- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- variableThe name of the variable that this boundary condition applies to
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this boundary condition applies to
WCNSFVInletTemperatureBC
Defines a Dirichlet boundary condition for finite volume method.
There are three options for specifying the inlet temperature of the system:
specifying a temperature postprocessor
specifying an energy flow rate postprocessor, a mass flow rate postprocessor and a specific heat capacity functor. The functors are usually a functor material property, defined by a GeneralFunctorFluidProps. The scaling factor can be used to account for projections if the inlet flow and the surface are not aligned.
specifying an energy flow rate postprocessor, a mass flow rate postprocessor, a specific heat capacity and a density functor. The functors are usually a functor material property, defined by a GeneralFunctorFluidProps. The scaling factor can be used to account for projections if the inlet flow and the surface are not aligned.
This boundary condition works with postprocessors, which may be replaced by constant values in the input. The intended use case for this boundary condition is to be receiving its value from a coupled application, using a Receiver postprocessor.
Specifying the inlet temperature using a WCNSFVInletTemperatureBC
will not preserve energy flow at the boundary in most cases, in part because of the discretization error. Specifying an incoming energy flux using a WCNSFVEnergyFluxBC is currently the only conservative approach.
Example input syntax
In this example input, the inlet boundary condition to the energy conservation equation is specified using two WCNSFVInletTemperatureBC
. The inlet temperature is specified using an energy and a mass flow rate postprocessors.
[FVBCs<<<{"href": "../../syntax/FVBCs/index.html"}>>>]
# Inlet
[inlet_u]
type = WCNSFVInletVelocityBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "WCNSFVInletVelocityBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = u
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = 'left'
mdot_pp<<<{"description": "Postprocessor with the inlet mass flow rate"}>>> = 'inlet_mdot'
area_pp<<<{"description": "Inlet area as a postprocessor"}>>> = 'surface_inlet'
rho<<<{"description": "Density functor. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = 'rho'
[]
[inlet_v]
type = WCNSFVInletVelocityBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "WCNSFVInletVelocityBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = v
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = 'left'
mdot_pp<<<{"description": "Postprocessor with the inlet mass flow rate"}>>> = 0
area_pp<<<{"description": "Inlet area as a postprocessor"}>>> = 'surface_inlet'
rho<<<{"description": "Density functor. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number."}>>> = 'rho'
[]
[inlet_T]
type = WCNSFVInletTemperatureBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "WCNSFVInletTemperatureBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = T
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = 'left'
temperature_pp<<<{"description": "Postprocessor with the inlet temperature"}>>> = 'inlet_T'
[]
[outlet_p]
type = INSFVOutletPressureBC<<<{"description": "Defines a Dirichlet boundary condition for finite volume method.", "href": "INSFVOutletPressureBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = pressure
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = 'right'
function<<<{"description": "The boundary pressure as a regular function"}>>> = ${outlet_pressure}
[]
# Walls
[no_slip_x]
type = INSFVNoSlipWallBC<<<{"description": "Implements a no slip boundary condition.", "href": "INSFVNoSlipWallBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = u
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = 'top bottom'
function<<<{"description": "The exact solution function."}>>> = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC<<<{"description": "Implements a no slip boundary condition.", "href": "INSFVNoSlipWallBC.html"}>>>
variable<<<{"description": "The name of the variable that this boundary condition applies to"}>>> = v
boundary<<<{"description": "The list of boundary IDs from the mesh where this object applies"}>>> = 'top bottom'
function<<<{"description": "The exact solution function."}>>> = 0
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/boundary_conditions/dirichlet_bcs_mdot.i)Input Parameters
- cpspecific heat capacity functor. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:specific heat capacity functor. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
- energy_ppPostprocessor with the inlet energy flow rate
C++ Type:PostprocessorName
Unit:(no unit assumed)
Controllable:No
Description:Postprocessor with the inlet energy flow rate
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- mdot_ppPostprocessor with the inlet mass flow rate
C++ Type:PostprocessorName
Unit:(no unit assumed)
Controllable:No
Description:Postprocessor with the inlet mass flow rate
- rhoDensity functor. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Density functor. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- scaling_factor1To scale the velocity
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:To scale the velocity
- temperature_ppPostprocessor with the inlet temperature
C++ Type:PostprocessorName
Unit:(no unit assumed)
Controllable:No
Description:Postprocessor with the inlet temperature
- velocity_ppPostprocessor with the inlet velocity norm
C++ Type:PostprocessorName
Unit:(no unit assumed)
Controllable:No
Description:Postprocessor with the inlet velocity norm
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.