- mixing_lengthTurbulent eddy mixing length. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Turbulent eddy mixing length. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- momentum_componentThe component of the momentum equation that this kernel applies to.
C++ Type:MooseEnum
Controllable:No
Description:The component of the momentum equation that this kernel applies to.
- rhie_chow_user_objectThe rhie-chow user-object
C++ Type:UserObjectName
Controllable:No
Description:The rhie-chow user-object
- rhofluid density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:fluid density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
INSFVMixingLengthReynoldsStress
This kernel uses a mixing-length model to compute the Reynolds stress, , which appears in Reynolds-averaged momentum equations. The velocity scaling is computed using Smagorinsky's formulation.
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- vThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
- wThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- boundaries_to_avoidThe set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of sidesets to not execute this FVFluxKernel on. This takes precedence over force_boundary_execution to restrict to less external boundaries. By default flux kernels are executed on all internal boundaries and Dirichlet boundary conditions.
- boundaries_to_forceThe set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The set of sidesets to force execution of this FVFluxKernel on. Setting force_boundary_execution to true is equivalent to listing all external mesh boundaries in this parameter.
- force_boundary_executionFalseWhether to force execution of this object on all external boundaries.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to force execution of this object on all external boundaries.
Boundary Execution Modification Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- ghost_layers3The number of layers of elements to ghost.
Default:3
C++ Type:unsigned short
Controllable:No
Description:The number of layers of elements to ghost.
- use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.
Parallel Ghosting Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (tutorials/shield_multiphysics/inputs/step11_multiapps/step11_2d_fluid.i)
- (tutorials/shield_multiphysics/inputs/step10_finite_volume/step10.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/wall_distance_capped_mixing_length_aux/capped_mixing_length.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/mixing_length_total_viscosity.i)
- (modules/navier_stokes/test/tests/finite_volume/fvbcs/wall_function/Re_t395.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/mixing_length_eddy_viscosity.i)
- (modules/navier_stokes/examples/pipe_mixing_length/pipe_mixing_length.i)
- (modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/steady.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/steady.i)
- (modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
(tutorials/shield_multiphysics/inputs/step11_multiapps/step11_2d_fluid.i)
cp_water_multiplier = 5e-2
mu_multiplier = 1
# Real facility uses forced convection to cool the water tank at full power
# Need to lower power for natural convection so concrete doesn't get too hot.
power = '${fparse 5e4 / 144 * 0.5}'
[Mesh]
[fmg]
type = FileMeshGenerator
file = 'mesh2d_coarse_in.e'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[vel_y]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[pressure]
type = INSFVPressureVariable
block = 'water'
initial_condition = 1e5
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
block = 'water'
scaling = 1e-05
[]
[lambda]
type = MooseVariableScalar
family = SCALAR
order = FIRST
# Cleans up console output
outputs = none
[]
[]
[GlobalParams]
velocity_interp_method = rc
rhie_chow_user_object = ins_rhie_chow_interpolator
rho = rho
[]
[FVKernels]
[water_ins_mass_advection]
type = INSFVMassAdvection
advected_interp_method = upwind
block = water
