- epsilonCoupled turbulent kinetic energy dissipation rate. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy dissipation rate. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- muDynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Dynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- mu_tTurbulent viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Turbulent viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- rhoFluid density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Fluid density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- variableThe name of the variable whose linear system this object contributes to
C++ Type:LinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable whose linear system this object contributes to
LinearFVTKESourceSink
This kernel implements a version of INSFVTKESourceSink
for the linear finite volume discretization of the turbulence equations. The documentation is repeated down here for completeness.
The object computes the turbulent source and sink term for the turbulent kinetic energy equation.
Two terms are computed destruction
= and production
= and the term is passed to the residual. A different treatment is used for the bulk and the near wall regions.
Bulk formulation:
The turbulent production is modeled as:
where:
is the turbulent dynamic viscosity,
is the shear strain tensor internal norm, defined as with the shear strain tensor defined as .
The turbulent kinetic energy dissipation rate is generally coming from a coupled transport equation for . However, for canonical or measured cases, e.g., isotropic decaying turbulence, the user can utilize predefined fields through functors in MOOSE.
To avoid the overproduction of turbulent kinetic energy in stagnation zones \cite{durbin1996k}, a production limiter is imposed in relation to the dissipation using the formulation in \cite{menter1994two}:
where:
it the limiter constant, and set by default to a recommended value of 10 \cite{durbin1996k}.
Wall formulation:
All cells in contact with a boundary identified in the "walls" list are applied a different treatment for production and destruction. A different formulation is used for the sub-laminar
and logarithmic
boundary layers. The determination of whether the near-wall cell lies in the laminar or logarithmic region is performed via the non-dimensional wall distance . The non-dimensional wall distance is defined as
where:
is the density,
is the distance to the wall to the centroid of the next-to-wall cell,
is the friction velocity, defined as with the shear stress at the wall for which the condition is applied,
is the dynamic molecular viscosity.
For every next-to-wall cell and every iteration step, is found via an incremental fixed-point search algorithm. The cells belonging to the sub-laminar
boundary layers are defined as those for which . The ones belonging to the logarithmic
boundary layer are those for which . The imposed threshold of is given by the value of at which the sub-laminar
and logarithmic
boundary profiles intersect.
In the sub-laminar
region production of turbulent kinetic energy is negligible, therefore, if :
In the logarithmic
boundary layers the production term is no longer negligible and is defined as:
where:
is a closure parameter,
is the turbulent kinetic energy,
is the near wall velocity gradient norm, which is defined as ,
is the von Kármán constant.
The formulation assumes that the near wall value is already imposed in the functor.
When solving a linear problem, instead of the nonlinear formulation, the production term is formulated as:
where:
is the value of the turbulent kinetic energy in the previous iteration.
For the destruction, formulation is different for the sub-laminar
and logarithmic
layers. For the sub-laminar
layer, the destruction is defined as follows:
For the logarithmic
layer, the destruction is defined as follows:
When the wall treatment is specified in this kernel, any boundary condition for will be ignored. In other words, there is no need to impose boundary conditions for when the wall treatment is specified in his kernel.
When using near-wall treatment, we assume that the functor is computed by an object that performs near-wall treatment. Otherwise, the results obtained won't not physically correct
Input Parameters
- C_mu0.09Coupled turbulent kinetic energy closure.
Default:0.09
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy closure.
- C_pl10Production Limiter Constant Multiplier.
Default:10
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Production Limiter Constant Multiplier.
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- linearized_modelTrueBoolean to determine if the problem should be use in a linear or nonlinear solve.
Default:True
C++ Type:bool
Controllable:No
Description:Boolean to determine if the problem should be use in a linear or nonlinear solve.
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- vThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- wThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- wall_treatmentneqThe method used for computing the wall functions 'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
Default:neq
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions 'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
- wallsBoundaries that correspond to solid walls.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Boundaries that correspond to solid walls.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsrhsThe tag for the vectors this Kernel should fill
Default:rhs
C++ Type:MultiMooseEnum
Options:rhs, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers1The number of layers of elements to ghost.
Default:1
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated/channel_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated-transient/BFS_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-non-eq-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-std-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated/BFS_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/block-restricted/block-ke.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated-transient/channel_ERCOFTAC.i)
walls
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Boundaries that correspond to solid walls.
