- variableThe name of the variable that this postprocessor operates on
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this postprocessor operates on
NodalExtremeValue
Finds either the min or max elemental value of a variable over the domain.
You can optionally provide a "proxy_variable", which will change the behavior of this postprocessor to find the node at which the proxy variable reaches the max/min value, and then return the value of the specified variable at that node.
The corresponding postprocessor that finds extreme values of variables evaluated inside elements (at quadrature points) is ElementExtremeValue
Example Input File Syntax
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- proxy_variableThe name of the variable to use to identify the location at which the variable value should be taken; if not provided, this defaults to the 'variable'.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable to use to identify the location at which the variable value should be taken; if not provided, this defaults to the 'variable'.
- unique_node_executeFalseWhen false (default), block restricted objects will have the execute method called multiple times on a single node if the node lies on a interface between two subdomains.
Default:False
C++ Type:bool
Controllable:No
Description:When false (default), block restricted objects will have the execute method called multiple times on a single node if the node lies on a interface between two subdomains.
- value_typemaxType of extreme value to return. 'max' returns the maximum value. 'min' returns the minimum value. 'max_abs' returns the maximum of the absolute value.
Default:max
C++ Type:MooseEnum
Options:max, min, max_abs
Controllable:No
Description:Type of extreme value to return. 'max' returns the maximum value. 'min' returns the minimum value. 'max_abs' returns the maximum of the absolute value.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
Execution Scheduling Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (modules/contact/test/tests/explicit_dynamics/highvel.i)
- (modules/phase_field/examples/slkks/CrFe.i)
- (modules/solid_mechanics/test/tests/plane_stress/ad_weak_plane_stress_incremental.i)
- (modules/solid_mechanics/test/tests/thermal_expansion_function/finite_const.i)
- (modules/solid_mechanics/test/tests/plane_stress/weak_plane_stress_finite.i)
- (modules/stochastic_tools/examples/surrogates/gaussian_process/sub.i)
- (modules/solid_mechanics/test/tests/thermal_expansion_function/small_linear.i)
- (test/tests/postprocessors/nodal_extreme_value/block_nodal_pps_test.i)
- (modules/stochastic_tools/test/tests/reporters/BFActiveLearning/sub.i)
- (modules/contact/test/tests/explicit_dynamics/first_test.i)
- (modules/stochastic_tools/examples/surrogates/sub.i)
- (modules/optimization/test/tests/executioners/constrained/shape_optimization/forward.i)
- (modules/solid_mechanics/test/tests/ad_thermal_expansion_function/finite_linear.i)
- (modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i)
- (modules/contact/test/tests/3d-mortar-contact/half_sphere_nodal_geometry.i)
- (modules/phase_field/test/tests/slkks/full_solve.i)
- (modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_ss.i)
- (test/tests/controls/libtorch_nn_control/read_control.i)
- (modules/solid_mechanics/test/tests/thermal_expansion_function/small_const.i)
- (modules/stochastic_tools/test/tests/surrogates/load_store/sub.i)
- (modules/solid_mechanics/test/tests/dynamics/time_integration/hht_test_action.i)
- (modules/stochastic_tools/examples/surrogates/polynomial_regression/sub.i)
- (modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_sub.i)
- (modules/solid_mechanics/test/tests/plane_stress/weak_plane_stress_incremental.i)
- (tutorials/shield_multiphysics/inputs/step09_postprocessing/step9.i)
- (test/tests/postprocessors/nodal_extreme_value/nodal_proxy_extreme_value.i)
- (modules/solid_mechanics/examples/coal_mining/fine.i)
- (modules/contact/test/tests/explicit_dynamics/test_balance.i)
- (modules/solid_mechanics/test/tests/action/action_multi_eigenstrain_same_conditions.i)
- (modules/stochastic_tools/test/tests/vectorpostprocessors/multiple_stochastic_results/sub.i)
- (modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i)
- (modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i)
- (modules/solid_mechanics/test/tests/dynamics/time_integration/hht_test.i)
- (modules/solid_mechanics/tutorials/introduction/mech_step04a.i)
- (modules/contact/examples/3d_berkovich/indenter_berkovich_friction.i)
- (modules/solid_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i)
- (test/tests/postprocessors/nodal_extreme_value/nodal_max_value_test.i)
- (modules/solid_mechanics/test/tests/volumetric_eigenstrain/volumetric_eigenstrain.i)
- (modules/solid_mechanics/test/tests/volumetric_eigenstrain/ad_volumetric_eigenstrain.i)
- (modules/solid_mechanics/test/tests/thermal_expansion_function/finite_linear.i)
- (modules/contact/test/tests/explicit_dynamics/settlement.i)
- (modules/solid_mechanics/test/tests/dynamics/dynamic_physics/dynamic_physics_2d_planar.i)
- (modules/solid_mechanics/examples/coal_mining/coarse.i)
- (modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_tr.i)
- (modules/optimization/test/tests/optimizationreporter/function_misfit/forward_and_adjoint_side.i)
- (modules/stochastic_tools/test/tests/surrogates/poly_chaos/sub.i)
- (test/tests/misc/boundary_variable_check/test.i)
- (test/tests/misc/block_user_object_check/block_check.i)
- (modules/solid_mechanics/test/tests/plane_stress/ad_weak_plane_stress_small.i)
- (modules/solid_mechanics/test/tests/dynamics/time_integration/newmark.i)
- (test/tests/userobjects/Terminator/terminator.i)
- (modules/stochastic_tools/test/tests/reporters/ActiveLearningGP/sub.i)
- (modules/stochastic_tools/examples/surrogates/cross_validation/all_sub.i)
- (test/tests/postprocessors/nodal_extreme_value/nodal_extreme_pps_test.i)
- (modules/solid_mechanics/test/tests/ad_thermal_expansion_function/small_const.i)
- (modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i)
- (modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
- (modules/solid_mechanics/test/tests/dynamics/time_integration/newmark_action.i)
- (modules/solid_mechanics/test/tests/plane_stress/weak_plane_stress_small.i)
- (modules/solid_mechanics/test/tests/volumetric_eigenstrain/volumetric_mechanical.i)
- (modules/solid_mechanics/test/tests/plane_stress/ad_weak_plane_stress_finite.i)
- (modules/solid_mechanics/test/tests/ad_thermal_expansion_function/small_linear.i)
- (modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
- (modules/stochastic_tools/test/tests/reporters/BFActiveLearning/sub_lf.i)
- (test/tests/misc/check_error/double_restrict_uo.i)
- (modules/solid_mechanics/test/tests/action/ad_converter_action_multi_eigenstrain.i)
- (modules/solid_mechanics/examples/wave_propagation/cantilever_sweep.i)
- (modules/contact/test/tests/verification/patch_tests/mindlin/cylinder_friction_node_face.i)
- (modules/solid_mechanics/test/tests/ad_thermal_expansion_function/finite_const.i)
- (modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/varied_pressure_thermomechanical_mortar.i)
- (modules/solid_mechanics/test/tests/action/action_multi_eigenstrain.i)
proxy_variable
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable to use to identify the location at which the variable value should be taken; if not provided, this defaults to the 'variable'.
(modules/contact/test/tests/explicit_dynamics/highvel.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Problem]
extra_tag_matrices = 'mass'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.06
zmax = 1.06
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
[]
[AuxVariables]
[penetration]
[]
[]
[AuxKernels]
[penetration]
type = PenetrationAux
variable = penetration
boundary = ball_back
paired_boundary = base_front
quantity = distance
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[gap_rate]
[]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[strain_zz]
family = MONOMIAL
order = CONSTANT
[]
[kinetic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[kinetic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
execute_on = 'TIMESTEP_END'
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[kinetic_energy_one]
type = KineticEnergyAux
block = '1'
variable = kinetic_energy_one
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_one]
type = ElasticEnergyAux
variable = elastic_energy_one
block = '1'
[]
[kinetic_energy_two]
type = KineticEnergyAux
block = '2'
variable = kinetic_energy_two
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_two]
type = ElasticEnergyAux
variable = elastic_energy_two
block = '2'
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 1.0e-3
generate_output = 'stress_zz strain_zz'
[]
[Mass_x]
type = MassMatrix
variable = disp_x
density = density
matrix_tags = 'mass'
[]
[Mass_y]
type = MassMatrix
variable = disp_y
density = density
matrix_tags = 'mass'
[]
[Mass_z]
type = MassMatrix
variable = disp_z
density = density
matrix_tags = 'mass'
[]
[gravity]
type = Gravity
variable = disp_z
value = -981
block = 1
[]
[]
[BCs]
[x_front]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'ball_front'
value = 0.0
[]
[y_front]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'ball_front'
value = 0.0
[]
[x_fixed]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'base_back'
value = 0.0
[]
[y_fixed]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'base_back'
value = 0.0
[]
[z_fixed]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_back'
value = 0.0
[]
[z_fixed_front]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_front'
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless_balance
primary = base_front
secondary = ball_back
vel_x = 'vel_x'
vel_y = 'vel_y'
vel_z = 'vel_z'
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 1
outputs = 'exodus'
output_properties = __all__
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.0
block = 2
outputs = 'exodus'
output_properties = __all__
[]
[strain_block]
type = ComputeFiniteStrain # ComputeIncrementalSmallStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density_one]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e1
outputs = 'exodus'
output_properties = 'density'
block = '1'
[]
[density_two]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e6
outputs = 'exodus'
output_properties = 'density'
block = '2'
[]
[wave_speed]
type = WaveSpeed
outputs = 'exodus'
output_properties = 'wave_speed'
[]
[]
[Executioner]
type = Transient
end_time = 0.03
dt = 2e-4
timestep_tolerance = 1e-6
[TimeIntegrator]
type = ExplicitMixedOrder
mass_matrix_tag = mass
second_order_vars = 'disp_x disp_y disp_z'
[]
[]
[Outputs]
interval = 2
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
file_base = highvel_out
[]
[Postprocessors]
[accel_58z]
type = NodalVariableValue
nodeid = 1
variable = accel_z
[]
[vel_58z]
type = NodalVariableValue
nodeid = 1
variable = vel_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[penetration_max]
type = NodalExtremeValue
variable = penetration
block = '1 2'
value_type = max
[]
[total_kinetic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_one
block = '1'
[]
[total_elastic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_one
block = '1'
[]
[total_kinetic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_two
block = '2'
[]
[total_elastic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_two
block = '2'
[]
[]
(modules/phase_field/examples/slkks/CrFe.i)
#
# SLKKS two phase example for the BCC and SIGMA phases. The sigma phase contains
# multiple sublattices. Free energy from
# Jacob, Aurelie, Erwin Povoden-Karadeniz, and Ernst Kozeschnik. "Revised thermodynamic
# description of the Fe-Cr system based on an improved sublattice model of the sigma phase."
# Calphad 60 (2018): 16-28.
#
# In this simulation we consider diffusion (Cahn-Hilliard) and phase transformation.
#
# This example requires CrFe_sigma_out_var_0001.csv file, which generated by first
# running the CrFe_sigma.i input file.
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
nx = 160
ny = 1
nz = 0
xmin = -25
xmax = 25
ymin = -2.5
ymax = 2.5
elem_type = QUAD4
[]
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Functions]
[sigma_cr0]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 2
xy_in_file_only = false
[]
[sigma_cr1]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 3
xy_in_file_only = false
[]
[sigma_cr2]
type = PiecewiseLinear
data_file = CrFe_sigma_out_var_0001.csv
format = columns
x_index_in_file = 5
y_index_in_file = 4
xy_in_file_only = false
[]
[]
[Variables]
# order parameters
[eta1]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
[eta2]
order = FIRST
family = LAGRANGE
initial_condition = 0.5
[]
# solute concentration
[cCr]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.5+0.1'
[]
[]
# sublattice concentrations
[BCC_CR]
initial_condition = 0.45
[]
[SIGMA_0CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr0
v = cCr
variable = SIGMA_0CR
[]
[]
[SIGMA_1CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr1
v = cCr
variable = SIGMA_1CR
[]
[]
[SIGMA_2CR]
[InitialCondition]
type = CoupledValueFunctionIC
function = sigma_cr2
v = cCr
variable = SIGMA_2CR
[]
[]
# Lagrange multiplier
[lambda]
[]
[]
[Materials]
# CALPHAD free energies
[F_BCC_A2]
type = DerivativeParsedMaterial
property_name = F_BCC_A2
outputs = exodus
output_properties = F_BCC_A2
expression = 'BCC_FE:=1-BCC_CR; G := 8.3145*T*(1.0*if(BCC_CR > 1.0e-15,BCC_CR*log(BCC_CR),0) + '
'1.0*if(BCC_FE > 1.0e-15,BCC_FE*plog(BCC_FE,eps),0) + 3.0*if(BCC_VA > '
'1.0e-15,BCC_VA*log(BCC_VA),0))/(BCC_CR + BCC_FE) + 8.3145*T*if(T < '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(0.525599232981783*BCC_CR*BCC_FE*BCC_'
'VA*(BCC_CR - BCC_FE) - 0.894055608820709*BCC_CR*BCC_FE*BCC_VA + '
'0.298657718120805*BCC_CR*BCC_VA - BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T < -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(-0.525599232981783*BCC_CR*BCC_FE*BCC'
'_VA*(BCC_CR - BCC_FE) + 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - '
'0.298657718120805*BCC_CR*BCC_VA + BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) '
'+ 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(-548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T > -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA & '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA < '
'0,-79209031311018.7*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,if(T > '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA & 548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - '
'BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA > '
'0,-79209031311018.7*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,0))))*log((2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA)*if(2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA <= 0,-1.0,1.0) + 1)/(BCC_CR + BCC_FE) + '
'1.0*(BCC_CR*BCC_VA*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + '
'BCC_FE*BCC_VA*if(T >= 298.15 & T < 1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T '
'- 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < '
'6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - 25383.581,0)))/(BCC_CR '
'+ BCC_FE) + 1.0*(BCC_CR*BCC_FE*BCC_VA*(500.0 - 1.5*T)*(BCC_CR - BCC_FE) + '
'BCC_CR*BCC_FE*BCC_VA*(24600.0 - 14.98*T) + BCC_CR*BCC_FE*BCC_VA*(9.15*T - '
'14000.0)*(BCC_CR - BCC_FE)^2)/(BCC_CR + BCC_FE); G/100000'
coupled_variables = 'BCC_CR'
constant_names = 'BCC_VA T eps'
constant_expressions = '1 1000 0.01'
[]
[F_SIGMA]
type = DerivativeParsedMaterial
property_name = F_SIGMA
outputs = exodus
output_properties = F_SIGMA
expression = 'SIGMA_0FE := 1-SIGMA_0CR; SIGMA_1FE := 1-SIGMA_1CR; SIGMA_2FE := 1-SIGMA_2CR; G := '
'8.3145*T*(10.0*if(SIGMA_0CR > 1.0e-15,SIGMA_0CR*plog(SIGMA_0CR,eps),0) + '
'10.0*if(SIGMA_0FE > 1.0e-15,SIGMA_0FE*plog(SIGMA_0FE,eps),0) + 4.0*if(SIGMA_1CR > '
'1.0e-15,SIGMA_1CR*plog(SIGMA_1CR,eps),0) + 4.0*if(SIGMA_1FE > '
'1.0e-15,SIGMA_1FE*plog(SIGMA_1FE,eps),0) + 16.0*if(SIGMA_2CR > '
'1.0e-15,SIGMA_2CR*plog(SIGMA_2CR,eps),0) + 16.0*if(SIGMA_2FE > '
'1.0e-15,SIGMA_2FE*plog(SIGMA_2FE,eps),0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + '
'4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*SIGMA_2FE*(-70.0*T - 170400.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*SIGMA_2FE*(-10.0*T - 330839.0))/(10.0*SIGMA_0CR + '
'10.0*SIGMA_0FE + 4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0CR*SIGMA_1CR*SIGMA_2CR*(30.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - '
'26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= '
'2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) '
'+ 132000.0) + SIGMA_0CR*SIGMA_1CR*SIGMA_2FE*(-110.0*T + 16.0*if(T >= 298.15 & T < '
'1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - '
'5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - '
'46.0*T*log(T) + 299.31255*T - 25383.581,0)) + 14.0*if(T >= 298.15 & T < '
'2180.0,139250.0*1/T - 26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - '
'1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - '
'50.0*T*log(T) + 344.18*T - 34869.344,0)) + 123500.0) + '
'SIGMA_0CR*SIGMA_1FE*SIGMA_2CR*(4.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 26.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 140486.0) '
'+ SIGMA_0CR*SIGMA_1FE*SIGMA_2FE*(20.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 10.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 148800.0) '
'+ SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*(10.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 20.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 56200.0) + '
'SIGMA_0FE*SIGMA_1CR*SIGMA_2FE*(26.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 4.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 152700.0) '
'+ SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*(14.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 16.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 46200.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2FE*(30.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 173333.0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + 4.0*SIGMA_1CR + '
'4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE); G/100000'
coupled_variables = 'SIGMA_0CR SIGMA_1CR SIGMA_2CR'
constant_names = 'T eps'
constant_expressions = '1000 0.01'
[]
# h(eta)
[h1]
type = SwitchingFunctionMaterial
function_name = h1
h_order = HIGH
eta = eta1
[]
[h2]
type = SwitchingFunctionMaterial
function_name = h2
h_order = HIGH
eta = eta2
[]
# g(eta)
[g1]
type = BarrierFunctionMaterial
function_name = g1
g_order = SIMPLE
eta = eta1
[]
[g2]
type = BarrierFunctionMaterial
function_name = g2
g_order = SIMPLE
eta = eta2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '10 1 0.1 '
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1(eta1)'
expression = D*h1
property_name = Dh1
coupled_variables = eta1
derivative_order = 1
[]
[Dh2a]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*10/30
property_name = Dh2a
coupled_variables = eta2
derivative_order = 1
[]
[Dh2b]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*4/30
property_name = Dh2b
coupled_variables = eta2
derivative_order = 1
[]
[Dh2c]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*16/30
property_name = Dh2c
coupled_variables = eta2
derivative_order = 1
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = cCr
[]
[diff_c1]
type = MatDiffusion
variable = cCr
diffusivity = Dh1
v = BCC_CR
args = eta1
[]
[diff_c2a]
type = MatDiffusion
variable = cCr
diffusivity = Dh2a
v = SIGMA_0CR
args = eta2
[]
[diff_c2b]
type = MatDiffusion
variable = cCr
diffusivity = Dh2b
v = SIGMA_1CR
args = eta2
[]
[diff_c2c]
type = MatDiffusion
variable = cCr
diffusivity = Dh2c
v = SIGMA_2CR
args = eta2
[]
# enforce pointwise equality of chemical potentials
[chempot1a2a]
# The BCC phase has only one sublattice
# we tie it to the first sublattice with site fraction 10/(10+4+16) in the sigma phase
type = KKSPhaseChemicalPotential
variable = BCC_CR
cb = SIGMA_0CR
kb = '${fparse 10/30}'
fa_name = F_BCC_A2
fb_name = F_SIGMA
args_b = 'SIGMA_1CR SIGMA_2CR'
[]
[chempot2a2b]
# This kernel ties the first two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_0CR
a = 10
cs = SIGMA_1CR
as = 4
F = F_SIGMA
coupled_variables = 'SIGMA_2CR'
[]
[chempot2b2c]
# This kernel ties the remaining two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_1CR
a = 4
cs = SIGMA_2CR
as = 16
F = F_SIGMA
coupled_variables = 'SIGMA_0CR'
[]
[phaseconcentration]
# This kernel ties the sum of the sublattice concentrations to the global concentration cCr
type = SLKKSMultiPhaseConcentration
variable = SIGMA_2CR
c = cCr
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g1
eta_i = eta1
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta2'
[]
[ACBulkC1]
type = SLKKSMultiACBulkC
variable = eta1
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
[lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
coupled_variables = 'eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta2dt]
type = TimeDerivative
variable = eta2
[]
[ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g2
eta_i = eta2
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta1'
[]
[ACBulkC2]
type = SLKKSMultiACBulkC
variable = eta2
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[]
[lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
coupled_variables = 'eta1'
[]
# Lagrange-multiplier constraint kernel for lambda
[lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
h_names = 'h1 h2'
etas = 'eta1 eta2'
epsilon = 1e-6
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
type = KKSMultiFreeEnergy
variable = Fglobal
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gj_names = 'g1 g2'
interfacial_vars = 'eta1 eta2'
kappa_names = 'kappa kappa'
w = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu nonzero 30'
l_max_its = 100
nl_max_its = 20
nl_abs_tol = 1e-10
end_time = 10000
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 12
iteration_window = 2
growth_factor = 1.5
cutback_factor = 0.7
dt = 0.1
[]
[]
[VectorPostprocessors]
[var]
type = LineValueSampler
start_point = '-25 0 0'
end_point = '25 0 0'
variable = 'cCr eta1 eta2 SIGMA_0CR SIGMA_1CR SIGMA_2CR'
num_points = 151
sort_by = id
execute_on = 'initial timestep_end'
[]
[mat]
type = LineMaterialRealSampler
start = '-25 0 0'
end = '25 0 0'
property = 'F_BCC_A2 F_SIGMA'
sort_by = id
execute_on = 'initial timestep_end'
[]
[]
[Postprocessors]
[F]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
execute_on = 'initial timestep_end'
[]
[cmin]
type = NodalExtremeValue
value_type = min
variable = cCr
execute_on = 'initial timestep_end'
[]
[cmax]
type = NodalExtremeValue
value_type = max
variable = cCr
execute_on = 'initial timestep_end'
[]
[ctotal]
type = ElementIntegralVariablePostprocessor
variable = cCr
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/plane_stress/ad_weak_plane_stress_incremental.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
incremental = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
expression = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_incremental_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/thermal_expansion_function/finite_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/plane_stress/weak_plane_stress_finite.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = FINITE
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
expression = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/examples/surrogates/gaussian_process/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 0.03
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 10000
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 5.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Outputs]
[]
(modules/solid_mechanics/test/tests/thermal_expansion_function/small_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/nodal_extreme_value/block_nodal_pps_test.i)
[Mesh]
file = rect-2blk.e
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
block = 1
[]
[v]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
[BCs]
[left_u]
type = DirichletBC
variable = u
boundary = 6
value = 0
[]
[right_u]
type = NeumannBC
variable = u
boundary = 8
value = 4
[]
[left_v]
type = DirichletBC
variable = v
boundary = 6
value = 1
[]
[right_v]
type = DirichletBC
variable = v
boundary = 3
value = 6
[]
[]
[Postprocessors]
# This test demonstrates that you can have a block restricted NodalPostprocessor
[restricted_max]
type = NodalExtremeValue
variable = v
block = 1 # Block restricted
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/reporters/BFActiveLearning/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 0.13061533868990033
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 10951.864006672608
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 10.320058433901163
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 279.8173854189593
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(modules/contact/test/tests/explicit_dynamics/first_test.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.0001
zmax = 1.0001
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
allow_renumbering = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[]
[AuxKernels]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
stiffness_damping_coefficient = 0.04
#generate_output = 'stress_zz strain_zz'
[]
[inertia_x]
type = InertialForce
variable = disp_x
[]
[inertia_y]
type = InertialForce
variable = disp_y
[]
[inertia_z]
type = InertialForce
variable = disp_z
[]
[]
[Functions]
[dispz]
type = ParsedFunction
expression = if(t<1.0e3,-0.01*t,0)
[]
[push]
type = ParsedFunction
expression = if(t<10.0,0.01*t,0.1)
[]
[]
[BCs]
[z_front]
type = FunctionDirichletBC
variable = disp_z
boundary = 'ball_front'
function = dispz
preset = false
[]
[x_front]
type = DirichletBC
variable = disp_x
boundary = 'ball_front'
preset = false
value = 0.0
[]
[y_front]
type = DirichletBC
variable = disp_y
boundary = 'ball_front'
preset = false
value = 0.0
[]
[x_fixed]
type = DirichletBC
variable = disp_x
boundary = 'base_back'
preset = false
value = 0.0
[]
[y_fixed]
type = DirichletBC
variable = disp_y
boundary = 'base_back'
preset = false
value = 0.0
[]
[z_fixed]
type = DirichletBC
variable = disp_z
boundary = 'base_back'
preset = false
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless
primary = base_front
secondary = ball_back
penalty = 1.0e3
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e3
poissons_ratio = 0.0
block = 1
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 2
[]
[strain_block]
type = ComputeIncrementalStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e4
[]
[wave_speed]
type = WaveSpeed
[]
[]
[Executioner]
type = Transient
start_time = -0.01
end_time = 0.25
dt = 0.005
timestep_tolerance = 1e-6
[TimeIntegrator]
type = CentralDifference
[]
[]
[Postprocessors]
[disp_58z]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/stochastic_tools/examples/surrogates/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 1
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 2.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Outputs]
[]
(modules/optimization/test/tests/executioners/constrained/shape_optimization/forward.i)