variable = pressure
[]
[water_ins_mass_pressure_pin]
type = FVPointValueConstraint
lambda = lambda
phi0 = 1e5
point = '1 3 0'
variable = pressure
[]
[water_ins_momentum_time_vel_x]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = x
variable = vel_x
[]
[water_ins_momentum_time_vel_y]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_advection_x]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = x
variable = vel_x
characteristic_speed = 0.01
[]
[water_ins_momentum_advection_y]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = y
variable = vel_y
characteristic_speed = 0.1
[]
[water_ins_momentum_diffusion_x]
type = INSFVMomentumDiffusion
block = water
momentum_component = x
mu = mu
variable = vel_x
[]
[water_ins_momentum_diffusion_y]
type = INSFVMomentumDiffusion
block = water
momentum_component = y
mu = mu
variable = vel_y
[]
[water_ins_momentum_pressure_x]
type = INSFVMomentumPressure
block = water
momentum_component = x
pressure = pressure
variable = vel_x
[]
[water_ins_momentum_pressure_y]
type = INSFVMomentumPressure
block = water
momentum_component = y
pressure = pressure
variable = vel_y
[]
[water_ins_momentum_gravity_z]
type = INSFVMomentumGravity
block = water
gravity = '0 -9.81 0'
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_boussinesq_z]
type = INSFVMomentumBoussinesq
T_fluid = T_fluid
alpha_name = alpha
block = water
gravity = '0 -9.81 0'
momentum_component = y
ref_temperature = 300
rho = 955.7
variable = vel_y
[]
# Energy conservation equation
[water_ins_energy_time]
type = INSFVEnergyTimeDerivative
block = water
dh_dt = dh_dt
rho = rho
variable = T_fluid
[]
[water_ins_energy_advection]
type = INSFVEnergyAdvection
advected_interp_method = upwind
block = water
variable = T_fluid
[]
[water_ins_energy_diffusion_all]
type = FVDiffusion
block = water
coeff = k
variable = T_fluid
[]
# Turbulence
[water_ins_viscosity_rans_x]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[water_ins_viscosity_rans_y]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[water_ins_energy_rans]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
cp = cp
mixing_length = mixing_length
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[AuxKernels]
[mixing_length]
type = WallDistanceMixingLengthAux
variable = mixing_length
walls = 'water_boundary inner_cavity_water'
execute_on = 'initial'
[]
[]
[FunctorMaterials]
[water]
type = ADGenericFunctorMaterial
block = 'water'
prop_names = 'rho k cp mu alpha_wall'
prop_values = '955.7 0.6 ${fparse cp_water_multiplier * 4181} ${fparse 7.98e-4 * mu_multiplier} 30'
[]
[boussinesq_params]
type = ADGenericFunctorMaterial
prop_names = 'alpha '
prop_values = '2.9e-3'
[]
[water_ins_enthalpy_material]
type = INSFVEnthalpyFunctorMaterial
block = water
cp = cp
execute_on = ALWAYS
outputs = none
temperature = T_fluid
[]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x'
v = 'vel_y'
mixing_length = mixing_length
mu = mu
[]
[]
[FVBCs]
[vel_x_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_x
[]
[vel_y_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_y
[]
[T_fluid_inner_cavity]
type = FVFunctorNeumannBC
boundary = inner_cavity_water
functor = ${power}
variable = T_fluid
[]
[T_fluid_water_boundary]
type = FVFunctorConvectiveHeatFluxBC
boundary = water_boundary
variable = T_fluid
T_bulk = T_fluid
T_solid = T_solid
heat_transfer_coefficient = 600
is_solid = false
[]
[]
[UserObjects]
[ins_rhie_chow_interpolator]
type = INSFVRhieChowInterpolator
pressure = 'pressure'
u = 'vel_x'
v = 'vel_y'
block = 'water'
[]
[]
[AuxVariables]
# This isn't used in simulation, but useful for visualization
[vel_z]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 0
[]
[mixing_length]
block = 'water'
order = CONSTANT
family = MONOMIAL
fv = true
[]
# This is the variable that is transferred from the main app
[T_solid]
block = 'concrete_hd concrete Al'
initial_condition = 300
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
off_diagonals_in_auto_scaling = true
line_search = none
