www.mooseframework.org
Public Types | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
TensorMechanicsPlasticDruckerPrager Class Reference

Rate-independent non-associative Drucker Prager with hardening/softening. More...

#include <TensorMechanicsPlasticDruckerPrager.h>

Inheritance diagram for TensorMechanicsPlasticDruckerPrager:
[legend]

Public Types

enum  FrictionDilation { friction = 0, dilation = 1 }
 bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow More...
 

Public Member Functions

 TensorMechanicsPlasticDruckerPrager (const InputParameters &parameters)
 
virtual std::string modelName () const override
 
void bothAB (Real intnl, Real &aaa, Real &bbb) const
 Calculates aaa and bbb as a function of the internal parameter intnl. More...
 
void dbothAB (Real intnl, Real &daaa, Real &dbbb) const
 Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl. More...
 
void onlyB (Real intnl, int fd, Real &bbb) const
 Calculate bbb or bbb_flow. More...
 
void donlyB (Real intnl, int fd, Real &dbbb) const
 Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl) More...
 
void initialize ()
 
void execute ()
 
void finalize ()
 
virtual unsigned int numberSurfaces () const
 The number of yield surfaces for this plasticity model. More...
 
virtual void yieldFunctionV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
 Calculates the yield functions. More...
 
virtual void dyieldFunction_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &df_dstress) const
 The derivative of yield functions with respect to stress. More...
 
virtual void dyieldFunction_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &df_dintnl) const
 The derivative of yield functions with respect to the internal parameter. More...
 
virtual void flowPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &r) const
 The flow potentials. More...
 
virtual void dflowPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankFourTensor > &dr_dstress) const
 The derivative of the flow potential with respect to stress. More...
 
virtual void dflowPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dr_dintnl) const
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual void hardPotentialV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &h) const
 The hardening potential. More...
 
virtual void dhardPotential_dstressV (const RankTwoTensor &stress, Real intnl, std::vector< RankTwoTensor > &dh_dstress) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual void dhardPotential_dintnlV (const RankTwoTensor &stress, Real intnl, std::vector< Real > &dh_dintnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 
virtual void activeConstraints (const std::vector< Real > &f, const RankTwoTensor &stress, Real intnl, const RankFourTensor &Eijkl, std::vector< bool > &act, RankTwoTensor &returned_stress) const
 The active yield surfaces, given a vector of yield functions. More...
 
virtual bool useCustomReturnMap () const
 Returns false. You will want to override this in your derived class if you write a custom returnMap function. More...
 
virtual bool useCustomCTO () const
 Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function. More...
 
virtual bool returnMap (const RankTwoTensor &trial_stress, Real intnl_old, const RankFourTensor &E_ijkl, Real ep_plastic_tolerance, RankTwoTensor &returned_stress, Real &returned_intnl, std::vector< Real > &dpm, RankTwoTensor &delta_dp, std::vector< Real > &yf, bool &trial_stress_inadmissible) const
 Performs a custom return-map. More...
 
virtual RankFourTensor consistentTangentOperator (const RankTwoTensor &trial_stress, Real intnl_old, const RankTwoTensor &stress, Real intnl, const RankFourTensor &E_ijkl, const std::vector< Real > &cumulative_pm) const
 Calculates a custom consistent tangent operator. More...
 
bool KuhnTuckerSingleSurface (Real yf, Real dpm, Real dpm_tol) const
 Returns true if the Kuhn-Tucker conditions for the single surface are satisfied. More...
 

Public Attributes

const Real _f_tol
 Tolerance on yield function. More...
 
const Real _ic_tol
 Tolerance on internal constraint. More...
 

Protected Member Functions

virtual Real yieldFunction (const RankTwoTensor &stress, Real intnl) const override
 The following functions are what you should override when building single-plasticity models. More...
 
virtual RankTwoTensor dyieldFunction_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to stress. More...
 
virtual Real dyieldFunction_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of yield function with respect to the internal parameter. More...
 
virtual RankTwoTensor flowPotential (const RankTwoTensor &stress, Real intnl) const override
 The flow potential. More...
 
virtual RankFourTensor dflowPotential_dstress (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to stress. More...
 
virtual RankTwoTensor dflowPotential_dintnl (const RankTwoTensor &stress, Real intnl) const override
 The derivative of the flow potential with respect to the internal parameter. More...
 
virtual RankTwoTensor df_dsig (const RankTwoTensor &stress, Real bbb) const
 Function that's used in dyieldFunction_dstress and flowPotential. More...
 
virtual Real hardPotential (const RankTwoTensor &stress, Real intnl) const
 The hardening potential. More...
 
virtual RankTwoTensor dhardPotential_dstress (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to stress. More...
 
virtual Real dhardPotential_dintnl (const RankTwoTensor &stress, Real intnl) const
 The derivative of the hardening potential with respect to the internal parameter. More...
 

Protected Attributes

const TensorMechanicsHardeningModel_mc_cohesion
 Hardening model for cohesion. More...
 
const TensorMechanicsHardeningModel_mc_phi
 Hardening model for tan(phi) More...
 
const TensorMechanicsHardeningModel_mc_psi
 Hardening model for tan(psi) More...
 
const MooseEnum _mc_interpolation_scheme
 The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface. More...
 
const bool _zero_cohesion_hardening
 True if there is no hardening of cohesion. More...
 
const bool _zero_phi_hardening
 True if there is no hardening of friction angle. More...
 
const bool _zero_psi_hardening
 True if there is no hardening of dilation angle. More...
 

