- propertyThe material property name.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:The material property name.
- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this object applies to
MaterialRealVectorValueAux
Capture a component of a vector material property in an auxiliary variable.
Converting a field from the material system, here a component of a vector material property (MaterialRealVectorValueAux
) or a vector valued functor (FunctorMaterialRealVectorValueAux
), to a variable may be desirable for several reasons: to match the format expected by certain kernels, for lagging the field between time steps or for output/testing/debugging.
This is particularly useful to examine anisotropic material properties. For output purposes only, an alternative is to use the output_properties
argument of the Material
or specify output_material_properties
in the parameters of the desired output type nested in the [Outputs]
block.
The AD system currently does not support auxiliary variables. If you convert material properties or functors, which do support automatic differentiation, to auxiliary variables, the derivatives will be ignored.
Example syntax
In this example, the MaterialRealVectorValueAux
is being used to examine different cracking criteria for a smear cracking model.
[AuxKernels<<<{"href": "../../syntax/AuxKernels/index.html"}>>>]
[./crack_flags1]
type = MaterialRealVectorValueAux<<<{"description": "Capture a component of a vector material property in an auxiliary variable.", "href": "MaterialRealVectorValueAux.html"}>>>
property<<<{"description": "The material property name."}>>> = crack_flags
variable<<<{"description": "The name of the variable that this object applies to"}>>> = crack_flags1
component<<<{"description": "The vector component to consider for this kernel"}>>> = 0
[../]
[./crack_flags2]
type = MaterialRealVectorValueAux<<<{"description": "Capture a component of a vector material property in an auxiliary variable.", "href": "MaterialRealVectorValueAux.html"}>>>
property<<<{"description": "The material property name."}>>> = crack_flags
variable<<<{"description": "The name of the variable that this object applies to"}>>> = crack_flags2
component<<<{"description": "The vector component to consider for this kernel"}>>> = 1
[../]
[./crack_flags3]
type = MaterialRealVectorValueAux<<<{"description": "Capture a component of a vector material property in an auxiliary variable.", "href": "MaterialRealVectorValueAux.html"}>>>
property<<<{"description": "The material property name."}>>> = crack_flags
variable<<<{"description": "The name of the variable that this object applies to"}>>> = crack_flags3
component<<<{"description": "The vector component to consider for this kernel"}>>> = 2
[../]
[]
(modules/solid_mechanics/test/tests/smeared_cracking/cracking_rotation.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
- component0The vector component to consider for this kernel
Default:0
C++ Type:unsigned int
Controllable:No
Description:The vector component to consider for this kernel
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, PRE_DISPLACE
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- factor1The factor by which to multiply your material property for visualization
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The factor by which to multiply your material property for visualization
- offset0The offset to add to your material property for visualization
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The offset to add to your material property for visualization
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- selected_qpEvaluate the material property at a specified quadrature point. This only needs to be used if you are interested in a particular quadrature point in each element. Otherwise do not include this parameter in your input file.
C++ Type:unsigned int
Controllable:No
Description:Evaluate the material property at a specified quadrature point. This only needs to be used if you are interested in a particular quadrature point in each element. Otherwise do not include this parameter in your input file.
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (modules/solid_mechanics/test/tests/beam/static/euler_pipe_axial_disp.i)
- (test/tests/materials/types/test.i)
- (modules/solid_mechanics/test/tests/ad_smeared_cracking/cracking_rotation.i)
- (modules/solid_mechanics/test/tests/beam/constraints/frictionless_constraint.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_save_euler.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/stress_update_material_based/rotation_matrix_update_euler_angle_111_orientation.i)
- (modules/solid_mechanics/test/tests/smeared_cracking/cracking_rotation.i)
- (modules/solid_mechanics/test/tests/beam/static/euler_pipe_bend.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/euler_angles/euler_angle_conflict.i)
- (modules/solid_mechanics/test/tests/ad_smeared_cracking/cracking_function.i)
- (modules/solid_mechanics/test/tests/beam/constraints/glued_constraint.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/euler_angles/euler_angle_auxvar.i)
- (modules/solid_mechanics/test/tests/smeared_cracking/cracking_function.i)
- (modules/solid_mechanics/test/tests/beam/constraints/frictional_constraint.i)
- (modules/solid_mechanics/test/tests/beam/static/euler_pipe_axial_force.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_euler_angle.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/user_object_based/prop_block_read.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/user_object_based/save_euler.i)
(modules/solid_mechanics/test/tests/smeared_cracking/cracking_rotation.i)
# This test is to ensure that the smeared cracking model correctly handles finite
# rotation of cracked elements.
# This consists of a single element that is first subjected to tensile loading
# in the y-direction via a prescribed displacement. This loading is sufficiently
# high to crack the material in that direction, but not completely unload. The
# prescribed displacement is then reversed so that the element is returned to its
# original configuration.
# In the next phase of the analysis, this element is then rotated 90 degrees by
# prescribing the displacement of the bottom of the element. The prescribed
# displacement BC used to crack the element in the first phase is deactivated.
# Once the element is fully rotated, a new BC is activated on what was originally
# the top surface (but is now the surface on the right hand side) to pull in
# the x-direction.
# If everything is working correctly, the model should re-load on the original
# crack (which should be rotated along with the elemnent) up to the peak stress
# in the first phase of the analysis, and then continue the unloading process
# as the crack strains continue to increase. Throughout this analysis, there should
# only be a single crack, as manifested in the crack_flags variables.
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[AuxVariables]
[./crack_flags1]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags2]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./crack_flags1]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags1
component = 0
[../]
[./crack_flags2]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags2
component = 1
[../]
[./crack_flags3]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags3
component = 2
[../]
[]
[BCs]
[./x_pin]
type = DirichletBC
variable = disp_x
boundary = '15 16'
value = 0.0
[../]
[./y_pin]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./z_all]
type = DirichletBC
variable = disp_z
boundary = '11 12 13 14 15 16 17 18'
value = 0.0
[../]
[./x_lb]
type = FunctionDirichletBC
variable = disp_x
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,1-cos((t-10)*pi/180)))'
[../]
[./y_lb]
type = FunctionDirichletBC
variable = disp_y
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,sin((t-10)*pi/180)))'
[../]
[./x_lt]
type = FunctionDirichletBC
variable = disp_x
boundary = '13 14'
function = '2+(t-100)*0.01'
[../]
[./x_rt]
type = FunctionDirichletBC
variable = disp_x
boundary = '17 18'
function = '1+(t-100)*0.01'
[../]
[./top_pull]
type = FunctionDirichletBC
variable = disp_y
boundary = '13 14 17 18'
function = 'if(t<5,t*0.01,0.05-(t-5)*0.01)'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100.e9
poissons_ratio = 0.
