- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
Nodal Translational Inertia
Computes the inertial forces and mass proportional damping terms corresponding to nodal mass.
Description
This NodalKernel computes the ith component of translational inertial force proportional to nodal mass. Mass proportional Rayleigh damping is also computed by this NodalKernel. A constant mass for all the nodes in the given boundary can be provided using the mass
parameter. Otherwise, a CSV file containing nodal positions and the corresponding nodal masses can also be provided using the nodal_mass_file
parameter. Please refer to C0TimoshenkoBeam for details.
For example, the below csv file has two rows with 4 columns. The first three columns correspond to the nodal positions in the global coordinate system and the last column corresponds to the nodal mass. Each row contains position and mass information for one node.
0.0, 0.0, 0.0, 2.0
4.0, 0.0, 0.0, 0.01899772
Input Parameters
- accelerationacceleration variable
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:acceleration variable
- alpha0Alpha parameter for mass dependent numerical damping induced by HHT time integration scheme
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Alpha parameter for mass dependent numerical damping induced by HHT time integration scheme
- betabeta parameter for Newmark Time integration
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:beta parameter for Newmark Time integration
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- eta0Constant real number defining the eta parameter for Rayleigh damping.
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Constant real number defining the eta parameter for Rayleigh damping.
- gammagamma parameter for Newmark Time integration
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:gamma parameter for Newmark Time integration
- massMass associated with the node
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Mass associated with the node
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- nodal_mass_fileThe file containing the nodal positions and the corresponding nodal masses.
C++ Type:FileName
Controllable:No
Description:The file containing the nodal positions and the corresponding nodal masses.
- velocityvelocity variable
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:velocity variable
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystem timeThe tag for the matrices this Kernel should fill
Default:system time
C++ Type:MultiMooseEnum
Options:nontime, system, time
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagstimeThe tag for the vectors this Kernel should fill
Default:time
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/solid_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_implicit.i)
- (modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass2.i)
- (modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping.i)
- (modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_file.i)
- (modules/solid_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_explicit.i)
- (modules/solid_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_explicit.i)
- (modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_ti.i)
- (modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_dyn_variable_action.i)
- (modules/solid_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_implicit.i)
- (modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass.i)
- (modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_gravity.i)
- (modules/solid_mechanics/test/tests/central_difference/lumped/3D/3d_nodalmass_implicit.i)
- (modules/solid_mechanics/test/tests/central_difference/lumped/3D/3d_nodalmass_explicit.i)
(modules/solid_mechanics/test/tests/beam/dynamic/nodal_mass.csv)
0.0, 0.0, 0.0, 2.0
4.0, 0.0, 0.0, 0.01899772
(modules/solid_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_implicit.i)
# One element test to test the central difference time integrator.
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 2
nx = 1
ny = 2
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '1 2 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./x_bot]
type = PresetDisplacement
boundary = bottom
variable = disp_x
beta = 0.25
velocity = vel_x
acceleration = accel_x
function = disp
[../]
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[]
[NodalKernels]
[./nodal_mass_x]
type = NodalTranslationalInertia
variable = 'disp_x'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[./nodal_mass_y]
type = NodalTranslationalInertia
variable = 'disp_y'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_abs_tol = 1e-11
nl_rel_tol = 1e-11
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Postprocessors]
[./accel_2x]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass2.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 5ft (60 in).
