- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this object applies to
ConstantAux
The Constant AuxKernel creates a constant field over the domain. Truly constant field variables can likely be replaced with a Postprocessor. !syntax description /AuxKernels/ConstantAux
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, PRE_DISPLACE
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- value0Some constant value that can be read from the input file
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Some constant value that can be read from the input file
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (modules/contact/test/tests/mechanical_constraint/glued_kinematic.i)
- (modules/subchannel/test/tests/problems/interwrapper/quad_interwrapper.i)
- (test/tests/misc/check_error/invalid_aux_coupling_test.i)
- (modules/contact/test/tests/sliding_block/sliding/frictional_04_penalty.i)
- (test/tests/auxkernels/element_aux_var/elemental_sort_test.i)
- (modules/subchannel/test/tests/problems/interwrapper/quad_interwrapper_monolithic.i)
- (test/tests/ics/dependency/test.i)
- (modules/subchannel/validation/ORNL_19_pin/ORNL_19.i)
- (modules/subchannel/validation/ORNL_19_pin/test_ORNL_19.i)
- (modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/matrix_app.i)
- (modules/subchannel/test/tests/problems/psbt/psbt_explicit_staggered.i)
- (modules/solid_mechanics/test/tests/ad_anisotropic_creep/ad_aniso_creep_temperature_coefficients_function.i)
- (modules/subchannel/test/tests/restart/transient.i)
- (modules/thermal_hydraulics/test/tests/materials/ad_convection_heat_flux/ad_convection_heat_flux.i)
- (modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_monolithic.i)
- (modules/subchannel/test/tests/problems/interwrapper/quad_interwrapper_monolithic_staggered.i)
- (modules/solid_mechanics/test/tests/truss/truss_2d.i)
- (modules/solid_mechanics/test/tests/truss/truss_3d_action.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_aprismatic_capyramidal.i)
- (modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template2.i)
- (modules/solid_mechanics/test/tests/truss/truss_2d_action.i)
- (test/tests/outputs/variables/output_vars_hidden_shown_check.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/hcp_twinning/demonstration_combined_hcp_slip_twins.i)
- (modules/contact/test/tests/mechanical_constraint/frictionless_kinematic.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_sort_test.i)
- (test/tests/kernels/ad_coupled_force/aux_test.i)
- (modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template1.i)
- (modules/subchannel/examples/MultiApp/fuel_assembly.i)
- (test/tests/outputs/displaced/non_displaced_fallback.i)
- (modules/subchannel/validation/Blockage/PNNL_7x7/7X7blockage90.i)
- (test/tests/postprocessors/function_value_pps/function_value_pps.i)
- (test/tests/constraints/nodal_constraint/nodal_constraint_displaced_test.i)
- (modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub_2phase.i)
- (modules/subchannel/test/tests/transfers/multiapp_iw_detailed_solution_transfer/quad_iw.i)
- (modules/subchannel/examples/mesh_generator/inter_wrapper_mesh_generator_test.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_var_test.i)
- (test/tests/geomsearch/nearest_node_locator/adapt.i)
- (modules/thermal_hydraulics/test/tests/materials/average_wall_temperature_3eqn/average_wall_temperature_3eqn.i)
- (test/tests/outputs/debug/show_execution_ics.i)
- (test/tests/misc/selective_reinit/selective_reinit_test.i)
- (test/tests/misc/check_error/subdomain_restricted_auxkernel_mismatch.i)
- (test/tests/auxkernels/element_aux_var/l2_element_aux_var_test.i)
- (modules/subchannel/examples/duct/test.i)
- (modules/subchannel/verification/friction_model_verification/two_channel.i)
- (test/tests/auxkernels/element_aux_var/element_aux_var_test.i)
- (test/tests/outputs/variables/output_vars_nonexistent.i)
- (modules/subchannel/test/tests/problems/psbt/psbt_full_monolithic_staggered.i)
- (modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_full_monolithic.i)
- (test/tests/auxkernels/vector_magnitude/vector_magnitude.i)
- (modules/subchannel/test/tests/problems/Lead-LBE-19pin/test_LEAD-19pin.i)
- (modules/subchannel/test/tests/problems/Lead-LBE-19pin/test_LBE-19pin.i)
- (modules/solid_mechanics/test/tests/truss/truss_3d.i)
- (modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template2.i)
- (modules/solid_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_basal_active.i)
- (modules/subchannel/validation/PNNL_12_pin/steady_state/2X6_ss.i)
- (modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template2.i)
- (test/tests/outputs/variables/hide_output_via_variables_block.i)
- (modules/subchannel/test/tests/problems/psbt/psbt_explicit.i)
- (modules/subchannel/validation/areva_FCTF/FCTF_non_deformed.i)
- (test/tests/kernels/scalar_constraint/scalar_constraint_kernel_disp.i)
- (modules/subchannel/validation/EBR-II/XX09_SCM_SS45R.i)
- (modules/solid_mechanics/test/tests/truss/truss_hex.i)
- (test/tests/bcs/coupled_var_neumann/on_off.i)
- (modules/contact/test/tests/mechanical_constraint/frictionless_kinematic_gap_offsets.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_ts_test.i)
- (modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_implicit.i)
- (modules/contact/test/tests/sliding_block/sliding/frictionless_penalty.i)
- (modules/subchannel/test/tests/problems/psbt/psbt_monolithic.i)
- (modules/heat_transfer/test/tests/gap_heat_transfer_mortar/ref-displaced.i)
- (modules/contact/test/tests/sliding_block/sliding/frictional_02_penalty.i)
- (modules/subchannel/validation/PNNL_12_pin/transient/2X6_transient.i)
- (modules/solid_properties/test/tests/materials/constant_density_thermal_solid_properties/constant_density_thermal_solid_properties.i)
- (modules/subchannel/test/tests/problems/psbt/psbt_explicit_v2.i)
- (modules/fluid_properties/test/tests/auxkernels/specific_enthalpy_aux.i)
- (test/tests/auxkernels/nodal_aux_var/nodal_aux_init_test.i)
- (modules/heat_transfer/test/tests/heat_conduction/coupled_convective_heat_flux/on_off.i)
- (modules/subchannel/validation/EBR-II/XX09_SCM_TR45R.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictional_02_penalty.i)
- (test/tests/transfers/multiapp_userobject_transfer/3d_1d_sub.i)
- (test/tests/userobjects/layered_average/layered_average_1d_displaced.i)
- (test/tests/auxkernels/element_aux_var/block_global_depend_elem_aux.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar01_fv.i)
- (test/tests/ics/dependency/monomial.i)
- (modules/subchannel/validation/psbt/psbt_null_transient/psbt_ss.i)
- (modules/fluid_properties/test/tests/auxkernels/stagnation_temperature_aux.i)
- (modules/subchannel/examples/mesh_generator/psbt_mesh_generator_test.i)
- (test/tests/postprocessors/difference_pps/difference_pps.i)
- (modules/contact/test/tests/sliding_block/sliding/frictional_02_aug.i)
- (modules/thermal_hydraulics/test/tests/materials/ad_average_wall_temperature_3eqn/ad_average_wall_temperature_3eqn.i)
- (test/tests/outputs/variables/output_vars_test.i)
- (test/tests/postprocessors/volume/sphere1D.i)
- (modules/heat_transfer/test/tests/truss_heat_conduction/rectangle_w_line.i)
- (modules/contact/test/tests/sliding_block/sliding/frictionless_aug.i)
- (modules/solid_properties/test/tests/materials/thermal_solid_functor_properties/base.i)
- (modules/subchannel/validation/Blockage/THORS/FFM-3A.i)
- (modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template1.i)
- (modules/solid_mechanics/test/tests/truss/truss_hex_action.i)
- (modules/solid_mechanics/test/tests/truss/truss_plastic.i)
- (modules/subchannel/test/tests/restart/steady.i)
- (modules/heat_transfer/test/tests/truss_heat_conduction/line.i)
- (modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_explicit.i)
- (test/tests/parser/active_inactive/top_level.i)
- (modules/subchannel/test/tests/multiapp/sc_core.i)
- (modules/subchannel/validation/areva_FCTF/FCTF_deformed.i)
- (modules/thermal_hydraulics/test/tests/components/heat_source_from_power_density/err.base.i)
- (modules/combined/test/tests/gap_heat_transfer_convex/gap_heat_transfer_convex_gap_offsets.i)
- (modules/subchannel/validation/EBR-II/XX09_SCM_SS17.i)
- (modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
- (modules/subchannel/test/tests/problems/coupling/main.i)
- (test/tests/parser/active_inactive/active_inactive.i)
- (modules/contact/test/tests/mechanical_constraint/frictionless_penalty.i)
- (modules/subchannel/validation/EBR-II/XX09_SCM_TR17.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictional_04_penalty.i)
- (test/tests/auxkernels/element_aux_var/element_high_order_aux_test.i)
- (modules/subchannel/validation/psbt/psbt_ss/psbt.i)
- (modules/subchannel/test/tests/problems/psbt/psbt_implicit.i)
- (modules/solid_mechanics/test/tests/beam/eigenstrain/eigenstrain_from_var.i)
- (modules/subchannel/test/tests/ics/FCTFdisplacementIC/test.i)
- (modules/subchannel/verification/friction_model_verification/two_channel2.i)
- (modules/contact/test/tests/mechanical_constraint/glued_penalty.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty_contact_line_search.i)
- (modules/thermal_hydraulics/test/tests/auxkernels/sum/sum.i)
- (modules/subchannel/examples/heating_test/3X3_channel.i)
- (modules/subchannel/validation/psbt/psbt_null_transient/psbt_transient.i)
- (test/tests/transfers/general_field/user_object/duplicated_user_object_tests/3d_1d_sub.i)
- (modules/subchannel/validation/Blockage/THORS/FFM-5B_low.i)
- (modules/heat_transfer/test/tests/truss_heat_conduction/block_w_line.i)
- (modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i)
- (modules/subchannel/validation/Blockage/PNNL_7x7/7X7blockage70.i)
- (modules/subchannel/validation/Blockage/THORS/FFM-5B_high.i)
- (modules/heat_transfer/test/tests/heat_conduction/coupled_convective_heat_flux/const_hw.i)
- (modules/subchannel/test/tests/problems/SFR/EBR-II/XX09_SS_SHRT17.i)
- (modules/thermal_hydraulics/test/tests/auxkernels/weighted_average/weighted_average.i)
- (modules/contact/test/tests/sliding_block/sliding/frictionless_kinematic.i)
- (modules/solid_mechanics/test/tests/transfer_from_displaced/child.i)
- (modules/contact/test/tests/sliding_block/in_and_out/frictionless_kinematic.i)
- (modules/fluid_properties/test/tests/auxkernels/stagnation_pressure_aux.i)
- (test/tests/postprocessors/difference_pps/difference_depend_check.i)
- (modules/subchannel/test/tests/problems/psbt/psbt_full_monolithic.i)
- (modules/fluid_properties/test/tests/auxkernels/fluid_density_aux.i)
- (modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template2.i)
- (modules/subchannel/validation/Toshiba_37_pin/toshiba_37_pin.i)
- (modules/subchannel/examples/coupling/thermo_mech/quad/one_pin_problem.i)
- (modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template1.i)
- (test/tests/meshmodifiers/element_subdomain_modifier/var_block_id.i)
- (test/tests/misc/update-displaced-aux-local-soln/test.i)
- (modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template1.i)
- (test/tests/kernels/ad_mat_coupled_force/aux_test.i)
(modules/contact/test/tests/mechanical_constraint/glued_kinematic.i)
[Mesh]
file = blocks_2d_nogap.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.01
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = glued
penalty = 1e+6
[../]
[]
(modules/subchannel/test/tests/problems/interwrapper/quad_interwrapper.i)
T_in = 360.0
mass_flux_in = '${fparse 1e+4 * 17.0 / 3600.}'
P_out = 4.923e6 # Pa
[QuadInterWrapperMesh]
[sub_channel]
type = SCMQuadInterWrapperMeshGenerator
nx = 5
ny = 5
n_cells = 10
assembly_pitch = 0.2
assembly_side_x = 0.18
assembly_side_y = 0.18
side_bypass = 0.01
heated_length = 3.0
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadInterWrapper1PhaseProblem
fp = water
n_blocks = 10
beta = 0.08
CT = 0.5
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = false
P_out = ${P_out}
implicit = false
segregated = true
staggered_pressure = false
monolithic_thermal = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = QuadInterWrapperFlowAreaIC
variable = S
[]
[w_perim_IC]
type = QuadInterWrapperWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = QuadInterWrapperPowerIC
variable = q_prime
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = false
[]
[Executioner]
type = Steady
[]
(test/tests/misc/check_error/invalid_aux_coupling_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./nodal_aux]
order = FIRST
family = LAGRANGE
[../]
[./elemental_aux]
# order = FIRST
# family = LAGRANGE
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
active = 'diff'
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./nodal]
type = CoupledAux
variable = nodal_aux
coupled = elemental_aux
[../]
[./elemental]
type = ConstantAux
variable = elemental_aux
value = 6
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[]
(modules/contact/test/tests/sliding_block/sliding/frictional_04_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# A friction coefficient of 0.4 is used. The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[penetration]
[]
[inc_slip_x]
[]
[inc_slip_y]
[]
[accum_slip_x]
[]
[accum_slip_y]
[]
[]
[Functions]
[vertical_movement]
type = ParsedFunction
expression = -t
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
add_variables = true
strain = FINITE
[]
[]
[AuxKernels]
[zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[]
[accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[]
[penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[]
[]
[Postprocessors]
[nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[]
[penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[]
[contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[]
[]
[Materials]
[left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 14.99999
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[Predictor]
type = SimplePredictor
scale = 1.0
[]
[]
[Outputs]
time_step_interval = 10
[out]
type = Exodus
elemental_as_nodal = true
[]
[console]
type = Console
max_rows = 5
[]
[]
[Contact]
[leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 1e+6
friction_coefficient = 0.4
formulation = penalty
normal_smoothing_distance = 0.1
[]
[]
(test/tests/auxkernels/element_aux_var/elemental_sort_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./one]
order = CONSTANT
family = MONOMIAL
initial_condition = 0
[../]
[./two]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# Intentionally out of order to test sorting capabiilties
active = 'one two'
[./two]
variable = two
type = CoupledAux
value = 2
operator = '/'
coupled = one
[../]
[./one]
variable = one
type = ConstantAux
value = 1
[../]
[./five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(modules/subchannel/test/tests/problems/interwrapper/quad_interwrapper_monolithic.i)
T_in = 360.0
mass_flux_in = '${fparse 1e+4 * 17.0 / 3600.}'
P_out = 4.923e6 # Pa
[QuadInterWrapperMesh]
[sub_channel]
type = SCMQuadInterWrapperMeshGenerator
nx = 5
ny = 5
n_cells = 10
assembly_pitch = 0.2
assembly_side_x = 0.18
assembly_side_y = 0.18
side_bypass = 0.001
heated_length = 3.0
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadInterWrapper1PhaseProblem
fp = water
n_blocks = 1
beta = 0.08
CT = 2.6
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = false
P_out = ${P_out}
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = QuadInterWrapperFlowAreaIC
variable = S
[]
[w_perim_IC]
type = QuadInterWrapperWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = QuadInterWrapperPowerIC
variable = q_prime
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = false
[]
[Executioner]
type = Steady
[]
(test/tests/ics/dependency/test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./a]
[../]
[./b]
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = -1
[../]
[./v_ic]
type = MTICSum
variable = v
var1 = u
var2 = a
[../]
[./a_ic]
type = ConstantIC
variable = a
value = 10
[../]
[./b_ic]
type = MTICMult
variable = b
var1 = v
factor = 2
[../]
[]
[AuxKernels]
[./a_ak]
type = ConstantAux
variable = a
value = 256
[../]
[./b_ak]
type = ConstantAux
variable = b
value = 42
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/subchannel/validation/ORNL_19_pin/ORNL_19.i)
# M. Fontana, et All,
# "Temperature distribution in the duct wall and at the exit of a 19-pin simulated lmfbr fuel assembly (ffm bundle 2a),
# "Nuclear Technology, vol. 24, no. 2, pp. 176-200, 1974.
T_in = 588.5
flow_area = 0.0004980799633447909 #m2
mass_flux_in = '${fparse 55*3.78541/10/60/flow_area}'
P_out = 2.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 3
n_cells = 40
flat_to_flat = 3.41e-2
heated_length = 0.5334
unheated_length_entry = 0.4064
unheated_length_exit = 0.0762
pin_diameter = 5.84e-3
pitch = 7.26e-3
dwire = 1.42e-3
hwire = 0.3048
spacer_z = '0'
spacer_k = '0'
[]
[]
[AuxVariables]
[mdot]
[]
[SumWij]
[]
[P]
[]
[DP]
[]
[h]
[]
[T]
[]
[rho]
[]
[S]
[]
[w_perim]
[]
[q_prime]
[]
[mu]
[]
[displacement]
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 2.6
# enforce_uniform_pressure = false
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = false
segregated = true
staggered_pressure = false
monolithic_thermal = false
verbose_multiapps = true
verbose_subchannel = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 16975 #${fparse 16975/(0.5334+0.4046+0.0762)} # W/m
filename = "pin_power_profile19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[T]
type = SubChannelPointValue
variable = T
index = 36
execute_on = "timestep_end"
height = 0.7
[]
[Pin_Planar_Mean]
type = SCMPlanarMean
variable = P
execute_on = 'TIMESTEP_END'
height = 0.0
[]
[Pout_Planar_Mean]
type = SCMPlanarMean
variable = P
execute_on = 'TIMESTEP_END'
height = 1.2
[]
[Pout_user_provided]
type = Receiver
default = ${P_out}
execute_on = 'TIMESTEP_END'
[]
####### Assembly pressure drop
[DP_Planar_mean]
type = ParsedPostprocessor
pp_names = 'Pin_Planar_Mean Pout_Planar_Mean'
function = 'Pin_Planar_Mean - Pout_Planar_Mean'
[]
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d_ORNL_19.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(modules/subchannel/validation/ORNL_19_pin/test_ORNL_19.i)
# M. Fontana, et All,
# "Temperature distribution in the duct wall and at the exit of a 19-pin simulated lmfbr fuel assembly (ffm bundle 2a),
# "Nuclear Technology, vol. 24, no. 2, pp. 176-200, 1974.
T_in = 588.5
A12 = 1.00423e3
A13 = -0.21390
A14 = -1.1046e-5
rho = '${fparse A12 + A13 * T_in + A14 * T_in * T_in}'
flow_area = 0.0004980799633447909 #m2
vol_flow = 3.47E-03
mass_flux_in = '${fparse rho * vol_flow / flow_area}'
P_out = 2.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 3
n_cells = 40
flat_to_flat = 3.41e-2
heated_length = 0.5334
unheated_length_entry = 0.4064
unheated_length_exit = 0.0762
pin_diameter = 5.84e-3
pitch = 7.26e-3
dwire = 1.42e-3
hwire = 0.3048
spacer_z = '0.0'
spacer_k = '0.0'
[]
[]
[AuxVariables]
[mdot]
[]
[SumWij]
[]
[P]
[]
[DP]
[]
[h]
[]
[T]
[]
[rho]
[]
[S]
[]
[w_perim]
[]
[q_prime]
[]
[mu]
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 2.6
# enforce_uniform_pressure = false
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-5
T_tol = 1.0e-3
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
verbose_multiapps = true
verbose_subchannel = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 322482.972 #W
filename = "pin_power_profile_19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d_ORNL_19.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(modules/porous_flow/examples/multiapp_fracture_flow/3dFracture/matrix_app.i)
# 3D matrix app doing thermo-hydro PorousFlow and receiving heat energy via a VectorPostprocessor from the 2D fracture App
[Mesh]
uniform_refine = 0
[generate]
type = GeneratedMeshGenerator
dim = 3
nx = 11
xmin = -10
xmax = 210
ny = 9
ymin = -10
ymax = 160
nz = 11
zmin = -10
zmax = 210
[]
[]
[GlobalParams]
PorousFlowDictator = dictator
[]
[Variables]
[matrix_P]
scaling = 1E6
[]
[matrix_T]
initial_condition = 473
[]
[]
[ICs]
[frac_P]
type = FunctionIC
variable = matrix_P
function = insitu_pp
[]
[]
[Functions]
[insitu_pp]
type = ParsedFunction
expression = '10 - 0.847E-2 * z' # Approximate hydrostatic in MPa
[]
[]
[PorousFlowFullySaturated]
coupling_type = ThermoHydro
porepressure = matrix_P
temperature = matrix_T
fp = water
gravity = '0 0 -9.81E-6' # Note the value, because of pressure_unit
pressure_unit = MPa
[]
[DiracKernels]
[heat_from_fracture]
type = ReporterPointSource
variable = matrix_T
value_name = heat_transfer_rate/transferred_joules_per_s
x_coord_name = heat_transfer_rate/x
y_coord_name = heat_transfer_rate/y
z_coord_name = heat_transfer_rate/z
[]
[]
[FluidProperties]
[water]
type = SimpleFluidProperties # this is largely irrelevant here since we care about heat conduction only
thermal_expansion = 0 # to prevent depressurization as the reservoir is cooled
[]
[]
[Materials]
[porosity]
type = PorousFlowPorosityConst
porosity = 1E-3 # small porosity of rock
[]
[permeability]
type = PorousFlowPermeabilityConst
permeability = '1E-18 0 0 0 1E-18 0 0 0 1E-18'
[]
[internal_energy]
type = PorousFlowMatrixInternalEnergy
density = 2700 # kg/m^3
specific_heat_capacity = 800 # rough guess at specific heat capacity
[]
[aq_thermal_conductivity]
type = PorousFlowThermalConductivityIdeal
dry_thermal_conductivity = '5 0 0 0 5 0 0 0 5'
[]
[]
[VectorPostprocessors]
[heat_transfer_rate]
type = ConstantVectorPostprocessor
vector_names = 'transferred_joules_per_s x y z'
value = '0; 0; 0; 0'
outputs = none
[]
[]
[AuxVariables]
[normal_thermal_conductivity]
family = MONOMIAL
order = CONSTANT
[]
[fracture_normal_x]
family = MONOMIAL
order = CONSTANT
initial_condition = 0
[]
[fracture_normal_y]
family = MONOMIAL
order = CONSTANT
initial_condition = 1
[]
[fracture_normal_z]
family = MONOMIAL
order = CONSTANT
initial_condition = 0
[]
[element_normal_length]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[normal_thermal_conductivity_auxk]
type = ConstantAux
variable = normal_thermal_conductivity
value = 5 # very simple in this case
[]
[element_normal_length_auxk]
type = PorousFlowElementLength
variable = element_normal_length
direction = 'fracture_normal_x fracture_normal_y fracture_normal_z'
[]
[]
[Preconditioning]
[entire_jacobian]
type = SMP
full = true
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[TimeStepper]
type = IterationAdaptiveDT
dt = 1
growth_factor = 1.1
optimal_iterations = 4
[]
dtmax = 1E8
end_time = 1E8
nl_abs_tol = 1E-2
[]
[Outputs]
print_linear_residuals = false
exodus = false
[]
[MultiApps]
[fracture_app]
type = TransientMultiApp
input_files = fracture_only_aperture_changing.i
cli_args = 'Outputs/ex/sync_only=false'
execute_on = TIMESTEP_BEGIN
sub_cycling = true
### catch_up = true
### max_catch_up_steps = 100
[]
[]
[Transfers]
[element_normal_length_to_fracture]
type = MultiAppNearestNodeTransfer
to_multi_app = fracture_app
source_variable = element_normal_length
variable = enclosing_element_normal_length
[]
[element_normal_thermal_cond_to_fracture]
type = MultiAppNearestNodeTransfer
to_multi_app = fracture_app
source_variable = normal_thermal_conductivity
variable = enclosing_element_normal_thermal_cond
[]
[T_to_fracture]
type = MultiAppGeometricInterpolationTransfer
to_multi_app = fracture_app
source_variable = matrix_T
variable = transferred_matrix_T
[]
[normal_x_from_fracture]
type = MultiAppNearestNodeTransfer
from_multi_app = fracture_app
source_variable = normal_dirn_x
variable = fracture_normal_x
[]
[normal_y_from_fracture]
type = MultiAppNearestNodeTransfer
from_multi_app = fracture_app
source_variable = normal_dirn_y
variable = fracture_normal_y
[]
[normal_z_from_fracture]
type = MultiAppNearestNodeTransfer
from_multi_app = fracture_app
source_variable = normal_dirn_z
variable = fracture_normal_z
[]
[heat_from_fracture]
type = MultiAppReporterTransfer
from_multi_app = fracture_app
from_reporters = 'heat_transfer_rate/joules_per_s heat_transfer_rate/x heat_transfer_rate/y heat_transfer_rate/z'
to_reporters = 'heat_transfer_rate/transferred_joules_per_s heat_transfer_rate/x heat_transfer_rate/y heat_transfer_rate/z'
[]
[]
(modules/subchannel/test/tests/problems/psbt/psbt_explicit_staggered.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
pin_diameter = 0.00950
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
pin_diameter = ${pin_diameter}
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
heated_length = 1.0
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
verbose_subchannel = true
staggered_pressure = true
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1.0e6 # W
filename = "power_profile.txt" #type in name of file that describes radial power profile
block = fuel_pins
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = sub_channel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = report_mass_flux_inlet
execute_on = 'timestep_begin'
block = sub_channel
[]
[]
[Postprocessors]
[report_mass_flux_inlet]
type = Receiver
default = ${mass_flux_in}
[]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 1
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 1
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 1
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 1
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 1
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 1
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
(modules/solid_mechanics/test/tests/ad_anisotropic_creep/ad_aniso_creep_temperature_coefficients_function.i)
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 3
nx = 10
ny = 2
nz = 2
xmin = 0.0
ymin = 0.0
zmin = 0.0
xmax = 10.0
ymax = 1.0
zmax = 1.0
[]
[corner_node]
type = ExtraNodesetGenerator
new_boundary = '100'
nodes = '3 69'
input = gen
[]
[corner_node_2]
type = ExtraNodesetGenerator
new_boundary = '101'
nodes = '4 47'
input = corner_node
[]
[]
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
volumetric_locking_correction = true
[]
[AuxVariables]
[temperature]
order = CONSTANT
family = MONOMIAL
[]
[hydrostatic_stress]
order = CONSTANT
family = MONOMIAL
[]
[creep_strain_xx]
order = CONSTANT
family = MONOMIAL
[]
[creep_strain_xy]
order = CONSTANT
family = MONOMIAL
[]
[creep_strain_yy]
order = CONSTANT
family = MONOMIAL
[]
[creep_strain_zz]
order = CONSTANT
family = MONOMIAL
[]
[creep_strain_xz]
order = CONSTANT
family = MONOMIAL
[]
[creep_strain_yz]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[temperature]
type = ConstantAux
variable = temperature
value = 50
[]
[hydrostatic_stress]
type = ADRankTwoScalarAux
variable = hydrostatic_stress
rank_two_tensor = stress
scalar_type = Hydrostatic
[]
[creep_strain_xx]
type = ADRankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xx
index_i = 0
index_j = 0
[]
[creep_strain_xy]
type = ADRankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xy
index_i = 0
index_j = 1
[]
[creep_strain_yy]
type = ADRankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_yy
index_i = 1
index_j = 1
[]
[creep_strain_zz]
type = ADRankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_zz
index_i = 2
index_j = 2
[]
[creep_strain_xz]
type = ADRankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_xz
index_i = 0
index_j = 2
[]
[creep_strain_yz]
type = ADRankTwoAux
rank_two_tensor = creep_strain
variable = creep_strain_yz
index_i = 1
index_j = 2
[]
[sigma_xx]
type = ADRankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 1
index_j = 1
[]
[]
[ICs]
[temp]
type = ConstantIC
variable = temperature
value = 50.0
[]
[]
[Functions]
[pull]
type = PiecewiseLinear
x = '0 1.0e-9 1.0'
y = '0 -4e1 -4e1'
[]
[F]
type = PiecewiseLinear
x = '-1000 10000'
y = '0.5 0.5'
[]
[G]
type = PiecewiseLinear
x = '-1000 10000'
y = '0.5 0.5'
[]
[H]
type = PiecewiseLinear
x = '-1000 10000'
y = '0.5 0.5'
[]
[L]
type = PiecewiseLinear
x = '-1000 10000'
y = '1.5 1.5'
[]
[M]
type = PiecewiseLinear
x = '-1000 10000'
y = '1.5 1.5'
[]
[N]
type = PiecewiseLinear
x = '-1000 10000'
y = '1.5 1.5'
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = FINITE
generate_output = 'elastic_strain_xx stress_xx'
use_automatic_differentiation = true
add_variables = true
[]
[]
[Materials]
[elasticity_tensor]
type = ADComputeIsotropicElasticityTensor
youngs_modulus = 700
poissons_ratio = 0.0
[]
[elastic_strain]
type = ADComputeMultipleInelasticStress
inelastic_models = 'trial_creep_aniso_iso'
max_iterations = 50
[]
[hill_constants]
type = ADHillConstants
# F G H L M N
hill_constants = "0.5 0.5 0.5 1.5 1.5 1.5"
function_names = 'F G H L M N'
temperature = temperature
[]
[trial_creep_aniso_iso]
type = ADHillCreepStressUpdate
coefficient = 1e-16
n_exponent = 9
m_exponent = 0
activation_energy = 0
max_inelastic_increment = 0.00003
relative_tolerance = 1e-20
absolute_tolerance = 1e-20
internal_solve_output_on = never
# Force it to not use integration error
max_integration_error = 1.0
[]
[]
[BCs]
[no_disp_x]
type = ADDirichletBC
variable = disp_x
boundary = left
value = 0.0
[]
[no_disp_y]
type = ADDirichletBC
variable = disp_y
boundary = 100
value = 0.0
[]
[no_disp_z]
type = ADDirichletBC
variable = disp_z
boundary = 101
value = 0.0
[]
[Pressure]
[Side1]
boundary = right
function = pull
[]
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
petsc_options_value = 'lu superlu_dist'
nl_rel_tol = 1e-13
nl_abs_tol = 1.0e-14
l_max_its = 90
num_steps = 50
dt = 5.0e-4
start_time = 0
automatic_scaling = true
[]
[Postprocessors]
[matl_ts_min]
type = MaterialTimeStepPostprocessor
[]
[max_disp_x]
type = ElementExtremeValue
variable = disp_x
[]
[max_disp_y]
type = ElementExtremeValue
variable = disp_y
[]
[max_hydro]
type = ElementAverageValue
variable = hydrostatic_stress
[]
[dt]
type = TimestepSize
[]
[num_lin]
type = NumLinearIterations
outputs = console
[]
[num_nonlin]
type = NumNonlinearIterations
outputs = console
[]
[creep_strain_xx]
type = ElementalVariableValue
variable = creep_strain_xx
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[creep_strain_yy]
type = ElementalVariableValue
variable = creep_strain_yy
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[creep_strain_zz]
type = ElementalVariableValue
variable = creep_strain_zz
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[creep_strain_xy]
type = ElementalVariableValue
variable = creep_strain_xy
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[creep_strain_yz]
type = ElementalVariableValue
variable = creep_strain_yz
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[creep_strain_xz]
type = ElementalVariableValue
variable = creep_strain_xz
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[elastic_strain_xx]
type = ElementalVariableValue
variable = elastic_strain_xx
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[sigma_xx]
type = ElementalVariableValue
variable = stress_xx
execute_on = 'TIMESTEP_END'
elementid = 39
[]
[]
[Outputs]
csv = true
exodus = true
perf_graph = true
[]
(modules/subchannel/test/tests/restart/transient.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 3
ny = 3
n_cells = 10
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1
spacer_z = '0.0'
spacer_k = '0.0'
[]
[]
[UserObjects]
[steady_sln]
type = SolutionUserObject
mesh = steady_out.e
timestep = LATEST
system_variables = 'mdot SumWij P DP h T Tpin rho mu S w_perim q_prime'
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 1.8
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
restart_file_base = steady_out_cp/LATEST
skip_additional_restart_data = true
allow_initial_conditions_with_restart = true
[]
[Functions]
[mdot_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = mdot
[]
[P_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = P
[]
[DP_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = DP
[]
[h_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = h
[]
[T_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = T
[]
[rho_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = rho
[]
[mu_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = mu
[]
[]
[ICs]
[S_ic]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_ic]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_ic]
type = SCMQuadPowerIC
variable = q_prime
power = 1e6
filename = "power_profile.txt"
[]
[T_ic]
type = FunctionIC
variable = T
function = T_ic_fn
[]
[P_ic]
type = FunctionIC
variable = P
function = P_ic_fn
[]
[DP_ic]
type = FunctionIC
variable = DP
function = DP_ic_fn
[]
[viscosity_ic]
type = FunctionIC
variable = mu
function = mu_ic_fn
[]
[rho_ic]
type = FunctionIC
variable = rho
function = rho_ic_fn
[]
[h_ic]
type = FunctionIC
variable = h
function = h_ic_fn
[]
[mdot_ic]
type = FunctionIC
variable = mdot
function = mdot_ic_fn
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[]
[Executioner]
type = Transient
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
(modules/thermal_hydraulics/test/tests/materials/ad_convection_heat_flux/ad_convection_heat_flux.i)
# Gold value should be the following:
# q_wall = kappa * htc_wall * (T_wall - T)
# = 0.5 * 100 * (500 - 400)
# = 5000
[GlobalParams]
execute_on = 'initial'
[]
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
[]
[AuxVariables]
[T_wall]
[]
[]
[AuxKernels]
[T_wall_ak]
type = ConstantAux
variable = T_wall
value = 500
[]
[]
[Materials]
[props]
type = ADGenericConstantMaterial
prop_names = 'T htc_wall kappa'
prop_values = '400 100 0.5'
[]
[q_wall_mat]
type = ADConvectionHeatFluxMaterial
q_wall = q_wall_prop
T = T
T_wall = T_wall
htc_wall = htc_wall
kappa = kappa
[]
[]
[Executioner]
type = Steady
[]
[Problem]
solve = false
[]
[Postprocessors]
[q_wall_pp]
type = ADElementAverageMaterialProperty
mat_prop = q_wall_prop
[]
[]
[Outputs]
csv = true
[]
(modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_monolithic.i)
T_in = 660
mass_flux_in = '${fparse 1e+6 * 300.00 / 36000.*0.5}'
P_out = 2.0e5 # Pa
[GlobalParams]
nrings = 3
n_cells = 5
flat_to_flat = 0.056
heated_length = 0.5
pitch = 0.012
[]
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
pin_diameter = 0.01
dwire = 0.002
hwire = 0.0833
spacer_z = '0'
spacer_k = '5.0'
[]
[duct]
type = SCMTriDuctMeshGenerator
input = subchannel
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime_duct]
block = duct
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 1.0
compute_density = true
compute_viscosity = true
compute_power = true
T_tol = 1.0e-6
P_tol = 1.0e-6
implicit = true
segregated = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 1000.0 # W
filename = "pin_power_profile19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[T1]
type = SubChannelPointValue
variable = T
index = 37
execute_on = "timestep_end"
height = 0.5
[]
[T2]
type = SubChannelPointValue
variable = T
index = 36
execute_on = "timestep_end"
height = 0.5
[]
[T3]
type = SubChannelPointValue
variable = T
index = 20
execute_on = "timestep_end"
height = 0.5
[]
[T4]
type = SubChannelPointValue
variable = T
index = 10
execute_on = "timestep_end"
height = 0.5
[]
[T5]
type = SubChannelPointValue
variable = T
index = 4
execute_on = "timestep_end"
height = 0.5
[]
[T6]
type = SubChannelPointValue
variable = T
index = 1
execute_on = "timestep_end"
height = 0.5
[]
[T7]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 0.5
[]
[T8]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 0.5
[]
####### Assembly pressure drop
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
#####
[Mean_Temp]
type = SCMPlanarMean
variable = T
height = 2
[]
[Total_power]
type = ElementIntegralVariablePostprocessor
variable = q_prime
block = subchannel
[]
[mdot-8]
type = SubChannelPointValue
variable = mdot
index = 28
execute_on = 'TIMESTEP_END'
height = 0.5
[]
[]
[Executioner]
type = Steady
[]
(modules/subchannel/test/tests/problems/interwrapper/quad_interwrapper_monolithic_staggered.i)
T_in = 360.0
mass_flux_in = '${fparse 1e+4 * 17.0 / 3600.}'
P_out = 4.923e6 # Pa
[QuadInterWrapperMesh]
[sub_channel]
type = SCMQuadInterWrapperMeshGenerator
nx = 5
ny = 5
n_cells = 10
assembly_pitch = 0.2
assembly_side_x = 0.18
assembly_side_y = 0.18
side_bypass = 0.001
heated_length = 3.0
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadInterWrapper1PhaseProblem
fp = water
n_blocks = 1
beta = 0.08
CT = 2.6
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = false
P_out = ${P_out}
implicit = true
segregated = false
staggered_pressure = true
monolithic_thermal = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = QuadInterWrapperFlowAreaIC
variable = S
[]
[w_perim_IC]
type = QuadInterWrapperWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = QuadInterWrapperPowerIC
variable = q_prime
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = false
[]
[Executioner]
type = Steady
[]
(modules/solid_mechanics/test/tests/truss/truss_2d.i)