# This test is documented as an example for ConstrainedShapeOptimization. This
# test should not be changed without updating the documentation.
inner_radius = 6
outer_radius = 10
volume_constraint = 200
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[mesh]
type = ConcentricCircleMeshGenerator
has_outer_square = no
num_sectors = 16
radii = '${inner_radius} ${outer_radius}'
rings = '16 16'
preserve_volumes = false
[]
[inner_radius]
type = SideSetsBetweenSubdomainsGenerator
input = mesh
new_boundary = inner
primary_block = 2
paired_block = 1
[]
[delete]
type = BlockDeletionGenerator
input = inner_radius
block = 1
[]
[gather_all]
type = BoundingBoxNodeSetGenerator
input = delete
bottom_left = '-100 -100 -100'
top_right = '100 100 100'
new_boundary = total
[]
[combine]
type = SideSetsFromBoundingBoxGenerator
input = gather_all
bottom_left = '-100 -100 -100'
top_right = '100 100 100'
boundaries_old = 'inner outer'
boundary_new = moving
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[T]
[]
[]
[AuxVariables]
[dist_between]
[AuxKernel]
type = NearestNodeDistanceAux
variable = dist_between
paired_boundary = moving
boundary = total
block = 2
use_displaced_mesh = false
execute_on = "INITIAL"
[]
[]
[]
[Kernels]
[disp_x]
type = MatDiffusion
variable = disp_x
use_displaced_mesh = false
diffusivity = diff_coef
[]
[disp_y]
type = MatDiffusion
variable = disp_y
use_displaced_mesh = false
diffusivity = diff_coef
[]
# run physics of interest on deformed mesh
[Diffusion]
type = FunctionDiffusion
variable = T
use_displaced_mesh = true
[]
[Source]
type = BodyForce
variable = T
value = 1
use_displaced_mesh = true
[]
[]
[Materials]
# perserve elements near the boundary
[diff_coef]
type = ParsedMaterial
coupled_variables = 'dist_between'
expression = '1/(dist_between+0.5)'
property_name = 'diff_coef'
[]
[h]
type = ADGenericFunctionMaterial
prop_names = h
prop_values = h
[]
# convection type boundary condition
[convection_bc]
type = ADParsedMaterial
coupled_variables = "T"
expression = "h*(100-T)"
material_property_names = "h"
property_name = convection
[]
[]
[Functions]
[r1_x]
type = ParsedOptimizationFunction
expression = 'r1 * cos((atan(y/x)))'
param_symbol_names = 'r0 r1'
param_vector_name = 'params/radii'
[]
[r1_y]
type = ParsedOptimizationFunction
expression = 'r1 * sin((atan(y/x)))'
param_symbol_names = 'r0 r1'
param_vector_name = 'params/radii'
[]
[r0_x]
type = ParsedOptimizationFunction
expression = 'r0 * cos((atan(y/x)))'
param_symbol_names = 'r0 r1'
param_vector_name = 'params/radii'
[]
[r0_y]
type = ParsedOptimizationFunction
expression = 'r0 * sin((atan(y/x)))'
param_symbol_names = 'r0 r1'
param_vector_name = 'params/radii'
[]
[h]
type = ParsedOptimizationFunction
# r0+${inner_radius} is the true current inner radius
expression = '10 /(pi * (r0+${inner_radius})^3)'
param_symbol_names = 'r0 r1'
param_vector_name = 'params/radii'
[]
[eq_grad_r0]
type = ParsedOptimizationFunction
expression = '-2 * pi * (r0 + ${inner_radius})'
param_symbol_names = 'r0 r1'
param_vector_name = 'params/radii'
[]
[eq_grad_r1]
type = ParsedOptimizationFunction
# r1+${outer_radius} is the true current outer radius
expression = '2 * pi * (r1+${outer_radius})'
param_symbol_names = 'r0 r1'
param_vector_name = 'params/radii'
[]
[]
[BCs]
[diffuse_r1_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 'outer'
function = r1_x
preset = false
[]
[diffuse_r1_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 'outer'
function = r1_y
preset = false
[]
[diffuse_r0_x]
type = ADFunctionDirichletBC
variable = disp_x
boundary = 'inner'
function = r0_x
preset = false
[]
[diffuse_r0_y]
type = ADFunctionDirichletBC
variable = disp_y
boundary = 'inner'
function = r0_y
preset = false
[]
# run physics on deformed mesh
[convection]
type = ADMatNeumannBC
variable = T
boundary = inner
boundary_material = convection
use_displaced_mesh = true
value = 1
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Reporters]
[params]
type = ConstantReporter
real_vector_names = 'radii'
real_vector_values = '0 0'
dof_id_type_vector_names = 'num_params'
dof_id_type_vector_values = '2'
[]
[]
[Postprocessors]
[current_volume]
type = VolumePostprocessor
use_displaced_mesh = true
[]
# objective function
[objective]
type = NodalExtremeValue
variable = T
[]
[eq_constraint]
type = ParsedPostprocessor
pp_names = current_volume
expression = 'current_volume - ${volume_constraint}'
[]
[func_r0]
type = FunctionValuePostprocessor
function = eq_grad_r0
[]
[func_r1]
type = FunctionValuePostprocessor
function = eq_grad_r1
[]
[]
[VectorPostprocessors]
# convert "Real" postprocessors to vectors
[vol_constraint]
type = VectorOfPostprocessors
postprocessors = 'eq_constraint'
force_postaux = true
[]
[eq_grad]
type = VectorOfPostprocessors
postprocessors = 'func_r0 func_r1'
force_postaux = true
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = none
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
[]
[Outputs]
console = false
[]
(modules/solid_mechanics/test/tests/ad_thermal_expansion_function/finite_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht_ti.i)
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.1
hht_alpha = 0.11
[]
[inertia_x]
type = InertialForce
variable = disp_x
eta = 0.1
alpha = 0.11
[]
[inertia_y]
type = InertialForce
variable = disp_y
eta = 0.1
alpha = 0.11
[]
[inertia_z]
type = InertialForce
variable = disp_z
eta = 0.1
alpha = 0.11
[]
[]
[AuxKernels]
[accel_x] # These auxkernels are only to check output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[]
[accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[]
[accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[]
[vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[]
[vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[]
[vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
displacements = 'disp_x disp_y disp_z'
factor = 1
hht_alpha = 0.11
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integrator scheme
scheme = "newmark-beta"
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
file_base = 'rayleigh_hht_out'
exodus = true
perf_graph = true
[]
(modules/contact/test/tests/3d-mortar-contact/half_sphere_nodal_geometry.i)
[Mesh]
[generated_mesh]
type = FileMeshGenerator
file = half_sphere.e
[]
[secondary]
type = LowerDBlockFromSidesetGenerator
new_block_id = 2002
new_block_name = 'secondary_lower'
sidesets = '202'
input = generated_mesh
[]
[primary]
type = LowerDBlockFromSidesetGenerator
new_block_id = 1002
sidesets = '102'
new_block_name = 'primary_lower'
input = secondary
[]
patch_size = 20
patch_update_strategy = always
uniform_refine = 0
[]
[Problem]
kernel_coverage_check = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
order = FIRST
family = LAGRANGE
[]
[Variables]
[frictional_normal_lm]
block = 'secondary_lower'
use_dual = true
[]
[frictional_tangential_lm]
block = 'secondary_lower'
use_dual = true
[]
[frictional_tangential_dir_lm]
block = 'secondary_lower'
use_dual = true
[]
[]
[AuxVariables]
[saved_x]
[]
[saved_y]
[]
[saved_z]
[]
[tangent_x]
family = LAGRANGE
order = FIRST
[]
[tangent_y]
family = LAGRANGE
order = FIRST
[]
[tangent_z]
family = LAGRANGE
order = FIRST
[]
[]
[AuxKernels]
[friction_x_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 102
secondary_boundary = 202
tangent_one = frictional_tangential_lm
tangent_two = frictional_tangential_dir_lm
variable = tangent_x
component = 0
boundary = 202
[]
[friction_y_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 102
secondary_boundary = 202
tangent_one = frictional_tangential_lm
tangent_two = frictional_tangential_dir_lm
variable = tangent_y
component = 1
boundary = 202
[]
[friction_z_component]
type = MortarFrictionalPressureVectorAux
primary_boundary = 102
secondary_boundary = 202
tangent_one = frictional_tangential_lm
tangent_two = frictional_tangential_dir_lm
variable = tangent_z
component = 2
boundary = 202
[]
[]
[Functions]
[push_down]
type = ParsedFunction
expression = 'if(t < 1.5, -t, t-3.0)'
[]
[force_z]
type = ParsedFunction
expression = 'if(t < 0.008, 0.0, (-t)*2.0e2 -t*t*100.0)' # 4.0e5
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = true
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
save_in = 'saved_x saved_y saved_z'
use_finite_deform_jacobian = true
[]
[]
[BCs]
[botz]
type = ADDirichletBC
variable = disp_z
boundary = 101
value = 0.0
[]
[boty]
type = ADDirichletBC
variable = disp_y
boundary = 101
value = 0.0
[]
[botx]
type = ADDirichletBC
variable = disp_x
boundary = 101
value = 0.0
[]
[topz]
type = ADFunctionDirichletBC
variable = disp_z
boundary = '201'
function = push_down
[]
[topy]
type = ADDirichletBC
variable = disp_y
boundary = '201 202'
value = 0.0
[]
[topx]
type = ADDirichletBC
variable = disp_x
boundary = '201 202'
value = 0.0
[]
[]
[Materials]
[tensor]
type = ADComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1.40625e7
poissons_ratio = 0.25
[]
[stress]
type = ADComputeFiniteStrainElasticStress
block = '1'
[]
[tensor_1000]
type = ADComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e5
poissons_ratio = 0.0
[]
[stress_1000]
type = ADComputeFiniteStrainElasticStress
block = '2'
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 1
[]
[resid_z]
type = NodalSum
variable = saved_z
boundary = 201
[]
[disp_z]
type = NodalExtremeValue
variable = disp_z
boundary = 201
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package -pc_factor_shift_type '
'-pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist nonzero 1e-14 1e-5'
line_search = 'none'
l_max_its = 60
nl_max_its = 50
dt = 0.004
dtmin = 0.00001
# end_time = 1.8
end_time = 0.000
nl_rel_tol = 1.0e-6 #1e-7 # -8, -6 to avoid many iterations. Switch it March 2021
nl_abs_tol = 1e-6 # 6 if no friction
l_tol = 1e-4
[]
[Outputs]
exodus = true
csv = true
print_linear_residuals = true
perf_graph = true
[console]
type = Console
max_rows = 5
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[UserObjects]
[weighted_vel_uo]
type = LMWeightedVelocitiesUserObject
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
lm_variable_normal = frictional_normal_lm
lm_variable_tangential_one = frictional_tangential_lm
lm_variable_tangential_two = frictional_tangential_dir_lm
secondary_variable = disp_x
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
debug_mesh = true
[]
[]
[Constraints]
[weighted_gap_lm]
type = ComputeFrictionalForceLMMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_normal_lm
disp_x = disp_x
disp_y = disp_y
disp_z = disp_z
use_displaced_mesh = true
friction_lm = frictional_tangential_lm
friction_lm_dir = frictional_tangential_dir_lm
c = 7.0e4
c_t = 7.0e4
mu = 0.4
debug_mesh = true
weighted_gap_uo = weighted_vel_uo
weighted_velocities_uo = weighted_vel_uo
[]
[normal_x]
type = NormalMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_normal_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_gap_uo = weighted_vel_uo
[]
[normal_y]
type = NormalMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_normal_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_gap_uo = weighted_vel_uo
[]
[normal_z]
type = NormalMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_normal_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_gap_uo = weighted_vel_uo
[]
[tangential_x]
type = TangentialMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_tangential_lm
secondary_variable = disp_x
component = x
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_velocities_uo = weighted_vel_uo
[]
[tangential_y]
type = TangentialMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_tangential_lm
secondary_variable = disp_y
component = y
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_velocities_uo = weighted_vel_uo
[]
[tangential_z]
type = TangentialMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_tangential_lm
secondary_variable = disp_z
component = z
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_velocities_uo = weighted_vel_uo
[]
[tangential_x_dir]
type = TangentialMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_tangential_dir_lm
secondary_variable = disp_x
component = x
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_velocities_uo = weighted_vel_uo
[]
[tangential_y_dir]
type = TangentialMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_tangential_dir_lm
secondary_variable = disp_y
component = y
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_velocities_uo = weighted_vel_uo
[]
[tangential_z_dir]
type = TangentialMortarMechanicalContact
primary_boundary = 102
secondary_boundary = 202
primary_subdomain = 1002
secondary_subdomain = 2002
variable = frictional_tangential_dir_lm
secondary_variable = disp_z
component = z
direction = direction_2
use_displaced_mesh = true
compute_lm_residuals = false
debug_mesh = true
weighted_velocities_uo = weighted_vel_uo
[]
[]
[Debug]
show_var_residual_norms = true
[]
(modules/phase_field/test/tests/slkks/full_solve.i)
