Base 82cc40 | Head #4232 290bfc | ||||
---|---|---|---|---|---|
Total | Total | +/- | New | ||
Rate | 64.57% | 64.72% | +0.14% | 96.97% | |
Hits | 75998 | 76189 | +191 | 32 | |
Misses | 41693 | 41534 | -159 | 1 |
Filename | Stmts | Miss | Cover |
---|---|---|---|
include/systems/variational_smoother_constraint.h | 0 | -1 | +3.85% |
src/geom/cell_hex20.C | 0 | +2 | -0.71% |
src/geom/cell_hex27.C | 0 | +2 | -0.47% |
src/geom/cell_pyramid13.C | 0 | -77 | +36.32% |
src/geom/cell_pyramid14.C | 0 | -80 | +33.90% |
src/mesh/mesh_refinement.C | 0 | -2 | +0.29% |
src/mesh/mesh_refinement_smoothing.C | 0 | -1 | +0.39% |
src/systems/variational_smoother_constraint.C | 0 | -3 | +0.80% |
src/systems/variational_smoother_system.C | +32 | +1 | -0.12% |
TOTAL | +32 | -159 | +0.14% |
code
code
code
+
81 82 83 84 85 86 87 |
* @param p The point in question * @return bool indicating whether p lies on this point. */ bool contains_point(const PointConstraint &p) const { return *this == p; } /** * Computes the intersection of this point with another constraint. |
140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
!v.relative_fuzzy_equals(this->point(13) - this->point(1), affine_tol) || !v.relative_fuzzy_equals(this->point(14) - this->point(2), affine_tol) || !v.relative_fuzzy_equals(this->point(15) - this->point(3), affine_tol)) return false; // Make sure y-edges are straight v = (this->point(3) - this->point(0))/2; if (!v.relative_fuzzy_equals(this->point(11) - this->point(0), affine_tol) || !v.relative_fuzzy_equals(this->point(9) - this->point(1), affine_tol) || !v.relative_fuzzy_equals(this->point(17) - this->point(5), affine_tol) || !v.relative_fuzzy_equals(this->point(19) - this->point(4), affine_tol)) return false; // If all the above checks out, the map is affine return true; } |
154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
!v.relative_fuzzy_equals(this->point(15) - this->point(3), affine_tol) || !v.relative_fuzzy_equals(this->point(22) - this->point(9), affine_tol) || !v.relative_fuzzy_equals(this->point(24) - this->point(11), affine_tol)) return false; // Make sure y-edges are straight v = (this->point(3) - this->point(0))/2; if (!v.relative_fuzzy_equals(this->point(11) - this->point(0), affine_tol) || !v.relative_fuzzy_equals(this->point(9) - this->point(1), affine_tol) || !v.relative_fuzzy_equals(this->point(17) - this->point(5), affine_tol) || !v.relative_fuzzy_equals(this->point(19) - this->point(4), affine_tol)) return false; // If all the above checks out, the map is affine return true; } |
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
