Line data Source code
1 : // The libMesh Finite Element Library.
2 : // Copyright (C) 2002-2025 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 :
4 : // This library is free software; you can redistribute it and/or
5 : // modify it under the terms of the GNU Lesser General Public
6 : // License as published by the Free Software Foundation; either
7 : // version 2.1 of the License, or (at your option) any later version.
8 :
9 : // This library is distributed in the hope that it will be useful,
10 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 : // Lesser General Public License for more details.
13 :
14 : // You should have received a copy of the GNU Lesser General Public
15 : // License along with this library; if not, write to the Free Software
16 : // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 :
18 :
19 :
20 : #ifndef LIBMESH_ELEM_H
21 : #define LIBMESH_ELEM_H
22 :
23 : // Local includes
24 : #include "libmesh/libmesh_common.h"
25 : #include "libmesh/bounding_box.h"
26 : #include "libmesh/dof_object.h"
27 : #include "libmesh/id_types.h"
28 : #include "libmesh/reference_counted_object.h"
29 : #include "libmesh/node.h"
30 : #include "libmesh/enum_elem_type.h" // INVALID_ELEM
31 : #include "libmesh/multi_predicates.h"
32 : #include "libmesh/pointer_to_pointer_iter.h"
33 : #include "libmesh/int_range.h"
34 : #include "libmesh/simple_range.h"
35 : #include "libmesh/variant_filter_iterator.h"
36 : #include "libmesh/hashword.h" // Used in compute_key() functions
37 :
38 : // C++ includes
39 : #include <algorithm>
40 : #include <cstddef>
41 : #include <iostream>
42 : #include <limits.h> // CHAR_BIT
43 : #include <set>
44 : #include <vector>
45 : #include <memory>
46 : #include <array>
47 :
48 : namespace libMesh
49 : {
50 :
51 : // Forward declarations
52 : class BoundaryInfo;
53 : class Elem;
54 : class MeshBase;
55 : class MeshRefinement;
56 : #ifdef LIBMESH_ENABLE_PERIODIC
57 : class PeriodicBoundaries;
58 : class PointLocatorBase;
59 : #endif
60 : template <class SideType, class ParentType>
61 : class Side;
62 : enum ElemQuality : int;
63 : enum IOPackage : int;
64 : enum Order : int;
65 :
66 :
67 : /**
68 : * This is the base class from which all geometric element types are
69 : * derived. The \p Elem class provides standard information such as
70 : * the number of nodes, edges, faces, vertices, children, and
71 : * neighbors it has, as well as access to (or the ability to
72 : * construct) these entities.
73 : *
74 : * An \p Elem has pointers to its \p Node objects. Some of these
75 : * nodes live at the vertices of the element, while others may live on
76 : * edges (and faces in 3D), or interior to the element. The number of
77 : * nodes in a given element, \p n_nodes(), is encoded into the name of
78 : * the class. For example, a \p Tri3 has three nodes which correspond
79 : * to the vertices, while a \p Tri6 has six nodes, three of which are
80 : * located at vertices, and three which are located at the midpoint of
81 : * each edge. Nodes on edges, faces, and element interiors are called
82 : * second-order nodes.
83 : *
84 : * A 1D Elem is an \p Edge, a 2D Elem is a \p Face, and a 3D Elem is a
85 : * \p Cell. An \p Elem is composed of a number of sides, which can
86 : * be accessed as dim-1 dimensional \p Elem types. For example, a \p
87 : * Hex8 is a 3D hexahedral element. A \p Hex8 has 6 sides, which are
88 : * \p Faces of type Quad4.
89 : *
90 : * \author Benjamin S. Kirk
91 : * \date 2002-2007
92 : * \brief The base class for all geometric element types.
93 : */
94 : class Elem : public ReferenceCountedObject<Elem>,
95 : public DofObject
96 : {
97 : protected:
98 :
99 : /**
100 : * Constructor. Creates an element with \p n_nodes nodes,
101 : * \p n_sides sides, \p n_children possible children, and
102 : * parent \p p. The constructor allocates the memory necessary
103 : * to support this data.
104 : */
105 : Elem (const unsigned int n_nodes,
106 : const unsigned int n_sides,
107 : Elem * parent,
108 : Elem ** elemlinkdata,
109 : Node ** nodelinkdata);
110 :
111 : public:
112 :
113 : /**
114 : * Elems are responsible for allocating and deleting space for
115 : * storing pointers to their children during refinement, so they
116 : * cannot currently be (default) copy-constructed or copy-
117 : * assigned. We therefore explicitly delete these operations. In
118 : * addition, the DofObject base class currently has private copy
119 : * construction and assignment operators, so that prevents us from
120 : * copying Elems as well.
121 : */
122 : Elem (Elem &&) = delete;
123 : Elem (const Elem &) = delete;
124 : Elem & operator= (const Elem &) = delete;
125 : Elem & operator= (Elem &&) = delete;
126 :
127 : /**
128 : * Destructor.
129 : */
130 4293478887 : virtual ~Elem() = default;
131 :
132 : /**
133 : * \returns The \p Point associated with local \p Node \p i.
134 : */
135 : const Point & point (const unsigned int i) const;
136 :
137 : /**
138 : * \returns The \p Point associated with local \p Node \p i
139 : * as a writable reference.
140 : */
141 : Point & point (const unsigned int i);
142 :
143 : /**
144 : * \returns The \p Point associated with local \p Node \p i,
145 : * in master element rather than physical coordinates.
146 : */
147 : virtual Point master_point (const unsigned int i) const = 0;
148 :
149 : /**
150 : * \returns The global id number of local \p Node \p i.
151 : */
152 : dof_id_type node_id (const unsigned int i) const;
153 :
154 : /**
155 : * \returns The local id number of global \p Node id \p i,
156 : * or \p invalid_uint if Node id \p i is not local.
157 : */
158 : unsigned int local_node (const dof_id_type i) const;
159 :
160 : /**
161 : * \returns The local index for the \p Node pointer \p node_ptr,
162 : * or \p invalid_uint if \p node_ptr is not a local node.
163 : */
164 : unsigned int get_node_index (const Node * node_ptr) const;
165 :
166 : /**
167 : * \returns A pointer to an array of local node pointers.
168 : */
169 : const Node * const * get_nodes () const;
170 :
171 : /**
172 : * \returns A const pointer to local \p Node \p i.
173 : */
174 : const Node * node_ptr (const unsigned int i) const;
175 :
176 : /**
177 : * \returns A non-const pointer to local \p Node \p i.
178 : */
179 : Node * node_ptr (const unsigned int i);
180 :
181 : /**
182 : * \returns A const reference to local \p Node \p i.
183 : */
184 : const Node & node_ref (const unsigned int i) const;
185 :
186 : /**
187 : * \returns A writable reference to local \p Node \p i.
188 : */
189 : Node & node_ref (const unsigned int i);
190 :
191 : #ifdef LIBMESH_ENABLE_DEPRECATED
192 : /**
193 : * \returns The pointer to the \p Node with local number \p i as a
194 : * writable reference.
195 : *
196 : * \deprecated This setter cannot update the multiple node pointers
197 : * used in a general polyhedron; use the \p set_node overload that
198 : * takes an argument.
199 : */
200 : virtual Node * & set_node (const unsigned int i);
201 : #endif // LIBMESH_ENABLE_DEPRECATED
202 :
203 : /**
204 : * Sets local \p Node \p i to refer to \p node.
205 : */
206 : virtual void set_node (const unsigned int i,
207 : Node * node);
208 :
209 : /**
210 : * Nested classes for use iterating over all nodes of an element.
211 : */
212 : class NodeRefIter;
213 : class ConstNodeRefIter;
214 :
215 : /**
216 : * Returns a range with all nodes of an element, usable in
217 : * range-based for loops. The exact type of the return value here
218 : * may be subject to change in future libMesh releases, but the
219 : * iterators will always dereference to produce a reference to a
220 : * Node.
221 : */
222 : SimpleRange<NodeRefIter> node_ref_range();
223 :
224 : SimpleRange<ConstNodeRefIter> node_ref_range() const;
225 :
226 : /**
227 : * \returns The subdomain that this element belongs to.
228 : */
229 : subdomain_id_type subdomain_id () const;
230 :
231 : /**
232 : * \returns The subdomain that this element belongs to as a
233 : * writable reference.
234 : */
235 : subdomain_id_type & subdomain_id ();
236 :
237 : /**
238 : * A static integral constant representing an invalid subdomain id.
239 : * See also DofObject::{invalid_id, invalid_unique_id, invalid_processor_id}.
240 : *
241 : * \note We don't use the static_cast(-1) trick here since
242 : * \p subdomain_id_type is sometimes a *signed* integer for
243 : * compatibility reasons (see libmesh/id_types.h).
244 : */
245 : static constexpr subdomain_id_type invalid_subdomain_id
246 : = std::numeric_limits<subdomain_id_type>::max();
247 :
248 : /**
249 : * \returns true iff this element type can vary in topology (e.g.
250 : * have different numbers of sides and/or nodes) at runtime. For
251 : * such general polygons or polyhedra, APIs which assume a fixed
252 : * topology are not safe to use.
253 : */
254 286251202 : virtual bool runtime_topology() const { return false; }
255 :
256 : /**
257 : * \returns A pointer to the "reference element" associated
258 : * with this element. The reference element is the image of this
259 : * element in reference parametric space. Importantly, it is *not*
260 : * an actual element in the mesh, but rather a Singleton-type
261 : * object, so for example all \p Quad4 elements share the same
262 : * \p reference_elem().
263 : *
264 : * If the element is of a type that can admit multiple topologies,
265 : * such as a Polygon subtype, then there is no reference element;
266 : * for such types this method should not be used.
267 : */
268 : const Elem * reference_elem () const;
269 :
270 : /**
271 : * \returns An id associated with the \p s side of this element.
272 : * The id is not necessarily unique, but should be close.
273 : */
274 : virtual dof_id_type key (const unsigned int s) const = 0;
275 :
276 : /**
277 : * \returns An id associated with the \p s side of this element, as
278 : * defined solely by element vertices. The id is not necessarily
279 : * unique, but should be close. This is particularly useful in the
280 : * \p MeshBase::find_neighbors() routine.
281 : */
282 : virtual dof_id_type low_order_key (const unsigned int s) const = 0;
283 :
284 : /**
285 : * \returns An id associated with the global node ids of this
286 : * element. The id is not necessarily unique, but should be
287 : * close. Uses the same hash as the key(s) function, so for example
288 : * if "tri3" is side 0 of "tet4", then tri3->key()==tet4->key(0).
289 : */
290 : virtual dof_id_type key () const;
291 :
292 : /**
293 : * \returns \p true if two elements are equivalent, false otherwise.
294 : * This is true if the elements are connected to identical global
295 : * nodes, regardless of how those nodes might be numbered local
296 : * to the elements.
297 : */
298 : bool operator == (const Elem & rhs) const;
299 :
300 : /**
301 : * \returns \p true if two elements have equal topologies, false
302 : * otherwise.
303 : * This is true if the elements connect to nodes of the same id in
304 : * the same order, and neighbors of the same id on each side, the
305 : * same id on any parent and/or interior_parent link, etc.
306 : */
307 : bool topologically_equal (const Elem & rhs) const;
308 :
309 : /**
310 : * \returns A const pointer to the \f$ i^{th} \f$ neighbor of this
311 : * element, or \p nullptr if \p MeshBase::find_neighbors() has not been
312 : * called.
313 : *
314 : * \note If \p MeshBase::find_neighbors() has been called and this
315 : * function still returns \p nullptr, then the side is on a boundary of
316 : * the domain.
317 : */
318 : const Elem * neighbor_ptr (unsigned int i) const;
319 :
320 : /**
321 : * \returns A non-const pointer to the \f$ i^{th} \f$ neighbor of this element.
322 : */
323 : Elem * neighbor_ptr (unsigned int i);
324 :
325 : /**
326 : * Nested "classes" for use iterating over all neighbors of an element.
327 : */
328 : typedef Elem * const * NeighborPtrIter;
329 : typedef const Elem * const * ConstNeighborPtrIter;
330 :
331 : /**
332 : * Returns a range with all neighbors of an element, usable in
333 : * range-based for loops. The exact type of the return value here
334 : * may be subject to change in future libMesh releases, but the
335 : * iterators will always dereference to produce a pointer to a
336 : * neighbor element (or a null pointer, for sides which have no
337 : * neighbors).
338 : */
339 : SimpleRange<NeighborPtrIter> neighbor_ptr_range();
340 :
341 : SimpleRange<ConstNeighborPtrIter> neighbor_ptr_range() const;
342 :
343 : #ifdef LIBMESH_ENABLE_PERIODIC
344 : /**
345 : * \returns A pointer to the \f$ i^{th} \f$ neighbor of this element
346 : * for interior elements. If an element is on a periodic
347 : * boundary, it will return a corresponding element on the opposite
348 : * side.
349 : */
350 : const Elem * topological_neighbor (const unsigned int i,
351 : const MeshBase & mesh,
352 : const PointLocatorBase & point_locator,
353 : const PeriodicBoundaries * pb) const;
354 :
355 : /**
356 : * \returns A writable pointer to the \f$ i^{th} \f$ neighbor of
357 : * this element for interior elements. If an element is on a
358 : * periodic boundary, it will return a corresponding element on the
359 : * opposite side.
360 : */
361 : Elem * topological_neighbor (const unsigned int i,
362 : MeshBase & mesh,
363 : const PointLocatorBase & point_locator,
364 : const PeriodicBoundaries * pb);
365 :
366 : /**
367 : * \returns \p true if the element \p elem in question is a neighbor or
368 : * topological neighbor of this element, \p false otherwise.
369 : */
370 : bool has_topological_neighbor (const Elem * elem,
371 : const MeshBase & mesh,
372 : const PointLocatorBase & point_locator,
373 : const PeriodicBoundaries * pb) const;
374 : #endif
375 :
376 : /**
377 : * Assigns \p n as the \f$ i^{th} \f$ neighbor.
378 : */
379 : void set_neighbor (const unsigned int i, Elem * n);
380 :
381 : /**
382 : * \returns \p true if the element \p elem in question is a neighbor
383 : * of this element, \p false otherwise.
384 : */
385 : bool has_neighbor (const Elem * elem) const;
386 :
387 : /**
388 : * \returns If \p elem is a neighbor of a child of this element, a
389 : * pointer to that child, otherwise \p nullptr.
390 : */
391 : Elem * child_neighbor (Elem * elem);
392 :
393 : /**
394 : * \returns If \p elem is a neighbor of a child of this element, a
395 : * pointer to that child, otherwise \p nullptr.
396 : */
397 : const Elem * child_neighbor (const Elem * elem) const;
398 :
399 : /**
400 : * \returns \p true if this element has a side coincident
401 : * with a boundary (indicated by a \p nullptr neighbor), \p false
402 : * otherwise.
403 : */
404 : bool on_boundary () const;
405 :
406 : /**
407 : * \returns \p true if this element is "semilocal" to the calling
408 : * processor, which must specify its rank.
409 : *
410 : * This method is discouraged, as it uses the *old* definition of
411 : * semilocal (elements which are not local but which are point
412 : * neighbors of something local) rather than any of the new
413 : * definitions discussed in ghosting_functor.h
414 : */
415 : bool is_semilocal (const processor_id_type my_pid) const;
416 :
417 : /**
418 : * This function tells you which neighbor \p e is.
419 : * I.e. if s = a->which_neighbor_am_i(e); then
420 : * a->neighbor(s) will be an ancestor of e.
421 : */
422 : unsigned int which_neighbor_am_i(const Elem * e) const;
423 :
424 : /**
425 : * This function tells you which side the boundary element \p e is.
426 : * I.e. if e = a->build_side_ptr(s) or e = a->side_ptr(s); then
427 : * a->which_side_am_i(e) will be s.
