ExplicitDynamicsContactConstraint

Apply non-penetration constraints on the mechanical deformation in explicit dynamics using a node on face formulation by solving uncoupled momentum-balance equations.

This object implements node-face constraints for the enforcement of normal mechanical contact in explicit dynamics. Surrogate balance-momentum equations are solved at each node on the secondary surface.

This method MUST be used with the ExplicitMixedOrder time integrator found in the Solid Mechanics module.

Following the work of (Heinstein et al., 2000), the contact is constrained as such,

where is the contact force, and is the Jacobian of the contact constraints. is calculated with the following iteration,

where is the initial guess for the midstep velocity.

is calculated at each node as a function of the wave speed and density of the primary and secondary material, the gap rate , and tributary area ,

where the subscript is a nodal index. With this formulation, the constraint force will be calculated within a few iterations.

Input Parameters

  • boundaryThe primary boundary

    C++ Type:BoundaryName

    Controllable:No

    Description:The primary boundary

  • componentAn integer corresponding to the direction the variable this constraint acts on. (0 for x, 1 for y, 2 for z)

    C++ Type:unsigned int

    Controllable:No

    Description:An integer corresponding to the direction the variable this constraint acts on. (0 for x, 1 for y, 2 for z)

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • displacementsThe displacements appropriate for the simulation geometry and coordinate system

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The displacements appropriate for the simulation geometry and coordinate system

  • friction_coefficient0The friction coefficient

    Default:0

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The friction coefficient

  • gap_rateGap rate for output.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Gap rate for output.

  • mapped_primary_gap_offsetoffset to the gap distance mapped from primary side

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:offset to the gap distance mapped from primary side

  • matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether this object is only doing assembly to matrices (no vectors)

  • modelfrictionlessThe contact model to use

    Default:frictionless

    C++ Type:MooseEnum

    Options:frictionless, frictionless_balance

    Controllable:No

    Description:The contact model to use

  • normal_smoothing_distanceDistance from edge in parametric coordinates over which to smooth contact normal

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Distance from edge in parametric coordinates over which to smooth contact normal

  • normal_smoothing_methodMethod to use to smooth normals (edge_based|nodal_normal_based)

    C++ Type:std::string

    Controllable:No

    Description:Method to use to smooth normals (edge_based|nodal_normal_based)

  • orderFIRSTThe finite element order used for projections

    Default:FIRST

    C++ Type:MooseEnum

    Options:FIRST, SECOND, THIRD, FOURTH

    Controllable:No

    Description:The finite element order used for projections

  • penalty1e+08The penalty to apply. Its optimal value can vary depending on the stiffness of the materials

    Default:1e+08

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The penalty to apply. Its optimal value can vary depending on the stiffness of the materials

  • primaryThe boundary ID associated with the primary side

    C++ Type:BoundaryName

    Controllable:No

    Description:The boundary ID associated with the primary side

  • primary_variableThe variable on the primary side of the domain

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The variable on the primary side of the domain

  • print_contact_nodesFalseWhether to print the number of nodes in contact.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether to print the number of nodes in contact.

  • secondaryThe secondary boundary

    C++ Type:BoundaryName

    Controllable:No

    Description:The secondary boundary

  • secondary_gap_offsetoffset to the gap distance from secondary side

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:offset to the gap distance from secondary side

  • tangential_toleranceTangential distance to extend edges of contact surfaces

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Tangential distance to extend edges of contact surfaces

  • vel_xx-component of velocity.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:x-component of velocity.

  • vel_yy-component of velocity.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:y-component of velocity.

  • vel_zz-component of velocity.

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:z-component of velocity.

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Contribution To Tagged Field Data Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

References

  1. Martin W Heinstein, Frank J Mello, Stephen W Attaway, and Tod A Laursen. Contact—impact modeling in explicit transient dynamics. Computer Methods in Applied Mechanics and Engineering, 187(3-4):621–640, 2000.[BibTeX]