- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this object applies to
- vector_variableThe variable from which to compute the component
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The variable from which to compute the component
VectorVariableComponentAux
The VectorVariableComponentAux
class takes a vector variable, specified through the vector_variable
parameter, and generates an auxiliary variable corresponding to one of the vector variable's components; the component is specified through the component
parameter. This object is only meant to be used with LAGRANGE_VEC
vector variables, and hence the auxiliary variable should be of type LAGRANGE
.
Creates a field consisting of one component of a coupled vector variable.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
- componentThe component to compute
C++ Type:MooseEnum
Options:x, y, z
Controllable:No
Description:The component to compute
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, PRE_DISPLACE
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (test/tests/transfers/multiapp_copy_transfer/vector-variable-transfer/sub_L2_LagrangeVec.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_traction_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts.i)
- (modules/electromagnetics/test/tests/auxkernels/azimuthal_Faradays_law/error_azim_magnetic_time_deriv.i)
- (test/tests/auxkernels/functor_elemental_gradient/functor_gradient.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_nobcbc.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad-rz-displacements.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized_second_order.i)
- (modules/electromagnetics/test/tests/auxkernels/azimuthal_Faradays_law/scalar_azim_magnetic_time_deriv.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts.i)
- (test/tests/vectorpostprocessors/element_value_sampler/mixed_fe_fv_sampler.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized_second_order.i)
- (modules/navier_stokes/examples/laser-welding/2d.i)
- (modules/combined/test/tests/electromagnetic_joule_heating/fusing_current_through_copper_wire.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_nobcbc.i)
- (modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady.i)
- (modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_mean_zero_pressure.i)
(test/tests/transfers/multiapp_copy_transfer/vector-variable-transfer/sub_L2_LagrangeVec.i)
[Mesh]
type = GeneratedMesh
dim = 3
nx = 5
ny = 5
nz = 5
[]
[AuxVariables]
[received_vector]
family = LAGRANGE_VEC
order = FIRST
[]
[expected_vector_x]
family = LAGRANGE
order = FIRST
[]
[expected_vector_y]
family = LAGRANGE
order = FIRST
[]
[expected_vector_z]
family = LAGRANGE
order = FIRST
[]
[received_vector_x]
family = LAGRANGE
order = FIRST
[]
[received_vector_y]
family = LAGRANGE
order = FIRST
[]
[received_vector_z]
family = LAGRANGE
order = FIRST
[]
[]
[ICs]
# Set the expected components. If everything works, the received vector components should match.
[set_expected_vector_x]
type = FunctionIC
variable = expected_vector_x
function = "100*x*x"
[]
[set_expected_vector_y]
type = FunctionIC
variable = expected_vector_y
function = "100*y*y"
[]
[set_expected_vector_z]
type = FunctionIC
variable = expected_vector_z
function = "100*z*z"
[]
[]
[AuxKernels]
# Set the components from the received vector.
[set_received_vector_x]
type = VectorVariableComponentAux
vector_variable = received_vector
variable = received_vector_x
component = 'x'
execute_on = timestep_begin
[]
[set_received_vector_y]
type = VectorVariableComponentAux
vector_variable = received_vector
variable = received_vector_y
component = 'y'
execute_on = timestep_begin
[]
[set_received_vector_z]
type = VectorVariableComponentAux
vector_variable = received_vector
variable = received_vector_z
component = 'z'
execute_on = timestep_begin
[]
[]
[Postprocessors]
[ensure_something_happened]
type = ElementAverageValue
variable = received_vector_x
[]
# Compare the received vector against the expected components.
[l2_difference_x]
type = ElementL2Difference
variable = received_vector_x
other_variable = expected_vector_x
[]
[l2_difference_y]
type = ElementL2Difference
variable = received_vector_y
other_variable = expected_vector_y
[]
[l2_difference_z]
type = ElementL2Difference
variable = received_vector_z
other_variable = expected_vector_z
[]
[]
[Executioner]
type = Transient
dt = 1.0
start_time = 0.0
end_time = 1.0
[]
[Outputs]
csv = true
[]
[Problem]
solve = false
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_traction_steady_stabilized.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = true
viscous_form = 'traction'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady.i)
[GlobalParams]
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts.i)
