Melt pool heat source

Computes the laser heat source and heat loss in the melt pool heat equation

Description

The energy conservation equation(Wen and Shin, 2010; Courtois et al., 2014) is described by

where is the source term, consisting of laser heat source and heat loss flux at the interface where the three terms on the right represent heat flux from the laser, heat losses through convection and radiation, and energy loss by evaporation, respectively. Mass transfer rate is computed by INSMeltPoolMassTransferMaterial.

Example Input Syntax

[Kernels<<<{"href": "../../syntax/Kernels/index.html"}>>>]
  [heat_source]
    type = MeltPoolHeatSource<<<{"description": "Computes the laser heat source and heat loss in the melt pool heat equation", "href": "MeltPoolHeatSource.html"}>>>
    variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = temp
    laser_power<<<{"description": "Laser power."}>>> = 100
    effective_beam_radius<<<{"description": "Effective beam radius."}>>> = 0.2
    absorption_coefficient<<<{"description": "Absorption coefficient."}>>> = 0.27
    heat_transfer_coefficient<<<{"description": "Heat transfer coefficient."}>>> = 100
    StefanBoltzmann_constant<<<{"description": "Stefan Boltzmann constant."}>>> = 5.67e-8
    material_emissivity<<<{"description": "Material emissivity."}>>> = 0.59
    ambient_temperature<<<{"description": "Ambient temperature."}>>> = 300
    laser_location_x<<<{"description": "The laser center function of x coordinate."}>>> = '0.5 + t'
    laser_location_y<<<{"description": "The laser center function of y coordinate."}>>> = '0.5'
    rho_l<<<{"description": "Liquid density."}>>> = 8000
    rho_g<<<{"description": "Gas density."}>>> = 1.184
    vaporization_latent_heat<<<{"description": "Latent heat of vaporization."}>>> = 6.1e6
  []
[]
(test/tests/melt_pool_heat/heat.i)

Input Parameters

  • StefanBoltzmann_constantStefan Boltzmann constant.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Stefan Boltzmann constant.

  • absorption_coefficientAbsorption coefficient.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Absorption coefficient.

  • ambient_temperatureAmbient temperature.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Ambient temperature.

  • effective_beam_radiusEffective beam radius.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Effective beam radius.

  • heat_transfer_coefficientHeat transfer coefficient.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat transfer coefficient.

  • laser_powerLaser power.

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:Laser power.

  • material_emissivityMaterial emissivity.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Material emissivity.

  • rho_gGas density.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Gas density.

  • rho_lLiquid density.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Liquid density.

  • vaporization_latent_heatLatent heat of vaporization.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Latent heat of vaporization.

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • displacementsThe displacements

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The displacements

  • laser_location_x0The laser center function of x coordinate.

    Default:0

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:The laser center function of x coordinate.

  • laser_location_y0The laser center function of y coordinate.

    Default:0

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:The laser center function of y coordinate.

  • laser_location_z0The laser center function of z coordinate.

    Default:0

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:The laser center function of z coordinate.

  • matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether this object is only doing assembly to matrices (no vectors)

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Contribution To Tagged Field Data Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

Input Files

References

  1. Mickael Courtois, Muriel Carin, Philippe Le Masson, Sadok Gaied, and Mikhaël Balabane. A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding. Journal of Laser Applications, 26(4):042001, 2014. doi:10.2351/1.4886835.[BibTeX]
  2. Shaoyi Wen and Yung C. Shin. Modeling of transport phenomena during the coaxial laser direct deposition process. Journal of Applied Physics, 108(4):044908, 2010. doi:10.1063/1.3474655.[BibTeX]