www.mooseframework.org
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
TensorMechanicsPlasticTensile Class Reference

FiniteStrainTensile implements rate-independent associative tensile failure with hardening/softening in the finite-strain framework. More...

#include <TensorMechanicsPlasticTensile.h>

Inheritance diagram for TensorMechanicsPlasticTensile:
[legend]

Public Member Functions

 TensorMechanicsPlasticTensile (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real smooth (const RankTwoTensor &stress) const
 returns the 'a' parameter - see doco for _tip_scheme More...
 
virtual Real dsmooth (const RankTwoTensor &stress) const
 returns the da/dstress_mean - see doco for _tip_scheme More...
 
virtual Real d2smooth (const RankTwoTensor &stress) const
 returns the d^2a/dstress_mean^2 - see doco for _tip_scheme More...
 
virtual Real tensile_strength (const Real internal_param) const
 tensile strength as a function of residual value, rate, and internal_param More...
 
virtual Real dtensile_strength (const Real internal_param) const
 d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_strength
 
MooseEnum _tip_scheme
 The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depends on the tip_scheme. More...
 
Real _small_smoother2
 Square of tip smoothing parameter to smooth the cone at mean_stress = T. More...
 
Real _cap_start
 smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme More...
 
Real _cap_rate
 dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme More...
 
Real _tt
 edge smoothing parameter, in radians More...
 
Real _sin3tt
 sin(3*_tt) - useful for making comparisons with Lode angle More...
 
Real _lode_cutoff
 if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss More...
 
Real _ccc
 Abbo et al's C parameter. More...
 
Real _bbb
 Abbo et al's B parameter. More...
 
Real _aaa
 Abbo et al's A parameter. More...
 

Detailed Description

FiniteStrainTensile implements rate-independent associative tensile failure with hardening/softening in the finite-strain framework.

For 'hyperbolic' smoothing, the smoothing of the tip of the yield-surface cone is described in Zienkiewicz and Prande "Some useful forms of isotropic yield surfaces for soil and rock mechanics" (1977) In G Gudehus (editor) "Finite Elements in Geomechanics" Wile, Chichester, pp 179-190. For 'cap' smoothing, additional smoothing is performed. The smoothing of the edges of the cone is described in AJ Abbo, AV Lyamin, SW Sloan, JP Hambleton "A C2 continuous approximation to the Mohr-Coulomb yield surface" International Journal of Solids and Structures 48 (2011) 3001-3010

Definition at line 33 of file TensorMechanicsPlasticTensile.h.

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticTensile()

TensorMechanicsPlasticTensile::TensorMechanicsPlasticTensile ( const InputParameters &  parameters)

Definition at line 61 of file TensorMechanicsPlasticTensile.C.

62  : TensorMechanicsPlasticModel(parameters),
63  _strength(getUserObject<TensorMechanicsHardeningModel>("tensile_strength")),
64  _tip_scheme(getParam<MooseEnum>("tip_scheme")),
65  _small_smoother2(Utility::pow<2>(getParam<Real>("tensile_tip_smoother"))),
66  _cap_start(getParam<Real>("cap_start")),
67  _cap_rate(getParam<Real>("cap_rate")),
68  _tt(getParam<Real>("tensile_edge_smoother") * libMesh::pi / 180.0),
69  _sin3tt(std::sin(3.0 * _tt)),
70  _lode_cutoff(parameters.isParamValid("tensile_lode_cutoff")
71  ? getParam<Real>("tensile_lode_cutoff")
72  : 1.0e-5 * Utility::pow<2>(_f_tol))
73 
74 {
75  if (_lode_cutoff < 0)
76  mooseError("tensile_lode_cutoff must not be negative");
77  _ccc = (-std::cos(3.0 * _tt) * (std::cos(_tt) - std::sin(_tt) / std::sqrt(3.0)) -
78  3.0 * _sin3tt * (std::sin(_tt) + std::cos(_tt) / std::sqrt(3.0))) /
79  (18.0 * Utility::pow<3>(std::cos(3.0 * _tt)));
80  _bbb = (std::sin(6.0 * _tt) * (std::cos(_tt) - std::sin(_tt) / std::sqrt(3.0)) -
81  6.0 * std::cos(6.0 * _tt) * (std::sin(_tt) + std::cos(_tt) / std::sqrt(3.0))) /
82  (18.0 * Utility::pow<3>(std::cos(3.0 * _tt)));
83  _aaa = -std::sin(_tt) / std::sqrt(3.0) - _bbb * _sin3tt - _ccc * Utility::pow<2>(_sin3tt) +
84  std::cos(_tt);
85 }
Real _bbb
Abbo et al&#39;s B parameter.
TensorMechanicsPlasticModel(const InputParameters &parameters)
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
Real _ccc
Abbo et al&#39;s C parameter.
Real _tt
edge smoothing parameter, in radians
Real _small_smoother2
Square of tip smoothing parameter to smooth the cone at mean_stress = T.
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
const Real _f_tol
Tolerance on yield function.
Real _aaa
Abbo et al&#39;s A parameter.
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
MooseEnum _tip_scheme
The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depend...
const TensorMechanicsHardeningModel & _strength
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...