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
# Note: The Steady executioner can be used for this problem, if you
# drop the INSMomentumTimeDerivative kernels and use the following
# direct solver options.
# petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type'
# petsc_options_value = 'lu NONZERO 1.e-10 preonly'
# Block Jacobi works well for this problem, as does "-pc_type asm
# -pc_asm_overlap 2", but an overlap of 1 does not work for some
# reason?
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console' execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
(modules/electromagnetics/test/tests/auxkernels/azimuthal_Faradays_law/error_azim_magnetic_time_deriv.i)
# Test for AzimuthMagneticTimeDerivRZ with scalar inputs
# Manufactured solution: E_real = y^2 * x_hat - x^2 * y_hat
# E_imag = y^2 * x_hat - x^2 * y_hat
# dB_theta_real / dt = -(2*y + 2*x)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 10
xmax = 1
xmin = 0
ymax = 1
ymin = -1
elem_type = QUAD9
[]
coord_type = RZ
rz_coord_axis = Y
[]
[Functions]
#The exact solution for the heated species and electric field real and imag. component
[exact_real]
type = ParsedVectorFunction
expression_x = 'y^2'
expression_y = '-x^2'
[]
[exact_imag]
type = ParsedVectorFunction
expression_x = 'y^2'
expression_y = '-x^2'
[]
#The forcing terms for the heated species and electric field real and imag. component
[source_real]
type = ParsedVectorFunction
expression_x = '-y^2 - cos(pi*y) - 2'
expression_y = 'x^2 + cos(pi*x) + 4 + 2*y/x'
[]
[source_imag]
type = ParsedVectorFunction
expression_x = '-y^2 + sin(pi*y) - 2'
expression_y = 'x^2 - sin(pi*x) + 4 + 2*y/x'
[]
[current_real]
type = ParsedVectorFunction
expression_x = 'sin(pi*y)'
expression_y = '-sin(pi*x)'
[]
[current_imag]
type = ParsedVectorFunction
expression_x = 'cos(pi*y)'
expression_y = '-cos(pi*x)'
[]
[azim_dB_dt_func]
type = ParsedFunction
expression = '-(2*y + 2*x)'
[]
[]
[Materials]
[WaveCoeff]
type = WaveEquationCoefficient
eps_rel_real = 1.0
eps_rel_imag = 0.0
k_real = 1.0
k_imag = 0.0
mu_rel_real = 1.0
mu_rel_imag = 0.0
[]
[]
[Variables]
[E_real]
family = NEDELEC_ONE
order = FIRST
[]
[E_imag]
family = NEDELEC_ONE
order = FIRST
[]
[]
[Kernels]
[curl_curl_real]
type = CurlCurlField
variable = E_real
[]
[coeff_real]
type = ADMatWaveReaction
variable = E_real
field_real = E_real
field_imag = E_imag
wave_coef_real = wave_equation_coefficient_real
wave_coef_imag = wave_equation_coefficient_imaginary
component = real
[]
[current_real]
type = VectorCurrentSource
variable = E_real
source_real = current_real
source_imag = current_imag
component = real
[]
[body_force_real]
type = VectorBodyForce
variable = E_real
function = source_real
[]
[curl_curl_imag]
type = CurlCurlField
variable = E_imag
[]
[coeff_imag]
type = ADMatWaveReaction
variable = E_imag
field_real = E_real
field_imag = E_imag
wave_coef_real = wave_equation_coefficient_real
wave_coef_imag = wave_equation_coefficient_imaginary
component = imaginary
[]
[current_imag]
type = VectorCurrentSource
variable = E_imag
source_real = current_real
source_imag = current_imag
component = imaginary
[]
[body_force_imag]
type = VectorBodyForce
variable = E_imag
function = source_imag
[]
[]
[AuxVariables]
[aux_E_real_x]
family = MONOMIAL
order = FIRST
[]
[aux_E_real_y]
family = MONOMIAL
order = FIRST
[]
[azim_dB_dt_term]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[aux_E_real_x]
type = VectorVariableComponentAux
variable = aux_E_real_x
vector_variable = E_real
component = X
[]
[aux_E_real_y]
type = VectorVariableComponentAux
variable = aux_E_real_y
vector_variable = E_real
component = Y
[]
[aux_azim_dB_dt]
type = AzimuthMagneticTimeDerivRZ
# Efield = E_real
# Efield_X = aux_E_real_x
# Efield_Y = aux_E_real_y
variable = azim_dB_dt_term
[]
[]
[BCs]
[sides_real]
type = VectorCurlPenaltyDirichletBC
variable = E_real
function = exact_real
penalty = 1e8
boundary = 'left right top bottom'
[]
[sides_imag]
type = VectorCurlPenaltyDirichletBC
variable = E_imag
function = exact_imag
penalty = 1e8
boundary = 'left right top bottom'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-16
[]
[Outputs]
exodus = true
csv = true
[]
(test/tests/auxkernels/functor_elemental_gradient/functor_gradient.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmin = 0
xmax = 3.141
ymin = 0
ymax = 3.141
[]
[Variables]
[u]
[]
[v]
[]
[w]
type = MooseVariableFVReal
[]
[]
[ICs]
[u_ic]
type = FunctionIC
variable = 'u'
function = parsed_function
[]
[v_ic]
type = FunctionIC
variable = 'v'
function = 'x'
[]
[w_ic]
type = FunctionIC
variable = 'w'
function = 'x + y'
[]
[]
[Functions]
[parsed_function]
type = ParsedFunction
value = 'sin(x)-cos(y/2)'
[]
[parsed_grad_function]
type = ParsedVectorFunction
expression_x = 'cos(x)'
expression_y = 'sin(y/2)/2'
[]
[parsed_gradx_function]
type = ParsedFunction
value = 'cos(x)'
[]
[]
[AuxVariables]
[funcGrad_u]
order = CONSTANT
family = MONOMIAL_VEC
[]
[auxGrad_u]
order = CONSTANT
family = MONOMIAL_VEC
[]
[auxGrad_v]
order = CONSTANT
family = MONOMIAL_VEC
[]
[auxGrad_fv]
order = CONSTANT
family = MONOMIAL_VEC
[]
[auxGrad_function]
order = CONSTANT
family = MONOMIAL_VEC
[]
[funcGrad_u_x]
