuePostprocessor
function = baseflow_rate
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
# following 2 lines are not mandatory, but illustrate a popular preconditioner choice in groundwater models
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = ' asm ilu 2 '
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 1E6
[TimeStepper]
type = FunctionDT
function = 'max(1E6, t)'
[]
end_time = 1E12
nl_abs_tol = 1E-13
[]
[Outputs]
print_linear_residuals = false
[ex]
type = Exodus
execute_on = final
[]
[csv]
type = CSV
[]
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = GeneratedMesh
parallel_type = replicated
dim = 2
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xda_kernel]
type = SolutionAux
variable = u_aux
solution = xda_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u_aux
execute_on = initial
[../]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_out_0001_mesh.xda
es = aux_nonlinear_solution_out_0001.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xda_func
variable = u
type = FunctionIC
[../]
[]
(test/tests/functions/solution_function/solution_function_exodus_interp_test.i)
[Mesh]
file = cubesource.e
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
parallel_type = replicated
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 0.0
[../]
[]
[AuxVariables]
[./nn]
order = FIRST
family = LAGRANGE
[../]
# [./ne]
# order = FIRST
# family = LAGRANGE
# [../]
[./en]
order = CONSTANT
family = MONOMIAL
[../]
# [./ee]
# order = CONSTANT
# family = MONOMIAL
# [../]
[]
[Functions]
[./sourcen]
type = SolutionFunction
solution = cube_soln
[../]
# [./sourcee]
# type = SolutionFunction
# file_type = exodusII
# mesh = cubesource.e
# variable = source_element
# [../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nn]
type = FunctionAux
variable = nn
function = sourcen
[../]
# [./ne]
# type = FunctionAux
# variable = ne
# function = sourcee
# [../]
[./en]
type = FunctionAux
variable = en
function = sourcen
[../]
# [./ee]
# type = FunctionAux
# variable = ee
# function = sourcee
# [../]
[]
[BCs]
[./stuff]
type = DirichletBC
variable = u
boundary = '1 2'
value = 0.0
[../]
[]
[UserObjects]
[./cube_soln]
type = SolutionUserObject
mesh = cubesource.e
system_variables = source_nodal
[../]
[]
#[Executioner]
# type = Steady
# petsc_options = '-snes'
# l_max_its = 800
# nl_rel_tol = 1e-10
#[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 50
end_time = 5
dt = 0.5
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(test/tests/functions/solution_function/solution_function_scale_mult.i)
# checking scale_multiplier
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
nx = 3
ymin = -1
ymax = 1
ny = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = square_with_u_equals_x.e
timestep = 1
system_variables = u
scale_multiplier = '2 2 0'
transformation_order = scale_multiplier
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_scale_mult
exodus = true
[]
(test/tests/functions/solution_function/solution_function_rot2.i)
# checking rotation of points by 45 deg about y axis in a SolutionUserObject
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y or z direction
type = GeneratedMesh
dim = 3
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
zmin = -0.70710678
zmax = 0.70710678
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
rotation0_vector = '0 1 0'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot2
exodus = true
[]
(modules/porous_flow/examples/groundwater/ex02_abstraction.i)
# Abstraction groundwater model. See groundwater_models.md for a detailed description
[Mesh]
[from_steady_state]
type = FileMeshGenerator
file = gold/ex02_steady_state_ex.e
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[]
[]
[ICs]
[pp]
type = FunctionIC
variable = pp
function = steady_state_pp
[]
[]
[BCs]
[rainfall_recharge]
type = PorousFlowSink
boundary = zmax
variable = pp
flux_function = -1E-6 # recharge of 0.1mm/day = 1E-4m3/m2/day = 0.1kg/m2/day ~ 1E-6kg/m2/s
[]
[evapotranspiration]
type = PorousFlowHalfCubicSink
boundary = zmax
variable = pp
center = 0.0
cutoff = -5E4 # roots of depth 5m. 5m of water = 5E4 Pa
use_mobility = true
fluid_phase = 0
# Assume pan evaporation of 4mm/day = 4E-3m3/m2/day = 4kg/m2/day ~ 4E-5kg/m2/s
# Assume that if permeability was 1E-10m^2 and water table at topography then ET acts as pan strength
# Because use_mobility = true, then 4E-5 = maximum_flux = max * perm * density / visc = max * 1E-4, so max = 40
max = 40
[]
[]
[DiracKernels]
inactive = polyline_sink_borehole
[river]
type = PorousFlowPolyLineSink
SumQuantityUO = baseflow
point_file = ex02_river.bh
# Assume a perennial river.
# Assume the river has an incision depth of 1m and a stage height of 1.5m, and these are constant in time and uniform over the whole model. Hence, if groundwater head is 0.5m (5000Pa) there will be no baseflow and leakage.
