- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- muDynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Dynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- rhoDensity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- variableThe name of the variable that this boundary condition applies to
C++ Type:LinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this boundary condition applies to
LinearFVTurbulentViscosityWallFunctionBC
Implements wall function boundary condition for the turbulent dynamic viscosity for the linear finite volume discretization.
The boundary conditions are different depending on where the centroid of the cell near the identified boundary lies in the wall function profile. Taking the non-dimensional wall distance as , the three regions of the boundary layer are identified as follows:
Sub-laminar region:
Buffer region:
Logarithmic region:
The wall function goal is to set the total viscosity at the wall , decomposed as , such that the wall shear stress is accurately captured without the need of fully resolving the gradients at the near wall region.
where:
is the total viscosity evaluated at the wall face
is the turbulent viscosity, evaluated at the wall for the purpose of this boundary condition
is the dynamic viscosity, evaluated at the wall for the purpose of this boundary condition
is the wall-shear stress
is the wall-parallel velocity at the centroid
is the wall normal distance to the centroid
To impose a correct boundary condition for , as seen in the Equation above, we need to compute using analytical relationships between the wall shear stress and the dimensionless wall distance . For this purpose, four different formulations are supported as defined by the "wall_treatment" parameter.
To set the grid spacing for the first cell near the wall in your mesh, we recommend using the RANSYPlusAux auxiliary kernel. to estimate the dimensionless wall distance .
Equilibrium wall functions using a Newton solve
This treatment can be enabled by setting the parameter "wall_treatment" to eq_newton
. The treatment uses equilibrium wall functions where the following formulation is used for the turbulent viscosity.
where:
is the density
is the dynamic viscosity
is the friction velocity and is the wall friction
is the distance from the boundary to the center of the near-wall cell
is the parallel velocity to the boundary computed at the center of the near-wall cell
For the buffer layer, a linear blending method is used that defines the turbulent viscosity as follows:
Note that for and we recover the sub-laminar and logarithmic profiles, respectively.
Here the standard or equilibrium law of the wall defines and as follows:
where:
is the molecular dynamic viscosity
is a closure parameter
is the von Kármán constant
In this method, we iterate on the wall function and to find via a Newton solve. Once is defined, is computed followed by the determination of the boundary turbulent viscosity.
eq_newton
solve will converge the fastest for simple flow geometries but it may diverge for more complicated flows. Also, the code will run if the center of the near wall cells are in the buffer layer. However, using a mesh that contains nodes in the buffer layer is not recommended.
Equilibrium wall functions using a fixed-point solve
This treatment is enabled by setting parameter "wall_treatment" to eq_incremental
. The method uses the same equilibrium wall treatment than the Newton solve. However, the main difference is that, instead of computing for the near wall cells, a fixed point iteration is performed in the wall functions to find .
eq_incremental
has a larger convergence radius than the Newton solve and internal controls are added to avoid issues converging the wall function at the buffer layer. However, it will take more iterations than the Newton solve to converge. Using a mesh that contains nodes in the buffer layer is not recommended.
Equilibrium wall functions using linearized wall function
This treatment is enabled by setting parameter "wall_treatment" to eq_linearized
. The treatment uses a linearized version of the wall function, in which a linear Taylor approximation is used for the natural logarithm. This approximation results in a quadratic equation that is solved directly for . Then, is computed from .
eq_linearized
will work fast as there is no nonlinear solve at the near-wall region. However, the method may introduce significant near-wall errors. The method is designed to be used in conjunction with porous media treatment and not necessarily for free flow.
Non-equilibrium wall functions
This treatment is enabled by setting parameter "wall_treatment" to neq
. In this case, the non-dimensional wall distance is computed from the turbulent kinetic energy near the wall as follows:
where:
is a fitting parameter
is the turbulent kinetic energy at the centroid of the near-wall cell
Then, the turbulent viscosity is defined as follows:
For the buffer layer, a linear blending method is used that defines the turbulent viscosity as follows:
neq
should mainly be used for detached flow or other cases for which equilibrium wall functions are not valid. One should try to use equilibrium wall functions when possible.
