LCOV - code coverage report
Current view: top level - src/geom - face_tri.C (source / functions) Hit Total Coverage
Test: libMesh/libmesh: #4229 (6a9aeb) with base 727f46 Lines: 69 142 48.6 %
Date: 2025-08-19 19:27:09 Functions: 13 15 86.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // The libMesh Finite Element Library.
       2             : // Copyright (C) 2002-2025 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
       3             : 
       4             : // This library is free software; you can redistribute it and/or
       5             : // modify it under the terms of the GNU Lesser General Public
       6             : // License as published by the Free Software Foundation; either
       7             : // version 2.1 of the License, or (at your option) any later version.
       8             : 
       9             : // This library is distributed in the hope that it will be useful,
      10             : // but WITHOUT ANY WARRANTY; without even the implied warranty of
      11             : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      12             : // Lesser General Public License for more details.
      13             : 
      14             : // You should have received a copy of the GNU Lesser General Public
      15             : // License along with this library; if not, write to the Free Software
      16             : // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
      17             : 
      18             : // Local includes
      19             : #include "libmesh/face_tri.h"
      20             : #include "libmesh/edge_edge2.h"
      21             : #include "libmesh/face_tri3.h"
      22             : #include "libmesh/enum_elem_quality.h"
      23             : 
      24             : // C++ includes
      25             : #include <array>
      26             : 
      27             : namespace libMesh
      28             : {
      29             : 
      30             : 
      31             : // ------------------------------------------------------------
      32             : // Tri class static member initializations
      33             : const int Tri::num_sides;
      34             : const int Tri::num_children;
      35             : 
      36             : // Note: we can omit initialization of the third entry of each row because
      37             : // static variables are automatically zero-initialized.
      38             : const Real Tri::_master_points[6][3] =
      39             :   {
      40             :     {0, 0},
      41             :     {1, 0},
      42             :     {0, 1},
      43             :     {0.5, 0},
      44             :     {0.5, 0.5},
      45             :     {0, 0.5}
      46             :   };
      47             : 
      48             : const unsigned int Tri::adjacent_sides_map[/*num_vertices*/3][/*n_adjacent_sides*/2] =
      49             :   {
      50             :     {0, 2},  // Sides adjacent to node 0
      51             :     {0, 1},  // Sides adjacent to node 1
      52             :     {1, 2}   // Sides adjacent to node 2
      53             :   };
      54             : 
      55             : 
      56             : 
      57             : // ------------------------------------------------------------
      58             : // Tri class member functions
      59           0 : dof_id_type Tri::key (const unsigned int s) const
      60             : {
      61           0 :   libmesh_assert_less (s, this->n_sides());
      62             : 
      63           0 :   return this->compute_key(this->node_id(Tri3::side_nodes_map[s][0]),
      64           0 :                            this->node_id(Tri3::side_nodes_map[s][1]));
      65             : }
      66             : 
      67             : 
      68             : 
      69    30576979 : dof_id_type Tri::low_order_key (const unsigned int s) const
      70             : {
      71      785036 :   libmesh_assert_less (s, this->n_sides());
      72             : 
      73    31361829 :   return this->compute_key(this->node_id(Tri3::side_nodes_map[s][0]),
      74    31362015 :                            this->node_id(Tri3::side_nodes_map[s][1]));
      75             : }
      76             : 
      77             : 
      78             : 
      79     4688916 : unsigned int Tri::local_side_node(unsigned int side,
      80             :                                   unsigned int side_node) const
      81             : {
      82      390820 :   libmesh_assert_less (side, this->n_sides());
      83      390820 :   libmesh_assert_less (side_node, Tri3::nodes_per_side);
      84             : 
      85     4688916 :   return Tri3::side_nodes_map[side][side_node];
      86             : }
      87             : 
      88             : 
      89             : 
      90   108746892 : unsigned int Tri::local_edge_node(unsigned int edge,
      91             :                                   unsigned int edge_node) const
      92             : {
      93   108746892 :   return local_side_node(edge, edge_node);
      94             : }
      95             : 
      96             : 
      97             : 
      98          48 : dof_id_type Tri::key () const
      99             : {
     100          52 :   return this->compute_key(this->node_id(0),
     101             :                            this->node_id(1),
     102          48 :                            this->node_id(2));
     103             : }
     104             : 
     105             : 
