ADADStainlessSteelThermalExpansionEigenstrain

Calculates eigenstrain due to isotropic thermal expansion in AISI 304 Stainless Steel in base SI units

Description

This material computes the coefficient of thermal expansion, in 1/K, for AISI 304 stainless steel based on the material properties given for a spark plasma sintering die in (Cincotti et al., 2007). The coefficient of thermal expansion value is computed solely as a function of temperature, T: (1) where the calibration range is 273.3 to 810.5K.

The relationship for this thermal material property was set as a piecewise function with constant values based on the experimental data points (Cincotti et al., 2007), as shown in Figure 1.

Figure 1: Piecewise constant values for the coefficient of thermal expansion for AISI 304 stainless steel.

The local temperature is checked against the calibration range limits only once at the start of each timestep, using the value of the temperature from the previous converged timestep. The value of the coefficient of thermal expansion is calculated with the current value of the temperature.

Example Input File Syntax

[Materials<<<{"href": "../../syntax/Materials/index.html"}>>>]
  [stainless_steel_thermal_expansion]
    type = ADStainlessSteelThermalExpansionEigenstrain<<<{"description": "Calculates eigenstrain due to isotropic thermal expansion in AISI 304 Stainless Steel in base SI units", "href": "StainlessSteelThermalExpansionEigenstrain.html"}>>>
    eigenstrain_name<<<{"description": "Material property name for the eigenstrain tensor computed by this model. IMPORTANT: The name of this property must also be provided to the strain calculator."}>>> = stainless_steel_thermal_expansion
    stress_free_temperature<<<{"description": "Reference temperature at which there is no thermal expansion for thermal eigenstrain calculation"}>>> = 300
    temperature<<<{"description": "Coupled temperature"}>>> = temperature
  []
[]
(test/tests/materials/stainless_steel/mechanical/ad_stainless_steel_thermal_expansion.i)

Input Parameters

  • eigenstrain_nameMaterial property name for the eigenstrain tensor computed by this model. IMPORTANT: The name of this property must also be provided to the strain calculator.

    C++ Type:std::string

    Controllable:No

    Description:Material property name for the eigenstrain tensor computed by this model. IMPORTANT: The name of this property must also be provided to the strain calculator.

  • stress_free_temperatureReference temperature at which there is no thermal expansion for thermal eigenstrain calculation

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Reference temperature at which there is no thermal expansion for thermal eigenstrain calculation

Required Parameters

  • base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

    C++ Type:std::string

    Controllable:No

    Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • coeffient_thermal_expansion_scale_factor1The scaling factor for the coefficient of thermal expansion

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The scaling factor for the coefficient of thermal expansion

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • mean_thermal_expansion_coefficient_nameName of the mean coefficient of thermal expansion.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:Name of the mean coefficient of thermal expansion.

  • temperatureCoupled temperature

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Coupled temperature

  • use_old_temperatureFalseFlag to optionally use the temperature value from the previous timestep.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Flag to optionally use the temperature value from the previous timestep.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

Input Files

References

  1. A. Cincotti, A. M. Locci, R. OrrĂ¹, and G. Cao. Modeling of SPS apparatus: temperature, current and strain distribution with no powders. AIChE Journal, 53(3):703–719, 2007. doi:10.1002/aic.11102.[BibTeX]