Input Parameters
- C_mu0.09Coupled turbulent kinetic energy closure.
Default:0.09
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy closure.
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- tkeThe turbulent kinetic energy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The turbulent kinetic energy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- vThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- wThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- wall_treatmentneqThe method used for computing the wall functions
Default:neq
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsrhsThe tag for the vectors this Kernel should fill
Default:rhs
C++ Type:MultiMooseEnum
Options:rhs, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
Advanced Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated/channel_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated-transient/BFS_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-non-eq-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-std-wall.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated/BFS_ERCOFTAC.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/block-restricted/block-ke.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated-transient/channel_ERCOFTAC.i)
wall_treatment
Default:neq
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions
wall_treatment
Default:neq
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions
wall_treatment
Default:neq
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions
wall_treatment
Default:neq
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions
wall_treatment
Default:neq
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated/channel_ERCOFTAC.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = ${fparse 0.16*Re^(-1./8.)}
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[block_1]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 0
ymax = ${H}
nx = 4
ny = 4
bias_y = 0.7
[]
[block_2]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = ${fparse -H}
ymax = 0
nx = 4
ny = 4
bias_y = ${fparse 1/0.7}
[]
[smg]
type = StitchedMeshGenerator
inputs = 'block_1 block_2'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = true
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_y
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'bottom top'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.2 0.2'
turbulence_field_relaxation = '0.2 0.2'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
[]
[Outputs]
csv = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_center_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_radius_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated-transient/BFS_ERCOFTAC.i)
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${fparse 10.0*H} ${fparse 20.0*H}'
dy = '${H} ${fparse 5*H}'
ix = '8 16'
iy = '2 8'
subdomain_id = '
2 1
1 1
'
[]
[corner_walls]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block ='1'
paired_block ='2'
new_boundary = 'wall-side'
[]
[delete_bottom]
type = BlockDeletionGenerator
input = corner_walls
block ='2'
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_time]
type = LinearFVTimeDerivative
variable = vel_x
factor = ${rho}
[]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_time]
type = LinearFVTimeDerivative
variable = vel_y
factor = ${rho}
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_time]
type = LinearFVTimeDerivative
variable = TKE
factor = ${rho}
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_time]
type = LinearFVTimeDerivative
variable = TKED
factor = ${rho}
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_y
functor = 0.0
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = ${walls}
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init + mu}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = PIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 20
pressure_absolute_tolerance = 1e-6
momentum_absolute_tolerance = 1e-6
turbulence_absolute_tolerance = '1e-6 1e-6'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
dt = 10.0
num_steps = 10
num_piso_iterations = 2
[]
[Outputs]
csv = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_entry_channel_wall]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_entry_channel]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-non-eq-wall.i)
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${lid_velocity}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[top_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'top'
functor = 1
[]
[no_slip_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'left right bottom'
functor = 0
[]
[no_slip_y]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_y
boundary = 'left right top bottom'
functor = 0
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'bottom top'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
csv = true
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_left]
type = SideValueSampler
