# Heat Conduction Module

under construction

Documentation for the heat conduction module needs some work...

## Objects, Actions, and Syntax

## ADKernels

- Moose App
- AddADKernelActionThis action is used to add ADKernel<RESIDUAL> and ADKernel<JACOBIAN> objects
- ADDiffusion<JACOBIAN>Same as
`Diffusion`

in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation - ADDiffusion<RESIDUAL>Same as
`Diffusion`

in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation - ADTimeDerivative<JACOBIAN>The time derivative operator with the weak form of .
- ADTimeDerivative<RESIDUAL>The time derivative operator with the weak form of .
- ADVectorDiffusion<JACOBIAN>The Laplacian operator (), with the weak form of . The Jacobian is computed using automatic differentiation
- ADVectorDiffusion<RESIDUAL>The Laplacian operator (), with the weak form of . The Jacobian is computed using automatic differentiation
- Heat Conduction App
- ADHeatConduction<JACOBIAN>Same as
`Diffusion`

in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation - ADHeatConduction<RESIDUAL>Same as
`Diffusion`

in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation - ADHeatConductionTimeDerivative<JACOBIAN>AD Time derivative term of the heat equation for quasi-constant specific heat and the density .
- ADHeatConductionTimeDerivative<RESIDUAL>AD Time derivative term of the heat equation for quasi-constant specific heat and the density .
- ADMatHeatSource<JACOBIAN>
- ADMatHeatSource<RESIDUAL>
- Tensor Mechanics App
- ADStressDivergenceRSphericalTensors<JACOBIAN>Calculate stress divergence for a spherically symmetric 1D problem in polar coordinates.
- ADStressDivergenceRSphericalTensors<RESIDUAL>Calculate stress divergence for a spherically symmetric 1D problem in polar coordinates.
- ADStressDivergenceRZTensors<JACOBIAN>Calculate stress divergence for an axisymmetric problem in cylindrical coordinates.
- ADStressDivergenceRZTensors<RESIDUAL>Calculate stress divergence for an axisymmetric problem in cylindrical coordinates.
- ADStressDivergenceTensors<JACOBIAN>Stress divergence kernel with automatic differentiation for the Cartesian coordinate system
- ADStressDivergenceTensors<RESIDUAL>Stress divergence kernel with automatic differentiation for the Cartesian coordinate system
- Misc App
- ADMatDiffusion<JACOBIAN>Same as
`Diffusion`

in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation - ADMatDiffusion<RESIDUAL>Same as
`Diffusion`

in terms of physics/residual, but the Jacobian is computed using forward automatic differentiation - ADThermoDiffusion<JACOBIAN>Calculates diffusion due to temperature gradient and Soret Coefficient
- ADThermoDiffusion<RESIDUAL>Calculates diffusion due to temperature gradient and Soret Coefficient

## BCs

- Moose App
- AddBCAction
- ConvectiveFluxBCDetermines boundary values via the initial and final values, flux, and exposure duration
- DGFunctionDiffusionDirichletBC
- DiffusionFluxBCComputes a boundary residual contribution consistent with the Diffusion Kernel. Does not impose a boundary condition; instead computes the boundary contribution corresponding to the current value of grad(u) and accumulates it in the residual vector.
- DirichletBCImposes the essential boundary condition , where is a constant, controllable value.
- EigenDirichletBCDirichlet BC for eigenvalue solvers
- FunctionDirichletBCImposes the essential boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
- FunctionNeumannBCImposes the integrated boundary condition , where is a (possibly) time and space-dependent MOOSE Function.
- FunctionPenaltyDirichletBC
- FunctionPresetBCThe same as FunctionDirichletBC except the value is applied before the solve begins
- LagrangeVecDirichletBCImposes the essential boundary condition , where are constant, controllable values.
- LagrangeVecFunctionDirichletBCImposes the essential boundary condition , where components are calculated with functions.
- MatchedValueBCImplements a NodalBC which equates two different Variables' values on a specified boundary.
- NeumannBCImposes the integrated boundary condition , where is a constant, controllable value.
- OneDEqualValueConstraintBC
- PenaltyDirichletBCEnforces a Dirichlet boundary condition in a weak sense by penalizing differences between the current solution and the Dirichlet data.
- PostprocessorDirichletBC
- PostprocessorNeumannBC
- PresetBCSimilar to DirichletBC except the value is applied before the solve begins
- SinDirichletBCImposes a time-varying essential boundary condition , where varies from an given initial value at time to a given final value over a specified duration.
- SinNeumannBCImposes a time-varying flux boundary condition , where varies from an given initial value at time to a given final value over a specified duration.
- VacuumBC
- VectorNeumannBCImposes the integrated boundary condition , where is a user-defined, constant vector.
- WeakGradientBCComputes a boundary residual contribution consistent with the Diffusion Kernel. Does not impose a boundary condition; instead computes the boundary contribution corresponding to the current value of grad(u) and accumulates it in the residual vector.
- Periodic
- Rdg App
- AEFVBCA boundary condition kernel for the advection equation using a cell-centered finite volume method.
- Functional Expansion Tools App
- FXFluxBCSets a flux boundary condition, evaluated using a FunctionSeries instance. This does not fix the flux, but rather 'strongly encourages' flux agreement by penalizing the differences through contributions to the residual.
- FXValueBCImposes a fixed value boundary condition, evaluated using a FunctionSeries instance.
- FXValuePenaltyBCSets a value boundary condition, evaluated using a FunctionSeries instance. This does not fix the value, but rather 'strongly encourages' value agreement by penalizing the differences through contributions to the residual.
- XFEMApp
- CrackTipEnrichmentCutOffBCSimilar to DirichletBC except the value is applied before the solve begins
- Heat Conduction App
- ConvectiveFluxFunctionDetermines boundary value by fluid heat transfer coefficient and far-field temperature
- CoupledConvectiveFlux
- CoupledConvectiveHeatFluxBCConvective heat transfer boundary condition with temperature and heat transfer coefficent given by auxiliary variables.
- GapHeatTransferTransfers heat across a gap between two surfaces dependant on the gap geometry specified.
- HeatConductionBC
- Richards App
- Q2PPiecewiseLinearSinkSink of fluid, controlled by (pressure, bare_fluxes) interpolation. This is for use in Q2P models
- RichardsExcavAllows the user to set variable values at the face of an excavation. You must have defined the excavation start time, start position, etc, through the excav_geom_function
- RichardsHalfGaussianSink
- RichardsPiecewiseLinearSink
- Tensor Mechanics App
- CoupledPressureBCApplies a pressure from a variable on a given boundary in a given direction
- DashpotBC
- DisplacementAboutAxisImplements a boundary condition that enforces rotationaldisplacement around an axis on a boundary
- InteractionIntegralBenchmarkBC
- PresetAccelerationPrescribe acceleration on a given boundary in a given direction
- PresetDisplacementPrescribe the displacement on a given boundary in a given direction.
- PresetVelocity
- PressureApplies a pressure on a given boundary in a given direction
- StickyBCImposes the boundary condition if exceeds the bounds provided
- CavityPressure
- CoupledPressure
- Pressure
- Navier Stokes App
- EnergyFreeBC
- INSMomentumNoBCBCLaplaceFormThis class implements the 'No BC' boundary condition based on the 'Laplace' form of the viscous stress tensor.
- INSMomentumNoBCBCTractionFormThis class implements the 'No BC' boundary condition based on the 'traction' form of the viscous stress tensor.
- INSTemperatureNoBCBCThis class implements the 'No BC' boundary condition discussed by Griffiths, Papanastiou, and others.
- ImplicitNeumannBCThis class implements a form of the Neumann boundary condition in which the boundary term is treated 'implicitly'.
- MassFreeBC
- MomentumFreeBC
- MomentumFreeSlipBC
- NSEnergyInviscidSpecifiedBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
- NSEnergyInviscidSpecifiedDensityAndVelocityBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
- NSEnergyInviscidSpecifiedNormalFlowBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
- NSEnergyInviscidSpecifiedPressureBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
- NSEnergyInviscidUnspecifiedBCThis class corresponds to the inviscid part of the 'natural' boundary condition for the energy equation.
- NSEnergyViscousBCThis class couples together all the variables for the compressible Navier-Stokes equations to allow them to be used in derived IntegratedBC classes.
- NSEnergyWeakStagnationBCThe inviscid energy BC term with specified normal flow.
- NSImposedVelocityBCImpose Velocity BC.
- NSImposedVelocityDirectionBCThis class imposes a velocity direction component as a Dirichlet condition on the appropriate momentum equation.
- NSInflowThermalBCThis class is used on a boundary where the incoming flow values (rho, u, v, T) are all completely specified.
- NSMassSpecifiedNormalFlowBCThis class implements the mass equation boundary term with a specified value of rho*(u.n) imposed weakly.
- NSMassUnspecifiedNormalFlowBCThis class implements the mass equation boundary term with the rho*(u.n) boundary integral computed implicitly.
- NSMassWeakStagnationBCThe inviscid energy BC term with specified normal flow.
- NSMomentumConvectiveWeakStagnationBCThe convective part (sans pressure term) of the momentum equation boundary integral evaluated at specified stagnation temperature, stagnation pressure, and flow direction values.
- NSMomentumInviscidNoPressureImplicitFlowBCMomentum equation boundary condition used when pressure
*is not*integrated by parts. - NSMomentumInviscidSpecifiedNormalFlowBCMomentum equation boundary condition in which pressure is specified (given) and the value of the convective part is allowed to vary (is computed implicitly).
- NSMomentumInviscidSpecifiedPressureBCMomentum equation boundary condition in which pressure is specified (given) and the value of the convective part is allowed to vary (is computed implicitly).
- NSMomentumPressureWeakStagnationBCThis class implements the pressure term of the momentum equation boundary integral for use in weak stagnation boundary conditions.
- NSMomentumViscousBCThis class corresponds to the viscous part of the 'natural' boundary condition for the momentum equations.
- NSPenalizedNormalFlowBCThis class penalizes the the value of u.n on the boundary so that it matches some desired value.
- NSPressureNeumannBCThis kernel is appropriate for use with a 'zero normal flow' boundary condition in the context of the Euler equations.
- NSStagnationPressureBCThis Dirichlet condition imposes the condition p_0 = p_0_desired.
- NSStagnationTemperatureBCThis Dirichlet condition imposes the condition T_0 = T_0_desired.
- NSThermalBCNS thermal BC.
- Chemical Reactions App
- ChemicalOutFlowBCChemical flux boundary condition
- Porous Flow App
- PorousFlowHalfCubicSinkApplies a flux sink to a boundary. The base flux defined by PorousFlowSink is multiplied by a cubic.
- PorousFlowHalfGaussianSinkApplies a flux sink to a boundary. The base flux defined by PorousFlowSink is multiplied by a Gaussian.
- PorousFlowPiecewiseLinearSinkApplies a flux sink to a boundary. The base flux defined by PorousFlowSink is multiplied by a piecewise linear function.
- PorousFlowSinkApplies a flux sink to a boundary.