# Direct solve works for everything small enough
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
nl_abs_tol = 3e-7
nl_max_its = 10
l_max_its = 3
start_time = -1
dtmax = 100
[TimeStepper]
type = FunctionDT
function = 'if(t < 0.1, 0.1, t)'
[]
[]
[Outputs]
exodus = true
[]
(tutorials/shield_multiphysics/inputs/step10_finite_volume/step10.i)
cp_water_multiplier = 5e-2
mu_multiplier = 1
power = '${fparse 5e4 / 144}'
[Mesh]
[fmg]
type = FileMeshGenerator
file = 'mesh2d_in.e'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[vel_y]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 1e-4
[]
[pressure]
type = INSFVPressureVariable
block = 'water'
initial_condition = 1e5
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = 300
block = 'water'
scaling = 1e-05
[]
[lambda]
type = MooseVariableScalar
family = SCALAR
order = FIRST
[]
[]
[AuxVariables]
# This isn't used in simulation, but useful for visualization
[vel_z]
type = INSFVVelocityVariable
block = 'water'
initial_condition = 0
[]
[mixing_length]
block = 'water'
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[GlobalParams]
velocity_interp_method = rc
rhie_chow_user_object = ins_rhie_chow_interpolator
rho = rho
[]
[FVKernels]
[water_ins_mass_advection]
type = INSFVMassAdvection
advected_interp_method = upwind
block = water
variable = pressure
[]
[water_ins_mass_pressure_pin]
type = FVPointValueConstraint
lambda = lambda
phi0 = 1e5
point = '1 3 0'
variable = pressure
[]
[water_ins_momentum_time_vel_x]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = x
variable = vel_x
[]
[water_ins_momentum_time_vel_y]
type = INSFVMomentumTimeDerivative
block = water
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_advection_x]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = x
variable = vel_x
characteristic_speed = 0.01
[]
[water_ins_momentum_advection_y]
type = INSFVMomentumAdvection
advected_interp_method = upwind
block = water
momentum_component = y
variable = vel_y
characteristic_speed = 0.1
[]
[water_ins_momentum_diffusion_x]
type = INSFVMomentumDiffusion
block = water
momentum_component = x
mu = mu
variable = vel_x
[]
[water_ins_momentum_diffusion_y]
type = INSFVMomentumDiffusion
block = water
momentum_component = y
mu = mu
variable = vel_y
[]
[water_ins_momentum_pressure_x]
type = INSFVMomentumPressure
block = water
momentum_component = x
pressure = pressure
variable = vel_x
[]
[water_ins_momentum_pressure_y]
type = INSFVMomentumPressure
block = water
momentum_component = y
pressure = pressure
variable = vel_y
[]
[water_ins_momentum_gravity_z]
type = INSFVMomentumGravity
block = water
gravity = '0 -9.81 0'
momentum_component = y
variable = vel_y
[]
[water_ins_momentum_boussinesq_z]
type = INSFVMomentumBoussinesq
T_fluid = T_fluid
alpha_name = alpha
block = water
gravity = '0 -9.81 0'
momentum_component = y
ref_temperature = 300
rho = 955.7
variable = vel_y
[]
# Energy conservation equation
[water_ins_energy_time]
type = INSFVEnergyTimeDerivative
block = water
dh_dt = dh_dt
rho = rho
variable = T_fluid
[]
[water_ins_energy_advection]
type = INSFVEnergyAdvection
advected_interp_method = upwind
block = water
variable = T_fluid
[]
[water_ins_energy_diffusion_all]
type = FVDiffusion
block = water
coeff = k
variable = T_fluid
[]
# Turbulence
[water_ins_viscosity_rans_x]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[water_ins_viscosity_rans_y]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[water_ins_energy_rans]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
cp = cp
mixing_length = mixing_length
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[AuxKernels]
[mixing_length]
type = WallDistanceMixingLengthAux
variable = mixing_length
walls = 'water_boundary inner_cavity_water'
execute_on = 'initial'
[]
[]
[FunctorMaterials]
[water]
type = ADGenericFunctorMaterial
block = 'water'
prop_names = 'rho k cp mu alpha_wall'
prop_values = '955.7 0.6 ${fparse cp_water_multiplier * 4181} ${fparse 7.98e-4 * mu_multiplier} 30'
[]