#
# SLKKS two phase example for the BCC and SIGMA phases. The sigma phase contains
# multiple sublattices. Free energy from
# Jacob, Aurelie, Erwin Povoden-Karadeniz, and Ernst Kozeschnik. "Revised thermodynamic
# description of the Fe-Cr system based on an improved sublattice model of the sigma phase."
# Calphad 60 (2018): 16-28.
#
# In this simulation we consider diffusion (Cahn-Hilliard) and phase transformation.
#
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 30
ny = 1
xmin = -25
xmax = 25
[]
[]
[AuxVariables]
[Fglobal]
order = CONSTANT
family = MONOMIAL
[]
[]
[Variables]
# order parameters
[eta1]
initial_condition = 0.5
[]
[eta2]
initial_condition = 0.5
[]
# solute concentration
[cCr]
order = FIRST
family = LAGRANGE
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.5+0.1'
[]
[]
# sublattice concentrations (good guesses are needed here! - they can be obtained
# form a static solve like in sublattice_concentrations.i)
[BCC_CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.5+0.1'
[]
[]
[SIGMA_0CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.17+0.01'
[]
[]
[SIGMA_1CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.36+0.02'
[]
[]
[SIGMA_2CR]
[InitialCondition]
type = FunctionIC
function = '(x+25)/50*0.33+0.20'
[]
[]
# Lagrange multiplier
[lambda]
[]
[]
[Materials]
# CALPHAD free energies
[F_BCC_A2]
type = DerivativeParsedMaterial
property_name = F_BCC_A2
outputs = exodus
output_properties = F_BCC_A2
expression = 'BCC_FE:=1-BCC_CR; G := 8.3145*T*(1.0*if(BCC_CR > 1.0e-15,BCC_CR*log(BCC_CR),0) + '
'1.0*if(BCC_FE > 1.0e-15,BCC_FE*plog(BCC_FE,eps),0) + 3.0*if(BCC_VA > '
'1.0e-15,BCC_VA*log(BCC_VA),0))/(BCC_CR + BCC_FE) + 8.3145*T*if(T < '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(0.525599232981783*BCC_CR*BCC_FE*BCC_'
'VA*(BCC_CR - BCC_FE) - 0.894055608820709*BCC_CR*BCC_FE*BCC_VA + '
'0.298657718120805*BCC_CR*BCC_VA - BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T < -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + '
'1043.0*BCC_FE*BCC_VA,-8.13674105561218e-49*T^15/(-0.525599232981783*BCC_CR*BCC_FE*BCC'
'_VA*(BCC_CR - BCC_FE) + 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - '
'0.298657718120805*BCC_CR*BCC_VA + BCC_FE*BCC_VA + 9.58772770853308e-13)^15 - '
'4.65558036243985e-30*T^9/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) '
'+ 0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^9 - '
'1.3485349181899e-10*T^3/(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^3 + 1 - '
'0.905299382744392*(-548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA + '
'1.0e-9)/T,if(T > -548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'932.5*BCC_CR*BCC_FE*BCC_VA - 311.5*BCC_CR*BCC_VA + 1043.0*BCC_FE*BCC_VA & '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA < '
'0,-79209031311018.7*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(-0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) + '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA - 0.298657718120805*BCC_CR*BCC_VA + '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,if(T > '
'548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + '
'311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA & 548.2*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - '
'BCC_FE) - 932.5*BCC_CR*BCC_FE*BCC_VA + 311.5*BCC_CR*BCC_VA - 1043.0*BCC_FE*BCC_VA > '
'0,-79209031311018.7*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^5/T^5 - '
'3.83095660520737e+42*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^15/T^15 - '
'1.22565886734485e+72*(0.525599232981783*BCC_CR*BCC_FE*BCC_VA*(BCC_CR - BCC_FE) - '
'0.894055608820709*BCC_CR*BCC_FE*BCC_VA + 0.298657718120805*BCC_CR*BCC_VA - '
'BCC_FE*BCC_VA + 9.58772770853308e-13)^25/T^25,0))))*log((2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA)*if(2.15*BCC_CR*BCC_FE*BCC_VA - '
'0.008*BCC_CR*BCC_VA + 2.22*BCC_FE*BCC_VA <= 0,-1.0,1.0) + 1)/(BCC_CR + BCC_FE) + '
'1.0*(BCC_CR*BCC_VA*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + '
'BCC_FE*BCC_VA*if(T >= 298.15 & T < 1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T '
'- 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < '
'6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - 25383.581,0)))/(BCC_CR '
'+ BCC_FE) + 1.0*(BCC_CR*BCC_FE*BCC_VA*(500.0 - 1.5*T)*(BCC_CR - BCC_FE) + '
'BCC_CR*BCC_FE*BCC_VA*(24600.0 - 14.98*T) + BCC_CR*BCC_FE*BCC_VA*(9.15*T - '
'14000.0)*(BCC_CR - BCC_FE)^2)/(BCC_CR + BCC_FE); G/100000'
coupled_variables = 'BCC_CR'
constant_names = 'BCC_VA T eps'
constant_expressions = '1 1000 0.01'
[]
[F_SIGMA]
type = DerivativeParsedMaterial
property_name = F_SIGMA
outputs = exodus
output_properties = F_SIGMA
expression = 'SIGMA_0FE := 1-SIGMA_0CR; SIGMA_1FE := 1-SIGMA_1CR; SIGMA_2FE := 1-SIGMA_2CR; G := '
'8.3145*T*(10.0*if(SIGMA_0CR > 1.0e-15,SIGMA_0CR*plog(SIGMA_0CR,eps),0) + '
'10.0*if(SIGMA_0FE > 1.0e-15,SIGMA_0FE*plog(SIGMA_0FE,eps),0) + 4.0*if(SIGMA_1CR > '
'1.0e-15,SIGMA_1CR*plog(SIGMA_1CR,eps),0) + 4.0*if(SIGMA_1FE > '
'1.0e-15,SIGMA_1FE*plog(SIGMA_1FE,eps),0) + 16.0*if(SIGMA_2CR > '
'1.0e-15,SIGMA_2CR*plog(SIGMA_2CR,eps),0) + 16.0*if(SIGMA_2FE > '
'1.0e-15,SIGMA_2FE*plog(SIGMA_2FE,eps),0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + '
'4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*SIGMA_2FE*(-70.0*T - 170400.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*SIGMA_2FE*(-10.0*T - 330839.0))/(10.0*SIGMA_0CR + '
'10.0*SIGMA_0FE + 4.0*SIGMA_1CR + 4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE) + '
'(SIGMA_0CR*SIGMA_1CR*SIGMA_2CR*(30.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - '
'26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= '
'2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) '
'+ 132000.0) + SIGMA_0CR*SIGMA_1CR*SIGMA_2FE*(-110.0*T + 16.0*if(T >= 298.15 & T < '
'1811.0,77358.5*1/T - 23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - '
'5.89269e-8*T^3.0 + 1225.7,if(T >= 1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - '
'46.0*T*log(T) + 299.31255*T - 25383.581,0)) + 14.0*if(T >= 298.15 & T < '
'2180.0,139250.0*1/T - 26.908*T*log(T) + 157.48*T + 0.00189435*T^2.0 - '
'1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < 6000.0,-2.88526e+32*T^(-9.0) - '
'50.0*T*log(T) + 344.18*T - 34869.344,0)) + 123500.0) + '
'SIGMA_0CR*SIGMA_1FE*SIGMA_2CR*(4.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 26.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 140486.0) '
'+ SIGMA_0CR*SIGMA_1FE*SIGMA_2FE*(20.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 10.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 148800.0) '
'+ SIGMA_0FE*SIGMA_1CR*SIGMA_2CR*(10.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 20.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 56200.0) + '
'SIGMA_0FE*SIGMA_1CR*SIGMA_2FE*(26.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 4.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 152700.0) '
'+ SIGMA_0FE*SIGMA_1FE*SIGMA_2CR*(14.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 16.0*if(T >= 298.15 & T < 2180.0,139250.0*1/T - 26.908*T*log(T) + '
'157.48*T + 0.00189435*T^2.0 - 1.47721e-6*T^3.0 - 8856.94,if(T >= 2180.0 & T < '
'6000.0,-2.88526e+32*T^(-9.0) - 50.0*T*log(T) + 344.18*T - 34869.344,0)) + 46200.0) + '
'SIGMA_0FE*SIGMA_1FE*SIGMA_2FE*(30.0*if(T >= 298.15 & T < 1811.0,77358.5*1/T - '
'23.5143*T*log(T) + 124.134*T - 0.00439752*T^2.0 - 5.89269e-8*T^3.0 + 1225.7,if(T >= '
'1811.0 & T < 6000.0,2.2960305e+31*T^(-9.0) - 46.0*T*log(T) + 299.31255*T - '
'25383.581,0)) + 173333.0))/(10.0*SIGMA_0CR + 10.0*SIGMA_0FE + 4.0*SIGMA_1CR + '
'4.0*SIGMA_1FE + 16.0*SIGMA_2CR + 16.0*SIGMA_2FE); G/100000'
coupled_variables = 'SIGMA_0CR SIGMA_1CR SIGMA_2CR'
constant_names = 'T eps'
constant_expressions = '1000 0.01'
[]
# h(eta)
[h1]
type = SwitchingFunctionMaterial
function_name = h1
h_order = HIGH
eta = eta1
[]
[h2]
type = SwitchingFunctionMaterial
function_name = h2
h_order = HIGH
eta = eta2
[]
# g(eta)
[g1]
type = BarrierFunctionMaterial
function_name = g1
g_order = SIMPLE
eta = eta1
[]
[g2]
type = BarrierFunctionMaterial
function_name = g2
g_order = SIMPLE
eta = eta2
[]
# constant properties
[constants]
type = GenericConstantMaterial
prop_names = 'D L kappa'
prop_values = '10 1 0.1 '
[]
# Coefficients for diffusion equation
[Dh1]
type = DerivativeParsedMaterial
material_property_names = 'D h1(eta1)'
expression = D*h1
property_name = Dh1
coupled_variables = eta1
derivative_order = 1
[]
[Dh2a]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*10/30
property_name = Dh2a
coupled_variables = eta2
derivative_order = 1
[]
[Dh2b]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*4/30
property_name = Dh2b
coupled_variables = eta2
derivative_order = 1
[]
[Dh2c]
type = DerivativeParsedMaterial
material_property_names = 'D h2(eta2)'
expression = D*h2*16/30
property_name = Dh2c
coupled_variables = eta2
derivative_order = 1
[]
[]
[Kernels]
#Kernels for diffusion equation
[diff_time]
type = TimeDerivative
variable = cCr
[]
[diff_c1]
type = MatDiffusion
variable = cCr
diffusivity = Dh1
v = BCC_CR
args = eta1
[]
[diff_c2a]
type = MatDiffusion
variable = cCr
diffusivity = Dh2a
v = SIGMA_0CR
args = eta2
[]
[diff_c2b]
type = MatDiffusion
variable = cCr
diffusivity = Dh2b
v = SIGMA_1CR
args = eta2
[]
[diff_c2c]
type = MatDiffusion
variable = cCr
diffusivity = Dh2c
v = SIGMA_2CR
args = eta2
[]
# enforce pointwise equality of chemical potentials
[chempot1a2a]
# The BCC phase has only one sublattice
# we tie it to the first sublattice with site fraction 10/(10+4+16) in the sigma phase
type = KKSPhaseChemicalPotential
variable = BCC_CR
cb = SIGMA_0CR
kb = '${fparse 10/30}'
fa_name = F_BCC_A2
fb_name = F_SIGMA
args_b = 'SIGMA_1CR SIGMA_2CR'
[]
[chempot2a2b]
# This kernel ties the first two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_0CR
a = 10
cs = SIGMA_1CR
as = 4
F = F_SIGMA
coupled_variables = 'SIGMA_2CR'
[]
[chempot2b2c]
# This kernel ties the remaining two sublattices in the sigma phase together
type = SLKKSChemicalPotential
variable = SIGMA_1CR
a = 4
cs = SIGMA_2CR
as = 16
F = F_SIGMA
coupled_variables = 'SIGMA_0CR'
[]
[phaseconcentration]
# This kernel ties the sum of the sublattice concentrations to the global concentration cCr
type = SLKKSMultiPhaseConcentration
variable = SIGMA_2CR
c = cCr
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta1dt]
type = TimeDerivative
variable = eta1
[]
[ACBulkF1]
type = KKSMultiACBulkF
variable = eta1
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g1
eta_i = eta1
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta2'
[]
[ACBulkC1]
type = SLKKSMultiACBulkC
variable = eta1
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface1]
type = ACInterface
variable = eta1
kappa_name = kappa
[]
[lagrange1]
type = SwitchingFunctionConstraintEta
variable = eta1
h_name = h1
lambda = lambda
coupled_variables = 'eta2'
[]
# Kernels for Allen-Cahn equation for eta1
[deta2dt]
type = TimeDerivative
variable = eta2
[]
[ACBulkF2]
type = KKSMultiACBulkF
variable = eta2
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gi_name = g2
eta_i = eta2
wi = 0.1
coupled_variables = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR eta1'
[]
[ACBulkC2]
type = SLKKSMultiACBulkC
variable = eta2
F = F_BCC_A2
c = BCC_CR
ns = '1 3'
as = '1 10 4 16'
cs = 'BCC_CR SIGMA_0CR SIGMA_1CR SIGMA_2CR'
h_names = 'h1 h2'
eta = 'eta1 eta2'
[]
[ACInterface2]
type = ACInterface
variable = eta2
kappa_name = kappa
[]
[lagrange2]
type = SwitchingFunctionConstraintEta
variable = eta2
h_name = h2
lambda = lambda
coupled_variables = 'eta1'
[]
# Lagrange-multiplier constraint kernel for lambda
[lagrange]
type = SwitchingFunctionConstraintLagrange
variable = lambda
h_names = 'h1 h2'
etas = 'eta1 eta2'
epsilon = 1e-6
[]
[]
[AuxKernels]
[GlobalFreeEnergy]
type = KKSMultiFreeEnergy
variable = Fglobal
Fj_names = 'F_BCC_A2 F_SIGMA'
hj_names = 'h1 h2'
gj_names = 'g1 g2'
interfacial_vars = 'eta1 eta2'
kappa_names = 'kappa kappa'
w = 0.1
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
line_search = none
petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -ksp_gmres_restart'
petsc_options_value = 'asm lu nonzero 30'
l_max_its = 100
nl_max_its = 20
nl_abs_tol = 1e-10
end_time = 1000
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 12
iteration_window = 2
growth_factor = 2
cutback_factor = 0.5
dt = 0.1
[]
[]
[Postprocessors]
[F]
type = ElementIntegralVariablePostprocessor
variable = Fglobal
[]
[cmin]
type = NodalExtremeValue
value_type = min
variable = cCr
[]
[cmax]
type = NodalExtremeValue
value_type = max
variable = cCr
[]
[]
[Outputs]
exodus = true
print_linear_residuals = false
# exclude lagrange multiplier from output, it can diff more easily
hide = lambda
[]
(modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_ss.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
nx = 8
ny = 8
xmin = -82.627
xmax = 82.627
ymin = -82.627
ymax = 82.627
dim = 2
[]
[./extra_nodes_x]
type = ExtraNodesetGenerator
input = 'gen'
new_boundary = 'no_x'
coord = '0 82.627 0'
[../]
[./extra_nodes_y]
type = ExtraNodesetGenerator
input = 'extra_nodes_x'
new_boundary = 'no_y'
coord = '-82.627 0 0'
[../]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[AuxVariables]
[./temp]