## Constraints

- Moose App
- AddConstraintAction
- CoupledTiedValueConstraint
- EqualGradientConstraint
- EqualValueBoundaryConstraint
- EqualValueConstraint
- EqualValueEmbeddedConstraintThis is a constraint enforcing overlapping portions of two blocks to have the same variable value
- LinearNodalConstraintConstrains slave node to move as a linear combination of master nodes.
- TiedValueConstraint
- Heat Conduction App
- GapConductanceConstraintComputes the residual and Jacobian contributions for the 'Lagrange Multiplier' implementation of the thermal contact problem. For more information, see the detailed description here: http://tinyurl.com/gmmhbe9
- XFEMApp
- XFEMEqualValueAtInterfaceenforce a same value on both sides of the interface.
- XFEMSingleVariableConstraint
- Contact App
- GluedContactConstraint
- MechanicalContactConstraint
- MultiDContactConstraint
- OneDContactConstraint
- SparsityBasedContactConstraint

## DiracKernels

- Moose App
- AddDiracKernelAction
- ConstantPointSource
- FunctionDiracSource
- Heat Conduction App
- GapHeatPointSourceMaster
- Richards App
- Q2PBoreholeApproximates a borehole in the mesh with given bottomhole pressure, and radii using a number of point sinks whose positions are read from a file. This DiracKernel is for use by Q2P models
- RichardsBoreholeApproximates a borehole in the mesh with given bottomhole pressure, and radii using a number of point sinks whose positions are read from a file
- RichardsPolyLineSinkApproximates a polyline sink in the mesh by using a number of point sinks whose positions are read from a file
- XFEMApp
- XFEMPressure
- Porous Flow App
- PorousFlowPeacemanBoreholeApproximates a borehole in the mesh using the Peaceman approach, ie using a number of point sinks with given radii whose positions are read from a file
- PorousFlowPolyLineSinkApproximates a polyline sink by using a number of point sinks with given weighting whose positions are read from a file
- PorousFlowSquarePulsePointSourcePoint source (or sink) that adds (removes) fluid at a constant mass flux rate for times between the specified start and end times.
- Contact App
- ContactMaster
- SlaveConstraint

