- variableTemperature variable
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Temperature variable
GapConductance
Material to compute an effective gap conductance based on the thermal conductivity of the gap and diffusive approximation to the radiative heat transfer.
This material is automatically created by the ThermalContactAction when the gap conductance has not been specified by the user. It captures both conduction across the gap and radiation. This material takes care of computing both the conductance and the derivative of conductance with regards to temperature.
Radiative term
Gap conductance due to radiation is based on the diffusion approximation. Between surface and , we define the heat flux as:
where is the Stefan-Boltzmann constant, is an emissivity function, and are the temperatures of the two surfaces, and is the radiant gap conductance. Solving for ,
which can be factored to give:
Assuming the gap is between infinite parallel planes, the emissivity function is given by:
For cylinders and spheres, see (Incropera et al., 2002). is the radius of surface 1, the primary surface, and the radius of the secondary surface. For cylinders:
For spheres:
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- gap_tempTemperature on the other side of the gap
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Temperature on the other side of the gap
- sphere_originOrigin for sphere geometry
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Origin for sphere geometry
- stefan_boltzmann5.67037e-08The Stefan-Boltzmann constant
Default:5.67037e-08
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The Stefan-Boltzmann constant
Optional Parameters
- appended_property_nameName appended to material properties to make them unique
C++ Type:std::string
Controllable:No
Description:Name appended to material properties to make them unique
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshTrueWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:True
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- cylinder_axis_point_1Start point for line defining cylindrical axis
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:Start point for line defining cylindrical axis
- cylinder_axis_point_2End point for line defining cylindrical axis
C++ Type:libMesh::VectorValue<double>
Unit:(no unit assumed)
Controllable:No
Description:End point for line defining cylindrical axis
- gap_geometry_typeGap calculation type.
C++ Type:MooseEnum
Controllable:No
Description:Gap calculation type.
Gap Geometry Parameters
- emissivity_primary1The emissivity of the primary surface
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The emissivity of the primary surface
- emissivity_secondary1The emissivity of the secondary surface
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The emissivity of the secondary surface
Radiative Heat Transfer Parameters
- gap_conductivity1The thermal conductivity of the gap material
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The thermal conductivity of the gap material
- gap_conductivity_functionThermal conductivity of the gap material as a function. Multiplied by gap_conductivity.
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Thermal conductivity of the gap material as a function. Multiplied by gap_conductivity.
- gap_conductivity_function_variableVariable to be used in the gap_conductivity_function in place of time
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Variable to be used in the gap_conductivity_function in place of time
Gap Conductivity Parameters
- gap_distanceDistance across the gap
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Distance across the gap
- max_gap1e+06A maximum gap (denominator) size
Default:1e+06
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:A maximum gap (denominator) size
- min_gap1e-06A minimum gap (denominator) size
Default:1e-06
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:A minimum gap (denominator) size
- min_gap_order0Order of the Taylor expansion below min_gap
Default:0
C++ Type:unsigned int
Controllable:No
Description:Order of the Taylor expansion below min_gap
Gap Size Parameters
- orderFIRSTThe finite element order
Default:FIRST
C++ Type:MooseEnum
Controllable:No
Description:The finite element order
- quadratureFalseWhether or not to do quadrature point based gap heat transfer. If this is true then gap_distance and gap_temp should NOT be provided (and will be ignored); however, paired_boundary and variable are then required.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not to do quadrature point based gap heat transfer. If this is true then gap_distance and gap_temp should NOT be provided (and will be ignored); however, paired_boundary and variable are then required.
Integration Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
- paired_boundaryThe boundary to be penetrated
C++ Type:BoundaryName
Controllable:No
Description:The boundary to be penetrated
Gap Surface Definition Parameters
- warningsFalseWhether to output warning messages concerning nodes not being found
Default:False
C++ Type:bool
Controllable:No
Description:Whether to output warning messages concerning nodes not being found
Diagnostics And Debug Parameters
References
- Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, and others.
Fundamentals of Heat and Mass Transfer.
Wiley New York, sixth edition, 2002.[BibTeX]