Member Function Documentation

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  Eijkl,
std::vector< bool > &  act,
RankTwoTensor &  returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 187 of file TensorMechanicsPlasticModel.C.

193 {
194  mooseAssert(f.size() == numberSurfaces(),
195  "f incorrectly sized at " << f.size() << " in activeConstraints");
196  act.resize(numberSurfaces());
197  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
198  act[surface] = (f[surface] > _f_tol);
199 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 253 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticJ2::consistentTangentOperator(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), TensorMechanicsPlasticMeanCapTC::consistentTangentOperator(), and TensorMechanicsPlasticTensileMulti::consistentTangentOperator().

260 {
261  return E_ijkl;
262 }

◆ d2smooth()

Real TensorMechanicsPlasticTensile::d2smooth ( const RankTwoTensor &  stress) const
protectedvirtual

returns the d^2a/dstress_mean^2 - see doco for _tip_scheme

Definition at line 287 of file TensorMechanicsPlasticTensile.C.

Referenced by dflowPotential_dstress().

288 {
289  Real d2smoother2 = 0;
290  if (_tip_scheme == "cap")
291  {
292  Real x = stress.trace() / 3.0 - _cap_start;
293  Real p = 0;
294  Real dp_dx = 0;
295  Real d2p_dx2 = 0;
296  if (x > 0)
297  {
298  p = x * (1 - std::exp(-_cap_rate * x));
299  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
300  d2p_dx2 = 2.0 * _cap_rate * std::exp(-_cap_rate * x) -
301  x * Utility::pow<2>(_cap_rate) * std::exp(-_cap_rate * x);
302  }
303  d2smoother2 += 2.0 * Utility::pow<2>(dp_dx) + 2.0 * p * d2p_dx2;
304  }
305  return d2smoother2;
306 }
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
MooseEnum _tip_scheme
The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depend...

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticTensile::dflowPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 234 of file TensorMechanicsPlasticTensile.C.

236 {
237  return RankTwoTensor();
238 }

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 138 of file TensorMechanicsPlasticModel.C.

141 {
142  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
143 }
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticTensile::dflowPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 157 of file TensorMechanicsPlasticTensile.C.