[../]
[./cracking_stress]
type = ComputeSmearedCrackingStress
shear_retention_factor = 0.1
cracking_stress = 3.e9
cracked_elasticity_type = FULL
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ExponentialSoftening
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-5
nl_max_its = 100
nl_abs_tol = 1e-5
nl_rel_tol = 1e-12
start_time = 0
end_time = 110
dt = 1
[]
[Controls]
[./p1]
type = TimePeriod
start_time = 0.0
end_time = 10.0
disable_objects = 'BCs/x_lt BCs/x_rt'
enable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p2]
type = TimePeriod
start_time = 10.0
end_time = 101.0
disable_objects = 'BCs/x_lt BCs/x_rt BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p3]
type = TimePeriod
start_time = 101.0
end_time = 110.0
enable_objects = 'BCs/x_lt BCs/x_rt'
disable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/static/euler_pipe_axial_disp.i)
# Test for small strain Euler beam axial loading in x direction.
# Modeling a pipe with an OD of 10 inches and ID of 8 inches
# The length of the pipe is 5 feet (60 inches) and E = 30e6
# G = 11.54e6 with nu = 0.3
# The applied axial load is 50000 lb which results in a
# displacement of 3.537e-3 inches at the end
# delta = PL/AE = 50000 * 60 / pi (5^2 - 4^2) * 30e6 = 3.537e-3
# In this analysis the displacement is used as a BC
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 60.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[rot_x]
order = FIRST
family = LAGRANGE
[]
[rot_y]
order = FIRST
family = LAGRANGE
[]
[rot_z]
order = FIRST
family = LAGRANGE
[]
[]
[BCs]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[]
[fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[]
[appl_disp_x2]
type = DirichletBC
variable = disp_x
boundary = right
value = 3.537e-3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[]
[solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[]
[solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[]
[solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[]
[solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[]
[solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[]
[]
[AuxVariables]
[forces_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[forces_x]
type = MaterialRealVectorValueAux
property = forces
variable = forces_x
execute_on = timestep_end
[]
[]
[Materials]
[elasticity]
type = ComputeElasticityBeam
youngs_modulus = 30e6
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[]
[strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 1.0 0.0'
[]
[stress]
type = ComputeBeamResultants
block = 0
[]
[]
[Postprocessors]
[disp_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_x
[]
[disp_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_y
[]
[forces_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = forces_x
[]
[]
[Outputs]
csv = true
[]
(test/tests/materials/types/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./real]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec0]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec1]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec0_qp0]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvec0_qp1]
order = CONSTANT
family = MONOMIAL
[../]
[./realvec0]
order = CONSTANT
family = MONOMIAL
[../]
[./realvec1]
order = CONSTANT
family = MONOMIAL
[../]
[./realvec2]
order = CONSTANT
family = MONOMIAL
[../]
[./densemat00]
order = CONSTANT
family = MONOMIAL
[../]
[./densemat01]
order = CONSTANT
family = MONOMIAL
[../]
[./tensor00]
order = CONSTANT
family = MONOMIAL
[../]
[./tensor11]
order = CONSTANT
family = MONOMIAL
[../]
[./tensor22]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad00]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad01]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad02]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad10]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad11]
order = CONSTANT
family = MONOMIAL
[../]
[./stdvecgrad12]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./real0]
type = MaterialRealAux
variable = real
property = real_prop
execute_on = timestep_end
[../]
[./stdvec0]
type = MaterialStdVectorAux
variable = stdvec0
property = stdvec_prop
index = 0
execute_on = timestep_end
[../]
[./stdvec1]
type = MaterialStdVectorAux
variable = stdvec1
property = stdvec_prop
index = 1
execute_on = timestep_end
[../]
[./stdvec0_qp0]
type = MaterialStdVectorAux
variable = stdvec0_qp0
property = stdvec_prop_qp
index = 0
selected_qp = 0
execute_on = timestep_end
[../]
[./stdvec0_qp1]
type = MaterialStdVectorAux
variable = stdvec0_qp1
property = stdvec_prop_qp
index = 0
selected_qp = 1
execute_on = timestep_end
[../]
[./densemat00]
type = MaterialRealDenseMatrixAux
variable = densemat00
property = matrix_prop
row = 0
column = 0
execute_on = timestep_end
[../]
[./densemat01]
type = MaterialRealDenseMatrixAux
variable = densemat01
property = matrix_prop
row = 0
column = 1
execute_on = timestep_end
[../]
[./realvec0]
type = MaterialRealVectorValueAux
variable = realvec0
property = realvec_prop
component = 0
execute_on = timestep_end
[../]
[./realvec1]
type = MaterialRealVectorValueAux
variable = realvec1
property = realvec_prop
component = 1
execute_on = timestep_end
[../]
[./realvec2]
type = MaterialRealVectorValueAux
variable = realvec2
property = realvec_prop
component = 2
execute_on = timestep_end
[../]
[./realtensor00]
type = MaterialRealTensorValueAux
variable = tensor00
property = tensor_prop
row = 0
column = 0
execute_on = timestep_end
[../]
[./realtensor11]
type = MaterialRealTensorValueAux
variable = tensor11
property = tensor_prop
row = 1
column = 1
execute_on = timestep_end
[../]
[./realtensor22]
type = MaterialRealTensorValueAux
variable = tensor22
property = tensor_prop
row = 2
column = 2
execute_on = timestep_end
[../]
[./stdvecgrad00]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad00
property = stdvec_grad_prop
[../]
[./stdvecgrad01]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad01
property = stdvec_grad_prop
component = 1
[../]
[./stdvecgrad02]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad02
property = stdvec_grad_prop
component = 2
[../]
[./stdvecgrad10]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad10
index = 1
property = stdvec_grad_prop
[../]
[./stdvecgrad11]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad11
index = 1
component = 1
property = stdvec_grad_prop
[../]
[./stdvecgrad12]
type = MaterialStdVectorRealGradientAux
variable = stdvecgrad12
index = 1
component = 2
property = stdvec_grad_prop
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Materials]
[./mat]
type = TypesMaterial
block = 0
[../]
[]
[Executioner]
type = Steady
solve_type = PJFNK
[]
[Outputs]
file_base = test_out
exodus = true
[]
(modules/solid_mechanics/test/tests/ad_smeared_cracking/cracking_rotation.i)