428 : *
429 : * \note An \e exact floating point comparison of the nodal
430 : * positions of \p e is made with the nodal positions of \p this in
431 : * order to perform this test. The idea is that the test will return
432 : * a valid side id if \p e either directly shares Node pointers with
433 : * \p this, or was created by exactly copying some of the nodes of
434 : * \p this (e.g. through BoundaryMesh::sync()). In these
435 : * circumstances, non-fuzzy floating point equality is expected.
436 : *
437 : * \returns The side of \p this the element which \p e is, otherwise
438 : * \p invalid_uint.
439 : */
440 : unsigned int which_side_am_i(const Elem * e) const;
441 :
442 : /**
443 : * \returns The local node id for node \p side_node on side \p side of
444 : * this Elem. Simply relies on the \p side_nodes_map for each of the
445 : * derived types. For example,
446 : * Tri3::local_side_node(0, 0) -> 0
447 : * Tri3::local_side_node(0, 1) -> 1
448 : * Tri3::local_side_node(1, 0) -> 1
449 : * Tri3::local_side_node(1, 1) -> 2
450 : * etc...
451 : */
452 : virtual unsigned int local_side_node(unsigned int side,
453 : unsigned int side_node) const = 0;
454 :
455 : /**
456 : * Similar to Elem::local_side_node(), but instead of a side id, takes
457 : * an edge id and a node id on that edge and returns a local node number
458 : * for the Elem. The implementation relies on the "edge_nodes_map" tables
459 : * for 3D elements. For 2D elements, calls local_side_node(). Throws an
460 : * error if called on 1D elements.
461 : */
462 : virtual unsigned int local_edge_node(unsigned int edge,
463 : unsigned int edge_node) const = 0;
464 :
465 : #ifdef LIBMESH_ENABLE_DEPRECATED
466 : /**
467 : * This function is deprecated, call local_side_node(side, side_node) instead.
468 : */
469 : unsigned int which_node_am_i(unsigned int side,
470 : unsigned int side_node) const;
471 : #endif // LIBMESH_ENABLE_DEPRECATED
472 :
473 : /**
474 : * \returns \p true if a vertex of \p e is contained
475 : * in this element. If \p mesh_connection is true, looks
476 : * specifically for containment possibilities of an element \p e
477 : * that is connected to \p this via membership in the same manifold
478 : * of the same mesh.
479 : */
480 : bool contains_vertex_of(const Elem * e, bool mesh_connection=false) const;
481 :
482 : /**
483 : * \returns \p true if an edge of \p e is contained in
484 : * this element. (Internally, this is done by checking whether at
485 : * least two vertices of \p e are contained in this element).
486 : */
487 : bool contains_edge_of(const Elem * e) const;
488 :
489 : /**
490 : * This function finds all active elements (including this one)
491 : * which are in the same manifold as this element and which touch
492 : * the current active element at the specified point, which should
493 : * be a point in the current element.
494 : *
495 : * Elements which are not "in the same manifold" (e.g. the
496 : * interior_parent of a boundary element) will not be found with
497 : * this method.
498 : *
499 : * Elements which overlap the specified point but which are only
500 : * connected to the current element via elements which do not
501 : * overlap that point (e.g. in a folded or tangled mesh) are not
502 : * considered to "touch" the current element and will not be found
503 : * with this method.
504 : */
505 : void find_point_neighbors(const Point & p,
506 : std::set<const Elem *> & neighbor_set) const;
507 :
508 : /**
509 : * This function finds all active elements (including this one) in
510 : * the same manifold as this element which touch this active element
511 : * at any point.
512 : */
513 : void find_point_neighbors(std::set<const Elem *> & neighbor_set) const;
514 :
515 : /**
516 : * This function finds all active elements (including this one) in
517 : * the same manifold as start_elem (which must be active and must
518 : * touch this element) which touch this element at any point.
519 : */
520 : void find_point_neighbors(std::set<const Elem *> & neighbor_set,
521 : const Elem * start_elem) const;
522 :
523 : /**
524 : * Non-const version of function above. Fills a set of non-const Elem pointers.
525 : */
526 : void find_point_neighbors(std::set<Elem *> & neighbor_set,
527 : Elem * start_elem);
528 :
529 : /**
530 : * This function finds all active elements in the same manifold as
531 : * this element which touch the current active element along the
532 : * whole edge defined by the two points \p p1 and \p p2.
533 : */
534 : void find_edge_neighbors(const Point & p1,
535 : const Point & p2,
536 : std::set<const Elem *> & neighbor_set) const;
537 :
538 : /**
539 : * This function finds all active elements in the same manifold as
540 : * this element which touch the current active element along any
541 : * edge (more precisely, at at least two points).
542 : *
543 : * In this case, elements are included even if they do not touch a
544 : * *whole* edge of this element.
545 : */
546 : void find_edge_neighbors(std::set<const Elem *> & neighbor_set) const;
547 :
548 : /**
549 : * This function finds all active elements (*not* including this
550 : * one) in the parent manifold of this element whose intersection
551 : * with this element has non-zero measure.
552 : */
553 : void find_interior_neighbors(std::set<const Elem *> & neighbor_set) const;
554 :
555 : /**
556 : * Non-const version of function above that fills up a vector of
557 : * non-const Elem pointers instead.
558 : */
559 : void find_interior_neighbors(std::set<Elem *> & neighbor_set);
560 :
561 : /**
562 : * Resets this element's neighbors' appropriate neighbor pointers
563 : * and its parent's and children's appropriate pointers
564 : * to point to null instead of to this.
565 : *
566 : * To be used before an element is deleted from a mesh.
567 : */
568 : void remove_links_to_me ();
569 :
570 : /**
571 : * Resets this element's neighbors' appropriate neighbor pointers
572 : * and its parent's and children's appropriate pointers
573 : * to point to the global remote_elem instead of this.
574 : * Used by the library before an element becomes remote on the
575 : * local processor.
576 : */
577 : void make_links_to_me_remote ();
578 :
579 : /**
580 : * Resets the \p neighbor_side pointers of our nth neighbor (and
581 : * its descendants, if appropriate) to point to this Elem instead of
582 : * to the global remote_elem. Used by the library when a formerly
583 : * remote element is being added to the local processor.
584 : */
585 : void make_links_to_me_local (unsigned int n, unsigned int neighbor_side);
586 :
587 : /**
588 : * \returns \p true if this element is remote, false otherwise.
589 : *
590 : * A remote element (see \p RemoteElem) is a syntactic convenience --
591 : * it is a placeholder for an element which exists on some other
592 : * processor. Local elements are required to have valid neighbors,
593 : * and these ghost elements may have remote neighbors for data
594 : * structure consistency. The use of remote elements helps ensure
595 : * that any element we may access has a \p nullptr neighbor only if it
596 : * lies on the physical boundary of the domain.
597 : */
598 7280126 : virtual bool is_remote () const
599 7280126 : { return false; }
600 :
601 : /**
602 : * \returns The connectivity for this element in a specific
603 : * format, which is specified by the IOPackage tag.
604 : */
605 : virtual void connectivity(const unsigned int sc,
606 : const IOPackage iop,
607 : std::vector<dof_id_type> & conn) const = 0;
608 :
609 : /**
610 : * Writes the element connectivity for various IO packages
611 : * to the passed ostream "out". Not virtual, since it is
612 : * implemented in the base class.
613 : */
614 : void write_connectivity (std::ostream & out,
615 : const IOPackage iop) const;
616 :
617 : /**
618 : * \returns The type of element that has been derived from this
619 : * base class.
620 : */
621 : virtual ElemType type () const = 0;
622 :
623 : /**
624 : * This array maps the integer representation of the \p ElemType enum
625 : * to the geometric dimension of the element.
626 : *
627 : * This is currently usable even for complicated subclasses with
628 : * runtime-varying topology.
629 : */
630 : static const unsigned int type_to_dim_map[INVALID_ELEM];
631 :
632 : /**
633 : * \returns The dimensionality of the object.
634 : */
635 : virtual unsigned short dim () const = 0;
636 :
637 : /**
638 : * This array maps the integer representation of the \p ElemType enum
639 : * to the number of nodes in the element.
640 : *
641 : * This is only usable for simple types for which the node number
642 : * is fixed; for more general types like Polygon subclasses an actual
643 : * instantiated Elem must be queried.
644 : */
645 : static const unsigned int type_to_n_nodes_map[INVALID_ELEM];
646 :
647 : /**
648 : * \returns The number of nodes this element contains.
649 : */
650 : virtual unsigned int n_nodes () const = 0;
651 :
652 : /**
653 : * The maximum number of nodes *any* element can contain.
654 : * This is useful for replacing heap vectors with stack arrays.
655 : */
656 : static const unsigned int max_n_nodes = 27;
657 :
658 : /**
659 : * \returns An integer range from 0 up to (but not including)
660 : * the number of nodes this element contains.
661 : */
662 : IntRange<unsigned short> node_index_range () const;
663 :
664 : /**
665 : * \returns The number of nodes the given child of this element
666 : * contains. Except in odd cases like pyramid refinement this will
667 : * be the same as the number of nodes in the parent element.
668 : */
669 18635092 : virtual unsigned int n_nodes_in_child (unsigned int /*c*/) const
670 18635092 : { return this->n_nodes(); }
671 :
672 : /**
673 : * This array maps the integer representation of the \p ElemType enum
674 : * to the number of sides on the element.
675 : *
676 : * This is only usable for simple types for which the node number
677 : * is fixed; for more general types like Polygon subclasses an actual
678 : * instantiated Elem must be queried.
679 : */
680 : static const unsigned int type_to_n_sides_map[INVALID_ELEM];
681 :
682 : /**
683 : * \returns The number of sides the element that has been derived
684 : * from this class has. In 2D the number of sides is the number
685 : * of edges, in 3D the number of sides is the number of faces.
686 : */
687 : virtual unsigned int n_sides () const = 0;
688 :
689 : /**
690 : * \returns The type of element for side \p s.
691 : */
692 : virtual ElemType side_type (const unsigned int s) const = 0;
693 :
694 : /**
695 : * \returns An integer range from 0 up to (but not including)
696 : * the number of sides this element has.
697 : */
698 : IntRange<unsigned short> side_index_range () const;
699 :
700 : /**
701 : * \returns The number of neighbors the element that has been derived
702 : * from this class has.
703 : *
704 : * Only face (or edge in 2D) neighbors are stored, so this method
705 : * returns n_sides(). At one point we intended to allow derived
706 : * classes to override this, but too much current libMesh code
707 : * assumes n_neighbors==n_sides.
708 : */
709 85305893 : unsigned int n_neighbors () const
710 152199180 : { return this->n_sides(); }
711 :
712 : /**
713 : * \returns The number of vertices the element that has been derived
714 : * from this class has.
715 : */
716 : virtual unsigned int n_vertices () const = 0;
717 :
718 : /**
719 : * \returns The number of edges the element that has been derived
720 : * from this class has.
721 : */
722 : virtual unsigned int n_edges () const = 0;
723 :
724 : /**
725 : * \returns An integer range from 0 up to (but not including)
726 : * the number of edges this element has.
727 : */
728 : IntRange<unsigned short> edge_index_range () const;
729 :
730 : /**
731 : * This array maps the integer representation of the \p ElemType enum
732 : * to the number of edges on the element.
733 : *
734 : * This is only usable for simple types for which the node number
735 : * is fixed; for more general types like Polygon subclasses an actual
736 : * instantiated Elem must be queried.
737 : */
738 : static const unsigned int type_to_n_edges_map[INVALID_ELEM];
739 :
740 : /**
741 : * \returns The number of faces the element that has been derived
742 : * from this class has.
743 : */
744 : virtual unsigned int n_faces () const = 0;
745 :
746 : /**
747 : * \returns An integer range from 0 up to (but not including)
748 : * the number of faces this element has.
749 : */
750 : IntRange<unsigned short> face_index_range () const;
751 :
752 : /**
753 : * \returns The number of children the element that has been derived
754 : * from this class may have.
755 : */
756 : virtual unsigned int n_children () const = 0;
757 :
758 : /**
759 : * \returns \p true if the specified (local) node number is a vertex node.
760 : */
761 : virtual bool is_vertex(const unsigned int i) const = 0;
762 :
763 : /**
764 : * \returns \p true if the specified child has a vertex at the
765 : * specified (child-local) node number.
766 : * Except in odd cases like pyramid refinement the child will have
767 : * the same local structure as the parent element.
768 : */
769 169263 : virtual bool is_vertex_on_child (unsigned int /*c*/,
770 : unsigned int n) const
771 169263 : { return this->is_vertex(n); }
772 :
773 : /**
774 : * \returns \p true if this element has a vertex at the specified
775 : * (child-local) node number \p n of the specified child \p c.
776 : */
777 : virtual bool is_vertex_on_parent(unsigned int c,
778 : unsigned int n) const;
779 :
780 : /**
781 : * \returns \p true if the specified (local) node number is an edge node.
782 : * For 1D elements, is_edge() is equivalent to is_internal().
783 : */
784 : virtual bool is_edge(const unsigned int i) const = 0;
785 :
786 : /**
787 : * \returns \p true if the specified (local) node number is a face node.
788 : * For 2D elements, is_face() is equivalent to is_internal().
789 : * For 1D elements, is_face() == false.
790 : */
791 : virtual bool is_face(const unsigned int i) const = 0;
792 :
793 : /**
794 : * \returns \p true if the specified (local) node number is an internal node.
795 : */
796 : bool is_internal(const unsigned int i) const;
797 :
798 : /**
799 : * \returns \p true if the specified (local) node number is on the
800 : * specified side.
801 : */
802 : virtual bool is_node_on_side(const unsigned int n,
803 : const unsigned int s) const = 0;
804 :
805 : /**
806 : * \returns the (local) node numbers on the specified side
807 : */
808 : virtual std::vector<unsigned int> nodes_on_side(const unsigned int /*s*/) const = 0;
809 :
810 : /**
811 : * \returns the (local) node numbers on the specified edge
812 : */
813 : virtual std::vector<unsigned int> nodes_on_edge(const unsigned int /*e*/) const = 0;
814 :
815 : /**
816 : * \returns the (local) side numbers that touch the specified edge
817 : */
818 : virtual std::vector<unsigned int> sides_on_edge(const unsigned int /*e*/) const = 0;
819 :
820 : /**
821 : * \returns the (local) edge numbers that touch the specified node
822 : */
823 : virtual std::vector<unsigned int> edges_adjacent_to_node(const unsigned int /*n*/) const = 0;
824 :
825 : /**
826 : * \returns \p true if the specified (local) node number is on the
827 : * specified edge.
828 : */
829 : virtual bool is_node_on_edge(const unsigned int n,
830 : const unsigned int e) const = 0;
831 :
832 : /**
833 : * \returns \p true if the specified edge is on the specified side.
834 : */
835 : virtual bool is_edge_on_side(const unsigned int e,
836 : const unsigned int s) const = 0;
837 :
838 : /**
839 : * \returns The side number opposite to \p s (for a tensor product
840 : * element), or throws an error otherwise.
841 : */
842 : virtual unsigned int opposite_side(const unsigned int s) const;
843 :
844 : /**
845 : * \returns The local node number for the node opposite to node n
846 : * on side \p opposite_side(s) (for a tensor product element), or
847 : * throws an error otherwise.
848 : */
849 : virtual unsigned int opposite_node(const unsigned int n,
850 : const unsigned int s) const;
851 :
852 : /**
853 : * \returns The number of sub-elements this element may be broken
854 : * down into for visualization purposes. For example, 1 for a
855 : * linear triangle, 4 for a quadratic (6-noded) triangle, etc...
856 : */
857 : virtual unsigned int n_sub_elem () const = 0;
858 :
859 : /**
860 : * \returns A temporary element coincident with side \p i.
861 : *
862 : * This method returns the _minimum_ element necessary to uniquely
863 : * identify the side. For example, the side of a hexahedron is
864 : * always returned as a 4-noded quadrilateral, regardless of what
865 : * type of hex you are dealing with. Important data like subdomain
866 : * id, p level, or mapping type may be omitted from the temporary
867 : * element. If you want a first-class full-ordered face (i.e. a
868 : * 9-noded quad face for a 27-noded hexahedron), use the
869 : * build_side_ptr method.