159 {
160  Real mean_stress = stress.trace() / 3.0;
161  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
162  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
163  if (sin3Lode <= _sin3tt)
164  {
165  // the non-edge-smoothed version
166  std::vector<Real> eigvals;
167  std::vector<RankTwoTensor> deigvals;
168  std::vector<RankFourTensor> d2eigvals;
169  stress.dsymmetricEigenvalues(eigvals, deigvals);
170  stress.d2symmetricEigenvalues(d2eigvals);
171 
172  Real denom = std::sqrt(smooth(stress) + Utility::pow<2>(eigvals[2] - mean_stress));
173  Real denom3 = Utility::pow<3>(denom);
174  RankTwoTensor numer_part = deigvals[2] - dmean_stress;
175  RankTwoTensor numer_full =
176  0.5 * dsmooth(stress) * dmean_stress + (eigvals[2] - mean_stress) * numer_part;
177  Real d2smooth_over_denom = d2smooth(stress) / denom;
178 
179  RankFourTensor dr_dstress = (eigvals[2] - mean_stress) * d2eigvals[2] / denom;
180  for (unsigned i = 0; i < 3; ++i)
181  for (unsigned j = 0; j < 3; ++j)
182  for (unsigned k = 0; k < 3; ++k)
183  for (unsigned l = 0; l < 3; ++l)
184  {
185  dr_dstress(i, j, k, l) +=
186  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
187  dr_dstress(i, j, k, l) += numer_part(i, j) * numer_part(k, l) / denom;
188  dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3;
189  }
190  return dr_dstress;
191  }
192  else
193  {
194  // the edge-smoothed version
195  RankTwoTensor dsin3Lode = stress.dsin3Lode(_lode_cutoff);
196  Real kk = _aaa + _bbb * sin3Lode + _ccc * Utility::pow<2>(sin3Lode);
197  RankTwoTensor dkk = (_bbb + 2.0 * _ccc * sin3Lode) * dsin3Lode;
198  RankFourTensor d2kk = (_bbb + 2.0 * _ccc * sin3Lode) * stress.d2sin3Lode(_lode_cutoff);
199  for (unsigned i = 0; i < 3; ++i)
200  for (unsigned j = 0; j < 3; ++j)
201  for (unsigned k = 0; k < 3; ++k)
202  for (unsigned l = 0; l < 3; ++l)
203  d2kk(i, j, k, l) += 2.0 * _ccc * dsin3Lode(i, j) * dsin3Lode(k, l);
204 
205  Real sibar2 = stress.secondInvariant();
206  RankTwoTensor dsibar2 = stress.dsecondInvariant();
207  RankFourTensor d2sibar2 = stress.d2secondInvariant();
208 
209  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
210  Real denom3 = Utility::pow<3>(denom);
211  Real d2smooth_over_denom = d2smooth(stress) / denom;
212  RankTwoTensor numer_full =
213  0.5 * dsmooth(stress) * dmean_stress + 0.5 * dsibar2 * kk * kk + sibar2 * kk * dkk;
214 
215  RankFourTensor dr_dstress = (0.5 * d2sibar2 * Utility::pow<2>(kk) + sibar2 * kk * d2kk) / denom;
216  for (unsigned i = 0; i < 3; ++i)
217  for (unsigned j = 0; j < 3; ++j)
218  for (unsigned k = 0; k < 3; ++k)
219  for (unsigned l = 0; l < 3; ++l)
220  {
221  dr_dstress(i, j, k, l) +=
222  0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l);
223  dr_dstress(i, j, k, l) +=
224  (dsibar2(i, j) * dkk(k, l) * kk + dkk(i, j) * dsibar2(k, l) * kk +
225  sibar2 * dkk(i, j) * dkk(k, l)) /
226  denom;
227  dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3;
228  }
229  return dr_dstress;
230  }
231 }
virtual Real d2smooth(const RankTwoTensor &stress) const
returns the d^2a/dstress_mean^2 - see doco for _tip_scheme
Real _bbb
Abbo et al&#39;s B parameter.
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
Real _ccc
Abbo et al&#39;s C parameter.
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress_mean - see doco for _tip_scheme
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme
Real _aaa
Abbo et al&#39;s A parameter.
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 124 of file TensorMechanicsPlasticModel.C.

127 {
128  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
129 }
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 173 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

175 {
176  return 0.0;
177 }

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 179 of file TensorMechanicsPlasticModel.C.

182 {
183  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
184 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter. ...

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 159 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

161 {
162  return RankTwoTensor();
163 }

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 165 of file TensorMechanicsPlasticModel.C.

168 {
169  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
170 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.

◆ dsmooth()

Real TensorMechanicsPlasticTensile::dsmooth ( const RankTwoTensor &  stress) const
protectedvirtual

returns the da/dstress_mean - see doco for _tip_scheme

Definition at line 268 of file TensorMechanicsPlasticTensile.C.

Referenced by dflowPotential_dstress(), and dyieldFunction_dstress().

269 {
270  Real dsmoother2 = 0;
271  if (_tip_scheme == "cap")
272  {
273  Real x = stress.trace() / 3.0 - _cap_start;
274  Real p = 0;
275  Real dp_dx = 0;
276  if (x > 0)
277  {
278  p = x * (1 - std::exp(-_cap_rate * x));
279  dp_dx = (1 - std::exp(-_cap_rate * x)) + x * _cap_rate * std::exp(-_cap_rate * x);
280  }
281  dsmoother2 += 2.0 * p * dp_dx;
282  }
283  return dsmoother2;
284 }
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
MooseEnum _tip_scheme
The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depend...

◆ dtensile_strength()

Real TensorMechanicsPlasticTensile::dtensile_strength ( const Real  internal_param) const
protectedvirtual

d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param

Definition at line 247 of file TensorMechanicsPlasticTensile.C.

Referenced by dyieldFunction_dintnl().

248 {
249  return _strength.derivative(internal_param);
250 }
virtual Real derivative(Real intnl) const
const TensorMechanicsHardeningModel & _strength

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticTensile::dyieldFunction_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 143 of file TensorMechanicsPlasticTensile.C.

145 {
146  return -dtensile_strength(intnl);
147 }
virtual Real dtensile_strength(const Real internal_param) const
d(tensile strength)/d(internal_param) as a function of residual value, rate, and internal_param ...

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 97 of file TensorMechanicsPlasticModel.C.

100 {
101  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
102 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticTensile::dyieldFunction_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 111 of file TensorMechanicsPlasticTensile.C.

Referenced by flowPotential().

113 {
114  Real mean_stress = stress.trace() / 3.0;
115  RankTwoTensor dmean_stress = stress.dtrace() / 3.0;
116  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
117  if (sin3Lode <= _sin3tt)
118  {
119  // the non-edge-smoothed version
120  std::vector<Real> eigvals;
121  std::vector<RankTwoTensor> deigvals;
122  stress.dsymmetricEigenvalues(eigvals, deigvals);
123  Real denom = std::sqrt(smooth(stress) + Utility::pow<2>(eigvals[2] - mean_stress));
124  return dmean_stress + (0.5 * dsmooth(stress) * dmean_stress +
125  (eigvals[2] - mean_stress) * (deigvals[2] - dmean_stress)) /
126  denom;
127  }
128  else
129  {
130  // the edge-smoothed version
131  Real kk = _aaa + _bbb * sin3Lode + _ccc * Utility::pow<2>(sin3Lode);
132  RankTwoTensor dkk = (_bbb + 2.0 * _ccc * sin3Lode) * stress.dsin3Lode(_lode_cutoff);
133  Real sibar2 = stress.secondInvariant();
134  RankTwoTensor dsibar2 = stress.dsecondInvariant();
135  Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk));
136  return dmean_stress + (0.5 * dsmooth(stress) * dmean_stress +
137  0.5 * dsibar2 * Utility::pow<2>(kk) + sibar2 * kk * dkk) /
138  denom;
139  }
140 }
Real _bbb
Abbo et al&#39;s B parameter.
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
Real _ccc
Abbo et al&#39;s C parameter.
virtual Real dsmooth(const RankTwoTensor &stress) const
returns the da/dstress_mean - see doco for _tip_scheme
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme
Real _aaa
Abbo et al&#39;s A parameter.
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 83 of file TensorMechanicsPlasticModel.C.

86 {
87  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
88 }
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.

◆ execute()

void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 46 of file TensorMechanicsPlasticModel.C.

47 {
48 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 51 of file TensorMechanicsPlasticModel.C.

52 {
53 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticTensile::flowPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 150 of file TensorMechanicsPlasticTensile.C.

151 {
152  // This plasticity is associative so
153  return dyieldFunction_dstress(stress, intnl);
154 }
RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const override
The derivative of yield function with respect to stress.

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 110 of file TensorMechanicsPlasticModel.C.

113 {
114  return r.assign(1, flowPotential(stress, intnl));
115 }
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 146 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

147 {
148  return -1.0;
149 }

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 151 of file TensorMechanicsPlasticModel.C.

154 {
155  h.assign(numberSurfaces(), hardPotential(stress, intnl));
156 }
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 41 of file TensorMechanicsPlasticModel.C.

42 {
43 }

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 247 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

248 {
249  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
250 }
const Real _f_tol
Tolerance on yield function.

◆ modelName()

std::string TensorMechanicsPlasticTensile::modelName ( ) const
overridevirtual

Implements TensorMechanicsPlasticModel.

Definition at line 309 of file TensorMechanicsPlasticTensile.C.

310 {
311  return "Tensile";
312 }

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ returnMap()

bool TensorMechanicsPlasticModel::returnMap ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankFourTensor &  E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor &  returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor &  delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 220 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticJ2::returnMap(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), TensorMechanicsPlasticMeanCapTC::returnMap(), TensorMechanicsPlasticMohrCoulombMulti::returnMap(), and TensorMechanicsPlasticTensileMulti::returnMap().

230 {
231  trial_stress_inadmissible = false;
232  yieldFunctionV(trial_stress, intnl_old, yf);
233 
234  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
235  if (yf[sf] > _f_tol)
236  trial_stress_inadmissible = true;
237 
238  // example of checking Kuhn-Tucker
239  std::vector<Real> dpm(numberSurfaces(), 0);
240  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
241  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
242  return false;
243  return true;
244 }
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
const Real _f_tol
Tolerance on yield function.

◆ smooth()

Real TensorMechanicsPlasticTensile::smooth ( const RankTwoTensor &  stress) const
protectedvirtual

returns the 'a' parameter - see doco for _tip_scheme

Definition at line 253 of file TensorMechanicsPlasticTensile.C.

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), and yieldFunction().

254 {
255  Real smoother2 = _small_smoother2;
256  if (_tip_scheme == "cap")
257  {
258  Real x = stress.trace() / 3.0 - _cap_start;
259  Real p = 0;
260  if (x > 0)
261  p = x * (1 - std::exp(-_cap_rate * x));
262  smoother2 += Utility::pow<2>(p);
263  }
264  return smoother2;
265 }
Real _small_smoother2
Square of tip smoothing parameter to smooth the cone at mean_stress = T.
Real _cap_start
smoothing parameter dictating when the &#39;cap&#39; will start - see doco for _tip_scheme ...
Real _cap_rate
dictates how quickly the &#39;cap&#39; degenerates to a hemisphere - see doco for _tip_scheme ...
MooseEnum _tip_scheme
The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depend...

◆ tensile_strength()

Real TensorMechanicsPlasticTensile::tensile_strength ( const Real  internal_param) const
protectedvirtual

tensile strength as a function of residual value, rate, and internal_param

Definition at line 241 of file TensorMechanicsPlasticTensile.C.

Referenced by yieldFunction().

242 {
243  return _strength.value(internal_param);
244 }
virtual Real value(Real intnl) const
const TensorMechanicsHardeningModel & _strength

◆ useCustomCTO()

bool TensorMechanicsPlasticModel::useCustomCTO ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 214 of file TensorMechanicsPlasticModel.C.

215 {
216  return false;
217 }

◆ useCustomReturnMap()

bool TensorMechanicsPlasticModel::useCustomReturnMap ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 208 of file TensorMechanicsPlasticModel.C.

209 {
210  return false;
211 }

◆ yieldFunction()

Real TensorMechanicsPlasticTensile::yieldFunction ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 88 of file TensorMechanicsPlasticTensile.C.

89 {
90  Real mean_stress = stress.trace() / 3.0;
91  Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0);
92  if (sin3Lode <= _sin3tt)
93  {
94  // the non-edge-smoothed version
95  std::vector<Real> eigvals;
96  stress.symmetricEigenvalues(eigvals);
97  return mean_stress + std::sqrt(smooth(stress) + Utility::pow<2>(eigvals[2] - mean_stress)) -
98  tensile_strength(intnl);
99  }
100  else
101  {
102  // the edge-smoothed version
103  Real kk = _aaa + _bbb * sin3Lode + _ccc * Utility::pow<2>(sin3Lode);
104  Real sibar2 = stress.secondInvariant();
105  return mean_stress + std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk)) -
106  tensile_strength(intnl);
107  }
108 }
Real _bbb
Abbo et al&#39;s B parameter.
Real _sin3tt
sin(3*_tt) - useful for making comparisons with Lode angle
Real _ccc
Abbo et al&#39;s C parameter.
virtual Real tensile_strength(const Real internal_param) const
tensile strength as a function of residual value, rate, and internal_param
virtual Real smooth(const RankTwoTensor &stress) const
returns the &#39;a&#39; parameter - see doco for _tip_scheme
Real _aaa
Abbo et al&#39;s A parameter.
Real _lode_cutoff
if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-los...

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 68 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::returnMap().

71 {
72  f.assign(1, yieldFunction(stress, intnl));
73 }
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models...

Member Data Documentation

◆ _aaa

Real TensorMechanicsPlasticTensile::_aaa
protected

◆ _bbb

Real TensorMechanicsPlasticTensile::_bbb
protected

◆ _cap_rate

Real TensorMechanicsPlasticTensile::_cap_rate
protected

dictates how quickly the 'cap' degenerates to a hemisphere - see doco for _tip_scheme

Definition at line 72 of file TensorMechanicsPlasticTensile.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _cap_start

Real TensorMechanicsPlasticTensile::_cap_start
protected

smoothing parameter dictating when the 'cap' will start - see doco for _tip_scheme

Definition at line 69 of file TensorMechanicsPlasticTensile.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _ccc

Real TensorMechanicsPlasticTensile::_ccc
protected

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 177 of file TensorMechanicsPlasticModel.h.

◆ _lode_cutoff

Real TensorMechanicsPlasticTensile::_lode_cutoff
protected

if secondInvariant < _lode_cutoff then set Lode angle to zero. This is to guard against precision-loss

Definition at line 81 of file TensorMechanicsPlasticTensile.h.

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), TensorMechanicsPlasticTensile(), and yieldFunction().

◆ _sin3tt

Real TensorMechanicsPlasticTensile::_sin3tt
protected

sin(3*_tt) - useful for making comparisons with Lode angle

Definition at line 78 of file TensorMechanicsPlasticTensile.h.

Referenced by dflowPotential_dstress(), dyieldFunction_dstress(), TensorMechanicsPlasticTensile(), and yieldFunction().

◆ _small_smoother2

Real TensorMechanicsPlasticTensile::_small_smoother2
protected

Square of tip smoothing parameter to smooth the cone at mean_stress = T.

Definition at line 66 of file TensorMechanicsPlasticTensile.h.

Referenced by smooth().

◆ _strength

const TensorMechanicsHardeningModel& TensorMechanicsPlasticTensile::_strength
protected

Definition at line 53 of file TensorMechanicsPlasticTensile.h.

Referenced by dtensile_strength(), and tensile_strength().

◆ _tip_scheme

MooseEnum TensorMechanicsPlasticTensile::_tip_scheme
protected

The yield function is modified to f = s_m + sqrt(a + s_bar^2 K^2) - tensile_strength where "a" depends on the tip_scheme.

Currently _tip_scheme is 'hyperbolic', where a = _small_smoother2 'cap' where a = _small_smoother2 + (p(stress_mean - _cap_start))^2 with the function p(x)=x(1-exp(-_cap_rate*x)) for x>0, and p=0 otherwise

Definition at line 63 of file TensorMechanicsPlasticTensile.h.

Referenced by d2smooth(), dsmooth(), and smooth().

◆ _tt

Real TensorMechanicsPlasticTensile::_tt
protected

edge smoothing parameter, in radians

Definition at line 75 of file TensorMechanicsPlasticTensile.h.

Referenced by TensorMechanicsPlasticTensile().


The documentation for this class was generated from the following files: