- disp_xThe x displacement variable
C++ Type:std::vector<VariableName>
Description:The x displacement variable
- disp_yThe y displacement variable
C++ Type:std::vector<VariableName>
Description:The y displacement variable
- primary_boundaryThe name of the primary boundary sideset.
C++ Type:BoundaryName
Description:The name of the primary boundary sideset.
- primary_subdomainThe name of the primary subdomain.
C++ Type:SubdomainName
Description:The name of the primary subdomain.
- secondary_boundaryThe name of the secondary boundary sideset.
C++ Type:BoundaryName
Description:The name of the secondary boundary sideset.
- secondary_subdomainThe name of the secondary subdomain.
C++ Type:SubdomainName
Description:The name of the secondary subdomain.
ComputeWeightedGapLMMechanicalContact
The Karush-Kuhn-Tucker conditions of mechanical contact are:
where is the gap and is the contact pressure, a Lagrange multipler variable living on the secondary face. Per (Wohlmuth, 2011) and (Popp and Wall, 2014), the variationally consistent, discretized version of the KKT conditions are:
where indicates the normal direction, denotes the j'th secondary contact interface node, and is the discrete weighted gap, computed by:
where denotes the secondary contact interface, is the j'th lagrange multiplier test function, and is the discretized version of the gap function.
The ComputeWeightedGapLMMechanicalContact
object computes the weighted gap. It does not apply** the KKT conditions. That is done with the ApplyPenetrationConstraintLMMechanicalContact object. Consequently, the two objects must always be used in conjunction.
Computes the weighted gap that will later be used to enforce the zero-penetration mechanical contact conditions
Input Parameters
- compute_lm_residualsTrueWhether to compute Lagrange Multiplier residuals
Default:True
C++ Type:bool
Description:Whether to compute Lagrange Multiplier residuals
- compute_primal_residualsTrueWhether to compute residuals for the primal variable.
Default:True
C++ Type:bool
Description:Whether to compute residuals for the primal variable.
- periodicFalseWhether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing
Default:False
C++ Type:bool
Description:Whether this constraint is going to be used to enforce a periodic condition. This has the effect of changing the normals vector for projection from outward to inward facing
- variableThe name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example
C++ Type:NonlinearVariableName
Description:The name of the lagrange multiplier variable that this constraint is applied to. This parameter may not be supplied in the case of using penalty methods for example
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
References
- Alexander Popp and WA Wall.
Dual mortar methods for computational contact mechanics–overview and recent developments.
GAMM-Mitteilungen, 37(1):66–84, 2014.[BibTeX]
- Barbara Wohlmuth.
Variationally consistent discretization schemes and numerical algorithms for contact problems.
Acta Numerica, 20:569–734, 2011.[BibTeX]