boundary = 'left'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[side_right]
type = SideValueSampler
boundary = 'right'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[horizontal_center]
type = LineValueSampler
start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
num_points = ${Mesh/gen/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[vertical_center]
type = LineValueSampler
start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
num_points = ${Mesh/gen/ny}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-std-wall.i)
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = 'upwind'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${side_length}
ymin = 0
ymax = ${side_length}
nx = 12
ny = 12
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${lid_velocity}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = true
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = true
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = true
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = true
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = true
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = true
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[top_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'top'
functor = 1
[]
[no_slip_x]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_x
boundary = 'left right bottom'
functor = 0
[]
[no_slip_y]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
variable = vel_y
boundary = 'left right top bottom'
functor = 0
[]
[pressure-extrapolation]
type = LinearFVExtrapolatedPressureBC
boundary = 'left right top bottom'
variable = pressure
use_two_term_expansion = true
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = ${walls}
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
pin_pressure = true
pressure_pin_value = 0.0
pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
csv = true
perf_graph = false
print_nonlinear_residuals = false
print_linear_residuals = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_left]
type = SideValueSampler
boundary = 'left'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[side_right]
type = SideValueSampler
boundary = 'right'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[horizontal_center]
type = LineValueSampler
start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
num_points = ${Mesh/gen/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[vertical_center]
type = LineValueSampler
start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
num_points = ${Mesh/gen/ny}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'y'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated/BFS_ERCOFTAC.i)
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${fparse 10.0*H} ${fparse 20.0*H}'
dy = '${H} ${fparse 5*H}'
ix = '8 16'
iy = '2 8'
subdomain_id = '
2 1
1 1
'
[]
[corner_walls]
type = SideSetsBetweenSubdomainsGenerator
input = gen
primary_block = '1'
paired_block = '2'
new_boundary = 'wall-side'
[]
[delete_bottom]
type = BlockDeletionGenerator
input = corner_walls
block = '2'
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = ${walls}
variable = vel_y
functor = 0.0
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = ${walls}
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init + mu}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.5 0.5'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
[]
[Outputs]
csv = true
[console]
type = Console
outlier_variable_norms = false
[]
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_entry_channel_wall]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_entry_channel]
type = LineValueSampler
start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
num_points = 24
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/block-restricted/block-ke.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = '${fparse 0.16*Re^(-1./8.)}'
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'walls'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[block_left]
type = GeneratedMeshGenerator
dim = 2
xmin = '${fparse -2*H}'
xmax = '${fparse -H}'
ymin = 0
ymax = ${L}
nx = 3
ny = 4
[]
[block_1]
type = GeneratedMeshGenerator
dim = 2
xmin = '${fparse -H}'
xmax = 0
ymin = 0
ymax = ${L}
nx = 4
ny = 4
bias_x = '${fparse 1/0.7}'
[]
[block_2]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${H}
ymin = 0
ymax = ${L}
nx = 4
ny = 4
bias_x = 0.7
[]
[block_right]
type = GeneratedMeshGenerator
dim = 2
xmin = ${H}
xmax = '${fparse 2*H}'
ymin = 0
ymax = ${L}
nx = 3
ny = 4
[]
[smg]
type = StitchedMeshGenerator
inputs = 'block_left block_1 block_2 block_right'
stitch_boundaries_pairs = 'right left; right left; right left'
[]
[middle]
input = smg
type = SubdomainBoundingBoxGenerator
block_id = 1
bottom_left = '${fparse -H} 0 0'
top_right = '${H} ${L} 50'
[]
[walls]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 1
paired_block = 0
new_boundary = walls
input = middle
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
block = 1