#
# Truss in two dimensional space
#
# The truss is made of five equilateral triangles supported at each end.
# The truss starts at (0,0). At (1,0), there is a point load of 25.
# The reactions are therefore
# Ryleft = 2/3 * 25 = 16.7
# Ryright = 1/3 * 25 = 8.33
# The area of each member is 0.8.
# Statics gives the stress in each member. For example, for element 6 (from
# (0,0) to (1/2,sqrt(3)/2)), the force is
# f = 2/3 * 25 * 2/sqrt(3) = 100/3/sqrt(3) (compressive)
# and the stress is
# s = -100/3/sqrt(3)/0.8 = -24.06
#
[Mesh]
type = FileMesh
file = truss_2d.e
displacements = 'disp_x disp_y'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixy4]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '1 0 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = 1
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = 1
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = 1
variable = area
value = 0.8
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[./solid_x]
type = StressDivergenceTensorsTruss
block = 1
displacements = 'disp_x disp_y'
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[./solid_y]
type = StressDivergenceTensorsTruss
block = 1
displacements = 'disp_x disp_y'
component = 1
variable = disp_y
area = area
save_in = react_y
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = 1
youngs_modulus = 1e6
displacements = 'disp_x disp_y'
[../]
[]
[Outputs]
exodus = true
[]
(modules/solid_mechanics/test/tests/truss/truss_3d_action.i)
[Mesh]
type = FileMesh
file = truss_3d.e
displacements = 'disp_x disp_y disp_z'
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0.0
[../]
[./fixx2]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 2
function = x2
[../]
[./fixx3]
type = DirichletBC
variable = disp_x
preset = false
boundary = 3
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./fixy2]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = y2
[../]
[./fixy3]
type = DirichletBC
variable = disp_y
preset = false
boundary = 3
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[./fixz3]
type = DirichletBC
variable = disp_z
preset = false
boundary = 3
value = 0
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = '1 2'
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
dt = 1
num_steps = 3
end_time = 3
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./block]
truss = true
add_variables = true
displacements = 'disp_x disp_y disp_z'
area = area
block = '1 2'
save_in = 'react_x react_y react_z'
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = '1 2'
youngs_modulus = 1e6
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Outputs]
file_base = 'truss_3d_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_aprismatic_capyramidal.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
type = GeneratedMesh
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[AuxVariables]
[temperature]
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_xx]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_4]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_5]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_6]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics/SolidMechanics/QuasiStatic/all]
strain = FINITE
incremental= true
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[temperature]
type = ConstantAux
variable = temperature
value= 300
[]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_xx]
type = RankTwoAux
variable = fp_xx
rank_two_tensor = plastic_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[tau_3]
type = MaterialStdVectorAux
variable = resolved_shear_stress_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[tau_4]
type = MaterialStdVectorAux
variable = resolved_shear_stress_4
property = applied_shear_stress
index = 4
execute_on = timestep_end
[]
[tau_5]
type = MaterialStdVectorAux
variable = resolved_shear_stress_5
property = applied_shear_stress
index = 5
execute_on = timestep_end
[]
[tau_6]
type = MaterialStdVectorAux
variable = resolved_shear_stress_6
property = applied_shear_stress
index = 6
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_3]
type = MaterialStdVectorAux
variable = slip_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
preset = true
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = hcp_aprismatic_capyramidal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '98 224' #Knezevic et al MSEA 654 (2013)
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1.25e5 2.25e7' #from Beyerlein and Tome 2008 IJP
normalized_slip_activiation_energy_per_mode = '3.73e-3 3.2e-2' #from Beyerlein and Tome 2008 IJP
slip_energy_proportionality_factor_per_mode = '330 100' #from Beyerlein and Tome 2008 IJP
substructure_rate_coefficient_per_mode = '355 0.4' #from Capolungo et al MSEA (2009)
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '0.2 0.2' #Estimated to match graph in Capolungo et al MSEA (2009), Figure 2
grain_size = 20.0e-3 #20 microns, Beyerlein and Tome IJP (2008)
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_xx]
type = ElementAverageValue
variable = fp_xx
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[tau_3]
type = ElementAverageValue
variable = resolved_shear_stress_3
[]
[tau_4]
type = ElementAverageValue
variable = resolved_shear_stress_4
[]
[tau_5]
type = ElementAverageValue
variable = resolved_shear_stress_5
[]
[tau_6]
type = ElementAverageValue
variable = resolved_shear_stress_6
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_3]
type = ElementAverageValue
variable = slip_resistance_3
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 5
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template2.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/solid_mechanics/test/tests/truss/truss_2d_action.i)
#
# Truss in two dimensional space
#
# The truss is made of five equilateral triangles supported at each end.
# The truss starts at (0,0). At (1,0), there is a point load of 25.
# The reactions are therefore
# Ryleft = 2/3 * 25 = 16.7
# Ryright = 1/3 * 25 = 8.33
# The area of each member is 0.8.
# Statics gives the stress in each member. For example, for element 6 (from
# (0,0) to (1/2,sqrt(3)/2)), the force is
# f = 2/3 * 25 * 2/sqrt(3) = 100/3/sqrt(3) (compressive)
# and the stress is
# s = -100/3/sqrt(3)/0.8 = -24.06
#
[Mesh]
type = FileMesh
file = truss_2d.e
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixy4]
type = DirichletBC
variable = disp_y
boundary = 4
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '1 0 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = 1
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = 1
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = 1
variable = area
value = 0.8
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./block]
truss = true
add_variables = true
displacements = 'disp_x disp_y'
# area = area # commented out for error check
block = 1
save_in = 'react_x react_y'
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = 1
youngs_modulus = 1e6
displacements = 'disp_x disp_y'
[../]
[]
[Outputs]
file_base = 'truss_2d_out'
exodus = true
[]
(test/tests/outputs/variables/output_vars_hidden_shown_check.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 10
[]
[Outputs]
file_base = out_hidden
exodus = true
hide = 'u elemental nodal x'
show = u
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/hcp_twinning/demonstration_combined_hcp_slip_twins.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[single_xtal]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[temperature]
[]
[pk2]
order = CONSTANT
family = MONOMIAL
[]
[fp_xx]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[total_twin_volume_fraction]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_9]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_3]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_9]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_3]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_9]
order = CONSTANT
family = MONOMIAL
[]
[resolved_twin_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[twin_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics/SolidMechanics/QuasiStatic/all]
strain = FINITE
incremental = true
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[temperature]
type = ConstantAux
variable = temperature
value= 300
[]
[pk2]
type = RankTwoAux
variable = pk2
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_xx]
type = RankTwoAux
variable = fp_xx
rank_two_tensor = plastic_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[total_twin_volume_fraction]
type = MaterialRealAux
variable = total_twin_volume_fraction
property = twin_total_volume_fraction_twins
execute_on = timestep_end
[]
[slip_increment_0]
type = MaterialStdVectorAux
variable = slip_increment_0
property = slip_increment
index = 0
execute_on = timestep_end
[]
[slip_increment_3]
type = MaterialStdVectorAux
variable = slip_increment_3
property = slip_increment
index = 3
execute_on = timestep_end
[]
[slip_increment_9]
type = MaterialStdVectorAux
variable = slip_increment_9
property = slip_increment
index = 9
execute_on = timestep_end
[]
[tau_3]
type = MaterialStdVectorAux
variable = resolved_shear_stress_3
property = applied_shear_stress
index = 3
execute_on = timestep_end
[]
[tau_9]
type = MaterialStdVectorAux
variable = resolved_shear_stress_9
property = applied_shear_stress
index = 9
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_3]
type = MaterialStdVectorAux
variable = slip_resistance_3
property = slip_resistance
index = 3
execute_on = timestep_end
[]
[slip_resistance_9]
type = MaterialStdVectorAux
variable = slip_resistance_9
property = slip_resistance
index = 9
execute_on = timestep_end
[]
[twin_tau_0]
type = MaterialStdVectorAux
variable = resolved_twin_stress_0
property = twin_applied_shear_stress
index = 0
execute_on = timestep_end
[]
[twin_resistance_0]
type = MaterialStdVectorAux
variable = twin_resistance_0
property = twin_slip_resistance
index = 0
execute_on = timestep_end
[]
[]
[BCs]
[symmy]
type = DirichletBC
variable = disp_y
preset = true
boundary = bottom
value = 0
[]
[symmx]
type = DirichletBC
variable = disp_x
boundary = left
value = 0
[]
[symmz]
type = DirichletBC
variable = disp_z
boundary = back
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.005*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'slip_xtalpl twin_xtalpl'
tan_mod_type = exact
[]
[slip_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 15
slip_sys_file_name = 'hcp_aprismatic_capyramidal_slip_sys.txt'
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
zero_tol = 5e-10
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 2
number_slip_systems_per_mode = '3 12'
lattice_friction_per_mode = '98 224' #Knezevic et al MSEA 654 (2013)
effective_shear_modulus_per_mode = '4.7e4 4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7 6.586e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '1.25e5 2.25e7' #from Beyerlein and Tome 2008 IJP
normalized_slip_activiation_energy_per_mode = '3.73e-3 3.2e-2' #from Beyerlein and Tome 2008 IJP
slip_energy_proportionality_factor_per_mode = '330 100' #from Beyerlein and Tome 2008 IJP
substructure_rate_coefficient_per_mode = '355 0.4' #from Capolungo et al MSEA (2009)
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '0.2 0.2' #Estimated to match graph in Capolungo et al MSEA (2009), Figure 2
grain_size = 20.0e-3 #20 microns, Beyerlein and Tome IJP (2008)
total_twin_volume_fraction = twin_total_volume_fraction_twins
[]
[twin_xtalpl]
type = CrystalPlasticityTwinningKalidindiUpdate
base_name = twin
crystal_lattice_type = HCP
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
number_slip_systems = 6
slip_sys_file_name = 'hcp_tensile_twin_systems.txt'
initial_twin_lattice_friction = 1140.0
non_coplanar_coefficient_twin_hardening = 10000
coplanar_coefficient_twin_hardening = 1000
characteristic_twin_shear = 0.167
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2]
type = ElementAverageValue
variable = pk2
[]
[fp_xx]
type = ElementAverageValue
variable = fp_xx
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[total_twin_volume_fraction]
type = ElementAverageValue
variable = total_twin_volume_fraction
[]
[slip_increment_0]
type = ElementAverageValue
variable = slip_increment_0
[]
[slip_increment_3]
type = ElementAverageValue
variable = slip_increment_3
[]
[slip_increment_9]
type = ElementAverageValue
variable = slip_increment_9
[]
[tau_3]
type = ElementAverageValue
variable = resolved_shear_stress_3
[]
[tau_9]
type = ElementAverageValue
variable = resolved_shear_stress_9
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_3]
type = ElementAverageValue
variable = slip_resistance_3
[]
[slip_resistance_9]
type = ElementAverageValue
variable = slip_resistance_9
[]
[twin_tau_0]
type = ElementAverageValue
variable = resolved_twin_stress_0
[]
[twin_resistance_0]
type = ElementAverageValue
variable = twin_resistance_0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_rel_tol = 1e-12
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 2.25
[]
[Outputs]
csv = true
perf_graph = true
[]
(modules/contact/test/tests/mechanical_constraint/frictionless_kinematic.i)
[Mesh]
file = blocks_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = frictionless
penalty = 1e+6
[../]
[]
(test/tests/auxkernels/nodal_aux_var/nodal_sort_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./one]
order = FIRST
family = LAGRANGE
initial_condition = 0
[../]
[./two]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
# Intentionally out of order to test sorting capabiilties
active = 'one two'
[./two]
variable = two
type = CoupledAux
value = 2
operator = '/'
coupled = one
[../]
[./one]
variable = one
type = ConstantAux
value = 1
[../]
[./five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[]
(test/tests/kernels/ad_coupled_force/aux_test.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[a]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[force]
type = ADCoupledForce
variable = u
v = a
[]
[]
[AuxKernels]
[a]
variable = a
type = ConstantAux
value = 10
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]
(modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'asm'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/subchannel/examples/MultiApp/fuel_assembly.i)
###################################################
# Thermal-hydraulics parameters
###################################################
T_in = 628.15 # K
P_out = 758423 # Pa
reactor_power = 250e6 #WTh
fuel_assemblies_per_power_unit = '${fparse 2.5}'
fuel_pins_per_assembly = 217
pin_power = '${fparse reactor_power/(fuel_assemblies_per_power_unit*fuel_pins_per_assembly)}' # Approx.
mass_flux_in = '${fparse 2786}' # kg/(m2.s)
###################################################
# Geometric parameters
###################################################
n_cells = 50
# units are cm - do not forget to convert to meter
scale_factor = 0.01
fuel_element_pitch = '${fparse 14.598*scale_factor}'
inter_assembly_gap = '${fparse 0.4*scale_factor}'
duct_thickness = '${fparse 0.3*scale_factor}'
fuel_pin_pitch = '${fparse 0.904*scale_factor}'
fuel_pin_diameter = '${fparse 0.8*scale_factor}'
wire_z_spacing = '${fparse 20.32*scale_factor}'
wire_diameter = '${fparse 0.103*scale_factor}'
n_rings = 9
# Reduced height for convenience
length_entry_fuel = '${fparse 20*scale_factor}'
length_heated_fuel = '${fparse 40*scale_factor}'
length_outlet_fuel = '${fparse 20*scale_factor}'
# height = '${fparse length_entry_fuel+length_heated_fuel+length_outlet_fuel}'
orifice_plate_height = '${fparse 5*scale_factor}'
duct_outside = '${fparse fuel_element_pitch - inter_assembly_gap}'
duct_inside = '${fparse duct_outside - 2 * duct_thickness}'
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = '${fparse n_rings}'
n_cells = ${n_cells}
flat_to_flat = '${fparse duct_inside}'
unheated_length_entry = '${fparse length_entry_fuel}'
heated_length = '${fparse length_heated_fuel}'
unheated_length_exit = '${fparse length_outlet_fuel}'
pin_diameter = '${fparse fuel_pin_diameter}'
pitch = '${fparse fuel_pin_pitch}'
dwire = '${fparse wire_diameter}'
hwire = '${fparse wire_z_spacing}'
spacer_z = '${fparse orifice_plate_height} ${fparse length_entry_fuel}'
spacer_k = '0.5 0.5'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = '${fparse n_rings}'
n_cells = ${n_cells}
unheated_length_entry = '${fparse length_entry_fuel}'
heated_length = '${fparse length_heated_fuel}'
unheated_length_exit = '${fparse length_outlet_fuel}'
pitch = '${fparse fuel_pin_pitch}'
[]
[duct]
type = SCMTriDuctMeshGenerator
input = fuel_pins
nrings = '${fparse n_rings}'
n_cells = ${n_cells}
flat_to_flat = '${fparse duct_inside}'
unheated_length_entry = '${fparse length_entry_fuel}'
heated_length = '${fparse length_heated_fuel}'
unheated_length_exit = '${fparse length_outlet_fuel}'
pitch = '${fparse fuel_pin_pitch}'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[mu]
block = subchannel
[]
[q_prime_duct]
block = duct
initial_condition = 0
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
P_out = ${P_out}
CT = 1.0
# Solver parameters
n_blocks = 10
implicit = false
segregated = true
staggered_pressure = false
monolithic_thermal = false
# Tolerances
P_tol = 1.0e-4
T_tol = 1.0e-8
# Output
compute_density = true
compute_viscosity = true
compute_power = true
verbose_multiapps = true
verbose_subchannel = false
[]
[ICs]
# Geometry
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
# Operating conditions
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${pin_power} # W
filename = "pin_power_profile217.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[T_duct_ic]
type = ConstantIC
variable = Tduct
value = ${T_in}
[]
# Fluid properties
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Executioner]
type = Transient
num_steps = 1
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = TransientMultiApp
input_files = "3d.i"
execute_on = "final"
[]
[]
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin q_prime'
[]
[]
(test/tests/outputs/displaced/non_displaced_fallback.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[AuxVariables]
[./a]
[../]
[]
[AuxKernels]
[./a_ak]
type = ConstantAux
variable = a
value = 1.
execute_on = initial
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
[./exodus]
type = Exodus
use_displaced = true
[../]
[]
(modules/subchannel/validation/Blockage/PNNL_7x7/7X7blockage90.i)
T_in = 302.594
mass_flux_in = 1730.0950134985335
P_out = 101325 # Pa
# Creer et. al 1976
# Blockage is modeled with area reduction and form loss coefficient distributed on the
# affected subchannels
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 8
ny = 8
n_cells = 84
pitch = 0.0136906
Kij = 0.5
pin_diameter = 0.0099568
gap = 0.0036957
heated_length = 1.4224
z_blockage = '0.60325 0.67945'
index_blockage = '18 19 20 21 26 27 28 29 34 35 36 37 42 43 44 45'
reduction_blockage = '0.78 0.55 0.55 0.78 0.55 0.10 0.10 0.55 0.55 0.10 0.10 0.55 0.78 0.55 0.55 0.78'
k_blockage = '0.0 0.0 0.0 0.0 0.0 0.9 0.9 0.0 0.0 0.9 0.9 0.0 0.0 0.0 0.0 0.0'
spacer_z = '0.4064 1.4224'
spacer_k = '1.14 1.14'
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = false
P_out = ${P_out}
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
interpolation_scheme = central_difference
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 0.0 # W
filename = "power_profile.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[]
[Executioner]
type = Steady
[]
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "detailedMesh.i"
execute_on = "final"
[]
[]
[Transfers]
###### Transfers to the detailedMesh at the end of the coupled simulations
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[]
(test/tests/postprocessors/function_value_pps/function_value_pps.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./v]
[../]
[]
[Variables]
[./u]
[../]
[]
[Functions]
[./constant_func]
type = ConstantFunction
value = 2.798
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[AuxKernels]
[./one]
type = ConstantAux
variable = v
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./value1]
type = FunctionValuePostprocessor
function = constant_func
execute_on = 'initial timestep_end'
[../]
[./value2]
type = FunctionValuePostprocessor
function = 2*t
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Transient
num_steps = 5
[]
[Outputs]
csv = true
[]
[Problem]
solve = false
[]
(test/tests/constraints/nodal_constraint/nodal_constraint_displaced_test.i)
[Mesh]
file = 2-lines.e
displacements = 'disp_x'
allow_renumbering = false
[]
[AuxVariables]
[./disp_x]
[../]
[]
[AuxKernels]
[./disp_x_ak]
type = ConstantAux
variable = disp_x
value = 1
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 4
value = 3
[../]
[]
[Constraints]
[./c1]
type = EqualValueNodalConstraint
variable = u
primary = 0
secondary = 4
penalty = 100000
use_displaced_mesh = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/actions/coupled_heat_transfer_action/sub_2phase.i)
# This is the 2-phase version of sub.i: it just adds the variable 'kappa'.
# Unfortunately, multi-parameter application of cli_args is not supported for
# sub-app input files, so sub.i cannot be re-used for the test.
[GlobalParams]
initial_p = 1.e5
initial_vel = 0.
initial_T = 300.
closures = simple_closures
[]
[FluidProperties]
[eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[AuxVariables]
[Hw]
family = monomial
order = constant
block = pipe1
[]
[kappa]
family = monomial
order = constant
block = pipe1
[]
[]
[AuxKernels]
[Hw_ak]
type = ADMaterialRealAux
variable = Hw
property = 'Hw'
[]
[kappa_ak]
type = ConstantAux
variable = kappa
value = 0.5
[]
[]
[UserObjects]
[T_uo]
type = LayeredAverage
direction = y
variable = T
num_layers = 10
block = pipe1
[]
[Hw_uo]
type = LayeredAverage
direction = y
variable = Hw
num_layers = 10
block = pipe1
[]
[kappa_uo]
type = LayeredAverage
direction = y
variable = kappa
num_layers = 10
block = pipe1
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
position = '0 0 0'
orientation = '0 1 0'
length = 1
n_elems = 10
A = 1.28584e-01
D_h = 8.18592e-01
f = 0.01
fp = eos
[]
[hxconn]
type = HeatTransferFromExternalAppTemperature1Phase
flow_channel = pipe1
Hw = 10000
P_hf = 6.28319e-01
initial_T_wall = 300.
var_type = elemental
[]
[inlet]
type = InletMassFlowRateTemperature1Phase
input = 'pipe1:in'
m_dot = 10
T = 400
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 1e5
[]
[]
[Preconditioning]
[pc]
type = SMP
full = true
[]
[]
[Postprocessors]
[T_wall_avg]
type = ElementAverageValue
variable = T_wall
execute_on = 'INITIAL TIMESTEP_END'
[]
[htc_avg]
type = ElementAverageValue
variable = Hw
execute_on = 'INITIAL TIMESTEP_END'
[]
[T_avg]
type = ElementAverageValue
variable = T
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Executioner]
type = Transient
scheme = 'bdf2'
dt = 0.1
dtmin = 1e-7
abort_on_solve_fail = true
solve_type = 'NEWTON'
line_search = 'basic'
nl_rel_tol = 1e-7
nl_abs_tol = 1e-4
nl_max_its = 20
l_tol = 1e-3
l_max_its = 300
start_time = 0.0
petsc_options_iname = '-pc_type'
petsc_options_value = ' lu'
[]
[Outputs]
[out]
type = Exodus
show = 'T_wall T Hw'
[]
[]
(modules/subchannel/test/tests/transfers/multiapp_iw_detailed_solution_transfer/quad_iw.i)
T_in = 360.0
mass_flux_in = '${fparse 1e+4 * 17.0 / 3600.}'
P_out = 4.923e6 # Pa
[QuadInterWrapperMesh]
[sub_channel]
type = SCMQuadInterWrapperMeshGenerator
nx = 5
ny = 5
n_cells = 10
assembly_pitch = 0.2
assembly_side_x = 0.18
assembly_side_y = 0.18
side_bypass = 0.001
heated_length = 3.0
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadInterWrapper1PhaseProblem
fp = water
n_blocks = 1
beta = 0.08
CT = 2.6
P_tol = 1e-6
T_tol = 1e-6
compute_density = false
compute_viscosity = false
compute_power = false
P_out = ${P_out}
implicit = false
segregated = true
staggered_pressure = false
monolithic_thermal = false
[]
[ICs]
[S_IC]
type = QuadInterWrapperFlowAreaIC
variable = S
[]
[w_perim_IC]
type = QuadInterWrapperWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = QuadInterWrapperPowerIC
variable = q_prime
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = false
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "quad_iw_viz.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = InterWrapperSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(modules/subchannel/examples/mesh_generator/inter_wrapper_mesh_generator_test.i)
T_in = 360.0
mass_flux_in = '${fparse 1e+4 * 17.0 / 3600.}'
P_out = 4.923e6 # Pa
[QuadInterWrapperMesh]
[sub_channel]
type = SCMQuadInterWrapperMeshGenerator
nx = 15
ny = 15
n_cells = 50
assembly_pitch = 0.2
assembly_side_x = 0.18
assembly_side_y = 0.18
side_bypass = 0.001
heated_length = 3.0
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadInterWrapper1PhaseProblem
fp = water
n_blocks = 1
beta = 0.08
CT = 2.6
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = false
P_out = ${P_out}
implicit = false
segregated = true
staggered_pressure = false
monolithic_thermal = false
[]
[ICs]
[S_IC]
type = QuadInterWrapperFlowAreaIC
variable = S
[]
[w_perim_IC]
type = QuadInterWrapperWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = QuadInterWrapperPowerIC
variable = q_prime
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = false
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "inter_wrapper_3d.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = InterWrapperSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2. The gold file is run
# on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[./horizontal_movement]
type = ParsedFunction
expression = -0.04*sin(4*t)+0.02
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
time_step_interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar03.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# when k_anisotropy is not specified.