[boussinesq_params]
type = ADGenericFunctorMaterial
prop_names = 'alpha '
prop_values = '2.9e-3'
[]
[water_ins_enthalpy_material]
type = INSFVEnthalpyFunctorMaterial
block = water
cp = cp
execute_on = ALWAYS
outputs = none
temperature = T_fluid
[]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x'
v = 'vel_y'
mixing_length = mixing_length
mu = mu
[]
[]
[FVBCs]
[vel_x_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_x
[]
[vel_y_water_boundary]
type = INSFVNoSlipWallBC
boundary = 'water_boundary inner_cavity_water'
function = 0
variable = vel_y
[]
[T_fluid_inner_cavity]
type = FVFunctorNeumannBC
boundary = inner_cavity_water
functor = ${power}
variable = T_fluid
[]
[T_fluid_water_boundary]
type = FVFunctorConvectiveHeatFluxBC
boundary = water_boundary
variable = T_fluid
T_bulk = T_fluid
T_solid = 300
heat_transfer_coefficient = 600
is_solid = false
[]
[]
[UserObjects]
[ins_rhie_chow_interpolator]
type = INSFVRhieChowInterpolator
pressure = 'pressure'
u = 'vel_x'
v = 'vel_y'
block = 'water'
[]
[]
[Problem]
kernel_coverage_check = false
[]
[Executioner]
type = Transient
solve_type = NEWTON
automatic_scaling = true
off_diagonals_in_auto_scaling = true
line_search = none
# Direct solve works for everything small enough
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu NONZERO superlu_dist'
nl_abs_tol = 1e-8
nl_max_its = 10
l_max_its = 3
steady_state_tolerance = 1e-12
steady_state_detection = true
normalize_solution_diff_norm_by_dt = false
start_time = -1
dtmax = 100
[TimeStepper]
type = FunctionDT
function = 'if(t < 1, 0.1, t / 10)'
[]
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/wall_distance_capped_mixing_length_aux/capped_mixing_length.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '100'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/mixing_length_total_viscosity.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = vel_x
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = vel_y
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = vel_x
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = vel_y
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = mixing_length
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/test/tests/finite_volume/fvbcs/wall_function/Re_t395.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
two_term_boundary_expansion = true
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[wall_shear_stress]
type = WallFunctionWallShearStressAux
variable = wall_shear_stress
walls = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[wall_yplus]
type = WallFunctionYPlusAux
variable = wall_yplus
walls = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'u' #computes total viscosity = mu_t + mu
v = 'v' #property is called total_viscosity
mixing_length = mixing_len
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_pc_type -sub_pc_factor_shift_type'
petsc_options_value = 'asm 200 lu NONZERO'
line_search = 'none'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/mixing_length_eddy_viscosity.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 13700
rho = 1
bulk_u = 1
mu = ${fparse rho * bulk_u * 2 * H / Re}
advected_interp_method='upwind'
velocity_interp_method='rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '100'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[eddy_viscosity]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = INSFVMomentumTimeDerivative
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_time]
type = INSFVMomentumTimeDerivative
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[turbulent_viscosity]
type = INSFVMixingLengthTurbulentViscosityAux
variable = eddy_viscosity
mixing_length = mixing_len
u = u
v = v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
line_search = 'none'
[TimeStepper]
type = IterationAdaptiveDT
optimal_iterations = 6
dt = 1e-3
[]
nl_abs_tol = 1e-8
end_time = 1e9
[]
[Outputs]
[out]
type = Exodus
execute_on = 'final'
[]
[]
(modules/navier_stokes/examples/pipe_mixing_length/pipe_mixing_length.i)