order = CONSTANT
family = MONOMIAL
[]
[auxGrad_u_x]
order = CONSTANT
family = MONOMIAL
[]
[auxGrad_v_x]
order = CONSTANT
family = MONOMIAL
[]
[auxGrad_fv_x]
order = CONSTANT
family = MONOMIAL
[]
[auxGrad_function_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
# Verification
[vec]
type = VectorFunctionAux
variable = funcGrad_u
function = parsed_grad_function
[]
# Finite element variables with and without scaling by material
[grad_u]
type = ADFunctorElementalGradientAux
variable = auxGrad_u
functor = u
[]
[grad_v]
type = ADFunctorElementalGradientAux
variable = auxGrad_v
functor = v
factor_matprop = 'trig_material'
[]
# Finite volume variable
[grad_w]
type = ADFunctorElementalGradientAux
variable = auxGrad_fv
functor = w
factor = w
[]
# Functions
[grad_function]
type = FunctorElementalGradientAux
variable = auxGrad_function
functor = parsed_gradx_function
[]
# Output a component, line sampler does not do vector variables
[funcGrad_u_x]
type = VectorVariableComponentAux
variable = funcGrad_u_x
vector_variable = funcGrad_u
component = 'x'
[]
[auxGrad_u_x]
type = VectorVariableComponentAux
variable = auxGrad_u_x
vector_variable = auxGrad_u
component = 'x'
[]
[auxGrad_v_x]
type = VectorVariableComponentAux
variable = auxGrad_v_x
vector_variable = auxGrad_v
component = 'x'
[]
[funcGrad_fv_x]
type = VectorVariableComponentAux
variable = auxGrad_fv_x
vector_variable = auxGrad_fv
component = 'x'
[]
[auxGrad_function_x]
type = VectorVariableComponentAux
variable = auxGrad_function_x
vector_variable = auxGrad_function
component = 'x'
[]
[]
[Materials]
[steel]
type = ADGenericFunctionMaterial
prop_names = 'trig_material'
prop_values = 'parsed_gradx_function'
[]
[]
[VectorPostprocessors]
[results]
type = LineValueSampler
start_point = '0 1 0'
end_point = '3.141 1 0'
variable = 'funcGrad_u_x auxGrad_u_x auxGrad_v_x auxGrad_fv_x auxGrad_function_x'
num_points = 20
sort_by = x
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_stabilized.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 64
ny = 64
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[ICs]
[velocity]
type = VectorConstantIC
x_value = 0
y_value = 0
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./mass_pspg]
type = INSADMassPSPG
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
alpha = .1
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
expression = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
file_base = lid_driven_stabilized_out
[]
[Postprocessors]
[lin]
type = NumLinearIterations
[]
[nl]
type = NumNonlinearIterations
[]
[lin_tot]
type = CumulativeValuePostprocessor
postprocessor = 'lin'
[]
[nl_tot]
type = CumulativeValuePostprocessor
postprocessor = 'nl'
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[./corner_node]
type = ExtraNodesetGenerator
new_boundary = 'pinned_node'
nodes = '0'
input = gen
[../]
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./T]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./temperature_time]
type = INSADHeatConductionTimeDerivative
variable = T
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = T
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = T
thermal_conductivity = 'k'
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[./pressure_pin]
type = DirichletBC
variable = p
boundary = 'pinned_node'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSAD3Eqn
velocity = velocity
pressure = p
temperature = T
[]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
expression = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'asm 2 ilu 4'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
file_base = lid_driven_out
exodus = true
perf_graph = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_nobcbc.i)
[GlobalParams]
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[outlet]
type = INSADMomentumNoBCBC
variable = velocity
pressure = p
boundary = 'top'
[]
# When the NoBCBC is applied on the outlet boundary then there is nothing
# constraining the pressure. Thus we must pin the pressure somewhere to ensure
# that the problem is not singular. If the below BC is not applied then
# -pc_type svd -pc_svd_monitor reveals a singular value
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad-rz-displacements.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = true
use_displaced_mesh = true
[]
[Mesh]
file = '2d_cone.msh'
displacements = 'disp_x disp_y'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x][]
[vel_y][]
[disp_x]
order = SECOND
[]
[disp_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
[]
[p]
[]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[mass]
type = INSADMass
variable = p
[]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[]
[momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[]
[]
[Materials]
[const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
csv = true
[out]
type = Exodus
hide = 'disp_x disp_y'
[]
[]
[Postprocessors]
[flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[]
[flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized_second_order.i)
[GlobalParams]
order = SECOND
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
order = FIRST