Real Pyramid13::volume () const { // This specialization is good for Lagrange mappings only if (this->mapping_type() != LAGRANGE_MAP) return this->Elem::volume(); // Make copies of our points. It makes the subsequent calculations a bit // shorter and avoids dereferencing the same pointer multiple times. Point x0 = point(0), x1 = point(1), x2 = point(2), x3 = point(3), x4 = point(4), x5 = point(5), x6 = point(6), x7 = point(7), x8 = point(8), x9 = point(9), x10 = point(10), x11 = point(11), x12 = point(12); // dx/dxi and dx/deta have 14 components while dx/dzeta has 19. // These are copied directly from the output of a Python script. Point dx_dxi[14] = { x6/2 - x8/2, x0/4 - x1/4 + x10 + x11 - x12 - x2/4 + x3/4 - 3*x6/2 + 3*x8/2 - x9, -x0/2 + x1/2 - 2*x10 - 2*x11 + 2*x12 + x2/2 - x3/2 + 3*x6/2 - 3*x8/2 + 2*x9, x0/4 - x1/4 + x10 + x11 - x12 - x2/4 + x3/4 - x6/2 + x8/2 - x9, x0/4 - x1/4 + x2/4 - x3/4, -3*x0/4 + 3*x1/4 - x10 + x11 - x12 - 3*x2/4 + 3*x3/4 + x9, x0/2 - x1/2 + x10 - x11 + x12 + x2/2 - x3/2 - x9, -x0/4 + x1/4 + x2/4 - x3/4 - x6/2 + x8/2, x0/4 - x1/4 - x2/4 + x3/4 + x6/2 - x8/2, x0/2 + x1/2 + x2/2 + x3/2 - x5 - x7, -x0 - x1 - x2 - x3 + 2*x5 + 2*x7, x0/2 + x1/2 + x2/2 + x3/2 - x5 - x7, -x0/2 - x1/2 + x2/2 + x3/2 + x5 - x7, x0/2 + x1/2 - x2/2 - x3/2 - x5 + x7 }; // dx/dxi and dx/deta have 14 components while dx/dzeta has 19. // These are copied directly from the output of a Python script. Point dx_deta[14] = { -x5/2 + x7/2, x0/4 + x1/4 - x10 + x11 + x12 - x2/4 - x3/4 + 3*x5/2 - 3*x7/2 - x9, -x0/2 - x1/2 + 2*x10 - 2*x11 - 2*x12 + x2/2 + x3/2 - 3*x5/2 + 3*x7/2 + 2*x9, x0/4 + x1/4 - x10 + x11 + x12 - x2/4 - x3/4 + x5/2 - x7/2 - x9, x0/2 + x1/2 + x2/2 + x3/2 - x6 - x8, -x0 - x1 - x2 - x3 + 2*x6 + 2*x8, x0/2 + x1/2 + x2/2 + x3/2 - x6 - x8, x0/4 - x1/4 + x2/4 - x3/4, -3*x0/4 + 3*x1/4 - x10 + x11 - x12 - 3*x2/4 + 3*x3/4 + x9, x0/2 - x1/2 + x10 - x11 + x12 + x2/2 - x3/2 - x9, -x0/2 + x1/2 + x2/2 - x3/2 - x6 + x8, x0/2 - x1/2 - x2/2 + x3/2 + x6 - x8, -x0/4 - x1/4 + x2/4 + x3/4 + x5/2 - x7/2, x0/4 + x1/4 - x2/4 - x3/4 - x5/2 + x7/2 }; // dx/dxi and dx/deta have 14 components while dx/dzeta has 19. // These are copied directly from the output of a Python script. Point dx_dzeta[19] = { x0/4 + x1/4 + x10 + x11 + x12 + x2/4 + x3/4 - x4 - x5 - x6 - x7 - x8 + x9, -3*x0/4 - 3*x1/4 - 5*x10 - 5*x11 - 5*x12 - 3*x2/4 - 3*x3/4 + 7*x4 + 4*x5 + 4*x6 + 4*x7 + 4*x8 - 5*x9, 3*x0/4 + 3*x1/4 + 9*x10 + 9*x11 + 9*x12 + 3*x2/4 + 3*x3/4 - 15*x4 - 6*x5 - 6*x6 - 6*x7 - 6*x8 + 9*x9, -x0/4 - x1/4 - 7*x10 - 7*x11 - 7*x12 - x2/4 - x3/4 + 13*x4 + 4*x5 + 4*x6 + 4*x7 + 4*x8 - 7*x9, 2*x10 + 2*x11 + 2*x12 - 4*x4 - x5 - x6 - x7 - x8 + 2*x9, x0/4 + x1/4 - x10 + x11 + x12 - x2/4 - x3/4 + x5/2 - x7/2 - x9, -3*x0/4 - 3*x1/4 + 3*x10 - 3*x11 - 3*x12 + 3*x2/4 + 3*x3/4 - 3*x5/2 + 3*x7/2 + 3*x9, 3*x0/4 + 3*x1/4 - 3*x10 + 3*x11 + 3*x12 - 3*x2/4 - 3*x3/4 + 3*x5/2 - 3*x7/2 - 3*x9, -x0/4 - x1/4 + x10 - x11 - x12 + x2/4 + x3/4 - x5/2 + x7/2 + x9, x0/4 - x1/4 + x10 + x11 - x12 - x2/4 + x3/4 - x6/2 + x8/2 - x9, -3*x0/4 + 3*x1/4 - 3*x10 - 3*x11 + 3*x12 + 3*x2/4 - 3*x3/4 + 3*x6/2 - 3*x8/2 + 3*x9, 3*x0/4 - 3*x1/4 + 3*x10 + 3*x11 - 3*x12 - 3*x2/4 + 3*x3/4 - 3*x6/2 + 3*x8/2 - 3*x9, -x0/4 + x1/4 - x10 - x11 + x12 + x2/4 - x3/4 + x6/2 - x8/2 + x9, -x0/4 + x1/4 - x10 + x11 - x12 - x2/4 + x3/4 + x9, x0/4 - x1/4 + x10 - x11 + x12 + x2/4 - x3/4 - x9, -x0/4 + x1/4 + x2/4 - x3/4 - x6/2 + x8/2, x0/4 - x1/4 - x2/4 + x3/4 + x6/2 - x8/2, -x0/4 - x1/4 + x2/4 + x3/4 + x5/2 - x7/2, x0/4 + x1/4 - x2/4 - x3/4 - x5/2 + x7/2 }; // The (xi, eta, zeta) exponents for each of the dx_dxi terms static const int dx_dxi_exponents[14][3] = |
489 490 491 492 493 494 495 |
}; // Number of points in the quadrature rule const int N = 27; // Parameters of the quadrature rule static const Real |
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
w1, w2, w3, w4, w5, w6, // 18-23 w1, w2, w3}; // 24-26 Real vol = 0.; for (int q=0; q<N; ++q) { // Compute denominators for the current q. Real den2 = (1. - zeta[q][1])*(1. - zeta[q][1]), den3 = den2*(1. - zeta[q][1]); // Compute dx/dxi and dx/deta at the current q. Point dx_dxi_q, dx_deta_q; for (int c=0; c<14; ++c) { dx_dxi_q += xi[q][dx_dxi_exponents[c][0]]* eta[q][dx_dxi_exponents[c][1]]* zeta[q][dx_dxi_exponents[c][2]]*dx_dxi[c]; dx_deta_q += xi[q][dx_deta_exponents[c][0]]* eta[q][dx_deta_exponents[c][1]]* zeta[q][dx_deta_exponents[c][2]]*dx_deta[c]; } // Compute dx/dzeta at the current q. Point dx_dzeta_q; for (int c=0; c<19; ++c) { dx_dzeta_q += xi[q][dx_dzeta_exponents[c][0]]* eta[q][dx_dzeta_exponents[c][1]]* zeta[q][dx_dzeta_exponents[c][2]]*dx_dzeta[c]; } // Scale everything appropriately dx_dxi_q /= den2; dx_deta_q /= den2; dx_dzeta_q /= den3; // Compute scalar triple product, multiply by weight, and accumulate volume. vol += w[q] * triple_product(dx_dxi_q, dx_deta_q, dx_dzeta_q); } return vol; } |
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
Real Pyramid14::volume () const { // This specialization is good for Lagrange mappings only if (this->mapping_type() != LAGRANGE_MAP) return this->Elem::volume(); // Make copies of our points. It makes the subsequent calculations a bit // shorter and avoids dereferencing the same pointer multiple times. Point x0 = point(0), x1 = point(1), x2 = point(2), x3 = point(3), x4 = point(4), x5 = point(5), x6 = point(6), x7 = point(7), x8 = point(8), x9 = point(9), x10 = point(10), x11 = point(11), x12 = point(12), x13 = point(13); // dx/dxi and dx/deta have 15 components while dx/dzeta has 20. // These are copied directly from the output of a Python script. Point dx_dxi[15] = { x6/2 - x8/2, x0/4 - x1/4 + x10 + x11 - x12 - x2/4 + x3/4 - 3*x6/2 + 3*x8/2 - x9, -x0/2 + x1/2 - 2*x10 - 2*x11 + 2*x12 + x2/2 - x3/2 + 3*x6/2 - 3*x8/2 + 2*x9, x0/4 - x1/4 + x10 + x11 - x12 - x2/4 + x3/4 - x6/2 + x8/2 - x9, x0/4 - x1/4 + x2/4 - x3/4, -3*x0/4 + 3*x1/4 - x10 + x11 - x12 - 3*x2/4 + 3*x3/4 + x9, x0/2 - x1/2 + x10 - x11 + x12 + x2/2 - x3/2 - x9, -x0/4 + x1/4 + x2/4 - x3/4 - x6/2 + x8/2, x0/4 - x1/4 - x2/4 + x3/4 + x6/2 - x8/2, -2*x13 + x6 + x8, 4*x13 - 2*x6 - 2*x8, -2*x13 + x6 + x8, -x0/2 - x1/2 + x2/2 + x3/2 + x5 - x7, x0/2 + x1/2 - x2/2 - x3/2 - x5 + x7, x0/2 + x1/2 + 2*x13 + x2/2 + x3/2 - x5 - x6 - x7 - x8 }; // dx/dxi and dx/deta have 15 components while dx/dzeta has 20. // These are copied directly from the output of a Python script. Point dx_deta[15] = { -x5/2 + x7/2, x0/4 + x1/4 - x10 + x11 + x12 - x2/4 - x3/4 + 3*x5/2 - 3*x7/2 - x9, -x0/2 - x1/2 + 2*x10 - 2*x11 - 2*x12 + x2/2 + x3/2 - 3*x5/2 + 3*x7/2 + 2*x9, x0/4 + x1/4 - x10 + x11 + x12 - x2/4 - x3/4 + x5/2 - x7/2 - x9, -2*x13 + x5 + x7, 4*x13 - 2*x5 - 2*x7, -2*x13 + x5 + x7, x0/4 - x1/4 + x2/4 - x3/4, -3*x0/4 + 3*x1/4 - x10 + x11 - x12 - 3*x2/4 + 3*x3/4 + x9, x0/2 - x1/2 + x10 - x11 + x12 + x2/2 - x3/2 - x9, -x0/2 + x1/2 + x2/2 - x3/2 - x6 + x8, x0/2 - x1/2 - x2/2 + x3/2 + x6 - x8, -x0/4 - x1/4 + x2/4 + x3/4 + x5/2 - x7/2, x0/4 + x1/4 - x2/4 - x3/4 - x5/2 + x7/2, x0/2 + x1/2 + 2*x13 + x2/2 + x3/2 - x5 - x6 - x7 - x8 }; // dx/dxi and dx/deta have 15 components while dx/dzeta has 20. // These are copied directly from the output of a Python script. Point dx_dzeta[20] = { -x0/4 - x1/4 + x10 + x11 + x12 - 2*x13 - x2/4 - x3/4 - x4 + x9, 5*x0/4 + 5*x1/4 - 5*x10 - 5*x11 - 5*x12 + 8*x13 + 5*x2/4 + 5*x3/4 + 7*x4 - 5*x9, -9*x0/4 - 9*x1/4 + 9*x10 + 9*x11 + 9*x12 - 12*x13 - 9*x2/4 - 9*x3/4 - 15*x4 + 9*x9, 7*x0/4 + 7*x1/4 - 7*x10 - 7*x11 - 7*x12 + 8*x13 + 7*x2/4 + 7*x3/4 + 13*x4 - 7*x9, -x0/2 - x1/2 + 2*x10 + 2*x11 + 2*x12 - 2*x13 - x2/2 - x3/2 - 4*x4 + 2*x9, x0/4 + x1/4 - x10 + x11 + x12 - x2/4 - x3/4 + x5/2 - x7/2 - x9, -3*x0/4 - 3*x1/4 + 3*x10 - 3*x11 - 3*x12 + 3*x2/4 + 3*x3/4 - 3*x5/2 + 3*x7/2 + 3*x9, 3*x0/4 + 3*x1/4 - 3*x10 + 3*x11 + 3*x12 - 3*x2/4 - 3*x3/4 + 3*x5/2 - 3*x7/2 - 3*x9, -x0/4 - x1/4 + x10 - x11 - x12 + x2/4 + x3/4 - x5/2 + x7/2 + x9, x0/4 - x1/4 + x10 + x11 - x12 - x2/4 + x3/4 - x6/2 + x8/2 - x9, -3*x0/4 + 3*x1/4 - 3*x10 - 3*x11 + 3*x12 + 3*x2/4 - 3*x3/4 + 3*x6/2 - 3*x8/2 + 3*x9, 3*x0/4 - 3*x1/4 + 3*x10 + 3*x11 - 3*x12 - 3*x2/4 + 3*x3/4 - 3*x6/2 + 3*x8/2 - 3*x9, -x0/4 + x1/4 - x10 - x11 + x12 + x2/4 - x3/4 + x6/2 - x8/2 + x9, -x0/4 + x1/4 - x10 + x11 - x12 - x2/4 + x3/4 + x9, x0/4 - x1/4 + x10 - x11 + x12 + x2/4 - x3/4 - x9, -x0/4 + x1/4 + x2/4 - x3/4 - x6/2 + x8/2, x0/4 - x1/4 - x2/4 + x3/4 + x6/2 - x8/2, -x0/4 - x1/4 + x2/4 + x3/4 + x5/2 - x7/2, x0/4 + x1/4 - x2/4 - x3/4 - x5/2 + x7/2, x0/2 + x1/2 + 2*x13 + x2/2 + x3/2 - x5 - x6 - x7 - x8 }; // The (xi, eta, zeta) exponents for each of the dx_dxi terms static const int dx_dxi_exponents[15][3] = |