# This example demonstrates how the mixing length model can be tuned to match an
# established correlation for pressure drop in a smooth circular pipe.
# The primary input parameters for this example are the system Reynolds number
# and the von Karman constant for the mixing length model. These two parameters
# can be changed here:
Re = 1e5
von_karman_const = 0.22
# Note that for this model (using the wall-distance mixing length for the entire
# pipe) different von Karman constants are optimal for different Reynolds
# numbers.
# This model has been non-dimensionalized. The diameter (D), density (rho), and
# bulk velocity (bulk_u) are all considered unity.
D = 1
total_len = ${fparse 40 * D}
rho = 1
bulk_u = 1
# With those parameters set, the viscosity is then computed in order to reach
# the desired Reynolds number.
mu = ${fparse rho * bulk_u * D / Re}
# Here the DeltaP will be evaluated by using a postprocessor to find the pressure
# at a point that is 10 diameters away from the outlet. (The outlet pressure is
# set to zero.)
L = ${fparse 10 * D}
# We will use the McAdams correlation to find the Darcy friction factor. Note
# that this correlation is valid for fully developed flow in smooth circular
# tubes at 3e4 < Re < 1e6.
f = ${fparse 0.316 * Re^(-0.25)}
# The DeltaP can then be computed using this friction factor as,
ref_delta_P = ${fparse f * L / D * rho * bulk_u^2 / 2}
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${total_len}
ymin = 0
ymax = ${fparse 0.5 * D}
nx = 200
ny = 40
bias_y = ${fparse 1 / 1.2}
[]
[rename1]
type = RenameBoundaryGenerator
input = gen
old_boundary = 'left'
new_boundary = 'inlet'
[]
[rename2]
type = RenameBoundaryGenerator
input = rename1
old_boundary = 'right'
new_boundary = 'outlet'
[]
[rename3]
type = RenameBoundaryGenerator
input = rename2
old_boundary = 'bottom'
new_boundary = 'symmetry'
[]
[rename4]
type = RenameBoundaryGenerator
input = rename3
old_boundary = 'top'
new_boundary = 'wall'
[]
[]
[Outputs]
exodus = true
[]
[Problem]
kernel_coverage_check = false
fv_bcs_integrity_check = true
coord_type = 'RZ'
rz_coord_axis = 'X'
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
# The upwind and Rhie-Chow interpolation schemes are used here.
advected_interp_method='upwind'
velocity_interp_method='rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'wall'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[]
[FVBCs]
[inlet_u]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = u
function = ${bulk_u}
[]
[inlet_v]
type = INSFVInletVelocityBC
boundary = 'inlet'
variable = v
function = '0'
[]
[walls_u]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = u
function = 0
[]
[walls_v]
type = INSFVNoSlipWallBC
boundary = 'wall'
variable = v
function = 0
[]
[sym_u]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym_v]
type = INSFVSymmetryVelocityBC
boundary = 'symmetry'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[sym_p]
type = INSFVSymmetryPressureBC
boundary = 'symmetry'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'outlet'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_rel_tol = 1e-12
nl_abs_tol = 1e-12
[]
[Postprocessors]
[delta_P]
type = PointValue
variable = 'pressure'
point = '${fparse total_len - L} 0 0'
[]
[reference_delta_P]
type = Receiver
default = ${ref_delta_P}
[]
[]
(modules/navier_stokes/test/tests/finite_volume/wcns/channel-flow/2d-transient.i)
rho = 'rho'
l = 10
velocity_interp_method = 'rc'
advected_interp_method = 'average'
# Artificial fluid properties
# For a real case, use a GeneralFluidFunctorProperties and a viscosity rampdown
# or initialize very well!
k = 1
cp = 1000
mu = 1e2
# Operating conditions
inlet_temp = 300
outlet_pressure = 1e5
inlet_v = 0.001
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = ${l}
ymin = 0
ymax = 1
nx = 20
ny = 10
[]
[]
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = ${inlet_v}
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-15
[]
[pressure]
type = INSFVPressureVariable
initial_condition = ${outlet_pressure}
[]
[T_fluid]
type = INSFVEnergyVariable
initial_condition = ${inlet_temp}
[]
[]
[AuxVariables]
[mixing_length]
type = MooseVariableFVReal
[]
[power_density]
type = MooseVariableFVReal
initial_condition = 1e4
[]
[]
[FVKernels]
inactive = 'u_turb v_turb temp_turb'
[mass_time]
type = WCNSFVMassTimeDerivative
variable = pressure
drho_dt = drho_dt
[]
[mass]
type = WCNSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_x
drho_dt = drho_dt
rho = rho
momentum_component = 'x'
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[u_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[v_time]
type = WCNSFVMomentumTimeDerivative