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
# FINITE strain when strain is large, i.e., visible movement.
# SMALL strain when things are stressed, but may not move.
[./fuel]
add_variables = true
strain = FINITE
temperature = temp
eigenstrain_names = 'thermal_eigenstrain'
generate_output = 'vonmises_stress stress_xx stress_yy hydrostatic_stress max_principal_stress strain_xy elastic_strain_xx stress_xy'
extra_vector_tags = 'ref'
use_finite_deform_jacobian = true
incremental = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'no_x'
value = 0.0
preset = true
[../]
[./no_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = 'no_y'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3e10 # Pa
poissons_ratio = 0.33 # unitless
[../]
[./thermal_strains]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 2e-6 # 1/K
stress_free_temperature = 500 # K
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./stress_finite] # goes with FINITE strain formulation
type = ComputeFiniteStrainElasticStress
[../]
[]
[Postprocessors]
[./avg_temp]
type = ElementAverageValue
variable = temp
[../]
[./disp_x_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[./disp_x_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
line_search = 'none'
l_tol = 1e-02
nl_rel_tol = 5e-04
nl_abs_tol = 1e-2
l_max_its = 50
nl_max_its = 25
[]
[Outputs]
exodus = true
print_linear_residuals = false
perf_graph = true
[]
(test/tests/controls/libtorch_nn_control/read_control.i)
pi = 3.14159265359
period = 0.25
diff_coeff = 0.5
cp = 1.0
[Functions]
[src_func]
type = ParsedFunction
value = "sin(${pi}/${period}*t)"
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 20
xmin = -0.5
xmax = 0.5
ny = 20
ymin = -0.5
ymax = 0.5
[]
[source_domain]
type = ParsedSubdomainMeshGenerator
input = msh
combinatorial_geometry = '(x<0.2 & x>-0.2) & (y<0.2 & y>-0.2)'
block_id = 1
[]
[]
[Variables]
[T]
initial_condition = 1
[]
[]
[Kernels]
[diffusion]
type = CoefDiffusion
variable = T
coef = ${diff_coeff}
[]
[source]
type = BodyForce
variable = T
function = src_func
block = 1
[]
[anti_source]
type = BodyForce
variable = T
value = 0
block = 1
[]
[time_deriv]
type = CoefTimeDerivative
Coefficient = ${cp}
variable = T
[]
[]
[BCs]
[neumann_rest]
type = NeumannBC
variable = T
boundary = 'left right top bottom'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 25
dt = 0.1
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-12
line_search = 'none'
[]
[Postprocessors]
[T_max]
type = NodalExtremeValue
variable = T
execute_on = 'INITIAL TIMESTEP_END'
[]
[control_value]
type = LibtorchControlValuePostprocessor
control_name = src_control
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Controls]
[src_control]
type = LibtorchNeuralNetControl
parameters = "Kernels/anti_source/value"
responses = 'T_max'
execute_on = 'TIMESTEP_BEGIN'
[]
[]
[Reporters]
inactive = 'nn_parameters'
[T_reporter]
type = AccumulateReporter
reporters = 'T_max/value control_value/value'
outputs = csv_out
[]
[nn_parameters]
type = LibtorchArtificialNeuralNetParameters
control_name = src_control
execute_on = FINAL
outputs = json_out
[]
[]
[Outputs]
[csv_out]
type = CSV
execute_on = FINAL
[]
[json_out]
type = JSON
execute_on = FINAL
execute_system_information_on = NONE
[]
[]
(modules/solid_mechanics/test/tests/thermal_expansion_function/small_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/stochastic_tools/test/tests/surrogates/load_store/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = D
[]
[absorption]
type = MaterialReaction
variable = u
coefficient = sig
[]
[source]
type = BodyForce
variable = u
value = 1.0
[]
[]
[Materials]
[diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 2.0
[]
[xs]
type = GenericConstantMaterial
prop_names = sig
prop_values = 2.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[max]
type = NodalExtremeValue
variable = u
value_type = max
[]
[]
(modules/solid_mechanics/test/tests/dynamics/time_integration/hht_test_action.i)
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics/SolidMechanics/Dynamic]
[all]
add_variables = true
hht_alpha = 0.11
newmark_beta = 0.25
newmark_gamma = 0.5
density = 7750
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
hht_alpha = 0.11
displacements = 'disp_x disp_y disp_z'
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/stochastic_tools/examples/surrogates/polynomial_regression/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 1
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 1.0
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 2.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Outputs]
[]
(modules/stochastic_tools/examples/surrogates/combined/trans_diff_2d/trans_diff_sub.i)
[Functions]
[src_func]
type = ParsedFunction
expression = "1000*sin(f*t)"
symbol_names = 'f'
symbol_values = '20'
[]
[]
[Mesh]
[msh]
type = GeneratedMeshGenerator
dim = 2
nx = 100
xmin = -0.5
xmax = 0.5
ny = 100
ymin = -0.5
ymax = 0.5
[]
[source_domain]
type = ParsedSubdomainMeshGenerator
input = msh
combinatorial_geometry = '(x<0.1 & x>-0.1) & (y<0.1 & y>-0.1)'
block_id=1
[]
[]
[Variables]
[T]
initial_condition = 300
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = diff_coeff
[]
[source]
type = BodyForce
variable = T
function = src_func
block = 1
[]
[time_deriv]
type = TimeDerivative
variable = T
[]
[]
[Materials]
[diff_coeff]
type = ParsedMaterial
property_name = diff_coeff
coupled_variables = 'T'
constant_names = 'C'
constant_expressions = 0.02
expression = 'C * pow(300/T, 2)'
[]
[]
[BCs]
[neumann_all]
type = NeumannBC
variable = T
boundary = 'left right top bottom'
value = 0
[]
[]
[Executioner]
type = Transient
num_steps = 100
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
nl_rel_tol = 1e-6
l_abs_tol = 1e-6
timestep_tolerance = 1e-6
[]
[Postprocessors]
[max]
type = NodalExtremeValue
variable = T
[]
[min]
type = NodalExtremeValue
variable = T
value_type = min
[]
[time_max]
type = TimeExtremeValue
postprocessor = max
[]
[time_min]
type = TimeExtremeValue
postprocessor = min
value_type = min
[]
[]
(modules/solid_mechanics/test/tests/plane_stress/weak_plane_stress_incremental.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
incremental = true
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
expression = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeStrainIncrementBasedStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(tutorials/shield_multiphysics/inputs/step09_postprocessing/step9.i)
!include ../step08_adaptivity/step8_adapt.i
[Postprocessors]
[num_elements]
type = NumElements
execute_on = 'INITIAL TIMESTEP_END'
[]
[max_temperature_concrete]
type = NodalExtremeValue
variable = T
block = 'concrete_hd concrete'
value_type = max
execute_on = 'INITIAL TIMESTEP_END'
[]
[water_heat_flux]
type = ADSideDiffusiveFluxIntegral
variable = T
boundary = water_boundary_inwards
diffusivity = 'thermal_conductivity'
[]
[]
[VectorPostprocessors]
[temperature_sample_x]
type = LineValueSampler
num_points = 50
start_point = '1.275 4.625 0.8'
end_point = '5.275 4.625 0.8'
variable = T
sort_by = x
execute_on = 'INITIAL TIMESTEP_END'
[]
[temperature_sample_y]
type = LineValueSampler
num_points = 50
start_point = '3.275 0.825 0.8'
end_point = '3.275 8.425 0.8'
variable = T
sort_by = y
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Outputs]
csv = true
[]
(test/tests/postprocessors/nodal_extreme_value/nodal_proxy_extreme_value.i)
[Problem]
type = FEProblem
solve = false
[]
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
[]
[AuxVariables]
[u]
[]
[w]
[]
[v_x]
[]
[v_y]
[]
[]
[AuxKernels]
[u]
type = FunctionAux
variable = u
function = u
[]
[w]
type = FunctionAux
variable = w
function = w
[]
[v_x]
type = FunctionAux
variable = v_x
function = v_x
[]
[v_y]
type = FunctionAux
variable = v_y
function = v_y
[]
[]
[Functions]
[u] # reaches a maximum value at (0.5, 0.6)
type = ParsedFunction
expression = 'sin(pi*x)*sin(pi*y/1.2)'
[]
[w] # reaches a minium expression at (0.7, 0.8)
type = ParsedFunction
expression = '-sin(pi*x/1.4)*sin(pi*y/1.6)'
[]
[v_x]
type = ParsedFunction
expression = 'x'
[]
[v_y]
type = ParsedFunction
expression = 'y'
[]
[]
[Postprocessors]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which u reaches a maximum value
[max_v_from_proxy_x]
type = NodalExtremeValue
variable = v_x
proxy_variable = u
value_type = max
[]
[max_v_from_proxy_y]
type = NodalExtremeValue
variable = v_y
proxy_variable = u
value_type = max
[]
# because we set v_x and v_y equal to the x and y coordinates, these two postprocessors
# should just return the point at which w reaches a minimum value
[min_v_from_proxy_x]
type = NodalExtremeValue
variable = v_x
proxy_variable = w
value_type = min
[]
[min_v_from_proxy_y]
type = NodalExtremeValue
variable = v_y
proxy_variable = w
value_type = min
[]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
csv = true
[]
(modules/solid_mechanics/examples/coal_mining/fine.i)
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/fine.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
expression = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '100.0 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '100.0 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5
end_time = 100.0
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(modules/contact/test/tests/explicit_dynamics/test_balance.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Problem]
extra_tag_matrices = 'mass'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.0001
zmax = 1.0001
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
allow_renumbering = false
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[gap_rate]
[]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[strain_zz]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
execute_on = 'TIMESTEP_END'
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[]
[AuxVariables]
[penetration]
[]
[]
[AuxKernels]
[penetration]
type = PenetrationAux
variable = penetration
boundary = ball_back
paired_boundary = base_front
quantity = distance
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
stiffness_damping_coefficient = 0.001
generate_output = 'stress_zz strain_zz'
[]
[Mass_x]
type = MassMatrix
variable = disp_x
density = density
matrix_tags = 'mass'
[]
[Mass_y]
type = MassMatrix
variable = disp_y
density = density
matrix_tags = 'mass'
[]
[Mass_z]
type = MassMatrix
variable = disp_z
density = density
matrix_tags = 'mass'
[]
[]
[Kernels]
[gravity]
type = Gravity
variable = disp_z
value = -981.0
[]
[]
[BCs]
[x_front]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'ball_front'
value = 0.0
[]
[y_front]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'ball_front'
value = 0.0
[]
[x_fixed]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'base_back'
value = 0.0
[]
[y_fixed]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'base_back'
value = 0.0
[]
[z_fixed]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_back'
value = 0.0
[]
[z_fixed_front]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_front'
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless_balance
primary = base_front
secondary = ball_back
vel_x = 'vel_x'
vel_y = 'vel_y'
vel_z = 'vel_z'
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 1
outputs = 'exodus'
output_properties = __all__
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.0
block = 2
outputs = 'exodus'
output_properties = __all__
[]
[strain_block]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density_one]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e1
outputs = 'exodus'
output_properties = 'density'
block = '1'
[]
[density_two]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e6
outputs = 'exodus'
output_properties = 'density'
block = '2'
[]
[wave_speed]
type = WaveSpeed
outputs = 'exodus'
output_properties = 'wave_speed'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.0025
dt = 0.00001
timestep_tolerance = 1e-6
[TimeIntegrator]
type = ExplicitMixedOrder
mass_matrix_tag = 'mass'
second_order_vars = 'disp_x disp_y disp_z'
[]
[]
[Outputs]
interval = 10
exodus = true
csv = true
[]
[Postprocessors]
[accel_58z]
type = NodalVariableValue
nodeid = 1
variable = accel_z
[]
[vel_58z]
type = NodalVariableValue
nodeid = 1
variable = vel_z
[]
[disp_58z]
type = NodalVariableValue
nodeid = 1
variable = disp_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[]
(modules/solid_mechanics/test/tests/action/action_multi_eigenstrain_same_conditions.i)
# This tests a thermal expansion coefficient function using defined on both
# blocks. There two blocks, each containing a single element, and these use
# automatic_eigenstrain_names function of the SolidMechanics QuasiStatic Physics to ensure
# the names are passed correctly.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Problem]
solve = false
[]
[Physics/SolidMechanics/QuasiStatic]
[./block1]
block = 1
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[./block2]
block = 2
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = '1 2'
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
(modules/stochastic_tools/test/tests/vectorpostprocessors/multiple_stochastic_results/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[time]
type = TimeDerivative
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Transient
num_steps = 5
dt = 0.01
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[max]
type = NodalExtremeValue
value_type = MAX
variable = u
[]
[]
(modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark.i)
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 0.1
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta = 0.1
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 0.1
[]
[inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 0.1
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
displacements = 'disp_x disp_y disp_z'
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_newmark_material_dependent.i)
# Test for rayleigh damping implemented using Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + eta*M*vel + zeta*K*vel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*vel + zeta*d/dt(Div stress) + Div stress = P
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next two terms on the left involving zeta are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 'zeta_rayleigh'
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[]
[inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
eta = 'eta_rayleigh'
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
displacements = 'disp_x disp_y disp_z'
factor = 1
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
block = 0
[]
[density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[]
[material_zeta]
type = GenericConstantMaterial
block = 0
prop_names = 'zeta_rayleigh'
prop_values = '0.1'
[]
[material_eta]
type = GenericConstantMaterial
block = 0
prop_names = 'eta_rayleigh'
prop_values = '0.1'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
file_base = 'rayleigh_newmark_out'
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/dynamics/time_integration/hht_test.i)
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
hht_alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[../]
[]
[AuxKernels]
[./accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[../]
[./vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[../]
[./vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[../]
[./accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[../]
[./vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
factor = 1
hht_alpha = 0.11
displacements = 'disp_x disp_y disp_z'
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/tutorials/introduction/mech_step04a.i)
#
# We study the effects of volumetric locking
# https://mooseframework.inl.gov/modules/solid_mechanics/tutorials/introduction/answer04b.html
#
[GlobalParams]
displacements = 'disp_x disp_y'
# elem_type applies to the GeneratedMeshGenerator blocks
elem_type = QUAD4
# volumetric_locking_correction applies to the SolidMechanics QuasiStatic Physics
volumetric_locking_correction = false
# uniform_refine applies to the final mesh
uniform_refine = 0
[]
[Mesh]
[generated1]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 15
xmin = -0.6
xmax = -0.1
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar1
[]
[generated2]
type = GeneratedMeshGenerator
dim = 2
nx = 4
ny = 15
xmin = 0.1
xmax = 0.6
ymax = 5
bias_y = 0.9
boundary_name_prefix = pillar2
boundary_id_offset = 4
[]
[collect_meshes]
type = MeshCollectionGenerator
inputs = 'generated1 generated2'
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
add_variables = true
strain = FINITE
[]
[]
[BCs]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[bottom_y]
type = DirichletBC
variable = disp_y
boundary = 'pillar1_bottom pillar2_bottom'
value = 0
[]
[Pressure]
[sides]
boundary = 'pillar1_left pillar2_right'
function = 1e4*t
[]
[]
[]
[Materials]
[elasticity]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e9
# near incopmpressible material
poissons_ratio = 0.49
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Postprocessors]
[x_deflection]
type = NodalExtremeValue
value_type = max
variable = disp_x
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = none
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
end_time = 5
dt = 0.5
[Predictor]
type = SimplePredictor
scale = 1
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/contact/examples/3d_berkovich/indenter_berkovich_friction.i)
[Mesh]
file = indenter.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
order = FIRST
family = LAGRANGE
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./saved_z]
[../]
[]
[AuxKernels]
[]
[Functions]
[./push_down]
type = ParsedFunction
expression = 'if(t < 1.5, -t, t-3.0)'
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
block = '1 2'
use_automatic_differentiation = false
generate_output = 'stress_xx stress_xy stress_xz stress_yy stress_zz'
save_in = 'saved_x saved_y saved_z'
use_finite_deform_jacobian = true
[../]
[]
[BCs]
[./botz]
type = DirichletBC
variable = disp_z
boundary = 101
value = 0.0
[../]
[./boty]
type = DirichletBC
variable = disp_y
boundary = 101
value = 0.0
[../]
[./botx]
type = DirichletBC
variable = disp_x
boundary = 101
value = 0.0
[../]
[./boty111]
type = DirichletBC
variable = disp_y
boundary = 111
value = 0.0
[../]
[./botx111]
type = DirichletBC
variable = disp_x
boundary = 111
value = 0.0
[../]
[./topz]
type = FunctionDirichletBC
variable = disp_z
boundary = '201'
function = push_down
[../]
[./topy]
type = DirichletBC
variable = disp_y
boundary = 201
value = 0.0
[../]
[./topx]
type = DirichletBC
variable = disp_x
boundary = 201
value = 0.0
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 48
slip_sys_file_name = input_slip_sys_bcc48.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 48 0.0001 0.01'
uo_state_var_name = state_var_gss
slip_incr_tol = 10.0
block = 1
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 48
uo_state_var_name = state_var_gss
block = 1
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 48
groups = '0 24 48'
group_values = '900 1000' #120
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
block = 1
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 48
hprops = '1.4 1000 1200 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
block = 1
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
block = 1
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
maximum_substep_iteration = 25
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 1
C_ijkl = '265190 113650 113650 265190 113650 265190 75769 75769 75760'
fill_method = symmetric9
[../]
[./elasticity_tensor_indenter]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000000.0
poissons_ratio = 0.3
block = 2
[../]
[./stress_indenter]
type = ComputeFiniteStrainElasticStress
block = 2
[../]
[]
[Postprocessors]
[./stress_zz]
type = ElementAverageValue
variable = stress_zz
block = 1
[../]
[./resid_z]
type = NodalSum
variable = saved_z
boundary = 201
[../]
[./disp_z]
type = NodalExtremeValue
variable = disp_z
boundary = 201
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 60
nl_max_its = 50
dt = 0.004
dtmin = 0.00001
end_time = 1.8
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6 # 6 if no friction
l_tol = 1e-3
automatic_scaling = true
[]
[Outputs]
[./my_checkpoint]
type = Checkpoint
time_step_interval = 50
[../]
exodus = true
csv = true
print_linear_residuals = true
print_perf_log = true
[./console]
type = Console
max_rows = 5
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Dampers]
[./contact_slip]
type = ContactSlipDamper
primary = '202'
secondary = '102'
[../]
[]
[Contact]
[./ind_base]
primary = 202
secondary = 102
model = coulomb
friction_coefficient = 0.4
normalize_penalty = true
formulation = tangential_penalty
penalty = 1e7
capture_tolerance = 0.0001
[../]
[]
(modules/solid_mechanics/test/tests/dynamics/time_integration/hht_test_ti.i)
# Test for HHT time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + alpha*(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first term on the left is evaluated using the Inertial force kernel
# The next two terms on the left involving alpha are evaluated using the
# DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./vel_x]
[../]
[./accel_x]
[../]
[./vel_y]
[../]
[./accel_y]
[../]
[./vel_z]
[../]
[./accel_z]
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./strain_yy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./DynamicSolidMechanics]
displacements = 'disp_x disp_y disp_z'
hht_alpha = 0.11
[../]
[./inertia_x]
type = InertialForce
variable = disp_x
[../]
[./inertia_y]
type = InertialForce
variable = disp_y
[../]
[./inertia_z]
type = InertialForce
variable = disp_z
[../]
[]
[AuxKernels]
[./accel_x] # These auxkernls are only for checking output
type = TestNewmarkTI
displacement = disp_x
variable = accel_x
first = false
[../]
[./accel_y]
type = TestNewmarkTI
displacement = disp_y
variable = accel_y
first = false
[../]
[./accel_z]
type = TestNewmarkTI
displacement = disp_z
variable = accel_z
first = false
[../]
[./vel_x]
type = TestNewmarkTI
displacement = disp_x
variable = vel_x
[../]
[./vel_y]
type = TestNewmarkTI
displacement = disp_y
variable = vel_y
[../]
[./vel_z]
type = TestNewmarkTI
displacement = disp_z
variable = vel_z
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 0
index_j = 1
[../]
[./strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 0
index_j = 1
[../]
[]
[BCs]
[./top_y]
type = DirichletBC
variable = disp_y
boundary = top
value=0.0
[../]
[./top_x]
type = DirichletBC
variable = disp_x
boundary = top
value=0.0
[../]
[./top_z]
type = DirichletBC
variable = disp_z
boundary = top
value=0.0
[../]
[./bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value=0.0
[../]
[./bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value=0.0
[../]
[./Pressure]
[./Side1]
boundary = bottom
function = pressure
displacements = 'disp_x disp_y disp_z'
factor = 1
hht_alpha = 0.11
[../]
[../]
[]
[Materials]
[./Elasticity_tensor]
type = ComputeElasticityTensor
block = 0
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[../]
[./strain]
type = ComputeSmallStrain
block = 0
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 0
[../]
[./density]
type = GenericConstantMaterial
block = 0
prop_names = 'density'
prop_values = '7750'
[../]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
# Time integration scheme
scheme = 'newmark-beta'
[]
[Functions]
[./pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[../]
[]
[Postprocessors]
[./_dt]
type = TimestepSize
[../]
[./disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[../]
[./vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[../]
[./accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[../]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./strain_yy]
type = ElementAverageValue
variable = strain_yy
[../]
[]
[Outputs]
file_base = 'hht_test_out'
exodus = true
perf_graph = true
[]
(test/tests/postprocessors/nodal_extreme_value/nodal_max_value_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 20
ny = 20
[]
[Functions]
[exact_fn]
type = ParsedFunction
expression = (sin(pi*t))
[]
[forcing_fn]
type = ParsedFunction
expression = sin(pi*t)
[]
[]
[Variables]
active = 'u'
[u]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
active = 'diff' #ffn'
[ie]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[ffn]
type = BodyForce
variable = u
function = forcing_fn
[]
[]
[BCs]
[all]
type = FunctionDirichletBC
variable = u
boundary = '0 1 2 3'
function = exact_fn
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.1
start_time = 0
num_steps = 20
[]
[Postprocessors]
[max_nodal_val]
type = NodalExtremeValue
variable = u
[]
[]
[Outputs]
file_base = out_nodal_max
exodus = true
[]
(modules/solid_mechanics/test/tests/volumetric_eigenstrain/volumetric_eigenstrain.i)
# This tests the ability of the ComputeVolumetricEigenstrain material
# to compute an eigenstrain tensor that results in a solution that exactly
# recovers the specified volumetric expansion.
# This model applies volumetric strain that ramps from 0 to 2 to a unit cube
# and computes the final volume, which should be exactly 3. Note that the default
# TaylorExpansion option for decomposition_method gives a small (~4%) error
# with this very large incremental strain, but decomposition_method=EigenSolution
# gives the exact solution.
[Mesh]
type = GeneratedMesh
dim = 3
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[volumetric_strain]
order = CONSTANT
family = MONOMIAL
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/QuasiStatic]
[master]
strain = FINITE
eigenstrain_names = eigenstrain
decomposition_method = EigenSolution #Necessary for exact solution
[]
[]
[AuxKernels]
[volumetric_strain]
type = RankTwoScalarAux
scalar_type = VolumetricStrain
rank_two_tensor = total_strain
variable = volumetric_strain
[]
[]
[BCs]
[left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[finite_strain_stress]
type = ComputeFiniteStrainElasticStress
[]
[volumetric_eigenstrain]
type = ComputeVolumetricEigenstrain
volumetric_materials = volumetric_change
eigenstrain_name = eigenstrain
args = ''
[]
[volumetric_change]
type = GenericFunctionMaterial
prop_names = volumetric_change
prop_values = t
[]
[]
[Postprocessors]
[vol]
type = VolumePostprocessor
use_displaced_mesh = true
execute_on = 'initial timestep_end'
[]
[volumetric_strain]
type = ElementalVariableValue
variable = volumetric_strain
elementid = 0
[]
[disp_right]
type = NodalExtremeValue
variable = disp_x
boundary = right
[]
[]
[Executioner]
type = Transient
end_time = 2
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/volumetric_eigenstrain/ad_volumetric_eigenstrain.i)
# This tests the ability of the ADComputeVolumetricEigenstrain material
# to compute an eigenstrain tensor that results in a solution that exactly
# recovers the specified volumetric expansion.
# This model applies volumetric strain that ramps from 0 to 2 to a unit cube
# and computes the final volume, which should be exactly 3. Note that the default
# TaylorExpansion option for decomposition_method gives a small (~4%) error
# with this very large incremental strain, but decomposition_method=EigenSolution
# gives the exact solution.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[volumetric_strain]
order = CONSTANT
family = MONOMIAL
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/QuasiStatic]
[master]
strain = FINITE
eigenstrain_names = eigenstrain
decomposition_method = EigenSolution #Necessary for exact solution
use_automatic_differentiation = true
[]
[]
[AuxKernels]
[volumetric_strain]
type = ADRankTwoScalarAux
scalar_type = VolumetricStrain
rank_two_tensor = total_strain
variable = volumetric_strain
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[bottom]
type = ADDirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[]
[back]
type = ADDirichletBC
variable = disp_z
boundary = back
value = 0.0
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[finite_strain_stress]
type = ADComputeFiniteStrainElasticStress
[]
[volumetric_eigenstrain]
type = ADComputeVolumetricEigenstrain
volumetric_materials = volumetric_change
eigenstrain_name = eigenstrain
[]
[volumetric_change]
type = ADGenericFunctionMaterial
prop_names = volumetric_change
prop_values = t
[]
[]
[Postprocessors]
[vol]
type = VolumePostprocessor
use_displaced_mesh = true
execute_on = 'initial timestep_end'
[]
[volumetric_strain]
type = ElementalVariableValue
variable = volumetric_strain
elementid = 0
[]
[disp_right]
type = NodalExtremeValue
variable = disp_x
boundary = right
[]
[]
[Executioner]
type = Transient
end_time = 2
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/thermal_expansion_function/finite_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/explicit_dynamics/settlement.i)
# One element test to test the central difference time integrator in 3D.
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[Problem]
extra_tag_matrices = 'mass'
[]
[Mesh]
[block_one]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 3
nz = 3
xmin = 4.5
xmax = 5.5
ymin = 4.5
ymax = 5.5
zmin = 0.0001
zmax = 1.0001
boundary_name_prefix = 'ball'
[]
[block_two]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
xmin = 0.0
xmax = 10
ymin = 0.0
ymax = 10
zmin = -2
zmax = 0
boundary_name_prefix = 'base'
boundary_id_offset = 10
[]
[block_one_id]
type = SubdomainIDGenerator
input = block_one
subdomain_id = 1
[]
[block_two_id]
type = SubdomainIDGenerator
input = block_two
subdomain_id = 2
[]
[combine]
type = MeshCollectionGenerator
inputs = ' block_one_id block_two_id'
[]
[]
[AuxVariables]
[penetration]
[]
[]
[AuxKernels]
[penetration]
type = PenetrationAux
variable = penetration
boundary = ball_back
paired_boundary = base_front
quantity = distance
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[gap_rate]
[]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_zz]
family = MONOMIAL
order = CONSTANT
[]
[strain_zz]
family = MONOMIAL
order = CONSTANT
[]
[kinetic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_one]
order = CONSTANT
family = MONOMIAL
[]
[kinetic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[elastic_energy_two]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
index_i = 2
index_j = 2
variable = stress_zz
execute_on = 'TIMESTEP_END'
[]
[strain_zz]
type = RankTwoAux
rank_two_tensor = mechanical_strain
index_i = 2
index_j = 2
variable = strain_zz
[]
[accel_x]
type = TestNewmarkTI
variable = accel_x
displacement = disp_x
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_x]
type = TestNewmarkTI
variable = vel_x
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_y]
type = TestNewmarkTI
variable = accel_y
displacement = disp_y
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_y]
type = TestNewmarkTI
variable = vel_y
displacement = disp_x
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[accel_z]
type = TestNewmarkTI
variable = accel_z
displacement = disp_z
first = false
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[vel_z]
type = TestNewmarkTI
variable = vel_z
displacement = disp_z
execute_on = 'LINEAR TIMESTEP_BEGIN TIMESTEP_END'
[]
[kinetic_energy_one]
type = KineticEnergyAux
block = '1'
variable = kinetic_energy_one
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_one]
type = ElasticEnergyAux
variable = elastic_energy_one
block = '1'
[]
[kinetic_energy_two]
type = KineticEnergyAux
block = '2'
variable = kinetic_energy_two
newmark_velocity_x = vel_x
newmark_velocity_y = vel_y
newmark_velocity_z = vel_z
density = density
[]
[elastic_energy_two]
type = ElasticEnergyAux
variable = elastic_energy_two
block = '2'
[]
[]
[Kernels]
[DynamicTensorMechanics]
displacements = 'disp_x disp_y disp_z'
stiffness_damping_coefficient = 9.5e-4
generate_output = 'stress_zz strain_zz'
[]
[Mass_x]
type = MassMatrix
variable = disp_x
density = density
matrix_tags = 'mass'
[]
[Mass_y]
type = MassMatrix
variable = disp_y
density = density
matrix_tags = 'mass'
[]
[Mass_z]
type = MassMatrix
variable = disp_z
density = density
matrix_tags = 'mass'
[]
[gravity]
type = Gravity
variable = disp_z
value = -98.10
block = 1
[]
[]
[BCs]
[x_front]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'ball_front'
value = 0.0
[]
[y_front]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'ball_front'
value = 0.0
[]
[x_fixed]
type = ExplicitDirichletBC
variable = disp_x
boundary = 'base_back'
value = 0.0
[]
[y_fixed]
type = ExplicitDirichletBC
variable = disp_y
boundary = 'base_back'
value = 0.0
[]
[z_fixed]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_back'
value = 0.0
[]
[z_fixed_front]
type = ExplicitDirichletBC
variable = disp_z
boundary = 'base_front'
value = 0.0
[]
[]
[ExplicitDynamicsContact]
[my_contact]
model = frictionless_balance
primary = base_front
secondary = ball_back
vel_x = 'vel_x'
vel_y = 'vel_y'
vel_z = 'vel_z'
verbose = true
[]
[]
[Materials]
[elasticity_tensor_block_one]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.0
block = 1
outputs = 'exodus'
output_properties = __all__
[]
[elasticity_tensor_block_two]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e10
poissons_ratio = 0.0
block = 2
outputs = 'exodus'
output_properties = __all__
[]
[strain_block]
type = ComputeFiniteStrain # ComputeIncrementalStrain
displacements = 'disp_x disp_y disp_z'
implicit = false
[]
[stress_block]
type = ComputeFiniteStrainElasticStress
[]
[density_one]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e1
outputs = 'exodus'
output_properties = 'density'
block = '1'
[]
[density_two]
type = GenericConstantMaterial
prop_names = density
prop_values = 1e6
outputs = 'exodus'
output_properties = 'density'
block = '2'
[]
[wave_speed]
type = WaveSpeed
outputs = 'exodus'
output_properties = 'wave_speed'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 0.05
dt = 1.0e-4
timestep_tolerance = 1e-6
[TimeIntegrator]
type = ExplicitMixedOrder
mass_matrix_tag = 'mass'
second_order_vars = 'disp_x disp_y disp_z'
[]
[]
[Outputs]
interval = 1
exodus = true
csv = true
execute_on = 'TIMESTEP_END'
[]
[Postprocessors]
[accel_58z]
type = NodalVariableValue
nodeid = 1
variable = accel_z
[]
[vel_58z]
type = NodalVariableValue
nodeid = 1
variable = vel_z
[]
[critical_time_step]
type = CriticalTimeStep
[]
[contact_pressure_max]
type = NodalExtremeValue
variable = contact_pressure
block = '1 2'
value_type = max
[]
[penetration_max]
type = NodalExtremeValue
variable = penetration
block = '1 2'
value_type = max
[]
[total_kinetic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_one
block = '1'
[]
[total_elastic_energy_one]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_one
block = '1'
[]
[total_kinetic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = kinetic_energy_two
block = '2'
[]
[total_elastic_energy_two]
type = ElementIntegralVariablePostprocessor
variable = elastic_energy_two
block = '2'
[]
[]
(modules/solid_mechanics/test/tests/dynamics/dynamic_physics/dynamic_physics_2d_planar.i)
#This is a model of the dynamic response of a beam subjected
#to an axial pressure pulse applied to its end.
#This is a regression test intended to ensure that the
#Physics/SolidMechanics/Dynamic block can set the problem
#up correctly for a variety of 2D planar model options
[Mesh]
type = GeneratedMesh
dim = 2
xmax = 0.1
ymax = 1.0
[]
[GlobalParams]
displacements = 'disp_x disp_y'
# out_of_plane_strain = 'strain_zz_var'
[]
[Variables]
# [strain_zz_var]
# []
[]
[Physics/SolidMechanics/Dynamic]
[all]
add_variables = true
newmark_beta = 0.25
newmark_gamma = 0.5
strain = SMALL
incremental = true
density = 100
generate_output = 'stress_yy strain_yy stress_zz strain_zz'
#planar_formulation = PLANE_STRAIN #'WEAK_PLANE_STRESS'
[]
[]
[BCs]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[press_bot]
type = Pressure
variable = disp_y
boundary = bottom
function = 'if(t<0.5001,t*100,0)'
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1000
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
nl_rel_tol = 1e-12
nl_abs_tol = 1e-20
[]
[Postprocessors]
[disp_y_bot]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel_y_bot]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel_y_bot]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[strain_zz]
type = ElementAverageValue
variable = strain_zz
[]
[]
[Outputs]
exodus = true
csv = true
[]
(modules/solid_mechanics/examples/coal_mining/coarse.i)
# Strata deformation and fracturing around a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# Time is meaningless in this example
# as quasi-static solutions are sought at each timestep, but
# the number of timesteps controls the resolution of the
# process.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young's modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa. The initial stress is consistent with
# the weight force from density 2500 kg/m^3, ie, stress_zz = 0.025*z MPa
# where gravity = 10 m.s^-2 = 1E-5 MPa m^2/kg. The maximum and minimum
# principal horizontal stresses are assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 3 MPa
# MC friction angle = 37 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
#
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[./xmin]
input = file
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
[../]
[./xmax]
input = xmin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
[../]
[./ymin]
input = xmax
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
[../]
[./ymax]
input = ymin
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
[../]
[./zmax]
input = ymax
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
[../]
[./zmin]
input = zmax
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
[../]
[./excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[../]
[./roof]
type = SideSetsAroundSubdomainGenerator
block = 1
input = excav
new_boundary = roof
normal = '0 0 1'
[../]
[]
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./wc_x]
[../]
[./wc_y]
[../]
[]
[Kernels]
[./cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[../]
[./cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[../]
[./cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[../]
[./x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[../]
[./y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[../]
[./x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[../]
[./y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[../]
[./gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[../]
[]
[AuxVariables]
[./wc_z]
[../]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yz]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_shear_f]
order = CONSTANT
family = MONOMIAL
[../]
[./mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
[../]
[./stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
[../]
[./stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[../]
[./stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
[../]
[./stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
[../]
[./stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
[../]
[./mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
[../]
[./mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
[../]
[./wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
[../]
[./wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
[../]
[./mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
[../]
[./mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
[../]
[./wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
[../]
[./wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[../]
[./no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[../]
[./no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[../]
[./no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[../]
[./roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[../]
[]
[Functions]
[./ini_xx]
type = ParsedFunction
expression = '0.8*2500*10E-6*z'
[../]
[./ini_zz]
type = ParsedFunction
expression = '2500*10E-6*z'
[../]
[./excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '17.0 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[../]
[./density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '17.0 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[../]
[]
[UserObjects]
[./mc_coh_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 2.99 # MPa
value_residual = 3.01 # MPa
rate = 1.0
[../]
[./mc_fric]
type = SolidMechanicsHardeningConstant
value = 0.65 # 37deg
[../]
[./mc_dil]
type = SolidMechanicsHardeningConstant
value = 0.15 # 8deg
[../]
[./mc_tensile_str_strong_harden]
type = SolidMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[../]
[./mc_compressive_str]
type = SolidMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[../]
[./wp_coh_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_tan_fric]
type = SolidMechanicsHardeningConstant
value = 0.36 # 20deg
[../]
[./wp_tan_dil]
type = SolidMechanicsHardeningConstant
value = 0.18 # 10deg
[../]
[./wp_tensile_str_harden]
type = SolidMechanicsHardeningCubic
value_0 = 0.1
value_residual = 0.1
internal_limit = 10
[../]
[./wp_compressive_str_soften]
type = SolidMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[../]
[]
[Materials]
[./elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[../]
[./elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[../]
[./strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[../]
[./ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[../]
[./stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[../]
[./mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[../]
[./wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.1
smoothing_tol = 0.1 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[../]
[./density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[../]
[./density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[./min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[../]
[./min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 30
nl_max_its = 1000
start_time = 0.0
dt = 0.5 # this gives min(disp_z)=-4.3, use dt=0.0625 if you want to restrict disp_z>=-3.2
end_time = 17.0
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = false
exodus = true
csv = true
console = true
[]
(modules/combined/test/tests/restart-transient-from-ss-with-stateful/sub_tr.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
nx = 8
ny = 8
xmin = -82.627
xmax = 82.627
ymin = -82.627
ymax = 82.627
dim = 2
[]
[./extra_nodes_x]
type = ExtraNodesetGenerator
input = 'gen'
new_boundary = 'no_x'
coord = '0 82.627 0'
[../]
[./extra_nodes_y]
type = ExtraNodesetGenerator
input = 'extra_nodes_x'
new_boundary = 'no_y'
coord = '-82.627 0 0'
[../]
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
[]
[AuxVariables]
[./temp]
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
# FINITE strain when strain is large, i.e., visible movement.
# SMALL strain when things are stressed, but may not move.
[./fuel]
add_variables = true
strain = FINITE
temperature = temp
eigenstrain_names = 'thermal_eigenstrain'
generate_output = 'vonmises_stress stress_xx stress_yy hydrostatic_stress max_principal_stress strain_xy elastic_strain_xx stress_xy'
extra_vector_tags = 'ref'
use_finite_deform_jacobian = true
incremental = true
[../]
[]
[BCs]
[./no_x]
type = DirichletBC
variable = disp_x
boundary = 'no_x'
value = 0.0
preset = true
[../]
[./no_y]
type = DirichletBC
preset = true
variable = disp_y
boundary = 'no_y'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 3e10 # Pa
poissons_ratio = 0.33 # unitless
[../]
[./thermal_strains]
type = ComputeThermalExpansionEigenstrain
temperature = temp
thermal_expansion_coeff = 2e-6 # 1/K
stress_free_temperature = 500 # K
eigenstrain_name = 'thermal_eigenstrain'
[../]
[./stress_finite] # goes with FINITE strain formulation
type = ComputeFiniteStrainElasticStress
[../]
[]
[Postprocessors]
[./avg_temp]
type = ElementAverageValue
variable = temp
execute_on = 'initial timestep_end'
[../]
[./disp_x_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_element]
type = ElementExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[./disp_x_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_x
execute_on = 'initial timestep_end'
[../]
[./disp_y_max_nodal]
type = NodalExtremeValue
value_type = max
variable = disp_y
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'
petsc_options_value = 'hypre boomeramg 300'
line_search = 'none'
l_tol = 1e-02
nl_rel_tol = 5e-04
nl_abs_tol = 1e-2
l_max_its = 50
nl_max_its = 25
start_time = 0
end_time = 40
dt = 10
[]
[Outputs]
print_linear_residuals = false
perf_graph = true
exodus = true
[]
(modules/optimization/test/tests/optimizationreporter/function_misfit/forward_and_adjoint_side.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2
nx = 15
ny = 15
xmin = 0
ymin = 0
xmax = 1
ymax = 1.4
[]
[]
[Problem]
nl_sys_names = 'nl0 adjoint'
kernel_coverage_check = FALSE
[]
[Variables]
[temperature]
[]
[temperature_adjoint]
solver_sys = adjoint
[]
[]
[Kernels]
[heat_conduction]
type = MatDiffusion
variable = temperature
diffusivity = thermal_conductivity
[]
[]
[DiracKernels]
[pt]
type = ReporterPointSource
variable = temperature
x_coord_name = 'point_source/x'
y_coord_name = 'point_source/y'
z_coord_name = 'point_source/z'
value_name = 'point_source/value'
[]
[]
[BCs]
[left]
type = DirichletBC
variable = temperature
boundary = left
value = 300
[]
[right]
type = DirichletBC
variable = temperature
boundary = right
value = 300
[]
[bottom]
type = DirichletBC
variable = temperature
boundary = bottom
value = 300
[]
# apply gradient material as a side force since the objective integral is only
# over this side
[top]
type = MatNeumannBC
boundary = top
boundary_material = obj_misfit_gradient
variable = temperature_adjoint
value = 1
[]
[]
[Materials]
[steel]
type = GenericConstantMaterial
prop_names = thermal_conductivity
prop_values = 5
[]
# Create two materials.
# 1. Material which the integral of is our objective
# 2. dM/du material which is used for our adjoint problem
[beam]
type = MisfitReporterOffsetFunctionMaterial
x_coord_name = measure_data/measurement_xcoord
y_coord_name = measure_data/measurement_ycoord
z_coord_name = measure_data/measurement_zcoord
measurement_value_name = measure_data/measurement_values
forward_variable = temperature
property_name = obj_misfit
function = gauss
[]
[]
[Functions]
[gauss]
type = ParsedFunction
expression = 'exp(-2.0 *(x^2 + y^2 + z^2)/(beam_radii^2))'
symbol_names = 'beam_radii'
symbol_values = 0.1
[]
[]
[Executioner]
type = SteadyAndAdjoint
forward_system = nl0
adjoint_system = adjoint
nl_rel_tol = 1e-12
nl_abs_tol = 1e-10
l_tol = 1e-12
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[VectorPostprocessors]
[gradient]
type = PointValueSampler
points = '0.2 1.1 0
0.7 1.1 0
0.4 1.1 0'
variable = temperature_adjoint
sort_by = id
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Postprocessors]
[objective]
type = SideIntegralMaterialProperty
boundary = top
property = obj_misfit
execute_on = 'TIMESTEP_END'
[]
[largest_adjoint]
type = NodalExtremeValue
variable = temperature_adjoint
execute_on = ADJOINT_TIMESTEP_END
[]
[]
[Reporters]
[measure_data]
type = OptimizationData
variable = temperature
[]
[point_source]
type = ConstantReporter
real_vector_names = 'x y z value'
real_vector_values = '0.2 0.7 0.4;
1.1 1.1 1.1;
0 0 0;
-1000 120 500'
[]
[]
[Outputs]
console = false
[]
(modules/stochastic_tools/test/tests/surrogates/poly_chaos/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 10
[]
[Variables]
[u]
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = u
diffusivity = D
[]
[absorption]
type = MaterialReaction
variable = u
coefficient = sig
[]
[source]
type = BodyForce
variable = u
value = 1.0
[]
[]
[Materials]
[diffusivity]
type = GenericConstantMaterial
prop_names = D
prop_values = 2.0
[]
[xs]
type = GenericConstantMaterial
prop_names = sig
prop_values = 2.0
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 0
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = u
[]
[max]
type = NodalExtremeValue
variable = u
value_type = max
[]
[]
(test/tests/misc/boundary_variable_check/test.i)
[Problem]
boundary_restricted_elem_integrity_check = true
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 2
[]
[subdomain1]
input = gen
type = SubdomainBoundingBoxGenerator
bottom_left = '1.0 0 0'
block_id = 1
top_right = '2.0 1.0 0'
[]
[interface]
input = subdomain1
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'primary0_interface'
[]
[]
[AuxVariables]
[dummy][]
[dummy2]
family = MONOMIAL
order = CONSTANT
block = 1
[]
[dummy3]
family = MONOMIAL
order = CONSTANT
block = 0
[]
[]
[AuxKernels]
active = 'bad'
[bad]
type = ProjectionAux
variable = dummy
v = v
boundary = 'left'
[]
[bad_elemental]
type = ProjectionAux
variable = dummy3
v = dummy2
boundary = 'left'
[]
[]
[Variables]
[u]
block = '0'
[]
[v]
block = '1'
[]
[]
[Kernels]
[diff_u]
type = CoeffParamDiffusion
variable = u
D = 4
block = 0
[]
[diff_v]
type = CoeffParamDiffusion
variable = v
D = 2
block = 1
[]
[]
[InterfaceKernels]
active = 'interface'
[interface]
type = InterfaceDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
D = 'D'
D_neighbor = 'D'
[]
[penalty_interface]
type = PenaltyInterfaceDiffusion
variable = u
neighbor_var = v
boundary = primary0_interface
penalty = 1e6
[]
[]
[BCs]
active = 'left right middle'
[left]
type = DirichletBC
variable = u
boundary = 'left'
value = 1
[]
[bad]
type = MatchedValueBC
variable = u
boundary = 'left'
v = v
[]
[bad_integrated]
type = CoupledVarNeumannBC
variable = u
boundary = 'left'
v = v
[]
[right]
type = DirichletBC
variable = v
boundary = 'right'
value = 0
[]
[middle]
type = MatchedValueBC
variable = v
boundary = 'primary0_interface'
v = u
[]
[]
[Materials]
[stateful]
type = StatefulMaterial
initial_diffusivity = 1
boundary = primary0_interface
[]
[block0]
type = GenericConstantMaterial
block = '0'
prop_names = 'D'
prop_values = '4'
[]
[block1]
type = GenericConstantMaterial
block = '1'
prop_names = 'D'
prop_values = '2'
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
[Postprocessors]
active = ''
[bad]
type = NodalExtremeValue
boundary = 'left'
variable = v
[]
[bad_side]
type = SideDiffusiveFluxIntegral
variable = v
diffusivity = 1
boundary = 'left'
[]
[]
(test/tests/misc/block_user_object_check/block_check.i)
[Mesh]
[./generator]
type = GeneratedMeshGenerator
dim = 2
nx = 10
ny = 5
[../]
[./left_block]
type = SubdomainBoundingBoxGenerator
input = generator
block_id = 1
bottom_left = '0 0 0'
top_right = '0.5 1 0'
[../]
[./right_block]
type = SubdomainBoundingBoxGenerator
input = left_block
block_id = 2
bottom_left = '0.5 0 0'
top_right = '1 1 0'
[../]
[]
[Variables]
[./var_1]
block = 1
initial_condition = 100
[../]
[./var_2]
block = 2
initial_condition = 200
[../]
[]
[Problem]
type = FEProblem
kernel_coverage_check = true
solve = false
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[./obj]
type = NodalExtremeValue
variable = var_1
#block = 1 # this is what being tested, see the test spec
execute_on = 'initial'
[../]
[]
(modules/solid_mechanics/test/tests/plane_stress/ad_weak_plane_stress_small.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
expression = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_small_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/dynamics/time_integration/newmark.i)
# Test for Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
# The residual due to Pressure is evaluated using Pressure boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 0.1
ymax = 1.0
zmax = 0.1
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxVariables]
[vel_x]
[]
[accel_x]
[]
[vel_y]
[]
[accel_y]
[]
[vel_z]
[]
[accel_z]
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y disp_z'
[]
[inertia_x]
type = InertialForce
variable = disp_x
velocity = vel_x
acceleration = accel_x
beta = 0.25
gamma = 0.5
[]
[inertia_y]
type = InertialForce
variable = disp_y
velocity = vel_y
acceleration = accel_y
beta = 0.25
gamma = 0.5
[]
[inertia_z]
type = InertialForce
variable = disp_z
velocity = vel_z
acceleration = accel_z
beta = 0.25
gamma = 0.5
[]
[]
[AuxKernels]
[accel_x]
type = NewmarkAccelAux
variable = accel_x
displacement = disp_x
velocity = vel_x
beta = 0.25
execute_on = timestep_end
[]
[vel_x]
type = NewmarkVelAux
variable = vel_x
acceleration = accel_x
gamma = 0.5
execute_on = timestep_end
[]
[accel_y]
type = NewmarkAccelAux
variable = accel_y
displacement = disp_y
velocity = vel_y
beta = 0.25
execute_on = timestep_end
[]
[vel_y]
type = NewmarkVelAux
variable = vel_y
acceleration = accel_y
gamma = 0.5
execute_on = timestep_end
[]
[accel_z]
type = NewmarkAccelAux
variable = accel_z
displacement = disp_z
velocity = vel_z
beta = 0.25
execute_on = timestep_end
[]
[vel_z]
type = NewmarkVelAux
variable = vel_z
acceleration = accel_z
gamma = 0.5
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[BCs]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
displacements = 'disp_x disp_y disp_z'
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210 0'
[]
[strain]
type = ComputeSmallStrain
displacements = 'disp_x disp_y disp_z'
[]
[stress]
type = ComputeLinearElasticStress
[]
[density]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '7750'
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.2 1.0 5.0'
y = '0.0 0.2 1.0 1.0'
scale_factor = 1e3
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(test/tests/userobjects/Terminator/terminator.i)
###########################################################
# This is a test of the UserObject System. The
# Terminator UserObject executes independently after
# each solve and can terminate the solve early due to
# user-defined criteria. (Type: GeneralUserObject)
#
# @Requirement F6.40
###########################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 30
ny = 6
xmin = -15.0
xmax = 15.0
ymin = -3.0
ymax = 3.0
elem_type = QUAD4
[]
[Variables]
[./c]
order = FIRST
family = LAGRANGE
initial_condition = 1
[../]
[]
[Postprocessors]
[./max_c]
type = NodalExtremeValue
variable = c
execute_on = 'initial timestep_end'
[../]
[]
[UserObjects]
[./arnold]
type = Terminator
expression = 'max_c < 0.5'
[../]
[]
[Kernels]
[./cres]
type = Diffusion
variable = c
[../]
[./time]
type = TimeDerivative
variable = c
[../]
[]
[BCs]
[./c]
type = DirichletBC
variable = c
boundary = left
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 100
num_steps = 6
[]
[Outputs]
exodus = true
[]
(modules/stochastic_tools/test/tests/reporters/ActiveLearningGP/sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 0.13061533868990033
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 10951.864006672608
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 10.320058433901163
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 279.8173854189593
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(modules/stochastic_tools/examples/surrogates/cross_validation/all_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 100
xmax = 0.03
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 10000
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 2.0
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 300
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Outputs]
[]
(test/tests/postprocessors/nodal_extreme_value/nodal_extreme_pps_test.i)
[Mesh]
type = FileMesh
file = trapezoid.e
uniform_refine = 1
# This test will not work in parallel with DistributedMesh enabled
# due to a bug in PeriodicBCs.
parallel_type = replicated
[]
[Functions]
[./tr_x]
type = ParsedFunction
expression = -x*cos(pi/3)
[../]
[./tr_y]
type = ParsedFunction
expression = x*sin(pi/3)
[../]
[./itr_x]
type = ParsedFunction
expression = -x/cos(pi/3)
[../]
[./itr_y]
type = ParsedFunction
expression = 0
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./forcing]
type = GaussContForcing
variable = u
x_center = 2
y_center = -1
x_spread = 0.25
y_spread = 0.5
[../]
[./dot]
type = TimeDerivative
variable = u
[../]
[]
[BCs]
# active = ' '
[./Periodic]
[./x]
primary = 1
secondary = 4
transform_func = 'tr_x tr_y'
inv_transform_func = 'itr_x itr_y'
[../]
[../]
[]
[Postprocessors]
[./max_nodal_pps]
type = NodalExtremeValue
variable = u
[../]
[./max_node_id]
type = NodalMaxValueId
variable = u
[../]
[./min_nodal_pps]
type = NodalExtremeValue
variable = u
value_type = min
[../]
[]
[Executioner]
type = Transient
dt = 0.5
num_steps = 6
[]
[Outputs]
execute_on = 'timestep_end'
exodus = true
[]
(modules/solid_mechanics/test/tests/ad_thermal_expansion_function/small_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/dynamics/rayleigh_damping/rayleigh_hht.i)
# Test for rayleigh damping implemented using HHT time integration
#
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# zeta and eta correspond to the stiffness and mass proportional rayleigh damping
# alpha, beta and gamma are HHT time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + (eta*M+zeta*K)*[(1+alpha)vel-alpha vel_old]
# + alpha*(K*disp - K*disp_old) + K*disp = P(t+alpha dt)*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + eta*density*[(1+alpha)vel-alpha vel_old]
# + zeta*[(1+alpha)*d/dt(Div stress)- alpha*d/dt(Div stress_old)]
# + alpha *(Div stress - Div stress_old) +Div Stress= P(t+alpha dt)
#
# The first two terms on the left are evaluated using the Inertial force kernel
# The next three terms on the left involving zeta and alpha are evaluated using
# the DynamicStressDivergenceTensors Kernel
# The residual due to Pressure is evaluated using Pressure boundary condition
#
# The system will come to steady state slowly after the pressure becomes constant.
# Alpha equal to zero will result in Newmark integration.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
xmin = 0.0
xmax = 0.1
ymin = 0.0
ymax = 1.0
zmin = 0.0
zmax = 0.1
use_displaced_mesh = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
[]
[strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = strain_yy
index_i = 1
index_j = 1
[]
[]
[Physics/SolidMechanics/Dynamic]
[all]
add_variables = true
hht_alpha = 0.11
newmark_beta = 0.25
newmark_gamma = 0.5
mass_damping_coefficient = 0.1
stiffness_damping_coefficient = 0.1
density = 7750
[]
[]
[BCs]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[bottom_x]
type = DirichletBC
variable = disp_x
boundary = bottom
value = 0.0
[]
[bottom_z]
type = DirichletBC
variable = disp_z
boundary = bottom
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
hht_alpha = 0.11
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210e9 0'
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.1 0.2 1.0 2.0 5.0'
y = '0.0 0.1 0.2 1.0 1.0 1.0'
scale_factor = 1e9
[]
[]
[Postprocessors]
[_dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/porous_flow/examples/coal_mining/fine_with_fluid.i)
#################################################################
#
# NOTE:
# The mesh for this model is too large for the MOOSE repository
# so is kept in the the large_media submodule
#
#################################################################
#
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = fine.e
[]
[xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmin
normal = '-1 0 0'
input = file
[]
[xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[]
[ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[]
[ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[]
[zmax]
type = SideSetsAroundSubdomainGenerator
block = 30
new_boundary = zmax
normal = '0 0 1'
input = ymax
[]
[zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[]
[excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
input = excav
new_boundary = roof
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[wc_x]
[]
[wc_y]
[]
[porepressure]
scaling = 1E-5
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[]
[]
[Kernels]
[cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[]
[x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[]
[y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[]
[x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[]
[y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[]
[gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
use_displaced_mesh = false
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = porepressure
fluid_component = 0
[]
[mass0]
type = PorousFlowMassTimeDerivative
use_displaced_mesh = false
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[]
[]
[AuxVariables]
[saturation]
order = CONSTANT
family = MONOMIAL
[]
[darcy_x]
order = CONSTANT
family = MONOMIAL
[]
[darcy_y]
order = CONSTANT
family = MONOMIAL
[]
[darcy_z]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[wc_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zx]
order = CONSTANT
family = MONOMIAL
[]
[stress_zy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[perm_xx]
order = CONSTANT
family = MONOMIAL
[]
[perm_yy]
order = CONSTANT
family = MONOMIAL
[]
[perm_zz]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[]
[darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[]
[darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[]
[darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[]
[perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[]
[perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[]
[mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[]
[mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[]
[wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[]
[wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[]
[mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[]
[mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[]
[wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[]
[wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[]
[no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[]
[no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[]
[fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[]
[roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[]
[roof]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[]
[]
[Functions]
[ini_pp]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0'
symbol_values = '2E3 0.0 1E-5 1E3'
expression = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[]
[ini_xx]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[]
[ini_zz]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[]
[excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '0.5 0 1000.0 1E-9 1 10'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[]
[density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '0.5 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[]
[roof_conductance]
type = ParsedFunction
symbol_names = 'end_t ymin ymax maxval minval'
symbol_values = '0.5 0 1000.0 1E7 0'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[]
[mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[]
[mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[]
[mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[]
[mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[]
[mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[]
[wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[]
[wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[]
[wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity_for_aux]
type = PorousFlowPorosity
at_nodes = false
fluid = true
mechanical = true
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[]
[permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[]
[permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[]
[elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[]
[elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[]
[strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[]
[stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[]
[wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[]
[undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
prop_names = density
prop_values = 2500
[]
[undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[]
[min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[]
[min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[]
[min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[]
[max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30'
variable = perm_zz
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu mumps'
# best if you don't have mumps:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.0025
end_time = 0.5
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
(modules/solid_mechanics/test/tests/dynamics/time_integration/newmark_action.i)
# Test for Newmark time integration
# The test is for an 1D bar element of unit length fixed on one end
# with a ramped pressure boundary condition applied to the other end.
# beta and gamma are Newmark time integration parameters
# The equation of motion in terms of matrices is:
#
# M*accel + K*disp = P*Area
#
# Here M is the mass matrix, K is the stiffness matrix, P is the applied pressure
#
# This equation is equivalent to:
#
# density*accel + Div Stress = P
#
# The first term on the left is evaluated using the Inertial force kernel
# The last term on the left is evaluated using StressDivergenceTensors
# The residual due to Pressure is evaluated using Pressure boundary condition
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 0.1
ymax = 1.0
zmax = 0.1
use_displaced_mesh = false
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/Dynamic]
[all]
add_variables = true
newmark_beta = 0.25
newmark_gamma = 0.5
strain = SMALL
density = 7750
generate_output = 'stress_yy strain_yy'
[]
[]
[BCs]
[top_x]
type = DirichletBC
variable = disp_x
boundary = top
value = 0.0
[]
[top_y]
type = DirichletBC
variable = disp_y
boundary = top
value = 0.0
[]
[top_z]
type = DirichletBC
variable = disp_z
boundary = top
value = 0.0
[]
[Pressure]
[Side1]
boundary = bottom
function = pressure
factor = 1
[]
[]
[]
[Materials]
[Elasticity_tensor]
type = ComputeElasticityTensor
fill_method = symmetric_isotropic
C_ijkl = '210 0'
[]
[stress]
type = ComputeLinearElasticStress
[]
[]
[Executioner]
type = Transient
start_time = 0
end_time = 2
dt = 0.1
[]
[Functions]
[pressure]
type = PiecewiseLinear
x = '0.0 0.2 1.0 5.0'
y = '0.0 0.2 1.0 1.0'
scale_factor = 1e3
[]
[]
[Postprocessors]
[dt]
type = TimestepSize
[]
[disp]
type = NodalExtremeValue
variable = disp_y
boundary = bottom
[]
[vel]
type = NodalExtremeValue
variable = vel_y
boundary = bottom
[]
[accel]
type = NodalExtremeValue
variable = accel_y
boundary = bottom
[]
[stress_yy]
type = ElementAverageValue
variable = stress_yy
[]
[strain_yy]
type = ElementAverageValue
variable = strain_yy
[]
[]
[Outputs]
exodus = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/plane_stress/weak_plane_stress_small.i)
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = MaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = SMALL
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
[]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
expression = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeLinearElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = none
# controls for linear iterations
l_max_its = 100
l_tol = 1e-06
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/volumetric_eigenstrain/volumetric_mechanical.i)
# This test ensures that the reported volumetric strain for a cube with
# mechanically imposed displacements (through Dirichlet BCs) exactly
# matches that from a version of this test that experiences the same
# defomation, but due to imposed eigenstrains.
[Mesh]
type = GeneratedMesh
dim = 3
nx = 1
ny = 1
nz = 1
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxVariables]
[./volumetric_strain]
order = CONSTANT
family = MONOMIAL
[../]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/QuasiStatic]
[./master]
strain = FINITE
decomposition_method = EigenSolution #Necessary for exact solution
[../]
[]
[AuxKernels]
[./volumetric_strain]
type = RankTwoScalarAux
scalar_type = VolumetricStrain
rank_two_tensor = total_strain
variable = volumetric_strain
[../]
[]
[Functions]
[pres_disp]
type = PiecewiseLinear
# These values are taken from the displacements in the eigenstrain
# version of this test. The volume of the cube (which starts out as
# a 1x1x1 cube) is (1 + disp)^3. At time 2, this is
# (1.44224957030741)^3, which is 3.0.
xy_data = '0 0
1 0.25992104989487
2 0.44224957030741'
[]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = bottom
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = back
value = 0.0
[../]
[./right]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = pres_disp
[../]
[./top]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = pres_disp
[../]
[./front]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = pres_disp
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./finite_strain_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./volumetric_change]
type = GenericFunctionMaterial
prop_names = volumetric_change
prop_values = t
[../]
[]
[Postprocessors]
[./vol]
type = VolumePostprocessor
use_displaced_mesh = true
execute_on = 'initial timestep_end'
[../]
[./volumetric_strain]
type = ElementalVariableValue
variable = volumetric_strain
elementid = 0
[../]
[./disp_right]
type = NodalExtremeValue
variable = disp_x
boundary = right
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 2.0
dt = 1.0
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/plane_stress/ad_weak_plane_stress_finite.i)
[GlobalParams]
displacements = 'disp_x disp_y'
temperature = temp
out_of_plane_strain = strain_zz
[]
[Mesh]
[./square]
type = GeneratedMeshGenerator
dim = 2
nx = 2
ny = 2
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./strain_zz]
[../]
[]
[AuxVariables]
[./temp]
[../]
[./nl_strain_zz]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Postprocessors]
[./react_z]
type = ADMaterialTensorIntegral
rank_two_tensor = stress
index_i = 2
index_j = 2
[../]
[./min_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = min
[../]
[./max_strain_zz]
type = NodalExtremeValue
variable = strain_zz
value_type = max
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./plane_stress]
planar_formulation = WEAK_PLANE_STRESS
strain = FINITE
generate_output = 'stress_xx stress_xy stress_yy stress_zz strain_xx strain_xy strain_yy'
eigenstrain_names = eigenstrain
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./tempfuncaux]
type = FunctionAux
variable = temp
function = tempfunc
use_displaced_mesh = false
[../]
[./strain_zz]
type = ADRankTwoAux
rank_two_tensor = total_strain
variable = nl_strain_zz
index_i = 2
index_j = 2
[../]
[]
[Functions]
[./pull]
type = PiecewiseLinear
x='0 1 100'
y='0 0.00 0.00'
[../]
[./tempfunc]
type = ParsedFunction
expression = '(1 - x) * t'
[../]
[]
[BCs]
[./bottomx]
type = DirichletBC
boundary = 0
variable = disp_x
value = 0.0
[../]
[./bottomy]
type = DirichletBC
boundary = 0
variable = disp_y
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./thermal_strain]
type = ADComputeThermalExpansionEigenstrain
thermal_expansion_coeff = 0.02
stress_free_temperature = 0.5
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ADComputeFiniteStrainElasticStress
[../]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
# controls for nonlinear iterations
nl_max_its = 15
nl_rel_tol = 1e-14
nl_abs_tol = 1e-12
# time control
start_time = 0.0
dt = 1.0
dtmin = 1.0
end_time = 2.0
[]
[Outputs]
file_base = 'weak_plane_stress_finite_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/ad_thermal_expansion_function/small_linear.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function is a linear function
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses small deformation theory. The results
# from the two models are identical.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = SMALL
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeLinearElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (0.5 * t^2 - 0.5 * tsf^2) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 0.0
2 2.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/porous_flow/examples/coal_mining/coarse_with_fluid.i)