Private Member Functions

void initializeAandB (Real intnl, Real &aaa, Real &bbb) const
 Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314. More...
 
void initializeB (Real intnl, int fd, Real &bbb) const
 Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314. More...
 

Private Attributes

Real _aaa
 
Real _bbb
 
Real _bbb_flow
 

Detailed Description

Rate-independent non-associative Drucker Prager with hardening/softening.

The cone's tip is not smoothed. f = sqrt(J2) + bbb*Tr(stress) - aaa with aaa = "cohesion" (a non-negative number) and bbb = tan(friction angle) (a positive number)

Definition at line 28 of file TensorMechanicsPlasticDruckerPrager.h.

Member Enumeration Documentation

◆ FrictionDilation

bbb (friction) and bbb_flow (dilation) are computed using the same function, onlyB, and this parameter tells that function whether to compute bbb or bbb_flow

Enumerator
friction 
dilation 

Definition at line 45 of file TensorMechanicsPlasticDruckerPrager.h.

Constructor & Destructor Documentation

◆ TensorMechanicsPlasticDruckerPrager()

TensorMechanicsPlasticDruckerPrager::TensorMechanicsPlasticDruckerPrager ( const InputParameters &  parameters)

Definition at line 52 of file TensorMechanicsPlasticDruckerPrager.C.

54  : TensorMechanicsPlasticModel(parameters),
55  _mc_cohesion(getUserObject<TensorMechanicsHardeningModel>("mc_cohesion")),
56  _mc_phi(getUserObject<TensorMechanicsHardeningModel>("mc_friction_angle")),
57  _mc_psi(getUserObject<TensorMechanicsHardeningModel>("mc_dilation_angle")),
58  _mc_interpolation_scheme(getParam<MooseEnum>("mc_interpolation_scheme")),
59  _zero_cohesion_hardening(_mc_cohesion.modelName().compare("Constant") == 0),
60  _zero_phi_hardening(_mc_phi.modelName().compare("Constant") == 0),
61  _zero_psi_hardening(_mc_psi.modelName().compare("Constant") == 0)
62 {
63  if (_mc_phi.value(0.0) < 0.0 || _mc_psi.value(0.0) < 0.0 ||
64  _mc_phi.value(0.0) > libMesh::pi / 2.0 || _mc_psi.value(0.0) > libMesh::pi / 2.0)
65  mooseError("TensorMechanicsPlasticDruckerPrager: MC friction and dilation angles must lie in "
66  "[0, Pi/2]");
67  if (_mc_phi.value(0) < _mc_psi.value(0.0))
68  mooseError("TensorMechanicsPlasticDruckerPrager: MC friction angle must not be less than MC "
69  "dilation angle");
70  if (_mc_cohesion.value(0.0) < 0)
71  mooseError("TensorMechanicsPlasticDruckerPrager: MC cohesion should not be negative");
72 
73  initializeAandB(0.0, _aaa, _bbb);
75 }
TensorMechanicsPlasticModel(const InputParameters &parameters)
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
void initializeB(Real intnl, int fd, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
virtual std::string modelName() const =0
const TensorMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
virtual Real value(Real intnl) const
void initializeAandB(Real intnl, Real &aaa, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
const TensorMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

Member Function Documentation

◆ activeConstraints()

void TensorMechanicsPlasticModel::activeConstraints ( const std::vector< Real > &  f,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  Eijkl,
std::vector< bool > &  act,
RankTwoTensor &  returned_stress 
) const
virtualinherited

The active yield surfaces, given a vector of yield functions.

This is used by FiniteStrainMultiPlasticity to determine the initial set of active constraints at the trial (stress, intnl) configuration. It is up to you (the coder) to determine how accurate you want the returned_stress to be. Currently it is only used by FiniteStrainMultiPlasticity to estimate a good starting value for the Newton-Rahson procedure, so currently it may not need to be super perfect.

Parameters
fvalues of the yield functions
stressstress tensor
intnlinternal parameter
Eijklelasticity tensor (stress = Eijkl*strain)
[out]actact[i] = true if the i_th yield function is active
[out]returned_stressApproximate value of the returned stress

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticWeakPlaneShear, and TensorMechanicsPlasticWeakPlaneTensile.

Definition at line 187 of file TensorMechanicsPlasticModel.C.

193 {
194  mooseAssert(f.size() == numberSurfaces(),
195  "f incorrectly sized at " << f.size() << " in activeConstraints");
196  act.resize(numberSurfaces());
197  for (unsigned surface = 0; surface < numberSurfaces(); ++surface)
198  act[surface] = (f[surface] > _f_tol);
199 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
const Real _f_tol
Tolerance on yield function.

◆ bothAB()

void TensorMechanicsPlasticDruckerPrager::bothAB ( Real  intnl,
Real &  aaa,
Real &  bbb 
) const

Calculates aaa and bbb as a function of the internal parameter intnl.