variable = vel_y
drho_dt = drho_dt
rho = rho
momentum_component = 'y'
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
momentum_component = 'y'
mu = ${mu}
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[v_turb]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[temp_time]
type = WCNSFVEnergyTimeDerivative
variable = T_fluid
rho = rho
drho_dt = drho_dt
h = h
dh_dt = dh_dt
[]
[temp_conduction]
type = FVDiffusion
coeff = 'k'
variable = T_fluid
[]
[temp_advection]
type = INSFVEnergyAdvection
variable = T_fluid
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[heat_source]
type = FVCoupledForce
variable = T_fluid
v = power_density
[]
[temp_turb]
type = WCNSFVMixingLengthEnergyDiffusion
variable = T_fluid
rho = rho
cp = cp
mixing_length = 'mixing_length'
schmidt_number = 1
u = vel_x
v = vel_y
[]
[]
[FVBCs]
[no_slip_x]
type = INSFVNoSlipWallBC
variable = vel_x
boundary = 'top bottom'
function = 0
[]
[no_slip_y]
type = INSFVNoSlipWallBC
variable = vel_y
boundary = 'top bottom'
function = 0
[]
# Inlet
[inlet_u]
type = INSFVInletVelocityBC
variable = vel_x
boundary = 'left'
function = ${inlet_v}
[]
[inlet_v]
type = INSFVInletVelocityBC
variable = vel_y
boundary = 'left'
function = 0
[]
[inlet_T]
type = FVDirichletBC
variable = T_fluid
boundary = 'left'
value = ${inlet_temp}
[]
[outlet_p]
type = INSFVOutletPressureBC
variable = pressure
boundary = 'right'
function = ${outlet_pressure}
[]
[]
[FluidProperties]
[fp]
type = FlibeFluidProperties
[]
[]
[FunctorMaterials]
[const_functor]
type = ADGenericFunctorMaterial
prop_names = 'cp k'
prop_values = '${cp} ${k}'
[]
[rho]
type = RhoFromPTFunctorMaterial
fp = fp
temperature = T_fluid
pressure = pressure
[]
[ins_fv]
type = INSFVEnthalpyFunctorMaterial
temperature = 'T_fluid'
rho = ${rho}
[]
[]
[AuxKernels]
inactive = 'mixing_len'
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
delta = 0.5
[]
[]
[Executioner]
type = Transient
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
[TimeStepper]
type = IterationAdaptiveDT
dt = 1e-3
optimal_iterations = 6
[]
end_time = 15
nl_abs_tol = 1e-9
nl_max_its = 50
line_search = 'none'
automatic_scaling = true
off_diagonals_in_auto_scaling = true
compute_scaling_once = false
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_total_viscosity_material/steady.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 100
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Functions]
[delta_func]
type = ParsedFunction
expression = '1.0-x/150'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = mixing_length
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_length]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_length
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = vel_x
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = vel_y
boundary = 'top'
u = vel_x
v = vel_y
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = total_viscosity
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = mixing_length
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/mixing_length_eddy_viscosity_aux/steady.i)
von_karman_const = 0.41
H = 1 #halfwidth of the channel
L = 150
Re = 100
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = u
v = v
pressure = pressure
[]
[]
[Mesh]
[gen]
type = CartesianMeshGenerator
dim = 2
dx = '${L}'
dy = '0.667 0.333'
ix = '200'
iy = '10 1'
[]
[]
[Problem]
fv_bcs_integrity_check = false
[]
[Variables]
[u]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[v]
type = INSFVVelocityVariable
initial_condition = 1e-6
[]
[pressure]
type = INSFVPressureVariable
[]
[]
[AuxVariables]
[mixing_len]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_shear_stress]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[wall_yplus]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[eddy_viscosity]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = u
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = u
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = u
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'x'
u = u
v = v
[]
[u_pressure]
type = INSFVMomentumPressure
variable = u
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = v
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = v
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = v
rho = ${rho}
mixing_length = mixing_len
momentum_component = 'y'
u = u
v = v
[]
[v_pressure]
type = INSFVMomentumPressure
variable = v
momentum_component = 'y'
pressure = pressure
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top'
variable = mixing_len
execute_on = 'initial'
von_karman_const = ${von_karman_const}
delta = 0.5
[]
[turbulent_viscosity]