# Strata deformation and fluid flow aaround a coal mine - 3D model
#
# A "half model" is used. The mine is 400m deep and
# just the roof is studied (-400<=z<=0). The mining panel
# sits between 0<=x<=150, and 0<=y<=1000, so this simulates
# a coal panel that is 300m wide and 1000m long. The outer boundaries
# are 1km from the excavation boundaries.
#
# The excavation takes 0.5 years.
#
# The boundary conditions for this simulation are:
# - disp_x = 0 at x=0 and x=1150
# - disp_y = 0 at y=-1000 and y=1000
# - disp_z = 0 at z=-400, but there is a time-dependent
# Young modulus that simulates excavation
# - wc_x = 0 at y=-1000 and y=1000
# - wc_y = 0 at x=0 and x=1150
# - no flow at x=0, z=-400 and z=0
# - fixed porepressure at y=-1000, y=1000 and x=1150
# That is, rollers on the sides, free at top,
# and prescribed at bottom in the unexcavated portion.
#
# A single-phase unsaturated fluid is used.
#
# The small strain formulation is used.
#
# All stresses are measured in MPa, and time units are measured in years.
#
# The initial porepressure is hydrostatic with P=0 at z=0, so
# Porepressure ~ - 0.01*z MPa, where the fluid has density 1E3 kg/m^3 and
# gravity = = 10 m.s^-2 = 1E-5 MPa m^2/kg.
# To be more accurate, i use
# Porepressure = -bulk * log(1 + g*rho0*z/bulk)
# where bulk=2E3 MPa and rho0=1Ee kg/m^3.
# The initial stress is consistent with the weight force from undrained
# density 2500 kg/m^3, and fluid porepressure, and a Biot coefficient of 0.7, ie,
# stress_zz^effective = 0.025*z + 0.7 * initial_porepressure
# The maximum and minimum principal horizontal effective stresses are
# assumed to be equal to 0.8*stress_zz.
#
# Material properties:
# Young's modulus = 8 GPa
# Poisson's ratio = 0.25
# Cosserat layer thickness = 1 m
# Cosserat-joint normal stiffness = large
# Cosserat-joint shear stiffness = 1 GPa
# MC cohesion = 2 MPa
# MC friction angle = 35 deg
# MC dilation angle = 8 deg
# MC tensile strength = 1 MPa
# MC compressive strength = 100 MPa
# WeakPlane cohesion = 0.1 MPa
# WeakPlane friction angle = 30 deg
# WeakPlane dilation angle = 10 deg
# WeakPlane tensile strength = 0.1 MPa
# WeakPlane compressive strength = 100 MPa softening to 1 MPa at strain = 1
# Fluid density at zero porepressure = 1E3 kg/m^3
# Fluid bulk modulus = 2E3 MPa
# Fluid viscosity = 1.1E-3 Pa.s = 1.1E-9 MPa.s = 3.5E-17 MPa.year
#
[GlobalParams]
perform_finite_strain_rotations = false
displacements = 'disp_x disp_y disp_z'
Cosserat_rotations = 'wc_x wc_y wc_z'
PorousFlowDictator = dictator
biot_coefficient = 0.7
[]
[Mesh]
[file]
type = FileMeshGenerator
file = mesh/coarse.e
[]
[xmin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmin
normal = '-1 0 0'
input = file
[]
[xmax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = xmax
normal = '1 0 0'
input = xmin
[]
[ymin]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymin
normal = '0 -1 0'
input = xmax
[]
[ymax]
type = SideSetsAroundSubdomainGenerator
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
new_boundary = ymax
normal = '0 1 0'
input = ymin
[]
[zmax]
type = SideSetsAroundSubdomainGenerator
block = 16
new_boundary = zmax
normal = '0 0 1'
input = ymax
[]
[zmin]
type = SideSetsAroundSubdomainGenerator
block = 2
new_boundary = zmin
normal = '0 0 -1'
input = zmax
[]
[excav]
type = SubdomainBoundingBoxGenerator
input = zmin
block_id = 1
bottom_left = '0 0 -400'
top_right = '150 1000 -397'
[]
[roof]
type = SideSetsBetweenSubdomainsGenerator
primary_block = 3
paired_block = 1
input = excav
new_boundary = roof
[]
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[wc_x]
[]
[wc_y]
[]
[porepressure]
scaling = 1E-5
[]
[]
[ICs]
[porepressure]
type = FunctionIC
variable = porepressure
function = ini_pp
[]
[]
[Kernels]
[cx_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[cy_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[cz_elastic]
type = CosseratStressDivergenceTensors
use_displaced_mesh = false
variable = disp_z
component = 2
[]
[x_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_x
displacements = 'wc_x wc_y wc_z'
component = 0
base_name = couple
[]
[y_couple]
type = StressDivergenceTensors
use_displaced_mesh = false
variable = wc_y
displacements = 'wc_x wc_y wc_z'
component = 1
base_name = couple
[]
[x_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_x
component = 0
[]
[y_moment]
type = MomentBalancing
use_displaced_mesh = false
variable = wc_y
component = 1
[]
[gravity]
type = Gravity
use_displaced_mesh = false
variable = disp_z
value = -10E-6 # remember this is in MPa
[]
[poro_x]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_x
component = 0
[]
[poro_y]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
variable = disp_y
component = 1
[]
[poro_z]
type = PorousFlowEffectiveStressCoupling
use_displaced_mesh = false
component = 2
variable = disp_z
[]
[mass0]
type = PorousFlowMassTimeDerivative
fluid_component = 0
variable = porepressure
[]
[flux]
type = PorousFlowAdvectiveFlux
use_displaced_mesh = false
variable = porepressure
gravity = '0 0 -10E-6'
fluid_component = 0
[]
[poro_vol_exp]
type = PorousFlowMassVolumetricExpansion
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = porepressure
fluid_component = 0
[]
[]
[AuxVariables]
[saturation]
order = CONSTANT
family = MONOMIAL
[]
[darcy_x]
order = CONSTANT
family = MONOMIAL
[]
[darcy_y]
order = CONSTANT
family = MONOMIAL
[]
[darcy_z]
order = CONSTANT
family = MONOMIAL
[]
[porosity]
order = CONSTANT
family = MONOMIAL
[]
[wc_z]
[]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xz]
order = CONSTANT
family = MONOMIAL
[]
[stress_yx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_yz]
order = CONSTANT
family = MONOMIAL
[]
[stress_zx]
order = CONSTANT
family = MONOMIAL
[]
[stress_zy]
order = CONSTANT
family = MONOMIAL
[]
[stress_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zx]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zy]
order = CONSTANT
family = MONOMIAL
[]
[total_strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[perm_xx]
order = CONSTANT
family = MONOMIAL
[]
[perm_yy]
order = CONSTANT
family = MONOMIAL
[]
[perm_zz]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile]
order = CONSTANT
family = MONOMIAL
[]
[wp_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[wp_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_shear_f]
order = CONSTANT
family = MONOMIAL
[]
[mc_tensile_f]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[saturation_water]
type = PorousFlowPropertyAux
variable = saturation
property = saturation
phase = 0
execute_on = timestep_end
[]
[darcy_x]
type = PorousFlowDarcyVelocityComponent
variable = darcy_x
gravity = '0 0 -10E-6'
component = x
[]
[darcy_y]
type = PorousFlowDarcyVelocityComponent
variable = darcy_y
gravity = '0 0 -10E-6'
component = y
[]
[darcy_z]
type = PorousFlowDarcyVelocityComponent
variable = darcy_z
gravity = '0 0 -10E-6'
component = z
[]
[porosity]
type = PorousFlowPropertyAux
property = porosity
variable = porosity
execute_on = timestep_end
[]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[stress_xz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[stress_yx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[stress_yz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[stress_zx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[stress_zy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[total_strain_xx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[]
[total_strain_xy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[]
[total_strain_xz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_xz
index_i = 0
index_j = 2
execute_on = timestep_end
[]
[total_strain_yx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yx
index_i = 1
index_j = 0
execute_on = timestep_end
[]
[total_strain_yy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[]
[total_strain_yz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_yz
index_i = 1
index_j = 2
execute_on = timestep_end
[]
[total_strain_zx]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zx
index_i = 2
index_j = 0
execute_on = timestep_end
[]
[total_strain_zy]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zy
index_i = 2
index_j = 1
execute_on = timestep_end
[]
[total_strain_zz]
type = RankTwoAux
rank_two_tensor = total_strain
variable = total_strain_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[]
[perm_xx]
type = PorousFlowPropertyAux
property = permeability
variable = perm_xx
row = 0
column = 0
execute_on = timestep_end
[]
[perm_yy]
type = PorousFlowPropertyAux
property = permeability
variable = perm_yy
row = 1
column = 1
execute_on = timestep_end
[]
[perm_zz]
type = PorousFlowPropertyAux
property = permeability
variable = perm_zz
row = 2
column = 2
execute_on = timestep_end
[]
[mc_shear]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_internal_parameter
variable = mc_shear
execute_on = timestep_end
[]
[mc_tensile]
type = MaterialStdVectorAux
index = 1
property = mc_plastic_internal_parameter
variable = mc_tensile
execute_on = timestep_end
[]
[wp_shear]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_internal_parameter
variable = wp_shear
execute_on = timestep_end
[]
[wp_tensile]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_internal_parameter
variable = wp_tensile
execute_on = timestep_end
[]
[mc_shear_f]
type = MaterialStdVectorAux
index = 6
property = mc_plastic_yield_function
variable = mc_shear_f
execute_on = timestep_end
[]
[mc_tensile_f]
type = MaterialStdVectorAux
index = 0
property = mc_plastic_yield_function
variable = mc_tensile_f
execute_on = timestep_end
[]
[wp_shear_f]
type = MaterialStdVectorAux
index = 0
property = wp_plastic_yield_function
variable = wp_shear_f
execute_on = timestep_end
[]
[wp_tensile_f]
type = MaterialStdVectorAux
index = 1
property = wp_plastic_yield_function
variable = wp_tensile_f
execute_on = timestep_end
[]
[]
[BCs]
[no_x]
type = DirichletBC
variable = disp_x
boundary = 'xmin xmax'
value = 0.0
[]
[no_y]
type = DirichletBC
variable = disp_y
boundary = 'ymin ymax'
value = 0.0
[]
[no_z]
type = DirichletBC
variable = disp_z
boundary = zmin
value = 0.0
[]
[no_wc_x]
type = DirichletBC
variable = wc_x
boundary = 'ymin ymax'
value = 0.0
[]
[no_wc_y]
type = DirichletBC
variable = wc_y
boundary = 'xmin xmax'
value = 0.0
[]
[fix_porepressure]
type = FunctionDirichletBC
variable = porepressure
boundary = 'ymin ymax xmax'
function = ini_pp
[]
[roof_porepressure]
type = PorousFlowPiecewiseLinearSink
variable = porepressure
pt_vals = '-1E3 1E3'
multipliers = '-1 1'
fluid_phase = 0
flux_function = roof_conductance
boundary = roof
[]
[roof_bcs]
type = StickyBC
variable = disp_z
min_value = -3.0
boundary = roof
[]
[]
[Functions]
[ini_pp]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0'
symbol_values = '2E3 0.0 1E-5 1E3'
expression = '-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)'
[]
[ini_xx]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '0.8*(2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk)))'
[]
[ini_zz]
type = ParsedFunction
symbol_names = 'bulk p0 g rho0 biot'
symbol_values = '2E3 0.0 1E-5 1E3 0.7'
expression = '2500*10E-6*z+biot*(-bulk*log(exp(-p0/bulk)+g*rho0*z/bulk))'
[]
[excav_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval slope'
symbol_values = '0.5 0 1000.0 1E-9 1 60'
# excavation face at ymin+(ymax-ymin)*min(t/end_t,1)
# slope is the distance over which the modulus reduces from maxval to minval
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,if(y<ymin+(ymax-ymin)*min(t/end_t,1)+slope,minval+(maxval-minval)*(y-(ymin+(ymax-ymin)*min(t/end_t,1)))/slope,maxval))'
[]
[density_sideways]
type = ParsedFunction
symbol_names = 'end_t ymin ymax minval maxval'
symbol_values = '0.5 0 1000.0 0 2500'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),minval,maxval)'
[]
[roof_conductance]
type = ParsedFunction
symbol_names = 'end_t ymin ymax maxval minval'
symbol_values = '0.5 0 1000.0 1E7 0'
expression = 'if(y<ymin+(ymax-ymin)*min(t/end_t,1),maxval,minval)'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'porepressure disp_x disp_y disp_z'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
m = 0.5
alpha = 1 # MPa^-1
[]
[mc_coh_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.99 # MPa
value_residual = 2.01 # MPa
rate = 1.0
[]
[mc_fric]
type = TensorMechanicsHardeningConstant
value = 0.61 # 35deg
[]
[mc_dil]
type = TensorMechanicsHardeningConstant
value = 0.15 # 8deg
[]
[mc_tensile_str_strong_harden]
type = TensorMechanicsHardeningExponential
value_0 = 1.0 # MPa
value_residual = 1.0 # MPa
rate = 1.0
[]
[mc_compressive_str]
type = TensorMechanicsHardeningCubic
value_0 = 100 # Large!
