- brine_fpThe name of the user object for brine
C++ Type:UserObjectName
Controllable:No
Description:The name of the user object for brine
- capillary_pressureName of the UserObject defining the capillary pressure
C++ Type:UserObjectName
Controllable:No
Description:Name of the UserObject defining the capillary pressure
- co2_fpThe name of the user object for CO2
C++ Type:UserObjectName
Controllable:No
Description:The name of the user object for CO2
PorousFlowBrineCO2
Fluid state class for brine and CO2
A high precision equation of state for brine and CO, including the mutual solubility of CO into the liquid brine and water vapor into the CO-rich gas phase using the accurate fugacity-based formulation of Spycher et al. (2003) and Spycher et al. (2005).
This model is suitable for simulations of geological storage of CO in saline aquifers.
For more details, see the documentation of the brine and CO equation of state.
Input Parameters
- liquid_fluid_component0The fluid component number of the primary liquid component
Default:0
C++ Type:unsigned int
Controllable:No
Description:The fluid component number of the primary liquid component
- liquid_phase_number0The phase number of the liquid phase
Default:0
C++ Type:unsigned int
Controllable:No
Description:The phase number of the liquid phase
- salt_component2The component number of salt
Default:2
C++ Type:unsigned int
Controllable:No
Description:The component number of salt
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
Execution Scheduling Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
References
- N. Spycher, K. Pruess, and J. Ennis-King.
CO$_2$-H$_2$O mixtures in the geological sequestration of CO$_2$. I. Assessment and calculation of mutual solubilities from 12 to 100C and up to 600 bar.
Geochimica et Cosmochimica Acta, 67:3015–3031, 2003.[BibTeX]
- N. Spycher, K. Pruess, and J. Ennis-King.
CO$_2$-H$_2$O mixtures in the geological sequestration of CO$_2$. II. Partitioning in chloride brine at 12-100C and up to 600 bar.
Geochimica et Cosmochimica Acta, 69:3309–3320, 2005.[BibTeX]