HeliumFluidProperties

Fluid properties for helium

Description

The HeliumFluidProperties class provides fluid properties for helium Petersen (1970).

The standard deviation for density is approximately 0.03% at a pressure of 0.1 MPa and 0.3% at 10 MPa, or

where is in MPa. The isobaric and isochoric specific heats are constant, with an uncertainty at 273 K of 0.05% at 0.1 MPa and 0.5% at 10 MPa. At higher temperature, the standard deviation is lower, and approximately

where K, is in MPa, and is in K. The standard deviation of the dynamic viscosity is approximately 0.4% at 273 K and 2.7% at 1800 K, or approximately

where is in K. The standard deviation of the thermal conductivity is approximately 1% at 273 K and 6% at 1800K, or

where is in K. The speed of sound is calculated as Harlow and Amsden (1971)

Range of Validity

The HeliumFluidProperties UserObject is valid for:

  • 273.15 K 1800 K and

  • 0.1 MPa 10 MPa.

Input Parameters

  • T_initial_guess400Temperature initial guess for Newton Method variable set conversion

    Default:400

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Temperature initial guess for Newton Method variable set conversion

  • max_newton_its100Maximum number of Newton iterations for variable set conversions

    Default:100

    C++ Type:unsigned int

    Controllable:No

    Description:Maximum number of Newton iterations for variable set conversions

  • p_initial_guess200000Pressure initial guess for Newton Method variable set conversion

    Default:200000

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Pressure initial guess for Newton Method variable set conversion

  • tolerance1e-08Tolerance for 2D Newton variable set conversion

    Default:1e-08

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Tolerance for 2D Newton variable set conversion

Variable Set Conversions Newton Solve Parameters

  • allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API

    Default:False

    C++ Type:bool

    Controllable:No

    Description:true to allow unimplemented property derivative terms to be set to zero for the AD API

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • fp_typesingle-phase-fpType of the fluid property object

    Default:single-phase-fp

    C++ Type:FPType

    Controllable:No

    Description:Type of the fluid property object

Advanced Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

References

  1. F. H. Harlow and A. A. Amsden. Fluid Dynamics. Technical Report LA-4700, Los Alamos National Laboratory, 1971.[BibTeX]
  2. H. Petersen. The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 bar and from Room Temperature to about 1800 K. Technical Report, Danish Atomic Energy Commission, 1970.[BibTeX]