p_or_t_vals = '-999995000 5000 1000005000'
# Assume the riverbed conductance, k_zz*density*river_segment_length*river_width/riverbed_thickness/viscosity = 1E-6*river_segment_length kg/Pa/s
fluxes = '-1E3 0 1E3'
variable = pp
[]
[horizontal_borehole]
type = PorousFlowPeacemanBorehole
SumQuantityUO = abstraction
bottom_p_or_t = -1E5
unit_weight = '0 0 -1E4'
character = 1.0
point_file = ex02.bh
variable = pp
[]
[polyline_sink_borehole]
type = PorousFlowPolyLineSink
SumQuantityUO = abstraction
fluxes = '-0.4 0 0.4'
p_or_t_vals = '-1E8 0 1E8'
point_file = ex02.bh
variable = pp
[]
[]
[Functions]
[steady_state_pp]
type = SolutionFunction
from_variable = pp
solution = steady_state_solution
[]
[baseflow_rate]
type = ParsedFunction
vars = 'baseflow_kg dt'
vals = 'baseflow_kg dt'
value = 'baseflow_kg / dt * 24.0 * 3600.0 / 400.0'
[]
[abstraction_rate]
type = ParsedFunction
vars = 'abstraction_kg dt'
vals = 'abstraction_kg dt'
value = 'abstraction_kg / dt * 24.0 * 3600.0'
[]
[]
[AuxVariables]
[ini_pp]
[]
[pp_change]
[]
[]
[AuxKernels]
[ini_pp]
type = FunctionAux
variable = ini_pp
function = steady_state_pp
execute_on = INITIAL
[]
[pp_change]
type = ParsedAux
variable = pp_change
args = 'pp ini_pp'
function = 'pp - ini_pp'
[]
[]
[PorousFlowUnsaturated]
fp = simple_fluid
porepressure = pp
[]
[Modules]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[]
[Materials]
[porosity_everywhere]
type = PorousFlowPorosityConst
porosity = 0.05
[]
[permeability_aquifers]
type = PorousFlowPermeabilityConst
block = 'top_aquifer bot_aquifer'
permeability = '1E-12 0 0 0 1E-12 0 0 0 1E-13'
[]
[permeability_aquitard]
type = PorousFlowPermeabilityConst
block = aquitard
permeability = '1E-16 0 0 0 1E-16 0 0 0 1E-17'
[]
[]
[UserObjects]
[steady_state_solution]
type = SolutionUserObject
execute_on = INITIAL
mesh = gold/ex02_steady_state_ex.e
timestep = LATEST
system_variables = pp
[]
[baseflow]
type = PorousFlowSumQuantity
[]
[abstraction]
type = PorousFlowSumQuantity
[]
[]
[Postprocessors]
[baseflow_kg]
type = PorousFlowPlotQuantity
uo = baseflow
outputs = 'none'
[]
[dt]
type = TimestepSize
outputs = 'none'
[]
[baseflow_l_per_m_per_day]
type = FunctionValuePostprocessor
function = baseflow_rate
[]
[abstraction_kg]
type = PorousFlowPlotQuantity
uo = abstraction
outputs = 'none'
[]
[abstraction_kg_per_day]
type = FunctionValuePostprocessor
function = abstraction_rate
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
# following 2 lines are not mandatory, but illustrate a popular preconditioner choice in groundwater models
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = ' asm ilu 2 '
[]
[]
[Executioner]
type = Transient
solve_type = Newton
dt = 100
[TimeStepper]
type = FunctionDT
function = 'max(100, t)'
[]
end_time = 8.64E5 # 10 days
nl_abs_tol = 1E-11
[]
[Outputs]
print_linear_residuals = false
[ex]
type = Exodus
execute_on = final
[]
[csv]
type = CSV
[]
[]
(test/tests/functions/solution_function/solution_function_scale_transl.i)
# checking scale and translation, with ordering scale first, then translation second
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
nx = 3
ymin = -1
ymax = 1
ny = 3
zmin = -1
zmax = 1
nz = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = cube_with_u_equals_x.e
timestep = 1
system_variables = u
scale = '0.5 1 1'
translation = '2 0 0'
transformation_order = 'scale translation'
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_scale_transl
exodus = true
[]
(test/tests/functions/solution_function/solution_function_rot4.i)
# checking rotation of points by 45 deg about z axis in a SolutionUserObject for a 2D situation
[Mesh]
# this is chosen so when i rotate through 45deg i get a length of "1" along the x or y direction
type = GeneratedMesh
dim = 2
xmin = -0.70710678
xmax = 0.70710678
nx = 3
ymin = -0.70710678
ymax = 0.70710678
ny = 3
[]
[UserObjects]
[./solution_uo]
type = SolutionUserObject
mesh = square_with_u_equals_x.e
timestep = 1
system_variables = u
rotation0_vector = '0 0 1'
rotation0_angle = 45
transformation_order = rotation0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[ICs]
[./u_init]
type = FunctionIC
variable = u
function = solution_fcn
[../]
[]
[Functions]
[./solution_fcn]
type = SolutionFunction
from_variable = u
solution = solution_uo
[../]
[]
[Kernels]
[./diff]
type = TimeDerivative
variable = u
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
l_max_its = 800
nl_rel_tol = 1e-10
num_steps = 1
end_time = 1
dt = 1
[]
[Outputs]
execute_on = 'timestep_end'
file_base = solution_function_rot4
exodus = true
[]
(test/tests/auxkernels/solution_aux/aux_nonlinear_solution_adapt_xda.i)
[Mesh]
# This test uses SolutionUserObject which doesn't work with DistributedMesh.
type = FileMesh
file = aux_nonlinear_solution_adapt_out_0004_mesh.xda
parallel_type = replicated
[]
[Adaptivity]
marker = error_frac
steps = 2
[./Indicators]
[./jump_indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./error_frac]
type = ErrorFractionMarker
indicator = jump_indicator
refine = 0.7
[../]
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./u_aux]
[../]
[]
[Functions]
[./u_xda_func]
type = SolutionFunction
solution = xda_u
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./aux_xda_kernel]
type = SolutionAux
variable = u_aux
solution = xda_u_aux
execute_on = initial
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 2
[../]
[]
[UserObjects]
[./xda_u_aux]
type = SolutionUserObject
system = aux0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u_aux
execute_on = initial
[../]
[./xda_u]
type = SolutionUserObject
system = nl0
mesh = aux_nonlinear_solution_adapt_out_0004_mesh.xda
es = aux_nonlinear_solution_adapt_out_0004.xda
system_variables = u
execute_on = initial
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[ICs]
[./u_func_ic]
function = u_xda_func
variable = u
type = FunctionIC
[../]
[]