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/electromagnetics/test/tests/auxkernels/azimuthal_Faradays_law/scalar_azim_magnetic_time_deriv.i)
# Test for AzimuthMagneticTimeDerivRZ with scalar inputs
# Manufactured solution: E_real = y^2 * x_hat - x^2 * y_hat
# E_imag = y^2 * x_hat - x^2 * y_hat
# dB_theta_real / dt = -(2*y + 2*x)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 5
xmax = 1
xmin = 0
ymax = 1
ymin = -1
elem_type = QUAD9
[]
coord_type = RZ
rz_coord_axis = Y
[]
[Functions]
#The exact solution for the heated species and electric field real and imag. component
[exact_real]
type = ParsedVectorFunction
expression_x = 'y^2'
expression_y = '-x^2'
[]
[exact_imag]
type = ParsedVectorFunction
expression_x = 'y^2'
expression_y = '-x^2'
[]
#The forcing terms for the heated species and electric field real and imag. component
[source_real]
type = ParsedVectorFunction
expression_x = '-y^2 - cos(pi*y) - 2'
expression_y = 'x^2 + cos(pi*x) + 4 + 2*y/x'
[]
[source_imag]
type = ParsedVectorFunction
expression_x = '-y^2 + sin(pi*y) - 2'
expression_y = 'x^2 - sin(pi*x) + 4 + 2*y/x'
[]
[current_real]
type = ParsedVectorFunction
expression_x = 'sin(pi*y)'
expression_y = '-sin(pi*x)'
[]
[current_imag]
type = ParsedVectorFunction
expression_x = 'cos(pi*y)'
expression_y = '-cos(pi*x)'
[]
[azim_dB_dt_func]
type = ParsedFunction
expression = '-(2*y + 2*x)'
[]
[]
[Materials]
[WaveCoeff]
type = WaveEquationCoefficient
eps_rel_real = 1.0
eps_rel_imag = 0.0
k_real = 1.0
k_imag = 0.0
mu_rel_real = 1.0
mu_rel_imag = 0.0
[]
[]
[Variables]
[E_real]
family = NEDELEC_ONE
order = FIRST
[]
[E_imag]
family = NEDELEC_ONE
order = FIRST
[]
[]
[Kernels]
[curl_curl_real]
type = CurlCurlField
variable = E_real
[]
[coeff_real]
type = ADMatWaveReaction
variable = E_real
field_real = E_real
field_imag = E_imag
wave_coef_real = wave_equation_coefficient_real
wave_coef_imag = wave_equation_coefficient_imaginary
component = real
[]
[current_real]
type = VectorCurrentSource
variable = E_real
source_real = current_real
source_imag = current_imag
component = real
[]
[body_force_real]
type = VectorBodyForce
variable = E_real
function = source_real
[]
[curl_curl_imag]
type = CurlCurlField
variable = E_imag
[]
[coeff_imag]
type = ADMatWaveReaction
variable = E_imag
field_real = E_real
field_imag = E_imag
wave_coef_real = wave_equation_coefficient_real
wave_coef_imag = wave_equation_coefficient_imaginary
component = imaginary
[]
[current_imag]
type = VectorCurrentSource
variable = E_imag
source_real = current_real
source_imag = current_imag
component = imaginary
[]
[body_force_imag]
type = VectorBodyForce
variable = E_imag
function = source_imag
[]
[]
[AuxVariables]
[aux_E_real_x]
family = MONOMIAL
order = FIRST
[]
[aux_E_real_y]
family = MONOMIAL
order = FIRST
[]
[azim_dB_dt_term_scalar]
family = MONOMIAL
order = FIRST
[]
[]
[AuxKernels]
[aux_E_real_x]
type = VectorVariableComponentAux
variable = aux_E_real_x
vector_variable = E_real
component = X
[]
[aux_E_real_y]
type = VectorVariableComponentAux
variable = aux_E_real_y
vector_variable = E_real
component = Y
[]
[aux_azim_dB_dt_scalar]
type = AzimuthMagneticTimeDerivRZ
Efield_X = aux_E_real_x
Efield_Y = aux_E_real_y
variable = azim_dB_dt_term_scalar
[]
[]
[BCs]
[sides_real]
type = VectorCurlPenaltyDirichletBC
variable = E_real
function = exact_real
penalty = 1e8
boundary = 'left right top bottom'
[]
[sides_imag]
type = VectorCurlPenaltyDirichletBC
variable = E_imag
function = exact_imag
penalty = 1e8
boundary = 'left right top bottom'
[]
[]
[Postprocessors]
[error_real]
type = ElementVectorL2Error
variable = E_real
function = exact_real
[]
[error_imag]
type = ElementVectorL2Error
variable = E_imag
function = exact_imag
[]
[error_azim_dB_dt_scalar]
type = ElementL2Error
variable = azim_dB_dt_term_scalar
function = azim_dB_dt_func
[]
[h]
type = AverageElementSize
[]
[h_squared]
type = ParsedPostprocessor
pp_names = 'h'
expression = 'h * h'
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-16
[]
[Outputs]
exodus = true
csv = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts.i)
[GlobalParams]
integrate_p_by_parts = false
viscous_form = 'traction'
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = Newton
[../]
[]
[Executioner]
type = Transient
dt = 0.005
dtmin = 0.005
num_steps = 5
l_max_its = 100
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[AuxVariables]
[./vel_x]
# Velocity in radial (r) direction
family = LAGRANGE
order = SECOND
[../]
[./vel_y]
# Velocity in axial (z) direction
family = LAGRANGE
order = SECOND
[../]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[velocity]
family = LAGRANGE_VEC
order = SECOND
[]
[./p]
family = LAGRANGE
order = FIRST
[../]
[]
[BCs]
[./p_corner]
# This is required because of the no bcs
type = DirichletBC
boundary = top_right
value = 0
variable = p
[../]
[./velocity_out]
type = INSADMomentumNoBCBC
boundary = top
variable = velocity
pressure = p
[../]
[./velocity_in]
type = VectorFunctionDirichletBC
boundary = bottom
variable = velocity
function_x = 0
function_y = 'inlet_func'
[../]
[./wall]
type = VectorFunctionDirichletBC
boundary = 'right'
variable = velocity
function_x = 0
function_y = 0
[../]
[./axis]