     106             : 
     107      170165 : std::unique_ptr<Elem> Tri::side_ptr (const unsigned int i)
     108             : {
     109        5156 :   libmesh_assert_less (i, this->n_sides());
     110             : 
     111      170165 :   std::unique_ptr<Elem> edge = std::make_unique<Edge2>();
     112             : 
     113      510495 :   for (auto n : edge->node_index_range())
     114      350610 :     edge->set_node(n, this->node_ptr(Tri3::side_nodes_map[i][n]));
     115             : 
     116      170165 :   return edge;
     117           0 : }
     118             : 
     119             : 
     120             : 
     121    29003892 : void Tri::side_ptr (std::unique_ptr<Elem> & side,
     122             :                     const unsigned int i)
     123             : {
     124    29003892 :   this->simple_side_ptr<Tri,Tri3>(side, i, EDGE2);
     125    29003892 : }
     126             : 
     127             : 
     128             : 
     129     3083260 : bool Tri::is_child_on_side(const unsigned int c,
     130             :                            const unsigned int s) const
     131             : {
     132     2844486 :   libmesh_assert_less (c, this->n_children());
     133     2844486 :   libmesh_assert_less (s, this->n_sides());
     134             : 
     135     3083260 :   return (c == s || c == (s+1)%3);
     136             : }
     137             : 
     138             : 
     139       44840 : bool Tri::is_flipped() const
     140             : {
     141             :   return (
     142             : #if LIBMESH_DIM > 2
     143             :           // Don't bother outside the XY plane
     144       86530 :           !this->point(0)(2) && !this->point(1)(2) &&
     145      131370 :           !this->point(2)(2) &&
     146             : #endif
     147       45064 :           ((this->point(1)(0)-this->point(0)(0))*
     148       44840 :            (this->point(2)(1)-this->point(0)(1)) <
     149       45064 :            (this->point(2)(0)-this->point(0)(0))*
     150       86530 :            (this->point(1)(1)-this->point(0)(1))));
     151             : }
     152             : 
     153             : 
     154             : std::vector<unsigned int>
     155        9120 : Tri::edges_adjacent_to_node(const unsigned int n) const
     156             : {
     157         760 :   libmesh_assert_less(n, this->n_nodes());
     158             : 
     159             :   // For vertices, we use the Tri::adjacent_sides_map, otherwise each
     160             :   // of the mid-edge nodes is adjacent only to the edge it is on, and the
     161             :   // center node is not adjacent to any edge.
     162        9120 :   if (this->is_vertex(n))
     163        6240 :     return {std::begin(adjacent_sides_map[n]), std::end(adjacent_sides_map[n])};
     164        3360 :   else if (this->is_edge(n))
     165        2880 :     return {n - this->n_vertices()};
     166             : 
     167          40 :   libmesh_assert(this->is_face(n));
     168         440 :   return {};
     169             : }
     170             : 
     171             : 
     172        2133 : Real Tri::quality (const ElemQuality q) const
     173             : {
     174        2133 :   switch (q)
     175             :     {
     176         213 :     case ASPECT_RATIO:
     177             :       {
     178             :         // Aspect Ratio definition from Ansys Theory Manual.
     179             :         // Reference: Ansys, Inc. Theory Reference, Ansys Release 9.0, 2004 (Chapter: 13.7.3)
     180             : 
     181             :         // Compute midpoint positions along each edge
     182             :         Point m[3] = {
     183          12 :           Real(0.5) * (this->point(0) + this->point(1)),  // side opposite vertex 2
     184           6 :           Real(0.5) * (this->point(1) + this->point(2)),  // side opposite vertex 0
     185          18 :           Real(0.5) * (this->point(2) + this->point(0))}; // side opposite vertex 1
     186             : 
     187             :         // opposite[i] is the side index which is "opposite" vertex i
     188             :         static const unsigned int opposite[3] = {1, 2, 0};
     189             : 
     190             :         // other[i] is the side index which is _not_ i and _not_ opposite[i]
     191             :         static const unsigned int other[3] = {2, 0, 1};
     192             : 
     193             :         // Input is vertex index, i = 0, 1, 2
     194         639 :         auto vertex_aspect_ratio = [&](unsigned int i) -> Real
     195             :         {
     196             :           // Compute vectors:
     197             :           // v0: (vertex v, opposite midpoint)
     198             :           // v1: (midpoint[i], last midpoint)
     199         657 :           Point v0 = m[opposite[i]] - this->point(i);
     200         639 :           Point v1 = m[other[i]] - m[i];
     201             : 
     202             :           // Compute the length of the midlines
     203         639 :           Real v0_norm = v0.norm();
     204         639 :           Real v1_norm = v1.norm();
     205             : 
     206             :           // Instead of dividing by zero in the next step, just return
     207             :           // 0.  The optimal aspect ratio is 1.0, and "high" aspect
     208             :           // ratios are bad, but an aspect ratio of 0 should also be
     209             :           // considered bad.