## Kernels

- Moose App
- AddKernelAction
- AnisotropicDiffusionAnisotropic diffusion kernel with weak form given by .
- BodyForceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
- CoefTimeDerivativeThe time derivative operator with the weak form of .
- ConservativeAdvectionConservative form of which in its weak form is given by: .
- CoupledForceImplements a source term proportional to the value of a coupled variable. Weak form: .
- CoupledTimeDerivativeTime derivative Kernel that acts on a coupled variable. Weak form: .
- DiffusionThe Laplacian operator (), with the weak form of .
- MassEigenKernelAn eigenkernel with weak form where is the eigenvalue.
- MassLumpedTimeDerivativeLumped formulation of the time derivative . Its corresponding weak form is where denotes the time derivative of the solution coefficient associated with node .
- MatDiffusionDiffusion equation Kernel that takes an isotropic Diffusivity from a material property
- MaterialDerivativeRankFourTestKernelClass used for testing derivatives of a rank four tensor material property.
- MaterialDerivativeRankTwoTestKernelClass used for testing derivatives of a rank two tensor material property.
- MaterialDerivativeTestKernelClass used for testing derivatives of a scalar material property.
- NullKernelKernel that sets a zero residual.
- ReactionImplements a simple consuming reaction term with weak form .
- TimeDerivativeThe time derivative operator with the weak form of .
- UserForcingFunctionDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
- VectorBodyForceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
- VectorDiffusionThe Laplacian operator (), with the weak form of .
- Phase Field Test App
- GaussContForcing
- Phase Field App
- ACBarrierFunctionAllen Cahn kernel used when 'mu' is a function of variables
- ACGBPolyGrain-Boundary model concentration dependent residual
- ACGrGrElasticDrivingForceAdds elastic energy contribution to the Allen-Cahn equation
- ACGrGrMultiMulti-phase poly-crystaline Allen-Cahn Kernel
- ACGrGrPolyGrain-Boundary model poly-crystaline interface Allen-Cahn Kernel
- ACInterfaceGradient energy Allen-Cahn Kernel
- ACInterface2DMultiPhase1Gradient energy Allen-Cahn Kernel where the derivative of interface parameter kappa wrt the gradient of order parameter is considered.
- ACInterface2DMultiPhase2Gradient energy Allen-Cahn Kernel where the interface parameter kappa is considered.
- ACInterfaceKobayashi1Anisotropic gradient energy Allen-Cahn Kernel Part 1
- ACInterfaceKobayashi2Anisotropic Gradient energy Allen-Cahn Kernel Part 2
- ACInterfaceStressInterface stress driving force Allen-Cahn Kernel
- ACKappaFunctionGradient energy term for when kappa as a function of the variable
- ACMultiInterfaceGradient energy Allen-Cahn Kernel with cross terms
- ACSEDGPolyStored Energy contribution to grain growth
- ACSwitchingKernel for Allen-Cahn equation that adds derivatives of switching functions and energies
- AllenCahnAllen-Cahn Kernel that uses a DerivativeMaterial Free Energy
- AllenCahnElasticEnergyOffDiagThis kernel calculates off-diagonal jacobian of elastic energy in AllenCahn with respect to displacements
- CHBulkPFCTradCahn-Hilliard kernel for a polynomial phase field crystal free energy.
- CHInterfaceGradient energy Cahn-Hilliard Kernel with a scalar (isotropic) mobility
- CHInterfaceAnisoGradient energy Cahn-Hilliard Kernel with a tensor (anisotropic) mobility
- CHMathSimple demonstration Cahn-Hilliard Kernel using an algebraic double-well potential
- CHPFCRFFCahn-Hilliard residual for the RFF form of the phase field crystal model
- CHSplitChemicalPotentialChemical potential kernel in Split Cahn-Hilliard that solves chemical potential in a weak form
- CHSplitConcentrationConcentration kernel in Split Cahn-Hilliard that solves chemical potential in a weak form
- CHSplitFluxComputes flux as nodal variable
- CahnHilliardCahn-Hilliard Kernel that uses a DerivativeMaterial Free Energy and a scalar (isotropic) mobility
- CahnHilliardAnisoCahn-Hilliard Kernel that uses a DerivativeMaterial Free Energy and a tensor (anisotropic) mobility
- CoefCoupledTimeDerivativeScaled time derivative Kernel that acts on a coupled variable
- CoefReactionImplements the residual term (p*u, test)
- ConservedLangevinNoiseSource term for noise from a ConservedNoise userobject
- CoupledAllenCahnCoupled Allen-Cahn Kernel that uses a DerivativeMaterial Free Energy
- CoupledMaterialDerivativeKernel that implements the first derivative of a function material property with respect to a coupled variable.
- CoupledSusceptibilityTimeDerivativeA modified coupled time derivative Kernel that multiplies the time derivative of a coupled variable by a generalized susceptibility
- CoupledSwitchingTimeDerivativeCoupled time derivative Kernel that multiplies the time derivative by $\frac{dh_\alpha}{d\eta_i} F_\alpha + \frac{dh_\beta}{d\eta_i} F_\beta + \dots)
- DiscreteNucleationForceTerm for inserting grain nuclei or phases in non-conserved order parameter fields
- GradientComponentSet the kernel variable to a specified component of the gradient of a coupled variable.
- HHPFCRFFReaction type kernel for the RFF phase fit crystal model
- KKSACBulkCKKS model kernel (part 2 of 2) for the Bulk Allen-Cahn. This includes all terms dependent on chemical potential.
- KKSACBulkFKKS model kernel (part 1 of 2) for the Bulk Allen-Cahn. This includes all terms NOT dependent on chemical potential.
- KKSCHBulkKKS model kernel for the Bulk Cahn-Hilliard term. This operates on the concentration 'c' as the non-linear variable
- KKSMultiACBulkCMulti-phase KKS model kernel (part 2 of 2) for the Bulk Allen-Cahn. This includes all terms dependent on chemical potential.
- KKSMultiACBulkFKKS model kernel (part 1 of 2) for the Bulk Allen-Cahn. This includes all terms NOT dependent on chemical potential.
- KKSMultiPhaseConcentrationKKS multi-phase model kernel to enforce . The non-linear variable of this kernel is , the final phase concentration in the list.
- KKSPhaseChemicalPotentialKKS model kernel to enforce the pointwise equality of phase chemical potentials dFa/dca = dFb/dcb. The non-linear variable of this kernel is ca.
- KKSPhaseConcentrationKKS model kernel to enforce the decomposition of concentration into phase concentration (1-h(eta))
*ca + h(eta)*cb - c = 0. The non-linear variable of this kernel is cb. - KKSSplitCHCResKKS model kernel for the split Bulk Cahn-Hilliard term. This operates on the chemical potential 'c' as the non-linear variable
- LangevinNoiseSource term for non-conserved Langevin noise
- LaplacianSplitSplit with a variable that holds the Laplacian of a phase field variable.
- MaskedBodyForceKernel that defines a body force modified by a material mask
- MatAnisoDiffusionDiffusion equation Kernel that takes an anisotropic Diffusivity from a material property
- MatGradSquareCoupledGradient square of a coupled variable.
- MatReactionKernel to add -L*v, where L=reaction rate, v=variable
- MultiGrainRigidBodyMotionAdds rigid mody motion to grains
- SimpleACInterfaceGradient energy for Allen-Cahn Kernel with constant Mobility and Interfacial parameter
- SimpleCHInterfaceGradient energy for Cahn-Hilliard equation with constant Mobility and Interfacial parameter
- SimpleCoupledACInterfaceGradient energy for Allen-Cahn Kernel with constant Mobility and Interfacial parameter for a coupled order parameter variable.
- SimpleSplitCHWResGradient energy for split Cahn-Hilliard equation with constant Mobility for a coupled order parameter variable.
- SingleGrainRigidBodyMotionAdds rigid mody motion to a single grain
- SoretDiffusionAdd Soret effect to Split formulation Cahn-Hilliard Kernel
- SplitCHMathSimple demonstration split formulation Cahn-Hilliard Kernel using an algebraic double-well potential
- SplitCHParsedSplit formulation Cahn-Hilliard Kernel that uses a DerivativeMaterial Free Energy
- SplitCHWResSplit formulation Cahn-Hilliard Kernel for the chemical potential variable with a scalar (isotropic) mobility
- SplitCHWResAnisoSplit formulation Cahn-Hilliard Kernel for the chemical potential variable with a tensor (anisotropic) mobility
- SusceptibilityTimeDerivativeA modified time derivative Kernel that multiplies the time derivative of a variable by a generalized susceptibility
- SwitchingFunctionConstraintEtaLagrange multiplier kernel to constrain the sum of all switching functions in a multiphase system. This kernel acts on a non-conserved order parameter eta_i.
- SwitchingFunctionConstraintLagrangeLagrange multiplier kernel to constrain the sum of all switching functions in a multiphase system. This kernel acts on the lagrange multiplier variable.
- SwitchingFunctionPenaltyPenalty kernel to constrain the sum of all switching functions in a multiphase system.
- CHPFCRFFSplitKernel
- HHPFCRFFSplitKernel
- PFCRFFKernel
- PolycrystalElasticDrivingForce
- PolycrystalKernel
- PolycrystalStoredEnergy
- RigidBodyMultiKernel
- Misc App
- CoefDiffusionKernel for diffusion with diffusivity = coef + function
- ThermoDiffusionKernel for thermo-diffusion (Soret effect, thermophoresis, etc.)
- Navier Stokes Test App
- AdvectionThis class solves the scalar advection equation, with SUPG stabilization.
- Level Set App
- LevelSetAdvectionImplements the level set advection equation: , where the weak form is .
- LevelSetAdvectionSUPGSUPG stablization term for the advection portion of the level set equation.
- LevelSetForcingFunctionSUPGThe SUPG stablization term for a forcing function.
- LevelSetOlssonReinitializationThe re-initialization equation defined by Olsson et. al. (2007).
- LevelSetTimeDerivativeSUPGSUPG stablization terms for the time derivative of the level set equation.
- Solid Mechanics App
- HomogenizationKernel
- OutOfPlaneStress
- SolidMechImplicitEuler
- StressDivergence
- StressDivergenceRSpherical
- StressDivergenceRZ
- XFEMApp
- CrackTipEnrichmentStressDivergenceTensorsEnrich stress divergence kernel for small-strain simulations
- Heat Conduction App
- AnisoHeatConduction
- HeatCapacityConductionTimeDerivativeTime derivative term of the heat equation with the heat capacity as an argument.
- HeatConductionComputes residual/Jacobian contribution for term.
- HeatConductionTimeDerivativeTime derivative term of the heat equation for quasi-constant specific heat and the density .
- HeatSourceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
- HomogenizedHeatConduction
- JouleHeatingSourceDemonstrates the multiple ways that scalar values can be introduced into kernels, e.g. (controllable) constants, functions, and postprocessors. Implements the weak form .
- SpecificHeatConductionTimeDerivativeTime derivative term of the heat equation with the specific heat and the density as arguments.
- Richards App
- DarcyFluxDarcy flux. nabla_i (k_ij/mu (nabla_j P - w_j)), where k_ij is the permeability tensor, mu is the fluid viscosity, P is the fluid pressure, and w_j is the fluid weight
- PoroFullSatTimeDerivativeKernel = biot_coefficient*d(volumetric_strain)/dt + (1/biot_modulus)*d(porepressure)/dt. This is the time-derivative for poromechanics for a single-phase, fully-saturated fluid with constant bulk modulus
- Q2PNegativeNodalMassOld- fluid_mass
- Q2PNodalMassFluid mass lumped to the nodes divided by dt
- Q2PPorepressureFluxFlux according to Darcy-Richards flow. The Variable for this Kernel should be the porepressure.
- Q2PSaturationDiffusionDiffusion part of the Flux according to Darcy-Richards flow. The Variable of this Kernel must be the saturation.
- Q2PSaturationFluxFlux according to Darcy-Richards flow. The Variable of this Kernel must be the saturation
- RichardsFlux
- RichardsFullyUpwindFlux
- RichardsLumpedMassChange
- RichardsMassChangeThe time derivative operator with the weak form of .
- RichardsPPenaltyThis adds a term to the residual that attempts to enforce variable > lower_var. The term is a*(lower - variable) for variable<lower, and zero otherwise
- Tensor Mechanics App
- CosseratStressDivergenceTensorsStress divergence kernel for the Cartesian coordinate system
- DynamicStressDivergenceTensorsResidual due to stress related Rayleigh damping and HHT time integration terms
- GeneralizedPlaneStrainOffDiagGeneralized Plane Strain kernel to provide contribution of the out-of-plane strain to other kernels
- GravityApply gravity. Value is in units of acceleration.
- InertialForceCalculates the residual for the interial force () and the contribution of mass dependent Rayleigh damping and HHT time integration scheme ($\eta \cdot M \cdot ((1+\alpha)velq2-\alpha \cdot vel-old) $)
- InertialForceBeamCalculates the residual for the interial force/moment and the contribution of mass dependent Rayleigh damping and HHT time integration scheme.
- InertialTorqueKernel for interial torque: density * displacement x acceleration
- MomentBalancing
- OutOfPlanePressureApply pressure in the out-of-plane direction in 2D plane stress or generalized plane strain models
- PhaseFieldFractureMechanicsOffDiagStress divergence kernel for phase-field fracture: Computes off diagonal damage dependent Jacobian components. To be used with StressDivergenceTensors or DynamicStressDivergenceTensors.
- PlasticHeatEnergyPlastic heat energy density = coeff * stress * plastic_strain_rate
- PoroMechanicsCouplingAdds , where the subscript is the component.
- StressDivergenceBeamQuasi-static and dynamic stress divergence kernel for Beam element
- StressDivergenceRSphericalTensorsCalculate stress divergence for a spherically symmetric 1D problem in polar coordinates.
- StressDivergenceRZTensorsCalculate stress divergence for an axisymmetric problem in cylindrical coordinates.
- StressDivergenceTensorsStress divergence kernel for the Cartesian coordinate system
- StressDivergenceTensorsTrussKernel for truss element
- WeakPlaneStressPlane stress kernel to provide out-of-plane strain contribution
- DynamicTensorMechanics
- PoroMechanics
- TensorMechanics
- Porous Flow App
- FluxLimitedTVDAdvectionConservative form of (advection), using the Flux Limited TVD scheme invented by Kuzmin and Turek
- PorousFlowAdvectiveFluxFully-upwinded advective flux of the component given by fluid_component
- PorousFlowBasicAdvectionAdvective flux of a Variable using the Darcy velocity of the fluid phase
- PorousFlowDesorpedMassTimeDerivativeDesorped component mass derivative wrt time.
- PorousFlowDesorpedMassVolumetricExpansionDesorped_mass * rate_of_solid_volumetric_expansion
- PorousFlowDispersiveFluxDispersive and diffusive flux of the component given by fluid_component in all phases
- PorousFlowEffectiveStressCouplingAdds , where the subscript is the component.
- PorousFlowEnergyTimeDerivativeDerivative of heat-energy-density wrt time
- PorousFlowExponentialDecayResidual = rate * (variable - reference). Useful for modelling exponential decay of a variable
- PorousFlowFluxLimitedTVDAdvectionAdvective flux of fluid species or heat using the Flux Limited TVD scheme invented by Kuzmin and Turek
- PorousFlowFullySaturatedDarcyBaseDarcy flux suitable for models involving a fully-saturated, single phase, single component fluid. No upwinding is used
- PorousFlowFullySaturatedDarcyFlowDarcy flux suitable for models involving a fully-saturated single phase, multi-component fluid. No upwinding is used
- PorousFlowFullySaturatedHeatAdvectionHeat flux that arises from the advection of a fully-saturated single phase fluid. No upwinding is used
- PorousFlowFullySaturatedMassTimeDerivativeFully-saturated version of the single-component, single-phase fluid mass derivative wrt time
- PorousFlowHeatAdvectionFully-upwinded heat flux, advected by the fluid
- PorousFlowHeatConductionHeat conduction in the Porous Flow module
- PorousFlowHeatVolumetricExpansionEnergy-density*rate_of_solid_volumetric_expansion
- PorousFlowMassRadioactiveDecayRadioactive decay of a fluid component
- PorousFlowMassTimeDerivativeComponent mass derivative wrt time for component given by fluid_component
- PorousFlowMassVolumetricExpansionComponent_mass*rate_of_solid_volumetric_expansion
- PorousFlowPlasticHeatEnergyPlastic heat energy density source = (1 - porosity) * coeff * stress * plastic_strain_rate
- PorousFlowPreDisPrecipitation-dissolution of chemical species
- Navier Stokes App
- DistributedForce
- DistributedPower
- INSChorinCorrectorThis class computes the 'Chorin' Corrector equation in fully-discrete (both time and space) form.
- INSChorinPredictorThis class computes the 'Chorin' Predictor equation in fully-discrete (both time and space) form.
- INSChorinPressurePoissonThis class computes the pressure Poisson solve which is part of the 'split' scheme used for solving the incompressible Navier-Stokes equations.
- INSCompressibilityPenaltyThe penalty term may be used when Dirichlet boundary condition is applied to the entire boundary.
- INSMassThis class computes the mass equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation.
- INSMassRZThis class computes the mass equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation in RZ coordinates.
- INSMomentumLaplaceFormThis class computes momentum equation residual and Jacobian viscous contributions for the 'Laplacian' form of the governing equations.
- INSMomentumLaplaceFormRZThis class computes additional momentum equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation in RZ (axisymmetric cylindrical) coordinates, using the 'Laplace' form of the governing equations.
- INSMomentumTimeDerivativeThis class computes the time derivative for the incompressible Navier-Stokes momentum equation.
- INSMomentumTractionFormThis class computes momentum equation residual and Jacobian viscous contributions for the 'traction' form of the governing equations.
- INSMomentumTractionFormRZThis class computes additional momentum equation residual and Jacobian contributions for the incompressible Navier-Stokes momentum equation in RZ (axisymmetric cylindrical) coordinates.
- INSPressurePoissonThis class computes the pressure Poisson solve which is part of the 'split' scheme used for solving the incompressible Navier-Stokes equations.
- INSProjectionThis class computes the 'projection' part of the 'split' method for solving incompressible Navier-Stokes.
- INSSplitMomentumThis class computes the 'split' momentum equation residual.
- INSTemperatureThis class computes the residual and Jacobian contributions for the incompressible Navier-Stokes temperature (energy) equation.
- INSTemperatureTimeDerivativeThis class computes the time derivative for the incompressible Navier-Stokes momentum equation.
- MassConvectiveFlux
- MomentumConvectiveFlux
- NSEnergyInviscidFluxThis class computes the inviscid part of the energy flux.
- NSEnergyThermalFluxThis class is responsible for computing residuals and Jacobian terms for the k * grad(T) * grad(phi) term in the Navier-Stokes energy equation.
- NSEnergyViscousFluxViscous flux terms in energy equation.
- NSGravityForceThis class computes the gravity force contribution.
- NSGravityPowerThis class computes the momentum contributed by gravity.
- NSMassInviscidFluxThis class computes the inviscid flux in the mass equation.
- NSMomentumInviscidFluxThe inviscid flux (convective + pressure terms) for the momentum conservation equations.
- NSMomentumInviscidFluxWithGradPThis class computes the inviscid flux with pressure gradient in the momentum equation.
- NSMomentumViscousFluxDerived instance of the NSViscousFluxBase class for the momentum equations.
- NSSUPGEnergyCompute residual and Jacobian terms form the SUPG terms in the energy equation.
- NSSUPGMassCompute residual and Jacobian terms form the SUPG terms in the mass equation.
- NSSUPGMomentumCompute residual and Jacobian terms form the SUPG terms in the momentum equation.
- NSTemperatureL2This class was originally used to solve for the temperature using an L2-projection.
- PressureGradient
- TotalEnergyConvectiveFlux
- Fluid Properties Test App
- NaNInterfaceTestKernelKernel to test NaNInterface using NaNInterfaceTestFluidProperties
- Chemical Reactions App
- CoupledBEEquilibriumSubDerivative of equilibrium species concentration wrt time
- CoupledBEKineticDerivative of kinetic species concentration wrt time
- CoupledConvectionReactionSubConvection of equilibrium species
- CoupledDiffusionReactionSubDiffusion of equilibrium species
- DarcyFluxPressure
- DesorptionFromMatrixMass flow rate from the matrix to the porespace. Add this to TimeDerivative kernel to get complete DE for the fluid adsorbed in the matrix
- DesorptionToPorespaceMass flow rate to the porespace from the matrix. Add this to the other kernels for the porepressure variable to form the complete DE
- PrimaryConvectionConvection of primary species
- PrimaryDiffusionDiffusion of primary species
- PrimaryTimeDerivativeDerivative of primary species concentration wrt time
- Misc Test App
- Convection