type = ADVectorFunctionDirichletBC
boundary = 'left'
variable = velocity
set_y_comp = false
function_x = 0
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
outputs = 'console' execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
outputs = 'console' execute_on = 'timestep_end'
[../]
[]
(test/tests/vectorpostprocessors/element_value_sampler/mixed_fe_fv_sampler.i)
[Mesh]
[cmg]
type = CartesianMeshGenerator
dim = 1
dx = 3
ix = 10
[]
[]
[AuxVariables]
[T]
type = MooseVariableFVReal
[FVInitialCondition]
type = FVFunctionIC
function = '10 * x*x'
[]
[]
[grad_T]
order = CONSTANT
family = MONOMIAL_VEC
[]
[auxGrad_T_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[grad_T_aux]
type = FunctorElementalGradientAux
variable = grad_T
functor = T
[]
[grad_T_x_aux]
type = VectorVariableComponentAux
variable = auxGrad_T_x
vector_variable = grad_T
component = 'x'
[]
[]
[VectorPostprocessors]
[element_value_sampler]
type = ElementValueSampler
variable = 'T auxGrad_T_x'
sort_by = id
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized_second_order.i)
[GlobalParams]
order = SECOND
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
order = FIRST
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/examples/laser-welding/2d.i)
endtime=5e-4 # s
timestep=${fparse endtime/100} # s
surfacetemp=300 # K
power=190 # W
R=1.8257418583505537e-4 # m
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -.45e-3 # m
xmax = 0.45e-3 # m
ymin = -.9e-4 # m
ymax = 0
nx = 25
ny = 5
displacements = 'disp_x disp_y'
[]
[GlobalParams]
temperature = T
[]
[Variables]
[vel]
family = LAGRANGE_VEC
[]
[T]
[]
[p]
[]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[vel_x_aux]
[InitialCondition]
type = ConstantIC
value = 1e-15
[]
[]
[vel_y_aux]
[InitialCondition]
type = ConstantIC
value = 1e-15
[]
[]
[]
[AuxKernels]
[vel_x_value]
type = VectorVariableComponentAux
variable = vel_x_aux
vector_variable = vel
component = x
[]
[vel_y_value]
type = VectorVariableComponentAux
variable = vel_y_aux
vector_variable = vel
component = y
[]
[]
[ICs]
[T]
type = FunctionIC
variable = T
function = '(${surfacetemp} - 300) / .7e-3 * y + ${surfacetemp}'
[]
[]
[Kernels]
[disp_x]
type = Diffusion
variable = disp_x
[]
[disp_y]
type = Diffusion
variable = disp_y
[]
[mass]
type = INSADMass
variable = p
use_displaced_mesh = true
[]
[mass_pspg]
type = INSADMassPSPG
variable = p
use_displaced_mesh = true
[]
[momentum_time]
type = INSADMomentumTimeDerivative
variable = vel
use_displaced_mesh = true
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = vel
use_displaced_mesh = true
[]
[momentum_mesh_advection]
type = INSADMomentumMeshAdvection
variable = vel
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
[]
[momentum_viscous]
type = INSADMomentumViscous
variable = vel
use_displaced_mesh = true
[]
[momentum_pressure]
type = INSADMomentumPressure
variable = vel
pressure = p
integrate_p_by_parts = true
use_displaced_mesh = true
[]
[momentum_supg]
type = INSADMomentumSUPG
variable = vel
material_velocity = relative_velocity
use_displaced_mesh = true
[]
[temperature_time]
type = INSADHeatConductionTimeDerivative
variable = T
use_displaced_mesh = true
[]
[temperature_advection]
type = INSADEnergyAdvection
variable = T
use_displaced_mesh = true
[]
[temperature_mesh_advection]
type = INSADEnergyMeshAdvection
variable = T
disp_x = disp_x
disp_y = disp_y
use_displaced_mesh = true
[]
[temperature_conduction]
type = ADHeatConduction
variable = T
thermal_conductivity = 'k'
use_displaced_mesh = true
[]
[temperature_supg]
type = INSADEnergySUPG
variable = T
velocity = vel
use_displaced_mesh = true
[]
[]
[BCs]
[x_no_disp]
type = DirichletBC
variable = disp_x
boundary = 'bottom'
value = 0
[]
[y_no_disp]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[]
[no_slip]
type = ADVectorFunctionDirichletBC
variable = vel
boundary = 'bottom right left'
[]
[T_cold]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 300
[]
[radiation_flux]
type = FunctionRadiativeBC
variable = T
boundary = 'top'
emissivity_function = '1'
Tinfinity = 300
stefan_boltzmann_constant = 5.67e-8
use_displaced_mesh = true
[]
[weld_flux]
type = GaussianEnergyFluxBC
variable = T
boundary = 'top'
P0 = ${power}
R = ${R}
x_beam_coord = '-0.35e-3 +0.7e-3*t/${endtime}'
y_beam_coord = '0'
use_displaced_mesh = true
[]
[vapor_recoil]
type = INSADVaporRecoilPressureMomentumFluxBC
variable = vel
boundary = 'top'
use_displaced_mesh = true
[]
[surface_tension]
type = INSADSurfaceTensionBC
variable = vel
boundary = 'top'
use_displaced_mesh = true
include_gradient_terms = true
[]
[displace_x_top]
type = INSADDisplaceBoundaryBC
boundary = 'top'
variable = 'disp_x'
velocity = 'vel'
component = 0
associated_subdomain = 0
[]
[displace_y_top]
type = INSADDisplaceBoundaryBC
boundary = 'top'
variable = 'disp_y'
velocity = 'vel'
component = 1
associated_subdomain = 0
[]
[displace_x_top_dummy]
type = INSADDummyDisplaceBoundaryIntegratedBC
boundary = 'top'
variable = 'disp_x'
velocity = 'vel'
component = 0
[]
[displace_y_top_dummy]
type = INSADDummyDisplaceBoundaryIntegratedBC
boundary = 'top'
variable = 'disp_y'
velocity = 'vel'
component = 1
[]
[]
[Materials]
[ins_mat]
type = INSADStabilized3Eqn