     210         639 :           if (v0_norm == 0. || v1_norm == 0.)
     211           0 :             return 0.;
     212             : 
     213             :           // Compute sine of the angle between v0, v1.
     214         639 :           Real sin_theta = cross_norm(v0, v1) / v0_norm / v1_norm;
     215         639 :           Real v0s = v0_norm*sin_theta;
     216         639 :           Real v1s = v1_norm*sin_theta;
     217             : 
     218             :           // Determine the min, max of each midline length and its
     219             :           // projection.
     220          18 :           auto [min0, max0] = std::minmax(v0_norm, v1s);
     221          18 :           auto [min1, max1] = std::minmax(v0s, v1_norm);
     222             : 
     223             :           // Return the max of the two quotients
     224         795 :           return std::max(max0/min0, max1/min1);
     225         207 :         };
     226             : 
     227         420 :         return std::max(std::max(vertex_aspect_ratio(0), vertex_aspect_ratio(1)), vertex_aspect_ratio(2)) / std::sqrt(3);
     228             :       }
     229             : 
     230             :       /**
     231             :        * Source: Netgen, meshtool.cpp, TriangleQualityInst
     232             :        */
     233           0 :     case DISTORTION:
     234             :     case STRETCH:
     235             :       {
     236           0 :         const Point & p1 = this->point(0);
     237           0 :         const Point & p2 = this->point(1);
     238           0 :         const Point & p3 = this->point(2);
     239             : 
     240           0 :         Point v1 = p2 - p1;
     241           0 :         Point v2 = p3 - p1;
     242           0 :         Point v3 = p3 - p2;
     243           0 :         const Real l1 = v1.norm();
     244           0 :         const Real l2 = v2.norm();
     245           0 :         const Real l3 = v3.norm();
     246             : 
     247             :         // if one length is 0, quality is quite bad!
     248           0 :         if ((l1 <=0.) || (l2 <= 0.) || (l3 <= 0.))
     249           0 :           return 0.;
     250             : 
     251           0 :         const Real s1 = std::sin(std::acos(v1*v2/l1/l2)/2.);
     252           0 :         v1 *= -1;
     253           0 :         const Real s2 = std::sin(std::acos(v1*v3/l1/l3)/2.);
     254           0 :         const Real s3 = std::sin(std::acos(v2*v3/l2/l3)/2.);
     255             : 
     256           0 :         return 8. * s1 * s2 * s3;
     257             : 
     258             :       }
     259             : 
     260             :       // From: P. Knupp, "Algebraic mesh quality metrics for
     261             :       // unstructured initial meshes," Finite Elements in Analysis
     262             :       // and Design 39, 2003, p. 217-241, Section 3.2.
     263           0 :     case SHAPE:
     264             :       {
     265             :         // Unlike Quads, the Tri SHAPE metric is independent of the
     266             :         // node at which it is computed, we choose to compute it for
     267             :         // node 0.
     268             : 
     269             :         // The nodal Jacobian matrix A is a 3x2 matrix, hence we
     270             :         // represent it by a std:array with 6 entries.
     271             :         Point
     272           0 :           d01 = point(1) - point(0),
     273           0 :           d02 = point(2) - point(0);
     274             : 
     275             :         std::array<Real, 6> A =
     276           0 :           {{d01(0), d02(0),
     277           0 :             d01(1), d02(1),
     278           0 :             d01(2), d02(2)}};
     279             : 
     280             :         // Compute metric tensor entries, T = A^T * A.
     281             :         // This is a symmetric 2x2 matrix so we only
     282             :         // compute one of the off-diagonal entries.