## Materials

- Moose App
- AddMaterialAction
- DerivativeParsedMaterialParsed Function Material with automatic derivatives.
- DerivativeSumMaterialMeta-material to sum up multiple derivative materials
- GenericConstantMaterial
- GenericConstantRankTwoTensor
- GenericFunctionMaterial
- ParsedMaterialParsed Function Material.
- PiecewiseLinearInterpolationMaterialCompute a property using a piecewise linear interpolation to define its dependence on a variable
- Rdg App
- AEFVMaterialA material kernel for the advection equation using a cell-centered finite volume method.
- Phase Field App
- AsymmetricCrossTermBarrierFunctionMaterialFree energy contribution asymmetric across interfaces between arbitrary pairs of phases.
- BarrierFunctionMaterialHelper material to provide g(eta) and its derivative in a polynomial. SIMPLE: eta
^{2*(1-eta)}2 LOW: eta*(1-eta) HIGH: eta^{2*(1-eta}2)^2 - CompositeMobilityTensorAssemble a mobility tensor from multiple tensor contributions weighted by material properties
- ComputePolycrystalElasticityTensorCompute an evolving elasticity tensor coupled to a grain growth phase field model.
- ConstantAnisotropicMobilityProvide a constant mobility tensor value
- CrossTermBarrierFunctionMaterialFree energy contribution symmetric across interfaces between arbitrary pairs of phases.
- DeformedGrainMaterial
- DerivativeMultiPhaseMaterialTwo phase material that combines n phase materials using a switching function with and n nonconserved order parameters (to be used with SwitchingFunctionConstraint*).
- DerivativeTwoPhaseMaterialTwo phase material that combines two single phase materials using a switching function.
- DiscreteNucleationFree energy contribution for nucleating discrete particles
- ElasticEnergyMaterialFree energy material for the elastic energy contributions.
- ExternalForceDensityMaterialProviding external applied force density to grains
- ForceDensityMaterialCalculating the force density acting on a grain
- GBAnisotropy
- GBDependentAnisotropicTensorCompute anisotropic rank two tensor based on GB phase variable
- GBDependentDiffusivityCompute diffusivity rank two tensor based on GB phase variable
- GBEvolutionComputes necessary material properties for the isotropic grian growth model
- GBWidthAnisotropy
- GrainAdvectionVelocityCalculation the advection velocity of grain due to rigid vody translation and rotation
- GrandPotentialInterfaceCalculate Grand Potential interface parameters for a specified interfacial free energy and width
- IdealGasFreeEnergyFree energy of an ideal gas.
- InterfaceOrientationMaterial
- InterfaceOrientationMultiphaseMaterialThis Material accounts for the the orientation dependence of interfacial energy for multi-phase multi-order parameter phase-field model.
- KKSXeVacSolidMaterialKKS Solid phase free energy for Xe,Vac in UO2. Fm(cmg,cmv)
- MathEBFreeEnergyMaterial that implements the math free energy using the expression builder and automatric differentiation
- MathFreeEnergyMaterial that implements the math free energy and its derivatives: F = 1/4(1 + c)^2*(1 - c)^2
- MixedSwitchingFunctionMaterialHelper material to provide h(eta) and its derivative in one of two polynomial forms. MIX234 and MIX246
- MultiBarrierFunctionMaterialDouble well phase transformation barrier free energy contribution.
- PFCRFFMaterial
- PFCTradMaterialPolynomial coefficients for a phase field crystal correlation function
- PFParamsPolyFreeEnergyPhase field parameters for polynomial free energy for single component systems
- PhaseNormalTensorCalculate normal tensor of a phase based on gradient
- PolynomialFreeEnergyPolynomial free energy for single component systems
- RegularSolutionFreeEnergyMaterial that implements the free energy of a regular solution
- StrainGradDispDerivativesProvide the constant derivatives of strain w.r.t. the displacement gradient components.
- SwitchingFunction3PhaseMaterialMaterial for switching function that prevents formation of a third phase at a two-phase interface: h_i = eta_i
^{2/4 * [15 (1-eta_i) [1 + eta_i - (eta_k - eta_j)}2] + eta_i * (9eta_i^2 - 5)] - SwitchingFunctionMaterialHelper material to provide h(eta) and its derivative in one of two polynomial forms. SIMPLE: 3
*eta^2-2*eta^{3 HIGH: eta}3*(6*eta^2-15*eta+10) - SwitchingFunctionMultiPhaseMaterialCalculates the switching function for a given phase for a multi-phase, multi-order parameter model
- ThirdPhaseSuppressionMaterialFree Energy contribution that penalizes more than two order parameters being non-zero
- TimeStepMaterial
- VanDerWaalsFreeEnergyFree energy of a Van der Waals gas.
- VariableGradientMaterial
- Misc App
- DensityCreates density material property
- Richards App
- DarcyMaterialMaterial that holds the permeability tensor used in Darcy flow
- PoroFullSatMaterialThis Material is designed to calculate and store all the quantities needed for the fluid-flow part of poromechanics, assuming a fully-saturated, single-phase fluid with constant bulk modulus
- Q2PMaterial
- RichardsMaterial
- XFEMApp
- ComputeCrackTipEnrichmentSmallStrain
- LevelSetBiMaterialRankFourCompute a RankFourTensor material property for bi-materials problem (consisting of two different materials) defined by a level set function.
- LevelSetBiMaterialRankTwoCompute a RankTwoTensor material property for bi-materials problem (consisting of two different materials) defined by a level set function.
- LevelSetBiMaterialRealCompute a Real material property for bi-materials problem (consisting of two different materials) defined by a level set function.
- Heat Conduction App
- AnisoHeatConductionMaterial
- ElectricalConductivity
- GapConductance
- HeatConductionMaterialGeneral-purpose material model for heat conduction
- SemiconductorLinearConductivity
- Solid Mechanics App
- AbaqusCreepMaterial
- AbaqusUmatMaterial
- CLSHPlasticMaterial
- CLSHPlasticModel
- CombinedCreepPlasticityModels creep and instantaneous plasticity deformation
- ElasticA simple hypo-elastic model
- ElasticModel
- IsotropicPlasticityCalculates the stress and plastic strain in the general isotropic linear strain hardening plasticity model
- IsotropicPowerLawHardeningCalculates the stress and plastic strain in the general isotropic linear strain hardening plasticity model
- IsotropicTempDepHardeningCalculates the stress and plastic strain in the general isotropic linear strain hardening plasticity model
- LinearAnisotropicMaterial
- LinearGeneralAnisotropicMaterial
- LinearIsotropicMaterial
- LinearStrainHardening
- MacroElasticA simple hypo-elastic model
- PLC_LSH
- PowerLawCreep
- PowerLawCreepModel
- RateDepSmearCrackModel
- RateDepSmearIsoCrackModel
- SolidModel
- Tensor Mechanics App
- AbruptSofteningSoftening model with an abrupt stress release upon cracking. This class is intended to be used with ComputeSmearedCrackingStress.
- CappedDruckerPragerCosseratStressUpdateCapped Drucker-Prager plasticity stress calculator for the Cosserat situation where the host medium (ie, the limit where all Cosserat effects are zero) is isotropic. Note that the return-map flow rule uses an isotropic elasticity tensor built with the 'host' properties defined by the user.
- CappedDruckerPragerStressUpdateCapped Drucker-Prager plasticity stress calculator
- CappedMohrCoulombCosseratStressUpdateCapped Mohr-Coulomb plasticity stress calculator for the Cosserat situation where the host medium (ie, the limit where all Cosserat effects are zero) is isotropic. Note that the return-map flow rule uses an isotropic elasticity tensor built with the 'host' properties defined by the user.
- CappedMohrCoulombStressUpdateNonassociative, smoothed, Mohr-Coulomb plasticity capped with tensile (Rankine) and compressive caps, with hardening/softening
- CappedWeakInclinedPlaneStressUpdateCapped weak inclined plane plasticity stress calculator
- CappedWeakPlaneCosseratStressUpdateCapped weak-plane plasticity Cosserat stress calculator
- CappedWeakPlaneStressUpdateCapped weak-plane plasticity stress calculator
- CombinedScalarDamageScalar damage model which is computed as a function of multiple scalar damage models
- CompositeEigenstrainAssemble an Eigenstrain tensor from multiple tensor contributions weighted by material properties
- CompositeElasticityTensorAssemble an elasticity tensor from multiple tensor contributions weighted by material properties
- ComputeAxisymmetric1DFiniteStrainCompute a strain increment and rotation increment for finite strains in an axisymmetric 1D problem
- ComputeAxisymmetric1DIncrementalStrainCompute strain increment for small strains in an axisymmetric 1D problem
- ComputeAxisymmetric1DSmallStrainCompute a small strain in an Axisymmetric 1D problem
- ComputeAxisymmetricRZFiniteStrainCompute a strain increment for finite strains under axisymmetric assumptions.
- ComputeAxisymmetricRZIncrementalStrainCompute a strain increment and rotation increment for finite strains under axisymmetric assumptions.
- ComputeAxisymmetricRZSmallStrainCompute a small strain in an Axisymmetric geometry
- ComputeBeamResultantsCompute forces and moments using elasticity
- ComputeConcentrationDependentElasticityTensorCompute concentration dependent elasticity tensor.
- ComputeCosseratElasticityTensorCompute Cosserat elasticity and flexural bending rigidity tensors
- ComputeCosseratIncrementalSmallStrainCompute incremental small Cosserat strains
- ComputeCosseratLinearElasticStressCompute Cosserat stress and couple-stress elasticity for small strains
- ComputeCosseratSmallStrainCompute small Cosserat strains
- ComputeCrackedStressComputes energy and modifies the stress for phase field fracture
- ComputeDamageStressCompute stress for damaged elastic materials in conjunction with a damage model.
- ComputeDeformGradBasedStressComputes stress based on lagrangian strain
- ComputeEigenstrainComputes a constant Eigenstrain
- ComputeEigenstrainBeamFromVariableComputes an eigenstrain from a set of variables
- ComputeEigenstrainFromInitialStressComputes an eigenstrain from an initial stress
- ComputeElasticityBeamComputes the equivalent of the elasticity tensor for the beam element, which are vectors of material translational and flexural stiffness.
- ComputeElasticityTensorCompute an elasticity tensor.
- ComputeElasticityTensorCPCompute an elasticity tensor for crystal plasticity.
- ComputeExtraStressConstantComputes a constant extra stress that is added to the stress calculated by the constitutive model
- ComputeFiniteBeamStrainCompute a rotation increment for finite rotations of the beam and computes the small/large strain increments in the current rotated configuration of the beam.
- ComputeFiniteStrainCompute a strain increment and rotation increment for finite strains.
- ComputeFiniteStrainElasticStressCompute stress using elasticity for finite strains
- ComputeGlobalStrainMaterial for storing the global strain values from the scalar variable
- ComputeIncrementalBeamStrainCompute a infinitesimal/large strain increment for the beam.
- ComputeIncrementalSmallStrainCompute a strain increment and rotation increment for small strains.
- ComputeInstantaneousThermalExpansionFunctionEigenstrainComputes eigenstrain due to thermal expansion using a function that describes the instantaneous thermal expansion as a function of temperature
- ComputeInterfaceStressStress in the plane of an interface defined by the gradient of an order parameter
- ComputeIsotropicElasticityTensorCompute a constant isotropic elasticity tensor.
- ComputeIsotropicLinearElasticPFFractureStressComputes the stress and free energy derivatives for the phase field fracture model, with linear isotropic elasticity
- ComputeLayeredCosseratElasticityTensorComputes Cosserat elasticity and flexural bending rigidity tensors relevant for simulations with layered materials. The layering direction is assumed to be perpendicular to the 'z' direction.
- ComputeLinearElasticPFFractureStressPhase-field fracture model energy contribution to fracture for elasticity and undamaged stress under compressive strain
- ComputeLinearElasticStressCompute stress using elasticity for small strains
- ComputeLinearViscoelasticStressDivides total strain into elastic + creep + eigenstrains
- ComputeMeanThermalExpansionFunctionEigenstrainComputes eigenstrain due to thermal expansion using a function that describes the mean thermal expansion as a function of temperature
- ComputeMultiPlasticityStressMaterial for multi-surface finite-strain plasticity
- ComputeMultipleInelasticCosseratStressCompute state (stress and other quantities such as plastic strains and internal parameters) using an iterative process, as well as Cosserat versions of these quantities. Only elasticity is currently implemented for the Cosserat versions.Combinations of creep models and plastic models may be used
- ComputeMultipleInelasticStressCompute state (stress and internal parameters such as plastic strains and internal parameters) using an iterative process. Combinations of creep models and plastic models may be used.
- ComputePlaneFiniteStrainCompute strain increment and rotation increment for finite strain under 2D planar assumptions.
- ComputePlaneIncrementalStrainCompute strain increment for small strain under 2D planar assumptions.
- ComputePlaneSmallStrainCompute a small strain under generalized plane strain assumptions where the out of plane strain is generally nonzero.
- ComputePlasticHeatEnergyPlastic heat energy density = stress * plastic_strain_rate
- ComputeRSphericalFiniteStrainCompute a strain increment and rotation increment for finite strains in 1D spherical symmetry problems.
- ComputeRSphericalIncrementalStrainCompute a strain increment for incremental strains in 1D spherical symmetry problems.
- ComputeRSphericalSmallStrainCompute a small strain 1D spherical symmetry case.