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = 0.0
solver_sys = u_system
block = 1
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = v_system
block = 1
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
block = 1
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
block = 1
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
block = 1
[]
[]
[LinearFVKernels]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = vel_x
functor = 0
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = vel_y
functor = '${bulk_u}'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'walls'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'walls'
variable = vel_y
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top'
variable = pressure
functor = 0.0
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = TKE
functor = '${k_init}'
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = TKE
use_two_term_expansion = false
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'bottom'
variable = TKED
functor = '${eps_init}'
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'top'
variable = TKED
use_two_term_expansion = false
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'walls'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
block = 1
[]
[yplus]
type = MooseLinearVariableFVReal
block = 1
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
block = 1
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = SIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.2 0.2'
turbulence_field_relaxation = '0.2 0.2'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
[]
[Outputs]
exodus = true
execute_on = timestep_end
csv = true
[]
[VectorPostprocessors]
[line_wall]
type = LineValueSampler
start_point = '${fparse 0.99 * H} ${fparse 0.125 * L} 0'
end_point = '${fparse 0.99 * H} ${fparse 0.875 * L} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_center_channel]
type = LineValueSampler
start_point = ' ${fparse 0.0001 * H} ${fparse 0.125 * L} 0'
end_point = '${fparse 0.0001 * H} ${fparse 0.875 * L} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_radius_channel]
type = LineValueSampler
start_point = '${fparse 0.51 * H} ${fparse 0.125 * L} 0'
end_point = '${fparse 0.51 * H} ${fparse 0.875 * L} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated-transient/channel_ERCOFTAC.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k =1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
[block_1]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = 0
ymax = ${H}
nx = 4
ny = 3
bias_y = 0.7
[]
[block_2]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${L}
ymin = ${fparse -H}
ymax = 0
nx = 4
ny = 3
bias_y = ${fparse 1/0.7}
[]
[smg]
type = StitchedMeshGenerator
inputs = 'block_1 block_2'
clear_stitched_boundary_ids = true
stitch_boundaries_pairs = 'bottom top'
merge_boundaries_with_same_name = true
[]
# Prevent test diffing on distributed parallel element numbering
allow_renumbering = false
[]
[Problem]
linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
previous_nl_solution_required = true
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
[rc]
type = RhieChowMassFlux
u = vel_x
v = vel_y
pressure = pressure
rho = ${rho}
p_diffusion_kernel = p_diffusion
[]
[]
[Variables]
[vel_x]
type = MooseLinearVariableFVReal
initial_condition = ${bulk_u}
solver_sys = u_system
[]
[vel_y]
type = MooseLinearVariableFVReal
initial_condition = 0
solver_sys = v_system
[]
[pressure]
type = MooseLinearVariableFVReal
initial_condition = 1e-8
solver_sys = pressure_system
[]
[TKE]
type = MooseLinearVariableFVReal
solver_sys = TKE_system
initial_condition = ${k_init}
[]
[TKED]
type = MooseLinearVariableFVReal
solver_sys = TKED_system
initial_condition = ${eps_init}
[]
[]
[LinearFVKernels]
[u_time]
type = LinearFVTimeDerivative
variable = vel_x
factor = ${rho}
[]
[u_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_x
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'x'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[u_diffusion]
type = LinearFVDiffusion
variable = vel_x
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[u_pressure]
type = LinearFVMomentumPressure
variable = vel_x
pressure = pressure
momentum_component = 'x'
[]
[v_time]
type = LinearFVTimeDerivative
variable = vel_y
factor = ${rho}
[]
[v_advection_stress]
type = LinearWCNSFVMomentumFlux
variable = vel_y
advected_interp_method = ${advected_interp_method}
mu = 'mu_t'
u = vel_x
v = vel_y
momentum_component = 'y'
rhie_chow_user_object = 'rc'
use_nonorthogonal_correction = false
use_deviatoric_terms = yes
[]
[v_diffusion]
type = LinearFVDiffusion
variable = vel_y
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[v_pressure]
type = LinearFVMomentumPressure
variable = vel_y
pressure = pressure
momentum_component = 'y'
[]
[p_diffusion]
type = LinearFVAnisotropicDiffusion
variable = pressure
diffusion_tensor = Ainv
use_nonorthogonal_correction = false
[]
[HbyA_divergence]
type = LinearFVDivergence
variable = pressure