533 534 535 536 537 538 539 |
}; // Number of points in the quadrature rule const int N = 27; // Parameters of the quadrature rule static const Real |
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
w1, w2, w3, w4, w5, w6, // 18-23 w1, w2, w3}; // 24-26 Real vol = 0.; for (int q=0; q<N; ++q) { // Compute denominators for the current q. Real den2 = (1. - zeta[q][1])*(1. - zeta[q][1]), den3 = den2*(1. - zeta[q][1]); // Compute dx/dxi and dx/deta at the current q. Point dx_dxi_q, dx_deta_q; for (int c=0; c<15; ++c) { dx_dxi_q += xi[q][dx_dxi_exponents[c][0]]* eta[q][dx_dxi_exponents[c][1]]* zeta[q][dx_dxi_exponents[c][2]]*dx_dxi[c]; dx_deta_q += xi[q][dx_deta_exponents[c][0]]* eta[q][dx_deta_exponents[c][1]]* zeta[q][dx_deta_exponents[c][2]]*dx_deta[c]; } // Compute dx/dzeta at the current q. Point dx_dzeta_q; for (int c=0; c<20; ++c) { dx_dzeta_q += xi[q][dx_dzeta_exponents[c][0]]* eta[q][dx_dzeta_exponents[c][1]]* zeta[q][dx_dzeta_exponents[c][2]]*dx_dzeta[c]; } // Scale everything appropriately dx_dxi_q /= den2; dx_deta_q /= den2; dx_dzeta_q /= den3; // Compute scalar triple product, multiply by weight, and accumulate volume. vol += w[q] * triple_product(dx_dxi_q, dx_deta_q, dx_dzeta_q); } return vol; } |
1272 1273 1274 1275 1276 1277 1278 1279 |
if (neighbor->p_level() < my_p_level && neighbor->p_refinement_flag() != Elem::REFINE) { neighbor->set_p_refinement_flag(Elem::REFINE); level_one_satisfied = false; compatible_with_coarsening = false; } if (neighbor->p_level() == my_p_level && |
531 532 533 534 535 536 537 |
if (elem->p_refinement_flag() == Elem::COARSEN) elem->set_p_refinement_flag(Elem::DO_NOTHING); else elem->set_p_refinement_flag(Elem::REFINE); flags_changed = true; } } |
57 58 59 60 61 62 63 64 65 |
return _point < other.point(); } bool PointConstraint::operator==(const PointConstraint & other) const { return _point.absolute_fuzzy_equals(other.point(), _tol); } ConstraintVariant PointConstraint::intersect(const ConstraintVariant & other) const |
274 275 276 277 278 279 280 |
else if constexpr (std::is_same_v<T, LineConstraint>) { if (this->contains_line(o)) return o; if (this->is_parallel(o)) // Line is parallel and does not intersect the plane |
928 929 930 931 + 932 933 934 |
// Elems deriving from Pyramid else if (type_str.compare(0, 7, "PYRAMID") == 0) { // The target element is a pyramid with an square base and |