Definition at line 147 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), CappedDruckerPragerStressUpdate::initializeVars(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), TensorMechanicsPlasticDruckerPragerHyperbolic::yieldFunction(), yieldFunction(), and CappedDruckerPragerStressUpdate::yieldFunctionValues().

148 {
150  {
151  aaa = _aaa;
152  bbb = _bbb;
153  return;
154  }
155  initializeAandB(intnl, aaa, bbb);
156 }
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
void initializeAandB(Real intnl, Real &aaa, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...

◆ consistentTangentOperator()

RankFourTensor TensorMechanicsPlasticModel::consistentTangentOperator ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankTwoTensor &  stress,
Real  intnl,
const RankFourTensor &  E_ijkl,
const std::vector< Real > &  cumulative_pm 
) const
virtualinherited

Calculates a custom consistent tangent operator.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class.

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
stress_oldtrial stress before returning
intnl_oldinternal parameter before returning
stresscurrent returned stress state
intnlinternal parameter
E_ijklelasticity tensor
cumulative_pmthe cumulative plastic multipliers
Returns
the consistent tangent operator: E_ijkl if not over-ridden

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 253 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticJ2::consistentTangentOperator(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), TensorMechanicsPlasticMeanCapTC::consistentTangentOperator(), and TensorMechanicsPlasticTensileMulti::consistentTangentOperator().

260 {
261  return E_ijkl;
262 }

◆ dbothAB()

void TensorMechanicsPlasticDruckerPrager::dbothAB ( Real  intnl,
Real &  daaa,
Real &  dbbb 
) const

Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl.

Definition at line 217 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), dyieldFunction_dintnl(), and TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap().

218 {
220  {
221  daaa = 0;
222  dbbb = 0;
223  return;
224  }
225 
226  const Real C = _mc_cohesion.value(intnl);
227  const Real dC = _mc_cohesion.derivative(intnl);
228  const Real cosphi = std::cos(_mc_phi.value(intnl));
229  const Real dcosphi = -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
230  const Real sinphi = std::sin(_mc_phi.value(intnl));
231  const Real dsinphi = std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl);
232  switch (_mc_interpolation_scheme)
233  {
234  case 0: // outer_tip
235  daaa = 2.0 * std::sqrt(3.0) *
236  (dC * cosphi / (3.0 - sinphi) + C * dcosphi / (3.0 - sinphi) +
237  C * cosphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
238  dbbb = 2.0 / std::sqrt(3.0) *
239  (dsinphi / (3.0 - sinphi) + sinphi * dsinphi / Utility::pow<2>(3.0 - sinphi));
240  break;
241  case 1: // inner_tip
242  daaa = 2.0 * std::sqrt(3.0) *
243  (dC * cosphi / (3.0 + sinphi) + C * dcosphi / (3.0 + sinphi) -
244  C * cosphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
245  dbbb = 2.0 / std::sqrt(3.0) *
246  (dsinphi / (3.0 + sinphi) - sinphi * dsinphi / Utility::pow<2>(3.0 + sinphi));
247  break;
248  case 2: // lode_zero
249  daaa = dC * cosphi + C * dcosphi;
250  dbbb = dsinphi / 3.0;
251  break;
252  case 3: // inner_edge
253  daaa = 3.0 * dC * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) +
254  3.0 * C * dcosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
255  3.0 * C * cosphi * 3.0 * sinphi * dsinphi /
256  std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
257  dbbb = dsinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi)) -
258  3.0 * sinphi * sinphi * dsinphi / std::pow(9.0 + 3.0 * Utility::pow<2>(sinphi), 1.5);
259  break;
260  case 4: // native
261  daaa = dC;
262  dbbb = dsinphi / cosphi - sinphi * dcosphi / Utility::pow<2>(cosphi);
263  break;
264  }
265 }
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
const bool _zero_cohesion_hardening
True if there is no hardening of cohesion.
virtual Real derivative(Real intnl) const
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
virtual Real value(Real intnl) const
const TensorMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

◆ df_dsig()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::df_dsig ( const RankTwoTensor &  stress,
Real  bbb 
) const
protectedvirtual

Function that's used in dyieldFunction_dstress and flowPotential.

Reimplemented in TensorMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 87 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by dyieldFunction_dstress(), and flowPotential().

88 {
89  return 0.5 * stress.dsecondInvariant() / std::sqrt(stress.secondInvariant()) +
90  stress.dtrace() * bbb;
91 }

◆ dflowPotential_dintnl()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::dflowPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dintnl(i, j) = dr(i, j)/dintnl

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 132 of file TensorMechanicsPlasticDruckerPrager.C.

134 {
135  Real dbbb;
136  donlyB(intnl, dilation, dbbb);
137  return stress.dtrace() * dbbb;
138 }
void donlyB(Real intnl, int fd, Real &dbbb) const
Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)

◆ dflowPotential_dintnlV()

void TensorMechanicsPlasticModel::dflowPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dr_dintnl 
) const
virtualinherited

The derivative of the flow potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dintnldr_dintnl[alpha](i, j) = dr[alpha](i, j)/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 138 of file TensorMechanicsPlasticModel.C.

141 {
142  return dr_dintnl.assign(1, dflowPotential_dintnl(stress, intnl));
143 }
virtual RankTwoTensor dflowPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to the internal parameter.

◆ dflowPotential_dstress()

RankFourTensor TensorMechanicsPlasticDruckerPrager::dflowPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
dr_dstress(i, j, k, l) = dr(i, j)/dstress(k, l)

Reimplemented from TensorMechanicsPlasticModel.

Reimplemented in TensorMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 121 of file TensorMechanicsPlasticDruckerPrager.C.

123 {
124  RankFourTensor dr_dstress;
125  dr_dstress = 0.5 * stress.d2secondInvariant() / std::sqrt(stress.secondInvariant());
126  dr_dstress += -0.5 * 0.5 * stress.dsecondInvariant().outerProduct(stress.dsecondInvariant()) /
127  std::pow(stress.secondInvariant(), 1.5);
128  return dr_dstress;
129 }
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)

◆ dflowPotential_dstressV()

void TensorMechanicsPlasticModel::dflowPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankFourTensor > &  dr_dstress 
) const
virtualinherited

The derivative of the flow potential with respect to stress.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]dr_dstressdr_dstress[alpha](i, j, k, l) = dr[alpha](i, j)/dstress(k, l)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 124 of file TensorMechanicsPlasticModel.C.

127 {
128  return dr_dstress.assign(1, dflowPotential_dstress(stress, intnl));
129 }
virtual RankFourTensor dflowPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the flow potential with respect to stress.

◆ dhardPotential_dintnl()

Real TensorMechanicsPlasticModel::dhardPotential_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
the derivative

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 173 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dintnlV().

175 {
176  return 0.0;
177 }

◆ dhardPotential_dintnlV()

void TensorMechanicsPlasticModel::dhardPotential_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  dh_dintnl 
) const
virtualinherited

The derivative of the hardening potential with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dintnldh_dintnl[alpha] = dh[alpha]/dintnl

Definition at line 179 of file TensorMechanicsPlasticModel.C.

182 {
183  dh_dintnl.resize(numberSurfaces(), dhardPotential_dintnl(stress, intnl));
184 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual Real dhardPotential_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to the internal parameter. ...

◆ dhardPotential_dstress()

RankTwoTensor TensorMechanicsPlasticModel::dhardPotential_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
Returns
dh_dstress(i, j) = dh/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 159 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::dhardPotential_dstressV().

161 {
162  return RankTwoTensor();
163 }

◆ dhardPotential_dstressV()

void TensorMechanicsPlasticModel::dhardPotential_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  dh_dstress 
) const
virtualinherited

The derivative of the hardening potential with respect to stress.

Parameters
stressthe stress at which to calculate the hardening potentials
intnlinternal parameter
[out]dh_dstressdh_dstress[alpha](i, j) = dh[alpha]/dstress(i, j)

Definition at line 165 of file TensorMechanicsPlasticModel.C.

168 {
169  dh_dstress.assign(numberSurfaces(), dhardPotential_dstress(stress, intnl));
170 }
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual RankTwoTensor dhardPotential_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of the hardening potential with respect to stress.

◆ donlyB()

void TensorMechanicsPlasticDruckerPrager::donlyB ( Real  intnl,
int  fd,
Real &  dbbb 
) const

Calculate d(bbb)/d(intnl) or d(bbb_flow)/d(intnl)

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 175 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), dflowPotential_dintnl(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), and CappedDruckerPragerStressUpdate::setIntnlDerivatives().

176 {
177  if (_zero_phi_hardening && (fd == friction))
178  {
179  dbbb = 0;
180  return;
181  }
182  if (_zero_psi_hardening && (fd == dilation))
183  {
184  dbbb = 0;
185  return;
186  }
187  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
188  const Real ds = (fd == friction) ? std::cos(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
189  : std::cos(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
190  switch (_mc_interpolation_scheme)
191  {
192  case 0: // outer_tip
193  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 - s) + s * ds / Utility::pow<2>(3.0 - s));
194  break;
195  case 1: // inner_tip
196  dbbb = 2.0 / std::sqrt(3.0) * (ds / (3.0 + s) - s * ds / Utility::pow<2>(3.0 + s));
197  break;
198  case 2: // lode_zero
199  dbbb = ds / 3.0;
200  break;
201  case 3: // inner_edge
202  dbbb = ds / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s)) -
203  3 * s * s * ds / std::pow(9.0 + 3.0 * Utility::pow<2>(s), 1.5);
204  break;
205  case 4: // native
206  const Real c =
207  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
208  const Real dc = (fd == friction)
209  ? -std::sin(_mc_phi.value(intnl)) * _mc_phi.derivative(intnl)
210  : -std::sin(_mc_psi.value(intnl)) * _mc_psi.derivative(intnl);
211  dbbb = ds / c - s * dc / Utility::pow<2>(c);
212  break;
213  }
214 }
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
const TensorMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
const bool _zero_phi_hardening
True if there is no hardening of friction angle.
virtual Real derivative(Real intnl) const
ExpressionBuilder::EBTerm pow(const ExpressionBuilder::EBTerm &left, T exponent)
virtual Real value(Real intnl) const
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

◆ dyieldFunction_dintnl()

Real TensorMechanicsPlasticDruckerPrager::dyieldFunction_dintnl ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the derivative

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 103 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator().

105 {
106  Real daaa;
107  Real dbbb;
108  dbothAB(intnl, daaa, dbbb);
109  return stress.trace() * dbbb - daaa;
110 }
void dbothAB(Real intnl, Real &daaa, Real &dbbb) const
Calculates d(aaa)/d(intnl) and d(bbb)/d(intnl) as a function of the internal parameter intnl...

◆ dyieldFunction_dintnlV()

void TensorMechanicsPlasticModel::dyieldFunction_dintnlV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  df_dintnl 
) const
virtualinherited

The derivative of yield functions with respect to the internal parameter.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dintnldf_dintnl[alpha] = df[alpha]/dintnl

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 97 of file TensorMechanicsPlasticModel.C.

100 {
101  return df_dintnl.assign(1, dyieldFunction_dintnl(stress, intnl));
102 }
virtual Real dyieldFunction_dintnl(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to the internal parameter.

◆ dyieldFunction_dstress()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::dyieldFunction_dstress ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The derivative of yield function with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
df_dstress(i, j) = dyieldFunction/dstress(i, j)

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 94 of file TensorMechanicsPlasticDruckerPrager.C.

96 {
97  Real bbb;
98  onlyB(intnl, friction, bbb);
99  return df_dsig(stress, bbb);
100 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.

◆ dyieldFunction_dstressV()

void TensorMechanicsPlasticModel::dyieldFunction_dstressV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  df_dstress 
) const
virtualinherited

The derivative of yield functions with respect to stress.

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]df_dstressdf_dstress[alpha](i, j) = dyieldFunction[alpha]/dstress(i, j)

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 83 of file TensorMechanicsPlasticModel.C.

86 {
87  df_dstress.assign(1, dyieldFunction_dstress(stress, intnl));
88 }
virtual RankTwoTensor dyieldFunction_dstress(const RankTwoTensor &stress, Real intnl) const
The derivative of yield function with respect to stress.

◆ execute()

void TensorMechanicsPlasticModel::execute ( )
inherited

Definition at line 46 of file TensorMechanicsPlasticModel.C.

47 {
48 }

◆ finalize()

void TensorMechanicsPlasticModel::finalize ( )
inherited

Definition at line 51 of file TensorMechanicsPlasticModel.C.

52 {
53 }

◆ flowPotential()

RankTwoTensor TensorMechanicsPlasticDruckerPrager::flowPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The flow potential.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
Returns
the flow potential

Reimplemented from TensorMechanicsPlasticModel.

Definition at line 113 of file TensorMechanicsPlasticDruckerPrager.C.

114 {
115  Real bbb_flow;
116  onlyB(intnl, dilation, bbb_flow);
117  return df_dsig(stress, bbb_flow);
118 }
virtual RankTwoTensor df_dsig(const RankTwoTensor &stress, Real bbb) const
Function that&#39;s used in dyieldFunction_dstress and flowPotential.
void onlyB(Real intnl, int fd, Real &bbb) const
Calculate bbb or bbb_flow.

◆ flowPotentialV()

void TensorMechanicsPlasticModel::flowPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< RankTwoTensor > &  r 
) const
virtualinherited

The flow potentials.

Parameters
stressthe stress at which to calculate the flow potential
intnlinternal parameter
[out]rr[alpha] is the flow potential for the "alpha" yield function

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 110 of file TensorMechanicsPlasticModel.C.

113 {
114  return r.assign(1, flowPotential(stress, intnl));
115 }
virtual RankTwoTensor flowPotential(const RankTwoTensor &stress, Real intnl) const
The flow potential.

◆ hardPotential()

Real TensorMechanicsPlasticModel::hardPotential ( const RankTwoTensor &  stress,
Real  intnl 
) const
protectedvirtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
Returns
the hardening potential

Reimplemented in TensorMechanicsPlasticMeanCapTC.

Definition at line 146 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::hardPotentialV().

147 {
148  return -1.0;
149 }

◆ hardPotentialV()

void TensorMechanicsPlasticModel::hardPotentialV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  h 
) const
virtualinherited

The hardening potential.

Parameters
stressthe stress at which to calculate the hardening potential
intnlinternal parameter
[out]hh[alpha] is the hardening potential for the "alpha" yield function

Definition at line 151 of file TensorMechanicsPlasticModel.C.

154 {
155  h.assign(numberSurfaces(), hardPotential(stress, intnl));
156 }
virtual Real hardPotential(const RankTwoTensor &stress, Real intnl) const
The hardening potential.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.

◆ initialize()

void TensorMechanicsPlasticModel::initialize ( )
inherited

Definition at line 41 of file TensorMechanicsPlasticModel.C.

42 {
43 }

◆ initializeAandB()

void TensorMechanicsPlasticDruckerPrager::initializeAandB ( Real  intnl,
Real &  aaa,
Real &  bbb 
) const
private

Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314.

This function uses Table1 in that reference, with the following translations aaa = k bbb = -alpha/3

Parameters
intnlThe internal parameter
[out]aaaThe Drucker-Prager aaa quantity
[out]bbbThe Drucker-Prager bbb quantity

Definition at line 268 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by bothAB(), and TensorMechanicsPlasticDruckerPrager().

269 {
270  const Real C = _mc_cohesion.value(intnl);
271  const Real cosphi = std::cos(_mc_phi.value(intnl));
272  const Real sinphi = std::sin(_mc_phi.value(intnl));
273  switch (_mc_interpolation_scheme)
274  {
275  case 0: // outer_tip
276  aaa = 2.0 * std::sqrt(3.0) * C * cosphi / (3.0 - sinphi);
277  bbb = 2.0 * sinphi / std::sqrt(3.0) / (3.0 - sinphi);
278  break;
279  case 1: // inner_tip
280  aaa = 2.0 * std::sqrt(3.0) * C * cosphi / (3.0 + sinphi);
281  bbb = 2.0 * sinphi / std::sqrt(3.0) / (3.0 + sinphi);
282  break;
283  case 2: // lode_zero
284  aaa = C * cosphi;
285  bbb = sinphi / 3.0;
286  break;
287  case 3: // inner_edge
288  aaa = 3.0 * C * cosphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi));
289  bbb = sinphi / std::sqrt(9.0 + 3.0 * Utility::pow<2>(sinphi));
290  break;
291  case 4: // native
292  aaa = C;
293  bbb = sinphi / cosphi;
294  break;
295  }
296 }
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
virtual Real value(Real intnl) const
const TensorMechanicsHardeningModel & _mc_cohesion
Hardening model for cohesion.
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

◆ initializeB()

void TensorMechanicsPlasticDruckerPrager::initializeB ( Real  intnl,
int  fd,
Real &  bbb 
) const
private

Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker-Prager and Mohr-Coulomb is H Jiang and X Yongli, A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mechanics Research Communications 38 (2011) 309-314.

This function uses Table1 in that reference, with the following translations aaa = k bbb = -alpha/3

Parameters
intnlThe internal parameter
fdIf fd == frction then the friction angle is used to set bbb, otherwise the dilation angle is used
[out]bbbThe Drucker-Prager bbb quantity

Definition at line 299 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by onlyB(), and TensorMechanicsPlasticDruckerPrager().

300 {
301  const Real s = (fd == friction) ? std::sin(_mc_phi.value(intnl)) : std::sin(_mc_psi.value(intnl));
302  switch (_mc_interpolation_scheme)
303  {
304  case 0: // outer_tip
305  bbb = 2.0 * s / std::sqrt(3.0) / (3.0 - s);
306  break;
307  case 1: // inner_tip
308  bbb = 2.0 * s / std::sqrt(3.0) / (3.0 + s);
309  break;
310  case 2: // lode_zero
311  bbb = s / 3.0;
312  break;
313  case 3: // inner_edge
314  bbb = s / std::sqrt(9.0 + 3.0 * Utility::pow<2>(s));
315  break;
316  case 4: // native
317  const Real c =
318  (fd == friction) ? std::cos(_mc_phi.value(intnl)) : std::cos(_mc_psi.value(intnl));
319  bbb = s / c;
320  break;
321  }
322 }
const TensorMechanicsHardeningModel & _mc_phi
Hardening model for tan(phi)
const TensorMechanicsHardeningModel & _mc_psi
Hardening model for tan(psi)
virtual Real value(Real intnl) const
const MooseEnum _mc_interpolation_scheme
The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

◆ KuhnTuckerSingleSurface()

bool TensorMechanicsPlasticModel::KuhnTuckerSingleSurface ( Real  yf,
Real  dpm,
Real  dpm_tol 
) const
inherited

Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.

Parameters
yfYield function value
dpmplastic multiplier
dpm_toltolerance on plastic multiplier: viz dpm>-dpm_tol means "dpm is non-negative"

Definition at line 247 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticMohrCoulombMulti::KuhnTuckerOK(), TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(), and TensorMechanicsPlasticModel::returnMap().

248 {
249  return (dpm == 0 && yf <= _f_tol) || (dpm > -dpm_tol && yf <= _f_tol && yf >= -_f_tol);
250 }
const Real _f_tol
Tolerance on yield function.

◆ modelName()

std::string TensorMechanicsPlasticDruckerPrager::modelName ( ) const
overridevirtual

Implements TensorMechanicsPlasticModel.

Reimplemented in TensorMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 141 of file TensorMechanicsPlasticDruckerPrager.C.

142 {
143  return "DruckerPrager";
144 }

◆ numberSurfaces()

unsigned TensorMechanicsPlasticModel::numberSurfaces ( ) const
virtualinherited

◆ onlyB()

void TensorMechanicsPlasticDruckerPrager::onlyB ( Real  intnl,
int  fd,
Real &  bbb 
) const

Calculate bbb or bbb_flow.

Parameters
intnlthe internal parameter
fdif fd==friction then bbb is calculated. if fd==dilation then bbb_flow is calculated
bbbeither bbb or bbb_flow, depending on fd

Definition at line 159 of file TensorMechanicsPlasticDruckerPrager.C.

Referenced by CappedDruckerPragerStressUpdate::computeAllQ(), TensorMechanicsPlasticDruckerPragerHyperbolic::consistentTangentOperator(), dyieldFunction_dstress(), flowPotential(), CappedDruckerPragerStressUpdate::initializeVars(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), CappedDruckerPragerStressUpdate::setIntnlDerivatives(), and CappedDruckerPragerStressUpdate::setIntnlValues().

160 {
161  if (_zero_phi_hardening && (fd == friction))
162  {
163  bbb = _bbb;
164  return;
165  }
166  if (_zero_psi_hardening && (fd == dilation))
167  {
168  bbb = _bbb_flow;
169  return;
170  }
171  initializeB(intnl, fd, bbb);
172 }
const bool _zero_psi_hardening
True if there is no hardening of dilation angle.
void initializeB(Real intnl, int fd, Real &bbb) const
Returns the Drucker-Prager parameters A nice reference on the different relationships between Drucker...
const bool _zero_phi_hardening
True if there is no hardening of friction angle.

◆ returnMap()

bool TensorMechanicsPlasticModel::returnMap ( const RankTwoTensor &  trial_stress,
Real  intnl_old,
const RankFourTensor &  E_ijkl,
Real  ep_plastic_tolerance,
RankTwoTensor &  returned_stress,
Real &  returned_intnl,
std::vector< Real > &  dpm,
RankTwoTensor &  delta_dp,
std::vector< Real > &  yf,
bool &  trial_stress_inadmissible 
) const
virtualinherited

Performs a custom return-map.

You may choose to over-ride this in your derived TensorMechanicsPlasticXXXX class, and you may implement the return-map algorithm in any way that suits you. Eg, using a Newton-Raphson approach, or a radial-return, etc. This may also be used as a quick way of ascertaining whether (trial_stress, intnl_old) is in fact admissible.

For over-riding this function, please note the following.

(1) Denoting the return value of the function by "successful_return", the only possible output values should be: (A) trial_stress_inadmissible=false, successful_return=true. That is, (trial_stress, intnl_old) is in fact admissible (in the elastic domain). (B) trial_stress_inadmissible=true, successful_return=false. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), and you didn't return to the yield surface. (C) trial_stress_inadmissible=true, successful_return=true. That is (trial_stress, intnl_old) is inadmissible (outside the yield surface), but you did return to the yield surface. The default implementation only handles case (A) and (B): it does not attempt to do a return-map algorithm.

(2) you must correctly signal "successful_return" using the return value of this function. Don't assume the calling function will do Kuhn-Tucker checking and so forth!

(3) In cases (A) and (B) you needn't set returned_stress, returned_intnl, delta_dp, or dpm. This is for computational efficiency.

(4) In cases (A) and (B), you MUST place the yield function values at (trial_stress, intnl_old) into yf so the calling function can use this information optimally. You will have already calculated these yield function values, which can be quite expensive, and it's not very optimal for the calling function to have to re-calculate them.

(5) In case (C), you need to set: returned_stress (the returned value of stress) returned_intnl (the returned value of the internal variable) delta_dp (the change in plastic strain) dpm (the plastic multipliers needed to bring about the return) yf (yield function values at the returned configuration)

(Note, if you over-ride returnMap, you will probably want to override consistentTangentOpertor too, otherwise it will default to E_ijkl.)

Parameters
trial_stressThe trial stress
intnl_oldValue of the internal parameter
E_ijklElasticity tensor
ep_plastic_toleranceTolerance defined by the user for the plastic strain
[out]returned_stressIn case (C): lies on the yield surface after returning and produces the correct plastic strain (normality condition). Otherwise: not defined
[out]returned_intnlIn case (C): the value of the internal parameter after returning. Otherwise: not defined
[out]dpmIn case (C): the plastic multipliers needed to bring about the return. Otherwise: not defined
[out]delta_dpIn case (C): The change in plastic strain induced by the return process. Otherwise: not defined
[out]yfIn case (C): the yield function at (returned_stress, returned_intnl). Otherwise: the yield function at (trial_stress, intnl_old)
[out]trial_stress_inadmissibleShould be set to false if the trial_stress is admissible, and true if the trial_stress is inadmissible. This can be used by the calling prorgram
Returns
true if a successful return (or a return-map not needed), false if the trial_stress is inadmissible but the return process failed

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticDruckerPragerHyperbolic, TensorMechanicsPlasticMeanCapTC, and TensorMechanicsPlasticJ2.

Definition at line 220 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticJ2::returnMap(), TensorMechanicsPlasticDruckerPragerHyperbolic::returnMap(), TensorMechanicsPlasticMeanCapTC::returnMap(), TensorMechanicsPlasticMohrCoulombMulti::returnMap(), and TensorMechanicsPlasticTensileMulti::returnMap().

230 {
231  trial_stress_inadmissible = false;
232  yieldFunctionV(trial_stress, intnl_old, yf);
233 
234  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
235  if (yf[sf] > _f_tol)
236  trial_stress_inadmissible = true;
237 
238  // example of checking Kuhn-Tucker
239  std::vector<Real> dpm(numberSurfaces(), 0);
240  for (unsigned sf = 0; sf < numberSurfaces(); ++sf)
241  if (!KuhnTuckerSingleSurface(yf[sf], dpm[sf], 0))
242  return false;
243  return true;
244 }
bool KuhnTuckerSingleSurface(Real yf, Real dpm, Real dpm_tol) const
Returns true if the Kuhn-Tucker conditions for the single surface are satisfied.
virtual unsigned int numberSurfaces() const
The number of yield surfaces for this plasticity model.
virtual void yieldFunctionV(const RankTwoTensor &stress, Real intnl, std::vector< Real > &f) const
Calculates the yield functions.
const Real _f_tol
Tolerance on yield function.

◆ useCustomCTO()

bool TensorMechanicsPlasticModel::useCustomCTO ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom consistent tangent operator function.

Reimplemented in TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 214 of file TensorMechanicsPlasticModel.C.

215 {
216  return false;
217 }

◆ useCustomReturnMap()

bool TensorMechanicsPlasticModel::useCustomReturnMap ( ) const
virtualinherited

Returns false. You will want to override this in your derived class if you write a custom returnMap function.

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, TensorMechanicsPlasticTensileMulti, TensorMechanicsPlasticMeanCapTC, TensorMechanicsPlasticDruckerPragerHyperbolic, and TensorMechanicsPlasticJ2.

Definition at line 208 of file TensorMechanicsPlasticModel.C.

209 {
210  return false;
211 }

◆ yieldFunction()

Real TensorMechanicsPlasticDruckerPrager::yieldFunction ( const RankTwoTensor &  stress,
Real  intnl 
) const
overrideprotectedvirtual

The following functions are what you should override when building single-plasticity models.

The yield function

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
Returns
the yield function

Reimplemented from TensorMechanicsPlasticModel.

Reimplemented in TensorMechanicsPlasticDruckerPragerHyperbolic.

Definition at line 78 of file TensorMechanicsPlasticDruckerPrager.C.

79 {
80  Real aaa;
81  Real bbb;
82  bothAB(intnl, aaa, bbb);
83  return std::sqrt(stress.secondInvariant()) + stress.trace() * bbb - aaa;
84 }
void bothAB(Real intnl, Real &aaa, Real &bbb) const
Calculates aaa and bbb as a function of the internal parameter intnl.

◆ yieldFunctionV()

void TensorMechanicsPlasticModel::yieldFunctionV ( const RankTwoTensor &  stress,
Real  intnl,
std::vector< Real > &  f 
) const
virtualinherited

Calculates the yield functions.

Note that for single-surface plasticity you don't want to override this - override the private yieldFunction below

Parameters
stressthe stress at which to calculate the yield function
intnlinternal parameter
[out]fthe yield functions

Reimplemented in TensorMechanicsPlasticMohrCoulombMulti, and TensorMechanicsPlasticTensileMulti.

Definition at line 68 of file TensorMechanicsPlasticModel.C.

Referenced by TensorMechanicsPlasticModel::returnMap().

71 {
72  f.assign(1, yieldFunction(stress, intnl));
73 }
virtual Real yieldFunction(const RankTwoTensor &stress, Real intnl) const
The following functions are what you should override when building single-plasticity models...

Member Data Documentation

◆ _aaa

Real TensorMechanicsPlasticDruckerPrager::_aaa
private

◆ _bbb

Real TensorMechanicsPlasticDruckerPrager::_bbb
private

◆ _bbb_flow

Real TensorMechanicsPlasticDruckerPrager::_bbb_flow
private

◆ _f_tol

const Real TensorMechanicsPlasticModel::_f_tol
inherited

◆ _ic_tol

const Real TensorMechanicsPlasticModel::_ic_tol
inherited

Tolerance on internal constraint.

Definition at line 177 of file TensorMechanicsPlasticModel.h.

◆ _mc_cohesion

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_cohesion
protected

Hardening model for cohesion.

Definition at line 69 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by dbothAB(), initializeAandB(), and TensorMechanicsPlasticDruckerPrager().

◆ _mc_interpolation_scheme

const MooseEnum TensorMechanicsPlasticDruckerPrager::_mc_interpolation_scheme
protected

The parameters aaa and bbb are chosen to closely match the Mohr-Coulomb yield surface.

Various matching schemes may be used and this parameter holds the user's choice.

Definition at line 97 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by dbothAB(), donlyB(), initializeAandB(), and initializeB().

◆ _mc_phi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_phi
protected

Hardening model for tan(phi)

Definition at line 72 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by dbothAB(), donlyB(), initializeAandB(), initializeB(), and TensorMechanicsPlasticDruckerPrager().

◆ _mc_psi

const TensorMechanicsHardeningModel& TensorMechanicsPlasticDruckerPrager::_mc_psi
protected

Hardening model for tan(psi)

Definition at line 75 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by donlyB(), initializeB(), and TensorMechanicsPlasticDruckerPrager().

◆ _zero_cohesion_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_cohesion_hardening
protected

True if there is no hardening of cohesion.

Definition at line 100 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by bothAB(), and dbothAB().

◆ _zero_phi_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_phi_hardening
protected

True if there is no hardening of friction angle.

Definition at line 103 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by bothAB(), dbothAB(), donlyB(), and onlyB().

◆ _zero_psi_hardening

const bool TensorMechanicsPlasticDruckerPrager::_zero_psi_hardening
protected

True if there is no hardening of dilation angle.

Definition at line 106 of file TensorMechanicsPlasticDruckerPrager.h.

Referenced by donlyB(), and onlyB().


The documentation for this class was generated from the following files: