| Base e27e71 | Head #4300 1cc1b6 | ||||
|---|---|---|---|---|---|
| Total | Total | +/- | New | ||
| Rate | 65.01% | 65.01% | +0.00% | 56.00% | |
| Hits | 76961 | 76962 | +1 | 14 | |
| Misses | 41430 | 41429 | -1 | 11 | |
| Filename | Stmts | Miss | Cover |
|---|---|---|---|
| src/mesh/mesh_triangle_holes.C | 0 | -1 | +0.27% |
| TOTAL | 0 | -1 | +0.00% |
codecodecode+
1122 1123 1124 1125 + 1126 1127 1128 1129 1130 1131 + 1132 1133 1134 + 1135 1136 1137 |
template<typename T> inline auto DenseMatrix<T>::l1_norm () const { libmesh_assert (this->_m); libmesh_assert (this->_n); using std::abs; auto columnsum = abs(T(0)); for (unsigned int i=0; i!=this->_m; i++) { columnsum += abs((*this)(i,0)); } auto my_max = columnsum; for (unsigned int j=1; j!=this->_n; j++) |
1139 1140 1141 1142 + 1143 1144 1145 |
columnsum = 0.; for (unsigned int i=0; i!=this->_m; i++) { columnsum += abs((*this)(i,j)); } my_max = (my_max > columnsum? my_max : columnsum); } |
1150 1151 1152 1153 + 1154 1155 1156 1157 1158 1159 + 1160 1161 1162 + 1163 1164 1165 |
template<typename T> inline auto DenseMatrix<T>::linfty_norm () const { libmesh_assert (this->_m); libmesh_assert (this->_n); using std::abs; auto rowsum = abs(T(0)); for (unsigned int j=0; j!=this->_n; j++) { rowsum += abs((*this)(0,j)); } auto my_max = rowsum; for (unsigned int i=1; i!=this->_m; i++) |
1167 1168 1169 1170 + 1171 1172 1173 |
rowsum = 0.; for (unsigned int j=0; j!=this->_n; j++) { rowsum += abs((*this)(i,j)); } my_max = (my_max > rowsum? my_max : rowsum); } |
651 652 653 654 + 655 656 657 + 658 659 660 |
_pivots[i] = i; // abs(complex) must return a Real! auto the_max = abs( A(i,i) ); for (unsigned int j=i+1; j<n_rows; ++j) { auto candidate_max = abs( A(j,i) ); if (the_max < candidate_max) { the_max = candidate_max; |
905 906 907 908 + 909 910 911 |
"Error! Can only use Cholesky decomposition with symmetric positive definite matrices."); #endif A(i,i) = sqrt(A(i,j)); } else A(j,i) = A(i,j) / A(i,i); |
71 72 73 74 + 75 + 76 77 78 |
template<typename T> inline auto norm(const T & a) { using std::abs; return abs(a); } template<typename T> inline |
86 87 88 89 + 90 91 92 |
template <typename T> inline auto norm(const VectorValue<T> & a) -> decltype(TensorTools::norm(T())) {using std::sqrt; return sqrt(a.norm_sq());} template <typename T> inline |
101 102 103 104 + 105 + 106 107 108 |
template<typename T> inline auto norm_sq(const T & a) { using std::norm; return norm(a); } template<typename T> inline |
115 116 117 118 + 119 120 121 |
template <typename T> inline auto norm_sq(const VectorValue<T> & a) {return a.norm_sq();} template <typename T> |
218 219 220 221 + 222 223 224 |
* \returns The Frobenius norm of the tensor, i.e. the square-root of * the sum of the elements squared. */ auto norm() const { libmesh_not_implemented(); return 0.; |
228 229 230 231 + 232 233 234 |
* \returns The Frobenius norm of the tensor squared, i.e. the sum of the * entry magnitudes squared. */ auto norm_sq() const { libmesh_not_implemented(); return 0.; |
1277 1278 1279 1280 + 1281 1282 1283 + 1284 1285 1286 |
template <typename T> inline auto TypeTensor<T>::norm() const { using std::sqrt; return sqrt(this->norm_sq()); } |
1346 1347 1348 1349 + 1350 1351 1352 |
template <typename T> inline auto TypeTensor<T>::norm_sq () const { Real sum = 0.; for (unsigned int i=0; i<LIBMESH_DIM*LIBMESH_DIM; i++) |
904 905 906 907 + 908 909 910 + 911 912 913 |
template <typename T> inline auto TypeVector<T>::norm() const { using std::sqrt; return sqrt(this->norm_sq()); } |
924 925 926 927 + 928 929 930 |
template <typename T> inline auto TypeVector<T>::norm_sq() const { #if LIBMESH_DIM == 1 return (TensorTools::norm_sq(_coords[0])); |
270 271 272 273 274 275 276 |
{ ray_target = inside - Point(1); intersection_distances = this->find_ray_intersections(inside, ray_target); } // I'd make this an assert, but I'm not 100% confident we can't |