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[perm_var]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[perm_var]
type = ConstantAux
value = 2
variable = perm_var
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[]
[perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[]
[perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[]
[perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[]
[perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[]
[perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityTensorFromVar
perm = perm_var
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_var_test.i)
###########################################################
# This is a simple test of the AuxKernel System.
# Several explicit calculations are being done
# using spatial variables.
# This simulation demonstrates coupling, and dependency
# resolution. For simplicity all AuxVariables in this
# simulation are constant.
#
# @Requirement F5.30
###########################################################
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
active = 'one five coupled'
[./one]
order = FIRST
family = LAGRANGE
[../]
[./five]
order = FIRST
family = LAGRANGE
[../]
[./coupled]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'diff force'
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = one
[../]
[]
# AuxKernel System
[AuxKernels]
#Simple Aux Kernel
[./constant]
variable = one
type = ConstantAux
value = 1
[../]
#Shows coupling of Aux to nonlinear
[./coupled]
variable = coupled
type = CoupledAux
value = 2
coupled = u
[../]
[./five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
exodus = true
[]
(test/tests/geomsearch/nearest_node_locator/adapt.i)
[Mesh]
file = 2dcontact_collide.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./distance]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./conv]
type = Convection
variable = u
velocity = '1 0 0'
[../]
[]
[AuxKernels]
[./zero]
type = ConstantAux
variable = distance
[../]
[./distance]
type = NearestNodeDistanceAux
variable = distance
boundary = 2
paired_boundary = 3
[../]
[]
[BCs]
[./block1_left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./block1_right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[./block2_left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./block2_right]
type = DirichletBC
variable = u
boundary = 4
value = 1
[../]
[]
[Executioner]
type = Transient
num_steps = 3
dt = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
marker = uniform
[./Markers]
[./uniform]
type = UniformMarker
mark = refine
[../]
[../]
[]
[Outputs]
exodus = true
[]
(modules/thermal_hydraulics/test/tests/materials/average_wall_temperature_3eqn/average_wall_temperature_3eqn.i)
# Tests the average wall temperature aux for 1-phase flow. With the following
# inputs, the value should be equal to 1.25:
#
# i h_wall T_wall P_hf
# --------------------------
# 1 10 26/10 1
# 2 6 1/2 3
#
# T_fluid = 1/4
#
# With these values,
# P_tot = 1 + 3 = 4
# h_wall_avg = (1 * 10 + 3 * 6) / 4 = 28 / 4 = 7
# denominator = P_tot * h_wall_avg = 4 * 7 = 28
# numerator = 10 * (26/10 - 1/4) * 1 + 6 * (1/2 - 1/4) * 3 = 28
# T_wall_avg = T_fluid + numerator / denominator = 1/4 + 1
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall1]
family = MONOMIAL
order = CONSTANT
[]
[T_wall2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf1]
family = MONOMIAL
order = CONSTANT
[]
[P_hf2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf_total]
family = MONOMIAL
order = CONSTANT
[]
[T_fluid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[T_wall_avg_auxkernel]
type = MaterialRealAux
variable = T_wall_avg
property = T_wall
[]
[T_wall1_auxkernel]
type = ConstantAux
variable = T_wall1
value = 2.6
[]
[T_wall2_auxkernel]
type = ConstantAux
variable = T_wall2
value = 0.5
[]
[P_hf_total_auxkernel]
type = SumAux
variable = P_hf_total
values = 'P_hf1 P_hf2'
[]
[P_hf1_auxkernel]
type = ConstantAux
variable = P_hf1
value = 1
[]
[P_hf2_auxkernel]
type = ConstantAux
variable = P_hf2
value = 3
[]
[T_fluid_auxkernel]
type = ConstantAux
variable = T_fluid
value = 0.25
[]
[]
[Materials]
[const_materials]
type = GenericConstantMaterial
prop_names = 'Hw1 Hw2'
prop_values = '10 6'
[]
[T_wall_avg_material]
type = AverageWallTemperature3EqnMaterial
T_wall_sources = 'T_wall1 T_wall2'
Hw_sources = 'Hw1 Hw2'
P_hf_sources = 'P_hf1 P_hf2'
T_fluid = T_fluid
P_hf_total = P_hf_total
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[T_wall_avg_pp]
type = ElementalVariableValue
elementid = 0
variable = T_wall_avg
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/outputs/debug/show_execution_ics.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Debug]
show_execution_order = ALWAYS
[]
[AuxVariables]
[a]
[]
[b]
[]
[]
[Variables]
[u]
[]
[v]
[]
[]
# From dependency ics test
[ICs]
[u_ic]
type = ConstantIC
variable = u
value = -1
[]
[v_ic]
type = MTICSum
variable = v
var1 = u
var2 = a
[]
[a_ic]
type = ConstantIC
variable = a
value = 10
[]
[b_ic]
type = MTICMult
variable = b
var1 = v
factor = 2
[]
[]
[AuxKernels]
[a_ak]
type = ConstantAux
variable = a
value = 256
[]
[b_ak]
type = ConstantAux
variable = b
value = 42
[]
[]
[Kernels]
[diff_u]
type = Diffusion
variable = u
[]
[diff_v]
type = Diffusion
variable = v
[]
[]
# From depend on uo test
[AuxVariables]
[ghost]
family = MONOMIAL
order = CONSTANT
[]
[]
[ICs]
[ghost_ic]
type = ElementUOIC
variable = ghost
element_user_object = ghost_uo
field_name = "ghosted"
field_type = long
[]
[]
[UserObjects]
[ghost_uo]
type = ElemSideNeighborLayersTester
execute_on = initial
element_side_neighbor_layers = 1
[]
[]
# From postprocessor interface ICs test
[Functions]
# The integral of this function is 2*3 + 3*6 + 5*2 = 34
[test_fn]
type = PiecewiseConstant
axis = x
x = '0 2 5'
y = '3 6 2'
[]
[]
[Postprocessors]
[integral_pp]
type = FunctionElementIntegral
function = test_fn
execute_on = 'INITIAL'
[]
[pp2]
type = FunctionValuePostprocessor
function = 6
execute_on = 'INITIAL'
[]
[]
[AuxVariables]
[test_var]
order = CONSTANT
family = MONOMIAL
[]
[]
[ICs]
[test_var_ic]
type = PostprocessorIC
variable = test_var
pp1 = integral_pp
[]
[]
# From integral preserving test
[AuxVariables]
[power]
family = MONOMIAL
order = CONSTANT
[]
[]
[ICs]
[power]
type = IntegralPreservingFunctionIC
variable = power
magnitude = 550.0
function = 'sin(pi * z / 1.9)'
integral = vol
[]
[]
[Postprocessors]
[vol]
type = FunctionElementIntegral
function = 'sin(pi * x / 1.9)'
execute_on = 'initial'
[]
[]
[BCs]
[left_u]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right_u]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[left_v]
type = DirichletBC
variable = v
boundary = left
value = 2
[]
[right_v]
type = DirichletBC
variable = v
boundary = right
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
(test/tests/misc/selective_reinit/selective_reinit_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./dummy]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./constant_dummy]
type = ConstantAux
variable = dummy
execute_on = 'initial timestep_end'
value = 4
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./u_integral]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Adaptivity]
[./Indicators]
[./indicator]
type = GradientJumpIndicator
variable = u
[../]
[../]
[./Markers]
[./box]
type = BoxMarker
bottom_left = '0.2 0.2 0'
top_right = '0.8 0.8 0'
inside = refine
outside = coarsen
[../]
[../]
[]
[Outputs]
exodus = true
show = u
[]
[LotsOfAuxVariables]
[./avar]
number = 20
[../]
[]
(test/tests/misc/check_error/subdomain_restricted_auxkernel_mismatch.i)
[Mesh]
file = rectangle.e
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./foo]
order = FIRST
family = LAGRANGE
block = 1
[../]
[]
[Kernels]
active = 'diff body_force'
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[AuxKernels]
[./foo]
type = ConstantAux
variable = foo
value = 1
block = 2
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
# petsc_options = '-snes_mf_operator'
# petsc_options_iname = '-pc_type -pc_hypre_type'
# petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
file_base = out
[]
(test/tests/auxkernels/element_aux_var/l2_element_aux_var_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
second_order = true
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./l2_lagrange]
order = FIRST
family = L2_LAGRANGE
[../]
[./l2_hierarchic]
order = FIRST
family = L2_HIERARCHIC
[../]
[./one]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
# Coupling of nonlinear to Aux
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = CoupledForce
variable = u
v = one
[../]
[]
[AuxKernels]
[./coupled_l2_lagrange]
variable = l2_lagrange
type = CoupledAux
value = 2
operator = +
coupled = u
execute_on = 'initial timestep_end'
[../]
[./coupled_l2_hierarchic]
variable = l2_hierarchic
type = CoupledAux
value = 2
operator = +
coupled = u
execute_on = 'initial timestep_end'
[../]
[./constant]
variable = one
type = ConstantAux
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./int2_u]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./int2_l2_lagrange]
type = ElementL2Norm
variable = l2_lagrange
execute_on = 'initial timestep_end'
[../]
[./int2_l2_hierarchic]
type = ElementL2Norm
variable = l2_hierarchic
execute_on = 'initial timestep_end'
[../]
[./int_u]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[../]
[./int_l2_lagrange]
type = ElementIntegralVariablePostprocessor
variable = l2_lagrange
execute_on = 'initial timestep_end'
[../]
[./int_l2_hierarchic]
type = ElementIntegralVariablePostprocessor
variable = l2_hierarchic
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
[./ex_out]
type = Exodus
file_base = l2elemaux
elemental_as_nodal = true
[../]
[]
(modules/subchannel/examples/duct/test.i)
T_in = 660
mass_flux_in = '${fparse 1e+6 * 37.00 / 36000.*0.5}'
P_out = 2.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 4
n_cells = 100
flat_to_flat = 0.085
heated_length = 1.0
pin_diameter = 0.01
pitch = 0.012
dwire = 0.002
hwire = 0.0833
spacer_z = '0 0.2 0.4 0.6 0.8'
spacer_k = '0.1 0.1 0.1 0.1 0.10'
[]
[duct]
type = SCMTriDuctMeshGenerator
input = subchannel
nrings = 4
n_cells = 100
flat_to_flat = 0.085
heated_length = 1.0
pitch = 0.012
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[q_prime]
block = subchannel
[]
[mu]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime_duct]
block = duct
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 1.0
compute_density = false
compute_viscosity = false
compute_power = true
P_tol = 1.0e-5
T_tol = 1.0e-5
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
verbose_multiapps = true
verbose_subchannel = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 1e5 #1.000e5 # W
filename = "pin_power_profile37.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[T_duct_ic]
type = ConstantIC
variable = Tduct
value = ${T_in}
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[UserObjects]
[Tduct_avg_uo]
type = NearestPointLayeredAverage
direction = z
num_layers = 1000
variable = Tduct
block = duct
points = '0 0 0'
execute_on = 'TIMESTEP_END'
[]
[]
[Outputs]
exodus = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 2
fixed_point_min_its = 2
fixed_point_rel_tol = 1e-6
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
# Multiapp to duct heat conduction module
[duct_map]
type = FullSolveMultiApp
input_files = wrapper.i # seperate file for multiapps due to radial power profile
execute_on = 'timestep_end'
positions = '0 0 0' #center of assembly
bounding_box_padding = '10.0 10.0 10.0'
[]
# Multiapp to detailed mesh for vizualization
[viz]
type = FullSolveMultiApp
input_files = "3d.i"
execute_on = 'timestep_end'
[]
[]
[Transfers]
[duct_temperature_transfer] # Send duct temperature to heat conduction
type = MultiAppInterpolationTransfer
to_multi_app = duct_map
source_variable = Tduct
variable = duct_surface_temperature
[]
[displacement_transfer]
type = MultiAppGeneralFieldNearestNodeTransfer
from_multi_app = duct_map
source_variable = disp_magnitude
variable = displacement
[]
[q_prime] # Recover q_prime from heat conduction solve
type = MultiAppInterpolationTransfer
from_multi_app = duct_map
source_variable = q_prime
variable = q_prime_duct
[]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S displacement'
[]
[]
(modules/subchannel/verification/friction_model_verification/two_channel.i)
T_in = 473.15 # K
mass_flux_in = 3500 # kg /sec m2
P_out = 155e+5 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 1
ny = 2
n_cells = 100
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095
heated_length = 10.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[]
[Functions]
[S_fn]
type = ParsedFunction
expression = if(y>0.0,0.002,0.001)
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 0.0
P_tol = 1e-6
T_tol = 1e-6
implicit = false
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
[]
[ICs]
[S_ic]
type = FunctionIC
variable = S
function = S_fn
[]
[w_perim_IC]
type = ConstantIC
variable = w_perim
value = 0.34188034
[]
[q_prime_IC]
type = ConstantIC
variable = q_prime
value = 0.0
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
csv = true
[]
[Postprocessors]
[mdot_1]
type = SubChannelPointValue
variable = mdot
index = 0
execute_on = 'initial timestep_end'
height = 10.0
[]
[mdot_2]
type = SubChannelPointValue
variable = mdot
index = 1
execute_on = 'initial timestep_end'
height = 10.0
[]
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(test/tests/auxkernels/element_aux_var/element_aux_var_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
[]
[]
[AuxVariables]
[one]
order = CONSTANT
family = MONOMIAL
[]
[five]
order = FIRST
family = LAGRANGE
[]
[three]
order = CONSTANT
family = MONOMIAL
[]
[coupled_nine]
order = CONSTANT
family = MONOMIAL
[]
[coupled_fifteen]
order = CONSTANT
family = MONOMIAL
[]
[coupled]
order = CONSTANT
family = MONOMIAL
[]
[coupled_nl]
order = CONSTANT
family = MONOMIAL
[]
[coupled_grad_nl]
order = CONSTANT
family = MONOMIAL
[]
[]
[Kernels]
# Coupling of nonlinear to Aux
[diff]
type = Diffusion
variable = u
[]
[force]
type = CoupledForce
variable = u
v = one
[]
[]
[AuxKernels]
# Simple Aux Kernel
# Shows coupling of Element to Nodal
# Shows coupling of Element to non-linear
# Shows coupling of Element to non-linear grad
[constant]
variable = one
type = ConstantAux
value = 1
[]
[coupled_nine]
variable = coupled_nine
type = CoupledAux
value = 3
operator = *
coupled = three
[]
[coupled_three]
variable = three
type = CoupledAux
value = 2
operator = +
coupled = one
[]
[coupled_fifteen]
variable = coupled_fifteen
type = CoupledAux
value = 5
operator = *
coupled = three
[]
[coupled]
variable = coupled
type = CoupledAux
value = 2
coupled = five
[]
[coupled_nl]
variable = coupled_nl
type = CoupledAux
value = 2
coupled = u
[]
[coupled_grad_nl]
variable = coupled_grad_nl
type = CoupledGradAux
grad = '2 0 0'
coupled = u
[]
[five]
type = ConstantAux
variable = five
boundary = '3 1'
value = 5
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out
[exodus]
type = Exodus
elemental_as_nodal = true
[]
[]
(test/tests/outputs/variables/output_vars_nonexistent.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 10
[]
[Outputs]
file_base = out_nonexistent
exodus = true
show = 'u elemental nodal x foo1 foo2'
[]
(modules/subchannel/test/tests/problems/psbt/psbt_full_monolithic_staggered.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
pin_diameter = 0.00950
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
pin_diameter = ${pin_diameter}
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
heated_length = 1.0
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
verbose_subchannel = true
implicit = true
segregated = false
monolithic_thermal = true
staggered_pressure = true
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1.0e6 # W
filename = "power_profile.txt" #type in name of file that describes radial power profile
block = fuel_pins
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = sub_channel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = report_mass_flux_inlet
execute_on = 'timestep_begin'
block = sub_channel
[]
[]
[Postprocessors]
[report_mass_flux_inlet]
type = Receiver
default = ${mass_flux_in}
[]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 1
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 1
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 1
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 1
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 1
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 1
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
(modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_full_monolithic.i)
T_in = 660
mass_flux_in = '${fparse 1e+6 * 300.00 / 36000.*0.5}'
P_out = 2.0e5 # Pa
[GlobalParams]
nrings = 3
n_cells = 5
flat_to_flat = 0.056
heated_length = 0.5
pitch = 0.012
[]
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
pin_diameter = 0.01
dwire = 0.002
hwire = 0.0833
spacer_z = '0'
spacer_k = '5.0'
[]
[duct]
type = SCMTriDuctMeshGenerator
input = subchannel
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime_duct]
block = duct
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 1.0
compute_density = true
compute_viscosity = true
compute_power = true
T_tol = 1.0e-6
P_tol = 1.0e-6
implicit = true
segregated = false
monolithic_thermal = true
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 1000.0 # W
filename = "pin_power_profile19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[T1]
type = SubChannelPointValue
variable = T
index = 37
execute_on = "timestep_end"
height = 0.5
[]
[T2]
type = SubChannelPointValue
variable = T
index = 36
execute_on = "timestep_end"
height = 0.5
[]
[T3]
type = SubChannelPointValue
variable = T
index = 20
execute_on = "timestep_end"
height = 0.5
[]
[T4]
type = SubChannelPointValue
variable = T
index = 10
execute_on = "timestep_end"
height = 0.5
[]
[T5]
type = SubChannelPointValue
variable = T
index = 4
execute_on = "timestep_end"
height = 0.5
[]
[T6]
type = SubChannelPointValue
variable = T
index = 1
execute_on = "timestep_end"
height = 0.5
[]
[T7]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 0.5
[]
[T8]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 0.5
[]
####### Assembly pressure drop
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
#####
[Mean_Temp]
type = SCMPlanarMean
variable = T
height = 2
[]
[Total_power]
type = ElementIntegralVariablePostprocessor
variable = q_prime
block = subchannel
[]
[mdot-8]
type = SubChannelPointValue
variable = mdot
index = 28
execute_on = 'TIMESTEP_END'
height = 0.5
[]
[]
[Executioner]
type = Steady
[]
(test/tests/auxkernels/vector_magnitude/vector_magnitude.i)
[Mesh]
type = GeneratedMesh
dim = 3
xmin = -1
xmax = 1
ymin = -1
ymax = 1
zmin = -1
zmax = 1
nx = 2
ny = 2
nz = 2
[../]
[Variables]
[./u]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[AuxVariables]
[./vector_x]
initial_condition = 2
[../]
[./vector_y]
initial_condition = 1
[../]
[./vector_z]
initial_condition = 2
[../]
[./magnitude]
[../]
[]
[AuxKernels]
[./vx]
type = ConstantAux
variable = vector_x
value = 2
[../]
[./vy]
type = ConstantAux
variable = vector_y
value = 1
[../]
[./vz]
type = ConstantAux
variable = vector_z
value = 2
[../]
[./magnitude]
type = VectorMagnitudeAux
variable = magnitude
x = vector_x
y = vector_y
z = vector_z
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/subchannel/test/tests/problems/Lead-LBE-19pin/test_LEAD-19pin.i)
T_in = 673.15
flow_area = 0.00128171 #m2
rho_in = 10453.21705
# [10 m^3/hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 10*rho_in/3600/flow_area}'
P_out = 1.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 3
n_cells = 50
flat_to_flat = 0.05319936
heated_length = 0.87
unheated_length_entry = 0.0
unheated_length_exit = 0.402
pin_diameter = 8.2e-3
pitch = 0.01148
dwire = 0.0
hwire = 0.0
spacer_z = '0.177 0.547 0.870'
spacer_k = '1.1719 1.1719 1.1719'
[]
[]
[AuxVariables]
[mdot]
[]
[SumWij]
[]
[P]
[]
[DP]
[]
[h]
[]
[T]
[]
[rho]
[]
[S]
[]
[w_perim]
[]
[q_prime]
[]
[mu]
[]
[displacement]
[]
[]
[FluidProperties]
[LEAD]
type = LeadFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = LEAD
n_blocks = 1
P_out = 1.0e5
CT = 1.0
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
verbose_multiapps = true
verbose_subchannel = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = '${fparse 250000}'
filename = "pin_power_profile19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = LEAD
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = LEAD
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = LEAD
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
csv = true
[]
[Postprocessors]
[T1]
type = SubChannelPointValue
variable = T
index = 37
execute_on = "timestep_end"
height = 0.87
[]
[T2]
type = SubChannelPointValue
variable = T
index = 36
execute_on = "timestep_end"
height = 0.87
[]
[T3]
type = SubChannelPointValue
variable = T
index = 20
execute_on = "timestep_end"
height = 0.87
[]
[T4]
type = SubChannelPointValue
variable = T
index = 10
execute_on = "timestep_end"
height = 0.87
[]
[T5]
type = SubChannelPointValue
variable = T
index = 4
execute_on = "timestep_end"
height = 0.87
[]
[T6]
type = SubChannelPointValue
variable = T
index = 1
execute_on = "timestep_end"
height = 0.87
[]
[T7]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 0.87
[]
[T8]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 0.87
[]
####### Assembly pressure drop
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
#####
[Mean_Temp]
type = SCMPlanarMean
variable = T
height = 2
[]
[Total_power]
type = ElementIntegralVariablePostprocessor
variable = q_prime
[]
[]
[Executioner]
type = Steady
[]
# ################################################################################
# # A multiapp that projects data to a detailed mesh
# ################################################################################
# [MultiApps]
# [viz]
# type = FullSolveMultiApp
# input_files = "3d_LBE_19.i"
# execute_on = "timestep_end"
# []
# []
# [Transfers]
# [xfer]
# type = SCMSolutionTransfer
# to_multi_app = viz
# variable = 'mdot SumWij P DP h T rho mu q_prime S'
# []
# []
(modules/subchannel/test/tests/problems/Lead-LBE-19pin/test_LBE-19pin.i)
T_in = 673.15
flow_area = 0.00128171 #m2
rho_in = 10453.21705
# [10 m^3/hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 10*rho_in/3600/flow_area}'
P_out = 1.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 3
n_cells = 50
flat_to_flat = 0.05319936
heated_length = 0.87
unheated_length_entry = 0.0
unheated_length_exit = 0.402
pin_diameter = 8.2e-3
pitch = 0.01148
dwire = 0.0
hwire = 0.0
spacer_z = '0.177 0.547 0.870'
spacer_k = '1.1719 1.1719 1.1719'
[]
[]
[AuxVariables]
[mdot]
[]
[SumWij]
[]
[P]
[]
[DP]
[]
[h]
[]
[T]
[]
[rho]
[]
[S]
[]
[w_perim]
[]
[q_prime]
[]
[mu]
[]
[displacement]
[]
[]
[FluidProperties]
[LBE]
type = LeadBismuthFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = LBE
n_blocks = 1
P_out = 1.0e5
CT = 1.0
# enforce_uniform_pressure = false
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
verbose_multiapps = true
verbose_subchannel = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = '${fparse 250000}'
filename = "pin_power_profile19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = LBE
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = LBE
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = LBE
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Postprocessors]
[T1]
type = SubChannelPointValue
variable = T
index = 37
execute_on = "timestep_end"
height = 0.87
[]
[T2]
type = SubChannelPointValue
variable = T
index = 36
execute_on = "timestep_end"
height = 0.87
[]
[T3]
type = SubChannelPointValue
variable = T
index = 20
execute_on = "timestep_end"
height = 0.87
[]
[T4]
type = SubChannelPointValue
variable = T
index = 10
execute_on = "timestep_end"
height = 0.87
[]
[T5]
type = SubChannelPointValue
variable = T
index = 4
execute_on = "timestep_end"
height = 0.87
[]
[T6]
type = SubChannelPointValue
variable = T
index = 1
execute_on = "timestep_end"
height = 0.87
[]
[T7]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 0.87
[]
[T8]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 0.87
[]
####### Assembly pressure drop
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
#####
[Mean_Temp]
type = SCMPlanarMean
variable = T
height = 2
[]
[Total_power]
type = ElementIntegralVariablePostprocessor
variable = q_prime
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
# ################################################################################
# # A multiapp that projects data to a detailed mesh
# ################################################################################
# [MultiApps]
# [viz]
# type = FullSolveMultiApp
# input_files = "3d_LBE_19.i"
# execute_on = "timestep_end"
# []
# []
# [Transfers]
# [xfer]
# type = SCMSolutionTransfer
# to_multi_app = viz
# variable = 'mdot SumWij P DP h T rho mu q_prime S'
# []
# []
(modules/solid_mechanics/test/tests/truss/truss_3d.i)
[Mesh]
type = FileMesh
file = truss_3d.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
preset = false
boundary = 1
value = 0.0
[../]
[./fixx2]
type = FunctionDirichletBC
variable = disp_x
preset = false
boundary = 2
function = x2
[../]
[./fixx3]
type = DirichletBC
variable = disp_x
preset = false
boundary = 3
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
preset = false
boundary = 1
value = 0
[../]
[./fixy2]
type = FunctionDirichletBC
variable = disp_y
preset = false
boundary = 2
function = y2
[../]
[./fixy3]
type = DirichletBC
variable = disp_y
preset = false
boundary = 3
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
preset = false
boundary = 1
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
preset = false
boundary = 2
value = 0
[../]
[./fixz3]
type = DirichletBC
variable = disp_z
preset = false
boundary = 3
value = 0
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area]
type = ConstantAux
block = '1 2'
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-6
nl_abs_tol = 1e-10
dt = 1
num_steps = 3
end_time = 3
[]
[Kernels]
[./solid_x]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[./solid_y]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 1
variable = disp_y
area = area
save_in = react_y
[../]
[./solid_z]
type = StressDivergenceTensorsTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
component = 2
variable = disp_z
area = area
save_in = react_z
[../]
[]
[Materials]
[./linelast]
type = LinearElasticTruss
block = '1 2'
youngs_modulus = 1e6
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template2.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/solid_mechanics/test/tests/crystal_plasticity/hcp_single_crystal/update_method_hcp_basal_active.i)
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[cube]
type = GeneratedMeshGenerator
dim = 3
nx = 2
ny = 2
nz = 2
elem_type = HEX8
[]
[]
[AuxVariables]
[temperature]
[]
[pk2_zz]
order = CONSTANT
family = MONOMIAL
[]
[fp_xx]
order = CONSTANT
family = MONOMIAL
[]
[fp_yy]
order = CONSTANT
family = MONOMIAL
[]
[fp_zz]
order = CONSTANT
family = MONOMIAL
[]
[e_xx]
order = CONSTANT
family = MONOMIAL
[]
[e_yy]
order = CONSTANT
family = MONOMIAL
[]
[e_zz]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_increment_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_0]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_1]
order = CONSTANT
family = MONOMIAL
[]
[resolved_shear_stress_2]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_0]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_1]
order = CONSTANT
family = MONOMIAL
[]
[slip_resistance_2]
order = CONSTANT
family = MONOMIAL
[]
[]
[Physics/SolidMechanics/QuasiStatic/all]
strain = FINITE
incremental = true
add_variables = true
generate_output = stress_zz
[]
[AuxKernels]
[temperature]
type = ConstantAux
variable = temperature
value= 300
[]
[pk2_zz]
type = RankTwoAux
variable = pk2_zz
rank_two_tensor = second_piola_kirchhoff_stress
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[fp_xx]
type = RankTwoAux
variable = fp_xx
rank_two_tensor = plastic_deformation_gradient
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[fp_yy]
type = RankTwoAux
variable = fp_yy
rank_two_tensor = plastic_deformation_gradient
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[fp_zz]
type = RankTwoAux
variable = fp_zz
rank_two_tensor = plastic_deformation_gradient
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[e_xx]
type = RankTwoAux
variable = e_xx
rank_two_tensor = total_lagrangian_strain
index_j = 0
index_i = 0
execute_on = timestep_end
[]
[e_yy]
type = RankTwoAux
variable = e_yy
rank_two_tensor = total_lagrangian_strain
index_j = 1
index_i = 1
execute_on = timestep_end
[]
[e_zz]
type = RankTwoAux
variable = e_zz
rank_two_tensor = total_lagrangian_strain
index_j = 2
index_i = 2
execute_on = timestep_end
[]
[slip_increment_0]
type = MaterialStdVectorAux
variable = slip_increment_0
property = slip_increment
index = 0
execute_on = timestep_end
[]
[slip_increment_1]
type = MaterialStdVectorAux
variable = slip_increment_1
property = slip_increment
index = 1
execute_on = timestep_end
[]
[tau_0]
type = MaterialStdVectorAux
variable = resolved_shear_stress_0
property = applied_shear_stress
index = 0
execute_on = timestep_end
[]
[tau_1]
type = MaterialStdVectorAux
variable = resolved_shear_stress_1
property = applied_shear_stress
index = 1
execute_on = timestep_end
[]
[tau_2]
type = MaterialStdVectorAux
variable = resolved_shear_stress_2
property = applied_shear_stress
index = 2
execute_on = timestep_end
[]
[slip_resistance_0]
type = MaterialStdVectorAux
variable = slip_resistance_0
property = slip_resistance
index = 0
execute_on = timestep_end
[]
[slip_resistance_1]
type = MaterialStdVectorAux
variable = slip_resistance_1
property = slip_resistance
index = 1
execute_on = timestep_end
[]
[slip_resistance_2]
type = MaterialStdVectorAux
variable = slip_resistance_2
property = slip_resistance
index = 2
execute_on = timestep_end
[]
[]
[BCs]
[fix_y]
type = DirichletBC
variable = disp_y
preset = true
boundary = 'bottom'
value = 0
[]
[fix_x]
type = DirichletBC
variable = disp_x
boundary = 'left'
value = 0
[]
[fix_z]
type = DirichletBC
variable = disp_z
boundary = 'back'
value = 0
[]
[tdisp]
type = FunctionDirichletBC
variable = disp_z
boundary = front
function = '0.001*t'
[]
[]
[Materials]
[elasticity_tensor]
type = ComputeElasticityTensorCP
C_ijkl = '1.622e5 9.18e4 6.88e4 1.622e5 6.88e4 1.805e5 4.67e4 4.67e4 4.67e4' #alpha Ti, Alankar et al. Acta Materialia 59 (2011) 7003-7009
fill_method = symmetric9
# orient in approximately [011] to activate the basal slip planes
euler_angle_1 = 120.0
euler_angle_2 = 125.264
euler_angle_3 = 45.0
[]
[stress]
type = ComputeMultipleCrystalPlasticityStress
crystal_plasticity_models = 'trial_xtalpl'
tan_mod_type = exact
[]
[trial_xtalpl]
type = CrystalPlasticityHCPDislocationSlipBeyerleinUpdate
number_slip_systems = 3
slip_sys_file_name = hcp_basal_slip_sys.txt
unit_cell_dimension = '2.934e-7 2.934e-7 4.657e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
temperature = temperature
initial_forest_dislocation_density = 15.0e5
initial_substructure_density = 1.0e3
slip_system_modes = 1
number_slip_systems_per_mode = '3'
lattice_friction_per_mode = '98' #Knezevic et al MSEA 654 (2013)
effective_shear_modulus_per_mode = '4.7e4' #Ti, in MPa, https://materialsproject.org/materials/mp-46/
burgers_vector_per_mode = '2.934e-7' #Ti, in mm, https://materialsproject.org/materials/mp-46/
slip_generation_coefficient_per_mode = '5.7e6' #from Knezevic et al. 2015 AM
normalized_slip_activiation_energy_per_mode = '0.002' #from Knezevic et al. 2015 AM
slip_energy_proportionality_factor_per_mode = '700' ##from Knezevic et al. 2015 AM
substructure_rate_coefficient_per_mode = '355' #from Capolungo et al MSEA (2009)
applied_strain_rate = 0.001
gamma_o = 1.0e-3
Hall_Petch_like_constant_per_mode = '0.2' #Estimated to match graph in Capolungo et al MSEA (2009), Figure 2
grain_size = 20.0e-3 #20 microns, Beyerlein and Tome IJP (2008)
[]
[]
[Postprocessors]
[stress_zz]
type = ElementAverageValue
variable = stress_zz
[]
[pk2_zz]
type = ElementAverageValue
variable = pk2_zz
[]
[fp_xx]
type = ElementAverageValue
variable = fp_xx
[]
[fp_yy]
type = ElementAverageValue
variable = fp_yy
[]
[fp_zz]
type = ElementAverageValue
variable = fp_zz
[]
[e_xx]
type = ElementAverageValue
variable = e_xx
[]
[e_yy]
type = ElementAverageValue
variable = e_yy
[]
[e_zz]
type = ElementAverageValue
variable = e_zz
[]
[slip_increment_0]
type = ElementAverageValue
variable = slip_increment_0
[]
[slip_increment_1]
type = ElementAverageValue
variable = slip_increment_1
[]
[tau_0]
type = ElementAverageValue
variable = resolved_shear_stress_0
[]
[tau_1]
type = ElementAverageValue
variable = resolved_shear_stress_1
[]
[tau_2]
type = ElementAverageValue
variable = resolved_shear_stress_2
[]
[slip_resistance_0]
type = ElementAverageValue
variable = slip_resistance_0
[]
[slip_resistance_1]
type = ElementAverageValue
variable = slip_resistance_1
[]
[slip_resistance_2]
type = ElementAverageValue
variable = slip_resistance_2
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-10
nl_abs_step_tol = 1e-10
dt = 0.5
dtmin = 1.0e-2
dtmax = 10.0
end_time = 2.5
[]
[Outputs]
csv = true
[]
(modules/subchannel/validation/PNNL_12_pin/steady_state/2X6_ss.i)
[GlobalParams]
######## Geometry #
nx = 7
ny = 3
n_cells = 48
n_blocks = 1
pitch = 0.014605
pin_diameter = 0.012065
gap = 0.0015875
heated_length = 1.2192
spacer_z = '0.0'
spacer_k = '0.0'
[]
######## BC's #################
T_in = 297.039 # K
P_out = 101325 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = fuel_pins
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
beta = 0.006
CT = 2.6
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
implicit = true
segregated = false
monolithic_thermal = false
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 5460 # W
filename = "power_profile.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = 0.012065
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = 131.43435930715006
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[mdot_in_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_in.txt"
height = 0.0
[]
[rho_in_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = rho
execute_on = final
file_base = "rho_in.txt"
height = 0.0
[]
[mdot_out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_out.txt"
height = 1.2192
[]
[rho_out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = rho
execute_on = final
file_base = "rho_out.txt"
height = 1.2192
[]
[mdot_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_075.txt"
height = 0.9144
[]
[T_in_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = final
file_base = "T_in.txt"
height = 0.0
[]
[T_out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = final
file_base = "T_out.txt"
height = 1.2192
[]
[]
[Postprocessors]
[mdot7]
type = SubChannelPointValue
variable = mdot
index = 7
execute_on = 'initial timestep_end'
height = 0.9144
[]
[mdot8]
type = SubChannelPointValue
variable = mdot
index = 8
execute_on = 'initial timestep_end'
height = 0.9144
[]
[mdot9]
type = SubChannelPointValue
variable = mdot
index = 9
execute_on = 'initial timestep_end'
height = 0.9144
[]
[mdot10]
type = SubChannelPointValue
variable = mdot
index = 10
execute_on = 'initial timestep_end'
height = 0.9144
[]
[mdot11]
type = SubChannelPointValue
variable = mdot
index = 11
execute_on = 'initial timestep_end'
height = 0.9144
[]
[mdot12]
type = SubChannelPointValue
variable = mdot
index = 12
execute_on = 'initial timestep_end'
height = 0.9144
[]
[mdot13]
type = SubChannelPointValue
variable = mdot
index = 13
execute_on = 'initial timestep_end'
height = 0.9144
[]
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d.i"
execute_on = "timestep_end"
[]
[]
###### Transfers to the detailedMesh at the end of the coupled simulations
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin q_prime'
[]
[]
(modules/contact/test/tests/verification/patch_tests/plane_3/plane3_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane3_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x11]
type = NodalVariableValue
nodeid = 10
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y11]
type = NodalVariableValue
nodeid = 10
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-8
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x11 disp_y11 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(test/tests/outputs/variables/hide_output_via_variables_block.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
outputs = none
[../]
[./v]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
outputs = none
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/subchannel/test/tests/problems/psbt/psbt_explicit.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
pin_diameter = 0.00950
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
pin_diameter = ${pin_diameter}
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
heated_length = 1.0
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
verbose_subchannel = true
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1.0e6 # W
filename = "power_profile.txt" #type in name of file that describes radial power profile
block = fuel_pins
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = sub_channel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = report_mass_flux_inlet
execute_on = 'timestep_begin'
block = sub_channel
[]
[]
[Postprocessors]
[report_mass_flux_inlet]
type = Receiver
default = ${mass_flux_in}
[]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 1
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 1
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 1
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 1
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 1
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 1
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
(modules/subchannel/validation/areva_FCTF/FCTF_non_deformed.i)
# Following Benchmark Specifications and Data Requirements for the AREVA heated-bundle test in its Fuel Cooling Test Facility (FCTF)