value_residual = 100
internal_limit = 0.1
[]
[wp_coh_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_tan_fric]
type = TensorMechanicsHardeningConstant
value = 0.26 # 15deg
[]
[wp_tan_dil]
type = TensorMechanicsHardeningConstant
value = 0.18 # 10deg
[]
[wp_tensile_str_harden]
type = TensorMechanicsHardeningCubic
value_0 = 0.05
value_residual = 0.05
internal_limit = 10
[]
[wp_compressive_str_soften]
type = TensorMechanicsHardeningCubic
value_0 = 100
value_residual = 1
internal_limit = 1.0
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
bulk_modulus = 2E3
density0 = 1000
thermal_expansion = 0
viscosity = 3.5E-17
[]
[]
[Materials]
[temperature]
type = PorousFlowTemperature
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[vol_strain]
type = PorousFlowVolumetricStrain
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = porepressure
capillary_pressure = pc
[]
[massfrac]
type = PorousFlowMassFraction
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity_bulk]
type = PorousFlowPorosity
fluid = true
mechanical = true
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
ensure_positive = true
porosity_zero = 0.02
solid_bulk = 5.3333E3
[]
[porosity_excav]
type = PorousFlowPorosityConst
block = 1
porosity = 1.0
[]
[permeability_bulk]
type = PorousFlowPermeabilityKozenyCarman
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
poroperm_function = kozeny_carman_phi0
k0 = 1E-15
phi0 = 0.02
n = 2
m = 2
[]
[permeability_excav]
type = PorousFlowPermeabilityConst
block = 1
permeability = '0 0 0 0 0 0 0 0 0'
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 4
s_res = 0.4
sum_s_res = 0.4
phase = 0
[]
[elasticity_tensor_0]
type = ComputeLayeredCosseratElasticityTensor
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
[]
[elasticity_tensor_1]
type = ComputeLayeredCosseratElasticityTensor
block = 1
young = 8E3 # MPa
poisson = 0.25
layer_thickness = 1.0
joint_normal_stiffness = 1E9 # huge
joint_shear_stiffness = 1E3 # MPa
elasticity_tensor_prefactor = excav_sideways
[]
[strain]
type = ComputeCosseratIncrementalSmallStrain
eigenstrain_names = ini_stress
[]
[ini_stress]
type = ComputeEigenstrainFromInitialStress
eigenstrain_name = ini_stress
initial_stress = 'ini_xx 0 0 0 ini_xx 0 0 0 ini_zz'
[]
[stress_0]
type = ComputeMultipleInelasticCosseratStress
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
inelastic_models = 'mc wp'
cycle_models = true
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[stress_1]
type = ComputeMultipleInelasticCosseratStress
block = 1
inelastic_models = ''
relative_tolerance = 2.0
absolute_tolerance = 1E6
max_iterations = 1
tangent_operator = nonlinear
perform_finite_strain_rotations = false
[]
[mc]
type = CappedMohrCoulombCosseratStressUpdate
warn_about_precision_loss = false
host_youngs_modulus = 8E3
host_poissons_ratio = 0.25
base_name = mc
tensile_strength = mc_tensile_str_strong_harden
compressive_strength = mc_compressive_str
cohesion = mc_coh_strong_harden
friction_angle = mc_fric
dilation_angle = mc_dil
max_NR_iterations = 100000
smoothing_tol = 0.1 # MPa # Must be linked to cohesion
yield_function_tol = 1E-9 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0
[]
[wp]
type = CappedWeakPlaneCosseratStressUpdate
warn_about_precision_loss = false
base_name = wp
cohesion = wp_coh_harden
tan_friction_angle = wp_tan_fric
tan_dilation_angle = wp_tan_dil
tensile_strength = wp_tensile_str_harden
compressive_strength = wp_compressive_str_soften
max_NR_iterations = 10000
tip_smoother = 0.05
smoothing_tol = 0.05 # MPa # Note, this must be tied to cohesion, otherwise get no possible return at cone apex
yield_function_tol = 1E-11 # MPa. this is essentially the lowest possible without lots of precision loss
perfect_guess = true
min_step_size = 1.0E-3
[]
[undrained_density_0]
type = GenericConstantMaterial
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
prop_names = density
prop_values = 2500
[]
[undrained_density_1]
type = GenericFunctionMaterial
block = 1
prop_names = density
prop_values = density_sideways
[]
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[Postprocessors]
[min_roof_disp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = disp_z
[]
[min_roof_pp]
type = NodalExtremeValue
boundary = roof
value_type = min
variable = porepressure
[]
[min_surface_disp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = disp_z
[]
[min_surface_pp]
type = NodalExtremeValue
boundary = zmax
value_type = min
variable = porepressure
[]
[max_perm_zz]
type = ElementExtremeValue
block = '2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'
variable = perm_zz
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options = '-snes_converged_reason'
# best overall
# petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
# petsc_options_value = ' lu mumps'
# best if you do not have mumps:
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = ' lu superlu_dist'
# best if you do not have mumps or superlu_dist:
#petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' asm 2 lu gmres 200'
# very basic:
#petsc_options_iname = '-pc_type -ksp_type -ksp_gmres_restart'
#petsc_options_value = ' bjacobi gmres 200'
line_search = bt
nl_abs_tol = 1e-3
nl_rel_tol = 1e-5
l_max_its = 200
nl_max_its = 30
start_time = 0.0
dt = 0.014706
end_time = 0.014706 #0.5
[]
[Outputs]
time_step_interval = 1
print_linear_residuals = true
exodus = true
csv = true
console = true
[]
(modules/stochastic_tools/test/tests/reporters/BFActiveLearning/sub_lf.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
xmax = 0.09
elem_type = EDGE3
[]
[Variables]
[T]
order = SECOND
family = LAGRANGE
[]
[]
[Kernels]
[diffusion]
type = MatDiffusion
variable = T
diffusivity = k
[]
[source]
type = BodyForce
variable = T
value = 10951.864006672608
[]
[]
[Materials]
[conductivity]
type = GenericConstantMaterial
prop_names = k
prop_values = 10.320058433901163
[]
[]
[BCs]
[right]
type = DirichletBC
variable = T
boundary = right
value = 279.8173854189593
[]
[]
[Executioner]
type = Steady
solve_type = PJFNK
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Postprocessors]
[avg]
type = AverageNodalVariableValue
variable = T
[]
[max]
type = NodalExtremeValue
variable = T
value_type = max
[]
[]
[Controls]
[stochastic]
type = SamplerReceiver
[]
[]
[Outputs]
[]
(test/tests/misc/check_error/double_restrict_uo.i)
[Mesh]
file = sq-2blk.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
block = 1
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 6
value = 0
[../]
[./right_u]
type = NeumannBC
variable = u
boundary = 8
value = 4
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 6
value = 1
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 3
value = 6
[../]
[]
[Postprocessors]
# This test demonstrates that you can have a block restricted NodalPostprocessor
[./restricted_max]
type = NodalExtremeValue
variable = v
block = 1 # Block restricted
boundary = 1 # Boundary restricted
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
(modules/solid_mechanics/test/tests/action/ad_converter_action_multi_eigenstrain.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Problem]
solve = false
[]
[Physics/SolidMechanics/QuasiStatic]
[./block1]
block = 1
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[./block2]
block = 2
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = reg_eigenstrain1
[../]
[./converter1]
type = RankTwoTensorMaterialADConverter
block = 1
reg_props_in = 'reg_eigenstrain1'
ad_props_out = 'eigenstrain1'
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
(modules/solid_mechanics/examples/wave_propagation/cantilever_sweep.i)
# Frequency Response function for cantilever beam:
# Analytic results: 509Hz and 763Hz
# Simulation results with coarse mesh: 600Hz and 800Hz
[Mesh]
type = GeneratedMesh
elem_type = HEX8
dim = 3
xmin=0
xmax=1
nx=10
ymin=0
ymax=0.1
ny = 1
zmin=0
zmax=0.15
nz = 2
[]
[GlobalParams]
order = FIRST
family = LAGRANGE
displacements = 'disp_x disp_y disp_z'
[]
[Problem]
type = ReferenceResidualProblem
reference_vector = 'ref'
extra_tag_vectors = 'ref'
group_variables = 'disp_x disp_y disp_z'
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = SMALL
add_variables = true
new_system = true
formulation = TOTAL
[]
[]
[]
[]
[Kernels]
#reaction terms
[reaction_realx]
type = Reaction
variable = disp_x
rate = 0# filled by controller
extra_vector_tags = 'ref'
[]
[reaction_realy]
type = Reaction
variable = disp_y
rate = 0# filled by controller
extra_vector_tags = 'ref'
[]
[reaction_realz]
type = Reaction
variable = disp_z
rate = 0# filled by controller
extra_vector_tags = 'ref'
[]
[]
[AuxVariables]
[disp_mag]
[]
[]
[AuxKernels]
[disp_mag]
type = ParsedAux
variable = disp_mag
coupled_variables = 'disp_x disp_y disp_z'
expression = 'sqrt(disp_x^2+disp_y^2+disp_z^2)'
[]
[]
[BCs]
#Left
[disp_x_left]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0.0
[]
[disp_y_left]
type = DirichletBC
variable = disp_y
boundary = 'left'
value = 0.0
[]
[disp_z_left]
type = DirichletBC
variable = disp_z
boundary = 'left'
value = 0.0
[]
#Right
[BC_right_yreal]
type = NeumannBC
variable = disp_y
boundary = 'right'
value = 1000
[]
[BC_right_zreal]
type = NeumannBC
variable = disp_z
boundary = 'right'
value = 1000
[]
[]
[Materials]
[elastic_tensor_Al]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 68e9
poissons_ratio = 0.36
[]
[compute_stress]
type = ComputeLagrangianLinearElasticStress
[]
[]
[Postprocessors]
[dispMag]
type = NodalExtremeValue
value_type = max
variable = disp_mag
[]
[]
[Functions]
[./freq2]
type = ParsedFunction
symbol_names = density
symbol_values = 2.7e3 #Al kg/m3
expression = '-t*t*density'
[../]
[]
[Controls]
[./func_control]
type = RealFunctionControl
parameter = 'Kernels/*/rate'
function = 'freq2'
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
solve_type=LINEAR
petsc_options_iname = ' -pc_type'
petsc_options_value = 'lu'
start_time = 300 #starting frequency
end_time = 1200 #ending frequency
nl_abs_tol = 1e-6
[TimeStepper]
type = ConstantDT
dt = 50 #frequency stepsize
[]
[]
[Outputs]
csv=true
exodus=false
console = false
[]
(modules/contact/test/tests/verification/patch_tests/mindlin/cylinder_friction_node_face.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
[input_file]
type = FileMeshGenerator
file = hertz_cyl_coarser.e
[]
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[disp_x]
[]
[disp_y]
[]
[]
[AuxVariables]
[stress_xx]
order = CONSTANT
family = MONOMIAL
[]
[stress_yy]
order = CONSTANT
family = MONOMIAL
[]
[stress_xy]
order = CONSTANT
family = MONOMIAL
[]
[react_x]
[]
[react_y]
[]
[penetration]
[]
[inc_slip_x]
[]
[inc_slip_y]
[]
[accum_slip_x]
[]
[accum_slip_y]
[]
[]
[Functions]
[disp_ramp_vert]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. -0.020 -0.020'
[]
[disp_ramp_horz]
type = PiecewiseLinear
x = '0. 1. 3.5'
y = '0. 0.0 0.015'
[]
[]
[Kernels]
[TensorMechanics]
use_displaced_mesh = true
extra_vector_tags = 'ref'
block = '1 2 3 4 5 6 7'
[]
[]
[AuxKernels]
[stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
block = '1 2 3 4 5 6 7'
[]
[stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
block = '1 2 3 4 5 6 7'
[]
[stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
block = '1 2 3 4 5 6 7'
[]
[incslip_x]
type = PenetrationAux
variable = inc_slip_x
quantity = incremental_slip_x
boundary = 3
paired_boundary = 2
[]
[incslip_y]
type = PenetrationAux
variable = inc_slip_y
quantity = incremental_slip_y
boundary = 3
paired_boundary = 2
[]
[accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[]
[accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[]
[penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[]
[react_x]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_x'
variable = 'react_x'
[]
[react_y]
type = TagVectorAux
vector_tag = 'ref'
v = 'disp_y'
variable = 'react_y'
[]
[]
[Postprocessors]
[bot_react_x]
type = NodalSum
variable = react_x
boundary = 1
[]
[bot_react_y]
type = NodalSum
variable = react_y
boundary = 1
[]
[top_react_x]
type = NodalSum
variable = react_x
boundary = 4
[]
[top_react_y]
type = NodalSum
variable = react_y
boundary = 4
[]
[penetration]
type = NodalExtremeValue
variable = penetration
value_type = max
boundary = 3
[]
[inc_slip_x_max]
type = NodalExtremeValue
variable = inc_slip_x
value_type = max
boundary = 3
[]
[inc_slip_x_min]
type = NodalExtremeValue
variable = inc_slip_x
value_type = min
boundary = 3
[]
[inc_slip_y_max]
type = NodalExtremeValue
variable = inc_slip_y
value_type = max
boundary = 3
[]
[inc_slip_y_min]
type = NodalExtremeValue
variable = inc_slip_y
value_type = min
boundary = 3
[]
[accum_slip_x]
type = NodalExtremeValue
variable = accum_slip_x
value_type = max
boundary = 3
[]
[accum_slip_y]
type = NodalExtremeValue
variable = accum_slip_y
value_type = max
boundary = 3
[]
[_dt]
type = TimestepSize
[]
[]
[BCs]
[side_x]
type = DirichletBC
variable = disp_y
boundary = '1 2'
value = 0.0
[]
[bot_y]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0.0
[]
[top_y_disp]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = disp_ramp_vert
[]
[top_x_disp]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = disp_ramp_horz
[]
[]
[Materials]
[stuff1_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e10
poissons_ratio = 0.0
[]
[stuff1_strain]
type = ComputeFiniteStrain
block = '1'
[]
[stuff1_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[]
[stuff2_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2 3 4 5 6 7'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stuff2_strain]
type = ComputeFiniteStrain
block = '2 3 4 5 6 7'
[]
[stuff2_stress]
type = ComputeFiniteStrainElasticStress
block = '2 3 4 5 6 7'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type '
'-pc_factor_shift_amount -mat_mffd_err'
petsc_options_value = 'lu superlu_dist NONZERO 1e-15 '
' 1e-5'
line_search = 'none'
nl_abs_tol = 1e-8
start_time = 0.0
end_time = 0.3
l_tol = 1e-4
dt = 0.1
dtmin = 0.1
[]
[Preconditioning]
[SMP]
type = SMP
full = true
[]
[]
[VectorPostprocessors]
[x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '3 4'
sort_by = id
[]
[y_disp]
type = NodalValueSampler
variable = disp_y
boundary = '3 4'
sort_by = id
[]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
exodus = true
csv = true
[console]
type = Console
max_rows = 5
[]
[chkfile]
type = CSV
show = 'x_disp y_disp'
file_base = cylinder_friction_check
create_final_symlink = true
execute_on = 'FINAL'
[]
[]
[Contact]
[leftright]
primary = 2
secondary = 3
model = coulomb
formulation = penalty
penalty = 5e9
normalize_penalty = true
friction_coefficient = '0.2'
[]
[]
(modules/solid_mechanics/test/tests/ad_thermal_expansion_function/finite_const.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
eigenstrain_names = eigenstrain
generate_output = 'strain_xx strain_yy strain_zz'
use_automatic_differentiation = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ADComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ADComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[./thermal_expansion_strain2]
type = ADComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]
[Outputs]
csv = true
[]
(modules/combined/test/tests/gap_heat_transfer_mortar/finite-2d/varied_pressure_thermomechanical_mortar.i)
## Units in the input file: m-Pa-s-K
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[left_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 10
xmax = 0.25
ymin = 0
ymax = 0.5
boundary_name_prefix = moving_block
[]
[left_block]
type = SubdomainIDGenerator
input = left_rectangle
subdomain_id = 1
[]
[right_rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 20
ny = 13
xmin = 0.25
xmax = 0.5
ymin = 0
ymax = 0.5
boundary_name_prefix = fixed_block
boundary_id_offset = 4
[]
[right_block]
type = SubdomainIDGenerator
input = right_rectangle
subdomain_id = 2
[]
[two_blocks]
type = MeshCollectionGenerator
inputs = 'left_block right_block'
[]
[block_rename]
type = RenameBlockGenerator
input = two_blocks
old_block = '1 2'
new_block = 'left_block right_block'
[]
patch_update_strategy = iteration
[]
[Variables]
[disp_x]
block = 'left_block right_block'
[]
[disp_y]
block = 'left_block right_block'
[]
[temperature]
initial_condition = 300.0
[]
[temperature_interface_lm]
block = 'interface_secondary_subdomain'
[]
[]
[Physics]
[SolidMechanics/QuasiStatic]
[steel]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'left_block'
[]
[aluminum]
strain = FINITE
add_variables = false
use_automatic_differentiation = true
generate_output = 'strain_xx strain_xy strain_yy stress_xx stress_xy stress_yy'
additional_generate_output = 'vonmises_stress'
additional_material_output_family = 'MONOMIAL'
additional_material_output_order = 'FIRST'
block = 'right_block'
[]
[]
[]
[Kernels]
[HeatDiff_steel]
type = ADHeatConduction
variable = temperature
thermal_conductivity = steel_thermal_conductivity
block = 'left_block'
[]
[HeatTdot_steel]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = steel_heat_capacity
density_name = steel_density
block = 'left_block'
[]
[HeatDiff_aluminum]
type = ADHeatConduction
variable = temperature
thermal_conductivity = aluminum_thermal_conductivity
block = 'right_block'
[]
[HeatTdot_aluminum]
type = ADHeatConductionTimeDerivative
variable = temperature
specific_heat = aluminum_heat_capacity
density_name = aluminum_density
block = 'right_block'
[]
[]
[BCs]
[fixed_bottom_edge]
type = ADDirichletBC
variable = disp_y
value = 0
boundary = 'moving_block_bottom fixed_block_bottom'
[]
[fixed_outer_edge]
type = ADDirichletBC
variable = disp_x
value = 0
boundary = 'fixed_block_right'
[]
[pressure_left_block]
type = ADPressure
variable = disp_x
component = 0
boundary = 'moving_block_left'
function = '1e4*t*y'
[]
[temperature_left]
type = ADDirichletBC
variable = temperature
value = 300
boundary = 'moving_block_left'
[]
[temperature_right]
type = ADDirichletBC
variable = temperature
value = 800
boundary = 'fixed_block_right'
[]
[]
[Contact]
[interface]
primary = moving_block_right
secondary = fixed_block_left
model = frictionless
formulation = mortar
correct_edge_dropping = true
[]
[]
[Constraints]
[thermal_contact]
type = ModularGapConductanceConstraint
variable = temperature_interface_lm
secondary_variable = temperature
primary_boundary = moving_block_right
primary_subdomain = interface_primary_subdomain
secondary_boundary = fixed_block_left
secondary_subdomain = interface_secondary_subdomain
gap_flux_models = 'closed'
use_displaced_mesh = true
[]
[]
[Materials]
[steel_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 1.93e11 #in Pa, 193 GPa, stainless steel 304
poissons_ratio = 0.29
block = 'left_block'
[]
[steel_stress]
type = ADComputeFiniteStrainElasticStress
block = 'left_block'
[]
[steel_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'steel_density steel_thermal_conductivity steel_heat_capacity steel_hardness'
prop_values = ' 8e3 16.2 0.5 129' ## for stainless steel 304
block = 'left_block'
[]
[aluminum_elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 6.8e10 #in Pa, 68 GPa, aluminum
poissons_ratio = 0.36
block = 'right_block'
[]
[aluminum_stress]
type = ADComputeFiniteStrainElasticStress
block = 'right_block'
[]
[aluminum_thermal_properties]
type = ADGenericConstantMaterial
prop_names = 'aluminum_density aluminum_thermal_conductivity aluminum_heat_capacity aluminum_hardness'
prop_values = ' 2.7e3 210 0.9 15' #for 99% pure Al
block = 'right_block'
[]
[]
[UserObjects]
[closed]
type = GapFluxModelPressureDependentConduction
primary_conductivity = steel_thermal_conductivity
secondary_conductivity = aluminum_thermal_conductivity
temperature = temperature
contact_pressure = interface_normal_lm
primary_hardness = steel_hardness
secondary_hardness = aluminum_hardness
boundary = moving_block_right
[]
[]
[Postprocessors]
[contact_pressure_max]
type = NodalExtremeValue
variable = interface_normal_lm
block = interface_secondary_subdomain
value_type = max
[]
[contact_pressure_average]
type = AverageNodalVariableValue
variable = interface_normal_lm
block = interface_secondary_subdomain
[]
[contact_pressure_min]
type = NodalExtremeValue
variable = interface_normal_lm
block = interface_secondary_subdomain
value_type = min
[]
[interface_temperature_max]
type = NodalExtremeValue
variable = temperature
block = interface_secondary_subdomain
value_type = max
[]
[interface_temperature_average]
type = AverageNodalVariableValue
variable = temperature
block = interface_secondary_subdomain
[]
[interface_temperature_min]
type = NodalExtremeValue
variable = temperature
block = interface_secondary_subdomain
value_type = min
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = false
line_search = 'none'
# mortar contact solver options
petsc_options = '-snes_converged_reason -pc_svd_monitor'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = ' lu superlu_dist'
snesmf_reuse_base = false
nl_rel_tol = 1e-7
nl_max_its = 20
l_max_its = 50
dt = 0.125
end_time = 1
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/action/action_multi_eigenstrain.i)
# This tests the thermal expansion coefficient function using both
# options to specify that function: mean and instantaneous. There
# two blocks, each containing a single element, and these use the
# two variants of the function.
# In this test, the instantaneous CTE function has a constant value,
# while the mean CTE function is an analytic function designed to
# give the same response. If \bar{alpha}(T) is the mean CTE function,
# and \alpha(T) is the instantaneous CTE function,
# \bar{\alpha}(T) = 1/(T-Tref) \intA^{T}_{Tsf} \alpha(T) dT
# where Tref is the reference temperature used to define the mean CTE
# function, and Tsf is the stress-free temperature.
# This version of the test uses finite deformation theory.
# The two models produce very similar results. There are slight
# differences due to the large deformation treatment.
[Mesh]
file = 'blocks.e'
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./temp]
order = FIRST
family = LAGRANGE
[../]
[]
[Problem]
solve = false
[]
[Physics/SolidMechanics/QuasiStatic]
[./block1]
block = 1
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[./block2]
block = 2
strain = FINITE
add_variables = true
automatic_eigenstrain_names = true
generate_output = 'strain_xx strain_yy strain_zz'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = disp_x
boundary = 3
value = 0.0
[../]
[./bottom]
type = DirichletBC
variable = disp_y
boundary = 2
value = 0.0
[../]
[./back]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0.0
[../]
[]
[AuxKernels]
[./temp]
type = FunctionAux
variable = temp
block = '1 2'
function = temp_func
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./small_stress]
type = ComputeFiniteStrainElasticStress
[../]
[./thermal_expansion_strain1]
type = ComputeMeanThermalExpansionFunctionEigenstrain
block = 1
thermal_expansion_function = cte_func_mean
thermal_expansion_function_reference_temperature = 0.5
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain1
[../]
[./thermal_expansion_strain2]
type = ComputeInstantaneousThermalExpansionFunctionEigenstrain
block = 2
thermal_expansion_function = cte_func_inst
stress_free_temperature = 0.0
temperature = temp
eigenstrain_name = eigenstrain2
[../]
[]
[Functions]
[./cte_func_mean]
type = ParsedFunction
symbol_names = 'tsf tref scale' #stress free temp, reference temp, scale factor
symbol_values = '0.0 0.5 1e-4'
expression = 'scale * (t - tsf) / (t - tref)'
[../]
[./cte_func_inst]
type = PiecewiseLinear
xy_data = '0 1.0
2 1.0'
scale_factor = 1e-4
[../]
[./temp_func]
type = PiecewiseLinear
xy_data = '0 1
1 2'
[../]
[]
[Postprocessors]
[./disp_1]
type = NodalExtremeValue
variable = disp_x
boundary = 101
[../]
[./disp_2]
type = NodalExtremeValue
variable = disp_x
boundary = 102
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
l_max_its = 100
l_tol = 1e-4
nl_abs_tol = 1e-8
nl_rel_tol = 1e-12
start_time = 0.0
end_time = 1.0
dt = 0.1
[]