# This test is to ensure that the smeared cracking model correctly handles finite
# rotation of cracked elements.
# This consists of a single element that is first subjected to tensile loading
# in the y-direction via a prescribed displacement. This loading is sufficiently
# high to crack the material in that direction, but not completely unload. The
# prescribed displacement is then reversed so that the element is returned to its
# original configuration.
# In the next phase of the analysis, this element is then rotated 90 degrees by
# prescribing the displacement of the bottom of the element. The prescribed
# displacement BC used to crack the element in the first phase is deactivated.
# Once the element is fully rotated, a new BC is activated on what was originally
# the top surface (but is now the surface on the right hand side) to pull in
# the x-direction.
# If everything is working correctly, the model should re-load on the original
# crack (which should be rotated along with the elemnent) up to the peak stress
# in the first phase of the analysis, and then continue the unloading process
# as the crack strains continue to increase. Throughout this analysis, there should
# only be a single crack, as manifested in the crack_flags variables.
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
use_automatic_differentiation = true
[../]
[]
[AuxVariables]
[./crack_flags1]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags2]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./crack_flags1]
type = ADMaterialRealVectorValueAux
property = crack_flags
variable = crack_flags1
component = 0
[../]
[./crack_flags2]
type = ADMaterialRealVectorValueAux
property = crack_flags
variable = crack_flags2
component = 1
[../]
[./crack_flags3]
type = ADMaterialRealVectorValueAux
property = crack_flags
variable = crack_flags3
component = 2
[../]
[]
[BCs]
[./x_pin]
type = ADDirichletBC
variable = disp_x
boundary = '15 16'
value = 0.0
[../]
[./y_pin]
type = ADDirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./z_all]
type = ADDirichletBC
variable = disp_z
boundary = '11 12 13 14 15 16 17 18'
value = 0.0
[../]
[./x_lb]
type = ADFunctionDirichletBC
variable = disp_x
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,1-cos((t-10)*pi/180)))'
[../]
[./y_lb]
type = ADFunctionDirichletBC
variable = disp_y
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,sin((t-10)*pi/180)))'
[../]
[./x_lt]
type = ADFunctionDirichletBC
variable = disp_x
boundary = '13 14'
function = '2+(t-100)*0.01'
[../]
[./x_rt]
type = ADFunctionDirichletBC
variable = disp_x
boundary = '17 18'
function = '1+(t-100)*0.01'
[../]
[./top_pull]
type = ADFunctionDirichletBC
variable = disp_y
boundary = '13 14 17 18'
function = 'if(t<5,t*0.01,0.05-(t-5)*0.01)'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 100.e9
poissons_ratio = 0.
[../]
[./cracking_stress]
type = ADComputeSmearedCrackingStress
shear_retention_factor = 0.1
cracking_stress = 3.e9
cracked_elasticity_type = FULL
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ADExponentialSoftening
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-5
nl_max_its = 100
nl_abs_tol = 1e-5
nl_rel_tol = 1e-12
start_time = 0
end_time = 110
dt = 1
[]
[Controls]
[./p1]
type = TimePeriod
start_time = 0.0
end_time = 10.0
disable_objects = 'BCs/x_lt BCs/x_rt'
enable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p2]
type = TimePeriod
start_time = 10.0
end_time = 101.0
disable_objects = 'BCs/x_lt BCs/x_rt BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p3]
type = TimePeriod
start_time = 101.0
end_time = 110.0
enable_objects = 'BCs/x_lt BCs/x_rt'
disable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/constraints/frictionless_constraint.i)
# Test for frictionless beam constraint.
#
# Using a simple L-shaped geometry with a frictionless constraint at the
# corner between the two beams. The longer beam properties and loading is
# taken from an earlier beam regression test for static loading. The maximum
# applied load of 50000 lb should result in a displacement of 3.537e-3. Since
# the constraint is frictionless, the y-dir displacement of the long beam is
# 3.537e-3 and the short beam y-dir displacement is zero.
[Mesh]
file = beam_cons_patch.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[rot_x]
order = FIRST
family = LAGRANGE
[]
[rot_y]
order = FIRST
family = LAGRANGE
[]
[rot_z]
order = FIRST
family = LAGRANGE
[]
[]
[BCs]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = '1001 1003'
value = 0.0
[]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = '1001 1003'
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = '1001 1003'
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = '1001 1003'
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = '1001 1003'
value = 0.0
[]
[fixr3]
type = DirichletBC
variable = rot_z
boundary = '1001 1003'
value = 0.0
[]
[]
[Constraints]
[tie_y_fuel]
type = NodalFrictionalConstraint
normal_force = 1000
tangential_penalty = 1.2e6
friction_coefficient = 0.0
boundary = 1005
secondary = 1004
variable = disp_y
[]
[tie_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_x
[]
[tie_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_z
[]
[tie_rot_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_y
[]
[tie_rot_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_x
[]
[tie_rot_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_z
[]
[]
[Functions]
[force_loading]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 50000.0'
[]
[]
[NodalKernels]
[force_x2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = '1004'
functor = force_loading
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 5
[]
[Kernels]
[solid_disp_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[]
[solid_disp_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[]
[solid_disp_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[]
[solid_rot_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[]
[solid_rot_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[]
[solid_rot_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[]
[]
[AuxVariables]
[forces_y]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[forces_y]
type = MaterialRealVectorValueAux
property = forces
variable = forces_y
component = 1
execute_on = timestep_end
[]
[]
[Materials]
[elasticity_pipe]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 1
[]
[strain_pipe]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[]
[stress_pipe]
type = ComputeBeamResultants
block = 1
[]
[elasticity_cons]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 10e2
poissons_ratio = 0.3
block = 2
[]
[strain_cons]
type = ComputeIncrementalBeamStrain
block = '2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[]