870 : *
871 : * \note The const version of this function is non-virtual; it
872 : * simply calls the virtual non-const version and const_casts the
873 : * return type.
874 : */
875 : virtual std::unique_ptr<Elem> side_ptr (unsigned int i) = 0;
876 : std::unique_ptr<const Elem> side_ptr (unsigned int i) const;
877 :
878 : /**
879 : * Resets the loose element \p side, which may currently point to a
880 : * different side than \p i or even a different element than \p
881 : * this, to point to side \p i on \p this. If \p side is currently
882 : * an element of the wrong type, it will be freed and a new element
883 : * allocated; otherwise no memory allocation will occur.
884 : *
885 : * This will cause \p side to be a minimum-ordered element, even if
886 : * it is handed a higher-ordered element that must be replaced.
887 : *
888 : * The const version of this function is non-virtual; it simply
889 : * calls the virtual non-const version and const_casts the return
890 : * type.
891 : */
892 : virtual void side_ptr (std::unique_ptr<Elem> & side, const unsigned int i) = 0;
893 : void side_ptr (std::unique_ptr<const Elem> & side, const unsigned int i) const;
894 :
895 : /**
896 : * \returns An temporary element coincident with side \p i wrapped
897 : * in a smart pointer.
898 : *
899 : * The element returned is full-ordered and full-featured, in
900 : * contrast to the side method. For example, calling
901 : * build_side_ptr(0) on a 20-noded hex in subdomain 5 will build a
902 : * 8-noded quadrilateral coincident with face 0, assign it subdomain
903 : * id 5, and pass back the pointer.
904 : *
905 : * The side element's id() is undefined; it is a temporary element
906 : * not added to any mesh.
907 : *
908 : * A \p std::unique_ptr<Elem> is returned to prevent a memory leak.
909 : * This way the user need not remember to delete the object.
910 : *
911 : * The const version of this function is non-virtual; it simply
912 : * calls the virtual non-const version and const_casts the return
913 : * type.
914 : */
915 : virtual std::unique_ptr<Elem> build_side_ptr (const unsigned int i) = 0;
916 : std::unique_ptr<const Elem> build_side_ptr (const unsigned int i) const;
917 :
918 : #ifdef LIBMESH_ENABLE_DEPRECATED
919 : /*
920 : * Older versions of libMesh supported a "proxy" option here.
921 : */
922 0 : virtual std::unique_ptr<Elem> build_side_ptr (const unsigned int i, bool proxy)
923 0 : { if (proxy) libmesh_error(); libmesh_deprecated(); return this->build_side_ptr(i); }
924 :
925 : std::unique_ptr<const Elem> build_side_ptr (const unsigned int i, bool proxy) const
926 : { if (proxy) libmesh_error(); libmesh_deprecated(); return this->build_side_ptr(i); }
927 : #endif
928 :
929 : /**
930 : * Resets the loose element \p side, which may currently point to a
931 : * different side than \p i or even a different element than \p
932 : * this, to point to side \p i on \p this. If \p side is currently
933 : * an element of the wrong type, it will be freed and a new element
934 : * allocated; otherwise no memory allocation will occur.
935 : *
936 : * This will cause \p side to be a full-ordered element, even if it
937 : * is handed a lower-ordered element that must be replaced.
938 : *
939 : * The const version of this function is non-virtual; it simply
940 : * calls the virtual non-const version and const_casts the return
941 : * type.
942 : */
943 : virtual void build_side_ptr (std::unique_ptr<Elem> & side, const unsigned int i) = 0;
944 : void build_side_ptr (std::unique_ptr<const Elem> & side, const unsigned int i) const;
945 :
946 : /**
947 : * \returns An element coincident with edge \p i wrapped in a smart pointer.
948 : *
949 : * The element returned is full-ordered. For example, calling
950 : * build_edge_ptr(0) on a 20-noded hex will build a 3-noded edge
951 : * coincident with edge 0 and pass back the pointer. A \p
952 : * std::unique_ptr<Elem> is returned to prevent a memory leak. This way
953 : * the user need not remember to delete the object.
954 : *
955 : * The const version of this function is non-virtual; it simply
956 : * calls the virtual non-const version and const_casts the return
957 : * type.
958 : */
959 : virtual std::unique_ptr<Elem> build_edge_ptr (const unsigned int i) = 0;
960 : std::unique_ptr<const Elem> build_edge_ptr (const unsigned int i) const;
961 :
962 : /**
963 : * Resets the loose element \p edge, which may currently point to a
964 : * different edge than \p i or even a different element than \p
965 : * this, to point to edge \p i on \p this. If \p edge is currently
966 : * an element of the wrong type, it will be freed and a new element
967 : * allocated; otherwise no memory allocation will occur.
968 : *
969 : * This will cause \p edge to be a full-ordered element, even if it
970 : * is handed a lower-ordered element that must be replaced.
971 : *
972 : * The const version of this function is non-virtual; it simply
973 : * calls the virtual non-const version and const_casts the return
974 : * type.
975 : */
976 : virtual void build_edge_ptr (std::unique_ptr<Elem> & edge, const unsigned int i) = 0;
977 : void build_edge_ptr (std::unique_ptr<const Elem> & edge, const unsigned int i) const;
978 :
979 : /**
980 : * This array maps the integer representation of the \p ElemType enum
981 : * to the default approximation order of elements of that type.
982 : *
983 : * This is currently usable even for complicated subclasses with
984 : * runtime-varying topology.
985 : */
986 : static const Order type_to_default_order_map[INVALID_ELEM];
987 :
988 : /**
989 : * \returns The default approximation order for this element. This
990 : * is the order that will be used to compute the map to the
991 : * reference element.
992 : */
993 : virtual Order default_order () const = 0;
994 :
995 : /**
996 : * \returns The maximum supported approximation order for nodal
997 : * (Lagrange or Rational Bezier-Bernstein) variables on this element
998 : * type. This is usually the same as the default order.
999 : */
1000 38688747 : virtual Order supported_nodal_order() const { return default_order(); }
1001 :
1002 : /**
1003 : * \returns The default approximation order for side elements of
1004 : * this element type. This may be lower for elements with 'bubble
1005 : * functions' in the Lagrange basis.
1006 : */
1007 481180 : virtual Order default_side_order () const { return default_order(); }
1008 :
1009 : #ifdef LIBMESH_ENABLE_DEPRECATED
1010 : /**
1011 : * Calls Elem::vertex_average() for backwards compatibility.
1012 : *
1013 : * \deprecated This method has now been deprecated, so it will be
1014 : * removed at some point in the future. Calls to Elem::centroid()
1015 : * in user code should be updated to either call
1016 : * Elem::vertex_average() or Elem::true_centroid() on a case by case
1017 : * basis.
1018 : */
1019 : virtual Point centroid () const;
1020 : #endif // LIBMESH_ENABLE_DEPRECATED
1021 :
1022 : /**
1023 : * \returns The "true" geometric centroid of the element, c=(cx, cy,
1024 : * cz), where:
1025 : *
1026 : * [cx] [\int x dV]
1027 : * [cy] := (1/V) * [\int y dV]
1028 : * [cz] [\int z dV]
1029 : *
1030 : * This method is virtual since some derived elements might want to
1031 : * use shortcuts to compute their centroid. For most element types,
1032 : * this method is more expensive than calling vertex_average(), so
1033 : * if you only need a point which is located "somewhere" in the
1034 : * interior of the element, consider calling vertex_average() instead.
1035 : */
1036 : virtual Point true_centroid () const;
1037 :
1038 : /**
1039 : * \returns A Point at the average of the elment's vertices.
1040 : *
1041 : * \note This used to be the base class centroid() implementation, but
1042 : * the centroid is only equal to the vertex average in some special cases.
1043 : * The centroid() implementation now returns the "true" centroid of the
1044 : * element (up to quadrature error).
1045 : */
1046 : Point vertex_average () const;
1047 :
1048 : /**
1049 : * \returns The "circumcenter of mass" (area-weighted average of
1050 : * triangulation circumcenters) of the element.
1051 : *
1052 : * Not implemented for infinite elements, not currently implemented
1053 : * for 3D elements, currently ignores curvature of element edges.
1054 : */
1055 0 : virtual Point quasicircumcenter () const
1056 0 : { libmesh_not_implemented(); }
1057 :
1058 : /**
1059 : * \returns The minimum vertex separation for the element.
1060 : */
1061 : virtual Real hmin () const;
1062 :
1063 : /**
1064 : * \returns The maximum vertex separation for the element.
1065 : */
1066 : virtual Real hmax () const;
1067 :
1068 : /**
1069 : * \returns The (length/area/volume) of the geometric element.
1070 : *
1071 : * If the element is twisted or inverted such that the mapping
1072 : * Jacobian is singular at any point, implementations of this method
1073 : * may return a "net" volume or may simply return NaN.
1074 : */
1075 : virtual Real volume () const;
1076 :
1077 : /**
1078 : * \returns A bounding box (not necessarily the minimal bounding box)
1079 : * containing the geometric element.
1080 : *
1081 : * The base class implementation determines a bounding box for the
1082 : * element *nodes*, which should be sufficient for first order
1083 : * finite elements. Higher order geometric elements will need to
1084 : * override with an implementation which takes curved elements into
1085 : * account.
1086 : */
1087 : virtual BoundingBox loose_bounding_box () const;
1088 :
1089 : /**
1090 : * \returns A quantitative assessment of element quality based on
1091 : * the quality metric \p q specified by the user. Not all ElemQuality
1092 : * metrics are supported for all Elem types; consult the Elem::quality()
1093 : * overrides for specific Elem types to determine which quality metrics
1094 : * are supported. The ElemQuality metrics with generic support for all
1095 : * Elems with dimension > 1 are:
1096 : * .) EDGE_LENGTH_RATIO - ratio of maximum to minimum edge (in 2D,
1097 : * side) length, where the min/max is taken over all Elem edges.
1098 : * .) MIN,MAX_ANGLE - The minimum (respectively maximum) angle
1099 : * between all pairs of adjacent Elem edges, in degrees. Note
1100 : * that, in 3D, these are *not* the dihedral angles (angle
1101 : * between adjacent planar faces of the element), which we plan to
1102 : * add support for in the future. In 2D, we compute the angle
1103 : * between adjacent sides for this metric.
1104 : */
1105 : virtual Real quality (const ElemQuality q) const;
1106 :
1107 : /**
1108 : * \returns The suggested quality bounds for the Elem based on
1109 : * quality measure \p q.
1110 : *
1111 : * These are the values suggested by the CUBIT User's Manual. Since
1112 : * this function can have no possible meaning for an abstract Elem,
1113 : * it is an error in the base class.
1114 : */
1115 0 : virtual std::pair<Real,Real> qual_bounds (const ElemQuality) const
1116 0 : { libmesh_not_implemented(); return std::make_pair(0.,0.); }
1117 :
1118 : /**
1119 : * \returns \p true if the physical point p is contained in this
1120 : * element, false otherwise.
1121 : *
1122 : * For linear elements, performs an initial tight bounding box check
1123 : * (as an optimization step) and (if that passes) then uses the
1124 : * user-defined tolerance "tol" in a call to inverse_map() to actually
1125 : * test if the point is in the element. For quadratic elements, the
1126 : * bounding box optimization is skipped, and only the inverse_map()
1127 : * steps are performed.
1128 : *
1129 : * \note This routine should not be used to determine if a point
1130 : * is merely "nearby" an element to within some tolerance. For that,
1131 : * use Elem::close_to_point() instead.
1132 : */
1133 : virtual bool contains_point (const Point & p, Real tol=TOLERANCE) const;
1134 :
1135 : /**
1136 : * \returns \p true if the master-space point p is contained in the
1137 : * reference element corresponding to this element, false otherwise.
1138 : *
1139 : * Since we are doing floating point comparisons here the parameter
1140 : * \p eps can be specified to indicate a tolerance. For example,
1141 : * \f$ x \le 1 \f$ becomes \f$ x \le 1 + \epsilon \f$.
1142 : */
1143 : virtual bool on_reference_element(const Point & p,
1144 : const Real eps = TOLERANCE) const = 0;
1145 :
1146 : /**
1147 : * \returns \p true if this element is "close" to the point p, where
1148 : * "close" is determined by the tolerance tol.
1149 : */
1150 : virtual bool close_to_point(const Point & p, Real tol) const;
1151 :
1152 : /**
1153 : * \returns \p true if edge \p i is positively oriented. An edge is
1154 : * positively oriented iff its first vertex (i.e. zeroth node) is
1155 : * lexicographically greater than its second vertex (i.e. first node).
1156 : */
1157 : bool positive_edge_orientation(const unsigned int i) const;
1158 :
1159 : /**
1160 : * \returns \p true if face \p i is positively oriented. A face is
1161 : * positively oriented iff the triangle defined by the lexicographically
1162 : * least vertex and its two adjacent vertices on the same face is
1163 : * positively oriented. Said triangle is positively oriented iff its
1164 : * vertices are an odd permutation of their lexicographic ordering.
1165 : */
1166 : bool positive_face_orientation(const unsigned int i) const;
1167 :
1168 :
1169 : /**
1170 : * A helper function for copying generic element data (mapping,
1171 : * subdomain, processor) from an element to a derived (child, side,
1172 : * edge) element. Useful for forwards compatibility when new data
1173 : * is added.
1174 : */
1175 : void inherit_data_from(const Elem & src);
1176 :
1177 :
1178 : private:
1179 : /**
1180 : * Shared private implementation used by the contains_point()
1181 : * and close_to_point() routines. The box_tol tolerance is
1182 : * used in the bounding box optimization, the map_tol tolerance is used
1183 : * in the calls to inverse_map() and on_reference_element().
1184 : */
1185 : bool point_test(const Point & p, Real box_tol, Real map_tol) const;
1186 :
1187 : public:
1188 : /**
1189 : * \returns \p true if the element map is definitely affine (i.e. the same at
1190 : * every quadrature point) within numerical tolerances.
1191 : */
1192 0 : virtual bool has_affine_map () const { return false; }
1193 :
1194 : /**
1195 : * \returns \p true if the element map is invertible everywhere on
1196 : * the element, to within a user-specified tolerance. The tolerance
1197 : * is generally used in comparisons against zero, so it should be an
1198 : * absolute rather than a relative tolerance. Throws a
1199 : * libmesh_not_implemented() error unless specialized by derived
1200 : * classes.
1201 : */
1202 : virtual bool has_invertible_map(Real tol = TOLERANCE*TOLERANCE) const;
1203 :
1204 : /**
1205 : * \returns \p true if the Lagrange shape functions on this element
1206 : * are linear.
1207 : */
1208 0 : virtual bool is_linear () const { return false; }
1209 :
1210 : /**
1211 : * Prints relevant information about the element.
1212 : */
1213 : void print_info (std::ostream & os=libMesh::out) const;
1214 :
1215 : /**
1216 : * Prints relevant information about the element to a string.
1217 : */
1218 : std::string get_info () const;
1219 :
1220 : /**
1221 : * \returns \p true if the element is active (i.e. has no active
1222 : * descendants) or AMR is disabled, \p false otherwise.
1223 : *
1224 : * \note It suffices to check the first child only.
1225 : */
1226 : bool active () const;
1227 :
1228 : /**
1229 : * \returns \p true if the element is an ancestor (i.e. has an
1230 : * active child or ancestor child), \p false otherwise or when AMR
1231 : * is disabled.
1232 : */
1233 : bool ancestor () const;
1234 :
1235 : /**
1236 : * \returns \p true if the element is subactive (i.e. has no active
1237 : * descendants), \p false otherwise or if AMR is disabled.
1238 : */
1239 : bool subactive () const;
1240 :
1241 : /**
1242 : * \returns \p true if the element has any children (active or not),
1243 : * \p false otherwise, or if AMR is disabled.
