FunctorKappaFluid

Zero-thermal dispersion conductivity

Description

Most macroscale models neglect thermal dispersion Suikkanen et al. (2014) and Li and Ji (2016), in which case is given as

(1)

Neglecting thermal dispersion is expected to be a reasonable approximation for high Reynolds numbers Gunn (1978) and Littman et al. (1968), but for low Reynolds numbers more sophisticated models should be used Becker and Laurien (2002). Because thermal dispersion acts to increase the diffusive effects, neglecting thermal dispersion is (thermally) conservative in the sense that peak temperatures are usually higher Becker and Laurien (2002).

Input Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • execute_onALWAYSThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

    Default:ALWAYS

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, ALWAYS

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

References

  1. S. Becker and E. Laurien. Three-Dimensional Numerical Simulation of Flow and Heat Transport in High-Temperature Nuclear Reactors. In High Performance Computing in Science and Engineering. 2002. doi:10.1016/S0029-5493(03)00011-6.[BibTeX]
  2. D.J. Gunn. Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds. International Journal of Heat and Mass Transfer, 21:467–476, 1978. doi:10.1016/0017-9310(78)90080-7.[BibTeX]
  3. Y. Li and W. Ji. Thermal Analysis of Pebble-Bed Reactors Based on a Tightly Coupled Mechanical-Thermal Model. In Proceedings of NURETH. 2016.[BibTeX]
  4. H. Littman, R.G. Barile, and A.H. Pulsifer. Gas-Particle Heat Transfer Coefficients in Packed Beds at Low Reynolds Numbers. I & EC Technology, 7:554–561, 1968. doi:10.1021/i160028a005.[BibTeX]
  5. H. Suikkanen, V. Rintala, and R. Kyrki-Rajamaki. Development of a Coupled Multi-Physics Code System for Pebble Bed Reactor Core Modeling. In Proceedings of the HTR 2014. 2014.[BibTeX]