[stress_cons]
type = ComputeBeamResultants
block = 2
[]
[]
[Postprocessors]
[disp_y_n4]
type = NodalVariableValue
variable = disp_y
nodeid = 3
[]
[disp_y_n2]
type = NodalVariableValue
variable = disp_y
nodeid = 1
[]
[forces_y]
type = PointValue
point = '10.0 59.9 0.0'
variable = forces_y
[]
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/monolithic_material_based/crysp_save_euler.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
block = 0
[../]
[./disp_y]
block = 0
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./rotout]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./gss1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
block = 0
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
expression = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
block = 0
[../]
[./gss1]
type = MaterialStdVectorAux
variable = gss1
property = gss
index = 0
execute_on = timestep_end
block = 0
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
block = 0
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
block = 0
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
block = 0
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainCrystalPlasticity
block = 0
gtol = 1e-2
slip_sys_file_name = input_slip_sys.txt
nss = 12
num_slip_sys_flowrate_props = 2 #Number of properties in a slip system
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
hprops = '1.0 541.5 60.8 109.8 2.5'
gprops = '1 4 60.8 5 8 60.8 9 12 60.8'
tan_mod_type = exact
[../]
[./strain]
type = ComputeFiniteStrain
block = 0
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
block = 0
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
block = 'ANY_BLOCK_ID 0'
[../]
[./gss1]
type = ElementAverageValue
variable = gss1
block = 'ANY_BLOCK_ID 0'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 0.01
dtmax = 10.0
dtmin = 0.01
num_steps = 10
[]
[Outputs]
file_base = crysp_save_euler_out
exodus = true
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/stress_update_material_based/rotation_matrix_update_euler_angle_111_orientation.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[euler_angle_1]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_2]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_3]
order = CONSTANT
family = MONOMIAL
[]
[pk2_zz]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics/SolidMechanics/QuasiStatic/all]
strain = FINITE
incremental = true
add_variables = true
[]
[AuxKernels]
[euler_angle_1]
type = MaterialRealVectorValueAux
variable = euler_angle_1
property = updated_Euler_angle
component = 0
execute_on = timestep_end
[]
[euler_angle_2]
type = MaterialRealVectorValueAux
variable = euler_angle_2
property = updated_Euler_angle
component = 1
execute_on = timestep_end
[]
[euler_angle_3]
type = MaterialRealVectorValueAux
variable = euler_angle_3
property = updated_Euler_angle
component = 2
execute_on = timestep_end
[]
[pk2_zz]
type = RankTwoAux
variable = pk2_zz
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[]
[BCs]
[Periodic]
[all]
variable = 'disp_x'
auto_direction = 'z'
[]
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '0.005*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
rotation_matrix = '0.707106781 0.40824829 0.57735027
-0.707106781 0.40824829 0.57735027
0. -0.81649658 0.57735027'
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
maximum_substep_iteration = 4
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[updated_euler_angle]
type = ComputeUpdatedEulerAngle
radian_to_degree = true
[]
[]
[Postprocessors]
[euler_angle_1]
type = ElementAverageValue
variable = euler_angle_1
[]
[euler_angle_2]
type = ElementAverageValue
variable = euler_angle_2
[]
[euler_angle_3]
type = ElementAverageValue
variable = euler_angle_3
[]
[pk2_zz]
type = ElementAverageValue
variable = pk2_zz
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.1
dtmin = 0.01
end_time = 5
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/solid_mechanics/test/tests/smeared_cracking/cracking_rotation.i)
# This test is to ensure that the smeared cracking model correctly handles finite
# rotation of cracked elements.
# This consists of a single element that is first subjected to tensile loading
# in the y-direction via a prescribed displacement. This loading is sufficiently
# high to crack the material in that direction, but not completely unload. The
# prescribed displacement is then reversed so that the element is returned to its
# original configuration.
# In the next phase of the analysis, this element is then rotated 90 degrees by
# prescribing the displacement of the bottom of the element. The prescribed
# displacement BC used to crack the element in the first phase is deactivated.
# Once the element is fully rotated, a new BC is activated on what was originally
# the top surface (but is now the surface on the right hand side) to pull in
# the x-direction.
# If everything is working correctly, the model should re-load on the original
# crack (which should be rotated along with the elemnent) up to the peak stress
# in the first phase of the analysis, and then continue the unloading process
# as the crack strains continue to increase. Throughout this analysis, there should
# only be a single crack, as manifested in the crack_flags variables.
[Mesh]
file = cracking_test.e
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx'
[../]
[]
[AuxVariables]
[./crack_flags1]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags2]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./crack_flags1]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags1
component = 0
[../]
[./crack_flags2]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags2
component = 1
[../]
[./crack_flags3]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags3
component = 2
[../]
[]
[BCs]
[./x_pin]
type = DirichletBC
variable = disp_x
boundary = '15 16'
value = 0.0
[../]
[./y_pin]
type = DirichletBC
variable = disp_y
boundary = '15 16'
value = 0.0
[../]
[./z_all]
type = DirichletBC
variable = disp_z
boundary = '11 12 13 14 15 16 17 18'
value = 0.0
[../]
[./x_lb]
type = FunctionDirichletBC
variable = disp_x
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,1-cos((t-10)*pi/180)))'
[../]
[./y_lb]
type = FunctionDirichletBC
variable = disp_y
boundary = '11 12'
function = 'if(t<10,0,if(t>=100,1,sin((t-10)*pi/180)))'
[../]
[./x_lt]
type = FunctionDirichletBC
variable = disp_x
boundary = '13 14'
function = '2+(t-100)*0.01'
[../]
[./x_rt]
type = FunctionDirichletBC
variable = disp_x
boundary = '17 18'
function = '1+(t-100)*0.01'
[../]
[./top_pull]
type = FunctionDirichletBC
variable = disp_y
boundary = '13 14 17 18'
function = 'if(t<5,t*0.01,0.05-(t-5)*0.01)'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 100.e9
poissons_ratio = 0.
[../]
[./cracking_stress]
type = ComputeSmearedCrackingStress
shear_retention_factor = 0.1
cracking_stress = 3.e9
cracked_elasticity_type = FULL
softening_models = exponential_softening
[../]
[./exponential_softening]
type = ExponentialSoftening
[../]
[]
[Executioner]
type = Transient
petsc_options_iname = '-ksp_gmres_restart -pc_type'
petsc_options_value = '101 lu'
line_search = 'none'
l_max_its = 100
l_tol = 1e-5
nl_max_its = 100
nl_abs_tol = 1e-5
nl_rel_tol = 1e-12
start_time = 0
end_time = 110
dt = 1
[]
[Controls]
[./p1]
type = TimePeriod
start_time = 0.0
end_time = 10.0
disable_objects = 'BCs/x_lt BCs/x_rt'
enable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p2]
type = TimePeriod
start_time = 10.0
end_time = 101.0
disable_objects = 'BCs/x_lt BCs/x_rt BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[./p3]
type = TimePeriod
start_time = 101.0
end_time = 110.0
enable_objects = 'BCs/x_lt BCs/x_rt'
disable_objects = 'BCs/top_pull'
reverse_on_false = false
execute_on = 'initial timestep_begin'
[../]
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/static/euler_pipe_bend.i)
# Test for small strain Euler beam bending in y direction
# Modeling a tube with an outer radius of 15 mm and inner radius of 13 mm
# The length of the tube is 1.0 m
# E = 2.068e11 Pa and G = 7.956e10 with nu = 0.3
# A load of 5 N is applied at the end of the beam in the y-dir
# The displacement at the end is given by
# y = - W * L^3 / 3 * E * I
# y = - 5 * 1.0^3 / 3 * 2.068e11 * 1.7329e-8 = 4.65e-4 m
# where I = pi/2 * (r_o^4 - r_i^4)
# I = pi /2 * (0.015^4 - 0.013^4) = 1.7329e-8
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 1.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[rot_x]
order = FIRST
family = LAGRANGE
[]
[rot_y]
order = FIRST
family = LAGRANGE
[]
[rot_z]
order = FIRST
family = LAGRANGE
[]
[]
[BCs]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[]
[fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[]
[]
[NodalKernels]
[force_y2]
type = ConstantRate
variable = disp_y
boundary = right
rate = 5.0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[]
[solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[]
[solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[]
[solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[]
[solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[]
[solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[]
[]
[AuxVariables]
[forces_y]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[forces_y]
type = MaterialRealVectorValueAux
property = forces
variable = forces_y
component = 1
execute_on = timestep_end
[]
[]
[Materials]
[elasticity]
type = ComputeElasticityBeam
youngs_modulus = 2.068e11
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[]
[strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.759e-4
Ay = 0.0
Az = 0.0
Iy = 1.7329e-8
Iz = 1.7329e-8
y_orientation = '0.0 1.0 0.0'
[]
[stress]
type = ComputeBeamResultants
block = 0
[]
[]
[Postprocessors]
[disp_x]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_x
[]
[disp_y]
type = PointValue
point = '1.0 0.0 0.0'
variable = disp_y
[]
[forces_y]
type = PointValue
point = '1.0 0.0 0.0'
variable = forces_y
[]
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/euler_angles/euler_angle_conflict.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
xmax = 4
nx = 4
elem_type = HEX8
[]
[AuxVariables]
[euler_angle_1]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_2]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_3]
order = CONSTANT
family = MONOMIAL
[]
# Euler angles aux variable to check the correctness of value assignments
[check_euler_angle_1]
order = CONSTANT
family = MONOMIAL
[]
[check_euler_angle_2]
order = CONSTANT
family = MONOMIAL
[]
[check_euler_angle_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[]
[]
[]
[AuxKernels]
[euler_angle_1]
type = FunctionAux
variable = euler_angle_1
function = '10*t'
[]
[euler_angle_2]
type = FunctionAux
variable = euler_angle_2
function = '20*t'
[]
[euler_angle_3]
type = FunctionAux
variable = euler_angle_3
function = '30*t'
[]
# output Euler angles material property to check correctness of value assignment
[mat_euler_angle_1]
type = MaterialRealVectorValueAux
variable = check_euler_angle_1
property = 'Euler_angles'
component = 0
[]
[mat_euler_angle_2]
type = MaterialRealVectorValueAux
variable = check_euler_angle_2
property = 'Euler_angles'
component = 1
[]
[mat_euler_angle_3]
type = MaterialRealVectorValueAux
variable = check_euler_angle_3
property = 'Euler_angles'
component = 2
[]
[]
[BCs]
[Periodic]
[all]
variable = 'disp_x'
auto_direction = 'z'
[]
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '0.01*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
euler_angle_variables = 'euler_angle_1 euler_angle_2 euler_angle_3'
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[]
[UserObjects]
[prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[]
[]
[Postprocessors]
[check_euler_angle_1]
type = ElementAverageValue
variable = check_euler_angle_1
[]
[check_euler_angle_2]
type = ElementAverageValue
variable = check_euler_angle_2
[]
[check_euler_angle_3]
type = ElementAverageValue
variable = check_euler_angle_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.1
dtmin = 0.01
end_time = 0.5
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/ad_smeared_cracking/cracking_function.i)
#
# Simple pull test for cracking. This tests the option to prescribe the
# cracking strength using an AuxVariable. In this case, an elemental
# AuxVariable is used, and a function is used to prescribe its value.
# One of the elements is weaker than the others, so the crack localizes
# in that element.
#
[Mesh]
file = plate.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./cracking_stress_fn]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 0.1 0.2 0.3 0.4'
y = '0 0.001 0 -0.001 0'
[../]
[./fstress]
type = ParsedFunction
expression = 'if(x > 0.667, 1.1e6, 1.2e6)'
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx strain_xx strain_yy strain_xy strain_yz'
use_automatic_differentiation = true
[../]
[]
[AuxKernels]
[./cracking_stress_fn]
type = FunctionAux
variable = cracking_stress_fn
function = fstress
execute_on = initial
[../]
[./crack_flags2]
type = ADMaterialRealVectorValueAux
property = crack_flags
variable = crack_flags2
component = 2
[../]
[]
[BCs]
[./pull]
type = ADFunctionDirichletBC
variable = disp_x
boundary = '3 4'
function = displ
[../]
[./pin_x]
type = ADDirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[./pin_y]
type = ADDirichletBC
variable = disp_y
boundary = '1 4'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 200.0e7
poissons_ratio = 0.0
[../]
[./elastic_stress]
type = ADComputeSmearedCrackingStress
cracking_stress = cracking_stress_fn
cracked_elasticity_type = FULL
softening_models = abrupt_softening
[../]
[./abrupt_softening]
type = ADAbruptSoftening
residual_stress = 0.0
[../]
[]
[Postprocessors]
[./elem_stress_xx]
type = ElementalVariableValue
variable = stress_xx
elementid = 2
[../]
[./elem_strain_xx]
type = ElementalVariableValue
variable = strain_xx
elementid = 2
[../]
[./elem_crack_flags_x]
type = ElementalVariableValue
variable = crack_flags2
elementid = 2
[../]
[]
[Executioner]
type = Transient
solve_type = Newton
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101 '
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 0.2
dt = 0.0025
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/constraints/glued_constraint.i)