# The beam is massless with a lumped mass at the end of the beam of 5000 lb
# The properties of the cantilever beam are as follows:
# E = 1e7 and I = 120 in^4
# Assuming a square cross section A = sqrt(12 * I) = 37.95
# Shear modulus (G) = 3.846e6
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 1.0
# mass (m) = 5000 lb / 386 = 12.95
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 5.71 cps
# This implies that the corresponding time period of this beam is 0.175 s.
# The FEM solution for this beam with 10 elements gives
# a time period of 0.175 s with time step of 0.005 s.
# Reference: Strength of Materials by Marin ans Sauer, 2nd Ed.
# Example Problem 11-50, pg. 375
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 60.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = right
functor = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 12.95
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
l_tol = 1e-8
l_max_its = 50
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
start_time = 0.0
dt = 0.005
end_time = 1.5
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e7
poissons_ratio = 0.30005200208
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 37.95
Ay = 0.0
Az = 0.0
Iy = 120.0
Iz = 120.0
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_x]
type = NewmarkAccelAux
variable = rot_accel_x
displacement = rot_x
velocity = rot_vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_x]
type = NewmarkVelAux
variable = rot_vel_x
acceleration = rot_accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_y]
type = NewmarkAccelAux
variable = rot_accel_y
displacement = rot_y
velocity = rot_vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_y]
type = NewmarkVelAux
variable = rot_vel_y
acceleration = rot_accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./rot_accel_z]
type = NewmarkAccelAux
variable = rot_accel_z
displacement = rot_z
velocity = rot_vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./rot_vel_z]
type = NewmarkVelAux
variable = rot_vel_z
acceleration = rot_accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = right
functor = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
eta = 0.1
[../]
[./rot_x_inertial]
type = NodalRotationalInertia
variable = rot_x
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 0
[../]
[./rot_y_inertial]
type = NodalRotationalInertia
variable = rot_y
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 1
[../]
[./rot_z_inertial]
type = NodalRotationalInertia
variable = rot_z
rotations = 'rot_x rot_y rot_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations= 'rot_accel_x rot_accel_y rot_accel_z'
boundary = right
beta = 0.25
gamma = 0.5
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 2
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_file.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped masses at the ends of the beam.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass = 0.01899772 at the cantilever end
# mass = 2.0 at the fixed end (just for file testing purposes does not alter result)
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = right
functor = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = 'left right'
beta = 0.25
gamma = 0.5
# nodal_mass_file = nodal_mass.csv # commented out for testing error message
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = 'left right'
beta = 0.25
gamma = 0.5
nodal_mass_file = nodal_mass.csv
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = 'left right'
beta = 0.25
gamma = 0.5
nodal_mass_file = nodal_mass.csv
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = dyn_euler_small_added_mass_out
exodus = true
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_explicit.i)
# Test for central difference integration for 1D elements
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
xmin = 0
xmax = 10
nx = 5
dim = 1
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '10 0 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x'
[../]
[]
[NodalKernels]
[./force_x]
type = UserForcingFunctorNodalKernel
variable = disp_x
boundary = right
functor = force_x
[../]
[./nodal_masses]
type = NodalTranslationalInertia
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_x'
boundary = 'all'
[../]
[]
[Functions]
[./force_x]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # force
scale_factor = 1e3
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalStrain
block = 0
displacements = 'disp_x'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 2e-10
[./TimeIntegrator]
type = CentralDifference
[../]
[]
[Postprocessors]
[./accel_x]
type = PointValue
point = '10.0 0.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/central_difference/lumped/2D/2d_nodalmass_explicit.i)
# One element test to test the central difference time integrator.
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 2
nx = 1
ny = 2
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '1 2 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[./accel_y]
[../]
[./vel_y]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x disp_y'
[../]
[]
[BCs]
[./y_bot]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./x_bot]
type = FunctionDirichletBC
boundary = bottom
variable = disp_x
function = disp
preset = false
[../]
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[]
[NodalKernels]
[./nodal_mass_x]
type = NodalTranslationalInertia
variable = 'disp_x'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[./nodal_mass_y]
type = NodalTranslationalInertia
variable = 'disp_y'
nodal_mass_file = 'nodal_mass_file.csv'
boundary = 'all'
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalStrain
block = 0
displacements = 'disp_x disp_y'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = CentralDifference
[../]
[]
[Postprocessors]
[./accel_2x]
type = PointValue
point = '1.0 2.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_inertia_damping_ti.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam. The lumped
