LevelSetPowderAddition

Computes the powder addition to the melt pool

Description

In the level set evolution equation, the free surface growth velocity due to the powder addition is given as (Morville et al., 2012),

where and are the constriction coefficient and the standard deviation of the gaussian distribution. The is the radial distance. The is the powder catchment efficiency. The is the powder density. The is the mass powder rate.

Example Input Syntax

[Kernels<<<{"href": "../../syntax/Kernels/index.html"}>>>]
  [level_set_mass]
    type = LevelSetPowderAddition<<<{"description": "Computes the powder addition to the melt pool", "href": "LevelSetPowderAddition.html"}>>>
    laser_location_x<<<{"description": "The laser center function of x coordinate."}>>> = '0.5 + t'
    laser_location_y<<<{"description": "The laser center function of y coordinate."}>>> = '0.5'
    powder_density<<<{"description": "Powder density."}>>> = 6000
    eta_p<<<{"description": "Powder catchment efficiency."}>>> = 1
    mass_scale<<<{"description": "Mass gaussian scale."}>>> = 1
    mass_radius<<<{"description": "Mass gaussian radius."}>>> = 0.2
    mass_rate<<<{"description": "Mass rate."}>>> = 1000
    variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = ls
  []
[]
(test/tests/melt_pool_mass/mass.i)

Input Parameters

  • mass_radiusMass gaussian radius.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Mass gaussian radius.

  • mass_rateMass rate.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Mass rate.

  • powder_densityPowder density.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Powder density.

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • displacementsThe displacements

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The displacements

  • eta_p1Powder catchment efficiency.

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Powder catchment efficiency.

  • laser_location_x0The laser center function of x coordinate.

    Default:0

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:The laser center function of x coordinate.

  • laser_location_y0The laser center function of y coordinate.

    Default:0

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:The laser center function of y coordinate.

  • laser_location_z0The laser center function of z coordinate.

    Default:0

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:The laser center function of z coordinate.

  • mass_scale1Mass gaussian scale.

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Mass gaussian scale.

  • matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether this object is only doing assembly to matrices (no vectors)

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Contribution To Tagged Field Data Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

Input Files

References

  1. Simon Morville, Muriel Carin, Patrice Peyre, Myriam Gharbi, Denis Carron, Philippe Le Masson, and Rémy Fabbro. 2d longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process. Journal of Laser Applications, 24(3):032008, 2012. doi:10.2351/1.4726445.[BibTeX]