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated/channel_ERCOFTAC.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = ${fparse 0.16*Re^(-1./8.)}
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[block_1]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 0
ymax = ${H}
nx = 4
ny = 4
bias_y = 0.7
[]
[block_2]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = ${fparse -H}
ymax = 0
nx = 4
ny = 4
bias_y = ${fparse 1/0.7}
[]
[smg]
type = StitchedMeshGenerator
inputs = 'block_1 block_2'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = true
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_y
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'bottom top'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.2 0.2'
turbulence_field_relaxation = '0.2 0.2'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
[]
[Outputs]
csv = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_center_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_radius_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated-transient/BFS_ERCOFTAC.i)
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${fparse 10.0*H} ${fparse 20.0*H}'
dy = '${H} ${fparse 5*H}'
ix = '8 16'
iy = '2 8'
subdomain_id = '
2 1
1 1
'
[]
[corner_walls]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block ='1'
paired_block ='2'
new_boundary = 'wall-side'
[]
[delete_bottom]
type = BlockDeletionGenerator
input = corner_walls
block ='2'
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_time]
type = LinearFVTimeDerivative
variable = vel_x
factor = ${rho}
[]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_time]
type = LinearFVTimeDerivative
variable = vel_y
factor = ${rho}
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_time]
type = LinearFVTimeDerivative
variable = TKE
factor = ${rho}
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_time]
type = LinearFVTimeDerivative
variable = TKED
factor = ${rho}
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_y
functor = 0.0
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = ${walls}
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init + mu}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = PIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 20
pressure_absolute_tolerance = 1e-6
momentum_absolute_tolerance = 1e-6
turbulence_absolute_tolerance = '1e-6 1e-6'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
dt = 10.0
num_steps = 10
num_piso_iterations = 2
[]
[Outputs]
csv = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_entry_channel_wall]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_entry_channel]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-non-eq-wall.i)
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${lid_velocity}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[top_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'top'
functor = 1
[]
[no_slip_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'left right bottom'
functor = 0
[]
[no_slip_y]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_y
boundary = 'left right top bottom'
functor = 0
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'bottom top'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
csv = true
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_left]
type = SideValueSampler
boundary = 'left'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[side_right]
type = SideValueSampler
boundary = 'right'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[horizontal_center]
type = LineValueSampler
start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
num_points = ${Mesh/gen/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[vertical_center]
type = LineValueSampler
start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
num_points = ${Mesh/gen/ny}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-std-wall.i)
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${lid_velocity}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = true
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = true
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = true
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = true
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = true
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[top_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'top'
functor = 1
[]
[no_slip_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'left right bottom'
functor = 0
[]
[no_slip_y]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_y
boundary = 'left right top bottom'
functor = 0
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = ${walls}
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
csv = true
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_left]
type = SideValueSampler
boundary = 'left'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[side_right]
type = SideValueSampler
boundary = 'right'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[horizontal_center]
type = LineValueSampler
start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
num_points = ${Mesh/gen/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[vertical_center]
type = LineValueSampler
start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
num_points = ${Mesh/gen/ny}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated/BFS_ERCOFTAC.i)
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${fparse 10.0*H} ${fparse 20.0*H}'
dy = '${H} ${fparse 5*H}'
ix = '8 16'
iy = '2 8'
subdomain_id = '
2 1
1 1
'
[]
[corner_walls]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block = '1'
paired_block = '2'
new_boundary = 'wall-side'
[]
[delete_bottom]
type = BlockDeletionGenerator
input = corner_walls
block = '2'
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_y
functor = 0.0
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = ${walls}
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init + mu}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
[]
[Outputs]
csv = true
[console]
type = Console
outlier_variable_norms = false
[]
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_entry_channel_wall]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_entry_channel]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/block-restricted/block-ke.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = '${fparse 0.16*Re^(-1./8.)}'
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'walls'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[block_left]
type = GeneratedMeshGenerator
dim = 2
xmin = '${fparse -2*H}'
xmax = '${fparse -H}'
ymin = 0
ymax = ${L}
nx = 3
ny = 4
[]
[block_1]
type = GeneratedMeshGenerator
dim = 2
xmin = '${fparse -H}'
xmax = 0
ymin = 0
ymax = ${L}
nx = 4
ny = 4
bias_x = '${fparse 1/0.7}'
[]
[block_2]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${H}
ymin = 0
ymax = ${L}
nx = 4
ny = 4
bias_x = 0.7
[]
[block_right]
type = GeneratedMeshGenerator
dim = 2
xmin = ${H}
xmax = '${fparse 2*H}'
ymin = 0
ymax = ${L}
nx = 3
ny = 4
[]
[smg]
type = StitchedMeshGenerator
inputs = 'block_left block_1 block_2 block_right'
stitch_boundaries_pairs = 'right left; right left; right left'
[]
[middle]
input = smg
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '${fparse -H} 0 0'
top_right = '${H} ${L} 50'
[]
[walls]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 0
new_boundary = walls
input = middle
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
block = 1
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = u_system
block = 1
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = v_system
block = 1
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
block = 1
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
block = 1
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
block = 1
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = vel_x
functor = 0
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = vel_y
functor = '${bulk_u}'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'walls'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'walls'
variable = vel_y
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top'
variable = pressure
functor = 0.0
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = TKE
functor = '${k_init}'
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = TKE
use_two_term_expansion = false
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = TKED
functor = '${eps_init}'
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = TKED
use_two_term_expansion = false
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'walls'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
block = 1
[]
[yplus]
type = MooseLinearVariableFVReal
block = 1
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
block = 1
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.2 0.2'
turbulence_field_relaxation = '0.2 0.2'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[]
[VectorPostprocessors]
[line_wall]
type = LineValueSampler
start_point = '${fparse 0.99 * H} ${fparse 0.125 * L} 0'
end_point = '${fparse 0.99 * H} ${fparse 0.875 * L} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_center_channel]
type = LineValueSampler
start_point = ' ${fparse 0.0001 * H} ${fparse 0.125 * L} 0'
end_point = '${fparse 0.0001 * H} ${fparse 0.875 * L} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_radius_channel]
type = LineValueSampler
start_point = '${fparse 0.51 * H} ${fparse 0.125 * L} 0'
end_point = '${fparse 0.51 * H} ${fparse 0.875 * L} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated-transient/channel_ERCOFTAC.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k =1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[block_1]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 0
ymax = ${H}
nx = 4
ny = 3
bias_y = 0.7
[]
[block_2]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = ${fparse -H}
ymax = 0
nx = 4
ny = 3
bias_y = ${fparse 1/0.7}
[]
[smg]
type = StitchedMeshGenerator
inputs = 'block_1 block_2'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = true
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_time]
type = LinearFVTimeDerivative
variable = vel_x
factor = ${rho}
[]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_time]
type = LinearFVTimeDerivative
variable = vel_y
factor = ${rho}
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_time]
type = LinearFVTimeDerivative
variable = TKE
factor = ${rho}
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_time]
type = LinearFVTimeDerivative
variable = TKED
factor = ${rho}
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_y
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'bottom top'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = PIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.25 0.25'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
dt = 1.0
num_steps = 2
[]
[Outputs]
csv = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_center_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_radius_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]