# mass also has a moment of inertia associated with it.
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# Moment of inertia of lumped mass:
# Ixx = 0.2
# Iyy = 0.1
# Izz = 0.1
# mass proportional damping coefficient (eta) = 0.1
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The displacement time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.001278249649738 0.025564992994761 0.51129985989521
# 0.2 0.0049813090917644 0.048496195845768 -0.052675802875074
# 0.3 0.0094704658873002 0.041286940064947 -0.091509312741339
# 0.4 0.013082280729802 0.03094935678508 -0.115242352856
# 0.5 0.015588313103503 0.019171290688959 -0.12031896906642
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_vel_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./rot_accel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_accel_x
first = false
[../]
[./rot_accel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_accel_y
first = false
[../]
[./rot_accel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_accel_z
first = false
[../]
[./rot_vel_x]
type = TestNewmarkTI
displacement = rot_x
variable = rot_vel_x
[../]
[./rot_vel_y]
type = TestNewmarkTI
displacement = rot_y
variable = rot_vel_y
[../]
[./rot_vel_z]
type = TestNewmarkTI
displacement = rot_z
variable = rot_vel_z
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = right
functor = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
boundary = right
mass = 0.01899772
eta = 0.1
[../]
[./rot_x_inertial]
type = NodalRotationalInertia
variable = rot_x
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 0
[../]
[./rot_y_inertial]
type = NodalRotationalInertia
variable = rot_y
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 1
[../]
[./rot_z_inertial]
type = NodalRotationalInertia
variable = rot_z
rotations = 'rot_x rot_y rot_z'
boundary = right
Ixx = 2e-1
Iyy = 1e-1
Izz = 1e-1
eta = 0.1
component = 2
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
start_time = 0.0
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
# Time integrator scheme
scheme = "newmark-beta"
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = "dyn_euler_small_added_mass_inertia_damping_out"
exodus = true
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_dyn_variable_action.i)
# Test for small strain euler beam vibration in y direction
# The velocity and acceleration AuxVariables and the corresponding AuxKernels
# are set up using the LineElementAction using add_dynamic_variables. The action
# also creates the displacement variables, stress divergence kernels and
# beam strain. NodalTranslationalInertia is not created by the action.
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = right
functor = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./all]
add_variables = true
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
# Geometry parameters
area = 0.01
Iy = 1e-4
Iz = 1e-4
y_orientation = '0.0 1.0 0.0'
# Add AuxVariables and AuxKernels for dynamic simulation
add_dynamic_variables = true
velocities = 'vel_x vel_y vel_z'
accelerations = 'accel_x accel_y accel_z'
rotational_velocities = 'rot_vel_x rot_vel_y rot_vel_z'
rotational_accelerations = 'rot_accel_x rot_accel_y rot_accel_z'
beta = 0.25 # Newmark time integration parameter
gamma = 0.5 # Newmark time integration parameter
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = 'dyn_euler_small_added_mass_out'
hide = 'rot_vel_x rot_vel_y rot_vel_z rot_accel_x rot_accel_y rot_accel_z'
exodus = true
csv = true
[]
(modules/solid_mechanics/test/tests/central_difference/lumped/1D/1d_nodalmass_implicit.i)
# Test for central difference integration for 1D elements
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
xmin = 0
xmax = 10
nx = 5
dim = 1
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '10 0 0'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[]
[AuxVariables]
[./accel_x]
[../]
[./vel_x]
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x'
[../]
[]
[NodalKernels]
[./force_x]
type = UserForcingFunctorNodalKernel
variable = disp_x
boundary = right
functor = force_x
[../]
[./nodal_masses]
type = NodalTranslationalInertia
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_x'
boundary = 'all'
[../]
[]
[Functions]
[./force_x]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # force
scale_factor = 1e3
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalStrain
block = 0
displacements = 'disp_x'
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 2e-10
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Postprocessors]
[./accel_x]
type = PointValue
point = '10.0 0.0 0.0'
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass.i)
# Test for small strain euler beam vibration in y direction
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass (m) = 0.01899772
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = right
functor = force
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
exodus = true
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/beam/dynamic/dyn_euler_small_added_mass_gravity.i)
