Gaussian

Gaussian likelihood function evaluating the model goodness against experiments.

Overview

The Gaussian likelihood function considering experimental configurations is given by:

(1)

where, is the model prediction given model parameters and the experimental configuration and is the experimental data point. above is the scale of the distribution representing the model inadequacy and experimental noise uncertainties, while represents a Gaussian distribution.

Example Input File Syntax

[Likelihood<<<{"href": "../../syntax/Likelihood/index.html"}>>>]
  [gaussian]
    type = Gaussian<<<{"description": "Gaussian likelihood function evaluating the model goodness against experiments.", "href": "Gaussian.html"}>>>
    noise<<<{"description": "Experimental noise plus model deviations against experiments."}>>> = 'noise_specified/noise_specified'
    file_name<<<{"description": "Name of the CSV file with experimental values."}>>> = 'exp1.csv'
    log_likelihood<<<{"description": "Compute log-likelihood or likelihood."}>>> = true
  []
[]
(moose/modules/stochastic_tools/test/tests/likelihoods/gaussian_derived/main.i)

Input Parameters

  • noiseExperimental noise plus model deviations against experiments.

    C++ Type:ReporterName

    Controllable:No

    Description:Experimental noise plus model deviations against experiments.

Required Parameters

  • exp_valuesUser-specified experimental values when CSV file is not provided.

    C++ Type:std::vector<double>

    Unit:(no unit assumed)

    Controllable:No

    Description:User-specified experimental values when CSV file is not provided.

  • file_column_nameName of column in CSV file to use, by default first column is used.

    C++ Type:std::string

    Controllable:No

    Description:Name of column in CSV file to use, by default first column is used.

  • file_nameName of the CSV file with experimental values.

    C++ Type:FileName

    Controllable:No

    Description:Name of the CSV file with experimental values.

  • log_likelihoodTrueCompute log-likelihood or likelihood.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Compute log-likelihood or likelihood.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Set the enabled status of the MooseObject.

Advanced Parameters