www.mooseframework.org
Public Types | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
TensorMechanicsPlasticDruckerPragerHyperbolic Class Reference

Rate-independent non-associative Drucker Prager with hardening/softening. More...

#include <TensorMechanicsPlasticDruckerPragerHyperbolic.h>

Inheritance diagram for TensorMechanicsPlasticDruckerPragerHyperbolic:
[legend]

Public Types

enum  FrictionDilation { friction = 0, dilation = 1 }
 bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow More...
 

Public Member Functions

 TensorMechanicsPlasticDruckerPragerHyperbolic (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
virtual bool useCustomReturnMap () const override
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const override
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
void bothAB (Real intnl, Real &aaa, Real &bbb) const
 Calculates aaa and bbb as a function of the internal parameter intnl. More...
 
void dbothAB (Real intnl, Real &daaa, Real &dbbb) const
 Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl. More...
 
void onlyB (Real intnl, int fd, Real &bbb) const
 Calculate bbb or bbb_flow. More...
 
void donlyB (Real intnl, int fd, Real &dbbb) const
 Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl) More...
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
virtual RankTwoTensor df_dsig (const RankTwoTensor &stress, Real bbb) const override
 Function that's used in dyieldFunction_dstress and flowPotential. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const override
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const override
 Calculates a custom consistent tangent operator. More...
 
virtual RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
virtual Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
virtual RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
virtual RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_mc_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_mc_phi
 Hardening model for tan(phi) More...
 
const TensorMechanicsHardeningModel_mc_psi
 Hardening model for tan(psi) More...
 
const MooseEnum _mc_interpolation_scheme
 The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface. More...
 
const bool _zero_cohesion_hardening
 True if there is no hardening of cohesion. More...
 
const bool _zero_phi_hardening
 True if there is no hardening of friction angle. More...
 
const bool _zero_psi_hardening
 True if there is no hardening of dilation angle. More...
 

Private Attributes

const Real _smoother2
 smoothing parameter for the cone's tip More...
 
const bool _use_custom_returnMap
 whether to use the custom returnMap function More...
 
const bool _use_custom_cto
 Whether to use the custom consistent tangent operator calculation. More...
 
const unsigned _max_iters
 max iters for custom return map loop More...
 

Detailed Description

Rate-independent non-associative Drucker Prager with hardening/softening.

The cone's tip is smoothed in a hyperbolic fashion Most functions (eg flowPotential, etc) are simply inherited from TensorMechanicsPlasticDruckerPrager. Note df_dsig is over-ridden

Definition at line 27 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Member Enumeration Documentation

◆ FrictionDilation

bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow

Enumerator
friction 
dilation 

Definition at line 45 of file TensorMechanicsPlasticDruckerPrager.h.

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticDruckerPragerHyperbolic()

TensorMechanicsPlasticDruckerPragerHyperbolic::TensorMechanicsPlasticDruckerPragerHyperbolic ( const InputParameters &  parameters)

Definition at line 50 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

53  _smoother2(Utility::pow<2>(getParam<Real>("smoother"))),
54  _use_custom_returnMap(getParam<bool>("use_custom_returnMap")),
55  _use_custom_cto(getParam<bool>("use_custom_cto")),
56  _max_iters(getParam<unsigned>("max_iterations"))
57 {
58 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
TensorMechanicsPlasticDruckerPrager(const InputParameters &parameters)
const unsigned _max_iters
max iters for custom return map loop
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.
const bool _use_custom_returnMap
whether to use the custom returnMap function

Member Function Documentation

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  Eijkl,
std::vector< bool > &  act,
RankTwoTensor &  returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 187 of file TensorMechanicsPlasticModel.C.

193 {
194  mooseAssert(f.size() == numberSurfaces(),
195  "f incorrectly sized at " << f.size() << " in activeConstraints");
196  act.resize(numberSurfaces());
197  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
198  act[surface] = (f[surface] > _f_tol);
199 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.

◆ bothAB()

void TensorMechanicsPlasticDruckerPrager::bothAB ( Real  intnl,
Real &  aaa,
Real &  bbb 
) const
inherited

Calculates aaa and bbb as a function of the internal parameter intnl.