1244 : */
1245 : bool has_children () const;
1246 :
1247 : /**
1248 : * \returns \p true if the element has any descendants other than
1249 : * its immediate children, \p false otherwise, or if AMR is disabled.
1250 : */
1251 : bool has_ancestor_children () const;
1252 :
1253 : /**
1254 : * \returns \p true if \p descendant is a child of \p this, or a
1255 : * child of a child of \p this, etc., \p false otherwise or if AMR
1256 : * is disabled.
1257 : */
1258 : bool is_ancestor_of(const Elem * descendant) const;
1259 :
1260 : /**
1261 : * \returns A const pointer to the element's parent, or \p nullptr if
1262 : * the element was not created via refinement.
1263 : */
1264 : const Elem * parent () const;
1265 :
1266 : /**
1267 : * \returns A pointer to the element's parent, or \p nullptr if
1268 : * the element was not created via refinement.
1269 : */
1270 : Elem * parent ();
1271 :
1272 : /**
1273 : * Sets the pointer to the element's parent.
1274 : * Dangerous! Only use this if you know what you are doing!
1275 : */
1276 : void set_parent (Elem * p);
1277 :
1278 : /**
1279 : * \returns A pointer to the element's top-most (i.e. level-0) parent.
1280 : *
1281 : * That is, \p this if this is a level-0 element, this element's parent
1282 : * if this is a level-1 element, this element's grandparent if this is
1283 : * a level-2 element, etc...
1284 : */
1285 : const Elem * top_parent () const;
1286 :
1287 : /**
1288 : * \returns The higher-dimensional Elem for which this Elem is a face.
1289 : *
1290 : * In some cases it is desirable to extract the boundary (or a subset thereof)
1291 : * of a D-dimensional mesh as a (D-1)-dimensional manifold. In this case
1292 : * we may want to know the 'parent' element from which the manifold elements
1293 : * were extracted. We can easily do that for the level-0 manifold elements
1294 : * by storing the D-dimensional parent. This method provides access to that
1295 : * element.
1296 : *
1297 : * This method returns nullptr if this->dim() == LIBMESH_DIM; in
1298 : * such cases no data storage for an interior parent pointer has
1299 : * been allocated.
1300 : */
1301 : const Elem * interior_parent () const;
1302 :
1303 : Elem * interior_parent ();
1304 :
1305 : /**
1306 : * Sets the pointer to the element's interior_parent.
1307 : * Dangerous! Only use this if you know what you are doing!
1308 : */
1309 : void set_interior_parent (Elem * p);
1310 :
1311 : /**
1312 : * \returns The distance between nodes n1 and n2.
1313 : *
1314 : * Useful for computing the lengths of the sides of elements.
1315 : */
1316 : Real length (const unsigned int n1,
1317 : const unsigned int n2) const;
1318 :
1319 : /**
1320 : * \returns The number of adjacent vertices that uniquely define the
1321 : * location of the \f$ n^{th} \f$ second-order node, or 0 for linear
1322 : * elements.
1323 : *
1324 : * This method is useful when converting linear elements to quadratic
1325 : * elements.
1326 : *
1327 : * \note \p n has to be greater than or equal to \p this->n_vertices().
1328 : */
1329 : virtual unsigned int n_second_order_adjacent_vertices (const unsigned int n) const;
1330 :
1331 : /**
1332 : * \returns The element-local number of the \f$ v^{th} \f$ vertex
1333 : * that defines the \f$ n^{th} \f$ second-order node, or 0 for
1334 : * linear elements.
1335 : *
1336 : * \note The value is always less than \p this->n_vertices(), while
1337 : * \p n has to be greater than or equal to \p this->n_vertices().
1338 : */
1339 : virtual unsigned short int second_order_adjacent_vertex (const unsigned int n,
1340 : const unsigned int v) const;
1341 :
1342 : /**
1343 : * \returns A pair (c,v), where
1344 : * c == child index, and
1345 : * v == element-local index of the \p \f$ n^{th} \f$
1346 : * second-order node on the parent element.
1347 : * For linear elements, (0,0) is returned.
1348 : *
1349 : * \note The return values are always less than \p this->n_children()
1350 : * and \p this->child_ptr(c)->n_vertices().
1351 : *
1352 : * \note \p n has to be greater than or equal to \p this->n_vertices().
1353 : *
1354 : * \note On refined second-order elements, the return value will
1355 : * satisfy \p this->node_ptr(n) == this->child_ptr(c)->node_ptr(v).
1356 : */
1357 : virtual std::pair<unsigned short int, unsigned short int>
1358 : second_order_child_vertex (const unsigned int n) const;
1359 :
1360 : /**
1361 : * \returns The ElemType of the associated second-order element
1362 : * (which will be the same as the input if the input is already a
1363 : * second-order ElemType) or INVALID_ELEM for elements that cannot be
1364 : * converted into higher order equivalents.
1365 : *
1366 : * For example, when \p this is a \p TET4, then \p TET10 is returned.
1367 : *
1368 : * For some elements, there exist two second-order equivalents, e.g.
1369 : * for \p Quad4 there is \p Quad8 and \p Quad9. When the optional
1370 : * \p full_ordered is \p true, then \p QUAD9 is returned. When
1371 : * \p full_ordered is \p false, then \p QUAD8 is returned.
1372 : */
1373 : static ElemType second_order_equivalent_type (const ElemType et,
1374 : const bool full_ordered=true);
1375 :
1376 : /**
1377 : * \returns The element type of the associated first-order element,
1378 : * or \p INVALID_ELEM for first-order or other elements that cannot be
1379 : * converted into lower order equivalents.
1380 : *
1381 : * For example, when \p this is a \p TET10, then \p TET4 is returned.
1382 : */
1383 : static ElemType first_order_equivalent_type (const ElemType et);
1384 :
1385 : /**
1386 : * \returns The ElemType of the associated "complete" order element
1387 : * (which will be the same as the input if the input is already a
1388 : * complete-order ElemType), or INVALID_ELEM for elements that cannot be
1389 : * converted into complete-order equivalents.
1390 : *
1391 : * The "complete" version of an element is an element which can
1392 : * represent the same geometry but which has nodes available to
1393 : * restore degrees of freedom on any vertex, edge, or face.
1394 : *
1395 : * For example, when \p this is a \p TET4, then \p TET14 is returned.
1396 : */
1397 : static ElemType complete_order_equivalent_type (const ElemType et);
1398 :
1399 : /**
1400 : * \returns The refinement level of the current element.
1401 : *
1402 : * If the element's parent is \p nullptr then by convention it is at
1403 : * level 0, otherwise it is simply at one level greater than its
1404 : * parent.
1405 : */
1406 : unsigned int level () const;
1407 :
1408 : /**
1409 : * \returns The value of the p refinement level of an active
1410 : * element, or the minimum value of the p refinement levels
1411 : * of an ancestor element's descendants.
1412 : */
1413 : unsigned int p_level () const;
1414 :
1415 : /**
1416 : * \returns \p true if the specified child is on the specified side.
1417 : */
1418 : virtual bool is_child_on_side(const unsigned int c,
1419 : const unsigned int s) const = 0;
1420 :
1421 : /**
1422 : * \returns The value of the mapping type for the element.
1423 : */
1424 : ElemMappingType mapping_type () const;
1425 :
1426 : /**
1427 : * Sets the value of the mapping type for the element.
1428 : */
1429 : void set_mapping_type (const ElemMappingType type);
1430 :
1431 : /**
1432 : * \returns The value of the mapping data for the element.
1433 : */
1434 : unsigned char mapping_data () const;
1435 :
1436 : /**
1437 : * Sets the value of the mapping data for the element.
1438 : */
1439 : void set_mapping_data (const unsigned char data);
1440 :
1441 :
1442 : #ifdef LIBMESH_ENABLE_AMR
1443 :
1444 : /**
1445 : * Enumeration of possible element refinement states.
1446 : */
1447 : enum RefinementState { COARSEN = 0,
1448 : DO_NOTHING,
1449 : REFINE,
1450 : JUST_REFINED,
1451 : JUST_COARSENED,
1452 : INACTIVE,
1453 : COARSEN_INACTIVE,
1454 : INVALID_REFINEMENTSTATE };
1455 :
1456 : /**
1457 : * \returns A constant pointer to the \f$ i^{th} \f$ child for this element.
1458 : * For internal use only - skips assertions about null pointers.
1459 : */
1460 : const Elem * raw_child_ptr (unsigned int i) const;
1461 :
1462 : /**
1463 : * \returns A constant pointer to the \f$ i^{th} \f$ child for this element.
1464 : * Do not call if this element has no children, i.e. is active.
1465 : */
1466 : const Elem * child_ptr (unsigned int i) const;
1467 :
1468 : /**
1469 : * \returns A non-constant pointer to the \f$ i^{th} \f$ child for this element.
1470 : * Do not call if this element has no children, i.e. is active.
1471 : */
1472 : Elem * child_ptr (unsigned int i);
1473 :
1474 : /**
1475 : * Nested classes for use iterating over all children of a parent
1476 : * element.
1477 : */
1478 : class ChildRefIter;
1479 : class ConstChildRefIter;
1480 :
1481 : /**
1482 : * Returns a range with all children of a parent element, usable in
1483 : * range-based for loops. The exact type of the return value here
1484 : * may be subject to change in future libMesh releases, but the
1485 : * iterators will always dereference to produce a reference to a
1486 : * child element.
1487 : */
1488 : SimpleRange<ChildRefIter> child_ref_range();
1489 :
1490 : SimpleRange<ConstChildRefIter> child_ref_range() const;
1491 :
1492 : private:
1493 : /**
1494 : * Sets the pointer to the \f$ i^{th} \f$ child for this element.
1495 : * Do not call if this element has no children, i.e. is active.
1496 : */
1497 : void set_child (unsigned int c, Elem * elem);
1498 :
1499 : public:
1500 : /**
1501 : * \returns The child index which \p e corresponds to.
1502 : *
1503 : * I.e. if c = a->which_child_am_i(e); then a->child_ptr(c) will be
1504 : * e.
1505 : */
1506 : unsigned int which_child_am_i(const Elem * e) const;
1507 :
1508 : /**
1509 : * \returns \p true if the specified child is on the specified edge.
1510 : */
1511 : virtual bool is_child_on_edge(const unsigned int c,
1512 : const unsigned int e) const;
1513 :
1514 : /**
1515 : * Adds a child pointer to the array of children of this element.
1516 : * If this is the first child to be added, this method allocates
1517 : * memory in the parent's _children array, otherwise, it just sets
1518 : * the pointer.
1519 : */
1520 : void add_child (Elem * elem);
1521 :
1522 : /**
1523 : * Adds a new child pointer to the specified index in the array of
1524 : * children of this element. If this is the first child to be added,
1525 : * this method allocates memory in the parent's _children array,
1526 : * otherwise, it just sets the pointer.
1527 : */
1528 : void add_child (Elem * elem, unsigned int c);
1529 :
1530 : /**
1531 : * Replaces the child pointer at the specified index in the child array.
1532 : */
1533 : void replace_child (Elem * elem, unsigned int c);
1534 :
1535 : /**
1536 : * Fills the vector \p family with the children of this element,
1537 : * recursively. Calling this method on a twice-refined element
1538 : * will give you the element itself, its direct children, and their
1539 : * children, etc... When the optional parameter \p reset is
1540 : * true, the vector will be cleared before the element and its
1541 : * descendants are added.
1542 : *
1543 : * The family tree only includes ancestor and active elements. To
1544 : * include subactive elements as well, use total_family_tree().
1545 : */
1546 : void family_tree (std::vector<const Elem *> & family,
1547 : bool reset = true) const;
1548 :
1549 : /**
1550 : * Non-const version of function above; fills a vector of non-const pointers.
1551 : */
1552 : void family_tree (std::vector<Elem *> & family,
1553 : bool reset = true);
1554 :
1555 : /**
1556 : * Same as the \p family_tree() member, but also adds any subactive
1557 : * descendants.
1558 : */
1559 : void total_family_tree (std::vector<const Elem *> & family,
1560 : bool reset = true) const;
1561 :
1562 : /**
1563 : * Non-const version of function above; fills a vector of non-const pointers.
1564 : */
1565 : void total_family_tree (std::vector<Elem *> & family,
1566 : bool reset = true);
1567 :
1568 : /**
1569 : * Same as the \p family_tree() member, but only adds the active
1570 : * children. Can be thought of as removing all the inactive
1571 : * elements from the vector created by \p family_tree, but is
1572 : * implemented more efficiently.
1573 : */
1574 : void active_family_tree (std::vector<const Elem *> & active_family,
1575 : bool reset = true) const;
1576 :
1577 : /**
1578 : * Non-const version of function above; fills a vector of non-const pointers.
1579 : */
1580 : void active_family_tree (std::vector<Elem *> & active_family,
1581 : bool reset = true);
1582 :
1583 : /**
1584 : * Same as the \p family_tree() member, but only adds elements
1585 : * which are next to \p side.
1586 : */
1587 : void family_tree_by_side (std::vector<const Elem *> & family,
1588 : unsigned int side,
1589 : bool reset = true) const;
1590 :
1591 : /**
1592 : * Non-const version of function above; fills a vector of non-const pointers.
1593 : */
1594 : void family_tree_by_side (std::vector<Elem *> & family,
1595 : unsigned int side,
1596 : bool reset = true);
1597 :
1598 : /**
1599 : * Same as the \p active_family_tree() member, but only adds elements
1600 : * which are next to \p side.
1601 : */
1602 : void active_family_tree_by_side (std::vector<const Elem *> & family,
1603 : unsigned int side,
1604 : bool reset = true) const;
1605 :
1606 : /**
1607 : * Non-const version of function above; fills a vector of non-const pointers.
1608 : */
1609 : void active_family_tree_by_side (std::vector<Elem *> & family,
1610 : unsigned int side,
1611 : bool reset = true);
1612 :
1613 : /**
1614 : * Same as the \p family_tree() member, but only adds elements
1615 : * which are next to \p neighbor.
1616 : */
1617 : void family_tree_by_neighbor (std::vector<const Elem *> & family,
1618 : const Elem * neighbor,
1619 : bool reset = true) const;
1620 :
1621 : /**
1622 : * Non-const version of function above; fills a vector of non-const pointers.
1623 : */
1624 : void family_tree_by_neighbor (std::vector<Elem *> & family,
1625 : Elem * neighbor,
1626 : bool reset = true);
1627 :
1628 : /**
1629 : * Same as the \p family_tree_by_neighbor() member, but also adds
1630 : * any subactive descendants.
1631 : */
1632 : void total_family_tree_by_neighbor (std::vector<const Elem *> & family,
1633 : const Elem * neighbor,
1634 : bool reset = true) const;
1635 :
1636 : /**
1637 : * Non-const version of function above; fills a vector of non-const pointers.
1638 : */
1639 : void total_family_tree_by_neighbor (std::vector<Elem *> & family,
1640 : Elem * neighbor,
1641 : bool reset = true);
1642 :
1643 : /**
1644 : * Same as the \p family_tree() member, but only adds elements
1645 : * which are next to \p subneighbor. Only applicable when
1646 : * \p this->has_neighbor(neighbor) and
1647 : * \p neighbor->is_ancestor(subneighbor)
1648 : */
1649 : void family_tree_by_subneighbor (std::vector<const Elem *> & family,
1650 : const Elem * neighbor,
1651 : const Elem * subneighbor,
1652 : bool reset = true) const;
1653 :
1654 : /**
1655 : * Non-const version of function above; fills a vector of non-const pointers.
1656 : */
1657 : void family_tree_by_subneighbor (std::vector<Elem *> & family,
1658 : Elem * neighbor,
1659 : Elem * subneighbor,
1660 : bool reset = true);
1661 :
1662 : /**
1663 : * Same as the \p family_tree_by_subneighbor() member, but also adds
1664 : * any subactive descendants.
1665 : */
1666 : void total_family_tree_by_subneighbor (std::vector<const Elem *> & family,
1667 : const Elem * neighbor,
1668 : const Elem * subneighbor,
1669 : bool reset = true) const;
1670 :
1671 : /**
1672 : * Non-const version of function above; fills a vector of non-const pointers.
1673 : */
1674 : void total_family_tree_by_subneighbor (std::vector<Elem *> & family,
1675 : Elem * neighbor,
1676 : Elem * subneighbor,
1677 : bool reset = true);
1678 :
1679 : /**
1680 : * Same as the \p active_family_tree() member, but only adds elements
1681 : * which are next to \p neighbor.
1682 : */
1683 : void active_family_tree_by_neighbor (std::vector<const Elem *> & family,
1684 : const Elem * neighbor,
1685 : bool reset = true) const;
1686 :
1687 : /**
1688 : * Non-const version of function above; fills a vector of non-const pointers.
1689 : */
1690 : void active_family_tree_by_neighbor (std::vector<Elem *> & family,
1691 : Elem * neighbor,
1692 : bool reset = true);
1693 :
1694 : /**
1695 : * Same as the \p active_family_tree_by_neighbor() member, but the
1696 : * \p neighbor here may be a topological (e.g. periodic boundary
1697 : * condition) neighbor, not just a local neighbor.
1698 : */
1699 : void active_family_tree_by_topological_neighbor (std::vector<const Elem *> & family,
1700 : const Elem * neighbor,
1701 : const MeshBase & mesh,
1702 : const PointLocatorBase & point_locator,
1703 : const PeriodicBoundaries * pb,
1704 : bool reset = true) const;
1705 :
1706 : /**
1707 : * Non-const version of function above; fills a vector of non-const pointers.
1708 : */
1709 : void active_family_tree_by_topological_neighbor (std::vector<Elem *> & family,
1710 : Elem * neighbor,
1711 : const MeshBase & mesh,
1712 : const PointLocatorBase & point_locator,
1713 : const PeriodicBoundaries * pb,
1714 : bool reset = true);
1715 :
1716 : /**
1717 : * \returns The value of the refinement flag for the element.
1718 : */
1719 : RefinementState refinement_flag () const;
1720 :
1721 : /**
1722 : * Sets the value of the refinement flag for the element.
1723 : */
1724 : void set_refinement_flag (const RefinementState rflag);
1725 :
1726 : /**
1727 : * \returns The value of the p-refinement flag for the element.
1728 : */
1729 : RefinementState p_refinement_flag () const;
1730 :
1731 : /**
1732 : * Sets the value of the p-refinement flag for the element.
1733 : */
1734 : void set_p_refinement_flag (const RefinementState pflag);
1735 :
1736 : /**
1737 : * \returns The maximum value of the p-refinement levels of
1738 : * an ancestor element's descendants.
1739 : */
1740 : unsigned int max_descendant_p_level () const;
1741 :
1742 : /**
1743 : * \returns The minimum p-refinement level of elements which are
1744 : * descended from this element, and which share a side with the
1745 : * active \p neighbor.
1746 : */
1747 : unsigned int min_p_level_by_neighbor (const Elem * neighbor,
1748 : unsigned int current_min) const;
1749 :
1750 : /**
1751 : * \returns The minimum new p-refinement level (i.e. after refinement
1752 : * and coarsening is done) of elements which are descended from this
1753 : * element and which share a side with the active \p neighbor.
1754 : */
1755 : unsigned int min_new_p_level_by_neighbor (const Elem * neighbor,
1756 : unsigned int current_min) const;
1757 :
1758 : /**
1759 : * Sets the value of the p-refinement level for the element.
1760 : *
1761 : * \note The maximum p-refinement level is currently 255.
1762 : */
1763 : void set_p_level (const unsigned int p);
1764 :
1765 : /**
1766 : * Sets the value of the p-refinement level for the element
1767 : * without altering the p-level of its ancestors
1768 : */
1769 : void hack_p_level (const unsigned int p);
1770 :
1771 : /**
1772 : * Sets the value of the p-refinement level for the element
1773 : * without altering the p-level of its ancestors; also sets the
1774 : * p_refinement_flag, simultaneously so that they can be safely
1775 : * checked for mutual consistency
1776 : */
1777 : void hack_p_level_and_refinement_flag (const unsigned int p,
1778 : RefinementState pflag);
1779 :
1780 : /**
1781 : * Refine the element.
1782 : */
1783 : virtual void refine (MeshRefinement & mesh_refinement);
1784 :
1785 : /**
1786 : * Coarsen the element. This function is non-virtual since it is the same
1787 : * for all element types.
1788 : */
1789 : void coarsen ();
1790 :
1791 : /**
1792 : * Contract an active element, i.e. remove pointers to any
1793 : * subactive children. This should only be called via
1794 : * MeshRefinement::contract, which will also remove subactive
1795 : * children from the mesh.
1796 : */
1797 : void contract ();
1798 :
1799 : #endif
1800 :
1801 : #ifndef NDEBUG
1802 : /**
1803 : * Checks for consistent neighbor links on this element.
1804 : */
1805 : void libmesh_assert_valid_neighbors() const;
1806 :
1807 : /**
1808 : * Checks for a valid id and pointers to nodes with valid ids on
1809 : * this element.
1810 : */
1811 : void libmesh_assert_valid_node_pointers() const;
1812 : #endif // !NDEBUG
1813 :
1814 : /**
1815 : * \returns The local node index of the given point IF said node
1816 : * has a singular Jacobian for this element. If the given point
1817 : * is not a node or is a node and does not have a singular Jacobian,
1818 : * this will return invalid_uint.
1819 : *
1820 : * The intention is for this to be overridden in derived element
1821 : * classes that do have nodes that have singular Jacobians. When
1822 : * mapping failures are caught, we can check this to see if the
1823 : * failed physical point is actually a singular point and
1824 : * return the correct master point.
1825 : */
1826 0 : virtual unsigned int local_singular_node(const Point & /* p */, const Real /* tol */ = TOLERANCE*TOLERANCE) const
1827 0 : { return invalid_uint; }
1828 :
1829 : /**
1830 : * \returns true iff the node at the given index has a singular
1831 : * mapping; i.e. is the degree-4 node on a Pyramid.
1832 : */
1833 0 : virtual bool is_singular_node(unsigned int /* node_i */) const { return false; }
1834 :
1835 : /**
1836 : * \returns The local index of the center node on the side \p side.
1837 : *
1838 : * A center node is a node that is located at the centroid of the given side.
1839 : * If the given side does not have a center node, this will return invalid_uint.
1840 : */
1841 : virtual unsigned int center_node_on_side(const unsigned short side) const;
1842 :
1843 : protected:
1844 :
1845 : /**
1846 : * The protected nested SideIter class is used to iterate over the
1847 : * sides of this Elem. It is a specially-designed class since
1848 : * no sides are actually stored by the element. This iterator-like
1849 : * class has to provide the following three operations
1850 : * 1) operator*
1851 : * 2) operator++
1852 : * 3) operator==
1853 : * The definition can be found at the end of this header file.
1854 : */
1855 : class SideIter;
1856 :
1857 : public:
1858 : /**
1859 : * Useful iterator typedefs
1860 : */
1861 : typedef Predicates::multi_predicate Predicate;
1862 :
1863 : /**
1864 : * Data structure for iterating over sides. Defined at the end of
1865 : * this header file.
1866 : */
1867 : struct side_iterator;
1868 :
1869 : /**
1870 : * Iterator accessor functions
1871 : */
1872 : side_iterator boundary_sides_begin();
1873 : side_iterator boundary_sides_end();
1874 :
1875 : private:
1876 : /**
1877 : * Side iterator helper functions. Used to replace the begin()
1878 : * and end() functions of the STL containers.
1879 : */
1880 : SideIter _first_side();
1881 : SideIter _last_side();
1882 :
1883 : public:
1884 :
1885 : #ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
1886 :
1887 : /**
1888 : * \returns \p true if the element is an infinite element,
1889 : * \p false otherwise.
1890 : */
1891 : virtual bool infinite () const = 0;
1892 :
1893 : /**
1894 : * \returns \p true if the specified (local) node number is a
1895 : * "mid-edge" node on an infinite element edge.
1896 : *
1897 : * This is false for all nodes on non-infinite elements, so we won't
1898 : * make it pure virtual, to simplify their code.
1899 : */
1900 0 : virtual bool is_mid_infinite_edge_node(const unsigned int /* n */) const
1901 0 : { libmesh_assert (!this->infinite()); return false; }
1902 :
1903 : /**
1904 : * \returns The origin for an infinite element.
1905 : *
1906 : * Currently, all infinite elements used in a mesh share the same
1907 : * origin. Override this in infinite element classes.
1908 : */
1909 0 : virtual Point origin () const { libmesh_not_implemented(); return Point(); }
1910 :
1911 : #else
1912 :
1913 : static constexpr bool infinite () { return false; }
1914 :
1915 : #endif
1916 :
1917 : /**
1918 : * \returns An Elem of type \p type wrapped in a smart pointer.
1919 : */
1920 : static std::unique_ptr<Elem> build (const ElemType type,
1921 : Elem * p=nullptr);
1922 :
1923 : /**
1924 : * Calls the build() method above with a nullptr parent, and
1925 : * additionally sets the newly-created Elem's id. This can be useful
1926 : * when adding pre-numbered Elems to a Mesh via add_elem() calls.
1927 : */
1928 : static std::unique_ptr<Elem> build_with_id (const ElemType type,
1929 : dof_id_type id);
1930 :
1931 : /**
1932 : * \returns An Elem of the same type as \p this, wrapped in a smart
1933 : * pointer.
1934 : *
1935 : * This is not a complete clone() method (since e.g. it does not set
1936 : * node pointers; the standard use case reassigns node pointers from
1937 : * a different mesh), but it is necessary to use this instead of
1938 : * build() for runtime-polymorphic elements like Polygon subtypes
1939 : * whose "type" depends on more than their type(), and it is useful
1940 : * to use this for elements whose id, unique_id, extra integers,
1941 : * etc. should be preserved in the near-clone.
1942 : */
1943 : virtual std::unique_ptr<Elem> disconnected_clone () const;
1944 :
1945 : /**
1946 : * Returns the number of independent permutations of element nodes -
1947 : * e.g. a cube can be reoriented to put side 0 where side N is (for
1948 : * 0 <= N < 6) and then rotated in one of four ways, giving 24
1949 : * possible permutations.
1950 : *
1951 : * Permutations which change the mapping Jacobian of an element
1952 : * (i.e. flipping the element) are not allowed in this definition.
1953 : */
1954 : virtual unsigned int n_permutations() const = 0;
1955 :
1956 : /**
1957 : * Permutes the element (by swapping node and neighbor pointers)
1958 : * according to the specified index.
1959 : *
1960 : * This is useful for regression testing, by making it easy to make
1961 : * a structured mesh behave more like an arbitrarily unstructured
1962 : * mesh.
1963 : *
1964 : * This is so far *only* used for regression testing, so we do
1965 : * not currently provide a way to permute any boundary side/edge ids
1966 : * along with the element permutation.
1967 : */
1968 : virtual void permute(unsigned int perm_num) = 0;
1969 :
1970 : /**
1971 : * Flips the element (by swapping node and neighbor pointers) to
1972 : * have a mapping Jacobian of opposite sign.
1973 : *
1974 : * This is useful for automatically fixing up elements that have
1975 : * been newly created (e.g. from extrusions) with a negative
1976 : * Jacobian.
1977 : *
1978 : * If \p boundary_info is not null, swap boundary side/edge ids
1979 : * consistently.
1980 : */
1981 : virtual void flip(BoundaryInfo * boundary_info) = 0;
1982 :
1983 : /**
1984 : * \returns Whether the element is flipped compared to standard
1985 : * libMesh (e.g. clockwise for 2D elements) node orientations.
1986 : *
1987 : * Always returns \p false if a 2D element is not in the XY plane or
1988 : * a 1D element is not on the X axis; user code designed to work for
1989 : * embedded manifolds should handle any consistent orientation, and
1990 : * determining whether an orientation is consistent is not a local
1991 : * operation.
1992 : */
1993 : virtual bool is_flipped() const = 0;
1994 :
1995 : /**
1996 : * Flips the element (by swapping node and neighbor pointers) to
1997 : * have a mapping Jacobian of opposite sign, iff we find a negative
1998 : * orientation. This only fixes flipped elements; for tangled
1999 : * elements the only fixes possible are non-local.
2000 : */
2001 : void orient(BoundaryInfo * boundary_info);
2002 :
2003 : #ifdef LIBMESH_ENABLE_AMR
2004 :
2005 : /**
2006 : * \returns The local node id on the parent which corresponds to node
2007 : * \p n of child \p c, or \p invalid_uint if no such parent
2008 : * node exists.
2009 : */
2010 : virtual unsigned int as_parent_node (unsigned int c,
2011 : unsigned int n) const;
2012 :
2013 : /**
2014 : * \returns All the pairs of nodes (indexed by local node id) which
2015 : * should bracket node \p n of child \p c.
2016 : */
2017 : virtual
2018 : const std::vector<std::pair<unsigned char, unsigned char>> &
2019 : parent_bracketing_nodes(unsigned int c,
2020 : unsigned int n) const;
2021 :
2022 : /**
2023 : * \returns All the pairs of nodes (indexed by global node id) which
2024 : * should bracket node \p n of child \p c.
2025 : */
2026 : virtual
2027 : const std::vector<std::pair<dof_id_type, dof_id_type>>
2028 : bracketing_nodes(unsigned int c,
2029 : unsigned int n) const;
2030 :
2031 :
2032 : /**
2033 : * \returns The embedding matrix entry for the requested child.
2034 : */
2035 : virtual Real embedding_matrix (const unsigned int child_num,
2036 : const unsigned int child_node_num,
2037 : const unsigned int parent_node_num) const = 0;
2038 :
2039 : /**
2040 : * \returns A "version number" that identifies which embedding
2041 : * matrix is in use.
2042 : *
2043 : * Some element types may use a different embedding matrix depending
2044 : * on their geometric characteristics.
2045 : */
2046 0 : virtual unsigned int embedding_matrix_version () const { return 0; }
2047 :
2048 : #endif // LIBMESH_ENABLE_AMR
2049 :
2050 :
2051 : protected:
2052 :
2053 : /**
2054 : * Default tolerance to use in has_affine_map().
2055 : */
2056 : static constexpr Real affine_tol = TOLERANCE*TOLERANCE;
2057 :
2058 : /**
2059 : * \returns A hash key computed from a single node id.
2060 : */
2061 : static dof_id_type compute_key (dof_id_type n0);
2062 :
2063 : /**
2064 : * \returns A hash key computed from two node ids.
2065 : */
2066 : static dof_id_type compute_key (dof_id_type n0,
2067 : dof_id_type n1);
2068 :
2069 : /**
2070 : * \returns A hash key computed from three node ids.
2071 : */
2072 : static dof_id_type compute_key (dof_id_type n0,
2073 : dof_id_type n1,
2074 : dof_id_type n2);
2075 :
2076 : /**
2077 : * \returns A hash key computed from four node ids.
2078 : */
2079 : static dof_id_type compute_key (dof_id_type n0,
2080 : dof_id_type n1,
2081 : dof_id_type n2,
2082 : dof_id_type n3);
2083 :
2084 : /**
2085 : * Swaps two node_ptrs
2086 : */
2087 28794629 : void swap2nodes(unsigned int n1, unsigned int n2)
2088 : {
2089 4334448 : Node * temp = this->node_ptr(n1);
2090 30961853 : this->set_node(n1, this->node_ptr(n2));
2091 28794629 : this->set_node(n2, temp);
2092 28794629 : }
2093 :
2094 : /**
2095 : * Swaps two neighbor_ptrs
2096 : */
2097 6786404 : void swap2neighbors(unsigned int n1, unsigned int n2)
2098 : {
2099 793040 : Elem * temp = this->neighbor_ptr(n1);
2100 548184 : this->set_neighbor(n1, this->neighbor_ptr(n2));
2101 548184 : this->set_neighbor(n2, temp);
2102 6861068 : }
2103 :
2104 : /**
2105 : * Swaps two sides in \p boundary_info, if it is non-null.