# as part of a U.S. DOE funded project: Towards a Longer-Life Core. In partnership with TerraPower, TAMU and ANL,
# AREVA NP tested a wire-wrapped pin bundle. The bundle consists of electrically heated pins and non-heated pins.
# This test collected measurements to evaluate thermal hydraulic performance of a wire wrapped bundle, useful for CFD and other software validation.
# Available at: https://www.osti.gov/servlets/purl/1346027/
###################################################
# Steady state subchannel calculation
# Thermal-hydraulics parameters
###################################################
T_in = 305.44 #Kelvin (32.29 C)
# mu = 0.0007646 #Pas
# Re = 20500
# Dh = 0.004535
Total_Surface_Area_SC = 0.00285294 #m2
Total_Surface_Area_EXP = 0.002808 #m2
P_out = 829370.355 # Pa (120.29 psia)
Power = 90640 # Watt Each heater pin had a max power of 30kW
# Heater 17 (18) not working.
# test:19 power = 22613 22610 22754 22663 [W], Total Power = 90640 [W], mdot_average = 9.576 [kg/s], Re = 20300
# Index of heated pins per silicon controled rectifiers (Areva notation):1 3 6 7 || 4 5 11 15 ||2 9 19 40 60 || 13 44 48 52 56 (from bottom to top)
# Index of heated pins per silicon controled rectifiers (SC notation):0 3 6 1 || 4 5 12 16 || 2 10 8 43 39 || 14 47 51 55 59 (from top to bottom) 38 areva->41 SC
# Relative power of pin per rectifier: 1.12266659312 || 1.12251765225 || 0.90373345101 || 0.90011915269
mdot_average = '${fparse 9.33 * Total_Surface_Area_SC / Total_Surface_Area_EXP}'
mass_flux_in = '${fparse mdot_average / Total_Surface_Area_SC}' #kg/m2
###################################################
# Geometric parameters (non-deformed heated bundle)
###################################################
fuel_pin_pitch = 0.01122652 #m
fuel_pin_diameter = 0.009514 #m
wire_z_spacing = 0.285 #m
wire_diameter = 0.0017062 #m
inner_duct_in = 0.092 #m
n_rings = 5
unheated_length_entry = 1.14 #m
heated_length = 1.71 #m
unheated_length_exit = 0.855 #m
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 65
flat_to_flat = ${inner_duct_in}
unheated_length_entry = ${unheated_length_entry}
heated_length = ${heated_length}
unheated_length_exit = ${unheated_length_exit}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 65
unheated_length_entry = ${unheated_length_entry}
heated_length = ${heated_length}
unheated_length_exit = ${unheated_length_exit}
pitch = ${fuel_pin_pitch}
[]
[]
[Functions]
[axial_heat_rate]
type = ParsedFunction
expression = '(0.4*pi/(pi-2))*sin(pi*z/L) + 1.4 - (0.4*pi/(pi-2))'
symbol_names = 'L'
symbol_values = '${heated_length}'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[mu]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = water
n_blocks = 1
P_out = ${P_out}
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = true
segregated = false
interpolation_scheme = 'upwind'
verbose_subchannel = true
deformation = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${Power}
filename = "pin_power_profile61.txt"
axial_heat_rate = axial_heat_rate
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
!include non_deformed_duct_pp.i
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = '3D.i'
execute_on = 'FINAL'
[]
[]
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S displacement'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Dpin Tpin q_prime'
[]
[]
(test/tests/kernels/scalar_constraint/scalar_constraint_kernel_disp.i)
#
# This test is identical to scalar_constraint_kernel.i, but it everything is evaluated on the displaced mesh
#
[GlobalParams]
use_displaced_mesh = true
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = -1
xmax = 1
ymin = -1
ymax = 1
nx = 2
ny = 2
elem_type = QUAD9
displacements = 'disp_x disp_y'
[]
[Functions]
[./exact_fn]
type = ParsedFunction
expression = 'x*x+y*y'
[../]
[./ffn]
type = ParsedFunction
expression = -4
[../]
[./bottom_bc_fn]
type = ParsedFunction
expression = -2*y
[../]
[./right_bc_fn]
type = ParsedFunction
expression = 2*x
[../]
[./top_bc_fn]
type = ParsedFunction
expression = 2*y
[../]
[./left_bc_fn]
type = ParsedFunction
expression = -2*x
[../]
[]
[AuxVariables]
[./disp_x]
family = LAGRANGE
order = SECOND
[../]
[./disp_y]
family = LAGRANGE
order = SECOND
[../]
[]
[AuxKernels]
[./disp_x_ak]
type = ConstantAux
variable = disp_x
value = 0
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[]
# NL
[Variables]
[./u]
family = LAGRANGE
order = SECOND
[../]
[./lambda]
family = SCALAR
order = FIRST
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./ffnk]
type = BodyForce
variable = u
function = ffn
[../]
[./sk_lm]
type = ScalarLagrangeMultiplier
variable = u
lambda = lambda
[../]
[]
[ScalarKernels]
[./constraint]
type = AverageValueConstraint
variable = lambda
pp_name = pp
value = 2.666666666666666
# overrride the global setting, scalar kernels do not live on a mesh
use_displaced_mesh = false
[../]
[]
[BCs]
[./bottom]
type = FunctionNeumannBC
variable = u
boundary = '0'
function = bottom_bc_fn
[../]
[./right]
type = FunctionNeumannBC
variable = u
boundary = '1'
function = right_bc_fn
[../]
[./top]
type = FunctionNeumannBC
variable = u
boundary = '2'
function = top_bc_fn
[../]
[./left]
type = FunctionNeumannBC
variable = u
boundary = '3'
function = left_bc_fn
[../]
[]
[Postprocessors]
[./pp]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = linear
[../]
[./l2_err]
type = ElementL2Error
variable = u
function = exact_fn
execute_on = 'initial timestep_end'
[../]
[]
[Preconditioning]
[./pc]
type = SMP
full = true
solve_type = 'PJFNK'
[../]
[]
[Executioner]
type = Steady
nl_rel_tol = 1e-14
l_tol = 1e-7
[]
[Outputs]
exodus = true
hide = lambda
[]
(modules/subchannel/validation/EBR-II/XX09_SCM_SS45R.i)
# Following Benchmark Specifications and Data Requirements for EBR-II Shutdown Heat Removal Tests SHRT-17 and SHRT-45R
# Available at: https://publications.anl.gov/anlpubs/2012/06/73647.pdf
###################################################
# Steady state subchannel calcultion
# Thermal-hydraulics parameters
###################################################
T_in = 616.4 #Kelvin
Total_Surface_Area = 0.000854322 #m2
Mass_In = 2.427 #kg/sec
mass_flux_in = '${fparse Mass_In / Total_Surface_Area}' #kg/m2
P_out = 2.0e5
Power_initial = 379800 #W (Page 26,35 of ANL document)
###################################################
# Geometric parameters
###################################################
scale_factor = 0.01
fuel_pin_pitch = '${fparse 0.5664*scale_factor}'
fuel_pin_diameter = '${fparse 0.4419*scale_factor}'
wire_z_spacing = '${fparse 15.24*scale_factor}'
wire_diameter = '${fparse 0.1244*scale_factor}'
inner_duct_in = '${fparse 4.64*scale_factor}'
n_rings = 5
heated_length = '${fparse 34.3*scale_factor}'
unheated_length_exit = '${fparse 26.9*scale_factor}'
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 50
flat_to_flat = ${inner_duct_in}
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 50
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pitch = ${fuel_pin_pitch}
[]
[duct]
type = SCMTriDuctMeshGenerator
input = fuel_pins
nrings = ${n_rings}
n_cells = 50
flat_to_flat = ${inner_duct_in}
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pitch = ${fuel_pin_pitch}
[]
[]
[Functions]
[axial_heat_rate]
type = ParsedFunction
value = '(pi/2)*sin(pi*z/L)*exp(-alpha*z)/(1.0/alpha*(1.0 - exp(-alpha*L)))*L'
vars = 'L alpha'
vals = '${heated_length} 1.8012'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[q_prime_duct]
block = duct
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = ${P_out}
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-5
implicit = true
segregated = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${Power_initial}
filename = "pin_power_profile61.txt"
axial_heat_rate = axial_heat_rate
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[TTC-27]
type = SubChannelPointValue
variable = T
index = 91
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-28]
type = SubChannelPointValue
variable = T
index = 50
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-29]
type = SubChannelPointValue
variable = T
index = 21
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-30]
type = SubChannelPointValue
variable = T
index = 4
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-31]
type = SubChannelPointValue
variable = T
index = 2
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-32]
type = SubChannelPointValue
variable = T
index = 16
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-33]
type = SubChannelPointValue
variable = T
index = 42
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-34]
type = SubChannelPointValue
variable = T
index = 80
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-35]
type = SubChannelPointValue
variable = T
index = 107
execute_on = 'TIMESTEP_END'
height = 0.322
[]
# [MTC-20]
# type = SubChannelPointValue
# variable = T
# index = 33
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-22]
# type = SubChannelPointValue
# variable = T
# index = 3
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-24]
# type = SubChannelPointValue
# variable = T
# index = 28
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-25]
# type = SubChannelPointValue
# variable = T
# index = 60
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-26]
# type = SubChannelPointValue
# variable = T
# index = 106
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [14TC-37]
# type = SubChannelPointValue
# variable = T
# index = 52
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
# [14TC-39]
# type = SubChannelPointValue
# variable = T
# index = 6
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
# [14TC-41]
# type = SubChannelPointValue
# variable = T
# index = 40
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
# [14TC-43]
# type = SubChannelPointValue
# variable = T
# index = 105
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = '3d_SCM_SS.i'
execute_on = 'FINAL'
[]
[]
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin q_prime'
[]
[]
(modules/solid_mechanics/test/tests/truss/truss_hex.i)
# This test is designed to check
# whether truss element works well with other multi-dimensional element
# e.g. the hex element in this case, by assigning different brock number
# to different types of elements.
[Mesh]
type = FileMesh
file = truss_hex.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
# initial_condition = 1.0
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./fixx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[./fixDummyHex_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0
[../]
[./fixDummyHex_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0
[../]
[./fixDummyHex_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '0 -2 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area1]
type = ConstantAux
block = 1
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[./area2]
type = ConstantAux
block = 2
variable = area
value = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[./truss_x]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_x
displacements = 'disp_x disp_y disp_z'
component = 0
area = area
save_in = react_x
[../]
[./truss_y]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_y
component = 1
displacements = 'disp_x disp_y disp_z'
area = area
save_in = react_y
[../]
[./truss_z]
type = StressDivergenceTensorsTruss
block = '1 2'
variable = disp_z
component = 2
displacements = 'disp_x disp_y disp_z'
area = area
save_in = react_z
[../]
[SolidMechanics]
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
# [./hex_x]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_x
# component = 0
# displacements = 'disp_x disp_y disp_z'
# [../]
# [./hex_y]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_y
# component = 1
# displacements = 'disp_x disp_y disp_z'
# [../]
# [./hex_z]
# type = StressDivergenceTensors
# block = 1000
# variable = disp_z
# component = 2
# displacements = 'disp_x disp_y disp_z'
# [../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1000
youngs_modulus = 1e6
poissons_ratio = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1000
[../]
[./linelast]
type = LinearElasticTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
youngs_modulus = 1e6
[../]
[]
[Outputs]
exodus = true
[]
(test/tests/bcs/coupled_var_neumann/on_off.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[AuxVariables]
[./coupled_bc_var]
[../]
[./active]
initial_condition = 1
[../]
[]
[AuxKernels]
[./active_right]
type = ConstantAux
variable = active
value = 0.5
boundary = 1
[../]
[]
[ICs]
[./coupled_bc_var]
type = FunctionIC
variable = coupled_bc_var
function = set_coupled_bc_var
[../]
[]
[Functions]
[./set_coupled_bc_var]
type = ParsedFunction
expression = 'y - 0.5'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = CoupledVarNeumannBC
variable = u
boundary = 1
v = coupled_bc_var
scale_factor = active
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/mechanical_constraint/frictionless_kinematic_gap_offsets.i)
# this test is the same as frictionless_kinematic test but designed to test the gap offset capability
# gap offsets with value of 0.01 were introduced to both primary and secondary sides in the initial mesh
# these values were accounted using the gap offset capability to produce the same result as if no gap offsets were introduced
[Mesh]
file = blocks_2d_gap_offset.e
[]
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./primary_gap_offset]
[../]
[./secondary_gap_offset]
[../]
[./mapped_primary_gap_offset]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./primary_gap_offset]
type = ConstantAux
variable = primary_gap_offset
value = -0.01
boundary = 2
[../]
[./mapped_primary_gap_offset]
type = GapValueAux
variable = mapped_primary_gap_offset
paired_variable = primary_gap_offset
boundary = 3
paired_boundary = 2
[../]
[./secondary_gap_offset]
type = ConstantAux
variable = secondary_gap_offset
value = -0.01
boundary = 3
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = 1
poissons_ratio = 0.3
youngs_modulus = 1e7
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = 2
poissons_ratio = 0.3
youngs_modulus = 1e6
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
file_base = frictionless_kinematic_gap_offsets_out
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = frictionless
penalty = 1e+6
secondary_gap_offset = secondary_gap_offset
mapped_primary_gap_offset = mapped_primary_gap_offset
[../]
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_ts_test.i)
#
# Testing nodal aux variables that are computed only at the end of the time step
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
active = 'aux1 aux2'
[./aux1]
order = FIRST
family = LAGRANGE
[../]
[./aux2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff force'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = aux2
[../]
[]
[AuxKernels]
active = 'constant field'
#Simple Aux Kernel
[./constant]
variable = aux1
type = ConstantAux
value = 1
[../]
#Shows coupling of Aux to nonlinear
[./field]
variable = aux2
type = CoupledAux
value = 2
coupled = u
execute_on = timestep_end
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 2
solve_type = 'PJFNK'
[]
[Outputs]
file_base = out_ts
exodus = true
[]
(modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_implicit.i)
T_in = 660
mass_flux_in = '${fparse 1e+6 * 300.00 / 36000.*0.5}'
P_out = 2.0e5 # Pa
[GlobalParams]
nrings = 3
n_cells = 5
flat_to_flat = 0.056
heated_length = 0.5
pitch = 0.012
[]
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
pin_diameter = 0.01
dwire = 0.002
hwire = 0.0833
spacer_z = '0'
spacer_k = '5.0'
[]
[duct]
type = SCMTriDuctMeshGenerator
input = subchannel
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime_duct]
block = duct
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 1.0
compute_density = true
compute_viscosity = true
compute_power = true
implicit = true
segregated = true
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 1000.0 # W
filename = "pin_power_profile19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[T1]
type = SubChannelPointValue
variable = T
index = 37
execute_on = "timestep_end"
height = 0.5
[]
[T2]
type = SubChannelPointValue
variable = T
index = 36
execute_on = "timestep_end"
height = 0.5
[]
[T3]
type = SubChannelPointValue
variable = T
index = 20
execute_on = "timestep_end"
height = 0.5
[]
[T4]
type = SubChannelPointValue
variable = T
index = 10
execute_on = "timestep_end"
height = 0.5
[]
[T5]
type = SubChannelPointValue
variable = T
index = 4
execute_on = "timestep_end"
height = 0.5
[]
[T6]
type = SubChannelPointValue
variable = T
index = 1
execute_on = "timestep_end"
height = 0.5
[]
[T7]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 0.5
[]
[T8]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 0.5
[]
####### Assembly pressure drop
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
#####
[Mean_Temp]
type = SCMPlanarMean
variable = T
height = 2
[]
[Total_power]
type = ElementIntegralVariablePostprocessor
variable = q_prime
block = subchannel
[]
[mdot-8]
type = SubChannelPointValue
variable = mdot
index = 28
execute_on = 'TIMESTEP_END'
height = 0.5
[]
[]
[Executioner]
type = Steady
[]
(modules/contact/test/tests/sliding_block/sliding/frictionless_penalty.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the penalty method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
time_step_interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(modules/subchannel/test/tests/problems/psbt/psbt_monolithic.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
pin_diameter = 0.00950
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
pin_diameter = ${pin_diameter}
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
heated_length = 1.0
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
verbose_subchannel = true
implicit = true
segregated = false
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1.0e6 # W
filename = "power_profile.txt" #type in name of file that describes radial power profile
block = fuel_pins
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = sub_channel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = report_mass_flux_inlet
execute_on = 'timestep_begin'
block = sub_channel
[]
[]
[Postprocessors]
[report_mass_flux_inlet]
type = Receiver
default = ${mass_flux_in}
[]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 1
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 1
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 1
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 1
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 1
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 1
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
(modules/heat_transfer/test/tests/gap_heat_transfer_mortar/ref-displaced.i)
[Mesh]
file = 3blk.e
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./disp_x]
block = 1
[../]
[./disp_y]
block = 1
[../]
[]
[AuxKernels]
[./disp_x_kernel]
type = ConstantAux
variable = disp_x
value = 0.1
[../]
[./disp_y_kernel]
type = ConstantAux
variable = disp_y
value = 0
[../]
[]
[Variables]
[./temp]
order = FIRST
family = LAGRANGE
block = '1 2 3'
[../]
[]
[Materials]
[./left]
type = HeatConductionMaterial
block = 1
thermal_conductivity = 1000
specific_heat = 1
[../]
[./right]
type = HeatConductionMaterial
block = 2
thermal_conductivity = 500
specific_heat = 1
[../]
[./middle]
type = HeatConductionMaterial
block = 3
thermal_conductivity = 100
specific_heat = 1
[../]
[]
[Kernels]
[./hc]
type = HeatConduction
variable = temp
use_displaced_mesh = true
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temp
boundary = 'left'
value = 1
[../]
[./right]
type = DirichletBC
variable = temp
boundary = 'right'
value = 0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-11
l_tol = 1e-11
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/sliding_block/sliding/frictional_02_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# A friction coefficient of 0.2 is used. The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[penetration]
[]
[inc_slip_x]
[]
[inc_slip_y]
[]
[accum_slip_x]
[]
[accum_slip_y]
[]
[]
[Functions]
[vertical_movement]
type = ParsedFunction
expression = -t
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
add_variables = true
strain = FINITE
[]
[]
[AuxKernels]
[zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[]
[accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[]
[penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[]
[]
[Postprocessors]
[nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[]
[penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[]
[contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[]
[right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[]
[]
[Materials]
[left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[]
[stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[Predictor]
type = SimplePredictor
scale = 1.0
[]
[]
[Outputs]
time_step_interval = 10
[out]
type = Exodus
elemental_as_nodal = true
[]
[console]
type = Console
max_rows = 5
[]
[]
[Contact]
[leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 4e+6
friction_coefficient = 0.2
formulation = penalty
normal_smoothing_distance = 0.1
[]
[]
(modules/subchannel/validation/PNNL_12_pin/transient/2X6_transient.i)
T_in = 297.039 # K
P_out = 101325 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 7
ny = 3
n_cells = 60
pitch = 0.014605
pin_diameter = 0.012065
gap = 0.0015875
unheated_length_entry = 0.3048
heated_length = 1.2192
spacer_z = '0.0'
spacer_k = '0.0'
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = false
P_out = ${P_out}
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 0.0 # W
filename = "power_profile.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.012101767481985
[]
[]
[Functions]
[mass_flux]
type = PiecewiseLinear
xy_data = '
5.0 122.2645
10.0 42.7926'
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = mass_flux_in
execute_on = 'timestep_begin'
[]
[]
[Postprocessors]
[mass_flux_in]
type = FunctionValuePostprocessor
function = mass_flux
execute_on = 'initial timestep_end'
[]
[mdot]
type = SubChannelPointValue
variable = mdot
index = 4
execute_on = 'initial timestep_end'
height = 0.4953
[]
[mdot2]
type = SubChannelPointValue
variable = mdot
index = 4
execute_on = 'initial timestep_end'
height = 0.0
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Executioner]
type = Transient
nl_rel_tol = 0.9
l_tol = 0.9
start_time = 0.0
end_time = 10
dt = 1.0
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = TransientMultiApp
input_files = "3d.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(modules/solid_properties/test/tests/materials/constant_density_thermal_solid_properties/constant_density_thermal_solid_properties.i)