# Test for glued beam constraint.
#
# Using a simple L-shaped geometry with a glued constraint at the
# corner between the two beams. The longer beam properties and loading is
# taken from an earlier beam regression test for static loading. The maximum
# applied load of 50000 lb should result in a displacement of 3.537e-3. Since
# the constraint is glued, the y-dir displacement of the long beam is
# 3.537e-3 and the short beam y-dir displacement is the same. The stiffness of
# the short beam is much less than the longer beam and thus should not
# significantly influence the displacement solution.
[Mesh]
file = beam_cons_patch.e
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[rot_x]
order = FIRST
family = LAGRANGE
[]
[rot_y]
order = FIRST
family = LAGRANGE
[]
[rot_z]
order = FIRST
family = LAGRANGE
[]
[]
[BCs]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = '1001 1003'
value = 0.0
[]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = '1001 1003'
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = '1001 1003'
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = '1001 1003'
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = '1001 1003'
value = 0.0
[]
[fixr3]
type = DirichletBC
variable = rot_z
boundary = '1001 1003'
value = 0.0
[]
[]
[Constraints]
[tie_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_y
[]
[tie_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_x
[]
[tie_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_z
[]
[tie_rot_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_y
[]
[tie_rot_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_x
[]
[tie_rot_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_z
[]
[]
[Functions]
[force_loading]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 50000.0'
[]
[disp_y_ramp]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 1e-2'
[]
[]
[NodalKernels]
[force_x2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = '1004'
functor = force_loading
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 5
[]
[Kernels]
[solid_disp_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[]
[solid_disp_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[]
[solid_disp_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[]
[solid_rot_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[]
[solid_rot_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[]
[solid_rot_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[]
[]
[AuxVariables]
[forces_y]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[forces_y]
type = MaterialRealVectorValueAux
property = forces
variable = forces_y
component = 1
execute_on = timestep_end
[]
[]
[Materials]
[elasticity_pipe]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 1
[]
[strain_pipe]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[]
[stress_pipe]
type = ComputeBeamResultants
block = 1
[]
[elasticity_cons]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 10e2
poissons_ratio = 0.3
block = 2
[]
[strain_cons]
type = ComputeIncrementalBeamStrain
block = '2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[]
[stress_cons]
type = ComputeBeamResultants
block = 2
[]
[]
[Postprocessors]
[disp_y_n4]
type = NodalVariableValue
variable = disp_y
nodeid = 3
[]
[disp_y_n2]
type = NodalVariableValue
variable = disp_y
nodeid = 1
[]
[forces_y]
type = PointValue
point = '10.0 59.9 0.0'
variable = forces_y
[]
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/euler_angles/euler_angle_auxvar.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[euler_angle_1]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_2]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_3]
order = CONSTANT
family = MONOMIAL
[]
# Euler angles aux variable to check the correctness of value assignments
[check_euler_angle_1]
order = CONSTANT
family = MONOMIAL
[]
[check_euler_angle_2]
order = CONSTANT
family = MONOMIAL
[]
[check_euler_angle_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics]
[SolidMechanics]
[QuasiStatic]
[all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[]
[]
[]
[AuxKernels]
[euler_angle_1]
type = FunctionAux
variable = euler_angle_1
function = '10*t'
[]
[euler_angle_2]
type = FunctionAux
variable = euler_angle_2
function = '20*t'
[]
[euler_angle_3]
type = FunctionAux
variable = euler_angle_3
function = '30*t'
[]
# output Euler angles material property to check correctness of value assignment
[mat_euler_angle_1]
type = MaterialRealVectorValueAux
variable = check_euler_angle_1
property = 'Euler_angles'
component = 0
[]
[mat_euler_angle_2]
type = MaterialRealVectorValueAux
variable = check_euler_angle_2
property = 'Euler_angles'
component = 1
[]
[mat_euler_angle_3]
type = MaterialRealVectorValueAux
variable = check_euler_angle_3
property = 'Euler_angles'
component = 2
[]
[]
[BCs]
[Periodic]
[all]
variable = 'disp_x'
auto_direction = 'z'
[]
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '0.01*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
euler_angle_variables = 'euler_angle_1 euler_angle_2 euler_angle_3'
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[]
[Postprocessors]
[check_euler_angle_1]
type = ElementAverageValue
variable = check_euler_angle_1
[]
[check_euler_angle_2]
type = ElementAverageValue
variable = check_euler_angle_2
[]
[check_euler_angle_3]
type = ElementAverageValue
variable = check_euler_angle_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.1
dtmin = 0.01
end_time = 0.5
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/smeared_cracking/cracking_function.i)
#
# Simple pull test for cracking. This tests the option to prescribe the
# cracking strength using an AuxVariable. In this case, an elemental
# AuxVariable is used, and a function is used to prescribe its value.
# One of the elements is weaker than the others, so the crack localizes
# in that element.
#
[Mesh]
file = plate.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./cracking_stress_fn]
order = CONSTANT
family = MONOMIAL
[../]
[./crack_flags2]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./displ]
type = PiecewiseLinear
x = '0 0.1 0.2 0.3 0.4'
y = '0 0.001 0 -0.001 0'
[../]
[./fstress]
type = ParsedFunction
expression = 'if(x > 0.667, 1.1e6, 1.2e6)'
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
strain = FINITE
add_variables = true
generate_output = 'stress_xx stress_yy stress_zz stress_xy stress_yz stress_zx strain_xx strain_yy strain_xy strain_yz'
[../]
[]
[AuxKernels]
[./cracking_stress_fn]
type = FunctionAux
variable = cracking_stress_fn
function = fstress
execute_on = initial
[../]
[./crack_flags2]
type = MaterialRealVectorValueAux
property = crack_flags
variable = crack_flags2
component = 2
[../]
[]
[BCs]
[./pull]
type = FunctionDirichletBC
variable = disp_x
boundary = '3 4'
function = displ
[../]
[./pin_x]
type = DirichletBC
variable = disp_x
boundary = '1 2'
value = 0
[../]
[./pin_y]
type = DirichletBC
variable = disp_y
boundary = '1 4'
value = 0.0
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 200.0e7
poissons_ratio = 0.0
[../]
[./elastic_stress]
type = ComputeSmearedCrackingStress
cracking_stress = cracking_stress_fn
cracked_elasticity_type = FULL
softening_models = abrupt_softening
[../]
[./abrupt_softening]
type = AbruptSoftening
residual_stress = 0.0
[../]
[]
[Postprocessors]
[./elem_stress_xx]
type = ElementalVariableValue
variable = stress_xx
elementid = 2
[../]
[./elem_strain_xx]
type = ElementalVariableValue
variable = strain_xx
elementid = 2
[../]
[./elem_crack_flags_x]
type = ElementalVariableValue
variable = crack_flags2
elementid = 2
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-ksp_gmres_restart'
petsc_options_value = '101 '
line_search = 'none'
l_max_its = 100
nl_max_its = 100
nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
l_tol = 1e-5
start_time = 0.0
end_time = 0.2
dt = 0.0025
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/beam/constraints/frictional_constraint.i)
# Test for frictional beam constraint.
#
# Using a simple L-shaped geometry with a frictional constraint at the
# corner between the two beams. The longer beam properties and loading is
# taken from an earlier beam regression test for static loading. The maximum
# applied load of 50000 lb should result in a displacement of 3.537e-3. Since
# the constraint is frictional with a low normal force (1.0) and coefficient
# of friction (0.05) and the short beam is much less stiff, the
# y-dir displacement of the long beam is still 3.537e-3. However, the y-dir
# displacement of the short beam increases until the force exceeds the
# frictional capacity which in this case is 0.05 and then remains constant
# after that point.
[Mesh]
file = beam_cons_patch.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[rot_x]
order = FIRST
family = LAGRANGE
[]
[rot_y]
order = FIRST
family = LAGRANGE
[]
[rot_z]
order = FIRST
family = LAGRANGE
[]
[]
[BCs]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = '1001 1003'
value = 0.0
[]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = '1001 1003'
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = '1001 1003'
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = '1001 1003'
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = '1001 1003'
value = 0.0
[]
[fixr3]
type = DirichletBC
variable = rot_z
boundary = '1001 1003'
value = 0.0
[]
[]
[Constraints]
[tie_y_fuel]
type = NodalFrictionalConstraint
normal_force = 1.0
tangential_penalty = 1.2e5
friction_coefficient = 0.05
boundary = 1005
secondary = 1004
variable = disp_y
[]
[tie_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_x
[]
[tie_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = disp_z
[]
[tie_rot_y_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_y
[]
[tie_rot_x_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_x
[]
[tie_rot_z_fuel]
type = NodalStickConstraint
penalty = 1.2e14
boundary = 1005
secondary = 1004
variable = rot_z
[]
[]
[Functions]
[force_loading]
type = PiecewiseLinear
x = '0.0 5.0'
y = '0.0 50000.0'
[]
[]
[NodalKernels]
[force_x2]
type = UserForcingFunctorNodalKernel
variable = disp_y
boundary = '1004'
functor = force_loading
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 5
[]
[Kernels]
[solid_disp_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[]
[solid_disp_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[]
[solid_disp_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[]
[solid_rot_x]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[]
[solid_rot_y]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[]
[solid_rot_z]
type = StressDivergenceBeam
block = '1 2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[]
[]
[Materials]
[elasticity_pipe]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 1
[]
[strain_pipe]
type = ComputeIncrementalBeamStrain
block = '1'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[]
[stress_pipe]
type = ComputeBeamResultants
block = 1
[]
[elasticity_cons]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 10e2
poissons_ratio = 0.3
block = 2
[]
[strain_cons]
type = ComputeIncrementalBeamStrain
block = '2'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 1.0
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 0.0 1.0'
[]
[stress_cons]
type = ComputeBeamResultants
block = 2
[]
[]
[AuxVariables]
[forces_y]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[forces_y]
type = MaterialRealVectorValueAux
property = forces
variable = forces_y
execute_on = timestep_end
component = 1
[]
[]
[Postprocessors]
[disp_y_n4]
type = NodalVariableValue
variable = disp_y
nodeid = 3
[]
[disp_y_n2]
type = NodalVariableValue
variable = disp_y
nodeid = 1
[]
[horz_forces_y]
type = PointValue
point = '9.9 60.0 0.0'
variable = forces_y
[]
[forces_y]
type = PointValue
point = '10.0 59.9 0.0'
variable = forces_y
[]
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/beam/static/euler_pipe_axial_force.i)
# Test for small strain Euler beam axial loading in x direction.
# Modeling a pipe with an OD of 10 inches and ID of 8 inches
# The length of the pipe is 5 feet (60 inches) and E = 30e6
# G = 11.5384615385e6 with nu = 0.3
# The applied axial load is 50000 lb which results in a
# displacement of 3.537e-3 inches at the end
# delta = PL/AE = 50000 * 60 / pi (5^2 - 4^2) * 30e6 = 3.537e-3
# In this analysis the applied force is used as a BC
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 60.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[disp_x]
order = FIRST
family = LAGRANGE
[]
[disp_y]
order = FIRST
family = LAGRANGE
[]
[disp_z]
order = FIRST
family = LAGRANGE
[]
[rot_x]
order = FIRST
family = LAGRANGE
[]
[rot_y]
order = FIRST
family = LAGRANGE
[]
[rot_z]
order = FIRST
family = LAGRANGE
[]
[]
[BCs]
[fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[]
[fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[]
[fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[]
[fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[]
[fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[]
[]
[NodalKernels]
[force_x2]
type = ConstantRate
variable = disp_x
boundary = right
rate = 50000.0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = PJFNK
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[]
[solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[]
[solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[]
[solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[]
[solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[]
[solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[]
[]
[AuxVariables]
[forces_x]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[forces_x]
type = MaterialRealVectorValueAux
property = forces
variable = forces_x
execute_on = timestep_end
[]
[]
[Materials]
[elasticity]
type = ComputeElasticityBeam
shear_coefficient = 1.0
youngs_modulus = 30e6
poissons_ratio = 0.3
block = 0
[]
[strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 28.274
Ay = 0.0
Az = 0.0
Iy = 1.0
Iz = 1.0
y_orientation = '0.0 1.0 0.0'
[]
[stress]
type = ComputeBeamResultants
block = 0
[]
[]
[Postprocessors]
[disp_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_x
[]
[disp_y]
type = PointValue
point = '60.0 0.0 0.0'
variable = disp_y
[]
[forces_x]
type = PointValue
point = '60.0 0.0 0.0'
variable = forces_x
[]
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/stress_update_material_based/update_euler_angle.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
elem_type = HEX8
[]
[AuxVariables]
[euler_angle_1]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_2]
order = CONSTANT
family = MONOMIAL
[]
[euler_angle_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics/SolidMechanics/QuasiStatic/all]
strain = FINITE
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[euler_angle_1]
type = MaterialRealVectorValueAux
variable = euler_angle_1
property = updated_Euler_angle
component = 0
execute_on = timestep_end
[]
[euler_angle_2]
type = MaterialRealVectorValueAux
variable = euler_angle_2
property = updated_Euler_angle
component = 1
execute_on = timestep_end
[]
[euler_angle_3]
type = MaterialRealVectorValueAux
variable = euler_angle_3
property = updated_Euler_angle
component = 2
execute_on = timestep_end
[]
[]
[BCs]
[Periodic]
[all]
variable = 'disp_x'
auto_direction = 'z'
[]
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = 'front'
function = '0.01*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityKalidindiUpdate
number_slip_systems = 12
slip_sys_file_name = input_slip_sys.txt
[]
[updated_euler_angle]
type = ComputeUpdatedEulerAngle
radian_to_degree = true
[]
[]
[Postprocessors]
[euler_angle_1]
type = ElementAverageValue
variable = euler_angle_1
[]
[euler_angle_2]
type = ElementAverageValue
variable = euler_angle_2
[]
[euler_angle_3]
type = ElementAverageValue
variable = euler_angle_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu '
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.1
dtmin = 0.01
end_time = 5
[]
[Outputs]
csv = true
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/user_object_based/prop_block_read.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
ymin = 0
xmax = 1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD4
[]
[./subdomain_id]
input = gen
type = SubdomainPerElementGenerator
subdomain_ids = '0 1
0 1'
[../]
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
expression = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = block
nblock= 2
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/user_object_based/save_euler.i)
[Mesh]
type = GeneratedMesh
dim = 2
elem_type = QUAD4
displacements = 'disp_x disp_y'
nx = 2
ny = 2
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[GlobalParams]
volumetric_locking_correction = true
[]
[AuxVariables]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./e_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./fp_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./gss]
order = CONSTANT
family = MONOMIAL
[../]
[./euler1]
order = CONSTANT
family = MONOMIAL
[../]
[./euler2]
order = CONSTANT
family = MONOMIAL
[../]
[./euler3]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Functions]
[./tdisp]
type = ParsedFunction
expression = 0.01*t
[../]
[]
[UserObjects]
[./prop_read]
type = PropertyReadFile
prop_file_name = 'euler_ang_file.txt'
# Enter file data as prop#1, prop#2, .., prop#nprop
nprop = 3
read_type = element
[../]
[]
[AuxKernels]
[./stress_yy]
type = RankTwoAux
variable = stress_yy
rank_two_tensor = stress
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = lage
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = fp
index_j = 1
index_i = 1
execute_on = timestep_end
[../]
[./gss]
type = MaterialStdVectorAux
variable = gss
property = state_var_gss
index = 0
execute_on = timestep_end
[../]
[./euler1]
type = MaterialRealVectorValueAux
variable = euler1
property = Euler_angles
component = 0
execute_on = timestep_end
[../]
[./euler2]
type = MaterialRealVectorValueAux
variable = euler2
property = Euler_angles
component = 1
execute_on = timestep_end
[../]
[./euler3]
type = MaterialRealVectorValueAux
variable = euler3
property = Euler_angles
component = 2
execute_on = timestep_end
[../]
[]
[BCs]
[./fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[../]
[./fix_y]
type = DirichletBC
variable = disp_y
boundary = 'bottom'
value = 0
[../]
[./tdisp]
type = FunctionDirichletBC
variable = disp_y
boundary = top
function = tdisp
[../]
[]
[UserObjects]
[./slip_rate_gss]
type = CrystalPlasticitySlipRateGSS
variable_size = 12
slip_sys_file_name = input_slip_sys.txt
num_slip_sys_flowrate_props = 2
flowprops = '1 4 0.001 0.1 5 8 0.001 0.1 9 12 0.001 0.1'
uo_state_var_name = state_var_gss
[../]
[./slip_resistance_gss]
type = CrystalPlasticitySlipResistanceGSS
variable_size = 12
uo_state_var_name = state_var_gss
[../]
[./state_var_gss]
type = CrystalPlasticityStateVariable
variable_size = 12
groups = '0 4 8 12'
group_values = '60.8 60.8 60.8'
uo_state_var_evol_rate_comp_name = state_var_evol_rate_comp_gss
scale_factor = 1.0
[../]
[./state_var_evol_rate_comp_gss]
type = CrystalPlasticityStateVarRateComponentGSS
variable_size = 12
hprops = '1.0 541.5 109.8 2.5'
uo_slip_rate_name = slip_rate_gss
uo_state_var_name = state_var_gss
[../]
[]
[Materials]
[./crysp]
type = FiniteStrainUObasedCP
stol = 1e-2
tan_mod_type = exact
uo_slip_rates = 'slip_rate_gss'
uo_slip_resistances = 'slip_resistance_gss'
uo_state_vars = 'state_var_gss'
uo_state_var_evol_rate_comps = 'state_var_evol_rate_comp_gss'
[../]
[./strain]
type = ComputeFiniteStrain
displacements = 'disp_x disp_y'
[../]
[./elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.684e5 1.214e5 1.214e5 1.684e5 1.214e5 1.684e5 0.754e5 0.754e5 0.754e5'
fill_method = symmetric9
read_prop_user_object = prop_read
[../]
[]
[Postprocessors]
[./stress_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./e_yy]
type = ElementAverageValue
variable = e_yy
[../]
[./fp_yy]
type = ElementAverageValue
variable = fp_yy
[../]
[./gss]
type = ElementAverageValue
variable = gss
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
dt = 0.01
solve_type = 'PJFNK'
petsc_options_iname = -pc_hypre_type
petsc_options_value = boomerang
nl_abs_tol = 1e-10
nl_rel_step_tol = 1e-10
dtmax = 10.0
nl_rel_tol = 1e-10
end_time = 1
dtmin = 0.01
num_steps = 10
nl_abs_step_tol = 1e-10
[]
[Outputs]
exodus = true
[]
[Kernels]
[SolidMechanics]
displacements = 'disp_x disp_y'
use_displaced_mesh = true
[../]
[]