- melting_temperatureMelting temparature of the material
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Melting temparature of the material
- powerLaser power
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Laser power
- velocityScanning velocity
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scanning velocity
Rosenthal temperature source material
Computes the thermal profile following the Rosenthal equation
Description
This material implements the Rosenthal equation for meltpool geometry Rosenthal (1946). The temperature profile is defined as: where is the ambient temperature, is the laser power, is the power absorption coefficient, is the thermal conductivity, is the thermal diffusivity, and is the scanning velocity. Here, is the radial distance from the heat source defined as , where x, y, z, are the positional coordinates within the moving reference frame. The laser heat source is assumed to move in x direction such that the position x is updated with , where is the initial position coordinate at .
The meltpool depth and width is calculated as follows:
where is the melting temperature, is the density, and is the specific heat.
Example Input Syntax
[Materials<<<{"href": "../../syntax/Materials/index.html"}>>>]
[meltpool]
type = ADRosenthalTemperatureSource<<<{"description": "Computes the thermal profile following the Rosenthal equation", "href": "RosenthalTemperatureSource.html"}>>>
power<<<{"description": "Laser power"}>>> = 1000
velocity<<<{"description": "Scanning velocity"}>>> = 2.0
absorptivity<<<{"description": "Property name of the power absorption coefficient"}>>> = 1.0
melting_temperature<<<{"description": "Melting temparature of the material"}>>> = 1660
ambient_temperature<<<{"description": "Ambient temparature far away from the surface"}>>> = 393
[]
[]
(test/tests/melt_pool_geometry/rosenthal_temp_source.i)Input Parameters
- absorptivityabsorptivityProperty name of the power absorption coefficient
Default:absorptivity
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Property name of the power absorption coefficient
- ambient_temperature300Ambient temparature far away from the surface
Default:300
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Ambient temparature far away from the surface
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- densitydensityProperty name of the density
Default:density
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Property name of the density
- initial_position0Initial coordiate of the heat source
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Initial coordiate of the heat source
- specific_heatspecific_heatProperty name of the specific heat
Default:specific_heat
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Property name of the specific heat
- thermal_conductivitythermal_conductivityProperty name of the thermal conductivity
Default:thermal_conductivity
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Property name of the thermal conductivity
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
References
- D. Rosenthal.
The theory of moving sources of heat and its application to metal treatments.
Trans. ASME, 68(8):849 – 865, 1946.
doi:10.1115/1.4018624.[BibTeX]