velocity = vel
pressure = p
temperature = T
use_displaced_mesh = true
[]
[steel]
type = AriaLaserWeld304LStainlessSteel
temperature = T
beta = 1e7
use_displaced_mesh = true
[]
[steel_boundary]
type = AriaLaserWeld304LStainlessSteelBoundary
boundary = 'top'
temperature = T
use_displaced_mesh = true
[]
[const]
type = GenericConstantMaterial
prop_names = 'abs sb_constant'
prop_values = '1 5.67e-8'
use_displaced_mesh = true
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu NONZERO strumpack'
[]
[]
[Executioner]
type = Transient
end_time = ${endtime}
dtmin = 1e-8
dtmax = ${timestep}
petsc_options = '-snes_converged_reason -ksp_converged_reason -options_left'
solve_type = 'NEWTON'
line_search = 'none'
nl_max_its = 12
l_max_its = 100
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 7
dt = ${timestep}
linear_iteration_ratio = 1e6
growth_factor = 1.5
[]
[]
[Outputs]
[exodus]
type = Exodus
output_material_properties = true
show_material_properties = 'mu'
[]
checkpoint = true
perf_graph = true
[]
[Debug]
show_var_residual_norms = true
[]
[Adaptivity]
marker = combo
max_h_level = 4
[Indicators]
[error_T]
type = GradientJumpIndicator
variable = T
[]
[error_dispz]
type = GradientJumpIndicator
variable = disp_y
[]
[]
[Markers]
[errorfrac_T]
type = ErrorFractionMarker
refine = 0.4
coarsen = 0.2
indicator = error_T
[]
[errorfrac_dispz]
type = ErrorFractionMarker
refine = 0.4
coarsen = 0.2
indicator = error_dispz
[]
[combo]
type = ComboMarker
markers = 'errorfrac_T errorfrac_dispz'
[]
[]
[]
[Postprocessors]
[num_dofs]
type = NumDOFs
system = 'NL'
[]
[nl]
type = NumNonlinearIterations
[]
[tot_nl]
type = CumulativeValuePostprocessor
postprocessor = 'nl'
[]
[]
(modules/combined/test/tests/electromagnetic_joule_heating/fusing_current_through_copper_wire.i)
# This test is a simpified coupled case between the electromagnetic and
# heat transfer modules. While the file microwave_heating.i is a test
# utilizing the method of manufactured solutions, where both real and
# complex components of the electromagnetic properties are provided
# (such that no term is zeroed out), this test involves only the
# real components of the electromagnetic properties. In particular,
# this test supplies the fusing current to a copper wire and simulations
# the spatial and temporal heating profile until the wire reaches its
# melting point. The PDE's of this test file are as follows:
#
# curl(curl(A)) + j*mu*omega*(sigma*A) = J
# mag(E) = mag(-j*omega*A) + mag(J/sigma)
# rho*C*dT/dt - div(k*grad(T)) = Q
# Q = 0.5*sigma*mag(E)^2
#
# Where:
# - A is the magnetic vector potential
# - j is the sqrt(-1)
# - mu is the permeability of free space
# - omega is the angular frequency of the system
# - sigma is the electric conductivity of the wire
# - J is the supplied DC current
# - E is the electric field
# - rho is the density of copper
# - C is the heat capacity of copper
# - T is the temperature
# - k is the thermal conductivity of the wire
# - Q is the Joule heating
#
# The BCs are as follows:
#
# curl(n) x curl(A) = 0, where n is the normal vector
# q * n = h (T - T_infty), where q is the heat flux,
# h is the convective heat transfer coefficient,
# and T_infty is the far-field temperature.
[Mesh]
# Mesh of the copper wire
[fmg]
type = FileMeshGenerator
file = copper_wire.msh
[]
[]
[Variables]
# The real and complex components of the magnetic vector
# potential in the frequency domain
[A_real]
family = NEDELEC_ONE
order = FIRST
[]
[A_imag]
family = NEDELEC_ONE
order = FIRST
[]
# The temperature of the air in the copper wire
[T]
initial_condition = 293.0 #in K
[]
[]
[Kernels]
### Physics to determine the magnetic vector potential propagation ###
# The propagation of the real component
[curl_curl_real]
type = CurlCurlField
variable = A_real
[]
# Current induced by the electrical conductivity
# of the copper wire
[conduction_real]
type = ADConductionCurrent
variable = A_real
field_imag = A_imag
field_real = A_real
conductivity_real = electrical_conductivity
conductivity_imag = 0.0
ang_freq_real = omega_real
ang_freq_imag = 0.0
permeability_real = mu_real
permeability_imag = 0.0
component = real
[]
# Current supplied to the wire
[source_real]
type = VectorBodyForce
variable = A_real
function = mu_curr_real
[]
# The propagation of the complex component
[curl_curl_imag]
type = CurlCurlField
variable = A_imag
[]
# Current induced by the electrical conductivity
# of the copper wire
[conduction_imag]
type = ADConductionCurrent
variable = A_imag
field_imag = A_imag
field_real = A_real
conductivity_real = electrical_conductivity
conductivity_imag = 0.0
ang_freq_real = omega_real
ang_freq_imag = 0.0
permeability_real = mu_real
permeability_imag = 0.0
component = imaginary
[]
### Physics to determine the heat transfer ###
# Heat transfer in the copper wire
[HeatTdot_in_copper]
type = ADHeatConductionTimeDerivative
variable = T
specific_heat = specific_heat_copper
density_name = density_copper
[]
[HeatDiff_in_copper]
type = ADHeatConduction
variable = T
thermal_conductivity = thermal_conductivity_copper
[]
# Heating due the total current
[HeatSrc]
type = ADJouleHeatingSource
variable = T
heating_term = 'electric_field_heating'