- ComputeReducedOrderEigenstrainaccepts eigenstrains and computes a reduced order eigenstrain for consistency in the order of strain and eigenstrains.
- ComputeSmallStrainCompute a small strain.
- ComputeSmearedCrackingStressCompute stress using a fixed smeared cracking model
- ComputeStrainIncrementBasedStressCompute stress after subtracting inelastic strain increments
- ComputeSurfaceTensionKKSSurface tension of an interface defined by the gradient of an order parameter
- ComputeThermalExpansionEigenstrainComputes eigenstrain due to thermal expansion with a constant coefficient
- ComputeThermalExpansionEigenstrainBeamComputes eigenstrain due to thermal expansion with a constant coefficient
- ComputeVariableBaseEigenStrainComputes Eigenstrain based on material property tensor base
- ComputeVariableEigenstrainComputes an Eigenstrain and its derivatives that is a function of multiple variables, where the prefactor is defined in a derivative material
- ComputeVariableIsotropicElasticityTensorCompute an isotropic elasticity tensor for elastic constants that change as a function of material properties
- ComputeVolumetricDeformGradComputes volumetric deformation gradient and adjusts the total deformation gradient
- ComputeVolumetricEigenstrainComputes an eigenstrain that is defined by a set of scalar material properties that summed together define the volumetric change. This also computes the derivatives of that eigenstrain with respect to a supplied set of variable dependencies.
- EshelbyTensorComputes the Eshelby tensor as a function of strain energy density and the first Piola-Kirchoff stress
- ExponentialSofteningSoftening model with an exponential softening response upon cracking. This class is intended to be used with ComputeSmearedCrackingStress.
- FiniteStrainCPSlipRateResCrystal Plasticity base class: FCC system with power law flow rule implemented
- FiniteStrainCrystalPlasticityCrystal Plasticity base class: FCC system with power law flow rule implemented
- FiniteStrainHyperElasticViscoPlasticMaterial class for hyper-elastic visco-platic flow: Can handle multiple flow models defined by flowratemodel type user objects
- FiniteStrainPlasticMaterialAssociative J2 plasticity with isotropic hardening.
- FiniteStrainUObasedCPUserObject based Crystal Plasticity system.
- FluxBasedStrainIncrementCompute strain increment based on flux
- GBRelaxationStrainIncrementCompute strain increment based on lattice relaxation at GB
- GeneralizedKelvinVoigtModelGeneralized Kelvin-Voigt model composed of a serial assembly of unit Kelvin-Voigt modules
- GeneralizedMaxwellModelGeneralized Maxwell model composed of a parralel assembly of unit Maxwell modules
- HyperElasticPhaseFieldIsoDamageComputes damaged stress and energy in the intermediate configuration assuming isotropy
- HyperbolicViscoplasticityStressUpdateThis class uses the discrete material for a hyperbolic sine viscoplasticity model in which the effective plastic strain is solved for using a creep approach.
- InclusionProperties
- IsotropicPlasticityStressUpdateThis class uses the discrete material in a radial return isotropic plasticity model. This class is one of the basic radial return constitutive models, yet it can be used in conjunction with other creep and plasticity materials for more complex simulations.
- IsotropicPowerLawHardeningStressUpdateThis class uses the discrete material in a radial return isotropic plasticity power law hardening model, solving for the yield stress as the intersection of the power law relation curve and Hooke's law. This class can be used in conjunction with other creep and plasticity materials for more complex simulations.
- LinearElasticTruss
- LinearViscoelasticStressUpdateCalculates an admissible state (stress that lies on or within the yield surface, plastic strains, internal parameters, etc). This class is intended to be a parent class for classes with specific constitutive models.
- MultiPhaseStressMaterialCompute a global stress form multiple phase stresses
- PowerLawCreepStressUpdateThis class uses the stress update material in a radial return isotropic power law creep model. This class can be used in conjunction with other creep and plasticity materials for more complex simulations.
- PowerLawSofteningSoftening model with an abrupt stress release upon cracking. This class is intended to be used with ComputeSmearedCrackingStress.
- ScalarMaterialDamageScalar damage model for which the damage is prescribed by another material
- StrainEnergyDensityComputes the strain energy density using a combination of the elastic and inelastic components of the strain increment, which is a valid assumption for monotonic behavior.
- StressBasedChemicalPotentialChemical potential from stress
- SumTensorIncrementsCompute tensor property by summing tensor increments
- TemperatureDependentHardeningStressUpdateComputes the stress as a function of temperature and plastic strain from user-supplied hardening functions. This class can be used in conjunction with other creep and plasticity materials for more complex simulations
- TensileStressUpdateAssociative, smoothed, tensile (Rankine) plasticity with hardening/softening
- ThermalFractureIntegralCalculates summation of the derivative of the eigenstrains with respect to temparture.
- TwoPhaseStressMaterialCompute a global stress in a two phase model
- VolumeDeformGradCorrectedStressTransforms stress with volumetric term from previous configuration to this configuration
- Fluid Properties App
- FluidPropertiesMaterialComputes fluid properties using (u, v) formulation
- FluidPropertiesMaterialPTFluid properties using the (pressure, temperature) formulation
- Navier Stokes App
- AirAir.
- Fluid Properties Test App
- MultiComponentFluidPropertiesMaterialPTFluid properties of a multicomponent fluid using the (pressure, temperature) formulation
- Chemical Reactions App
- LangmuirMaterialMaterial type that holds info regarding Langmuir desorption from matrix to porespace and viceversa
- MollifiedLangmuirMaterialMaterial type that holds info regarding MollifiedLangmuir desorption from matrix to porespace and viceversa
- Porous Flow App
- PorousFlowAddMaterialActionMakes sure that the correct nodal and/or qp materials are added for each property
- PorousFlowAddMaterialJoinerAdds PorousFlowJoiner materials as required for each phase-dependent property
- PorousFlow1PhaseFullySaturatedThis Material is used for the fully saturated single-phase situation where porepressure is the primary variable
- PorousFlow1PhaseMD_GaussianThis Material is used for the single-phase situation where log(mass-density) is the primary variable. calculates the 1 porepressure and the 1 saturation in a 1-phase isothermal situation, and derivatives of these with respect to the PorousFlowVariables. A gaussian capillary function is assumed
- PorousFlow1PhasePThis Material is used for the fully saturated single-phase situation where porepressure is the primary variable
- PorousFlow2PhasePPThis Material calculates the 2 porepressures and the 2 saturations in a 2-phase isothermal situation, and derivatives of these with respect to the PorousFlowVariables
- PorousFlow2PhasePSThis Material calculates the 2 porepressures and the 2 saturations in a 2-phase isothermal situation, and derivatives of these with respect to the PorousFlowVariables.
- PorousFlowAqueousPreDisChemistryThis Material forms a std::vector of mineralisation reaction rates (L(precipitate)/L(solution)/s) appropriate to the aqueous precipitation-dissolution system provided. Note: the PorousFlowTemperature must be measured in Kelvin.
- PorousFlowAqueousPreDisMineralThis Material forms a std::vector of mineral concentrations (volume-of-mineral/volume-of-material) appropriate to the aqueous precipitation-dissolution system provided.
- PorousFlowBrineThis Material calculates fluid properties for brine at the quadpoints or nodes
- PorousFlowConstantBiotModulusComputes the Biot Modulus, which is assumed to be constant for all time. Sometimes 1 / BiotModulus is called storativity
- PorousFlowConstantThermalExpansionCoefficientComputes the effective thermal expansion coefficient, (biot_coeff - porosity) * drained_coefficient + porosity * fluid_coefficient.
- PorousFlowDarcyVelocityMaterialThis Material calculates the Darcy velocity for all phases
- PorousFlowDiffusivityConstThis Material provides constant tortuosity and diffusion coefficients
- PorousFlowDiffusivityMillingtonQuirkThis Material provides saturation-dependent diffusivity using the Millington-Quirk model
- PorousFlowEffectiveFluidPressureThis Material calculates an effective fluid pressure: effective_stress = total_stress + biot_coeff*effective_fluid_pressure. The effective_fluid_pressure = sum_{phases}(S_phase * P_phase)
- PorousFlowFluidStateClass for fluid state calculations using persistent primary variables and a vapor-liquid flash
- PorousFlowFluidStateBrineCO2Fluid state class for brine and CO2
- PorousFlowFluidStateWaterNCGFluid state class for water and non-condensable gas
- PorousFlowJoinerThis Material forms a std::vector of properties, old properties (optionally), and derivatives, out of the individual phase properties
- PorousFlowMassFractionThis Material forms a std::vector<std::vector ...> of mass-fractions out of the individual mass fractions
- PorousFlowMassFractionAqueousEquilibriumChemistryThis Material forms a std::vector<std::vector ...> of mass-fractions (total concentrations of primary species (m
^{{3}(primary species)/m}{3}(solution)) and since this is for an aqueous system only, mass-fraction equals volume-fraction) corresponding to an aqueous equilibrium chemistry system. The first mass fraction is the concentration of the first primary species, etc, and the last mass fraction is the concentration of H2O. - PorousFlowMatrixInternalEnergyThis Material calculates the internal energy of solid rock grains, which is specific_heat_capacity * density * temperature. Kernels multiply this by (1 - porosity) to find the energy density of the porous rock in a rock-fluid system
- PorousFlowNearestQpProvides the nearest quadpoint to a node in each element
- PorousFlowPermeabilityConstThis Material calculates the permeability tensor assuming it is constant
- PorousFlowPermeabilityConstFromVarThis Material calculates the permeability tensor given by the input variables
- PorousFlowPermeabilityExponentialThis Material calculates the permeability tensor from an exponential function of porosity: k = k_ijk * BB exp(AA phi), where k_ijk is a tensor providing the anisotropy, phi is porosity, and AA and BB are empirical constants. The user can provide input for the function expressed in ln k, log k or exponential forms (see poroperm_function).
- PorousFlowPermeabilityKozenyCarmanThis Material calculates the permeability tensor from a form of the Kozeny-Carman equation, k = k_ijk * A * phi
^{n / (1 - phi)}m, where k_ijk is a tensor providing the anisotropy, phi is porosity, n and m are positive scalar constants and A is given in one of the following forms: A = k0 * (1 - phi0)^m / phi0^n (where k0 and phi0 are a reference permeability and porosity) or A = f * d^2 (where f is a scalar constant and d is grain diameter. - PorousFlowPermeabilityTensorFromVarThis Material calculates the permeability tensor from a coupled variable multiplied by a tensor
- PorousFlowPorosityThis Material calculates the porosity PorousFlow simulations
- PorousFlowPorosityConstThis Material calculates the porosity assuming it is constant
- PorousFlowPorosityHMBiotModulusThis Material calculates the porosity for hydro-mechanical simulations, assuming that the Biot modulus and the fluid bulk modulus are both constant. This is useful for comparing with solutions from poroelasticity theory, but is less accurate than PorousFlowPorosity
- PorousFlowRelativePermeabilityBCBrooks-Corey relative permeability
- PorousFlowRelativePermeabilityBWBroadbridge-White form of relative permeability
- PorousFlowRelativePermeabilityConstThis class sets the relative permeability to a constant value (default = 1)
- PorousFlowRelativePermeabilityCoreyThis Material calculates relative permeability of the fluid phase, using the simple Corey model ((S-S_res)/(1-sum(S_res)))^n
- PorousFlowRelativePermeabilityFLACThis Material calculates relative permeability of a phase using a model inspired by FLAC
- PorousFlowRelativePermeabilityVGThis Material calculates relative permeability of a phase using the van Genuchten model
- PorousFlowSingleComponentFluidThis Material calculates fluid properties at the quadpoints for a single component fluid
- PorousFlowTemperatureMaterial to provide temperature at the quadpoints or nodes and derivatives of it with respect to the PorousFlow variables
- PorousFlowThermalConductivityFromPorosityThis Material calculates rock-fluid combined thermal conductivity for the single phase, fully saturated case by using a linear weighted average. Thermal conductivity = phi * lambda_f + (1 - phi) * lambda_s, where phi is porosity, and lambda_f, lambda_s are thermal conductivities of the fluid and solid (assumed constant)
- PorousFlowThermalConductivityIdealThis Material calculates rock-fluid combined thermal conductivity by using a weighted sum. Thermal conductivity = dry_thermal_conductivity + S^exponent * (wet_thermal_conductivity - dry_thermal_conductivity), where S is the aqueous saturation
- PorousFlowTotalGravitationalDensityFullySaturatedFromPorosityThis Material calculates the porous medium density from the porosity, solid density (assumed constant) and fluid density, for the fully-saturated single fluid phase case, using a linear weighted average. density = phi * rho_f + (1 - phi) * rho_s, where phi is porosity and rho_f, rho_s are the densities of the fluid and solid phases.
- PorousFlowVolumetricStrainCompute volumetric strain and the volumetric_strain rate, for use in PorousFlow.

## Postprocessors

- Moose App
- AddPostprocessorAction
- SetupPostprocessorDataAction
- AreaPostprocessorComputes the "area" or dimension - 1 "volume" of a given boundary or boundaries in your mesh.
- AverageElementSize
- AverageNodalVariableValue
- AxisymmetricCenterlineAverageValueComputes the average value of a variable on a sideset located along the centerline of an axisymmetric model.
- ChangeOverTimePostprocessorComputes the change or relative change in a post-processor value over a timestep or the entire transient
- ChangeOverTimestepPostprocessorComputes the change or relative change in a post-processor value over a timestep or the entire transient
- CumulativeValuePostprocessor
- DifferencePostprocessor
- ElementAverageSecondTimeDerivativeComputes the element averaged second derivative of variable
- ElementAverageTimeDerivative
- ElementAverageValue
- ElementExtremeValue
- ElementH1Error
- ElementH1SemiError
- ElementIntegralMaterialProperty
- ElementIntegralVariablePostprocessor
- ElementL2Difference
- ElementL2Error
- ElementL2Norm
- ElementVectorL2Error
- ElementW1pError
- ElementalVariableValueOutputs an elemental variable value at a particular location
- EmptyPostprocessor
- ExecutionerAttributeReporter
- FindValueOnLineFind a specific target value along a sampling line. The variable values along the line should change monotonically. The target value is searched using a bisection algorithm.
- FunctionSideIntegral
- FunctionValuePostprocessor
- LinearCombinationPostprocessor
- MemoryUsageMemory usage statistics for the running simulation.
- NodalExtremeValue
- NodalL2Error
- NodalL2Norm
- NodalMaxValue
- NodalProxyMaxValue
- NodalSum
- NodalVariableValueOutputs values of a nodal variable at a particular location
- NumDOFsReturn the number of Degrees of freedom from either the NL, Aux or both systems.
- NumElemsReturn the number of active or total elements in the simulation.
- NumLinearIterations
- NumNodesReturns the total number of nodes in a simulation (works with DistributedMesh)
- NumNonlinearIterationsOutputs the number of nonlinear iterations
- NumPicardIterations
- NumResidualEvaluations
- NumVarsReturn the number of variables from either the NL, Aux, or both systems.
- PercentChangePostprocessor
- PerfGraphDataRetrieves timing information from the PerfGraph.
- PerformanceDataProvides programmatic access to Performance Log Data
- PointValue
- PostprocessorComparisonCompares two post-processors and produces a boolean value
- Receiver
- RelativeDifferencePostprocessorComputes the absolute value of the relative difference between 2 post-processor values.
- RelativeSolutionDifferenceNorm
- Residual
- ScalarL2Error
- ScalarVariable
- ScalePostprocessor
- SideAverageValueComputes the average value of a variable on a sideset. Note that this cannot be used on the centerline of an axisymmetric model.
- SideFluxAverageComputes the integral of the flux over the specified boundary
- SideFluxIntegralComputes the integral of the flux over the specified boundary
- SideIntegralVariablePostprocessor
- TimeExtremeValueA postprocessor for reporting the extreme value of another postprocessor over time.
- TimestepSizeReports the timestep size
- TotalVariableValue
- VariableInnerProduct
- VariableResidual
- VectorPostprocessorComparisonCompares two vector post-processors of equal size and produces a boolean value
- VolumePostprocessor
- Stochastic Tools Test App
- TestDistributionDirectPostprocessor
- TestDistributionPostprocessor
- Phase Field App
- AverageGrainVolumeCalculate average grain area in a polycrystal
- DiscreteNucleationDataOutput diagnostic data on a DiscreteNucleationInserter
- DiscreteNucleationTimeStepReturn a time step limit for nucleation event to be used by IterationAdaptiveDT
- FauxGrainTrackerFake grain tracker object for cases where the number of grains is equal to the number of order parameters.
- FeatureFloodCountThe object is able to find and count "connected components" in any solution field or number of solution fields. A primary example would be to count "bubbles".
- FeatureVolumeFraction
- GrainBoundaryAreaCalculate total grain boundary length in 2D and area in 3D
- GrainTrackerGrain Tracker object for running reduced order parameter simulations without grain coalescence.
- GrainTrackerElasticityGrain Tracker object for running reduced order parameter simulations without grain coalescence.
- PFCElementEnergyIntegral
- PolycrystalCirclesPolycrystal circles generated from a vector input or read from a file
- PolycrystalEBSDObject for setting up a polycrystal structure from an EBSD Datafile
- PolycrystalHexPerturbed hexagonal polycrystal
- PolycrystalVoronoiRandom Voronoi tesselation polycrystal (used by PolycrystalVoronoiAction)
- Misc App
- InternalVolumeComputes the volume of an enclosed area by performing an integral over a user-supplied boundary.
- Level Set App
- LevelSetCFLConditionCompute the minimum timestep from the Courant-Friedrichs-Lewy (CFL) condition for the level-set equation.
- LevelSetVolumeCompute the area or volume of the region inside or outside of a level set contour.
- Richards App
- Q2PPiecewiseLinearSinkFluxRecords the fluid flow into a sink (positive values indicate fluid is flowing from porespace into the sink).
- RichardsExcavFlowRecords total flow INTO an excavation (if quantity is positive then flow has occured from rock into excavation void)
- RichardsHalfGaussianSinkFlux
- RichardsMassReturns the mass in a region.
- RichardsPiecewiseLinearSinkFluxRecords the fluid flow into a sink (positive values indicate fluid is flowing from porespace into the sink).
- RichardsPlotQuantity
- Heat Conduction App
- HomogenizedThermalConductivity
- ThermalConductivityComputes the average value of a variable on a sideset. Note that this cannot be used on the centerline of an axisymmetric model.
- Solid Mechanics App
- HomogenizedElasticConstants
- InteractionIntegralSM
- MaterialTensorIntegralSM
- Tensor Mechanics App
- CavityPressurePostprocessorInterfaces with the CavityPressureUserObject to store the initial number of moles of a gas contained within an internal volume.
- CrackFrontData
- InteractionIntegralComputes the interaction integral for fracture
- JIntegralCalculates the J-integral at a specified point along the crack front
- Mass
- MaterialTensorIntegralThis postprocessor computes an element integral of a component of a material tensor as specified by the user-supplied indices
- MaterialTimeStepPostprocessorThis postprocessor estimates a timestep that reduces the increment change in a material property below a given threshold.
- MixedModeEquivalentKComputes the mixed-mode stress intensity factor given the , , and stress intensity factors
- TorqueReactionTorqueReaction calculates the torque in 2D and 3Dabout a user-specified axis of rotation centeredat a user-specied origin.
- XFEMTest App
- TestCrackCounterTest postprocessor for extracting the crack_tip_origin_direction_map from XFEM.
- Navier Stokes App
- INSExplicitTimestepSelectorPostprocessor that computes the minimum value of h_min/|u|, where |u| is coupled in as an aux variable.
- NSEntropyErrorComputes entropy error.
- VolumetricFlowRateComputes the volumetric flow rate through a boundary.
- Chemical Reactions App
- TotalMineralVolumeFractionTotal volume fraction of coupled mineral species
- Porous Flow App
- PorousFlowFluidMassCalculates the mass of a fluid component in a region
- PorousFlowHeatEnergyCalculates the sum of heat energy of fluid phase(s) and/or the porous skeleton in a region
- PorousFlowPlotQuantityExtracts the value from the PorousFlowSumQuantity UserObject

## ThermalContact

## UserObjects

- Moose App
- AddUserObjectAction
- AreaPostprocessorComputes the "area" or dimension - 1 "volume" of a given boundary or boundaries in your mesh.
- AverageElementSize
- AverageNodalVariableValue
- AxisymmetricCenterlineAverageValueComputes the average value of a variable on a sideset located along the centerline of an axisymmetric model.
- ChangeOverTimePostprocessorComputes the change or relative change in a post-processor value over a timestep or the entire transient
- ChangeOverTimestepPostprocessorComputes the change or relative change in a post-processor value over a timestep or the entire transient
- CumulativeValuePostprocessor
- DifferencePostprocessor
- ElementAverageSecondTimeDerivativeComputes the element averaged second derivative of variable
- ElementAverageTimeDerivative
- ElementAverageValue
- ElementExtremeValue
- ElementH1Error
- ElementH1SemiError
- ElementIntegralMaterialProperty
- ElementIntegralVariablePostprocessor
- ElementIntegralVariableUserObject
- ElementL2Difference
- ElementL2Error
- ElementL2Norm
- ElementQualityCheckerClass to check the quality of each element using different metrics from libmesh.
- ElementVectorL2Error
- ElementW1pError
- ElementalVariableValueOutputs an elemental variable value at a particular location
- EmptyPostprocessor
- ExecutionerAttributeReporter
- FindValueOnLineFind a specific target value along a sampling line. The variable values along the line should change monotonically. The target value is searched using a bisection algorithm.
- FunctionSideIntegral
- FunctionValuePostprocessor
- GeometrySphereSnap nodes to the surface of a sphere on adaptivity
- LayeredAverage
- LayeredIntegral
- LayeredSideAverage
- LayeredSideFluxAverage
- LayeredSideIntegral
- LinearCombinationPostprocessor
- MemoryUsageMemory usage statistics for the running simulation.
- NearestPointLayeredAverage
- NodalExtremeValue
- NodalL2Error
- NodalL2Norm
- NodalMaxValue
- NodalNormalsCorner
- NodalNormalsEvaluator
- NodalNormalsPreprocessor
- NodalProxyMaxValue
- NodalSum
- NodalVariableValueOutputs values of a nodal variable at a particular location
- NumDOFsReturn the number of Degrees of freedom from either the NL, Aux or both systems.
- NumElemsReturn the number of active or total elements in the simulation.
- NumLinearIterations
- NumNodesReturns the total number of nodes in a simulation (works with DistributedMesh)
- NumNonlinearIterationsOutputs the number of nonlinear iterations
- NumPicardIterations
- NumResidualEvaluations
- NumVarsReturn the number of variables from either the NL, Aux, or both systems.
- PercentChangePostprocessor
- PerfGraphDataRetrieves timing information from the PerfGraph.
- PerformanceDataProvides programmatic access to Performance Log Data
- PointValue
- PostprocessorComparisonCompares two post-processors and produces a boolean value
- Receiver
- RelativeDifferencePostprocessorComputes the absolute value of the relative difference between 2 post-processor values.
- RelativeSolutionDifferenceNorm
- Residual
- ScalarL2Error
- ScalarVariable
- ScalePostprocessor
- SideAverageValueComputes the average value of a variable on a sideset. Note that this cannot be used on the centerline of an axisymmetric model.
- SideFluxAverageComputes the integral of the flux over the specified boundary
- SideFluxIntegralComputes the integral of the flux over the specified boundary
- SideIntegralVariablePostprocessor
- SolutionUserObjectReads a variable from a mesh in one simulation to another
- Terminator
- TimeExtremeValueA postprocessor for reporting the extreme value of another postprocessor over time.
- TimestepSizeReports the timestep size
- TotalVariableValue
- VariableInnerProduct
- VariableResidual
- VectorPostprocessorComparisonCompares two vector post-processors of equal size and produces a boolean value
- VerifyElementUniqueID
- VerifyNodalUniqueID
- VolumePostprocessor
- Stochastic Tools Test App
- TestDistributionDirectPostprocessor
- TestDistributionPostprocessor
- TestSampler
- Rdg App
- AEFVFreeOutflowBoundaryFluxFree outflow BC based boundary flux user object for the advection equation using a cell-centered finite volume method.
- AEFVSlopeLimitingOneDOne-dimensional slope limiting to get the limited slope of cell average variable for the advection equation using a cell-centered finite volume method.
- AEFVUpwindInternalSideFluxUpwind numerical flux scheme for the advection equation using a cell-centered finite volume method.
- Phase Field App
- AverageGrainVolumeCalculate average grain area in a polycrystal
- ComputeExternalGrainForceAndTorqueUserobject for calculating force and torque acting on a grain
- ComputeGrainForceAndTorqueUserobject for calculating force and torque acting on a grain
- ConservedMaskedNormalNoiseGaussian normal distributed random number noise provider with an applied spatially dependent material property mask for the ConservedLangevinNoise kernel.
- ConservedMaskedUniformNoiseUniformly distributed random number noise provider with an applied spatially dependent material property mask for the ConservedLangevinNoise kernel.
- ConservedNormalNoiseGaussian normal distributed random number noise provider for the ConservedLangevinNoise kernel.
- ConservedUniformNoiseUniformly distributed random number noise provider for the ConservedLangevinNoise kernel.
- ConstantGrainForceAndTorqueUserobject for calculating force and torque acting on a grain
- DiscreteNucleationDataOutput diagnostic data on a DiscreteNucleationInserter
- DiscreteNucleationFromFileManages the list of currently active nucleation sites and adds new sites according to a predetermined list from a CSV file (use this with sync_times).
- DiscreteNucleationInserterManages the list of currently active nucleation sites and adds new sites according to a given probability function.
- DiscreteNucleationMapGenerates a spatial smoothed map of all nucleation sites with the data of the DiscreteNucleationInserter for use by the DiscreteNucleation material.
- DiscreteNucleationTimeStepReturn a time step limit for nucleation event to be used by IterationAdaptiveDT
- EBSDReaderLoad and manage DREAM.3D EBSD data files for running simulations on reconstructed microstructures.
- EulerAngleUpdaterProvide updated euler angles after rigid body rotation of the grains.
- FauxGrainTrackerFake grain tracker object for cases where the number of grains is equal to the number of order parameters.
- FeatureFloodCountThe object is able to find and count "connected components" in any solution field or number of solution fields. A primary example would be to count "bubbles".
- FeatureVolumeFraction
- GrainBoundaryAreaCalculate total grain boundary length in 2D and area in 3D
- GrainForceAndTorqueSumUserobject for summing forces and torques acting on a grain
- GrainTrackerGrain Tracker object for running reduced order parameter simulations without grain coalescence.
- GrainTrackerElasticityGrain Tracker object for running reduced order parameter simulations without grain coalescence.
- MaskedGrainForceAndTorqueUserobject for masking/pinning grains and making forces and torques acting on that grain zero
- PFCElementEnergyIntegral
- PolycrystalCirclesPolycrystal circles generated from a vector input or read from a file
- PolycrystalEBSDObject for setting up a polycrystal structure from an EBSD Datafile
- PolycrystalHexPerturbed hexagonal polycrystal
- PolycrystalVoronoiRandom Voronoi tesselation polycrystal (used by PolycrystalVoronoiAction)
- RandomEulerAngleProviderAssign random euler angles for each grain.
- SolutionRasterizerProcess an XYZ file of atomic coordinates and filter atoms via threshold or map variable values.
- Misc App
- InternalVolumeComputes the volume of an enclosed area by performing an integral over a user-supplied boundary.
- RigidBodyModes3D
- Functional Expansion Tools App
- FXBoundaryFluxUserObjectGenerates an Functional Expansion representation for a boundary flux condition using a 'FunctionSeries'-type Function
- FXBoundaryValueUserObjectGenerates an Functional Expansion representation for a boundary value condition using a 'FunctionSeries'-type Function
- FXVolumeUserObjectGenerates an Functional Expansion representation of a variable value over a volume using a 'FunctionSeries'-type Function
- Level Set App
- LevelSetCFLConditionCompute the minimum timestep from the Courant-Friedrichs-Lewy (CFL) condition for the level-set equation.
- LevelSetOlssonTerminatorTool for terminating the reinitialization of the level set equation based on the criteria defined by Olsson et. al. (2007).
- LevelSetVolumeCompute the area or volume of the region inside or outside of a level set contour.
- Richards App
- Q2PPiecewiseLinearSinkFluxRecords the fluid flow into a sink (positive values indicate fluid is flowing from porespace into the sink).
- Q2PRelPermPowerGasPower form of relative permeability that might be useful for gases as a function of water saturation in Q2P models. Define s = seff/(1 - simm). Then relperm = 1 - (n+1)s
^{n + ns}(n+1) if seff<1-simm, otherwise relperm=1. Here seff is the water saturation - RichardsDensityConstBulkFluid density assuming constant bulk modulus. dens0 * Exp(pressure/bulk)
- RichardsDensityConstBulkCutFluid density assuming constant bulk modulus. dens0 * Exp(pressure/bulk)
- RichardsDensityIdealFluid density of ideal gas. Density = slope*(p - p0)
- RichardsDensityMethane20degCMethane density (kg/m^3) at 20degC. Pressure is assumed to be measured in Pascals. NOTE: this expression is only valid to about P=20MPa. Use van der Waals (RichardsDensityVDW) for higher pressures.
- RichardsDensityVDWDensity of van der Waals gas.
- RichardsExcavFlowRecords total flow INTO an excavation (if quantity is positive then flow has occured from rock into excavation void)
- RichardsHalfGaussianSinkFlux
- RichardsMassReturns the mass in a region.
- RichardsPiecewiseLinearSinkFluxRecords the fluid flow into a sink (positive values indicate fluid is flowing from porespace into the sink).
- RichardsPlotQuantity
- RichardsRelPermBWBroadbridge-White form of relative permeability. Define s = (seff - Sn)/(Ss - Sn). Then relperm = Kn + s^2(c-1)(Kn-Ks)/(c-s) if 0<s<1, otherwise relperm = Kn if s<
__0, otherwise relperm = Ks if s>__1. - RichardsRelPermMonomialMonomial form of relative permeability. Define s = (seff - simm)/(1 - simm). Then relperm = s^n if s<simm, otherwise relperm=1
- RichardsRelPermPowerPower form of relative permeability. Define s = (seff - simm)/(1 - simm). Then relperm = (n+1)s
^{n - ns}(n+1) if s<simm, otherwise relperm=1 - RichardsRelPermPowerGasPower form of relative permeability that might be useful for gases. Define s = (seff - simm)/(1 - simm). Then relperm = 1 - (n+1)(1-s)^n + n(1-s)^(n+1) if s<simm, otherwise relperm=1
- RichardsRelPermVGVG form of relative permeability. Define s = (seff - simm)/(1 - simm). Then relperm = s
^{(1/2) * (1 - (1 - s}(1/m))^m)^2, if s>0, and relperm=0 otherwise - RichardsRelPermVG1VG1 form of relative permeability. Define s = (seff - simm)/(1 - simm). Then relperm = s
^{(1/2) * (1 - (1 - s}(1/m))^m)^2, if s>0, and relperm=0 otherwise - RichardsSUPGnoneUser object for no SUPG
- RichardsSUPGstandardStandard SUPG relationships for Richards flow based on Appendix A of TJR Hughes, M Mallet and A Mizukami
`A new finite element formulation for computational fluid dynamics:: II. Behond SUPG'' Computer Methods in Applied Mechanics and Engineering 54 (1986) 341–355`