941 942 943 944 + 945 946 + 947 948 + 949 950 + 951 + 952 953 954 + 955 + 956 + 957 + 958 + 959 960 + 961 962 + 963 964 965 966 + 967 + 968 + 969 + 970 971 972 + 973 + 974 + 975 + 976 977 + 978 979 980 + 981 + 982 983 + 984 985 986 + 987 + 988 + 989 + 990 991 + 992 993 994 + 995 + 996 997 998 |
// Solving for s: s = (3 sqrt(2) v)^(1/3), where v is the volume of the // non-optimal reference element. const Real sqrt_2 = std::sqrt(Real(2)); // Side length that preserves the volume of the reference element const auto side_length = std::pow(3. * sqrt_2 * ref_vol, 1. / 3.); // Pyramid height with the property that all faces are equilateral triangles const auto target_height = side_length / sqrt_2; const auto & s = side_length; const auto & h = target_height; // x y z node_id owned_nodes.emplace_back(Node::build(Point(0., 0., 0.), 0)); owned_nodes.emplace_back(Node::build(Point(s, 0., 0.), 1)); owned_nodes.emplace_back(Node::build(Point(s, s, 0.), 2)); owned_nodes.emplace_back(Node::build(Point(0., s, 0.), 3)); owned_nodes.emplace_back(Node::build(Point(0.5 * s, 0.5 * s, h), 4)); if (type == PYRAMID13 || type == PYRAMID14 || type == PYRAMID18) { const auto & on = owned_nodes; // Define the edge midpoint nodes of the pyramid // Base node to base node midpoint nodes owned_nodes.emplace_back(Node::build((*on[0] + *on[1]) / 2., 5)); owned_nodes.emplace_back(Node::build((*on[1] + *on[2]) / 2., 6)); owned_nodes.emplace_back(Node::build((*on[2] + *on[3]) / 2., 7)); owned_nodes.emplace_back(Node::build((*on[3] + *on[0]) / 2., 8)); // Base node to apex node midpoint nodes owned_nodes.emplace_back(Node::build(Point((*on[0] + *on[4]) / 2.), 9)); owned_nodes.emplace_back(Node::build(Point((*on[1] + *on[4]) / 2.), 10)); owned_nodes.emplace_back(Node::build(Point((*on[2] + *on[4]) / 2.), 11)); owned_nodes.emplace_back(Node::build(Point((*on[3] + *on[4]) / 2.), 12)); if (type == PYRAMID14 || type == PYRAMID18) { // Define the square face midpoint node of the pyramid owned_nodes.emplace_back( Node::build(Point((*on[0] + *on[1] + *on[2] + *on[3]) / 4.), 13)); if (type == PYRAMID18) { // Define the triangular face nodes owned_nodes.emplace_back(Node::build(Point((*on[0] + *on[1] + *on[4]) / 3.), 14)); owned_nodes.emplace_back(Node::build(Point((*on[1] + *on[2] + *on[4]) / 3.), 15)); owned_nodes.emplace_back(Node::build(Point((*on[2] + *on[3] + *on[4]) / 3.), 16)); owned_nodes.emplace_back(Node::build(Point((*on[3] + *on[0] + *on[4]) / 3.), 17)); } } } else if (type != PYRAMID5) libmesh_error_msg("Unsupported pyramid element: " << type_str); } // if Pyramid |
1005 1006 1007 1008 + 1009 1010 1011 |
for (const auto & node_ptr : owned_nodes) target_elem->set_node(node_ptr->id(), node_ptr.get()); libmesh_assert(relative_fuzzy_equals(target_elem->volume(), ref_vol, TOLERANCE)); return std::make_pair(std::move(target_elem), std::move(owned_nodes)); } |