face_flux = HbyA
force_boundary_execution = true
[]
[TKE_time]
type = LinearFVTimeDerivative
variable = TKE
factor = ${rho}
[]
[TKE_advection]
type = LinearFVTurbulentAdvection
variable = TKE
[]
[TKE_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
[]
[TKE_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKE
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_k}
use_nonorthogonal_correction = false
[]
[TKE_source_sink]
type = LinearFVTKESourceSink
variable = TKE
u = vel_x
v = vel_y
epsilon = TKED
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[TKED_time]
type = LinearFVTimeDerivative
variable = TKED
factor = ${rho}
[]
[TKED_advection]
type = LinearFVTurbulentAdvection
variable = TKED
walls = ${walls}
[]
[TKED_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = ${mu}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_turb_diffusion]
type = LinearFVTurbulentDiffusion
variable = TKED
diffusion_coeff = 'mu_t'
scaling_coeff = ${sigma_eps}
use_nonorthogonal_correction = false
walls = ${walls}
[]
[TKED_source_sink]
type = LinearFVTKEDSourceSink
variable = TKED
u = vel_x
v = vel_y
tke = TKE
rho = ${rho}
mu = ${mu}
mu_t = 'mu_t'
C1_eps = ${C1_eps}
C2_eps = ${C2_eps}
walls = ${walls}
wall_treatment = ${wall_treatment}
C_pl = 1e10
[]
[]
[LinearFVBCs]
[inlet-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_x
functor = '${bulk_u}'
[]
[inlet-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = vel_y
functor = '0.0'
[]
[walls-u]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_x
functor = 0.0
[]
[walls-v]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'top bottom'
variable = vel_y
functor = 0.0
[]
[outlet_u]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_x
use_two_term_expansion = false
[]
[outlet_v]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = vel_y
use_two_term_expansion = false
[]
[outlet_p]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'right'
variable = pressure
functor = 0.0
[]
[inlet_TKE]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKE
functor = '${k_init}'
[]
[outlet_TKE]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKE
use_two_term_expansion = false
[]
[inlet_TKED]
type = LinearFVAdvectionDiffusionFunctorDirichletBC
boundary = 'left'
variable = TKED
functor = '${eps_init}'
[]
[outlet_TKED]
type = LinearFVAdvectionDiffusionOutflowBC
boundary = 'right'
variable = TKED
use_two_term_expansion = false
[]
[walls_mu_t]
type = LinearFVTurbulentViscosityWallFunctionBC
boundary = 'bottom top'
variable = 'mu_t'
u = vel_x
v = vel_y
rho = ${rho}
mu = ${mu}
tke = TKE
wall_treatment = ${wall_treatment}
[]
[]
[AuxVariables]
[mu_t]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[yplus]
type = MooseLinearVariableFVReal
[]
[mu_eff]
type = MooseLinearVariableFVReal
initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
[]
[]
[AuxKernels]
[compute_mu_t]
type = kEpsilonViscosityAux
variable = mu_t
C_mu = ${C_mu}
tke = TKE
epsilon = TKED
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
bulk_wall_treatment = ${bulk_wall_treatment}
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
mu_t_ratio_max = 1e20
[]
[compute_y_plus]
type = RANSYPlusAux
variable = yplus
tke = TKE
mu = ${mu}
rho = ${rho}
u = vel_x
v = vel_y
walls = ${walls}
wall_treatment = ${wall_treatment}
execute_on = 'NONLINEAR'
[]
[compute_mu_eff]
type = ParsedAux
variable = 'mu_eff'
coupled_variables = 'mu_t'
expression = 'mu_t + ${mu}'
execute_on = 'NONLINEAR'
[]
[]
[Executioner]
type = PIMPLE
rhie_chow_user_object = 'rc'
momentum_systems = 'u_system v_system'
pressure_system = 'pressure_system'
turbulence_systems = 'TKE_system TKED_system'
momentum_l_abs_tol = 1e-14
pressure_l_abs_tol = 1e-14
turbulence_l_abs_tol = 1e-14
momentum_l_tol = 1e-14
pressure_l_tol = 1e-14
turbulence_l_tol = 1e-14
momentum_equation_relaxation = 0.7
pressure_variable_relaxation = 0.3
turbulence_equation_relaxation = '0.25 0.25'
num_iterations = 1000
pressure_absolute_tolerance = 1e-12
momentum_absolute_tolerance = 1e-12
turbulence_absolute_tolerance = '1e-12 1e-12'
momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
momentum_petsc_options_value = 'hypre boomeramg'
pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
pressure_petsc_options_value = 'hypre boomeramg'
turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
turbulence_petsc_options_value = 'hypre boomeramg'
print_fields = false
continue_on_max_its = true
dt = 1.0
num_steps = 2
[]
[Outputs]
csv = true
[]
[VectorPostprocessors]
[side_bottom]
type = SideValueSampler
boundary = 'bottom'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[side_top]
type = SideValueSampler
boundary = 'top'
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_center_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[line_quarter_radius_channel]
type = LineValueSampler
start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
num_points = ${Mesh/block_1/nx}
variable = 'vel_x vel_y pressure TKE TKED'
sort_by = 'x'
execute_on = 'timestep_end'
[]
[]