# The gold density value should reflect the reference temperature value, not
# the temperature variable value.
T_initial = 300
T_ref = 500
[GlobalParams]
execute_on = 'INITIAL'
[]
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 1
[]
[SolidProperties]
[ss316_sp]
type = ThermalSS316Properties
[]
[]
[Materials]
[sp_mat]
type = ADConstantDensityThermalSolidPropertiesMaterial
temperature = T
sp = ss316_sp
T_ref = ${T_ref}
[]
[]
[AuxVariables]
[T]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[T_ak]
type = ConstantAux
variable = T
value = ${T_initial}
[]
[]
[Postprocessors]
[density]
type = ADElementAverageMaterialProperty
mat_prop = density
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/subchannel/test/tests/problems/psbt/psbt_explicit_v2.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
pin_diameter = 0.00950
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
pin_diameter = ${pin_diameter}
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
heated_length = 1.0
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = report_pressure_outlet
verbose_subchannel = true
default_friction_model = false
constant_beta = false
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = sub_channel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = report_mass_flux_inlet
execute_on = 'timestep_begin'
block = sub_channel
[]
[q_prime_IC]
type = SCMQuadPowerAux
variable = q_prime
power = 1.0e6 # W
filename = "power_profile.txt" #type in name of file that describes radial power profile
execute_on = 'initial timestep_begin'
[]
[]
[Postprocessors]
[report_mass_flux_inlet]
type = Receiver
default = ${mass_flux_in}
[]
[report_pressure_outlet]
type = Receiver
default = ${P_out}
[]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 1
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 1
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 1
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 1
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 1
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 1
[]
[]
[Outputs]
csv = true
[Temp_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = final
file_base = "Temp_Out_Explicit.txt"
height = 1.0
[]
[]
[Executioner]
type = Steady
[]
(modules/fluid_properties/test/tests/auxkernels/specific_enthalpy_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./pressure]
[../]
[./temperature]
[../]
[./specific_enthalpy]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./pressure_ak]
type = ConstantAux
variable = pressure
value = 10e6
[../]
[./temperature_ak]
type = ConstantAux
variable = temperature
value = 400.0
[../]
[./specific_enthalpy_ak]
type = SpecificEnthalpyAux
variable = specific_enthalpy
fp = eos
p = pressure
T = temperature
[../]
[]
[FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/nodal_aux_var/nodal_aux_init_test.i)
#
# Testing nodal aux variables that are computed only at the end of the time step
#
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 3
ny = 3
[]
[Variables]
active = 'u'
[./u]
order = FIRST
family = LAGRANGE
initial_condition = 5
[../]
[]
[AuxVariables]
active = 'aux1 aux2'
[./aux1]
order = FIRST
family = LAGRANGE
initial_condition = 2
[../]
[./aux2]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
active = 'ie diff force'
[./ie]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
#Coupling of nonlinear to Aux
[./force]
type = CoupledForce
variable = u
v = aux2
[../]
[]
[AuxKernels]
active = 'constant field'
#Simple Aux Kernel
[./constant]
variable = aux1
type = ConstantAux
value = 1
execute_on = nonlinear
[../]
#AuxKernel that is setup only before the simulation starts
[./field]
variable = aux2
type = CoupledAux
value = 2
coupled = u
execute_on = initial
[../]
[]
[BCs]
active = 'left right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 3
value = 1
[../]
[]
[Executioner]
type = Transient
start_time = 0
dt = 0.1
num_steps = 2
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
file_base = out_init
[]
(modules/heat_transfer/test/tests/heat_conduction/coupled_convective_heat_flux/on_off.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./t_infinity]
[../]
[./active]
initial_condition = 1
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
value = 1000
[../]
[]
[AuxKernels]
[./t_infinity]
type = ConstantAux
variable = t_infinity
value = 500
execute_on = initial
[../]
[./active_right]
type = ConstantAux
variable = active
value = 0
boundary = right
[../]
[]
[BCs]
[./right]
type = CoupledConvectiveHeatFluxBC
variable = u
boundary = 'left right top bottom'
htc = 10
T_infinity = t_infinity
scale_factor = active
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/subchannel/validation/EBR-II/XX09_SCM_TR45R.i)
# Following Benchmark Specifications and Data Requirements for EBR-II Shutdown Heat Removal Tests SHRT-17 and SHRT-45R
# Available at: https://publications.anl.gov/anlpubs/2012/06/73647.pdf
# Transient Subchannel calculation
###################################################
# Thermal-hydraulics parameters
###################################################
T_in = 616.4 #Kelvin
Total_Surface_Area = 0.000854322 #m3
mass_flux_in = '${fparse 2.427 / Total_Surface_Area}'
P_out = 2.0e5
Power_initial = 379800 #W (Page 26,35 of ANL document)
###################################################
# Geometric parameters
###################################################
scale_factor = 0.01
fuel_pin_pitch = '${fparse 0.5664*scale_factor}'
fuel_pin_diameter = '${fparse 0.4419*scale_factor}'
wire_z_spacing = '${fparse 15.24*scale_factor}'
wire_diameter = '${fparse 0.1244*scale_factor}'
inner_duct_in = '${fparse 4.64*scale_factor}'
n_rings = 5
heated_length = '${fparse 34.3*scale_factor}'
unheated_length_exit = '${fparse 26.9*scale_factor}'
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 50
flat_to_flat = ${inner_duct_in}
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 50
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pitch = ${fuel_pin_pitch}
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime_init]
block = fuel_pins
[]
[power_history_field]
block = fuel_pins
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[displacement]
block = subchannel
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = ${P_out}
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-6
T_tol = 1.0e-5
implicit = true
segregated = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime_init
power = ${Power_initial}
filename = "pin_power_profile61_uniform.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[Functions]
[power_func]
type = PiecewiseLinear
data_file = 'power_history_SHRT45.csv'
format = "columns"
scale_factor = 1.0
[]
[mass_flux_in]
type = PiecewiseLinear
data_file = 'massflow_SHRT45.csv'
format = "columns"
scale_factor = '${fparse mass_flux_in / 2.427}'
[]
[dts]
type = PiecewiseLinear
xy_data = '0.0 0.1
5.0 2.0
100 2.0
110 20.0
900 20.0'
[]
[]
[Controls]
[mass_flux_ctrl]
type = RealFunctionControl
parameter = 'Postprocessors/mass_flux_PP/value'
function = 'mass_flux_in'
execute_on = 'initial timestep_begin'
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = mass_flux_PP
execute_on = 'timestep_begin'
[]
[populate_power_history]
type = FunctionAux
variable = power_history_field
function = 'power_func'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[change_q_prime]
type = ParsedAux
variable = q_prime
args = 'q_prime_init power_history_field'
function = 'q_prime_init*power_history_field'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[report_pressure_outlet]
type = Receiver
default = ${P_out}
[]
[TTC-31]
type = SubChannelPointValue
variable = T
index = 0
execute_on = 'initial timestep_end'
height = 0.322
[]
[post_func]
type = ElementIntegralVariablePostprocessor
block = fuel_pins
variable = q_prime
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[mass_flux_PP]
type = ConstantPostprocessor
value = ${mass_flux_in}
[]
[mass_flow_PP]
type = ParsedPostprocessor
expression = '${Total_Surface_Area} * mass_flux_PP'
pp_names = 'mass_flux_PP'
[]
[]
[Executioner]
type = Transient
start_time = -1
end_time = 900.0
[TimeStepper]
type = FunctionDT
function = dts
min_dt = 0.1
growth_factor = 2.0
[]
dtmax = 20
num_steps = 15
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = TransientMultiApp
input_files = '3d_SCM_TR.i'
execute_on = 'INITIAL TIMESTEP_END'
catch_up = true
[]
[]
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin q_prime'
[]
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictional_02_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2 and a friction coefficient
# of 0.2 is used. The gold file is run on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[penetration]
[]
[inc_slip_x]
[]
[inc_slip_y]
[]
[accum_slip_x]
[]
[accum_slip_y]
[]
[]
[Functions]
[vertical_movement]
type = ParsedFunction
expression = -t
[]
[horizontal_movement]
type = ParsedFunction
expression = -0.04*sin(4*t)+0.02
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
add_variables = true
strain = FINITE
[]
[]
[AuxKernels]
[zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[]
[accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[]
[penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[]
[]
[Postprocessors]
[nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[]
[penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[]
[contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[]
[]
[Materials]
[left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-3
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[Predictor]
type = SimplePredictor
scale = 1.0
[]
[]
[Outputs]
time_step_interval = 10
[out]
type = Exodus
elemental_as_nodal = true
[]
[console]
type = Console
max_rows = 5
[]
[]
[Contact]
[leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 4e+6
friction_coefficient = 0.2
formulation = penalty
normal_smoothing_distance = 0.1
[]
[]
(test/tests/transfers/multiapp_userobject_transfer/3d_1d_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./disp_x_fn]
type = ParsedFunction
expression = '-x'
[../]
[./disp_z_fn]
type = ParsedFunction
expression = 'x'
[../]
[]
[AuxVariables]
[./sub_app_var]
family = MONOMIAL
order = CONSTANT
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[./disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[../]
[]
[UserObjects]
[./sub_app_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 10
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/userobjects/layered_average/layered_average_1d_displaced.i)
# This tests that Layered user objects work with displaced meshes. Originally,
# the mesh is aligned with x-axis. Then we displace the mesh to be aligned with
# z-axis and sample along the z-direction.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 5
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[./left_fn]
type = ParsedFunction
expression = 't + 1'
[../]
[./disp_x_fn]
type = ParsedFunction
expression = '-x'
[../]
[./disp_z_fn]
type = ParsedFunction
expression = 'x'
[../]
[]
[AuxVariables]
[./la]
family = MONOMIAL
order = CONSTANT
[../]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[]
[AuxKernels]
[./la_ak]
type = SpatialUserObjectAux
variable = la
user_object = la_uo
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[./disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[../]
[./disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[../]
[./disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[../]
[]
[UserObjects]
[./la_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 5
execute_on = TIMESTEP_END
use_displaced_mesh = true
[../]
[]
[Variables]
[./u]
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = FunctionDirichletBC
variable = u
boundary = left
function = left_fn
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 0
[../]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 2
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(test/tests/auxkernels/element_aux_var/block_global_depend_elem_aux.i)
[Mesh]
file = rectangle.e
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./coupled_left]
order = CONSTANT
family = MONOMIAL
block = 1
[../]
[./coupled_right]
order = CONSTANT
family = MONOMIAL
block = 2
[../]
[./two]
order = CONSTANT
family = MONOMIAL
initial_condition = 0
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./body_force]
type = BodyForce
variable = u
block = 1
value = 10
[../]
[]
[AuxKernels]
[./coupled_left]
variable = coupled_left
type = CoupledAux
value = 8
operator = /
coupled = two
[../]
[./coupled_right]
variable = coupled_right
type = CoupledAux
value = 8
operator = /
coupled = two
[../]
[./two]
type = ConstantAux
variable = two
value = 2
[../]
[]
[BCs]
active = 'right'
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar01_fv.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# k = k_anisotropy * perm
[Mesh]
[mesh]
type = GeneratedMeshGenerator
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
type = MooseVariableFVReal
[FVInitialCondition]
type = FVConstantIC
value = 0
[]
[]
[]
[FVKernels]
[flux]
type = FVPorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[FVBCs]
[ptop]
type = FVDirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = FVDirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[perm_var]
type = MooseVariableFVReal
[]
[perm_x]
type = MooseVariableFVReal
[]
[perm_y]
type = MooseVariableFVReal
[]
[perm_z]
type = MooseVariableFVReal
[]
[]
[AuxKernels]
[perm_var]
type = ConstantAux
value = 2
variable = perm_var
[]
[perm_x]
type = ADPorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = ADPorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = ADPorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[]
[perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[]
[perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[]
[perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[]
[perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[]
[perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[permeability]
type = ADPorousFlowPermeabilityTensorFromVar
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
perm = perm_var
[]
[temperature]
type = ADPorousFlowTemperature
[]
[massfrac]
type = ADPorousFlowMassFraction
[]
[eff_fluid_pressure]
type = ADPorousFlowEffectiveFluidPressure
[]
[ppss]
type = ADPorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = ADPorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = ADPorousFlowPorosityConst
porosity = 0.1
[]
[relperm]
type = ADPorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Steady
solve_type = Newton
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
[]
[Outputs]
file_base = 'PermTensorFromVar01_out'
csv = true
execute_on = 'timestep_end'
[]
(test/tests/ics/dependency/monomial.i)
[GlobalParams]
family = MONOMIAL
order = FIRST
[]
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./a]
[../]
[./b]
[../]
[]
[Variables]
[./u]
[../]
[./v]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = -1
[../]
[./v_ic]
type = MTICSum
variable = v
var1 = u
var2 = a
[../]
[./a_ic]
type = ConstantIC
variable = a
value = 10
[../]
[./b_ic]
type = MTICMult
variable = b
var1 = v
factor = 2
[../]
[]
[AuxKernels]
[./a_ak]
type = ConstantAux
variable = a
value = 256
[../]
[./b_ak]
type = ConstantAux
variable = b
value = 42
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[BCs]
[./left_u]
type = PenaltyDirichletBC
variable = u
boundary = left
value = 0
penalty = 1000
[../]
[./right_u]
type = PenaltyDirichletBC
variable = u
boundary = right
value = 1
penalty = 1000
[../]
[./left_v]
type = PenaltyDirichletBC
variable = v
boundary = left
value = 2
penalty = 1000
[../]
[./right_v]
type = PenaltyDirichletBC
variable = v
boundary = right
value = 1
penalty = 1000
[../]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
nl_rel_tol = 1e-10
[]
[Outputs]
exodus = true
[]
(modules/subchannel/validation/psbt/psbt_null_transient/psbt_ss.i)
# This is an input file based on M. Avramova et. all 2012,
# OECD/NRC Benchmark Based on NUPEC PWR
# Sub-channel and Bundle Tests (PSBT). Volume III: Departure from Nucleate Boiling
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 50
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095
heated_length = 3.658
spacer_z = '0.0 0.229 0.457 0.686 0.914 1.143 1.372 1.600 1.829 2.057 2.286 2.515 2.743 2.972 3.200 3.429'
spacer_k = '0.7 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4'
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.0
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 3.44e6 # W
filename = "power_profile.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = true
[Temp_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = final
file_base = "Temp_Out.txt"
height = 3.658
[]
[mdot_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_Out.txt"
height = 3.658
[]
[mdot_In_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_In.txt"
height = 0.0
[]
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime'
[]
[]
(modules/fluid_properties/test/tests/auxkernels/stagnation_temperature_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./specific_internal_energy]
[../]
[./specific_volume]
[../]
[./velocity]
[../]
[./stagnation_temperature]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./specific_internal_energy_ak]
type = ConstantAux
variable = specific_internal_energy
value = 1026.2e3
[../]
[./specific_volume_ak]
type = ConstantAux
variable = specific_volume
value = 0.0012192
[../]
[./velocity_ak]
type = ConstantAux
variable = velocity
value = 10.0
[../]
[./stagnation_temperature_ak]
type = StagnationTemperatureAux
variable = stagnation_temperature
e = specific_internal_energy
v = specific_volume
vel = velocity
fp = eos
[../]
[]
[FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(modules/subchannel/examples/mesh_generator/psbt_mesh_generator_test.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.0 / 3600.}'
P_out = 4.923e6 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 20
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095
heated_length = 1.00
spacer_z = '0.5'
spacer_k = '0.5'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 20
pitch = 0.0126
heated_length = 1.00
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.08
CT = 2.6
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1.00e6 # W
filename = "power_profile.txt" #
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Tpin_ic]
type = ConstantIC
variable = Tpin
value = 0.0
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = 0.00950
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = false
[Temp_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = final
file_base = "Temp_Out.txt"
height = 3.658
[]
[mdot_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_Out.txt"
height = 3.658
[]
[mdot_In_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_In.txt"
height = 0.0
[]
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(test/tests/postprocessors/difference_pps/difference_pps.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[AuxVariables]
[./v]
[../]
[]
[Variables]
[./u]
[../]
[]
[ICs]
[./u_ic]
type = ConstantIC
variable = u
value = 2
[../]
[]
[AuxKernels]
[./one]
type = ConstantAux
variable = v
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = right
value = 1
[../]
[]
[Postprocessors]
[./u_avg]
type = ElementAverageValue
variable = u
execute_on = 'initial timestep_end'
[../]
[./v_avg]
type = ElementAverageValue
variable = v
execute_on = 'initial timestep_end'
[../]
[./diff]
type = DifferencePostprocessor
value1 = v_avg
value2 = u_avg
execute_on = 'initial timestep_end'
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/sliding_block/sliding/frictional_02_aug.i)
# This is a benchmark test that checks constraint based frictional
# contact using the augmented lagrangian method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# A friction coefficient of 0.2 is used. The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
displacements = 'disp_x disp_y'
volumetric_locking_correction = false
[]
[AuxVariables]
[./contact_traction]
[../]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 20
nl_max_its = 200
dt = 0.1
end_time = 15
num_steps = 200
l_tol = 1e-6
nl_rel_tol = 1e-8
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
time_step_interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Problem]
type = AugmentedLagrangianContactProblem
solution_variables = 'disp_x disp_y'
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 100
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 1e+7
friction_coefficient = 0.2
formulation = augmented_lagrange
normalize_penalty = true
al_penetration_tolerance = 1e-6
al_incremental_slip_tolerance = 1.0e-2
al_frictional_force_tolerance = 1e-3
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
(modules/thermal_hydraulics/test/tests/materials/ad_average_wall_temperature_3eqn/ad_average_wall_temperature_3eqn.i)
# Tests the average wall temperature aux for 1-phase flow. With the following
# inputs, the value should be equal to 1.25:
#
# i h_wall T_wall P_hf
# --------------------------
# 1 10 26/10 1
# 2 6 1/2 3
#
# T_fluid = 1/4
#
# With these values,
# P_tot = 1 + 3 = 4
# h_wall_avg = (1 * 10 + 3 * 6) / 4 = 28 / 4 = 7
# denominator = P_tot * h_wall_avg = 4 * 7 = 28
# numerator = 10 * (26/10 - 1/4) * 1 + 6 * (1/2 - 1/4) * 3 = 28
# T_wall_avg = T_fluid + numerator / denominator = 1/4 + 1
#
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[Hw_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall_avg]
family = MONOMIAL
order = CONSTANT
[]
[T_wall1]
family = MONOMIAL
order = CONSTANT
[]
[T_wall2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf1]
family = MONOMIAL
order = CONSTANT
[]
[P_hf2]
family = MONOMIAL
order = CONSTANT
[]
[P_hf_total]
family = MONOMIAL
order = CONSTANT
[]
[T_fluid]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[T_wall_avg_auxkernel]
type = ADMaterialRealAux
variable = T_wall_avg
property = T_wall
[]
[T_wall1_auxkernel]
type = ConstantAux
variable = T_wall1
value = 2.6
[]
[T_wall2_auxkernel]
type = ConstantAux
variable = T_wall2
value = 0.5
[]
[P_hf_total_auxkernel]
type = SumAux
variable = P_hf_total
values = 'P_hf1 P_hf2'
[]
[P_hf1_auxkernel]
type = ConstantAux
variable = P_hf1
value = 1
[]
[P_hf2_auxkernel]
type = ConstantAux
variable = P_hf2
value = 3
[]
[T_fluid_auxkernel]
type = ConstantAux
variable = T_fluid
value = 0.25
[]
[]
[Materials]
[const_materials]
type = ADGenericConstantMaterial
prop_names = 'Hw1 Hw2'
prop_values = '10 6'
[]
[T_wall_avg_material]
type = ADAverageWallTemperature3EqnMaterial
T_wall_sources = 'T_wall1 T_wall2'
Hw_sources = 'Hw1 Hw2'
P_hf_sources = 'P_hf1 P_hf2'
T_fluid = T_fluid
P_hf_total = P_hf_total
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[T_wall_avg_pp]
type = ElementalVariableValue
elementid = 0
variable = T_wall_avg
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(test/tests/outputs/variables/output_vars_test.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 10
ny = 10
elem_type = QUAD9
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[./v]
order = SECOND
family = LAGRANGE
[../]
# ODE variables
[./x]
family = SCALAR
order = FIRST
initial_condition = 1
[../]
[./y]
family = SCALAR
order = FIRST
initial_condition = 2
[../]
[]
[AuxVariables]
[./elemental]
order = CONSTANT
family = MONOMIAL
[../]
[./elemental_restricted]
order = CONSTANT
family = MONOMIAL
[../]
[./nodal]
order = FIRST
family = LAGRANGE
[../]
[./nodal_restricted]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./td]
type = TimeDerivative
variable = u
[../]
[./diff_u]
type = Diffusion
variable = u
[../]
[./conv_u]
type = CoupledForce
variable = u
v = v
[../]
[./diff_v]
type = Diffusion
variable = v
[../]
[]
[AuxKernels]
[./elemental]
type = ConstantAux
variable = elemental
value = 1
[../]
[./elemental_restricted]
type = ConstantAux
variable = elemental_restricted
value = 1
[../]
[./nodal]
type = ConstantAux
variable = elemental
value = 2
[../]
[./nodal_restricted]
type = ConstantAux
variable = elemental_restricted
value = 2
[../]
[]
[ScalarKernels]
[./td1]
type = ODETimeDerivative
variable = x
[../]
[./ode1]
type = ImplicitODEx
variable = x
y = y
[../]
[./td2]
type = ODETimeDerivative
variable = y
[../]
[./ode2]
type = ImplicitODEy
variable = y
x = x
[../]
[]
[BCs]
active = 'left_u right_u left_v'
[./left_u]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 3
value = 9
[../]
[./left_v]
type = DirichletBC
variable = v
boundary = 1
value = 5
[../]
[./right_v]
type = DirichletBC
variable = v
boundary = 2
value = 2
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
dt = 0.01
num_steps = 1
[]
[Outputs]
show = 'x u nodal elemental'
[./out]
type = Exodus
elemental_as_nodal = true
scalar_as_nodal = true
[../]
[]
(test/tests/postprocessors/volume/sphere1D.i)
# The volume of each block should be 3
[Mesh]
file = sphere1D.e
coord_type = RSPHERICAL
[]
[Functions]
[fred]
type = ParsedFunction
expression = '200'
[]
[]
[AuxVariables]
[constantVar]
order = FIRST
family = LAGRANGE
[]
[]
[Variables]
[u]
order = FIRST
family = LAGRANGE
initial_condition = 100
[]
[]
[AuxKernels]
[fred]
type = ConstantAux
variable = constantVar
block = 1
value = 1
[]
[]
[ICs]
[ic1]
type = ConstantIC
variable = constantVar
value = 1
block = 1
[]
[]
[Kernels]
[heat_r]
type = Diffusion
variable = u
[]
[]
[BCs]
[temps]
type = FunctionDirichletBC
variable = u
boundary = 1
function = fred
[]
[]
[Materials]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -snes_ls -ksp_gmres_restart'
petsc_options_value = 'lu basic 101'
line_search = 'none'
nl_abs_tol = 1e-11
nl_rel_tol = 1e-10
l_max_its = 20
[]
[Postprocessors]
[should_be_one]
type = ElementAverageValue
block = 1
variable = constantVar
execute_on = 'initial timestep_end'
[]
[volume1]
type = VolumePostprocessor
block = 1
execute_on = 'initial timestep_end'
[]
[volume2]
type = VolumePostprocessor
block = 2
execute_on = 'initial timestep_end'
[]
[volume3]
type = VolumePostprocessor
block = 3
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
exodus = true
[]
(modules/heat_transfer/test/tests/truss_heat_conduction/rectangle_w_line.i)
[Mesh]
parallel_type = 'replicated'
[rectangle]
type = GeneratedMeshGenerator
dim = 2
nx = 5
ny = 50
xmin = -0.5
xmax = 0.5
ymin = -1.25
ymax = 1.25
boundary_name_prefix = rectangle
[]
[rectangle_id]
type = SubdomainIDGenerator
input = rectangle
subdomain_id = 1
[]
[line]
type = GeneratedMeshGenerator
dim = 1
xmin = -0.5
xmax = 0.5
nx = 10
boundary_name_prefix = line
boundary_id_offset = 10
[]
[line_id]
type = SubdomainIDGenerator
input = line
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'rectangle_id line_id'
[]
[blcok_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'rectangle line'
[]
[]
[Variables]
[temperature]
[]
[]
[Kernels]
[time_derivative]
type = HeatConductionTimeDerivative
variable = temperature
block = 'rectangle'
[]
[heat_conduction]
type = HeatConduction
variable = temperature
block = 'rectangle'
[]
[time_derivative_line]
type = TrussHeatConductionTimeDerivative
variable = temperature
area = area
block = 'line'
[]
[heat_conduction_line]
type = TrussHeatConduction
variable = temperature
area = area
block = 'line'
[]
[]
[AuxVariables]
[area]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[area]
type = ConstantAux
variable = area
value = 0.1 # strip thickness
execute_on = 'initial timestep_begin'
[]
[]
[Constraints]
[equalvalue]
type = EqualValueEmbeddedConstraint
secondary = 'line'
primary = 'rectangle'
penalty = 1e6
formulation = kinematic
primary_variable = temperature
variable = temperature
[]
[]
[Materials]
[rectangle]
type = GenericConstantMaterial
block = 'rectangle'
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[]
[line]
type = GenericConstantMaterial
block = 'line'
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '10.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[]
[]
[BCs]
[right]
type = FunctionDirichletBC
variable = temperature
boundary = 'rectangle_right line_right'
function = '10*t'
[]
[]
[VectorPostprocessors]
[x_n0_25]
type = LineValueSampler
start_point = '-0.25 0 0'
end_point = '-0.25 1.25 0'
num_points = 100
variable = 'temperature'
sort_by = id
[]
[x_0_25]
type = LineValueSampler
start_point = '0.25 0 0'
end_point = '0.25 1.25 0'
num_points = 100
variable = 'temperature'
sort_by = id
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1
end_time = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = 'csv/rectangle_w_line'
time_data = true
[]
[]
(modules/contact/test/tests/sliding_block/sliding/frictionless_aug.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the augmented lagrangian method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./saved_x]
[../]
[./saved_y]
[../]
[./contact_traction]
[../]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
l_max_its = 100
nl_max_its = 100
dt = 0.1
end_time = 15
num_steps = 200
l_tol = 1e-6
nl_rel_tol = 1e-7
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
time_step_interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Problem]
type = AugmentedLagrangianContactProblem
solution_variables = 'disp_x disp_y'
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 25
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
normalize_penalty = true
formulation = augmented_lagrange
tangential_tolerance = 1e-3
normal_smoothing_distance = 0.1
al_penetration_tolerance = 1e-9
[../]
[]
(modules/solid_properties/test/tests/materials/thermal_solid_functor_properties/base.i)
T_initial = 300
[GlobalParams]
execute_on = 'INITIAL'
[]
[Mesh]
type = GeneratedMesh
dim = 1
xmin = 0
xmax = 1
nx = 1
[]
[SolidProperties]
[ss316_sp]
type = ThermalSS316Properties
[]
[]
[FunctorMaterials]
[sp_mat]
type = ThermalSolidPropertiesFunctorMaterial
temperature = T
sp = ss316_sp
specific_heat = cp
density = rho
thermal_conductivity = k
specific_internal_energy = e
[]
[]
[AuxVariables]
[T]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[T_ak]
type = ConstantAux
variable = T
value = ${T_initial}
[]
[]
[Postprocessors]
[cp]
type = ElementExtremeFunctorValue
functor = 'cp'
[]
[k]
type = ElementExtremeFunctorValue
functor = 'k'
[]
[density]
type = ElementExtremeFunctorValue
functor = 'rho'
[]
[e]
type = ElementExtremeFunctorValue
functor = 'e'
[]
[]
[Problem]
solve = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/subchannel/validation/Blockage/THORS/FFM-3A.i)
################################################################################
## THORS bundle 3A central blockage benchmark ##
## SCM simulation ##
## POC : Vasileios Kyriakopoulos, [email protected] ##
################################################################################
# Details on the experimental facility modeled can be found at:
# Han, J. T. "Blockages in LMFBR fuel assemblies: A review of experimental and theoretical studies." (1977).
# The affected subchannels get an area reduction and a form loss coefficient
T_in = 714.261
A12 = 1.00423e3
A13 = -0.21390
A14 = -1.1046e-5
rho = '${fparse A12 + A13 * T_in + A14 * T_in * T_in}'
Total_surface_area = 0.000452826 #m2
Blocked_surface_area = 0.0 #m2
Flow_area = '${fparse Total_surface_area - Blocked_surface_area}'
vol_flow = 3.4E-03 #m3/s
mass_flux_in = '${fparse rho * vol_flow / Flow_area}'
P_out = 2.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 3
n_cells = 36
flat_to_flat = 0.0338514
heated_length = 0.5334
unheated_length_entry = 0.3048
unheated_length_exit = 0.0762
pin_diameter = 0.005842
pitch = 7.2644e-3
dwire = 0.0014224
hwire = 0.3048
spacer_z = '0.0'
spacer_k = '0.0'
z_blockage = '0.6858 0.69215'
index_blockage = '0 1 2 3 4 5'
reduction_blockage = '0.08 0.08 0.08 0.08 0.08 0.08'
k_blockage = '2.0 2.0 2.0 2.0 2.0 2.0'
[]
[]
[AuxVariables]
[mdot]
[]
[SumWij]
[]
[P]
[]
[DP]
[]
[h]
[]
[T]
[]
[rho]
[]
[S]
[]
[w_perim]
[]
[q_prime]
[]
[mu]
[]
[displacement]
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 2.2
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = true
segregated = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 332500.0 #W
filename = "pin_power_profile_19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Executioner]
type = Steady
nl_rel_tol = 0.9
l_tol = 0.9
[]
[Postprocessors]
[1]
type = SubChannelPointValue
variable = T
index = 37
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[2]
type = SubChannelPointValue
variable = T
index = 36
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[3]
type = SubChannelPointValue
variable = T
index = 20
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[4]
type = SubChannelPointValue
variable = T
index = 10
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[5]
type = SubChannelPointValue
variable = T
index = 4
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[6]
type = SubChannelPointValue
variable = T
index = 1
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[7]
type = SubChannelPointValue
variable = T
index = 14
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[8]
type = SubChannelPointValue
variable = T
index = 28
execute_on = 'TIMESTEP_END'
height = 0.9144
[]
[]
(modules/contact/test/tests/verification/patch_tests/plane_2/plane2_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane2_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x5]
type = NodalVariableValue
nodeid = 4
variable = disp_x
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_y5]
type = NodalVariableValue
nodeid = 4
variable = disp_y
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-8
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x5 disp_y5 disp_x9 disp_y9 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(modules/solid_mechanics/test/tests/truss/truss_hex_action.i)
# This test is designed to check
# whether truss element works well with other multi-dimensional element
# e.g. the hex element in this case, by assigning different block number
# to different types of elements.
[Mesh]
type = FileMesh
file = truss_hex.e
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[./react_y]
order = FIRST
family = LAGRANGE
[../]
[./react_z]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./x2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 .5 1 1'
[../]
[./y2]
type = PiecewiseLinear
x = '0 1 2 3'
y = '0 0 .5 1'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = 1
value = 0
[../]
[./fixx2]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0
[../]
[./fixz2]
type = DirichletBC
variable = disp_z
boundary = 2
value = 0
[../]
[./fixDummyHex_x]
type = DirichletBC
variable = disp_x
boundary = 1000
value = 0
[../]
[./fixDummyHex_y]
type = DirichletBC
variable = disp_y
boundary = 1000
value = 0
[../]
[./fixDummyHex_z]
type = DirichletBC
variable = disp_z
boundary = 1000
value = 0
[../]
[]
[DiracKernels]
[./pull]
type = ConstantPointSource
value = -25
point = '0 -2 0'
variable = disp_y
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
block = '1 2'
property = axial_stress
variable = axial_stress
[../]
[./e_over_l]
type = MaterialRealAux
block = '1 2'
property = e_over_l
variable = e_over_l
[../]
[./area1]
type = ConstantAux
block = 1
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[./area2]
type = ConstantAux
block = 2
variable = area
value = 0.25
execute_on = 'initial timestep_begin'
[../]
[]
[Preconditioning]
[./SMP]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = PJFNK
petsc_options_iname = '-pc_type -ksp_gmres_restart'
petsc_options_value = 'jacobi 101'
nl_max_its = 15
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dt = 1
num_steps = 1
end_time = 1
[]
[Kernels]
[SolidMechanics]
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[]
[Physics/SolidMechanics/LineElement/QuasiStatic]
[./block]
truss = true
displacements = 'disp_x disp_y disp_z'
area = area
block = '1 2'
save_in = 'react_x react_y react_z'
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = 1000
youngs_modulus = 1e6
poissons_ratio = 0
[../]
[./strain]
type = ComputeSmallStrain
block = 1000
displacements = 'disp_x disp_y disp_z'
[../]
[./stress]
type = ComputeLinearElasticStress
block = 1000
[../]
[./linelast]
type = LinearElasticTruss
block = '1 2'
displacements = 'disp_x disp_y disp_z'
youngs_modulus = 1e6
[../]
[]
[Outputs]
file_base = 'truss_hex_out'
exodus = true
[]
(modules/solid_mechanics/test/tests/truss/truss_plastic.i)
[Mesh]
type = GeneratedMesh
dim = 1
elem_type = EDGE
nx = 1
[]
[GlobalParams]
displacements = 'disp_x'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./axial_stress]
order = CONSTANT
family = MONOMIAL
[../]
[./e_over_l]
order = CONSTANT
family = MONOMIAL
[../]
[./area]
order = CONSTANT
family = MONOMIAL
[../]
[./react_x]
order = FIRST
family = LAGRANGE
[../]
[]
[Functions]
[./hf]
type = PiecewiseLinear
x = '0 0.0001 0.0003 0.0023'
y = '50e6 52e6 54e6 56e6'
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./load]
type = FunctionDirichletBC
variable = disp_x
boundary = right
function = 't'
[../]
[]
[AuxKernels]
[./axial_stress]
type = MaterialRealAux
property = axial_stress
variable = axial_stress
execute_on = 'initial TIMESTEP_END'
[../]
[./e_over_l]
type = MaterialRealAux
property = e_over_l
variable = e_over_l
execute_on = 'initial TIMESTEP_END'
[../]
[./area]
type = ConstantAux
variable = area
value = 1.0
execute_on = 'initial timestep_begin'
[../]
[]
[Postprocessors]
[./s_xx]
type = ElementIntegralMaterialProperty
mat_prop = axial_stress
[../]
[./e_xx]
type = ElementIntegralMaterialProperty
mat_prop = total_stretch
[../]
[./ee_xx]
type = ElementIntegralMaterialProperty
mat_prop = elastic_stretch
[../]
[./ep_xx]
type = ElementIntegralMaterialProperty
mat_prop = plastic_stretch
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_abs_tol = 1e-11
l_max_its = 20
dt = 5e-5
num_steps = 10
[]
[Kernels]
[./solid]
type = StressDivergenceTensorsTruss
component = 0
variable = disp_x
area = area
save_in = react_x
[../]
[]
[Materials]
[./truss]
type = PlasticTruss
youngs_modulus = 2.0e11
yield_stress = 500e5
outputs = 'exodus'
output_properties = 'elastic_stretch hardening_variable plastic_stretch total_stretch'
[../]
[]
[Outputs]
exodus = true
[]
(modules/subchannel/test/tests/restart/steady.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 3
ny = 3
n_cells = 10
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1
spacer_z = '0.0'
spacer_k = '0.0'
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 1.8
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
[]
[ICs]
[S_ic]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_ic]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_ic]
type = SCMQuadPowerIC
variable = q_prime
power = 1e6
filename = "power_profile.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
checkpoint = true
[]
[Executioner]
type = Steady
[]
(modules/heat_transfer/test/tests/truss_heat_conduction/line.i)
[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 1
nx = 10
xmax = 0.5
xmin = -0.5
[]
[left_line]
type = SubdomainBoundingBoxGenerator
input = gmg
bottom_left = '-0.5 0 0'
top_right = '0 0 0'
block_id = 1
block_name = 'left_line'
location = INSIDE
[]
[right_line]
type = SubdomainBoundingBoxGenerator
input = left_line
bottom_left = '0 0 0'
top_right = '0.5 0 0'
block_id = 2
block_name = 'right_line'
location = INSIDE
[]
[]
[Variables]
[temperature]
[]
[]
[Kernels]
[time_derivative]
# type = HeatConductionTimeDerivative
type = TrussHeatConductionTimeDerivative
variable = temperature
area = area
[]
[heat_conduction]
# type = HeatConduction
type = TrussHeatConduction
variable = temperature
area = area
[]
[]
[AuxVariables]
[area]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[area]
type = ConstantAux
variable = area
value = 0.1
execute_on = 'initial timestep_begin'
[]
[]
[Materials]
[left_line]
type = GenericConstantMaterial
block = 'left_line'
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '0.1 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[]
[right_line]
type = GenericConstantMaterial
block = 'right_line'
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '5.0e-3 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[]
[]
[BCs]
[right]
type = FunctionDirichletBC
variable = temperature
boundary = 'right'
function = '10*t'
[]
[]
[VectorPostprocessors]
[center]
type = LineValueSampler
start_point = '-0.5 0 0'
end_point = '0.5 0 0'
num_points = 40
variable = 'temperature'
sort_by = id
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1
end_time = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = 'csv/line'
time_data = true
[]
[]
(modules/subchannel/test/tests/problems/SFR/sodium-19pin/test19_explicit.i)
T_in = 660
mass_flux_in = '${fparse 1e+6 * 300.00 / 36000.*0.5}'
P_out = 2.0e5 # Pa
[GlobalParams]
nrings = 3
n_cells = 5
flat_to_flat = 0.056
heated_length = 0.5
pitch = 0.012
[]
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
pin_diameter = 0.01
dwire = 0.002
hwire = 0.0833
spacer_z = '0'
spacer_k = '5.0'
[]
[duct]
type = SCMTriDuctMeshGenerator
input = subchannel
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime_duct]
block = duct
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 1.0
compute_density = true
compute_viscosity = true
compute_power = true
implicit = false
segregated = true
verbose_subchannel = true
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 1000.0 # W
filename = "pin_power_profile19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[T1]
type = SubChannelPointValue
variable = T
index = 37
execute_on = "timestep_end"
height = 0.5
[]
[T2]
type = SubChannelPointValue
variable = T
index = 36
execute_on = "timestep_end"
height = 0.5
[]
[T3]
type = SubChannelPointValue
variable = T
index = 20
execute_on = "timestep_end"
height = 0.5
[]
[T4]
type = SubChannelPointValue
variable = T
index = 10
execute_on = "timestep_end"
height = 0.5
[]
[T5]
type = SubChannelPointValue
variable = T
index = 4
execute_on = "timestep_end"
height = 0.5
[]
[T6]
type = SubChannelPointValue
variable = T
index = 1
execute_on = "timestep_end"
height = 0.5
[]
[T7]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 0.5
[]
[T8]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 0.5
[]
####### Assembly pressure drop
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
#####
[Mean_Temp]
type = SCMPlanarMean
variable = T
height = 2
[]
[Total_power]
type = ElementIntegralVariablePostprocessor
variable = q_prime
block = subchannel
[]
[mdot-8]
type = SubChannelPointValue
variable = mdot
index = 28
execute_on = 'TIMESTEP_END'
height = 0.5
[]
[]
[Executioner]
type = Steady
[]
(test/tests/parser/active_inactive/top_level.i)