# Test for small strain euler beam vibration in y direction
# Test uses NodalGravity instead of UserForcingFunctorNodalKernel to apply the
# force.
# An impulse load is applied at the end of a cantilever beam of length 4m.
# The beam is massless with a lumped mass at the end of the beam
# The properties of the cantilever beam are as follows:
# Young's modulus (E) = 1e4
# Shear modulus (G) = 4e7
# Shear coefficient (k) = 1.0
# Cross-section area (A) = 0.01
# Iy = 1e-4 = Iz
# Length (L)= 4 m
# mass = 0.01899772 at the cantilever end
# mass = 2.0 at the fixed end (just for file testing purposes does not alter result)
# For this beam, the dimensionless parameter alpha = kAGL^2/EI = 6.4e6
# Therefore, the beam behaves like a Euler-Bernoulli beam.
# The theoretical first frequency of this beam is:
# f1 = 1/(2 pi) * sqrt(3EI/(mL^3)) = 0.25
# This implies that the corresponding time period of this beam is 4s.
# The FEM solution for this beam with 10 element gives time periods of 4s with time step of 0.01s.
# A higher time step of 0.1 s is used in the test to reduce computational time.
# The time history from this analysis matches with that obtained from Abaqus.
# Values from the first few time steps are as follows:
# time disp_y vel_y accel_y
# 0.0 0.0 0.0 0.0
# 0.1 0.0013076435060869 0.026152870121738 0.52305740243477
# 0.2 0.0051984378734383 0.051663017225289 -0.01285446036375
# 0.3 0.010269120909367 0.049750643493289 -0.02539301427625
# 0.4 0.015087433925158 0.046615616822532 -0.037307519138892
# 0.5 0.019534963888307 0.042334982440433 -0.048305168503101
[Mesh]
type = GeneratedMesh
xmin = 0.0
xmax = 4.0
nx = 10
dim = 1
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./vel_x]
order = FIRST
family = LAGRANGE
[../]
[./vel_y]
order = FIRST
family = LAGRANGE
[../]
[./vel_z]
order = FIRST
family = LAGRANGE
[../]
[./accel_x]
order = FIRST
family = LAGRANGE
[../]
[./accel_y]
order = FIRST
family = LAGRANGE
[../]
[./accel_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[NodalKernels]
[./force_y2]
type = NodalGravity
variable = disp_y
boundary = 'left right'
gravity_value = 52.6378954948 # inverse of nodal mass at cantilever end
function = force
# nodal_mass_file = nodal_mass.csv # commented out for testing purposes
# mass = 0.01899772 # commented out for testing purposes
[../]
[./x_inertial]
type = NodalTranslationalInertia
variable = disp_x
velocity = vel_x
acceleration = accel_x
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./y_inertial]
type = NodalTranslationalInertia
variable = disp_y
velocity = vel_y
acceleration = accel_y
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[./z_inertial]
type = NodalTranslationalInertia
variable = disp_z
velocity = vel_z
acceleration = accel_z
boundary = right
beta = 0.25
gamma = 0.5
mass = 0.01899772
[../]
[]
[Functions]
[./force]
type = PiecewiseLinear
x = '0.0 0.1 0.2 10.0'
y = '0.0 1e-2 0.0 0.0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-ksp_type -pc_type'
petsc_options_value = 'preonly lu'
dt = 0.1
end_time = 5.0
timestep_tolerance = 1e-6
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1.0e4
poissons_ratio = -0.999875
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.01
Ay = 0.0
Az = 0.0
Iy = 1.0e-4
Iz = 1.0e-4
y_orientation = '0.0 1.0 0.0'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[./vel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = vel_y
[../]
[./accel_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = accel_y
[../]
[]
[Outputs]
file_base = dyn_euler_small_added_mass_out
exodus = true
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/central_difference/lumped/3D/3d_nodalmass_implicit.i)
# Test for the Newmark-Beta time integrator
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 2
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 2
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '1 1 2'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[./accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
[../]
[./vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
[../]
[]
[BCs]
[./x_bot]
type = PresetDisplacement
boundary = 'back'
variable = disp_x
beta = 0.25
velocity = vel_x
acceleration = accel_x
function = dispx
[../]
[./y_bot]
type = PresetDisplacement
boundary = 'back'
variable = disp_y
beta = 0.25
velocity = vel_y
acceleration = accel_y
function = dispy
[../]
[./z_bot]
type = PresetDisplacement
boundary = 'back'
variable = disp_z
beta = 0.25
velocity = vel_z
acceleration = accel_z
function = dispz
[../]
[]
[Functions]
[./dispx]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[./dispy]
type = ParsedFunction
expression = 0.1*t*t*sin(10*t)
[../]
[./dispz]
type = ParsedFunction
expression = 0.1*t*t*sin(20*t)
[../]
[]
[NodalKernels]
[./nodal_mass_x]
type = NodalTranslationalInertia
boundary = 'all'
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_x'
[../]
[./nodal_mass_y]
type = NodalTranslationalInertia
boundary = 'all'
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_y'
[../]
[./nodal_mass_z]
type = NodalTranslationalInertia
boundary = 'all'
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_z'
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Preconditioning]
[./andy]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
nl_abs_tol = 1e-08
nl_rel_tol = 1e-08
timestep_tolerance = 1e-6
start_time = -0.01
end_time = 0.1
dt = 0.005
[./TimeIntegrator]
type = NewmarkBeta
beta = 0.25
gamma = 0.5
[../]
[]
[Postprocessors]
[./accel_10x]
type = NodalVariableValue
nodeid = 10
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]
(modules/solid_mechanics/test/tests/central_difference/lumped/3D/3d_nodalmass_explicit.i)
# Test for the CentralDifference time integrator
[Mesh]
[./generated_mesh]
type = GeneratedMeshGenerator
dim = 3
nx = 1
ny = 1
nz = 2
xmin = 0.0
xmax = 1
ymin = 0.0
ymax = 1
zmin = 0.0
zmax = 2
[../]
[./all_nodes]
type = BoundingBoxNodeSetGenerator
new_boundary = 'all'
input = 'generated_mesh'
top_right = '1 1 2'
bottom_left = '0 0 0'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
[../]
[]
[AuxKernels]
[./accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[../]
[./vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[../]
[./accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[../]
[./vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_y
[../]
[./accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
[../]
[./vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
[../]
[]
[BCs]
[./x_bot]
type = FunctionDirichletBC
boundary = 'back'
variable = disp_x
function = dispx
preset = false
[../]
[./y_bot]
type = FunctionDirichletBC
variable = disp_y
boundary = back
function = dispy
preset = false
[../]
[./z_bot]
type = FunctionDirichletBC
variable = disp_z
boundary = back
function = dispz
preset = false
[../]
[]
[Functions]
[./dispx]
type = PiecewiseLinear
x = '0.0 1.0 2.0 3.0 4.0' # time
y = '0.0 1.0 0.0 -1.0 0.0' # displacement
[../]
[./dispy]
type = ParsedFunction
expression = 0.1*t*t*sin(10*t)
[../]
[./dispz]
type = ParsedFunction
expression = 0.1*t*t*sin(20*t)
[../]
[]
[NodalKernels]
[./nodal_mass_x]
type = NodalTranslationalInertia
boundary = 'all'
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_x'
[../]
[./nodal_mass_y]
type = NodalTranslationalInertia
boundary = 'all'
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_y'
[../]
[./nodal_mass_z]
type = NodalTranslationalInertia
boundary = 'all'
nodal_mass_file = 'nodal_mass_file.csv'
variable = 'disp_z'
[../]
[]
[Materials]
[./elasticity_tensor_block]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.25
block = 0
[../]
[./strain_block]
type = ComputeIncrementalStrain
block = 0
displacements = 'disp_x disp_y disp_z'
implicit = false
[../]
[./stress_block]
type = ComputeFiniteStrainElasticStress
block = 0
[../]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.1
dt = 0.005
timestep_tolerance = 1e-6
[./TimeIntegrator]
type = CentralDifference
[../]
[]
[Postprocessors]
[./accel_10x]
type = NodalVariableValue
nodeid = 10
variable = accel_x
[../]
[]
[Outputs]
exodus = false
csv = true
[]