[]
[]
[AuxVariables]
# Decomposing the magnetic vector potential
# for the electric field calculations
[A_x_real]
family = MONOMIAL
order = FIRST
[]
[A_y_real]
family = MONOMIAL
order = FIRST
[]
[A_x_imag]
family = MONOMIAL
order = FIRST
[]
[A_y_imag]
family = MONOMIAL
order = FIRST
[]
# The electrical conductivity for the electric
# field calculations
[elec_cond]
family = MONOMIAL
order = FIRST
[]
# The electric field profile determined from
# the magnetic vector potential
[E_real]
family = NEDELEC_ONE
order = FIRST
[]
[E_imag]
family = NEDELEC_ONE
order = FIRST
[]
[]
[AuxKernels]
# Decomposing the magnetic vector potential
# for the electric field calculations
[A_x_real]
type = VectorVariableComponentAux
variable = A_x_real
vector_variable = A_real
component = X
[]
[A_y_real]
type = VectorVariableComponentAux
variable = A_y_real
vector_variable = A_real
component = Y
[]
[A_x_imag]
type = VectorVariableComponentAux
variable = A_x_imag
vector_variable = A_imag
component = X
[]
[A_y_imag]
type = VectorVariableComponentAux
variable = A_y_imag
vector_variable = A_imag
component = Y
[]
# The electrical conductivity for the electric
# field calculations
[cond]
type = ADMaterialRealAux
property = electrical_conductivity
variable = elec_cond
execute_on = 'INITIAL LINEAR TIMESTEP_END'
[]
# The magnitude of electric field profile determined
# from the magnetic vector potential using:
# abs(E) = abs(-j*omega*A) + abs(supplied current / elec_cond)
# NOTE: The reason for calculating the magnitude of the electric
# field is the heating term is defined as:
# Q = 1/2 abs(E)^2 for frequency domain field formulations
[E_real]
type = ParsedVectorAux
coupled_variables = 'A_x_imag A_y_imag elec_cond'
expression_x = 'abs(2*3.14*60*A_x_imag) + abs(60e6/elec_cond)'
expression_y = 'abs(2*3.14*60*A_y_imag)'
variable = E_real
[]
[E_imag]
type = ParsedVectorAux
coupled_variables = 'A_x_real A_y_real'
expression_x = 'abs(-2*3.14*60*A_x_real)'
expression_y = 'abs(-2*3.14*60*A_y_real)'
variable = E_imag
[]
[]
[Functions]
# The supplied current density to the wire
# where only the real x-component is considered
[curr_real_x]
type = ParsedFunction
expression = '60e6' # Units in A/m^2, equivalent to 1178 A in a 5mm diameter wire
[]
# Permeability of free space
[mu_real_func]
type = ParsedFunction
expression = '4*pi*1e-7' # Units in N/A^2
[]
# The angular drive frequency of the system
[omega_real_func]
type = ParsedFunction
expression = '2*pi*60' # Units in rad/s
[]
# The angular frequency time permeability of free space
[omegaMu]
type = ParsedFunction
symbol_names = 'omega mu'
symbol_values = 'omega_real_func mu_real_func'
expression = 'omega*mu'
[]
# The supplied current density time permeability of free space
[mu_curr_real]
type = ParsedVectorFunction
symbol_names = 'current_mag mu'
symbol_values = 'curr_real_x mu_real_func'
expression_x = 'mu * current_mag'
[]
[]
[BCs]
### Temperature boundary conditions ###
# Convective heat flux BC with copper wire
# exposed to air
[surface]
type = ADConvectiveHeatFluxBC
variable = T
boundary = walls
T_infinity = 293
heat_transfer_coefficient = 10
[]
### Magnetic vector potential boundary conditions ###
# No defined boundary conditions represents
# zero curl conditions at the boundaries, such that:
# A x n = 0
[]
[Materials]
[k]
type = ADGenericConstantMaterial
prop_names = 'thermal_conductivity_copper'
prop_values = '397.48' #in W/(m K)
[]
[cp]
type = ADGenericConstantMaterial
prop_names = 'specific_heat_copper'
prop_values = '385.0' #in J/(kg K)
[]
[rho]
type = ADGenericConstantMaterial
prop_names = 'density_copper'
prop_values = '8920.0' #in kg/(m^3)
[]
# Electrical conductivity (copper is default material)
[sigma]
type = ADElectricalConductivity
temperature = T
block = copper
[]
# Material that supplies the correct Joule heating formulation
[ElectromagneticMaterial]
type = ElectromagneticHeatingMaterial
electric_field = E_real
complex_electric_field = E_imag
electric_field_heating_name = electric_field_heating
electrical_conductivity = electrical_conductivity
formulation = FREQUENCY
solver = ELECTROMAGNETIC
block = copper
[]
# Coefficient for wave propagation
[mu_real]
type = ADGenericFunctionMaterial
prop_names = mu_real
prop_values = mu_real_func
[]
[omega_real]
type = ADGenericFunctionMaterial
prop_names = omega_real
prop_values = omega_real_func
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
scheme = bdf2
solve_type = NEWTON
line_search = NONE
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
dt = 1.0
# NOTE: Change 'end_time' to 10s to accurately simulate the fusing current
# end_time = 10
end_time = 5
automatic_scaling = true
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady_stabilized.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_stabilized.i)
[GlobalParams]
order = FIRST
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
[]
[vel_y]
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
# Need to set a non-zero initial condition because we have a velocity norm in
# the denominator for the tau coefficient of the stabilization term
[ICs]
[velocity]
type = VectorConstantIC
x_value = 1e-15
y_value = 1e-15
