StiffenedGasFluidProperties

Fluid properties for a stiffened gas

A simple fluid class that implements a stiffened equation of state (Métayer et al., 2004) where is the ratio of specific heat capacities, is a constant that defines the zero reference state for internal energy, and is a constant representing the attraction between fluid molecules that makes the fluid stiff in comparison to an ideal gas. This equation of state is typically used to represent water that is under very high pressure.

Input Parameters

  • cvConstant volume specific heat

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Constant volume specific heat

  • gammaHeat capacity ratio

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat capacity ratio

  • p_infStiffness parameter

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Stiffness parameter

  • qParameter defining zero point of internal energy

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Parameter defining zero point of internal energy

Required Parameters

  • M0Molar mass, kg/mol

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Molar mass, kg/mol

  • T_c0Critical temperature, K

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Critical temperature, K

  • allow_nonphysical_statesTrueAllows for non-physical states, e.g., negative density.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Allows for non-physical states, e.g., negative density.

  • e_c0Internal energy at the critical point, J/kg

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Internal energy at the critical point, J/kg

  • emit_on_nannoneWhether to raise a warning, an exception (usually triggering a retry with a smaller time step) or an error (ending the simulation)

    Default:none

    C++ Type:MooseEnum

    Options:none, warning, exception, error

    Controllable:No

    Description:Whether to raise a warning, an exception (usually triggering a retry with a smaller time step) or an error (ending the simulation)

  • k0.6Thermal conductivity, W/(m-K)

    Default:0.6

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Thermal conductivity, W/(m-K)

  • mu0.001Dynamic viscosity, Pa.s

    Default:0.001

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Dynamic viscosity, Pa.s

  • q_prime0Parameter

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Parameter

  • rho_c0Critical density, kg/m3

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Critical density, kg/m3

Optional Parameters

  • T_initial_guess400Temperature initial guess for Newton Method variable set conversion

    Default:400

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Temperature initial guess for Newton Method variable set conversion

  • max_newton_its100Maximum number of Newton iterations for variable set conversions

    Default:100

    C++ Type:unsigned int

    Controllable:No

    Description:Maximum number of Newton iterations for variable set conversions

  • p_initial_guess200000Pressure initial guess for Newton Method variable set conversion

    Default:200000

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Pressure initial guess for Newton Method variable set conversion

  • tolerance1e-08Tolerance for 2D Newton variable set conversion

    Default:1e-08

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Tolerance for 2D Newton variable set conversion

Variable Set Conversions Newton Solve Parameters

  • allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API

    Default:False

    C++ Type:bool

    Controllable:No

    Description:true to allow unimplemented property derivative terms to be set to zero for the AD API

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • fp_typesingle-phase-fpType of the fluid property object

    Default:single-phase-fp

    C++ Type:FPType

    Controllable:No

    Description:Type of the fluid property object

Advanced Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

Input Files

References

  1. O. L. Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci., 43:265–276, 2004.[BibTeX]