- componentCartesian component of frictional tangent vector
C++ Type:unsigned int
Controllable:No
Description:Cartesian component of frictional tangent vector
- primary_boundaryThe name of the primary boundary sideset.
C++ Type:BoundaryName
Controllable:No
Description:The name of the primary boundary sideset.
- secondary_boundaryThe name of the secondary boundary sideset.
C++ Type:BoundaryName
Controllable:No
Description:The name of the secondary boundary sideset.
- tangent_oneFirst tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:First tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector.
- tangent_twoSecond tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Second tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector.
- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this object applies to
MortarFrictionalPressureVectorAux
Description
The MortarFrictionalPressureVectorAux
outputs the frictional pressure vector components using information from the mortar contact solution and its geometry. Nodal information is used to associate the two frictional Lagrange's multiplier vectors in three-dimensions with their corresponding tangent vectors generated at the time the mortar segment mesh is generated. This auxiliary kernel is automatically included in the ContactAction
when the user selects three-dimensional, frictional mortar contact. The computation of the frictional pressure vector can be expressed as:
where denotes the frictional pressure vector, and are two frictional Lagrange's multipliers, and and are two mutually perpendicular tangent vectors. Note that the directions and need not be aligned with global axes. This object is an AuxKernel, and is used only for the purpose of output. Note that the Contact action sets this object up automatically, so it is typically not necessary to include this in an input file.
Input example
Creation of auxiliary variables, i.e. frictional pressure vector components:
[AuxVariables<<<{"href": "../../syntax/AuxVariables/index.html"}>>>]
[mortar_tangent_x]
family<<<{"description": "Specifies the family of FE shape functions to use for this variable"}>>> = LAGRANGE
order<<<{"description": "Specifies the order of the FE shape function to use for this variable (additional orders not listed are allowed)"}>>> = FIRST
[]
[mortar_tangent_y]
family<<<{"description": "Specifies the family of FE shape functions to use for this variable"}>>> = LAGRANGE
order<<<{"description": "Specifies the order of the FE shape function to use for this variable (additional orders not listed are allowed)"}>>> = FIRST
[]
[mortar_tangent_z]
family<<<{"description": "Specifies the family of FE shape functions to use for this variable"}>>> = LAGRANGE
order<<<{"description": "Specifies the order of the FE shape function to use for this variable (additional orders not listed are allowed)"}>>> = FIRST
[]
[]
(moose/modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d.i)Creation of component-wise auxiliary kernels:
[AuxKernels<<<{"href": "../../syntax/AuxKernels/index.html"}>>>]
[friction_x_component]
type = MortarFrictionalPressureVectorAux<<<{"description": "This class creates an auxiliary vector for outputting the mortar frictional pressure vector.", "href": "MortarFrictionalPressureVectorAux.html"}>>>
primary_boundary<<<{"description": "The name of the primary boundary sideset."}>>> = 'bottom_top'
secondary_boundary<<<{"description": "The name of the secondary boundary sideset."}>>> = 'top_bottom'
tangent_one<<<{"description": "First tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector."}>>> = mortar_tangential_lm
tangent_two<<<{"description": "Second tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector."}>>> = mortar_tangential_3d_lm
variable<<<{"description": "The name of the variable that this object applies to"}>>> = mortar_tangent_x
component<<<{"description": "Cartesian component of frictional tangent vector"}>>> = 0
boundary<<<{"description": "The list of boundaries (ids or names) from the mesh where this object applies"}>>> = 'top_bottom'
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux<<<{"description": "This class creates an auxiliary vector for outputting the mortar frictional pressure vector.", "href": "MortarFrictionalPressureVectorAux.html"}>>>
primary_boundary<<<{"description": "The name of the primary boundary sideset."}>>> = 'bottom_top'
secondary_boundary<<<{"description": "The name of the secondary boundary sideset."}>>> = 'top_bottom'
tangent_one<<<{"description": "First tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector."}>>> = mortar_tangential_lm
tangent_two<<<{"description": "Second tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector."}>>> = mortar_tangential_3d_lm
variable<<<{"description": "The name of the variable that this object applies to"}>>> = mortar_tangent_y
component<<<{"description": "Cartesian component of frictional tangent vector"}>>> = 1
boundary<<<{"description": "The list of boundaries (ids or names) from the mesh where this object applies"}>>> = 'top_bottom'
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux<<<{"description": "This class creates an auxiliary vector for outputting the mortar frictional pressure vector.", "href": "MortarFrictionalPressureVectorAux.html"}>>>
primary_boundary<<<{"description": "The name of the primary boundary sideset."}>>> = 'bottom_top'
secondary_boundary<<<{"description": "The name of the secondary boundary sideset."}>>> = 'top_bottom'
tangent_one<<<{"description": "First tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector."}>>> = mortar_tangential_lm
tangent_two<<<{"description": "Second tangent vector Lagrange's multiplier for computing the mortar frictional pressure vector."}>>> = mortar_tangential_3d_lm
variable<<<{"description": "The name of the variable that this object applies to"}>>> = mortar_tangent_z
component<<<{"description": "Cartesian component of frictional tangent vector"}>>> = 2
boundary<<<{"description": "The list of boundaries (ids or names) from the mesh where this object applies"}>>> = 'top_bottom'
[]
[]
(moose/modules/contact/test/tests/3d-mortar-contact/frictional-mortar-3d.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshTrueWhether to use the displaced mesh to get the mortar interface.
Default:True
C++ Type:bool
Controllable:No
Description:Whether to use the displaced mesh to get the mortar interface.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.