type = INSFVMixingLengthTurbulentViscosityAux
variable = eddy_viscosity
mixing_length = mixing_len
u = u
v = v
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = u
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = v
function = '0'
[]
[wall-u]
type = INSFVWallFunctionBC
variable = u
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = x
[]
[wall-v]
type = INSFVWallFunctionBC
variable = v
boundary = 'top'
u = u
v = v
mu = ${mu}
rho = ${rho}
momentum_component = y
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = u
u = u
v = v
mu = ${mu}
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = v
u = u
v = v
mu = ${mu}
momentum_component = y
[]
[symmetry_pressure]
type = INSFVSymmetryPressureBC
boundary = 'bottom'
variable = pressure
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]
(modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-mixing-length.i)
Re = 1e4
von_karman_const = 0.2
D = 1
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * D / Re}'
advected_interp_method = 'upwind'
velocity_interp_method = 'rc'
[GlobalParams]
rhie_chow_user_object = 'rc'
[]
[UserObjects]
[rc]
type = INSFVRhieChowInterpolator
u = vel_x
v = vel_y
pressure = pressure
[]
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
xmax = 5
ymin = 0
ymax = '${fparse 0.5 * D}'
nx = 20
ny = 10
bias_y = '${fparse 1 / 1.2}'
[]
[]
[Variables]
[vel_x]
type = INSFVVelocityVariable
initial_condition = 1
[]
[vel_y]
type = INSFVVelocityVariable
initial_condition = 1
[]
[pressure]
type = INSFVPressureVariable
[]
[scalar]
type = INSFVScalarFieldVariable
[]
[]
[AuxVariables]
[mixing_length]
order = CONSTANT
family = MONOMIAL
fv = true
[]
[]
[FVKernels]
[mass]
type = INSFVMassAdvection
variable = pressure
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
[]
[u_advection]
type = INSFVMomentumAdvection
variable = vel_x
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'x'
[]
[u_viscosity]
type = INSFVMomentumDiffusion
variable = vel_x
mu = ${mu}
momentum_component = 'x'
[]
[u_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_x
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'x'
u = vel_x
v = vel_y
[]
[u_pressure]
type = INSFVMomentumPressure
variable = vel_x
momentum_component = 'x'
pressure = pressure
[]
[v_advection]
type = INSFVMomentumAdvection
variable = vel_y
advected_interp_method = ${advected_interp_method}
velocity_interp_method = ${velocity_interp_method}
rho = ${rho}
momentum_component = 'y'
[]
[v_viscosity]
type = INSFVMomentumDiffusion
variable = vel_y
mu = ${mu}
momentum_component = 'y'
[]
[v_viscosity_rans]
type = INSFVMixingLengthReynoldsStress
variable = vel_y
rho = ${rho}
mixing_length = 'mixing_length'
momentum_component = 'y'
u = vel_x
v = vel_y
[]
[v_pressure]
type = INSFVMomentumPressure
variable = vel_y
momentum_component = 'y'
pressure = pressure
[]
[scalar_advection]
type = INSFVScalarFieldAdvection
variable = scalar
velocity_interp_method = ${velocity_interp_method}
advected_interp_method = ${advected_interp_method}
[]
[scalar_diffusion_rans]
type = INSFVMixingLengthScalarDiffusion
variable = scalar
mixing_length = 'mixing_length'
u = vel_x
v = vel_y
schmidt_number = 1.0
[]
[scalar_src]
type = FVBodyForce
variable = scalar
value = 0.1
[]
[]
[AuxKernels]
[mixing_len]
type = WallDistanceMixingLengthAux
walls = 'top bottom'
variable = 'mixing_length'
execute_on = 'initial'
von_karman_const = ${von_karman_const}
[]
[]
[FVBCs]
[inlet-u]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_x
function = '1'
[]
[inlet-v]
type = INSFVInletVelocityBC
boundary = 'left'
variable = vel_y
function = '0'
[]
[inlet_scalar]
type = FVDirichletBC
boundary = 'left'
variable = scalar
value = 1
[]
[wall-u]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_x
function = 0
[]
[wall-v]
type = INSFVNoSlipWallBC
boundary = 'top'
variable = vel_y
function = 0
[]
[sym-u]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_x
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = x
[]
[sym-v]
type = INSFVSymmetryVelocityBC
boundary = 'bottom'
variable = vel_y
u = vel_x
v = vel_y
mu = 'total_viscosity'
momentum_component = y
[]
[outlet_p]
type = INSFVOutletPressureBC
boundary = 'right'
variable = pressure
function = '0'
[]
[]
[FunctorMaterials]
[total_viscosity]
type = MixingLengthTurbulentViscosityFunctorMaterial
u = 'vel_x' #computes total viscosity = mu_t + mu
v = 'vel_y' #property is called total_viscosity
mixing_length = 'mixing_length'
mu = ${mu}
rho = ${rho}
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
petsc_options_iname = '-pc_type -pc_factor_shift_type'
petsc_options_value = 'lu NONZERO'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[]