     283             :         // As in the paper, we define lambda_ij := T_ij.
     284             :         Real
     285           0 :           lambda11 = A[0]*A[0] + A[2]*A[2] + A[4]*A[4],
     286           0 :           lambda12 = A[0]*A[1] + A[2]*A[3] + A[4]*A[5],
     287           0 :           lambda22 = A[1]*A[1] + A[3]*A[3] + A[5]*A[5];
     288             : 
     289             :         // Compute the denominator of the metric. If it is exactly
     290             :         // zero then return 0 (lowest quality) for this metric.
     291           0 :         Real den = lambda11 + lambda22 - lambda12;
     292           0 :         if (den == 0.0)
     293           0 :           return 0.;
     294             : 
     295             :         // Compute the nodal area
     296           0 :         Real alpha = std::sqrt(lambda11 * lambda22 - lambda12 * lambda12);
     297             : 
     298             :         // Finally, compute and return the metric.
     299           0 :         return std::sqrt(3) * alpha / den;
     300             :       }
     301             : 
     302        1920 :     default:
     303        1920 :       return Elem::quality(q);
     304             :     }
     305             : 
     306             :   // We won't get here.
     307             :   return Elem::quality(q);
     308             : }
     309             : 
     310             : 
     311             : 
     312             : 
     313             : 
     314             : 
     315           0 : std::pair<Real, Real> Tri::qual_bounds (const ElemQuality q) const
     316             : {
     317           0 :   std::pair<Real, Real> bounds;
     318             : 
     319           0 :   switch (q)
     320             :     {
     321             :       // A recent copy of the cubit manual [0] does not list bounds
     322             :       // for EDGE_LENGTH_RATIO or ASPECT_RATIO quality metrics, so we
     323             :       // have arbitrarily adopted the same values used for Quads here.
     324             :       // I'm open to suggestions of other appropriate values.
     325             :       //
     326             :       // [0]: https://cubit.sandia.gov/files/cubit/16.08/help_manual/WebHelp/mesh_generation/mesh_quality_assessment/triangular_metrics.htm
     327           0 :     case EDGE_LENGTH_RATIO:
     328             :     case ASPECT_RATIO:
     329           0 :       bounds.first  = 1.;
     330           0 :       bounds.second = 4.;
     331           0 :       break;
     332             : 
     333           0 :     case MAX_ANGLE:
     334           0 :       bounds.first  = 60.;
     335           0 :       bounds.second = 90.;
     336           0 :       break;
     337             : 
     338           0 :     case MIN_ANGLE:
     339           0 :       bounds.first  = 30.;
     340           0 :       bounds.second = 60.;
     341           0 :       break;
     342             : 
     343           0 :     case CONDITION:
     344           0 :       bounds.first  = 1.;
     345           0 :       bounds.second = 1.3;
     346           0 :       break;
     347             : 
     348           0 :     case JACOBIAN:
     349             :     case SCALED_JACOBIAN:
     350           0 :       bounds.first  = 0.5;
     351           0 :       bounds.second = 1.155;
     352           0 :       break;
     353             : 
     354           0 :     case SIZE:
     355             :     case SHAPE:
     356           0 :       bounds.first  = 0.25;
     357           0 :       bounds.second = 1.;
     358           0 :       break;
     359             : 
     360           0 :     case DISTORTION:
     361           0 :       bounds.first  = 0.6;
     362           0 :       bounds.second = 1.;
     363           0 :       break;
     364             : 
     365           0 :     default:
     366           0 :       libMesh::out << "Warning: Invalid quality measure chosen." << std::endl;
     367           0 :       bounds.first  = -1;
     368           0 :       bounds.second = -1;
     369             :     }
     370             : 
     371           0 :   return bounds;
     372             : }
     373             : 
     374             : 
     375    11716915 : bool Tri::on_reference_element(const Point & p,
     376             :                                const Real eps) const
     377             : {
     378     2355494 :   const Real & xi = p(0);
     379     2355494 :   const Real & eta = p(1);
     380    22791918 :   return ((xi  >= 0.-eps) &&
     381    14020758 :           (eta >= 0.-eps) &&
     382    12888873 :           ((xi + eta) <= 1.+eps));
     383             : }
     384             : 
     385             : 
     386             : } // namespace libMesh

Generated by: LCOV version 1.14