#############################################################
# This input file demonstrates the use of inactive at the
# top level.
##############################################################
inactive = 'Executioner' # This will produce an error about missing Executioner
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
active = 'u'
[./u]
[../]
[]
[AuxVariables]
inactive = 'aux1 aux3'
# The parameters in the inactive sections can be invalid because
# they are never parsed.
[./aux1]
type = DoesntExist
flintstones = 'fred wilma'
[../]
[./aux2]
[../]
[./aux3]
order = TENZILLION
[../]
[./aux4]
[../]
[]
[AuxKernels]
active = 'aux2 aux4'
# You can use active or inactive depending on whatever is easier
[./aux1]
type = ConstantAux
value = 1
variable = aux1
[../]
[./aux2]
type = ConstantAux
value = 2
variable = aux2
[../]
[./aux3]
type = ConstantAux
value = 3
variable = aux3
[../]
[./aux4]
type = ConstantAux
value = 4
variable = aux4
[../]
[]
[Kernels]
inactive = ''
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
inactive = ''
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
inactive = Adaptivity
[./Adaptivity]
[../]
[]
# No output so we can override several parameters and test them concurrently
(modules/subchannel/test/tests/multiapp/sc_core.i)
# Following Advanced Burner Test Reactor Preconceptual Design Report
# Vailable at: https://www.ne.anl.gov/eda/ABTR_1cv2_ws.pdf
###################################################
# Thermal-hydraulics parameters
###################################################
T_in = 866.0
P_out = 253727.1 # Pa
reactor_power = 671337.24 #WTh
mass_flow = '${fparse 6.15}' # kg/(s)
###################################################
# Geometric parameters
###################################################
# units are cm - do not forget to convert to meter
scale_factor = 0.01
fuel_pin_pitch = '${fparse 1.4478*scale_factor}'
fuel_pin_diameter = '${fparse 1.4268*scale_factor}'
wire_z_spacing = '${fparse 0*scale_factor}'
wire_diameter = '${fparse 0*scale_factor}'
n_rings = 8
length_heated_fuel = '${fparse 35.56*scale_factor}'
entry_length = 0
duct_inside = '${fparse 11.43*2*scale_factor}'
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = '${fparse n_rings}'
n_cells = 10
flat_to_flat = '${fparse duct_inside}'
heated_length = '${fparse length_heated_fuel}'
pin_diameter = '${fparse fuel_pin_diameter}'
pitch = '${fparse fuel_pin_pitch}'
dwire = '${fparse wire_diameter}'
hwire = '${fparse wire_z_spacing}'
spacer_z = '0'
spacer_k = '0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = '${fparse n_rings}'
n_cells = 10
heated_length = '${fparse length_heated_fuel}'
pitch = '${fparse fuel_pin_pitch}'
[]
[duct]
type = SCMTriDuctMeshGenerator
input = fuel_pins
nrings = '${fparse n_rings}'
n_cells = 10
flat_to_flat = '${fparse duct_inside}'
heated_length = '${fparse length_heated_fuel}'
pitch = '${fparse fuel_pin_pitch}'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[mu]
block = subchannel
[]
[q_prime_duct]
block = duct
initial_condition = 0
[]
[Tduct]
block = duct
[]
[displacement]
block = subchannel
initial_condition = 0
[]
[]
[FluidProperties]
[sodium]
type = SimpleFluidProperties
molar_mass = 0.0355
cp = 873.0
cv = 873.0
specific_entropy = 1055
viscosity = 0.0001582
thermal_conductivity = 25.9
thermal_expansion = 2.77e-4
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = ${P_out}
CT = 1.0
P_tol = 1.0e-2
T_tol = 1.0e-2
# Solver settings
implicit = true
segregated = false
# Output
verbose_multiapps = true
verbose_subchannel = true
compute_density = false
compute_viscosity = false
compute_power = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${reactor_power} # W
filename = 'pin_p.txt'
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[T_duct_ic]
type = ConstantIC
variable = Tduct
value = ${T_in}
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMFlatMassFlowRateAux
variable = mdot
boundary = inlet
mass_flow = ${mass_flow}
execute_on = 'timestep_begin'
block = subchannel
[]
[]
[Executioner]
type = Steady
[]
[VectorPostprocessors]
[sub]
type = LineValueSampler
start_point = '0 -0.00835888 ${entry_length}'
end_point = '0 -0.00835888 ${fparse entry_length + length_heated_fuel}'
num_points = 10
variable = 'h rho P'
sort_by = 'z'
execute_on = 'timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/subchannel/validation/areva_FCTF/FCTF_deformed.i)
# Following Benchmark Specifications and Data Requirements for the AREVA heated-bundle test in its Fuel Cooling Test Facility (FCTF)
# as part of a U.S. DOE funded project: Towards a Longer-Life Core. In partnership with TerraPower, TAMU and ANL,
# AREVA NP tested a wire-wrapped pin bundle. The bundle consists of electrically heated pins and non-heated pins.
# This test collected measurements to evaluate thermal hydraulic performance of a wire wrapped bundle, useful for CFD and other software validation.
# Available at: https://www.osti.gov/servlets/purl/1346027/
###################################################
# Steady state subchannel calculation
# Thermal-hydraulics parameters
###################################################
T_in = 305.68 #Kelvin (32.53 C)
# mu = 0.0007646 #Pas
# Re = 20500
# Dh = 0.004535
Total_Surface_Area_SC = 0.00285294 #m2
Total_Surface_Area_EXP = 0.002808 #m2
P_out = 829370.355 # Pa (120.29 psia)
Power = 90640 # Watt Each heater pin had a max power of 30kW
# Heater 17 (18) not working.
# test:19 power = 22613 22610 22754 22663 [W], Total Power = 90640 [W], mdot_average = 9.576 [kg/s], Re = 20300
# Index of heated pins per silicon controled rectifiers (Areva notation):1 3 6 7 || 4 5 11 15 ||2 9 19 40 60 || 13 44 48 52 56 (from bottom to top)
# Index of heated pins per silicon controled rectifiers (SC notation):0 3 6 1 || 4 5 12 16 || 2 10 8 43 39 || 14 47 51 55 59 (from top to bottom) 38 areva->41 SC
# Relative power of pin per rectifier: 1.12266659312 || 1.12251765225 || 0.90373345101 || 0.90011915269
mdot_average = '${fparse 9.43 * Total_Surface_Area_SC / Total_Surface_Area_EXP}'
mass_flux_in = '${fparse mdot_average / Total_Surface_Area_SC}' #kg/m2
###################################################
# Geometric parameters (non-deformed heated bundle)
###################################################
fuel_pin_pitch = 0.01122652 #m
fuel_pin_diameter = 0.009514 #m
wire_z_spacing = 0.285 #m
wire_diameter = 0.0017062 #m
inner_duct_in = 0.092 #m
n_rings = 5
unheated_length_entry = 1.14 #m
heated_length = 1.71 #m
unheated_length_exit = 0.855 #m
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 65
flat_to_flat = ${inner_duct_in}
unheated_length_entry = ${unheated_length_entry}
heated_length = ${heated_length}
unheated_length_exit = ${unheated_length_exit}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 65
unheated_length_entry = ${unheated_length_entry}
heated_length = ${heated_length}
unheated_length_exit = ${unheated_length_exit}
pitch = ${fuel_pin_pitch}
[]
[]
[Functions]
[axial_heat_rate]
type = ParsedFunction
expression = '(0.4*pi/(pi-2))*sin(pi*z/L) + 1.4 - (0.4*pi/(pi-2))'
symbol_names = 'L'
symbol_values = '${heated_length}'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[mu]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = water
n_blocks = 1
P_out = ${P_out}
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = true
segregated = false
interpolation_scheme = 'upwind'
verbose_subchannel = true
deformation = true
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${Power}
filename = "pin_power_profile61.txt"
axial_heat_rate = axial_heat_rate
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[displacement_ic]
type = FCTFdisplacementIC
variable = displacement
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
!include deformed_duct_pp.i
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = '3D.i'
execute_on = 'FINAL'
[]
[]
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S displacement'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Dpin Tpin q_prime'
[]
[]
(modules/thermal_hydraulics/test/tests/components/heat_source_from_power_density/err.base.i)
[AuxVariables]
[power_density]
family = MONOMIAL
order = CONSTANT
block = 'hs:fuel'
[]
[]
[AuxKernels]
[mock_power_aux]
type = ConstantAux
variable = power_density
value = 1e9
block = 'hs:fuel'
[]
[]
[SolidProperties]
[fuel-mat]
type = ThermalFunctionSolidProperties
k = 2.5
cp = 300.
rho = 1.032e4
[]
[]
[Components]
[hs]
type = HeatStructureCylindrical
position = '0 -0.024748 0'
orientation = '0 0 1'
length = 3.865
n_elems = 1
names = 'fuel'
widths = '0.004096'
n_part_elems = '1'
solid_properties = 'fuel-mat'
solid_properties_T_ref = '300'
initial_T = 559.15
[]
[hgen]
type = HeatSourceFromPowerDensity
power_density = power_density
[]
[]
[Executioner]
type = Transient
dt = 1.e-2
[]
(modules/combined/test/tests/gap_heat_transfer_convex/gap_heat_transfer_convex_gap_offsets.i)
#The two blocks were moved apart by the value of 0.005 in the y-direction, respectively.
#This value was compensated by the gap offsets from both secondary and primary sides
[GlobalParams]
displacements = 'disp_x disp_y disp_z'
temperature = temp
[]
[Mesh]
file = gap_heat_transfer_convex_gap_offsets.e
[]
[Functions]
[./disp]
type = PiecewiseLinear
x = '0 2.0'
y = '0 1.0'
[../]
[./temp]
type = PiecewiseLinear
x = '0 1'
y = '200 200'
[../]
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./disp_z]
[../]
[./temp]
initial_condition = 100
[../]
[]
[AuxVariables]
[./primary_gap_offset]
[../]
[./secondary_gap_offset]
[../]
[./mapped_primary_gap_offset]
[../]
[]
[AuxKernels]
[./primary_gap_offset]
type = ConstantAux
variable = primary_gap_offset
value = -0.005
boundary = 2
[../]
[./mapped_primary_gap_offset]
type = GapValueAux
variable = mapped_primary_gap_offset
paired_variable = primary_gap_offset
boundary = 3
paired_boundary = 2
[../]
[./secondary_gap_offset]
type = ConstantAux
variable = secondary_gap_offset
value = -0.005
boundary = 3
[../]
[]
[ThermalContact]
[./thermal_contact]
type = GapHeatTransfer
variable = temp
primary = 2
secondary = 3
emissivity_primary = 0
emissivity_secondary = 0
secondary_gap_offset = secondary_gap_offset
mapped_primary_gap_offset = mapped_primary_gap_offset
[../]
[]
[Physics/SolidMechanics/QuasiStatic/All]
volumetric_locking_correction = true
strain = FINITE
eigenstrain_names = eigenstrain
[]
[Kernels]
[./heat]
type = HeatConduction
variable = temp
[../]
[]
[BCs]
[./move_right]
type = FunctionDirichletBC
boundary = '3'
variable = disp_x
function = disp
[../]
[./fixed_x]
type = DirichletBC
boundary = '1'
variable = disp_x
value = 0
[../]
[./fixed_y]
type = DirichletBC
boundary = '1 2 3 4'
variable = disp_y
value = 0
[../]
[./fixed_z]
type = DirichletBC
boundary = '1 2 3 4'
variable = disp_z
value = 0
[../]
[./temp_bottom]
type = FunctionDirichletBC
boundary = 1
variable = temp
function = temp
[../]
[./temp_top]
type = DirichletBC
boundary = 4
variable = temp
value = 100
[../]
[]
[Materials]
[./elasticity_tensor]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./thermal_strain]
type = ComputeThermalExpansionEigenstrain
stress_free_temperature = 100
thermal_expansion_coeff = 0
eigenstrain_name = eigenstrain
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
[../]
[./heat1]
type = HeatConductionMaterial
block = 1
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./heat2]
type = HeatConductionMaterial
block = 2
specific_heat = 1.0
thermal_conductivity = 1.0
[../]
[./density]
type = Density
block = '1 2'
density = 1.0
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
start_time = 0.0
dt = 0.1
end_time = 2.0
[]
[Outputs]
exodus = true
[]
(modules/subchannel/validation/EBR-II/XX09_SCM_SS17.i)
# Following Benchmark Specifications and Data Requirements for EBR-II Shutdown Heat Removal Tests SHRT-17 and SHRT-45R
# Available at: https://publications.anl.gov/anlpubs/2012/06/73647.pdf
###################################################
# Steady state subchannel calcultion
# Thermal-hydraulics parameters
###################################################
T_in = 624.70556 #Kelvin
Total_Surface_Area = 0.000854322 #m2
Mass_In = 2.45 #kg/sec
mass_flux_in = '${fparse Mass_In / Total_Surface_Area}' #kg/m2
P_out = 2.0e5 #Pa
Power_initial = 486200 #W (Page 26,35 of ANL document)
###################################################
# Geometric parameters
###################################################
scale_factor = 0.01
fuel_pin_pitch = '${fparse 0.5664*scale_factor}'
fuel_pin_diameter = '${fparse 0.4419*scale_factor}'
wire_z_spacing = '${fparse 15.24*scale_factor}'
wire_diameter = '${fparse 0.1244*scale_factor}'
inner_duct_in = '${fparse 4.64*scale_factor}'
n_rings = 5
heated_length = '${fparse 34.3*scale_factor}'
unheated_length_exit = '${fparse 26.9*scale_factor}'
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 50
flat_to_flat = ${inner_duct_in}
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 50
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pitch = ${fuel_pin_pitch}
[]
[duct]
type = SCMTriDuctMeshGenerator
input = fuel_pins
nrings = ${n_rings}
n_cells = 50
flat_to_flat = ${inner_duct_in}
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pitch = ${fuel_pin_pitch}
[]
[]
[Functions]
[axial_heat_rate]
type = ParsedFunction
value = '(pi/2)*sin(pi*z/L)*exp(-alpha*z)/(1.0/alpha*(1.0 - exp(-alpha*L)))*L'
vars = 'L alpha'
vals = '${heated_length} 1.8012'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[q_prime_duct]
block = duct
[]
[Tduct]
block = duct
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = ${P_out}
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-5
implicit = true
segregated = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${Power_initial}
filename = "pin_power_profile61.txt"
axial_heat_rate = axial_heat_rate
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[TTC-27]
type = SubChannelPointValue
variable = T
index = 91
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-28]
type = SubChannelPointValue
variable = T
index = 50
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-29]
type = SubChannelPointValue
variable = T
index = 21
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-30]
type = SubChannelPointValue
variable = T
index = 4
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-31]
type = SubChannelPointValue
variable = T
index = 2
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-32]
type = SubChannelPointValue
variable = T
index = 16
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-33]
type = SubChannelPointValue
variable = T
index = 42
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-34]
type = SubChannelPointValue
variable = T
index = 80
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-35]
type = SubChannelPointValue
variable = T
index = 107
execute_on = 'TIMESTEP_END'
height = 0.322
[]
# [MTC-20]
# type = SubChannelPointValue
# variable = T
# index = 33
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-22]
# type = SubChannelPointValue
# variable = T
# index = 3
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-24]
# type = SubChannelPointValue
# variable = T
# index = 28
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-25]
# type = SubChannelPointValue
# variable = T
# index = 60
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [MTC-26]
# type = SubChannelPointValue
# variable = T
# index = 106
# execute_on = 'TIMESTEP_END'
# height = 0.172
# []
# [14TC-37]
# type = SubChannelPointValue
# variable = T
# index = 52
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
# [14TC-39]
# type = SubChannelPointValue
# variable = T
# index = 6
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
# [14TC-41]
# type = SubChannelPointValue
# variable = T
# index = 40
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
# [14TC-43]
# type = SubChannelPointValue
# variable = T
# index = 105
# execute_on = 'TIMESTEP_END'
# height = 0.480
# []
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = '3d_SCM_SS.i'
execute_on = 'FINAL'
[]
[]
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin q_prime'
[]
[]
(modules/thermal_hydraulics/test/tests/controls/set_real_value_control/test.i)
# This is testing that the values set by SetRealValueControl are used.
# The values of function T0_fn are set into an aux-field `aux`. Then,
# we compute the average value of this field in a postprocessor. It
# should be equal to the value of T0_fn.
[GlobalParams]
initial_p = 100.e3
initial_vel = 1.0
initial_T = 350.
closures = simple_closures
[]
[FluidProperties]
[fp]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0
p_inf = 1.e9
cv = 1816
[]
[]
[Closures]
[simple_closures]
type = Closures1PhaseSimple
[]
[]
[Components]
[pipe1]
type = FlowChannel1Phase
fp = fp
position = '0 0 0'
orientation = '1 0 0'
length = 15.0
n_elems = 10
A = 0.01
D_h = 0.1
f = 0.01
[]
[inlet]
type = InletStagnationPressureTemperature1Phase
input = 'pipe1:in'
p0 = 100.e3
T0 = 350.
[]
[outlet]
type = Outlet1Phase
input = 'pipe1:out'
p = 100.0e3
[]
[]
[AuxVariables]
[aux]
[]
[]
[AuxKernels]
[aux_kernel]
type = ConstantAux
variable = aux
value = 350
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Functions]
[T0_fn]
type = PiecewiseLinear
x = '0 1'
y = '350 345'
[]
[]
[ControlLogic]
[T_inlet_fn]
type = GetFunctionValueControl
function = T0_fn
[]
[set_inlet_value]
type = SetRealValueControl
parameter = AuxKernels/aux_kernel/value
value = T_inlet_fn:value
[]
[]
[Postprocessors]
[aux]
type = ElementAverageValue
variable = aux
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[Preconditioning]
[SMP_PJFNK]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
dt = 0.1
abort_on_solve_fail = true
solve_type = 'PJFNK'
line_search = 'basic'
nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 20
l_tol = 1e-3
l_max_its = 5
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
start_time = 0.0
end_time = 1
automatic_scaling = true
[]
[Outputs]
csv = true
[]
(modules/subchannel/test/tests/problems/coupling/main.i)
T_in = 297.039 # K
P_out = 101325 # Pa
heated_length = 1.0
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 2
ny = 2
n_cells = 10
pitch = 0.014605
pin_diameter = 0.012065
gap = 0.0015875
heated_length = ${heated_length}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 2
ny = 2
n_cells = 10
pitch = 0.014605
heated_length = ${heated_length}
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = fuel_pins
[]
[displacement]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[Functions]
[axial_heat_rate]
type = ParsedFunction
expression = '(pi/2)*sin(pi*z/L)'
symbol_names = 'L'
symbol_values = '${heated_length}'
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
n_blocks = 1
fp = water
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1000 # W
filename = "power_profile.txt"
axial_heat_rate = axial_heat_rate
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = 0.012065
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = 131.43435930715006
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 30
fixed_point_min_its = 2
fixed_point_rel_tol = 1e-6
[]
################################################################################
# A multiapp that transfers data to heat conduction simulations
################################################################################
[MultiApps] # I have as many multiapps as pins
[sub]
type = FullSolveMultiApp
input_files = sub.i # seperate file for multiapps due to radial power profile
execute_on = 'timestep_end'
positions = '0 0 0 '
bounding_box_padding = '0 0 0.01'
[]
[viz]
type = FullSolveMultiApp
input_files = '3d.i'
execute_on = 'timestep_end'
[]
[]
[Transfers]
[Tpin] # send pin surface temperature to heat conduction,
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
variable = Pin_surface_temperature
source_variable = Tpin
execute_on = 'timestep_end'
[]
[from_sub] # send heat flux from heat conduction to subchannel
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
variable = q_prime
source_variable = q_prime
from_boundaries = right
execute_on = 'timestep_end'
[]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
execute_on = 'timestep_end'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin q_prime Dpin'
execute_on = 'timestep_end'
[]
[]
(test/tests/parser/active_inactive/active_inactive.i)
#############################################################
# This input file demonstrates the use of the active/inactive
# block level parameters that can be used to toggle individual
# blocks on/off for every block in a MOOSE-based input file.
#
# "active" and "inactive" cannot be used within the same block
##############################################################
[Mesh]
type = GeneratedMesh
dim = 2
nx = 2
ny = 2
[]
[Variables]
active = 'u'
[./u]
[../]
[]
[AuxVariables]
inactive = 'aux1 aux3'
# The parameters in the inactive sections can be invalid because
# they are never parsed.
[./aux1]
type = DoesntExist
flintstones = 'fred wilma'
[../]
[./aux2]
[../]
[./aux3]
order = TENZILLION
[../]
[./aux4]
[../]
[]
[AuxKernels]
active = 'aux2 aux4'
# You can use active or inactive depending on whatever is easier
[./aux1]
type = ConstantAux
value = 1
variable = aux1
[../]
[./aux2]
type = ConstantAux
value = 2
variable = aux2
[../]
[./aux3]
type = ConstantAux
value = 3
variable = aux3
[../]
[./aux4]
type = ConstantAux
value = 4
variable = aux4
[../]
[]
[Kernels]
inactive = ''
[./diff]
type = Diffusion
variable = u
[../]
[]
[BCs]
inactive = ''
[./left]
type = DirichletBC
variable = u
boundary = 1
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 2
value = 1
[../]
[]
[Executioner]
type = Steady
inactive = Adaptivity
[./Adaptivity]
[../]
[]
# No output so we can override several parameters and test them concurrently
(modules/contact/test/tests/mechanical_constraint/frictionless_penalty.i)
[Mesh]
file = blocks_2d.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = frictionless
formulation = penalty
penalty = 1e+7
[../]
[]
(modules/subchannel/validation/EBR-II/XX09_SCM_TR17.i)
# Following Benchmark Specifications and Data Requirements for EBR-II Shutdown Heat Removal Tests SHRT-17 and SHRT-45R
# Available at: https://publications.anl.gov/anlpubs/2012/06/73647.pdf
# Transient Subchannel calculation
###################################################
# Thermal-hydraulics parameters
###################################################
T_in = 624.7 #Kelvin
Total_Surface_Area = 0.000854322 #m3
mass_flux_in = '${fparse 2.45 / Total_Surface_Area}'
P_out = 2.0e5
Power_initial = 486200 #W (Page 26,35 of ANL document)
###################################################
# Geometric parameters
###################################################
scale_factor = 0.01
fuel_pin_pitch = '${fparse 0.5664*scale_factor}'
fuel_pin_diameter = '${fparse 0.4419*scale_factor}'
wire_z_spacing = '${fparse 15.24*scale_factor}'
wire_diameter = '${fparse 0.1244*scale_factor}'
inner_duct_in = '${fparse 4.64*scale_factor}'
n_rings = 5
heated_length = '${fparse 34.3*scale_factor}'
unheated_length_exit = '${fparse 26.9*scale_factor}'
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 50
flat_to_flat = ${inner_duct_in}
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 50
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pitch = ${fuel_pin_pitch}
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime_init]
block = fuel_pins
[]
[power_history_field]
block = fuel_pins
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[displacement]
block = subchannel
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = ${P_out}
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-6
T_tol = 1.0e-5
implicit = true
segregated = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime_init
power = ${Power_initial}
filename = "pin_power_profile61_uniform.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[Functions]
[power_func]
type = PiecewiseLinear
data_file = 'power_history_SHRT17.csv'
format = "columns"
scale_factor = 1.0
[]
[mass_flux_in]
type = PiecewiseLinear
data_file = 'massflow_SHRT17.csv'
format = "columns"
scale_factor = '${fparse mass_flux_in / 2.45}'
[]
[time_step_limiting]
type = PiecewiseLinear
xy_data = '0.1 0.1
10.0 10.0'
[]
[]
[Controls]
[mass_flux_ctrl]
type = RealFunctionControl
parameter = 'Postprocessors/mass_flux_PP/value'
function = 'mass_flux_in'
execute_on = 'initial timestep_begin'
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = mass_flux_PP
execute_on = 'timestep_begin'
[]
[populate_power_history]
type = FunctionAux
variable = power_history_field
function = 'power_func'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[change_q_prime]
type = ParsedAux
variable = q_prime
args = 'q_prime_init power_history_field'
function = 'q_prime_init*power_history_field'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[report_pressure_outlet]
type = Receiver
default = ${P_out}
[]
[TTC-31]
type = SubChannelPointValue
variable = T
index = 0
execute_on = 'initial timestep_end'
height = 0.322
[]
[post_func]
type = ElementIntegralVariablePostprocessor
block = fuel_pins
variable = q_prime
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[mass_flux_PP]
type = ConstantPostprocessor
value = ${mass_flux_in}
[]
[mass_flow_PP]
type = ParsedPostprocessor
expression = '${Total_Surface_Area} * mass_flux_PP'
pp_names = 'mass_flux_PP'
[]
[]
[Executioner]
type = Transient
start_time = -1.0
end_time = 900.0
[TimeStepper]
type = IterationAdaptiveDT
dt = 0.1
iteration_window = 5
optimal_iterations = 6
growth_factor = 1.1
cutback_factor = 0.8
timestep_limiting_function = 'time_step_limiting'
[]
dtmax = 20
num_steps = 15
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = TransientMultiApp
input_files = '3d_SCM_TR.i'
execute_on = 'INITIAL TIMESTEP_END'
catch_up = true
[]
[]
[Transfers]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin q_prime'
[]
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictional_04_penalty.i)
# This is a benchmark test that checks constraint based frictional
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2 and a friction coefficient
# of 0.4 is used. The gold file is run on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[penetration]
[]
[inc_slip_x]
[]
[inc_slip_y]
[]
[accum_slip_x]
[]
[accum_slip_y]
[]
[]
[Functions]
[vertical_movement]
type = ParsedFunction
expression = -t
[]
[horizontal_movement]
type = ParsedFunction
expression = -0.04*sin(4*t)+0.02
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
add_variables = true
strain = FINITE
[]
[]
[AuxKernels]
[zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[]
[accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[]
[accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[]
[penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[]
[]
[Postprocessors]
[nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[]
[penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[]
[contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[]
[]
[BCs]
[left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[]
[left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[]
[right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[]
[right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[]
[]
[Materials]
[left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[]
[left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-3
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[Predictor]
type = SimplePredictor
scale = 1.0
[]
[]
[Outputs]
# csv = true
time_step_interval = 10
[out]
type = Exodus
elemental_as_nodal = true
[]
[console]
type = Console
max_rows = 5
[]
[]
[Contact]
[leftright]
secondary = 3
primary = 2
model = coulomb
penalty = 2e+6
friction_coefficient = 0.4
formulation = penalty
normal_smoothing_distance = 0.1
[]
[]
(test/tests/auxkernels/element_aux_var/element_high_order_aux_test.i)
[Mesh]
[./square]
type = GeneratedMeshGenerator
nx = 2
ny = 2
dim = 2
[../]
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./high_order]
order = NINTH
family = MONOMIAL
[../]
[./one]
order = CONSTANT
family = MONOMIAL
[../]
[]
[Kernels]
# Coupling of nonlinear to Aux
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = CoupledForce
variable = u
v = one
[../]
[]
[AuxKernels]
[./coupled_high_order]
variable = high_order
type = CoupledAux
value = 2
operator = +
coupled = u
execute_on = 'initial timestep_end'
[../]
[./constant]
variable = one
type = ConstantAux
value = 1
execute_on = 'initial timestep_end'
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = u
boundary = 3
value = 0
[../]
[./right]
type = DirichletBC
variable = u
boundary = 1
value = 1
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Postprocessors]
[./int2_u]
type = ElementL2Norm
variable = u
execute_on = 'initial timestep_end'
[../]
[./int2_ho]
type = ElementL2Norm
variable = high_order
execute_on = 'initial timestep_end'
[../]
[./int_u]
type = ElementIntegralVariablePostprocessor
variable = u
execute_on = 'initial timestep_end'
[../]
[./int_ho]
type = ElementIntegralVariablePostprocessor
variable = high_order
execute_on = 'initial timestep_end'
[../]
[]
[Outputs]
[./ex_out]
type = Exodus
file_base = ho
elemental_as_nodal = true
[../]
[]
(modules/subchannel/validation/psbt/psbt_ss/psbt.i)
# M. Avramova et al., 2012,
# OECD/NRC Benchmark Based on NUPEC PWR
# Sub-channel and Bundle Tests (PSBT). Volume III: Departure from Nucleate Boiling
# Case:01-5237
T_in = 502.35
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = ${fparse 1e+6 * 16.95 / 3600.}
P_out = 14.72e6 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 20
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095
heated_length = 3.658
spacer_z = '0.0 0.229 0.457 0.686 0.914 1.143 1.372 1.600 1.829 2.057 2.286 2.515 2.743 2.972 3.200 3.429'
spacer_k = '0.7 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 20
pitch = 0.0126
heated_length = 3.658
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[Tpin]
block = fuel_pins
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[q_prime]
block = fuel_pins
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.08
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
verbose_subchannel = true
interpolation_scheme = exponential
deformation = true # this flag allows the re-calculation of subchannel geometric parameters based on the dpin value
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 3.23e6 # W
filename = "power_profile.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = 0.00950
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[Temp_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = final
file_base = "Temp_Out.txt"
height = 3.658
[]
[mdot_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_Out.txt"
height = 3.658
[]
[mdot_In_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_In.txt"
height = 0.0
[]
[]
[Postprocessors]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 3.658
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 3.658
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 3.658
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 3.658
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 3.658
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 3.658
[]
[PinTemp]
type = SCMPinSurfaceTemperature
index = 10
height = 3.658
[]
[]
[Executioner]
type = Steady
[]
(modules/subchannel/test/tests/problems/psbt/psbt_implicit.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
pin_diameter = 0.00950
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
pin_diameter = ${pin_diameter}
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
heated_length = 1.0
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
verbose_subchannel = true
implicit = true
segregated = true
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1.0e6 # W
filename = "power_profile.txt" #type in name of file that describes radial power profile
block = fuel_pins
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = sub_channel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = report_mass_flux_inlet
execute_on = 'timestep_begin'
block = sub_channel
[]
[]
[Postprocessors]
[report_mass_flux_inlet]
type = Receiver
default = ${mass_flux_in}
[]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 1
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 1
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 1
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 1
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 1
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 1
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
(modules/solid_mechanics/test/tests/beam/eigenstrain/eigenstrain_from_var.i)