variable = velocity
[]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[mass_pspg]
type = INSADMassPSPG
variable = p
[]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[momentum_supg]
type = INSADMomentumSUPG
variable = velocity
velocity = velocity
[]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADTauMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_no_parts_steady_nobcbc.i)
[GlobalParams]
integrate_p_by_parts = false
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[momentum_advection]
type = INSADMomentumAdvection
variable = velocity
[]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[p_corner]
type = DirichletBC
boundary = top_right
value = 0
variable = p
[]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[outlet]
type = INSADMomentumNoBCBC
variable = velocity
pressure = p
boundary = 'top'
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/RZ_cone/ad_rz_cone_by_parts_steady.i)
[GlobalParams]
integrate_p_by_parts = true
[]
[Mesh]
file = '2d_cone.msh'
[]
[Problem]
coord_type = RZ
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./p]
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
[../]
[]
[BCs]
[inlet]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom'
function_x = 0
function_y = 'inlet_func'
[../]
[wall]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'right'
function_x = 0
function_y = 0
[]
[axis]
type = ADVectorFunctionDirichletBC
variable = velocity
boundary = 'left'
set_y_comp = false
function_x = 0
[]
[]
[Functions]
[./inlet_func]
type = ParsedFunction
expression = '-4 * x^2 + 1'
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu'
prop_values = '1 1'
[../]
[ins_mat]
type = INSADMaterial
velocity = velocity
pressure = p
[]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_levels'
petsc_options_value = 'bjacobi ilu 4'
nl_rel_tol = 1e-12
nl_max_its = 6
[]
[Outputs]
console = true
[./out]
type = Exodus
[../]
[]
[Postprocessors]
[./flow_in]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'bottom'
execute_on = 'timestep_end'
[../]
[./flow_out]
type = VolumetricFlowRate
vel_x = vel_x
vel_y = vel_y
boundary = 'top'
execute_on = 'timestep_end'
[../]
[]
(modules/navier_stokes/test/tests/finite_element/ins/lid_driven/ad_lid_driven_mean_zero_pressure.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 1.0
ymin = 0
ymax = 1.0
nx = 16
ny = 16
elem_type = QUAD9
[]
[]
[AuxVariables]
[vel_x]
order = SECOND
[]
[vel_y]
order = SECOND
[]
[]
[AuxKernels]
[vel_x]
type = VectorVariableComponentAux
variable = vel_x
vector_variable = velocity
component = 'x'
[]
[vel_y]
type = VectorVariableComponentAux
variable = vel_y
vector_variable = velocity
component = 'y'
[]
[]
[Variables]
[./velocity]
order = SECOND
family = LAGRANGE_VEC
[../]
[./T]
order = SECOND
[./InitialCondition]
type = ConstantIC
value = 1.0
[../]
[../]
[./p]
[../]
[./lambda]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./mass]
type = INSADMass
variable = p
[../]
[./momentum_time]
type = INSADMomentumTimeDerivative
variable = velocity
[../]
[./momentum_convection]
type = INSADMomentumAdvection
variable = velocity
[../]
[./momentum_viscous]
type = INSADMomentumViscous
variable = velocity
[../]
[./momentum_pressure]
type = INSADMomentumPressure
variable = velocity
pressure = p
integrate_p_by_parts = true
[../]
[./temperature_time]
type = INSADHeatConductionTimeDerivative
variable = T
[../]
[./temperature_advection]
type = INSADEnergyAdvection
variable = T
[../]
[./temperature_conduction]
type = ADHeatConduction
variable = T
thermal_conductivity = 'k'
[../]
[./mean_zero_pressure]
type = ScalarLagrangeMultiplier
variable = p
lambda = lambda
[../]
[]
[ScalarKernels]
[./mean_zero_pressure_lm]
type = AverageValueConstraint
variable = lambda
pp_name = pressure_integral
value = 0
[../]
[]
[BCs]
[./no_slip]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'bottom right left'
[../]
[./lid]
type = VectorFunctionDirichletBC
variable = velocity
boundary = 'top'
function_x = 'lid_function'
[../]
[./T_hot]
type = DirichletBC
variable = T
boundary = 'bottom'
value = 1
[../]
[./T_cold]
type = DirichletBC
variable = T
boundary = 'top'
value = 0
[../]
[]
[Materials]
[./const]
type = ADGenericConstantMaterial
prop_names = 'rho mu cp k'
prop_values = '1 1 1 .01'
[../]
[ins_mat]
type = INSAD3Eqn
velocity = velocity
pressure = p
temperature = T
[]
[]
[Postprocessors]
[./pressure_integral]
type = ElementIntegralVariablePostprocessor
variable = p
execute_on = linear
[../]
[]
[Functions]
[./lid_function]
# We pick a function that is exactly represented in the velocity
# space so that the Dirichlet conditions are the same regardless
# of the mesh spacing.
type = ParsedFunction
expression = '4*x*(1-x)'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
solve_type = 'NEWTON'
[../]
[]
[Executioner]
type = Transient
# Run for 100+ timesteps to reach steady state.
num_steps = 5
dt = .5
dtmin = .5
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -sub_pc_factor_levels -sub_pc_factor_shift_type'
petsc_options_value = 'asm 2 ilu 4 NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-13
nl_max_its = 6
l_tol = 1e-6
l_max_its = 500
[]
[Outputs]
exodus = true
perf_graph = true
[]