- RichardsSatUser object yielding saturation for a phase as a function of effective saturation of that phase
- RichardsSeff1BWsmallBroadbridge-white form of effective saturation for negligable Kn. Then porepressure = -las*( (1-th)/th - (1/c)Ln((C-th)/((C-1)th))), for th = (Seff - Sn)/(Ss - Sn). A Lambert-W function must be evaluated to express Seff in terms of porepressure, which can be expensive
- RichardsSeff1RSCRogers-Stallybrass-Clements version of effective saturation for the water phase, valid for residual saturations = 0, and viscosityOil = 2
*viscosityWater. seff_water = 1/Sqrt(1 + Exp((Pc - shift)/scale)), where scale = 0.25*scale_ratio*oil_viscosity. Note that this effective saturation is mostly useful for 2-phase, not single-phase. - RichardsSeff1VGvan-Genuchten effective saturation as a function of pressure suitable for use in single-phase simulations.. seff = (1 + (-al*p)^(1/(1-m)))^(-m)
- RichardsSeff1VGcutcut van-Genuchten effective saturation as a function of capillary pressure. Single-phase seff = (1 + (-al*p)^(1/(1-m)))^(-m) for p>p_cut, otherwise user a a linear relationship that is chosen so the value and derivative match van-Genuchten at p=p_cut.
- RichardsSeff2gasRSCRogers-Stallybrass-Clements version of effective saturation for the oil (gas) phase, valid for residual saturations = 0, and viscosityOil = 2
*viscosityWater. seff_gas = 1 - 1/Sqrt(1 + Exp((Pc - shift)/scale)), where scale = 0.25*scale_ratio*oil_viscosity - RichardsSeff2gasVGvan-Genuchten effective saturation as a function of (Pwater, Pgas) suitable for use for the gas phase in two-phase simulations. With Pc=Pgas-Pwater, seff = 1 - (1 + (al*pc)^(1/(1-m)))^(-m)
- RichardsSeff2gasVGshiftedShifted van-Genuchten effective saturation as a function of (Pwater, Pgas) suitable for use for the gas phase in two-phase simulations. seff = (1 + (-al*(P0-p1-shift))^(1/(1-m)))^(-m), then scaled so it runs between 0 and 1.
- RichardsSeff2waterRSCRogers-Stallybrass-Clements version of effective saturation for the water phase, valid for residual saturations = 0, and viscosityOil = 2
*viscosityWater. seff_water = 1/Sqrt(1 + Exp(Pc - shift)/scale)), where scale = 0.25*scale_ratio*oil_viscosity - RichardsSeff2waterVGvan-Genuchten effective saturation as a function of (Pwater, Pgas) suitable for use for the water phase in two-phase simulations. With Pc=Pgas-Pwater, seff = (1 + (al*pc)^(1/(1-m)))^(-m)
- RichardsSeff2waterVGshiftedShifted van-Genuchten effective saturation as a function of (Pwater, Pgas) suitable for use for the water phase in two-phase simulations. seff = (1 + (-al*(P0-p1-shift))^(1/(1-m)))^(-m), then scaled so it runs between 0 and 1.
- RichardsSumQuantity
- RichardsVarNamesHolds information on the porepressure variable names
- XFEMApp
- CircleCutUserObjectCreates a UserObject for circular cuts on 3D meshes for XFEM
- EllipseCutUserObjectCreates a UserObject for elliptical cuts on 3D meshes for XFEM
- LevelSetCutUserObjectXFEM mesh cut by level set function
- LineSegmentCutSetUserObjectCreates a UserObject for a line segment cut on 2D meshes for XFEM
- LineSegmentCutUserObjectCreates a UserObject for a line segment cut on 2D meshes for XFEM
- MeshCut3DUserObjectCreates a UserObject for a mesh cutter in 3D problems
- MovingLineSegmentCutSetUserObjectCreates a UserObject for a moving line segment cut on 2D meshes for XFEM
- PointValueAtXFEMInterfaceObtain field values and gradients on the interface.
- RectangleCutUserObjectCreates a UserObject for planar cuts on 3D meshes for XFEM
- XFEMMaterialTensorMarkerUserObject
- XFEMPhaseTransitionMovingInterfaceVelocitycalculate the interface velocity for a simple phase transition problem.
- XFEMRankTwoTensorMarkerUserObjectMark elements to be cut by XFEM based on a scalar extracted from a RankTwoTensor
- Contact App
- NodalArea
- Heat Conduction App
- HomogenizedThermalConductivity
- ThermalConductivityComputes the average value of a variable on a sideset. Note that this cannot be used on the centerline of an axisymmetric model.
- Solid Mechanics App
- HomogenizedElasticConstants
- InteractionIntegralSM
- MaterialTensorIntegralSM
- Tensor Mechanics App
- CavityPressurePostprocessorInterfaces with the CavityPressureUserObject to store the initial number of moles of a gas contained within an internal volume.
- CavityPressureUserObjectUses the ideal gas law to compute internal pressure and an initial moles of gas quantity.
- CrackFrontData
- CrackFrontDefinition
- CrystalPlasticitySlipRateGSSPhenomenological constitutive model slip rate class. Override the virtual functions in your class
- CrystalPlasticitySlipResistanceGSSPhenomenological constitutive models' slip resistance base class. Override the virtual functions in your class
- CrystalPlasticityStateVarRateComponentGSSPhenomenological constitutive model state variable evolution rate component base class. Override the virtual functions in your class
- CrystalPlasticityStateVarRateComponentVocePhenomenological Voce constitutive model state variable evolution rate component base class.
- CrystalPlasticityStateVariableCrystal plasticity state variable class. Override the virtual functions in your class
- ElementPropertyReadFileUser Object to read property data from an external file and assign to elements: Works only for Rectangular geometry (2D-3D)
- EulerAngleFileReaderRead Euler angle data from a file and provide it to other objects.
- GeneralizedPlaneStrainUserObjectGeneralized plane strain UserObject to provide residual and diagonal jacobian entries.
- GlobalStrainUserObjectGlobal Strain UserObject to provide Residual and diagonal Jacobian entry
- HEVPEqvPlasticStrainUser Object to integrate equivalent plastic strain
- HEVPEqvPlasticStrainRateUser Object computing equivalent plastic strain rate
- HEVPFlowRatePowerLawJ2User object to evaluate power law flow rate and flow direction based on J2
- HEVPLinearHardeningUser Object for linear hardening
- HEVPRambergOsgoodHardeningUser object for Ramberg-Osgood hardening power law hardening
- InteractionIntegralComputes the interaction integral for fracture
- JIntegralCalculates the J-integral at a specified point along the crack front
- LinearViscoelasticityManagerManages the updating of the semi-implicit single-step first-order finite difference time-stepping scheme
- Mass
- MaterialTensorIntegralThis postprocessor computes an element integral of a component of a material tensor as specified by the user-supplied indices
- MaterialTimeStepPostprocessorThis postprocessor estimates a timestep that reduces the increment change in a material property below a given threshold.
- MixedModeEquivalentKComputes the mixed-mode stress intensity factor given the , , and stress intensity factors
- TensorMechanicsHardeningConstantNo hardening - the parameter is independent of the internal parameter(s)
- TensorMechanicsHardeningCubicHardening is Cubic
- TensorMechanicsHardeningCutExponentialHardening is Cut-exponential
- TensorMechanicsHardeningExponentialHardening is Exponential
- TensorMechanicsHardeningGaussianHardening is Gaussian
- TensorMechanicsHardeningPowerRuleHardening defined by power rule
- TensorMechanicsPlasticDruckerPragerNon-associative Drucker Prager plasticity with no smoothing of the cone tip.
- TensorMechanicsPlasticDruckerPragerHyperbolicNon-associative Drucker Prager plasticity with hyperbolic smoothing of the cone tip.
- TensorMechanicsPlasticIsotropicSDIsotropicSD plasticity for pressure sensitive materials and also models the strength differential effect
- TensorMechanicsPlasticJ2J2 plasticity, associative, with hardening
- TensorMechanicsPlasticMeanCapClass that limits the mean stress. Yield function = a*mean_stress - strength. mean_stress = (stress_xx + stress_yy + stress_zz)/3
- TensorMechanicsPlasticMeanCapTCAssociative mean-cap tensile and compressive plasticity with hardening/softening
- TensorMechanicsPlasticMohrCoulombNon-associative Mohr-Coulomb plasticity with hardening/softening
- TensorMechanicsPlasticMohrCoulombMultiNon-associative Mohr-Coulomb plasticity with hardening/softening
- TensorMechanicsPlasticOrthotropicOrthotropic plasticity for pressure sensitive materials and also models the strength differential effect
- TensorMechanicsPlasticSimpleTesterClass that can be used for testing multi-surface plasticity models. Yield function = a*stress_yy + b*stress_zz + c*stress_xx + d*(stress_xy + stress_yx)/2 + e*(stress_xz + stress_zx)/2 + f*(stress_yz + stress_zy)/2 - strength
- TensorMechanicsPlasticTensileAssociative tensile plasticity with hardening/softening, and tensile_strength = 1
- TensorMechanicsPlasticTensileMultiAssociative tensile plasticity with hardening/softening
- TensorMechanicsPlasticWeakPlaneShearNon-associative finite-strain weak-plane shear perfect plasticity. Here cohesion = 1, tan(phi) = 1 = tan(psi)
- TensorMechanicsPlasticWeakPlaneTensileAssociative weak-plane tensile plasticity with hardening/softening
- TensorMechanicsPlasticWeakPlaneTensileNAssociative weak-plane tensile plasticity with hardening/softening, with specified, fixed normal vector. (WeakPlaneTensile combined with specifying N in the Material might be preferable to you.)
- TorqueReactionTorqueReaction calculates the torque in 2D and 3Dabout a user-specified axis of rotation centeredat a user-specied origin.
- XFEMTest App
- TestCrackCounterTest postprocessor for extracting the crack_tip_origin_direction_map from XFEM.
- Navier Stokes App
- INSExplicitTimestepSelectorPostprocessor that computes the minimum value of h_min/|u|, where |u| is coupled in as an aux variable.
- NSEntropyErrorComputes entropy error.
- VolumetricFlowRateComputes the volumetric flow rate through a boundary.
- Tensor Mechanics Test App
- TestSubblockIndexProvider
- Chemical Reactions App
- TotalMineralVolumeFractionTotal volume fraction of coupled mineral species
- Porous Flow App
- AdvectiveFluxCalculatorConstantVelocityCompute K_ij (a measure of advective flux from node i to node j) and R+ and R- (which quantify amount of antidiffusion to add) in the Kuzmin-Turek FEM-TVD multidimensional scheme. Constant advective velocity is assumed
- PorousFlowAdvectiveFluxCalculatorSaturatedComputes the advective flux of fluid of given phase, assuming fully-saturated conditions. Hence this UserObject is only relevant to single-phase situations. Explicitly, the UserObject computes (density / viscosity) * (- permeability * (grad(P) - density * gravity)), using the Kuzmin-Turek FEM-TVD multidimensional stabilization scheme
- PorousFlowAdvectiveFluxCalculatorSaturatedHeatComputes the advective flux of heat energy in the given phase, assuming fully-saturated conditions. Hence this UserObject is only relevant to single-phase situations. Explicitly, the UserObject computes (density * enthalpy / viscosity) * (- permeability * (grad(P) - density * gravity)), using the Kuzmin-Turek FEM-TVD multidimensional stabilization scheme
- PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponentComputes the advective flux of fluid of given phase and fluid component. Explicitly, the UserObject computes (mass_fraction * density / viscosity) * (- permeability * (grad(P) - density * gravity)), using the Kuzmin-Turek FEM-TVD multidimensional stabilization scheme
- PorousFlowAdvectiveFluxCalculatorUnsaturatedComputes the advective flux of fluid of given phase, assuming unsaturated conditions. Hence this UserObject is only relevant to single-phase situations, or multi-phase situations where each fluid component appears in one phase only. Explicitly, the UserObject computes (density * relative_permeability / viscosity) * (- permeability * (grad(P) - density * gravity)), using the Kuzmin-Turek FEM-TVD multidimensional stabilization scheme
- PorousFlowAdvectiveFluxCalculatorUnsaturatedHeatComputes the advective flux of heat energy in a given phase, assuming unsaturated conditions. Hence this UserObject is only relevant to single-phase situations, or multi-phase situations where each fluid component appears in one phase only. Explicitly, the UserObject computes (density * enthalpy * relative_permeability / viscosity) * (- permeability * (grad(P) - density * gravity)), using the Kuzmin-Turek FEM-TVD multidimensional stabilization scheme
- PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponentComputes the advective flux of fluid of given phase and component. Hence this UserObject is relevant to multi-phase, multi-component situations. Explicitly, the UserObject computes (mass_fraction * density * relative_permeability / viscosity) * (- permeability * (grad(P) - density * gravity)), using the Kuzmin-Turek FEM-TVD multidimensional stabilization scheme
- PorousFlowBrineCO2Fluid state class for brine and CO2
- PorousFlowCapillaryPressureBCBrooks-Corey capillary pressure
- PorousFlowCapillaryPressureBWBroadbridge and White capillary pressure for negligable Kn
- PorousFlowCapillaryPressureConstConstant capillary pressure
- PorousFlowCapillaryPressureRSCRogers-Stallybrass-Clements version of effective saturation for the water phase, valid for residual saturations = 0, and viscosityOil = 2 * viscosityWater. seff_water = 1 / sqrt(1 + exp((Pc - shift) / scale)), where scale = 0.25 * scale_ratio * oil_viscosity.
- PorousFlowCapillaryPressureVGvan Genuchten capillary pressure
- PorousFlowDictatorHolds information on the PorousFlow variable names
- PorousFlowFluidMassCalculates the mass of a fluid component in a region
- PorousFlowFluidStateFlashCompositional flash calculations for use in fluid state classes
- PorousFlowHeatEnergyCalculates the sum of heat energy of fluid phase(s) and/or the porous skeleton in a region
- PorousFlowPlotQuantityExtracts the value from the PorousFlowSumQuantity UserObject
- PorousFlowSumQuantityRecords total mass flowing into a borehole
- PorousFlowWaterNCGFluid state class for water and non-condensable gas