# Test for eigenstrain from variables
# A constant axial eigenstrain of 0.01 is applied to a beam of length
# 4 m. The beam is fixed at one end. The eigenstrain causes a change in
# length of 0.04 m irrespective of the material properties of the beam.
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
xmin = 0.0
xmax = 4.0
displacements = 'disp_x disp_y disp_z'
[]
[Variables]
[./disp_x]
order = FIRST
family = LAGRANGE
[../]
[./disp_y]
order = FIRST
family = LAGRANGE
[../]
[./disp_z]
order = FIRST
family = LAGRANGE
[../]
[./rot_x]
order = FIRST
family = LAGRANGE
[../]
[./rot_y]
order = FIRST
family = LAGRANGE
[../]
[./rot_z]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./thermal_eig]
[../]
[./zero1]
[../]
[./zero2]
[../]
[]
[AuxKernels]
[./thermal_eig]
type = ConstantAux
value = 0.01
variable = thermal_eig
[../]
[]
[BCs]
[./fixx1]
type = DirichletBC
variable = disp_x
boundary = left
value = 0.0
[../]
[./fixy1]
type = DirichletBC
variable = disp_y
boundary = left
value = 0.0
[../]
[./fixz1]
type = DirichletBC
variable = disp_z
boundary = left
value = 0.0
[../]
[./fixr1]
type = DirichletBC
variable = rot_x
boundary = left
value = 0.0
[../]
[./fixr2]
type = DirichletBC
variable = rot_y
boundary = left
value = 0.0
[../]
[./fixr3]
type = DirichletBC
variable = rot_z
boundary = left
value = 0.0
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON
line_search = 'none'
nl_max_its = 15
nl_rel_tol = 1e-10
nl_abs_tol = 1e-10
dt = 1
dtmin = 1
end_time = 2
[]
[Kernels]
[./solid_disp_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 0
variable = disp_x
[../]
[./solid_disp_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 1
variable = disp_y
[../]
[./solid_disp_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 2
variable = disp_z
[../]
[./solid_rot_x]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 3
variable = rot_x
[../]
[./solid_rot_y]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 4
variable = rot_y
[../]
[./solid_rot_z]
type = StressDivergenceBeam
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
component = 5
variable = rot_z
[../]
[]
[Materials]
[./elasticity]
type = ComputeElasticityBeam
youngs_modulus = 1e6
poissons_ratio = 0.3
shear_coefficient = 1.0
block = 0
[../]
[./strain]
type = ComputeIncrementalBeamStrain
block = '0'
displacements = 'disp_x disp_y disp_z'
rotations = 'rot_x rot_y rot_z'
area = 0.5
Ay = 0.0
Az = 0.0
Iy = 0.01
Iz = 0.01
y_orientation = '0.0 1.0 0.0'
eigenstrain_names = 'thermal'
[../]
[./stress]
type = ComputeBeamResultants
block = 0
[../]
[./thermal]
type = ComputeEigenstrainBeamFromVariable
displacement_eigenstrain_variables = 'thermal_eig zero1 zero2'
eigenstrain_name = thermal
[../]
[]
[Postprocessors]
[./disp_x]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_x
[../]
[./disp_y]
type = PointValue
point = '4.0 0.0 0.0'
variable = disp_y
[../]
[]
[Outputs]
[./out]
type = Exodus
hide = 'thermal_eig zero1 zero2'
[../]
[]
(modules/subchannel/test/tests/ics/FCTFdisplacementIC/test.i)
# Following Benchmark Specifications and Data Requirements for the AREVA heated-bundle test in its Fuel Cooling Test Facility (FCTF)
# as part of a U.S. DOE funded project: Towards a Longer-Life Core. In partnership with TerraPower, TAMU and ANL,
# AREVA NP tested a wire-wrapped pin bundle. The bundle consists of electrically heated pins and non-heated pins.
# This test collected measurements to evaluate thermal hydraulic performance of a wire wrapped bundle, useful for CFD and other software validation.
# Available at: https://www.osti.gov/servlets/purl/1346027/
###################################################
# This input file tests the ICs kernel that populates discplament for the FCTF deformed assembly.
###################################################
# Steady state subchannel calculation
# Thermal-hydraulics parameters
###################################################
T_in = 305.68 #Kelvin (32.53 C)
Total_Surface_Area_SC = 0.00285294 #m2
Total_Surface_Area_EXP = 0.002808 #m2
P_out = 829370.355 # Pa (120.29 psia)
Power = 90640 # Watt Each heater pin had a max power of 30kW
mdot_average = '${fparse 9.58 * Total_Surface_Area_SC / Total_Surface_Area_EXP}'
mass_flux_in = '${fparse mdot_average / Total_Surface_Area_SC / 1.5}' #kg/m2
###################################################
# Geometric parameters (non-deformed heated bundle)
###################################################
fuel_pin_pitch = 0.01122652 #m
fuel_pin_diameter = 0.009514 #m
wire_z_spacing = 0.285 #m
wire_diameter = 0.0017062 #m
inner_duct_in = 0.092 #m
n_rings = 5
unheated_length_entry = 1.14 #m
heated_length = 1.71 #m
unheated_length_exit = 0.855 #m
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 10
flat_to_flat = ${inner_duct_in}
unheated_length_entry = ${unheated_length_entry}
heated_length = ${heated_length}
unheated_length_exit = ${unheated_length_exit}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 10
unheated_length_entry = ${unheated_length_entry}
heated_length = ${heated_length}
unheated_length_exit = ${unheated_length_exit}
pitch = ${fuel_pin_pitch}
[]
[]
[Functions]
[axial_heat_rate]
type = ParsedFunction
expression = '(0.4*pi/(pi-2))*sin(pi*z/L) + 1.4 - (0.4*pi/(pi-2))'
symbol_names = 'L'
symbol_values = '${heated_length}'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[mu]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[displacement]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[Problem]
type = NoSolveProblem
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${Power}
filename = "pin_power_profile61.txt"
axial_heat_rate = axial_heat_rate
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[displacement_ic]
type = FCTFdisplacementIC
variable = displacement
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[]
[Executioner]
type = Steady
[]
(modules/subchannel/verification/friction_model_verification/two_channel2.i)
T_in = 473.15 # K
mass_flux_in = 3500 # kg /sec m2
P_out = 155e+5 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 2
ny = 1
n_cells = 100
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 10.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[]
[Functions]
[S_fn]
type = ParsedFunction
value = if(x>0.0,0.002,0.001)
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 0.0
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
default_friction_model = false
[]
[ICs]
[S_ic]
type = FunctionIC
variable = S
function = S_fn
[]
[w_perim_IC]
type = ConstantIC
variable = w_perim
value = 0.34188034
[]
[q_prime_IC]
type = ConstantIC
variable = q_prime
value = 0.0
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Postprocessors]
[mdot_1]
type = SubChannelPointValue
variable = mdot
index = 0
execute_on = 'initial timestep_end'
height = 10.0
[]
[mdot_2]
type = SubChannelPointValue
variable = mdot
index = 1
execute_on = 'initial timestep_end'
height = 10.0
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
(modules/contact/test/tests/mechanical_constraint/glued_penalty.i)
[Mesh]
file = blocks_2d_nogap.e
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
#Initial gap is 0.01
value = -0.01
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e7
poissons_ratio = 0.3
[../]
[./right]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.01
end_time = 0.10
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
primary = 2
secondary = 3
model = glued
formulation = penalty
penalty = 1e+7
[../]
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictionless_penalty_contact_line_search.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the penalty method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2. The gold file is run
# on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[./horizontal_movement]
type = ParsedFunction
expression = -0.04*sin(4*t)+0.02
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[./tot_nonlin_it]
type = CumulativeValuePostprocessor
postprocessor = nonlinear_its
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Preconditioning]
[./smp]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-ksp_monitor_true_residual'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'contact'
contact_line_search_ltol = .5
contact_line_search_allowed_lambda_cuts = 0
l_max_its = 100
nl_max_its = 20
dt = 0.1
end_time = 3
# num_steps = 30
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+7
formulation = penalty
normal_smoothing_distance = 0.1
[../]
[]
(modules/thermal_hydraulics/test/tests/auxkernels/sum/sum.i)
# Tests the sum aux, which sums an arbitrary number of aux variables
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[sum]
family = MONOMIAL
order = CONSTANT
[]
[value1]
family = MONOMIAL
order = CONSTANT
[]
[value2]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[sum_auxkernel]
type = SumAux
variable = sum
values = 'value1 value2'
[]
[value1_kernel]
type = ConstantAux
variable = value1
value = 2
[]
[value2_kernel]
type = ConstantAux
variable = value2
value = 3
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[sum_pp]
type = ElementalVariableValue
elementid = 0
variable = sum
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/subchannel/examples/heating_test/3X3_channel.i)
mass_flux_in = 3500 # kg /sec m2
T_in = 297.039 # K
P_out = 101325 # Pa
pitch = 0.0126
unheated_length_entry = 2.5
heated_length = 5.0
unheated_length_exit = 2.5
n_cells = 20
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 3
ny = 3
n_cells = '${n_cells}'
pitch = '${pitch}'
pin_diameter = 0.00950
gap = 0.00095
unheated_length_entry = '${unheated_length_entry}'
heated_length = '${heated_length}'
unheated_length_exit = '${unheated_length_exit}'
spacer_z ='0.0'
spacer_k ='0.0'
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.0
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 10000.0 # W
filename = "power_profile.txt"
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[h_3]
type = QuadSubChannelNormalSliceValues
variable = h
execute_on = final
file_base = "h_3.txt"
height = 10.0
[]
[h_2]
type = QuadSubChannelNormalSliceValues
variable = h
execute_on = final
file_base = "h_2.txt"
height = 7.5
[]
[h_1]
type = QuadSubChannelNormalSliceValues
variable = h
execute_on = final
file_base = "h_1.txt"
height = 2.5
[]
[h_0]
type = QuadSubChannelNormalSliceValues
variable = h
execute_on = final
file_base = "h_0.txt"
height = 0.0
[]
[mdot_3]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_3.txt"
height = 10.0
[]
[mdot_2]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_2.txt"
height = 7.5
[]
[mdot_1]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_1.txt"
height = 2.5
[]
[mdot_0]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_0.txt"
height = 0.0
[]
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S w_perim'
[]
[]
(modules/subchannel/validation/psbt/psbt_null_transient/psbt_transient.i)
# This is an input file based on M. Avramova et al. 2012,
# OECD/NRC Benchmark Based on NUPEC PWR
# Sub-channel and Bundle Tests (PSBT). Volume III: Departure from Nucleate Boiling
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 50
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095
heated_length = 3.658
spacer_z = '0.0 0.229 0.457 0.686 0.914 1.143 1.372 1.600 1.829 2.057 2.286 2.515 2.743 2.972 3.200 3.429'
spacer_k = '0.7 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4'
[]
[]
[UserObjects]
[steady_sln]
type = SolutionUserObject
mesh = psbt_ss_out.e
timestep = LATEST
system_variables = 'mdot SumWij P DP h T rho mu S w_perim q_prime'
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.0
P_tol = 1e-6
T_tol = 1e-6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
restart_file_base = psbt_SS_out_cp/LATEST
skip_additional_restart_data = true
[]
[Functions]
[mdot_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = mdot
[]
[P_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = P
[]
[DP_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = DP
[]
[h_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = h
[]
[T_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = T
[]
[rho_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = rho
[]
[Mu_ic_fn]
type = SolutionFunction
solution = steady_sln
from_variable = mu
[]
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 3.44e6 # W
filename = "power_profile.txt"
[]
[T_ic]
type = FunctionIC
variable = T
function = T_ic_fn
[]
[P_ic]
type = FunctionIC
variable = P
function = P_ic_fn
[]
[DP_ic]
type = FunctionIC
variable = DP
function = DP_ic_fn
[]
[Viscosity_ic]
type = FunctionIC
variable = mu
function = Mu_ic_fn
[]
[rho_ic]
type = FunctionIC
variable = rho
function = rho_ic_fn
[]
[h_ic]
type = FunctionIC
variable = h
function = h_ic_fn
[]
[mdot_ic]
type = FunctionIC
variable = mdot
function = mdot_ic_fn
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[Temp_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = TIMESTEP_END
file_base = "Temp_Out.txt"
height = 3.658
[]
[mdot_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = TIMESTEP_END
file_base = "mdot_Out.txt"
height = 3.658
[]
[mdot_In_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = TIMESTEP_END
file_base = "mdot_In.txt"
height = 0.0
[]
[]
[Executioner]
type = Transient
start_time = 0.0
end_time = 0.2
dt = 0.1
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "3d.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(test/tests/transfers/general_field/user_object/duplicated_user_object_tests/3d_1d_sub.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 10
elem_type = EDGE2
displacements = 'disp_x disp_y disp_z'
[]
[Functions]
[disp_x_fn]
type = ParsedFunction
expression = '-x'
[]
[disp_z_fn]
type = ParsedFunction
expression = 'x'
[]
[]
[AuxVariables]
[sub_app_var]
family = MONOMIAL
order = CONSTANT
[]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[]
[AuxKernels]
[disp_x_ak]
type = FunctionAux
variable = disp_x
function = 'disp_x_fn'
[]
[disp_y_ak]
type = ConstantAux
variable = disp_y
value = 0
[]
[disp_z_ak]
type = FunctionAux
variable = disp_z
function = 'disp_z_fn'
[]
[]
[UserObjects]
[sub_app_uo]
type = LayeredAverage
direction = z
variable = u
num_layers = 10
execute_on = TIMESTEP_END
use_displaced_mesh = true
[]
[]
[Variables]
[u]
[]
[]
[Kernels]
[td]
type = TimeDerivative
variable = u
[]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 1
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 2
[]
[]
[Executioner]
type = Transient
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
(modules/subchannel/validation/Blockage/THORS/FFM-5B_low.i)
################################################################################
## THORS bundle 5B partial edge blockage benchmark ##
## SCM simulation, low flow casenn ##
## POC : Vasileios Kyriakopoulos, [email protected] ##
################################################################################
# Details on the experimental facility modeled can be found at:
# Han, J. T. "Blockages in LMFBR fuel assemblies: A review of experimental and theoretical studies." (1977).
# This input file models a block next to the duct of the of the assembly
# 102 mm above the start of the heated section.
# Boundary conditions
T_in = 541.55 #K, low flow case
A12 = 1.00423e3
A13 = -0.21390
A14 = -1.1046e-5
rho = '${fparse A12 + A13 * T_in + A14 * T_in * T_in}'
inlet_vel = 0.48 #m/sec, low flow case
mass_flux_in = '${fparse rho * inlet_vel}'
P_out = 2.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 3
n_cells = 50
flat_to_flat = 0.0324290
heated_length = 0.4572
unheated_length_entry = 0.4064
unheated_length_exit = 0.1524
pin_diameter = 0.005842
pitch = 7.2644e-3
dwire = 0.0014224
hwire = 0.3048
spacer_z = '0.0'
spacer_k = '0.0'
z_blockage = '0.49 0.52'
index_blockage = '29 31 30 32 34 33 35 15 16 8 17 18 9 19'
reduction_blockage = '0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2'
k_blockage = '1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 '
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime]
block = subchannel
[]
[displacement]
block = subchannel
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 2.2
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = true
segregated = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[q_prime_Aux]
type = SCMTriPowerAux
variable = q_prime
power = 52800 #W, low flow case
filename = "pin_power_profile_19.txt"
execute_on = 'initial timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[1]
type = SubChannelPointValue
variable = T
index = 34
execute_on = 'initial timestep_end'
height = 0.94
[]
[2]
type = SubChannelPointValue
variable = T
index = 33
execute_on = 'initial timestep_end'
height = 0.94
[]
[3]
type = SubChannelPointValue
variable = T
index = 18
execute_on = 'initial timestep_end'
height = 0.94
[]
[4]
type = SubChannelPointValue
variable = T
index = 9
execute_on = 'initial timestep_end'
height = 0.94
[]
[5]
type = SubChannelPointValue
variable = T
index = 3
execute_on = 'initial timestep_end'
height = 0.94
[]
[6]
type = SubChannelPointValue
variable = T
index = 0
execute_on = 'initial timestep_end'
height = 0.94
[]
[7]
type = SubChannelPointValue
variable = T
index = 12
execute_on = 'initial timestep_end'
height = 0.94
[]
[8]
type = SubChannelPointValue
variable = T
index = 25
execute_on = 'initial timestep_end'
height = 0.94
[]
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "FFM-5B_viz.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S displacement w_perim'
[]
[]
(modules/heat_transfer/test/tests/truss_heat_conduction/block_w_line.i)
[Mesh]
parallel_type = 'replicated'
[block]
type = GeneratedMeshGenerator
dim = 3
nx = 3
ny = 50
nz = 1
xmin = -0.5
xmax = 0.5
ymin = -1.25
ymax = 1.25
zmin = -0.04
zmax = 0.04
boundary_name_prefix = block
[]
[block_id]
type = SubdomainIDGenerator
input = block
subdomain_id = 1
[]
[line]
type = GeneratedMeshGenerator
dim = 1
xmin = -0.5
xmax = 0.5
nx = 10
boundary_name_prefix = line
boundary_id_offset = 10
[]
[line_id]
type = SubdomainIDGenerator
input = line
subdomain_id = 2
[]
[combined]
type = MeshCollectionGenerator
inputs = 'block_id line_id'
[]
[line_rename]
type = RenameBlockGenerator
input = combined
old_block = '1 2'
new_block = 'block line'
[]
[]
[Variables]
[temperature]
[]
[]
[Kernels]
[time_derivative]
type = HeatConductionTimeDerivative
variable = temperature
block = 'block'
[]
[heat_conduction]
type = HeatConduction
variable = temperature
block = 'block'
[]
[time_derivative_line]
type = TrussHeatConductionTimeDerivative
variable = temperature
area = area
block = 'line'
[]
[heat_conduction_line]
type = TrussHeatConduction
variable = temperature
area = area
block = 'line'
[]
[]
[AuxVariables]
[area]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[area]
type = ConstantAux
variable = area
value = 0.008
execute_on = 'initial timestep_begin'
[]
[]
[Constraints]
[equalvalue]
type = EqualValueEmbeddedConstraint
secondary = 'line'
primary = 'block'
penalty = 1e6
formulation = kinematic
primary_variable = temperature
variable = temperature
[]
[]
[Materials]
[block]
type = GenericConstantMaterial
block = 'block'
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '1.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[]
[line]
type = GenericConstantMaterial
block = 'line'
prop_names = 'thermal_conductivity specific_heat density'
prop_values = '10.0 1.0 1.0' # W/(cm K), J/(g K), g/cm^3
[]
[]
[BCs]
[right]
type = FunctionDirichletBC
variable = temperature
boundary = 'block_right line_right'
function = '10*t'
[]
[]
[VectorPostprocessors]
[x_n0_25]
type = LineValueSampler
start_point = '-0.25 0 0'
end_point = '-0.25 1.25 0'
num_points = 100
variable = 'temperature'
sort_by = id
[]
[x_0_25]
type = LineValueSampler
start_point = '0.25 0 0'
end_point = '0.25 1.25 0'
num_points = 100
variable = 'temperature'
sort_by = id
[]
[]
[Executioner]
type = Transient
start_time = 0
dt = 1
end_time = 1
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
nl_rel_tol = 1e-12
[]
[Outputs]
exodus = true
[csv]
type = CSV
file_base = 'csv/block_w_line'
time_data = true
[]
[]
(modules/porous_flow/test/tests/poroperm/PermTensorFromVar01.i)
# Testing permeability calculated from scalar and tensor
# Trivial test, checking calculated permeability is correct
# k = k_anisotropy * perm
[Mesh]
type = GeneratedMesh
dim = 1
nx = 3
xmin = 0
xmax = 3
[]
[GlobalParams]
block = 0
PorousFlowDictator = dictator
[]
[Variables]
[pp]
[InitialCondition]
type = ConstantIC
value = 0
[]
[]
[]
[Kernels]
[flux]
type = PorousFlowAdvectiveFlux
gravity = '0 0 0'
variable = pp
[]
[]
[BCs]
[ptop]
type = DirichletBC
variable = pp
boundary = right
value = 0
[]
[pbase]
type = DirichletBC
variable = pp
boundary = left
value = 1
[]
[]
[AuxVariables]
[perm_var]
order = CONSTANT
family = MONOMIAL
[]
[perm_x]
order = CONSTANT
family = MONOMIAL
[]
[perm_y]
order = CONSTANT
family = MONOMIAL
[]
[perm_z]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[perm_var]
type = ConstantAux
value = 2
variable = perm_var
[]
[perm_x]
type = PorousFlowPropertyAux
property = permeability
variable = perm_x
row = 0
column = 0
[]
[perm_y]
type = PorousFlowPropertyAux
property = permeability
variable = perm_y
row = 1
column = 1
[]
[perm_z]
type = PorousFlowPropertyAux
property = permeability
variable = perm_z
row = 2
column = 2
[]
[]
[Postprocessors]
[perm_x_left]
type = PointValue
variable = perm_x
point = '0.5 0 0'
[]
[perm_y_left]
type = PointValue
variable = perm_y
point = '0.5 0 0'
[]
[perm_z_left]
type = PointValue
variable = perm_z
point = '0.5 0 0'
[]
[perm_x_right]
type = PointValue
variable = perm_x
point = '2.5 0 0'
[]
[perm_y_right]
type = PointValue
variable = perm_y
point = '2.5 0 0'
[]
[perm_z_right]
type = PointValue
variable = perm_z
point = '2.5 0 0'
[]
[]
[UserObjects]
[dictator]
type = PorousFlowDictator
porous_flow_vars = 'pp'
number_fluid_phases = 1
number_fluid_components = 1
[]
[pc]
type = PorousFlowCapillaryPressureVG
# unimportant in this fully-saturated test
m = 0.8
alpha = 1e-4
[]
[]
[FluidProperties]
[simple_fluid]
type = SimpleFluidProperties
[]
[]
[Materials]
[permeability]
type = PorousFlowPermeabilityTensorFromVar
k_anisotropy = '1 0 0 0 2 0 0 0 0.1'
perm = perm_var
[]
[temperature]
type = PorousFlowTemperature
[]
[massfrac]
type = PorousFlowMassFraction
[]
[eff_fluid_pressure]
type = PorousFlowEffectiveFluidPressure
[]
[ppss]
type = PorousFlow1PhaseP
porepressure = pp
capillary_pressure = pc
[]
[simple_fluid]
type = PorousFlowSingleComponentFluid
fp = simple_fluid
phase = 0
[]
[porosity]
type = PorousFlowPorosity
porosity_zero = 0.1
[]
[relperm]
type = PorousFlowRelativePermeabilityCorey
n = 0 # unimportant in this fully-saturated situation
phase = 0
[]
[]
[Preconditioning]
[andy]
type = SMP
full = true
[]
[]
[Executioner]
solve_type = Newton
type = Steady
l_tol = 1E-5
nl_abs_tol = 1E-3
nl_rel_tol = 1E-8
l_max_its = 200
nl_max_its = 400
petsc_options_iname = '-pc_type -pc_asm_overlap -sub_pc_type -ksp_type -ksp_gmres_restart'
petsc_options_value = ' asm 2 lu gmres 200'
[]
[Outputs]
csv = true
execute_on = 'timestep_end'
[]
(modules/subchannel/validation/Blockage/PNNL_7x7/7X7blockage70.i)
T_in = 302.594
mass_flux_in = 1730.0950134985335
P_out = 101325 # Pa
# Creer et. al 1976
# Blockage is modeled with area reduction and form loss coefficient distributed on the
# affected subchannels
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 8
ny = 8
n_cells = 36
pitch = 0.0136906
Kij = 0.5
pin_diameter = 0.0099568
gap = 0.0036957
heated_length = 1.4224
z_blockage = '0.60325 0.67945'
index_blockage = '18 19 20 21 26 27 28 29 34 35 36 37 42 43 44 45'
reduction_blockage = '0.83 0.65 0.65 0.83 0.65 0.30 0.30 0.65 0.65 0.30 0.30 0.65 0.83 0.65 0.65 0.83'
k_blockage = '0.0 0.0 0.0 0.0 0.0 1 1 0.0 0.0 1 1 0.0 0.0 0.0 0.0 0.0'
spacer_z = '0.3683 1.3843'
spacer_k = '1.14 1.14'
[]
[]
[AuxVariables]
[mdot]
block = sub_channel
[]
[SumWij]
block = sub_channel
[]
[P]
block = sub_channel
[]
[DP]
block = sub_channel
[]
[h]
block = sub_channel
[]
[T]
block = sub_channel
[]
[rho]
block = sub_channel
[]
[mu]
block = sub_channel
[]
[S]
block = sub_channel
[]
[w_perim]
block = sub_channel
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.06
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = false
P_out = ${P_out}
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 0.0 # W
filename = "power_profile.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[]
[Executioner]
type = Steady
[]
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "detailedMesh.i"
execute_on = "final"
[]
[]
[Transfers]
###### Transfers to the detailedMesh at the end of the coupled simulations
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S'
[]
[]
(modules/subchannel/validation/Blockage/THORS/FFM-5B_high.i)
################################################################################
## THORS bundle 5B partial edge blockage benchmark ##
## SCM simulation, high flow case ##
## POC : Vasileios Kyriakopoulos, [email protected] ##
################################################################################
# Details on the experimental facility modeled can be found at:
# Han, J. T. "Blockages in LMFBR fuel assemblies: A review of experimental and theoretical studies." (1977).
# This input file models a block next to the duct of the of the assembly
# 102 mm above the start of the heated section.
# Boundary conditions
T_in = 596.75 # K, high flow case
A12 = 1.00423e3
A13 = -0.21390
A14 = -1.1046e-5
rho = '${fparse A12 + A13 * T_in + A14 * T_in * T_in}'
inlet_vel = 6.93 #m/sec, high flow case
mass_flux_in = '${fparse rho * inlet_vel}'
P_out = 2.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 3
n_cells = 50
flat_to_flat = 0.0324290
heated_length = 0.4572
unheated_length_entry = 0.4064
unheated_length_exit = 0.1524
pin_diameter = 0.005842
pitch = 7.2644e-3
dwire = 0.0014224
hwire = 0.3048
spacer_z = '0.0'
spacer_k = '0.0'
z_blockage = '0.49 0.52'
index_blockage = '29 31 30 32 34 33 35 15 16 8 17 18 9 19'
reduction_blockage = '0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2'
k_blockage = '1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 '
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime]
block = subchannel
[]
[displacement]
block = subchannel
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 2.2
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-4
implicit = true
segregated = false
interpolation_scheme = 'upwind'
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 145000 #W, high flow case
filename = "pin_power_profile_19.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[1]
type = SubChannelPointValue
variable = T
index = 34
execute_on = 'initial timestep_end'
height = 0.94
[]
[2]
type = SubChannelPointValue
variable = T
index = 33
execute_on = 'initial timestep_end'
height = 0.94
[]
[3]
type = SubChannelPointValue
variable = T
index = 18
execute_on = 'initial timestep_end'
height = 0.94
[]
[4]
type = SubChannelPointValue
variable = T
index = 9
execute_on = 'initial timestep_end'
height = 0.94
[]
[5]
type = SubChannelPointValue
variable = T
index = 3
execute_on = 'initial timestep_end'
height = 0.94
[]
[6]
type = SubChannelPointValue
variable = T
index = 0
execute_on = 'initial timestep_end'
height = 0.94
[]
[7]
type = SubChannelPointValue
variable = T
index = 12
execute_on = 'initial timestep_end'
height = 0.94
[]
[8]
type = SubChannelPointValue
variable = T
index = 25
execute_on = 'initial timestep_end'
height = 0.94
[]
[]
[Executioner]
type = Steady
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "FFM-5B_viz.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S displacement w_perim'
[]
[]
(modules/heat_transfer/test/tests/heat_conduction/coupled_convective_heat_flux/const_hw.i)
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./t_infinity]
[../]
[]
[Kernels]
[./diff]
type = Diffusion
variable = u
[../]
[./force]
type = BodyForce
variable = u
value = 1000
[../]
[]
[AuxKernels]
[./t_infinity]
type = ConstantAux
variable = t_infinity
value = 500
execute_on = initial
[../]
[]
[BCs]
[./right]
type = CoupledConvectiveHeatFluxBC
variable = u
boundary = right
htc = 10
T_infinity = t_infinity
[../]
[]
[Executioner]
type = Steady
#Preconditioned JFNK (default)
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
[]
(modules/subchannel/test/tests/problems/SFR/EBR-II/XX09_SS_SHRT17.i)
# Following Benchmark Specifications and Data Requirements for EBR-II Shutdown Heat Removal Tests SHRT-17 and SHRT-45R
# Available at: https://publications.anl.gov/anlpubs/2012/06/73647.pdf
###################################################
#Steady state subchannel calcultion,with adapted massflow rate
# Thermal-hydraulics parameters
###################################################
T_in = 624.70556 #Kelvin
Total_Surface_Area = 0.000854322 #m3
mass_flux_in = '${fparse 2.6923 / Total_Surface_Area}' #
P_out = 2.0e5
Power_initial = 486200 #W (Page 26,35 of ANL document)
###################################################
# Geometric parameters
###################################################
scale_factor = 0.01
fuel_pin_pitch = '${fparse 0.5664*scale_factor}'
fuel_pin_diameter = '${fparse 0.4419*scale_factor}'
wire_z_spacing = '${fparse 15.24*scale_factor}'
wire_diameter = '${fparse 0.1244*scale_factor}'
inner_duct_in = '${fparse 4.64*scale_factor}'
n_rings = 5
heated_length = '${fparse 34.3*scale_factor}'
unheated_length_exit = '${fparse 26.9*scale_factor}'
###################################################
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = ${n_rings}
n_cells = 50
flat_to_flat = ${inner_duct_in}
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pin_diameter = ${fuel_pin_diameter}
pitch = ${fuel_pin_pitch}
dwire = ${wire_diameter}
hwire = ${wire_z_spacing}
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMTriPinMeshGenerator
input = subchannel
nrings = ${n_rings}
n_cells = 50
unheated_length_exit = ${unheated_length_exit}
heated_length = ${heated_length}
pitch = ${fuel_pin_pitch}
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[mu]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[displacement]
block = subchannel
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = ${P_out}
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-4
T_tol = 1.0e-5
implicit = true
segregated = false
interpolation_scheme = 'upwind'
deformation = true
verbose_subchannel = true
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = ${Power_initial}
filename = "pin_power_profile61_uniform.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${fuel_pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = subchannel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Postprocessors]
[TTC-27]
type = SubChannelPointValue
variable = T
index = 91
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-28]
type = SubChannelPointValue
variable = T
index = 50
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-29]
type = SubChannelPointValue
variable = T
index = 21
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-30]
type = SubChannelPointValue
variable = T
index = 4
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-31]
type = SubChannelPointValue
variable = T
index = 2
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-32]
type = SubChannelPointValue
variable = T
index = 16
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-33]
type = SubChannelPointValue
variable = T
index = 42
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-34]
type = SubChannelPointValue
variable = T
index = 80
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[TTC-35]
type = SubChannelPointValue
variable = T
index = 107
execute_on = 'TIMESTEP_END'
height = 0.322
[]
####### Assembly pressure drop
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
#####
[Mean_Temp]
type = SCMPlanarMean
variable = T
height = 2
[]
#####
[mdot-35]
type = SubChannelPointValue
variable = mdot
index = 107
execute_on = 'TIMESTEP_END'
height = 0.322
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Executioner]
type = Steady
[]
(modules/thermal_hydraulics/test/tests/auxkernels/weighted_average/weighted_average.i)
# Tests the weighted average aux, which computes a weighted average of an
# arbitrary number of aux variables, using other aux variables as the weights.
# For this example, the values being averaged are
# value1 = 4
# value2 = 9
# and the weights are
# weight1 = 2
# weight2 = 3
# The result should then be
# weighted_average = (weight1 * value1 + weight2 * value2) / (weight1 + weight2)
# = (2 * 4 + 3 * 9) / (2 + 3)
# = 35 / 5
# = 7
[Mesh]
type = GeneratedMesh
dim = 1
nx = 1
allow_renumbering = false
[]
[Variables]
[u]
[]
[]
[Kernels]
[diff]
type = Diffusion
variable = u
[]
[]
[BCs]
[left]
type = DirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = DirichletBC
variable = u
boundary = right
value = 1
[]
[]
[AuxVariables]
[weighted_average]
family = MONOMIAL
order = CONSTANT
[]
[value1]
family = MONOMIAL
order = CONSTANT
[]
[value2]
family = MONOMIAL
order = CONSTANT
[]
[weight1]
family = MONOMIAL
order = CONSTANT
[]
[weight2]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[weighted_average_auxkernel]
type = WeightedAverageAux
variable = weighted_average
values = 'value1 value2'
weights = 'weight1 weight2'
[]
[value1_kernel]
type = ConstantAux
variable = value1
value = 4
[]
[value2_kernel]
type = ConstantAux
variable = value2
value = 9
[]
[weight1_kernel]
type = ConstantAux
variable = weight1
value = 2
[]
[weight2_kernel]
type = ConstantAux
variable = weight2
value = 3
[]
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[weighted_average_pp]
type = ElementalVariableValue
elementid = 0
variable = weighted_average
[]
[]
[Outputs]
csv = true
execute_on = timestep_end
[]
(modules/contact/test/tests/sliding_block/sliding/frictionless_kinematic.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the kinematic method. In this test a constant
# displacement is applied in the horizontal direction to simulate
# a small block come sliding down a larger block.
#
# The gold file is run on one processor
# and the benchmark case is run on a minimum of 4 processors to ensure no
# parallel variability in the contact pressure and penetration results.
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = DirichletBC
variable = disp_x
boundary = 4
value = -0.02
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./left_stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
time_step_interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+6
normal_smoothing_distance = 0.1
[../]
[]
(modules/solid_mechanics/test/tests/transfer_from_displaced/child.i)
[GlobalParams]
displacements = 'disp_x disp_y'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = 0
ymin = 0
xmax = 0.2
ymax = 0.5
nx = 5
ny = 15
elem_type = QUAD4
[]
[]
[Variables]
[disp_x][]
[disp_y][]
[]
[AuxVariables]
[solid_indicator]
[AuxKernel]
type = ConstantAux
variable = solid_indicator
value = 0.0
boundary = 'left right top'
execute_on = 'initial timestep_end'
[]
initial_condition = 1.0
[]
[]
[Physics/SolidMechanics/QuasiStatic]
[all]
strain = SMALL
incremental = true
[]
[]
[Materials]
[elastic_tensor]
type = ComputeIsotropicElasticityTensor
youngs_modulus = 10000.0
poissons_ratio = 0.3
use_displaced_mesh = true
[]
[stress]
type = ComputeFiniteStrainElasticStress
[]
[]
[BCs]
[move_bottom_x]
type = FunctionDirichletBC
boundary = bottom
variable = disp_x
function = 't'
[]
[move_bottom_y]
type = DirichletBC
boundary = bottom
variable = disp_y
value = '0'
[]
[]
[Executioner]
type = Transient
num_steps = 1
solve_type = 'NEWTON'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type -pc_factor_shift_type'
petsc_options_value = 'lu superlu_dist NONZERO'
nl_max_its = 40
l_max_its = 15
line_search = 'none'
nl_abs_tol = 1e-5
nl_rel_tol = 1e-4
automatic_scaling = true
[]
(modules/contact/test/tests/sliding_block/in_and_out/frictionless_kinematic.i)
# This is a benchmark test that checks constraint based frictionless
# contact using the kinematic method. In this test a sinusoidal
# displacement is applied in the horizontal direction to simulate
# a small block come in and out of contact as it slides down a larger block.
#
# The sinusoid is of the form 0.4sin(4t)+0.2. The gold file is run
# on one processor and the benchmark
# case is run on a minimum of 4 processors to ensure no parallel variability
# in the contact pressure and penetration results. Further documentation can
# found in moose/modules/contact/doc/sliding_block/
#
[Mesh]
file = sliding_elastic_blocks_2d.e
patch_size = 80
[]
[GlobalParams]
volumetric_locking_correction = false
displacements = 'disp_x disp_y'
[]
[AuxVariables]
[./penetration]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Functions]
[./vertical_movement]
type = ParsedFunction
expression = -t
[../]
[./horizontal_movement]
type = ParsedFunction
expression = -0.04*sin(4*t)+0.02
[../]
[]
[Physics/SolidMechanics/QuasiStatic]
[./all]
add_variables = true
strain = FINITE
[../]
[]
[AuxKernels]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 3
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 3
paired_boundary = 2
[../]
[]
[Postprocessors]
[./nonlinear_its]
type = NumNonlinearIterations
execute_on = timestep_end
[../]
[./penetration]
type = NodalVariableValue
variable = penetration
nodeid = 222
[../]
[./contact_pressure]
type = NodalVariableValue
variable = contact_pressure
nodeid = 222
[../]
[]
[BCs]
[./left_x]
type = DirichletBC
variable = disp_x
boundary = 1
value = 0.0
[../]
[./left_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./right_x]
type = FunctionDirichletBC
variable = disp_x
boundary = 4
function = horizontal_movement
[../]
[./right_y]
type = FunctionDirichletBC
variable = disp_y
boundary = 4
function = vertical_movement
[../]
[]
[Materials]
[./left]
type = ComputeIsotropicElasticityTensor
block = '1 2'
youngs_modulus = 1e6
poissons_ratio = 0.3
constant_on = SUBDOMAIN
[../]
[./stress]
type = ComputeFiniteStrainElasticStress
block = '1 2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options = '-snes_ksp_ew'
petsc_options_iname = '-pc_type -sub_pc_type -pc_asm_overlap -ksp_gmres_restart'
petsc_options_value = 'asm lu 20 101'
line_search = 'none'
l_max_its = 100
nl_max_its = 1000
dt = 0.1
end_time = 15
num_steps = 1000
l_tol = 1e-6
nl_rel_tol = 1e-10
nl_abs_tol = 1e-6
dtmin = 0.01
[./Predictor]
type = SimplePredictor
scale = 1.0
[../]
[]
[Outputs]
time_step_interval = 10
[./out]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 2
model = frictionless
penalty = 1e+6
normal_smoothing_distance = 0.1
[../]
[]
(modules/fluid_properties/test/tests/auxkernels/stagnation_pressure_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./specific_internal_energy]
[../]
[./specific_volume]
[../]
[./velocity]
[../]
[./stagnation_pressure]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./specific_internal_energy_ak]
type = ConstantAux
variable = specific_internal_energy
value = 1026.2e3
[../]
[./specific_volume_ak]
type = ConstantAux
variable = specific_volume
value = 0.0012192
[../]
[./velocity_ak]
type = ConstantAux
variable = velocity
value = 10.0
[../]
[./stagnation_pressure_ak]
type = StagnationPressureAux
variable = stagnation_pressure
e = specific_internal_energy
v = specific_volume
vel = velocity
fp = eos
[../]
[]
[FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
solve_type = 'PJFNK'
[]
[Outputs]
exodus = true
[]
(test/tests/postprocessors/difference_pps/difference_depend_check.i)
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 1
ymin = 0
ymax = 1
nx = 2
ny = 2
[]
[Variables]
[./u]
[../]
[]
[AuxVariables]
[./v]
[../]
[]
[AuxKernels]
[./one]
type = ConstantAux
variable = v
value = 1
[../]
[]
[Postprocessors]
# This postprocessor is listed first on purpose to give the resolver something to do
[./diff]
type = DifferencePostprocessor
value1 = nodes
value2 = elems
execute_on = 'initial timestep_end'
[../]
[./nodes]
type = NumNodes
execute_on = 'initial timestep_end'
[../]
[./elems]
type = NumElements
execute_on = 'initial timestep_end'
[../]
[]
[Problem]
type = FEProblem
solve = false
kernel_coverage_check = false
[]
[Executioner]
type = Steady
[]
[Outputs]
csv = true
[]
(modules/subchannel/test/tests/problems/psbt/psbt_full_monolithic.i)
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
pin_diameter = 0.00950
[QuadSubChannelMesh]
[sub_channel]
type = SCMQuadSubChannelMeshGenerator
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
pin_diameter = ${pin_diameter}
gap = 0.00095 # the half gap between sub-channel assemblies
heated_length = 1.0
spacer_z = '0.0'
spacer_k = '0.0'
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = sub_channel
nx = 6
ny = 6
n_cells = 10
pitch = 0.0126
heated_length = 1.0
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
verbose_subchannel = true
implicit = true
segregated = false
monolithic_thermal = true
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
power = 1.0e6 # W
filename = "power_profile.txt" #type in name of file that describes radial power profile
block = fuel_pins
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = ${pin_diameter}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
block = sub_channel
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = report_mass_flux_inlet
execute_on = 'timestep_begin'
block = sub_channel
[]
[]
[Postprocessors]
[report_mass_flux_inlet]
type = Receiver
default = ${mass_flux_in}
[]
[total_pressure_drop]
type = SubChannelDelta
variable = P
execute_on = "timestep_end"
[]
[T1]
type = SubChannelPointValue
variable = T
index = 0
execute_on = "timestep_end"
height = 1
[]
[T2]
type = SubChannelPointValue
variable = T
index = 7
execute_on = "timestep_end"
height = 1
[]
[T3]
type = SubChannelPointValue
variable = T
index = 14
execute_on = "timestep_end"
height = 1
[]
[T4]
type = SubChannelPointValue
variable = T
index = 21
execute_on = "timestep_end"
height = 1
[]
[T5]
type = SubChannelPointValue
variable = T
index = 28
execute_on = "timestep_end"
height = 1
[]
[T6]
type = SubChannelPointValue
variable = T
index = 35
execute_on = "timestep_end"
height = 1
[]
[]
[Outputs]
csv = true
[]
[Executioner]
type = Steady
[]
(modules/fluid_properties/test/tests/auxkernels/fluid_density_aux.i)
[Mesh]
type = GeneratedMesh
dim = 1
nx = 2
[]
[Variables]
[./u]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./pressure]
[../]
[./temperature]
[../]
[./density]
[../]
[]
[Kernels]
[./diff_u]
type = Diffusion
variable = u
[../]
[]
[AuxKernels]
[./pressure_ak]
type = ConstantAux
variable = pressure
value = 10e6
[../]
[./temperature_ak]
type = ConstantAux
variable = temperature
value = 400.0
[../]
[./density]
type = FluidDensityAux
variable = density
fp = eos
p = pressure
T = temperature
[../]
[]
[FluidProperties]
[./eos]
type = StiffenedGasFluidProperties
gamma = 2.35
q = -1167e3
q_prime = 0.0
p_inf = 1e9
cv = 1816.0
[../]
[]
[BCs]
[./left_u]
type = DirichletBC
variable = u
boundary = 0
value = 1
[../]
[./right_u]
type = DirichletBC
variable = u
boundary = 1
value = 2
[../]
[]
[Executioner]
type = Steady
[]
[Outputs]
exodus = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template2.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = AugmentedLagrangianContactProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
maximum_lagrangian_update_iterations = 200
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-9
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
al_penetration_tolerance = 1e-8
[../]
[]
(modules/subchannel/validation/Toshiba_37_pin/toshiba_37_pin.i)
T_in = 660
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 37.00 / 36000.*0.5}'
P_out = 2.0e5 # Pa
[TriSubChannelMesh]
[subchannel]
type = SCMTriSubChannelMeshGenerator
nrings = 4
n_cells = 20
flat_to_flat = 0.085
heated_length = 1.0
pin_diameter = 0.01
pitch = 0.012
dwire = 0.002
hwire = 0.0833
spacer_z = '0 0.2 0.4 0.6 0.8'
spacer_k = '0.1 0.1 0.1 0.1 0.10'
[]
[]
[AuxVariables]
[mdot]
[]
[SumWij]
[]
[P]
[]
[DP]
[]
[h]
[]
[T]
[]
[rho]
[]
[S]
[]
[w_perim]
[]
[q_prime]
[]
[mu]
[]
[displacement]
[]
[]
[FluidProperties]
[sodium]
type = PBSodiumFluidProperties
[]
[]
[Problem]
type = TriSubChannel1PhaseProblem
fp = sodium
n_blocks = 1
P_out = 2.0e5
CT = 1.0
compute_density = true
compute_viscosity = true
compute_power = true
P_tol = 1.0e-6
T_tol = 1.0e-3
implicit = true
segregated = false
staggered_pressure = false
monolithic_thermal = false
verbose_multiapps = true
verbose_subchannel = false
[]
[ICs]
[S_IC]
type = SCMTriFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMTriWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMTriPowerIC
variable = q_prime
power = 1.000e5 # W
filename = "pin_power_profile_37.txt"
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = sodium
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = sodium
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = sodium
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Executioner]
type = Steady
[]
[Postprocessors]
[T_Planar_Mean]
type = SCMPlanarMean
variable = T
execute_on = 'TIMESTEP_END'
height = 1.0
[]
[DP_SubchannelDelta]
type = SubChannelDelta
variable = P
execute_on = 'TIMESTEP_END'
[]
[]
################################################################################
# A multiapp that projects data to a detailed mesh
################################################################################
[MultiApps]
[viz]
type = FullSolveMultiApp
input_files = "toshiba_37_pin_viz.i"
execute_on = "timestep_end"
[]
[]
[Transfers]
[xfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu q_prime S'
[]
[]
(modules/subchannel/examples/coupling/thermo_mech/quad/one_pin_problem.i)
######## BC's #################
T_in = 359.15
# [1e+6 kg/m^2-hour] turns into kg/m^2-sec
mass_flux_in = '${fparse 1e+6 * 17.00 / 3600.}'
P_out = 4.923e6 # Pa
heated_length = 1.0
######## Geometry #
[GlobalParams]
nx = 2
ny = 2
n_cells = 25
pitch = 0.0126
pin_diameter = 0.00950
gap = 0.00095
heated_length = ${heated_length}
spacer_z = '0.0'
spacer_k = '0.0'
power = 100000.0 # W
[]
[QuadSubChannelMesh]
[subchannel]
type = SCMQuadSubChannelMeshGenerator
[]
[fuel_pins]
type = SCMQuadPinMeshGenerator
input = subchannel
[]
[]
[Functions]
[axial_heat_rate]
type = ParsedFunction
expression = '(pi/2)*sin(pi*z/L)'
symbol_names = 'L'
symbol_values = '${heated_length}'
[]
[]
[AuxVariables]
[mdot]
block = subchannel
[]
[SumWij]
block = subchannel
[]
[P]
block = subchannel
[]
[DP]
block = subchannel
[]
[h]
block = subchannel
[]
[T]
block = subchannel
[]
[rho]
block = subchannel
[]
[mu]
block = subchannel
[]
[S]
block = subchannel
[]
[w_perim]
block = subchannel
[]
[q_prime]
block = fuel_pins
[]
[Tpin]
block = fuel_pins
[]
[Dpin]
block = fuel_pins
[]
[]
[FluidProperties]
[water]
type = Water97FluidProperties
[]
[]
[SubChannel]
type = QuadSubChannel1PhaseProblem
fp = water
n_blocks = 1
beta = 0.006
CT = 2.6
compute_density = true
compute_viscosity = true
compute_power = true
P_out = ${P_out}
verbose_subchannel = true
deformation = true
[]
[ICs]
[S_IC]
type = SCMQuadFlowAreaIC
variable = S
[]
[w_perim_IC]
type = SCMQuadWettedPerimIC
variable = w_perim
[]
[q_prime_IC]
type = SCMQuadPowerIC
variable = q_prime
filename = "power_profile.txt"
axial_heat_rate = axial_heat_rate
[]
[T_ic]
type = ConstantIC
variable = T
value = ${T_in}
[]
[Dpin_ic]
type = ConstantIC
variable = Dpin
value = 0.00950
[]
[P_ic]
type = ConstantIC
variable = P
value = 0.0
[]
[DP_ic]
type = ConstantIC
variable = DP
value = 0.0
[]
[Viscosity_ic]
type = ViscosityIC
variable = mu
p = ${P_out}
T = T
fp = water
[]
[rho_ic]
type = RhoFromPressureTemperatureIC
variable = rho
p = ${P_out}
T = T
fp = water
[]
[h_ic]
type = SpecificEnthalpyFromPressureTemperatureIC
variable = h
p = ${P_out}
T = T
fp = water
[]
[mdot_ic]
type = ConstantIC
variable = mdot
value = 0.0
[]
[]
[AuxKernels]
[T_in_bc]
type = ConstantAux
variable = T
boundary = inlet
value = ${T_in}
execute_on = 'timestep_begin'
[]
[mdot_in_bc]
type = SCMMassFlowRateAux
variable = mdot
boundary = inlet
area = S
mass_flux = ${mass_flux_in}
execute_on = 'timestep_begin'
[]
[]
[Outputs]
exodus = true
[Temp_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = T
execute_on = final
file_base = "Temp_Out.txt"
height = 1.0
[]
[mdot_Out_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_Out.txt"
height = 1.0
[]
[mdot_In_MATRIX]
type = QuadSubChannelNormalSliceValues
variable = mdot
execute_on = final
file_base = "mdot_In.txt"
height = 0.0
[]
[]
[Executioner]
type = Steady
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
fixed_point_max_its = 8
fixed_point_min_its = 6
fixed_point_rel_tol = 1e-6
[]
################################################################################
[MultiApps]
################################################################################
# Couple to Thermo-Mechanical Pin model (uses kernels available in MOOSE)
################################################################################
[sub]
type = FullSolveMultiApp
input_files = one_pin_problem_sub.i
execute_on = 'timestep_end'
positions = '0 0 0 '
output_in_position = true
bounding_box_padding = '0 0 0.01'
[]
################################################################################
# A multiapp that projects the solution to a detailed mesh for visualization purposes
################################################################################
[viz]
type = FullSolveMultiApp
input_files = '3d.i'
execute_on = 'FINAL'
[]
[]
[Transfers]
[Tpin] # send pin surface temperature to pin model,
type = MultiAppGeneralFieldNearestLocationTransfer
to_multi_app = sub
variable = Pin_surface_temperature
source_variable = Tpin
execute_on = 'timestep_end'
greedy_search = true
[]
[diameter] # send diameter information from pin model to subchannel
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
variable = Dpin
source_variable = pin_diameter_deformed
from_boundaries = right
execute_on = 'timestep_end'
greedy_search = true
[]
[q_prime] # send heat flux from pin model to subchannel
type = MultiAppGeneralFieldNearestLocationTransfer
from_multi_app = sub
variable = q_prime
source_variable = q_prime
from_boundaries = right
execute_on = 'timestep_end'
greedy_search = true
[]
[subchannel_transfer]
type = SCMSolutionTransfer
to_multi_app = viz
variable = 'mdot SumWij P DP h T rho mu S w_perim'
[]
[pin_transfer]
type = SCMPinSolutionTransfer
to_multi_app = viz
variable = 'Tpin Dpin q_prime'
[]
[]
(modules/contact/test/tests/verification/patch_tests/plane_4/plane4_template1.i)
[GlobalParams]
order = SECOND
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane4_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[./tang_force_x]
[../]
[./tang_force_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x9]
type = NodalVariableValue
nodeid = 8
variable = disp_x
[../]
[./disp_x16]
type = NodalVariableValue
nodeid = 15
variable = disp_x
[../]
[./disp_y9]
type = NodalVariableValue
nodeid = 8
variable = disp_y
[../]
[./disp_y16]
type = NodalVariableValue
nodeid = 15
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-7
l_max_its = 100
nl_max_its = 200
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x9 disp_y9 disp_x16 disp_y16 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/meshmodifiers/element_subdomain_modifier/var_block_id.i)
[Problem]
solve = false
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmax = 4
ymax = 4
nx = 8
ny = 8
[]
[subdomain_id]
input = gen
type = SubdomainPerElementGenerator
subdomain_ids = '0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
8 9 10 11 12 13 14 15
8 9 10 11 12 13 14 15
8 9 10 11 12 13 14 15'
[]
[]
[AuxVariables]
[u]
[]
[block_id]
[]
[]
[AuxKernels]
[u0]
type = ConstantAux
variable = u
value = 1
block = '0 4 8 12'
[]
[u1]
type = ConstantAux
variable = u
value = 10
block = '1 5 9 13'
[]
[u2]
type = ConstantAux
variable = u
value = 100
block = '2 6 10 14'
[]
[u3]
type = ConstantAux
variable = u
value = 1000
block = '3 7 11 15'
[]
[block_id]
type = FunctionAux
variable = block_id
function = fcn
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[MeshModifiers]
[assign_block_id]
type = VariableValueElementSubdomainModifier
coupled_var = 'block_id'
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Functions]
[fcn]
type = ParsedFunction
expression = 'x+y+t'
[]
[]
[Executioner]
type = Transient
dt = 1
num_steps = 4
[]
[Outputs]
exodus = true
[]
(test/tests/misc/update-displaced-aux-local-soln/test.i)
[GlobalParams]
use_displaced_mesh = true
displacements = 'disp_x disp_y disp_z'
[]
[Mesh]
[gen]
type = GeneratedMeshGenerator
dim = 2
xmin = -1
xmax = 1
[]
[]
[AuxVariables]
[disp_x]
[]
[disp_y]
[]
[disp_z]
[]
[something]
[]
[]
[Problem]
type = FEProblem
solve = false
[]
[AuxKernels]
[something]
type = ConstantAux
variable = something
value = 7
execute_on = 'initial timestep_end'
[]
[]
[Executioner]
type = Transient
num_steps = 2
[]
[Postprocessors]
[cell_t_left]
type = PointValue
variable = something
point = '-0.01 0.0 0.0'
execute_on = 'initial timestep_end'
[]
[]
[Outputs]
csv = true
[]
(modules/contact/test/tests/verification/patch_tests/plane_1/plane1_template1.i)
[GlobalParams]
volumetric_locking_correction = true
displacements = 'disp_x disp_y'
[]
[Mesh]
file = plane1_mesh.e
[]
[Problem]
type = ReferenceResidualProblem
extra_tag_vectors = 'ref'
reference_vector = 'ref'
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[]
[AuxVariables]
[./stress_xx]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_yy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_xy]
order = CONSTANT
family = MONOMIAL
[../]
[./stress_zz]
order = CONSTANT
family = MONOMIAL
[../]
[./penetration]
[../]
[./saved_x]
[../]
[./saved_y]
[../]
[./diag_saved_x]
[../]
[./diag_saved_y]
[../]
[./inc_slip_x]
[../]
[./inc_slip_y]
[../]
[./accum_slip_x]
[../]
[./accum_slip_y]
[../]
[]
[Kernels]
[./TensorMechanics]
use_displaced_mesh = true
save_in = 'saved_x saved_y'
extra_vector_tags = 'ref'
[../]
[]
[AuxKernels]
[./stress_xx]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xx
index_i = 0
index_j = 0
execute_on = timestep_end
[../]
[./stress_yy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_yy
index_i = 1
index_j = 1
execute_on = timestep_end
[../]
[./stress_xy]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_xy
index_i = 0
index_j = 1
execute_on = timestep_end
[../]
[./stress_zz]
type = RankTwoAux
rank_two_tensor = stress
variable = stress_zz
index_i = 2
index_j = 2
execute_on = timestep_end
[../]
[./zeroslip_x]
type = ConstantAux
variable = inc_slip_x
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./zeroslip_y]
type = ConstantAux
variable = inc_slip_y
boundary = 4
execute_on = timestep_begin
value = 0.0
[../]
[./accum_slip_x]
type = AccumulateAux
variable = accum_slip_x
accumulate_from_variable = inc_slip_x
execute_on = timestep_end
[../]
[./accum_slip_y]
type = AccumulateAux
variable = accum_slip_y
accumulate_from_variable = inc_slip_y
execute_on = timestep_end
[../]
[./penetration]
type = PenetrationAux
variable = penetration
boundary = 4
paired_boundary = 3
[../]
[]
[Postprocessors]
[./bot_react_x]
type = NodalSum
variable = saved_x
boundary = 1
[../]
[./bot_react_y]
type = NodalSum
variable = saved_y
boundary = 1
[../]
[./top_react_x]
type = NodalSum
variable = saved_x
boundary = 5
[../]
[./top_react_y]
type = NodalSum
variable = saved_y
boundary = 5
[../]
[./ref_resid_x]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_x
[../]
[./ref_resid_y]
type = NodalL2Norm
execute_on = timestep_end
variable = saved_y
[../]
[./sigma_yy]
type = ElementAverageValue
variable = stress_yy
[../]
[./sigma_zz]
type = ElementAverageValue
variable = stress_zz
[../]
[./disp_x2]
type = NodalVariableValue
nodeid = 1
variable = disp_x
[../]
[./disp_x7]
type = NodalVariableValue
nodeid = 6
variable = disp_x
[../]
[./disp_y2]
type = NodalVariableValue
nodeid = 1
variable = disp_y
[../]
[./disp_y7]
type = NodalVariableValue
nodeid = 6
variable = disp_y
[../]
[./_dt]
type = TimestepSize
[../]
[./num_lin_it]
type = NumLinearIterations
[../]
[./num_nonlin_it]
type = NumNonlinearIterations
[../]
[]
[BCs]
[./bot_y]
type = DirichletBC
variable = disp_y
boundary = 1
value = 0.0
[../]
[./side_x]
type = DirichletBC
variable = disp_x
boundary = 2
value = 0.0
[../]
[./top_press]
type = Pressure
variable = disp_y
boundary = 5
factor = 109.89
[../]
[]
[Materials]
[./bot_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '1'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./bot_strain]
type = ComputeIncrementalStrain
block = '1'
[../]
[./bot_stress]
type = ComputeFiniteStrainElasticStress
block = '1'
[../]
[./top_elas_tens]
type = ComputeIsotropicElasticityTensor
block = '2'
youngs_modulus = 1e6
poissons_ratio = 0.3
[../]
[./top_strain]
type = ComputeIncrementalStrain
block = '2'
[../]
[./top_stress]
type = ComputeFiniteStrainElasticStress
block = '2'
[../]
[]
[Executioner]
type = Transient
solve_type = 'PJFNK'
petsc_options_iname = '-pc_type -pc_factor_mat_solver_type'
petsc_options_value = 'lu superlu_dist'
line_search = 'none'
nl_abs_tol = 1e-10
nl_rel_tol = 1e-9
l_max_its = 50
nl_max_its = 100
dt = 1.0
end_time = 1.0
num_steps = 10
dtmin = 1.0
l_tol = 1e-3
[]
[VectorPostprocessors]
[./x_disp]
type = NodalValueSampler
variable = disp_x
boundary = '1 3 4 5'
sort_by = x
[../]
[./cont_press]
type = NodalValueSampler
variable = contact_pressure
boundary = '3'
sort_by = x
[../]
[]
[Outputs]
print_linear_residuals = true
perf_graph = true
[./exodus]
type = Exodus
elemental_as_nodal = true
[../]
[./console]
type = Console
max_rows = 5
[../]
[./chkfile]
type = CSV
show = 'bot_react_x bot_react_y disp_x2 disp_y2 disp_x7 disp_y7 sigma_yy sigma_zz top_react_x top_react_y x_disp cont_press'
execute_vector_postprocessors_on = timestep_end
[../]
[./outfile]
type = CSV
delimiter = ' '
execute_vector_postprocessors_on = none
[../]
[]
[Contact]
[./leftright]
secondary = 3
primary = 4
normalize_penalty = true
tangential_tolerance = 1e-3
penalty = 1e+9
[../]
[]
(test/tests/kernels/ad_mat_coupled_force/aux_test.i)
[Mesh]
[square]
type = GeneratedMeshGenerator
nx = 4
ny = 4
dim = 2
[]
[]
[Variables]
[u]
[]
[]
[AuxVariables]
[a]
order = FIRST
family = LAGRANGE
[]
[]
[Kernels]
[diff]
type = ADDiffusion
variable = u
[]
[force]
type = ADMatCoupledForce
variable = u
v = a
mat_prop_coef = test_prop
[]
[]
[AuxKernels]
[a]
variable = a
type = ConstantAux
value = 10
[]
[]
[BCs]
[left]
type = ADDirichletBC
variable = u
boundary = left
value = 0
[]
[right]
type = ADDirichletBC
variable = u
boundary = right
value = 1
[]
[]
[Functions]
[test_func]
type = ParsedFunction
expression = 'x'
[]
[]
[Materials]
[test_prop]
type = ADGenericFunctionMaterial
prop_names = test_prop
prop_values = test_func
[]
[]
[Executioner]
type = Steady
solve_type = 'NEWTON'
[]