2106 : */
2107 : void swap2boundarysides(unsigned short s1, unsigned short s2,
2108 : BoundaryInfo * boundary_info) const;
2109 :
2110 : /**
2111 : * Swaps two edges in \p boundary_info, if it is non-null.
2112 : */
2113 : void swap2boundaryedges(unsigned short e1, unsigned short e2,
2114 : BoundaryInfo * boundary_info) const;
2115 :
2116 : /**
2117 : * Swaps three node_ptrs, "rotating" them.
2118 : */
2119 11312324 : void swap3nodes(unsigned int n1, unsigned int n2, unsigned int n3)
2120 : {
2121 12189036 : swap2nodes(n1, n2);
2122 12189036 : swap2nodes(n2, n3);
2123 11312324 : }
2124 :
2125 : /**
2126 : * Swaps three neighbor_ptrs, "rotating" them.
2127 : */
2128 3071806 : void swap3neighbors(unsigned int n1, unsigned int n2,
2129 : unsigned int n3)
2130 : {
2131 3071806 : swap2neighbors(n1, n2);
2132 3071806 : swap2neighbors(n2, n3);
2133 3071806 : }
2134 :
2135 : /**
2136 : * Swaps four node_ptrs, "rotating" them.
2137 : */
2138 3278918 : void swap4nodes(unsigned int n1, unsigned int n2, unsigned int n3,
2139 : unsigned int n4)
2140 : {
2141 2952118 : swap3nodes(n1, n2, n3);
2142 3278918 : swap2nodes(n3, n4);
2143 3278918 : }
2144 :
2145 : /**
2146 : * Swaps four neighbor_ptrs, "rotating" them.
2147 : */
2148 618012 : void swap4neighbors(unsigned int n1, unsigned int n2,
2149 : unsigned int n3, unsigned int n4)
2150 : {
2151 618012 : swap3neighbors(n1, n2, n3);
2152 618012 : swap2neighbors(n3, n4);
2153 618012 : }
2154 :
2155 :
2156 : /**
2157 : * An implementation for simple (all sides equal) elements
2158 : */
2159 : template <typename Sideclass, typename Subclass>
2160 : std::unique_ptr<Elem>
2161 : simple_build_side_ptr(const unsigned int i);
2162 :
2163 : /**
2164 : * An implementation for simple (all sides equal) elements
2165 : */
2166 : template <typename Subclass>
2167 : void simple_build_side_ptr(std::unique_ptr<Elem> & side,
2168 : const unsigned int i,
2169 : ElemType sidetype);
2170 :
2171 : /**
2172 : * An implementation for simple (all sides equal) elements
2173 : */
2174 : template <typename Subclass, typename Mapclass>
2175 : void simple_side_ptr(std::unique_ptr<Elem> & side,
2176 : const unsigned int i,
2177 : ElemType sidetype);
2178 :
2179 : /**
2180 : * An implementation for simple (all edges equal) elements
2181 : */
2182 : template <typename Edgeclass, typename Subclass>
2183 : std::unique_ptr<Elem>
2184 : simple_build_edge_ptr(const unsigned int i);
2185 :
2186 : /**
2187 : * An implementation for simple (all edges equal) elements
2188 : */
2189 : template <typename Subclass>
2190 : void simple_build_edge_ptr(std::unique_ptr<Elem> & edge,
2191 : const unsigned int i,
2192 : ElemType edgetype);
2193 :
2194 :
2195 : #ifdef LIBMESH_ENABLE_AMR
2196 :
2197 : /**
2198 : * Elem subclasses which don't do their own bracketing node
2199 : * calculations will need to supply a static cache, since the
2200 : * default calculation is slow.
2201 : */
2202 : virtual
2203 : std::vector<std::vector<std::vector<std::vector<std::pair<unsigned char, unsigned char>>>>> &
2204 0 : _get_bracketing_node_cache() const
2205 : {
2206 0 : static std::vector<std::vector<std::vector<std::vector<std::pair<unsigned char, unsigned char>>>>> c;
2207 0 : libmesh_error();
2208 : return c;
2209 : }
2210 :
2211 : /**
2212 : * Elem subclasses which don't do their own child-to-parent node
2213 : * calculations will need to supply a static cache, since the
2214 : * default calculation is slow.
2215 : */
2216 : virtual
2217 : std::vector<std::vector<std::vector<signed char>>> &
2218 0 : _get_parent_indices_cache() const
2219 : {
2220 0 : static std::vector<std::vector<std::vector<signed char>>> c;
2221 0 : libmesh_error();
2222 : return c;
2223 : }
2224 :
2225 : #endif // LIBMESH_ENABLE_AMR
2226 :
2227 : public:
2228 :
2229 : /**
2230 : * Replaces this element with \p nullptr for all of its neighbors.
2231 : * This is useful when deleting an element.
2232 : */
2233 : void nullify_neighbors ();
2234 :
2235 : protected:
2236 :
2237 : /**
2238 : * Pointers to the nodes we are connected to.
2239 : */
2240 : Node ** _nodes;
2241 :
2242 : /**
2243 : * Pointers to this element's parent and neighbors, and for
2244 : * lower-dimensional elements' interior_parent.
2245 : */
2246 : Elem ** _elemlinks;
2247 :
2248 : #ifdef LIBMESH_ENABLE_AMR
2249 : /**
2250 : * unique_ptr to array of this element's children.
2251 : *
2252 : * A Mesh ultimately owns the child Elems so we are not responsible
2253 : * for deleting them, but we are responsible for cleaning up the
2254 : * array allocated to hold those Elems, hence the unique_ptr.
2255 : */
2256 : std::unique_ptr<Elem *[]> _children;
2257 : #endif
2258 :
2259 : /**
2260 : * The subdomain to which this element belongs.
2261 : */
2262 : subdomain_id_type _sbd_id;
2263 :
2264 : #ifdef LIBMESH_ENABLE_AMR
2265 : /**
2266 : * h refinement flag. This is stored as an unsigned char
2267 : * to save space.
2268 : */
2269 : unsigned char _rflag;
2270 :
2271 : /**
2272 : * p refinement flag. This is stored as an unsigned char
2273 : * to save space.
2274 : */
2275 : unsigned char _pflag;
2276 :
2277 : /**
2278 : * p refinement level - the difference between the
2279 : * polynomial degree on this element and the minimum
2280 : * polynomial degree on the mesh.
2281 : * This is stored as an unsigned char to save space.
2282 : * In theory, these last four bytes might have
2283 : * been padding anyway.
2284 : */
2285 : unsigned char _p_level;
2286 : #endif
2287 :
2288 : /**
2289 : * Mapping function type; currently either 0 (LAGRANGE) or 1
2290 : * (RATIONAL_BERNSTEIN).
2291 : */
2292 : unsigned char _map_type;
2293 :
2294 : /**
2295 : * Mapping function data; currently used when needed to store the
2296 : * RATIONAL_BERNSTEIN nodal weight data index.
2297 : */
2298 : unsigned char _map_data;
2299 : };
2300 :
2301 :
2302 :
2303 : // ------------------------------------------------------------
2304 : // Elem helper classes
2305 : //
2306 : class
2307 : Elem::NodeRefIter : public PointerToPointerIter<Node>
2308 : {
2309 : public:
2310 22575164 : NodeRefIter (Node * const * nodepp) : PointerToPointerIter<Node>(nodepp) {}
2311 : };
2312 :
2313 :
2314 : class
2315 : Elem::ConstNodeRefIter : public PointerToPointerIter<const Node>
2316 : {
2317 : public:
2318 17714764 : ConstNodeRefIter (const Node * const * nodepp) : PointerToPointerIter<const Node>(nodepp) {}
2319 : };
2320 :
2321 :
2322 : #ifdef LIBMESH_ENABLE_AMR
2323 : class
2324 : Elem::ChildRefIter : public PointerToPointerIter<Elem>
2325 : {
2326 : public:
2327 6438480 : ChildRefIter (Elem * const * childpp) : PointerToPointerIter<Elem>(childpp) {}
2328 : };
2329 :
2330 :
2331 : class
2332 : Elem::ConstChildRefIter : public PointerToPointerIter<const Elem>
2333 : {
2334 : public:
2335 2483570 : ConstChildRefIter (const Elem * const * childpp) : PointerToPointerIter<const Elem>(childpp) {}
2336 : };
2337 :
2338 :
2339 :
2340 : inline
2341 57315950 : SimpleRange<Elem::ChildRefIter> Elem::child_ref_range()
2342 : {
2343 3219240 : libmesh_assert(_children);
2344 59996553 : return {_children.get(), _children.get() + this->n_children()};
2345 : }
2346 :
2347 :
2348 : inline
2349 6673477 : SimpleRange<Elem::ConstChildRefIter> Elem::child_ref_range() const
2350 : {
2351 1241785 : libmesh_assert(_children);
2352 6900596 : return {_children.get(), _children.get() + this->n_children()};
2353 : }
2354 : #endif // LIBMESH_ENABLE_AMR
2355 :
2356 :
2357 :
2358 :
2359 : // ------------------------------------------------------------
2360 : // global Elem functions
2361 :
2362 : inline
2363 0 : std::ostream & operator << (std::ostream & os, const Elem & e)
2364 : {
2365 0 : e.print_info(os);
2366 0 : return os;
2367 : }
2368 :
2369 :
2370 : // ------------------------------------------------------------
2371 : // Elem class member functions
2372 : inline
2373 1131293218 : Elem::Elem(const unsigned int nn,
2374 : const unsigned int ns,
2375 : Elem * p,
2376 : Elem ** elemlinkdata,
2377 1131293218 : Node ** nodelinkdata) :
2378 658510316 : _nodes(nodelinkdata),
2379 658510316 : _elemlinks(elemlinkdata),
2380 658510316 : _sbd_id(0),
2381 : #ifdef LIBMESH_ENABLE_AMR
2382 658510316 : _rflag(Elem::DO_NOTHING),
2383 658510316 : _pflag(Elem::DO_NOTHING),
2384 658510316 : _p_level(0),
2385 : #endif
2386 659092220 : _map_type(p ? p->mapping_type() : 0),
2387 1160095369 : _map_data(p ? p->mapping_data() : 0)
2388 : {
2389 1131293218 : this->processor_id() = DofObject::invalid_processor_id;
2390 :
2391 : // If this ever legitimately fails we need to increase max_n_nodes
2392 57048776 : libmesh_assert_less_equal(nn, max_n_nodes);
2393 :
2394 : // We currently only support refinement of elements into child
2395 : // elements of the same type. We can't test elem->type() here,
2396 : // because that's virtual and we're still in the base class
2397 : // constructor, but we can at least usually verify constency with
2398 : // the arguments we were handed.
2399 : #ifndef NDEBUG
2400 57048776 : if (p && !p->runtime_topology())
2401 : {
2402 287232 : libmesh_assert_equal_to(nn, p->n_nodes());
2403 287232 : libmesh_assert_equal_to(ns, p->n_sides());
2404 : }
2405 : #endif
2406 :
2407 : // Initialize the nodes data structure if we're given a pointer to
2408 : // memory for it.
2409 1131293218 : if (_nodes)
2410 : {
2411 5364835601 : for (unsigned int n=0; n<nn; n++)
2412 4233590930 : _nodes[n] = nullptr;
2413 : }
2414 :
2415 : // Initialize the neighbors/parent data structure
2416 : // _elemlinks = new Elem *[ns+1];
2417 :
2418 : // Initialize the elements data structure if we're given a pointer
2419 : // to memory for it. If we *weren't* given memory for it, e.g.
2420 : // because a subclass like an arbitrary Polygon needs to
2421 : // heap-allocate this memory, then that subclass will have to handle
2422 : // this initialization too.
2423 1131293218 : if (_elemlinks)
2424 : {
2425 1131261050 : _elemlinks[0] = p;
2426 :
2427 5172214901 : for (unsigned int n=1; n<ns+1; n++)
2428 4040953851 : _elemlinks[n] = nullptr;
2429 :
2430 : // Optionally initialize data from the parent
2431 1131261050 : if (this->parent())
2432 : {
2433 28802151 : this->subdomain_id() = this->parent()->subdomain_id();
2434 28802151 : this->processor_id() = this->parent()->processor_id();
2435 28802151 : _map_type = this->parent()->_map_type;
2436 28802151 : _map_data = this->parent()->_map_data;
2437 :
2438 : #ifdef LIBMESH_ENABLE_AMR
2439 29096823 : this->set_p_level(this->parent()->p_level());
2440 : #endif
2441 : }
2442 : }
2443 1131293218 : }
2444 :
2445 :
2446 :
2447 : inline
2448 3417369197 : const Point & Elem::point (const unsigned int i) const
2449 : {
2450 3417369197 : libmesh_assert_less (i, this->n_nodes());
2451 3417369197 : libmesh_assert(_nodes[i]);
2452 3417369197 : libmesh_assert_not_equal_to (_nodes[i]->id(), Node::invalid_id);
2453 :
2454 47416775248 : return *_nodes[i];
2455 : }
2456 :
2457 :
2458 :
2459 : inline
2460 2660886 : Point & Elem::point (const unsigned int i)
2461 : {
2462 2660886 : libmesh_assert_less (i, this->n_nodes());
2463 :
2464 167008861 : return *_nodes[i];
2465 : }
2466 :
2467 :
2468 :
2469 : inline
2470 87770056 : dof_id_type Elem::node_id (const unsigned int i) const
2471 : {
2472 87770056 : libmesh_assert_less (i, this->n_nodes());
2473 87770056 : libmesh_assert(_nodes[i]);
2474 87770056 : libmesh_assert_not_equal_to (_nodes[i]->id(), Node::invalid_id);
2475 :
2476 962010726 : return _nodes[i]->id();
2477 : }
2478 :
2479 :
2480 :
2481 : inline
2482 323196 : unsigned int Elem::local_node (const dof_id_type i) const
2483 : {
2484 1811423 : for (auto n : make_range(this->n_nodes()))
2485 1811423 : if (this->node_id(n) == i)
2486 9368 : return n;
2487 :
2488 0 : return libMesh::invalid_uint;
2489 : }
2490 :
2491 :
2492 :
2493 : inline
2494 24592565 : const Node * const * Elem::get_nodes () const
2495 : {
2496 133112930 : return _nodes;
2497 : }
2498 :
2499 :
2500 :
2501 : inline
2502 113361754 : const Node * Elem::node_ptr (const unsigned int i) const
2503 : {
2504 113361754 : libmesh_assert_less (i, this->n_nodes());
2505 113361754 : libmesh_assert(_nodes[i]);
2506 :
2507 24226563578 : return _nodes[i];
2508 : }
2509 :
2510 :
2511 :
2512 : inline
2513 206791320 : Node * Elem::node_ptr (const unsigned int i)
2514 : {
2515 206791320 : libmesh_assert_less (i, this->n_nodes());
2516 206791320 : libmesh_assert(_nodes[i]);
2517 :
2518 4714180784 : return _nodes[i];
2519 : }
2520 :
2521 :
2522 :
2523 : inline
2524 19108583 : const Node & Elem::node_ref (const unsigned int i) const
2525 : {
2526 175165544 : return *this->node_ptr(i);
2527 : }
2528 :
2529 :
2530 :
2531 : inline
2532 26067154 : Node & Elem::node_ref (const unsigned int i)
2533 : {
2534 54558712 : return *this->node_ptr(i);
2535 : }
2536 :
2537 :
2538 :
2539 : inline
2540 1105544 : unsigned int Elem::get_node_index (const Node * node_ptr) const
2541 : {
2542 5107683 : for (auto n : make_range(this->n_nodes()))
2543 5095771 : if (this->_nodes[n] == node_ptr)
2544 160654 : return n;
2545 :
2546 0 : return libMesh::invalid_uint;
2547 : }
2548 :
2549 :
2550 :
2551 : #ifdef LIBMESH_ENABLE_DEPRECATED
2552 : inline
2553 0 : Node * & Elem::set_node (const unsigned int i)
2554 : {
2555 0 : libmesh_assert_less (i, this->n_nodes());
2556 :
2557 : libmesh_deprecated();
2558 :
2559 0 : return _nodes[i];
2560 : }
2561 : #endif // LIBMESH_ENABLE_DEPRECATED
2562 :
2563 :
2564 :
2565 : inline
2566 6243020976 : void Elem::set_node (const unsigned int i,
2567 : Node * node)
2568 : {
2569 177702 : libmesh_assert_less (i, this->n_nodes());
2570 :
2571 6531210491 : _nodes[i] = node;
2572 5879103276 : }
2573 :
2574 :
2575 :
2576 : inline
2577 57629314 : subdomain_id_type Elem::subdomain_id () const
2578 : {
2579 532034286 : return _sbd_id;
2580 : }
2581 :
2582 :
2583 :
2584 : inline
2585 42933334 : subdomain_id_type & Elem::subdomain_id ()
2586 : {
2587 124603772 : return _sbd_id;
2588 : }
2589 :
2590 :
2591 :
2592 : inline
2593 98446536 : const Elem * Elem::neighbor_ptr (unsigned int i) const
2594 : {
2595 98446536 : libmesh_assert_less (i, this->n_neighbors());
2596 :
2597 465594175 : return _elemlinks[i+1];
2598 : }
2599 :
2600 :
2601 :
2602 : inline
2603 18203401 : Elem * Elem::neighbor_ptr (unsigned int i)
2604 : {
2605 18203401 : libmesh_assert_less (i, this->n_neighbors());
2606 :
2607 1219406652 : return _elemlinks[i+1];
2608 : }
2609 :
2610 :
2611 :
2612 : inline
2613 9747498 : void Elem::set_neighbor (const unsigned int i, Elem * n)
2614 : {
2615 9747498 : libmesh_assert_less (i, this->n_neighbors());
2616 :
2617 406177303 : _elemlinks[i+1] = n;
2618 508227468 : }
2619 :
2620 :
2621 :
2622 : inline
2623 91036128 : bool Elem::has_neighbor (const Elem * elem) const
2624 : {
2625 272315081 : for (auto n : this->neighbor_ptr_range())
2626 261597787 : if (n == elem)
2627 80621049 : return true;
2628 :
2629 10415079 : return false;
2630 : }
2631 :
2632 :
2633 :
2634 : inline
2635 : Elem * Elem::child_neighbor (Elem * elem)
2636 : {
2637 : for (auto n : elem->neighbor_ptr_range())
2638 : if (n && n->parent() == this)
2639 : return n;
2640 :
2641 : return nullptr;
2642 : }
2643 :
2644 :
2645 :
2646 : inline
2647 : const Elem * Elem::child_neighbor (const Elem * elem) const
2648 : {
2649 : for (auto n : elem->neighbor_ptr_range())
2650 : if (n && n->parent() == this)
2651 : return n;
2652 :
2653 : return nullptr;
2654 : }
2655 :
2656 :
2657 :
2658 : inline
2659 : SimpleRange<Elem::NodeRefIter>
2660 192374776 : Elem::node_ref_range()
2661 : {
2662 201868356 : return {_nodes, _nodes+this->n_nodes()};
2663 : }
2664 :
2665 :
2666 :
2667 : inline
2668 : SimpleRange<Elem::ConstNodeRefIter>
2669 261962091 : Elem::node_ref_range() const
2670 : {
2671 279187442 : return {_nodes, _nodes+this->n_nodes()};
2672 : }
2673 :
2674 :
2675 :
2676 : inline
2677 : IntRange<unsigned short>
2678 60955806 : Elem::node_index_range() const
2679 : {
2680 1408663766 : return {0, cast_int<unsigned short>(this->n_nodes())};
2681 : }
2682 :
2683 :
2684 :
2685 : inline
2686 : IntRange<unsigned short>
2687 410694 : Elem::edge_index_range() const
2688 : {
2689 41946398 : return {0, cast_int<unsigned short>(this->n_edges())};
2690 : }
2691 :
2692 :
2693 :
2694 : inline
2695 : IntRange<unsigned short>
2696 308691 : Elem::face_index_range() const
2697 : {
2698 3655722 : return {0, cast_int<unsigned short>(this->n_faces())};
2699 : }
2700 :
2701 :
2702 :
2703 : inline
2704 : IntRange<unsigned short>
2705 8891626 : Elem::side_index_range() const
2706 : {
2707 356877869 : return {0, cast_int<unsigned short>(this->n_sides())};
2708 : }
2709 :
2710 :
2711 :
2712 :
2713 : inline
2714 826716870 : std::unique_ptr<const Elem> Elem::side_ptr (unsigned int i) const
2715 : {
2716 : // Call the non-const version of this function, return the result as
2717 : // a std::unique_ptr<const Elem>.
2718 75970818 : Elem * me = const_cast<Elem *>(this);
2719 902687688 : return me->side_ptr(i);
2720 : }
2721 :
2722 :
2723 :
2724 : inline
2725 : void
2726 15336 : Elem::side_ptr (std::unique_ptr<const Elem> & elem,
2727 : const unsigned int i) const
2728 : {
2729 : // Hand off to the non-const version of this function
2730 432 : Elem * me = const_cast<Elem *>(this);
2731 864 : std::unique_ptr<Elem> e {const_cast<Elem *>(elem.release())};
2732 15336 : me->side_ptr(e, i);
2733 14904 : elem = std::move(e);
2734 15336 : }
2735 :
2736 :
2737 :
2738 : inline
2739 : std::unique_ptr<const Elem>
2740 105816221 : Elem::build_side_ptr (const unsigned int i) const
2741 : {
2742 : // Call the non-const version of this function, return the result as
2743 : // a std::unique_ptr<const Elem>.
2744 2828169 : Elem * me = const_cast<Elem *>(this);
2745 115958157 : return me->build_side_ptr(i);
2746 : }
2747 :
2748 :
2749 :
2750 : inline
2751 : void
2752 38361141 : Elem::build_side_ptr (std::unique_ptr<const Elem> & elem,
2753 : const unsigned int i) const
2754 : {
2755 : // Hand off to the non-const version of this function
2756 827632 : Elem * me = const_cast<Elem *>(this);
2757 1655264 : std::unique_ptr<Elem> e {const_cast<Elem *>(elem.release())};
2758 38361141 : me->build_side_ptr(e, i);
2759 36711553 : elem = std::move(e);
2760 38361141 : }
2761 :
2762 :
2763 :
2764 : template <typename Sideclass, typename Subclass>
2765 : inline
2766 : std::unique_ptr<Elem>
2767 155740809 : Elem::simple_build_side_ptr (const unsigned int i)
2768 : {
2769 33122898 : libmesh_assert_less (i, this->n_sides());
2770 :
2771 155740809 : std::unique_ptr<Elem> face = std::make_unique<Sideclass>();
2772 1200561710 : for (auto n : face->node_index_range())
2773 1044820901 : face->set_node(n, this->node_ptr(Subclass::side_nodes_map[i][n]));
2774 :
2775 155740809 : face->set_interior_parent(this);
2776 144760831 : face->inherit_data_from(*this);
2777 :
2778 155740809 : return face;
2779 0 : }
2780 :
2781 :
2782 :
2783 : template <typename Subclass>
2784 : inline
2785 : void
2786 38036263 : Elem::simple_build_side_ptr (std::unique_ptr<Elem> & side,
2787 : const unsigned int i,
2788 : ElemType sidetype)
2789 : {
2790 1661143 : libmesh_assert_less (i, this->n_sides());
2791 :
2792 38036263 : if (!side.get() || side->type() != sidetype)
2793 : {
2794 147151 : Subclass & real_me = cast_ref<Subclass&>(*this);
2795 1449091 : side = real_me.Subclass::build_side_ptr(i);
2796 : }
2797 : else
2798 : {
2799 37238142 : side->set_interior_parent(this);
2800 35724199 : side->inherit_data_from(*this);
2801 264877857 : for (auto n : side->node_index_range())
2802 227639715 : side->set_node(n, this->node_ptr(Subclass::side_nodes_map[i][n]));
2803 : }
2804 38036263 : }
2805 :
2806 :
2807 :
2808 : template <typename Subclass, typename Mapclass>
2809 : inline
2810 : void
2811 237274625 : Elem::simple_side_ptr (std::unique_ptr<Elem> & side,
2812 : const unsigned int i,
2813 : ElemType sidetype)
2814 : {
2815 4767550 : libmesh_assert_less (i, this->n_sides());
2816 :
2817 237274625 : if (!side.get() || side->type() != sidetype)
2818 : {
2819 16138 : Subclass & real_me = cast_ref<Subclass&>(*this);
2820 1166972 : side = real_me.Subclass::side_ptr(i);
2821 : }
2822 : else
2823 : {
2824 241391946 : side->subdomain_id() = this->subdomain_id();
2825 :
2826 805978000 : for (auto n : side->node_index_range())
2827 569294930 : side->set_node(n, this->node_ptr(Mapclass::side_nodes_map[i][n]));
2828 : }
2829 237274625 : }
2830 :
2831 :
2832 :
2833 : inline
2834 : std::unique_ptr<const Elem>
2835 46699468 : Elem::build_edge_ptr (const unsigned int i) const
2836 : {
2837 : // Call the non-const version of this function, return the result as
2838 : // a std::unique_ptr<const Elem>.
2839 27213422 : Elem * me = const_cast<Elem *>(this);
2840 48808509 : return me->build_edge_ptr(i);
2841 : }
2842 :
2843 :
2844 :
2845 : inline
2846 : void
2847 95756 : Elem::build_edge_ptr (std::unique_ptr<const Elem> & elem,
2848 : const unsigned int i) const
2849 : {
2850 : // Hand off to the non-const version of this function
2851 2924 : Elem * me = const_cast<Elem *>(this);
2852 5848 : std::unique_ptr<Elem> e {const_cast<Elem *>(elem.release())};
2853 95756 : me->build_edge_ptr(e, i);
2854 92832 : elem = std::move(e);
2855 95756 : }
2856 :
2857 :
2858 : template <typename Edgeclass, typename Subclass>
2859 : inline
2860 : std::unique_ptr<Elem>
2861 27878431 : Elem::simple_build_edge_ptr (const unsigned int i)
2862 : {
2863 9812036 : libmesh_assert_less (i, this->n_edges());
2864 :
2865 27878431 : std::unique_ptr<Elem> edge = std::make_unique<Edgeclass>();
2866 :
2867 97685766 : for (auto n : edge->node_index_range())
2868 69807335 : edge->set_node(n, this->node_ptr(Subclass::edge_nodes_map[i][n]));
2869 :
2870 27878431 : edge->set_interior_parent(this);
2871 26092187 : edge->inherit_data_from(*this);
2872 :
2873 27878431 : return edge;
2874 0 : }
2875 :
2876 :
2877 :
2878 :
2879 : template <typename Subclass>
2880 : inline
2881 : void
2882 137744 : Elem::simple_build_edge_ptr (std::unique_ptr<Elem> & edge,
2883 : const unsigned int i,
2884 : ElemType edgetype)
2885 : {
2886 4196 : libmesh_assert_less (i, this->n_edges());
2887 :
2888 137744 : if (!edge.get() || edge->type() != edgetype)
2889 : {
2890 25 : Subclass & real_me = cast_ref<Subclass&>(*this);
2891 655 : edge = real_me.Subclass::build_edge_ptr(i);
2892 : }
2893 : else
2894 : {
2895 133233 : edge->inherit_data_from(*this);
2896 414504 : for (auto n : edge->node_index_range())
2897 277100 : edge->set_node(n, this->node_ptr(Subclass::edge_nodes_map[i][n]));
2898 : }
2899 137744 : }
2900 :
2901 :
2902 :
2903 : inline
2904 39 : bool Elem::on_boundary () const
2905 : {
2906 : // By convention, the element is on the boundary
2907 : // if it has a nullptr neighbor.
2908 351 : return this->has_neighbor(nullptr);
2909 : }
2910 :
2911 :
2912 :
2913 : inline
2914 155933522 : unsigned int Elem::which_neighbor_am_i (const Elem * e) const
2915 : {
2916 8215931 : libmesh_assert(e);
2917 :
2918 8215931 : const Elem * eparent = e;
2919 :
2920 156724771 : while (eparent->level() > this->level())
2921 : {
2922 263032 : eparent = eparent->parent();
2923 260956 : libmesh_assert(eparent);
2924 : }
2925 :
2926 408453301 : for (auto s : make_range(this->n_sides()))
2927 408445854 : if (this->neighbor_ptr(s) == eparent)
2928 8215931 : return s;
2929 :
2930 0 : return libMesh::invalid_uint;
2931 : }
2932 :
2933 :
2934 :
2935 : inline
2936 180570950 : bool Elem::active() const
2937 : {
2938 : #ifdef LIBMESH_ENABLE_AMR
2939 3761179617 : if ((this->refinement_flag() == INACTIVE) ||
2940 126873614 : (this->refinement_flag() == COARSEN_INACTIVE))
2941 53806022 : return false;
2942 : else
2943 126764928 : return true;
2944 : #else
2945 : return true;
2946 : #endif
2947 : }
2948 :
2949 :
2950 :
2951 :
2952 :
2953 : inline
2954 417289137 : bool Elem::subactive() const
2955 : {
2956 : #ifdef LIBMESH_ENABLE_AMR
2957 46095242 : if (this->active())
2958 34008784 : return false;
2959 12086458 : if (!this->has_children())
2960 3662996 : return true;
2961 85393100 : for (const Elem * my_ancestor = this->parent();
2962 297531000 : my_ancestor != nullptr;
2963 28662639 : my_ancestor = my_ancestor->parent())
2964 24851386 : if (my_ancestor->active())
2965 10516 : return true;
2966 : #endif
2967 :
2968 8412946 : return false;
2969 : }
2970 :
2971 :
2972 :
2973 : inline
2974 46256872 : bool Elem::has_children() const
2975 : {
2976 : #ifdef LIBMESH_ENABLE_AMR
2977 358585594 : if (!_children)
2978 9120723 : return false;
2979 : else
2980 37136149 : return true;
2981 : #else
2982 : return false;
2983 : #endif
2984 : }
2985 :
2986 :
2987 : inline
2988 : bool Elem::has_ancestor_children() const
2989 : {
2990 : #ifdef LIBMESH_ENABLE_AMR
2991 : if (!_children)
2992 : return false;
2993 : else
2994 : for (auto & c : child_ref_range())
2995 : if (c.has_children())
2996 : return true;
2997 : #endif
2998 : return false;
2999 : }
3000 :
3001 :
3002 :
3003 : inline
3004 0 : bool Elem::is_ancestor_of(const Elem *
3005 : #ifdef LIBMESH_ENABLE_AMR
3006 : descendant
3007 : #endif
3008 : ) const
3009 : {
3010 : #ifdef LIBMESH_ENABLE_AMR
3011 0 : const Elem * e = descendant;
3012 10626 : while (e)
3013 : {
3014 8638 : if (this == e)
3015 0 : return true;
3016 0 : e = e->parent();
3017 : }
3018 : #endif
3019 0 : return false;
3020 : }
3021 :
3022 :
3023 :
3024 : inline
3025 1176098689 : const Elem * Elem::parent () const
3026 : {
3027 2544811186 : return _elemlinks[0];
3028 : }
3029 :
3030 :
3031 :
3032 : inline
3033 98478638 : Elem * Elem::parent ()
3034 : {
3035 1584653477 : return _elemlinks[0];
3036 : }
3037 :
3038 :
3039 :
3040 : inline
3041 342796 : void Elem::set_parent (Elem * p)
3042 : {
3043 : // We no longer support using parent() as interior_parent()
3044 342796 : libmesh_assert_equal_to(this->dim(), p ? p->dim() : this->dim());
3045 10159420 : _elemlinks[0] = p;
3046 525731 : }
3047 :
3048 :
3049 :
3050 : inline
3051 824478 : const Elem * Elem::top_parent () const
3052 : {
3053 824478 : const Elem * tp = this;
3054 :
3055 : // Keep getting the element's parent
3056 : // until that parent is at level-0
3057 4370575 : while (tp->parent() != nullptr)
3058 2045256 : tp = tp->parent();
3059 :
3060 824478 : libmesh_assert(tp);
3061 824478 : libmesh_assert_equal_to (tp->level(), 0);
3062 :
3063 824478 : return tp;
3064 : }
3065 :
3066 :
3067 :
3068 : inline
3069 7214132993 : unsigned int Elem::level() const
3070 : {
3071 : #ifdef LIBMESH_ENABLE_AMR
3072 :
3073 : // if I don't have a parent I was
3074 : // created directly from file
3075 : // or by the user, so I am a
3076 : // level-0 element
3077 19956186059 : if (this->parent() == nullptr)
3078 112108651 : return 0;
3079 :
3080 : // if the parent and this element are of different
3081 : // dimensionality we are at the same level as
3082 : // the parent (e.g. we are the 2D side of a
3083 : // 3D element)
3084 13041104364 : if (this->dim() != this->parent()->dim())
3085 0 : return this->parent()->level();
3086 :
3087 : // otherwise we are at a level one
3088 : // higher than our parent
3089 13164285820 : return (this->parent()->level() + 1);
3090 :
3091 : #else
3092 :
3093 : // Without AMR all elements are
3094 : // at level 0.
3095 : return 0;
3096 :
3097 : #endif
3098 : }
3099 :
3100 :
3101 :
3102 : inline
3103 2172923030 : unsigned int Elem::p_level() const
3104 : {
3105 : #ifdef LIBMESH_ENABLE_AMR
3106 53700000176 : return _p_level;
3107 : #else
3108 : return 0;
3109 : #endif
3110 : }
3111 :
3112 :
3113 :
3114 : inline
3115 100876612 : ElemMappingType Elem::mapping_type () const
3116 : {
3117 1261108889 : return static_cast<ElemMappingType>(_map_type);
3118 : }
3119 :
3120 :
3121 :
3122 : inline
3123 46750740 : void Elem::set_mapping_type(const ElemMappingType type)
3124 : {
3125 301337420 : _map_type = cast_int<unsigned char>(type);
3126 46750740 : }
3127 :
3128 :
3129 :
3130 : inline
3131 33329145 : unsigned char Elem::mapping_data () const
3132 : {
3133 138123305 : return _map_data;
3134 : }
3135 :
3136 :
3137 :
3138 : inline
3139 46750733 : void Elem::set_mapping_data(const unsigned char data)
3140 : {
3141 301074646 : _map_data = data;
3142 47013840 : }
3143 :
3144 :
3145 :
3146 : #ifdef LIBMESH_ENABLE_AMR
3147 :
3148 : inline
3149 0 : const Elem * Elem::raw_child_ptr (unsigned int i) const
3150 : {
3151 4240 : if (!_children)
3152 0 : return nullptr;
3153 :
3154 2880 : return _children[i];
3155 : }
3156 :
3157 : inline
3158 90034799 : const Elem * Elem::child_ptr (unsigned int i) const
3159 : {
3160 90034799 : libmesh_assert(_children);
3161 90034799 : libmesh_assert(_children[i]);
3162 :
3163 341156520 : return _children[i];
3164 : }
3165 :
3166 : inline
3167 2096012 : Elem * Elem::child_ptr (unsigned int i)
3168 : {
3169 2096012 : libmesh_assert(_children);
3170 2096012 : libmesh_assert(_children[i]);
3171 :
3172 23605965 : return _children[i];
3173 : }
3174 :
3175 :
3176 : inline
3177 133432 : void Elem::set_child (unsigned int c, Elem * elem)
3178 : {
3179 133432 : libmesh_assert (this->has_children());
3180 :
3181 52215919 : _children[c] = elem;
3182 27078273 : }
3183 :
3184 :
3185 :
3186 : inline
3187 109568401 : unsigned int Elem::which_child_am_i (const Elem * e) const
3188 : {
3189 27330739 : libmesh_assert(e);
3190 27330739 : libmesh_assert (this->has_children());
3191 :
3192 109568401 : unsigned int nc = this->n_children();
3193 292061064 : for (unsigned int c=0; c != nc; c++)
3194 292061064 : if (this->child_ptr(c) == e)
3195 27330739 : return c;
3196 :
3197 0 : libmesh_error_msg("ERROR: which_child_am_i() was called with a non-child!");
3198 :
3199 : return libMesh::invalid_uint;
3200 : }
3201 :
3202 :
3203 :
3204 : inline
3205 352205889 : Elem::RefinementState Elem::refinement_flag () const
3206 : {
3207 4603062531 : return static_cast<RefinementState>(_rflag);
3208 : }
3209 :
3210 :
3211 :
3212 : inline
3213 3563404 : void Elem::set_refinement_flag(RefinementState rflag)
3214 : {
3215 60339821 : _rflag = cast_int<unsigned char>(rflag);
3216 11435668 : }
3217 :
3218 :
3219 :
3220 : inline
3221 86956102 : Elem::RefinementState Elem::p_refinement_flag () const
3222 : {
3223 234416237 : return static_cast<RefinementState>(_pflag);
3224 : }
3225 :
3226 :
3227 :
3228 : inline
3229 2520979 : void Elem::set_p_refinement_flag(RefinementState pflag)
3230 : {
3231 2520634 : if (this->p_level() == 0)
3232 2515348 : libmesh_assert_not_equal_to
3233 : (pflag, Elem::JUST_REFINED);
3234 :
3235 40624988 : _pflag = cast_int<unsigned char>(pflag);
3236 25173205 : }
3237 :
3238 :
3239 :
3240 : inline
3241 0 : unsigned int Elem::max_descendant_p_level () const
3242 : {
3243 : // This is undefined for subactive elements,
3244 : // which have no active descendants
3245 0 : libmesh_assert (!this->subactive());
3246 0 : if (this->active())
3247 0 : return this->p_level();
3248 :
3249 0 : unsigned int max_p_level = _p_level;
3250 0 : for (auto & c : child_ref_range())
3251 0 : max_p_level = std::max(max_p_level,
3252 0 : c.max_descendant_p_level());
3253 0 : return max_p_level;
3254 : }
3255 :
3256 :
3257 :
3258 : inline
3259 46717179 : void Elem::hack_p_level(unsigned int p)
3260 : {
3261 46717179 : if (p == 0)
3262 46632960 : libmesh_assert_not_equal_to
3263 : (this->p_refinement_flag(), Elem::JUST_REFINED);
3264 :
3265 356314844 : _p_level = cast_int<unsigned char>(p);
3266 295539707 : }
3267 :
3268 :
3269 : inline
3270 3602 : void Elem::hack_p_level_and_refinement_flag (unsigned int p,
3271 : RefinementState pflag)
3272 : {
3273 34518460 : _pflag = cast_int<unsigned char>(pflag);
3274 3602 : this->hack_p_level(p);
3275 34499633 : }
3276 :
3277 : #endif // ifdef LIBMESH_ENABLE_AMR
3278 :
3279 :
3280 : inline
3281 290889 : void Elem::orient(BoundaryInfo * boundary_info)
3282 : {
3283 304149 : if (this->is_flipped())
3284 138978 : this->flip(boundary_info);
3285 290889 : }
3286 :
3287 :
3288 : inline
3289 43738 : dof_id_type Elem::compute_key (dof_id_type n0)
3290 : {
3291 43738 : return n0;
3292 : }
3293 :
3294 :
3295 :
3296 : inline
3297 6481519 : dof_id_type Elem::compute_key (dof_id_type n0,
3298 : dof_id_type n1)
3299 : {
3300 : // Order the two so that n0 < n1
3301 177629097 : if (n0 > n1) std::swap (n0, n1);
3302 :
3303 177629097 : return Utility::hashword2(n0, n1);
3304 : }
3305 :
3306 :
3307 :
3308 : inline
3309 49178388 : dof_id_type Elem::compute_key (dof_id_type n0,
3310 : dof_id_type n1,
3311 : dof_id_type n2)
3312 : {
3313 49178388 : std::array<dof_id_type, 3> array = {{n0, n1, n2}};
3314 1769984 : std::sort(array.begin(), array.end());
3315 50948372 : return Utility::hashword(array);
3316 : }
3317 :
3318 :
3319 :
3320 : inline
3321 35704755 : dof_id_type Elem::compute_key (dof_id_type n0,
3322 : dof_id_type n1,
3323 : dof_id_type n2,
3324 : dof_id_type n3)
3325 : {
3326 35704755 : std::array<dof_id_type, 4> array = {{n0, n1, n2, n3}};
3327 1071450 : std::sort(array.begin(), array.end());
3328 36776205 : return Utility::hashword(array);
3329 : }
3330 :
3331 :
3332 :
3333 : inline
3334 227360698 : void Elem::inherit_data_from (const Elem & src)
3335 : {
3336 60775228 : this->set_mapping_type(src.mapping_type());
3337 60775228 : this->set_mapping_data(src.mapping_data());
3338 242656096 : this->subdomain_id() = src.subdomain_id();
3339 60775228 : this->processor_id(src.processor_id());
3340 : #ifdef LIBMESH_ENABLE_AMR
3341 242656096 : this->set_p_level(src.p_level());
3342 : #endif
3343 227360698 : }
3344 :
3345 :
3346 :
3347 : /**
3348 : * The definition of the protected nested SideIter class.
3349 : */
3350 0 : class Elem::SideIter
3351 : {
3352 : public:
3353 : // Constructor with arguments.
3354 0 : SideIter(const unsigned int side_number,
3355 : Elem * parent)
3356 0 : : _side(),
3357 0 : _side_ptr(nullptr),
3358 0 : _parent(parent),
3359 0 : _side_number(side_number)
3360 0 : {}
3361 :
3362 :
3363 : // Empty constructor.
3364 : SideIter()
3365 : : _side(),
3366 : _side_ptr(nullptr),
3367 : _parent(nullptr),
3368 : _side_number(libMesh::invalid_uint)
3369 : {}
3370 :
3371 :
3372 : // Copy constructor
3373 0 : SideIter(const SideIter & other)
3374 0 : : _side(),
3375 0 : _side_ptr(nullptr),
3376 0 : _parent(other._parent),
3377 0 : _side_number(other._side_number)
3378 0 : {}
3379 :
3380 :
3381 : // op=
3382 : SideIter & operator=(const SideIter & other)
3383 : {
3384 : this->_parent = other._parent;
3385 : this->_side_number = other._side_number;
3386 : return *this;
3387 : }
3388 :
3389 : // unary op*
3390 0 : Elem *& operator*() const
3391 : {
3392 : // Set the std::unique_ptr
3393 0 : this->_update_side_ptr();
3394 :
3395 : // Return a reference to _side_ptr
3396 0 : return this->_side_ptr;
3397 : }
3398 :
3399 : // op++
3400 0 : SideIter & operator++()
3401 : {
3402 0 : ++_side_number;
3403 0 : return *this;
3404 : }
3405 :
3406 : // op== Two side iterators are equal if they have
3407 : // the same side number and the same parent element.
3408 0 : bool operator == (const SideIter & other) const
3409 : {
3410 0 : return (this->_side_number == other._side_number &&
3411 0 : this->_parent == other._parent);
3412 : }
3413 :
3414 :
3415 : // Consults the parent Elem to determine if the side
3416 : // is a boundary side. Note: currently side N is a
3417 : // boundary side if neighbor N is nullptr. Be careful,
3418 : // this could possibly change in the future?
3419 0 : bool side_on_boundary() const
3420 : {
3421 0 : return this->_parent->neighbor_ptr(_side_number) == nullptr;
3422 : }
3423 :
3424 : private:
3425 : // Update the _side pointer by building the correct side.
3426 : // This has to be called before dereferencing.
3427 0 : void _update_side_ptr() const
3428 : {
3429 : // Construct new side, store in std::unique_ptr
3430 0 : this->_side = this->_parent->build_side_ptr(this->_side_number);
3431 :
3432 : // Also set our internal naked pointer. Memory is still owned
3433 : // by the std::unique_ptr.
3434 0 : this->_side_ptr = _side.get();
3435 0 : }
3436 :
3437 : // std::unique_ptr to the actual side, handles memory management for
3438 : // the sides which are created during the course of iteration.
3439 : mutable std::unique_ptr<Elem> _side;
3440 :
3441 : // Raw pointer needed to facilitate passing back to the user a
3442 : // reference to a non-temporary raw pointer in order to conform to
3443 : // the variant_filter_iterator interface. It points to the same
3444 : // thing the std::unique_ptr "_side" above holds. What happens if the user
3445 : // calls delete on the pointer passed back? Well, this is an issue
3446 : // which is not addressed by the iterators in libMesh. Basically it
3447 : // is a bad idea to ever call delete on an iterator from the library.
3448 : mutable Elem * _side_ptr;
3449 :
3450 : // Pointer to the parent Elem class which generated this iterator
3451 : Elem * _parent;
3452 :
3453 : // A counter variable which keeps track of the side number
3454 : unsigned int _side_number;
3455 : };
3456 :
3457 :
3458 :
3459 :
3460 :
3461 :
3462 : // Private implementation functions in the Elem class for the side iterators.
3463 : // They have to come after the definition of the SideIter class.
3464 : inline
3465 0 : Elem::SideIter Elem::_first_side()
3466 : {
3467 0 : return SideIter(0, this);
3468 : }
3469 :
3470 :
3471 :
3472 : inline
3473 0 : Elem::SideIter Elem::_last_side()
3474 : {
3475 0 : return SideIter(this->n_neighbors(), this);
3476 : }
3477 :
3478 :
3479 :
3480 :
3481 : /**
3482 : * The definition of the struct used for iterating over sides.
3483 : */
3484 : struct
3485 : Elem::side_iterator : variant_filter_iterator<Elem::Predicate, Elem *>
3486 : {
3487 : // Templated forwarding ctor -- forwards to appropriate variant_filter_iterator ctor
3488 : template <typename PredType, typename IterType>
3489 0 : side_iterator (const IterType & d,
3490 : const IterType & e,
3491 : const PredType & p ) :
3492 0 : variant_filter_iterator<Elem::Predicate, Elem *>(d,e,p) {}
3493 : };
3494 :
3495 :
3496 :
3497 : inline
3498 77821741 : SimpleRange<Elem::NeighborPtrIter> Elem::neighbor_ptr_range()
3499 : {
3500 80894326 : return {_elemlinks+1, _elemlinks + 1 + this->n_neighbors()};
3501 : }
3502 :
3503 :
3504 : inline
3505 386725343 : SimpleRange<Elem::ConstNeighborPtrIter> Elem::neighbor_ptr_range() const
3506 : {
3507 388144096 : return {_elemlinks+1, _elemlinks + 1 + this->n_neighbors()};
3508 : }
3509 :
3510 : } // namespace libMesh
3511 :
3512 :
3513 : // Helper function for default caches in Elem subclasses
3514 :
3515 : #define LIBMESH_ENABLE_TOPOLOGY_CACHES \
3516 : virtual \
3517 : std::vector<std::vector<std::vector<std::vector<std::pair<unsigned char, unsigned char>>>>> & \
3518 : _get_bracketing_node_cache() const override \
3519 : { \
3520 : static std::vector<std::vector<std::vector<std::vector<std::pair<unsigned char, unsigned char>>>>> c; \
3521 : return c; \
3522 : } \
3523 : \
3524 : virtual \
3525 : std::vector<std::vector<std::vector<signed char>>> & \
3526 : _get_parent_indices_cache() const override \
3527 : { \
3528 : static std::vector<std::vector<std::vector<signed char>>> c; \
3529 : return c; \
3530 : }
3531 :
3532 :
3533 :
3534 :
3535 :
3536 :
3537 : #endif // LIBMESH_ELEM_H
|