Definition at line 147 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), CappedDruckerPragerStressUpdate::initializeVars(), returnMap(), yieldFunction(), TensorMechanicsPlasticDruckerPrager::yieldFunction(), and CappedDruckerPragerStressUpdate::yieldFunctionValues().

148 {
150  {
151  aaa = _aaa;
152  bbb = _bbb;
153  return;
154  }
155  initializeAandB(intnl, aaa, bbb);
156 }
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
void initializeAandB(Real intnl, Real &aaa, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
overrideprotectedvirtual

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 200 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

207 {
208  if (!_use_custom_cto)
210  trial_stress, intnl_old, stress, intnl, E_ijkl, cumulative_pm);
211 
212  const Real mu = E_ijkl(0, 1, 0, 1);
213  const Real la = E_ijkl(0, 0, 0, 0) - 2.0 * mu;
214  const Real bulky = 3.0 * la + 2.0 * mu;
215  Real bbb;
216  onlyB(intnl, friction, bbb);
217  Real bbb_flow;
218  onlyB(intnl, dilation, bbb_flow);
219  Real dbbb_flow;
220  donlyB(intnl, dilation, dbbb_flow);
221  const Real bbb_flow_mod = bbb_flow + cumulative_pm[0] * dbbb_flow;
222  const Real J2 = stress.secondInvariant();
223  const RankTwoTensor sij = stress.deviatoric();
224  const Real sq = std::sqrt(J2 + _smoother2);
225 
226  const Real one_over_h =
227  1.0 / (-dyieldFunction_dintnl(stress, intnl) + mu * J2 / Utility::pow<2>(sq) +
228  3.0 * bbb * bbb_flow_mod * bulky); // correct up to hard
229 
230  const RankTwoTensor df_dsig_timesE =
231  mu * sij / sq + bulky * bbb * RankTwoTensor(RankTwoTensor::initIdentity); // correct
232  const RankTwoTensor rmod_timesE =
233  mu * sij / sq +
234  bulky * bbb_flow_mod * RankTwoTensor(RankTwoTensor::initIdentity); // correct up to hard
235 
236  const RankFourTensor coeff_ep =
237  E_ijkl - one_over_h * rmod_timesE.outerProduct(df_dsig_timesE); // correct
238 
239  const RankFourTensor dr_dsig_timesE = -0.5 * mu * sij.outerProduct(sij) / Utility::pow<3>(sq) +
240  mu * stress.d2secondInvariant() / sq; // correct
241  const RankTwoTensor df_dsig_E_dr_dsig =
242  0.5 * mu * _smoother2 * sij / Utility::pow<4>(sq); // correct
243 
244  const RankFourTensor coeff_si =
245  RankFourTensor(RankFourTensor::initIdentitySymmetricFour) +
246  cumulative_pm[0] *
247  (dr_dsig_timesE - one_over_h * rmod_timesE.outerProduct(df_dsig_E_dr_dsig));
248 
249  RankFourTensor s_inv;
250  try
251  {
252  s_inv = coeff_si.invSymm();
253  }
254  catch (MooseException & e)
255  {
256  return coeff_ep; // when coeff_si is singular return the "linear" tangent operator
257  }
258 
259  return s_inv * coeff_ep;
260 }
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)
const Real _smoother2
smoothing parameter for the cone&#39;s tip
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const override
The derivative of yield function with respect to the internal parameter.
virtual RankFourTensor consistentTangentOperator(const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
Calculates a custom consistent tangent operator.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.

◆ dbothAB()

void TensorMechanicsPlasticDruckerPrager::dbothAB ( Real  intnl,
Real &  daaa,
Real &  dbbb 
) const
inherited

Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl.

Definition at line 217 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl(), and returnMap().

218 {
220  {
221  daaa = 0;
222  dbbb = 0;
223  return;
224  }
225 
226  const Real C = _mc_cohesion.value(intnl);
227  const Real dC = _mc_cohesion.derivative(intnl);
228  const Real cosphi = std::cos(_mc_phi.value(intnl));
229  const Real dcosphi = -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
230  const Real sinphi = std::sin(_mc_phi.value(intnl));
231  const Real dsinphi = std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
232  switch (_mc_interpolation_scheme)
233  {
234  case 0: // outer_tip
235  daaa = 2.0 * std::sqrt(3.0) *
236  (dC * cosphi / (3.0 - sinphi) + C * dcosphi / (3.0 - sinphi) +
237  C * cosphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
238  dbbb = 2.0 / std::sqrt(3.0) *
239  (dsinphi / (3.0 - sinphi) + sinphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
240  break;
241  case 1: // inner_tip
242  daaa = 2.0 * std::sqrt(3.0) *
243  (dC * cosphi / (3.0 + sinphi) + C * dcosphi / (3.0 + sinphi) -
244  C * cosphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
245  dbbb = 2.0 / std::sqrt(3.0) *
246  (dsinphi / (3.0 + sinphi) - sinphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
247  break;
248  case 2: // lode_zero
249  daaa = dC * cosphi + C * dcosphi;
250  dbbb = dsinphi / 3.0;
251  break;
252  case 3: // inner_edge
253  daaa = 3.0 * dC * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) +
254  3.0 * C * dcosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
255  3.0 * C * cosphi * 3.0 * sinphi * dsinphi /
256  std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
257  dbbb = dsinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
258  3.0 * sinphi * sinphi * dsinphi / std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
259  break;
260  case 4: // native
261  daaa = dC;
262  dbbb = dsinphi / cosphi - sinphi * dcosphi / Utility::pow<2>(cosphi);
263  break;
264  }
265 }
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
virtual Real derivative(Real intnl) const
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
virtual Real value(Real intnl) const
const TensorMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

◆ df_dsig()

RankTwoTensor TensorMechanicsPlasticDruckerPragerHyperbolic::df_dsig ( const RankTwoTensor &  stress,
Real  bbb 
) const
overrideprotectedvirtual

Function that's used in dyieldFunction_dstress and flowPotential.

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 71 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

72 {
73  return 0.5 * stress.dsecondInvariant() / std::sqrt(stress.secondInvariant() + _smoother2) +
74  stress.dtrace() * bbb;
75 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::dflowPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 132 of file TensorMechanicsPlasticDruckerPrager.C.

134 {
135  Real dbbb;
136  donlyB(intnl, dilation, dbbb);
137  return stress.dtrace() * dbbb;
138 }
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 138 of file TensorMechanicsPlasticModel.C.

141 {
142  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
143 }
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticDruckerPragerHyperbolic::dflowPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 78 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

80 {
81  RankFourTensor dr_dstress;
82  dr_dstress = 0.5 * stress.d2secondInvariant() / std::sqrt(stress.secondInvariant() + _smoother2);
83  dr_dstress += -0.5 * 0.5 * stress.dsecondInvariant().outerProduct(stress.dsecondInvariant()) /
84  std::pow(stress.secondInvariant() + _smoother2, 1.5);
85  return dr_dstress;
86 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 124 of file TensorMechanicsPlasticModel.C.

127 {
128  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
129 }
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 173 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

175 {
176  return 0.0;
177 }

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 179 of file TensorMechanicsPlasticModel.C.

182 {
183  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
184 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter. ...

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 159 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

161 {
162  return RankTwoTensor();
163 }

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 165 of file TensorMechanicsPlasticModel.C.

168 {
169  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
170 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.

◆ donlyB()

void TensorMechanicsPlasticDruckerPrager::donlyB ( Real  intnl,
int  fd,
Real &  dbbb 
) const
inherited

Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 175 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), consistentTangentOperator(), TensorMechanicsPlasticDruckerPrager::dflowPotential_dintnl(), returnMap(), and CappedDruckerPragerStressUpdate::setIntnlDerivatives().

176 {
177  if (_zero_phi_hardening && (fd == friction))
178  {
179  dbbb = 0;
180  return;
181  }
182  if (_zero_psi_hardening && (fd == dilation))
183  {
184  dbbb = 0;
185  return;
186  }
187  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
188  const Real ds = (fd == friction) ? std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
189  : std::cos(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
190  switch (_mc_interpolation_scheme)
191  {
192  case 0: // outer_tip
193  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 - s) + s * ds / Utility::pow<2>(3.0 - s));
194  break;
195  case 1: // inner_tip
196  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 + s) - s * ds / Utility::pow<2>(3.0 + s));
197  break;
198  case 2: // lode_zero
199  dbbb = ds / 3.0;
200  break;
201  case 3: // inner_edge
202  dbbb = ds / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s)) -
203  3 * s * s * ds / std::pow(9.0 + 3.0 * Utility::pow<2>(s), 1.5);
204  break;
205  case 4: // native
206  const Real c =
207  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
208  const Real dc = (fd == friction)
209  ? -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
210  : -std::sin(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
211  dbbb = ds / c - s * dc / Utility::pow<2>(c);
212  break;
213  }
214 }
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
const TensorMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
virtual Real derivative(Real intnl) const
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
virtual Real value(Real intnl) const
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 103 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by consistentTangentOperator().

105 {
106  Real daaa;
107  Real dbbb;
108  dbothAB(intnl, daaa, dbbb);
109  return stress.trace() * dbbb - daaa;
110 }
void dbothAB(Real intnl, Real &daaa, Real &dbbb) const
Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl...

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 97 of file TensorMechanicsPlasticModel.C.

100 {
101  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
102 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::dyieldFunction_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 94 of file TensorMechanicsPlasticDruckerPrager.C.

96 {
97  Real bbb;
98  onlyB(intnl, friction, bbb);
99  return df_dsig(stress, bbb);
100 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 83 of file TensorMechanicsPlasticModel.C.

86 {
87  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
88 }
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.

◆ execute()

void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 46 of file TensorMechanicsPlasticModel.C.

47 {
48 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 51 of file TensorMechanicsPlasticModel.C.

52 {
53 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::flowPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtualinherited

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 113 of file TensorMechanicsPlasticDruckerPrager.C.

114 {
115  Real bbb_flow;
116  onlyB(intnl, dilation, bbb_flow);
117  return df_dsig(stress, bbb_flow);
118 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 110 of file TensorMechanicsPlasticModel.C.

113 {
114  return r.assign(1, flowPotential(stress, intnl));
115 }
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 146 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

147 {
148  return -1.0;
149 }

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 151 of file TensorMechanicsPlasticModel.C.

154 {
155  h.assign(numberSurfaces(), hardPotential(stress, intnl));
156 }
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 41 of file TensorMechanicsPlasticModel.C.

42 {
43 }

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 247 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

248 {
249  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
250 }
const Real _f_tol
Tolerance on yield function.

◆ modelName()

std::string TensorMechanicsPlasticDruckerPragerHyperbolic::modelName ( ) const
overridevirtual

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 89 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

90 {
91  return "DruckerPragerHyperbolic";
92 }

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ onlyB()

void TensorMechanicsPlasticDruckerPrager::onlyB ( Real  intnl,
int  fd,
Real &  bbb 
) const
inherited

Calculate bbb or bbb_flow.

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 159 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), consistentTangentOperator(), TensorMechanicsPlasticDruckerPrager::dyieldFunction_dstress(), TensorMechanicsPlasticDruckerPrager::flowPotential(), CappedDruckerPragerStressUpdate::initializeVars(), returnMap(), CappedDruckerPragerStressUpdate::setIntnlDerivatives(), and CappedDruckerPragerStressUpdate::setIntnlValues().

160 {
161  if (_zero_phi_hardening && (fd == friction))
162  {
163  bbb = _bbb;
164  return;
165  }
166  if (_zero_psi_hardening && (fd == dilation))
167  {
168  bbb = _bbb_flow;
169  return;
170  }
171  initializeB(intnl, fd, bbb);
172 }
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
void initializeB(Real intnl, int fd, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
const bool _zero_phi_hardening
True if there is no hardening of friction angle.

◆ returnMap()

bool TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankFourTensor &  E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor &  returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor &  delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
overrideprotectedvirtual

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 95 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

105 {
106  if (!(_use_custom_returnMap))
107  return TensorMechanicsPlasticModel::returnMap(trial_stress,
108  intnl_old,
109  E_ijkl,
110  ep_plastic_tolerance,
111  returned_stress,
112  returned_intnl,
113  dpm,
114  delta_dp,
115  yf,
116  trial_stress_inadmissible);
117 
118  yf.resize(1);
119 
120  yf[0] = yieldFunction(trial_stress, intnl_old);
121 
122  if (yf[0] < _f_tol)
123  {
124  // the trial_stress is admissible
125  trial_stress_inadmissible = false;
126  return true;
127  }
128 
129  trial_stress_inadmissible = true;
130  const Real mu = E_ijkl(0, 1, 0, 1);
131  const Real lambda = E_ijkl(0, 0, 0, 0) - 2.0 * mu;
132  const Real bulky = 3.0 * lambda + 2.0 * mu;
133  const Real Tr_trial = trial_stress.trace();
134  const Real J2trial = trial_stress.secondInvariant();
135 
136  // Perform a Newton-Raphson to find dpm when
137  // residual = (1 + dpm*mu/ll)sqrt(ll^2 - s^2) - sqrt(J2trial) = 0, with s=smoother
138  // with ll = sqrt(J2 + s^2) = aaa - bbb*Tr(stress) = aaa - bbb(Tr_trial - p*3*bulky*bbb_flow)
139  Real aaa;
140  Real daaa;
141  Real bbb;
142  Real dbbb;
143  Real bbb_flow;
144  Real dbbb_flow;
145  Real ll;
146  Real dll;
147  Real residual;
148  Real jac;
149  dpm[0] = 0;
150  unsigned int iter = 0;
151  do
152  {
153  bothAB(intnl_old + dpm[0], aaa, bbb);
154  dbothAB(intnl_old + dpm[0], daaa, dbbb);
155  onlyB(intnl_old + dpm[0], dilation, bbb_flow);
156  donlyB(intnl_old + dpm[0], dilation, dbbb_flow);
157  ll = aaa - bbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow);
158  dll = daaa - dbbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) +
159  bbb * bulky * 3 * (bbb_flow + dpm[0] * dbbb_flow);
160  residual = bbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) - aaa +
161  std::sqrt(J2trial / Utility::pow<2>(1 + dpm[0] * mu / ll) + _smoother2);
162  jac = dbbb * (Tr_trial - dpm[0] * bulky * 3 * bbb_flow) -
163  bbb * bulky * 3 * (bbb_flow + dpm[0] * dbbb_flow) - daaa +
164  0.5 * J2trial * (-2.0) * (mu / ll - dpm[0] * mu * dll / ll / ll) /
165  Utility::pow<3>(1 + dpm[0] * mu / ll) /
166  std::sqrt(J2trial / Utility::pow<2>(1.0 + dpm[0] * mu / ll) + _smoother2);
167  dpm[0] += -residual / jac;
168  if (iter > _max_iters) // not converging
169  return false;
170  iter++;
171  } while (residual * residual > _f_tol * _f_tol);
172 
173  // set the returned values
174  yf[0] = 0;
175  returned_intnl = intnl_old + dpm[0];
176 
177  bothAB(returned_intnl, aaa, bbb);
178  onlyB(returned_intnl, dilation, bbb_flow);
179  ll = aaa - bbb * (Tr_trial - dpm[0] * bulky * 3.0 * bbb_flow);
180  returned_stress =
181  trial_stress.deviatoric() / (1.0 + dpm[0] * mu / ll); // this is the deviatoric part only
182 
183  RankTwoTensor rij = 0.5 * returned_stress.deviatoric() /
184  ll; // this is the derivatoric part the flow potential only
185 
186  // form the returned stress and the full flow potential
187  const Real returned_trace_over_3 = (aaa - ll) / bbb / 3.0;
188  for (unsigned i = 0; i < 3; ++i)
189  {
190  returned_stress(i, i) += returned_trace_over_3;
191  rij(i, i) += bbb_flow;
192  }
193 
194  delta_dp = rij * dpm[0];
195 
196  return true;
197 }
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)
const Real _smoother2
smoothing parameter for the cone&#39;s tip
void dbothAB(Real intnl, Real &daaa, Real &dbbb) const
Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl...
void bothAB(Real intnl, Real &aaa, Real &bbb) const
Calculates aaa and bbb as a function of the internal parameter intnl.
const unsigned _max_iters
max iters for custom return map loop
Real yieldFunction(const RankTwoTensor &stress, Real intnl) const override
The following functions are what you should override when building single-plasticity models...
const Real _f_tol
Tolerance on yield function.
virtual bool returnMap(const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
Performs a custom return-map.
const bool _use_custom_returnMap
whether to use the custom returnMap function
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.

◆ useCustomCTO()

bool TensorMechanicsPlasticDruckerPragerHyperbolic::useCustomCTO ( ) const
overridevirtual

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 269 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

270 {
271  return _use_custom_cto;
272 }
const bool _use_custom_cto
Whether to use the custom consistent tangent operator calculation.

◆ useCustomReturnMap()

bool TensorMechanicsPlasticDruckerPragerHyperbolic::useCustomReturnMap ( ) const
overridevirtual

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 263 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

264 {
265  return _use_custom_returnMap;
266 }
const bool _use_custom_returnMap
whether to use the custom returnMap function

◆ yieldFunction()

Real TensorMechanicsPlasticDruckerPragerHyperbolic::yieldFunction ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticDruckerPrager.

Definition at line 61 of file TensorMechanicsPlasticDruckerPragerHyperbolic.C.

Referenced by returnMap().

63 {
64  Real aaa;
65  Real bbb;
66  bothAB(intnl, aaa, bbb);
67  return std::sqrt(stress.secondInvariant() + _smoother2) + stress.trace() * bbb - aaa;
68 }
const Real _smoother2
smoothing parameter for the cone&#39;s tip
void bothAB(Real intnl, Real &aaa, Real &bbb) const
Calculates aaa and bbb as a function of the internal parameter intnl.

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 68 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::returnMap().

71 {
72  f.assign(1, yieldFunction(stress, intnl));
73 }
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models...

Member Data Documentation

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 177 of file TensorMechanicsPlasticModel.h.

◆ _max_iters

const unsigned TensorMechanicsPlasticDruckerPragerHyperbolic::_max_iters
private

max iters for custom return map loop

Definition at line 76 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by returnMap().

◆ _mc_cohesion

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_cohesion
protectedinherited

◆ _mc_interpolation_scheme

const MooseEnum TensorMechanicsPlasticDruckerPrager::_mc_interpolation_scheme
protectedinherited

The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

Various matching schemes may be used and this parameter holds the user's choice.

Definition at line 97 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::dbothAB(), TensorMechanicsPlasticDruckerPrager::donlyB(), TensorMechanicsPlasticDruckerPrager::initializeAandB(), and TensorMechanicsPlasticDruckerPrager::initializeB().

◆ _mc_phi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_phi
protectedinherited

◆ _mc_psi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_psi
protectedinherited

◆ _smoother2

const Real TensorMechanicsPlasticDruckerPragerHyperbolic::_smoother2
private

smoothing parameter for the cone's tip

Definition at line 67 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by consistentTangentOperator(), df_dsig(), dflowPotential_dstress(), returnMap(), and yieldFunction().

◆ _use_custom_cto

const bool TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_cto
private

Whether to use the custom consistent tangent operator calculation.

Definition at line 73 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by consistentTangentOperator(), and useCustomCTO().

◆ _use_custom_returnMap

const bool TensorMechanicsPlasticDruckerPragerHyperbolic::_use_custom_returnMap
private

whether to use the custom returnMap function

Definition at line 70 of file TensorMechanicsPlasticDruckerPragerHyperbolic.h.

Referenced by returnMap(), and useCustomReturnMap().

◆ _zero_cohesion_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_cohesion_hardening
protectedinherited

True if there is no hardening of cohesion.

Definition at line 100 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::bothAB(), and TensorMechanicsPlasticDruckerPrager::dbothAB().

◆ _zero_phi_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_phi_hardening
protectedinherited

◆ _zero_psi_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_psi_hardening
protectedinherited

True if there is no hardening of dilation angle.

Definition at line 106 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by TensorMechanicsPlasticDruckerPrager::donlyB(), and TensorMechanicsPlasticDruckerPrager::onlyB().


The documentation for this class was generated from the following files: