LCOV - code coverage report
Current view: top level - src/userobjects - TensorMechanicsPlasticTensileMulti.C (source / functions) Hit Total Coverage
Test: idaholab/moose tensor_mechanics: d6b47a Lines: 251 274 91.6 %
Date: 2024-02-27 11:53:14 Functions: 21 24 87.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //* This file is part of the MOOSE framework
       2             : //* https://www.mooseframework.org
       3             : //*
       4             : //* All rights reserved, see COPYRIGHT for full restrictions
       5             : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
       6             : //*
       7             : //* Licensed under LGPL 2.1, please see LICENSE for details
       8             : //* https://www.gnu.org/licenses/lgpl-2.1.html
       9             : 
      10             : #include "TensorMechanicsPlasticTensileMulti.h"
      11             : #include "RankFourTensor.h"
      12             : 
      13             : // Following is for perturbing eigvenvalues.  This looks really bodgy, but works quite well!
      14             : #include "MooseRandom.h"
      15             : 
      16             : registerMooseObject("TensorMechanicsApp", TensorMechanicsPlasticTensileMulti);
      17             : 
      18             : InputParameters
      19         104 : TensorMechanicsPlasticTensileMulti::validParams()
      20             : {
      21         104 :   InputParameters params = TensorMechanicsPlasticModel::validParams();
      22         104 :   params.addClassDescription("Associative tensile plasticity with hardening/softening");
      23         208 :   params.addRequiredParam<UserObjectName>(
      24             :       "tensile_strength",
      25             :       "A TensorMechanicsHardening UserObject that defines hardening of the tensile strength");
      26         208 :   params.addParam<Real>("shift",
      27             :                         "Yield surface is shifted by this amount to avoid problems with "
      28             :                         "defining derivatives when eigenvalues are equal.  If this is "
      29             :                         "larger than f_tol, a warning will be issued.  Default = f_tol.");
      30         208 :   params.addParam<unsigned int>("max_iterations",
      31         208 :                                 10,
      32             :                                 "Maximum number of Newton-Raphson iterations "
      33             :                                 "allowed in the custom return-map algorithm. "
      34             :                                 " For highly nonlinear hardening this may "
      35             :                                 "need to be higher than 10.");
      36         208 :   params.addParam<bool>("use_custom_returnMap",
      37         208 :                         true,
      38             :                         "Whether to use the custom returnMap "
      39             :                         "algorithm.  Set to true if you are using "
      40             :                         "isotropic elasticity.");
      41         208 :   params.addParam<bool>("use_custom_cto",
      42         208 :                         true,
      43             :                         "Whether to use the custom consistent tangent "
      44             :                         "operator computations.  Set to true if you are "
      45             :                         "using isotropic elasticity.");
      46         104 :   return params;
      47           0 : }
      48             : 
      49          52 : TensorMechanicsPlasticTensileMulti::TensorMechanicsPlasticTensileMulti(
      50          52 :     const InputParameters & parameters)
      51             :   : TensorMechanicsPlasticModel(parameters),
      52          52 :     _strength(getUserObject<TensorMechanicsHardeningModel>("tensile_strength")),
      53         104 :     _max_iters(getParam<unsigned int>("max_iterations")),
      54         150 :     _shift(parameters.isParamValid("shift") ? getParam<Real>("shift") : _f_tol),
      55         104 :     _use_custom_returnMap(getParam<bool>("use_custom_returnMap")),
      56         156 :     _use_custom_cto(getParam<bool>("use_custom_cto"))
      57             : {
      58          52 :   if (_shift < 0)
      59           0 :     mooseError("Value of 'shift' in TensorMechanicsPlasticTensileMulti must not be negative\n");
      60          52 :   if (_shift > _f_tol)
      61             :     _console << "WARNING: value of 'shift' in TensorMechanicsPlasticTensileMulti is probably set "
      62           0 :                 "too high"
      63           0 :              << std::endl;
      64             :   if (LIBMESH_DIM != 3)
      65             :     mooseError("TensorMechanicsPlasticTensileMulti is only defined for LIBMESH_DIM=3");
      66             :   MooseRandom::seed(0);
      67          52 : }
      68             : 
      69             : unsigned int
      70     1514852 : TensorMechanicsPlasticTensileMulti::numberSurfaces() const
      71             : {
      72     1514852 :   return 3;
      73             : }
      74             : 
      75             : void
      76       60872 : TensorMechanicsPlasticTensileMulti::yieldFunctionV(const RankTwoTensor & stress,
      77             :                                                    Real intnl,
      78             :                                                    std::vector<Real> & f) const
      79             : {
      80             :   std::vector<Real> eigvals;
      81       60872 :   stress.symmetricEigenvalues(eigvals);
      82       60872 :   const Real str = tensile_strength(intnl);
      83             : 
      84       60872 :   f.resize(3);
      85       60872 :   f[0] = eigvals[0] + _shift - str;
      86       60872 :   f[1] = eigvals[1] - str;
      87       60872 :   f[2] = eigvals[2] - _shift - str;
      88       60872 : }
      89             : 
      90             : void
      91       39504 : TensorMechanicsPlasticTensileMulti::dyieldFunction_dstressV(
      92             :     const RankTwoTensor & stress, Real /*intnl*/, std::vector<RankTwoTensor> & df_dstress) const
      93             : {
      94             :   std::vector<Real> eigvals;
      95       39504 :   stress.dsymmetricEigenvalues(eigvals, df_dstress);
      96             : 
      97       39504 :   if (eigvals[0] > eigvals[1] - 0.1 * _shift || eigvals[1] > eigvals[2] - 0.1 * _shift)
      98             :   {
      99             :     Real small_perturbation;
     100           0 :     RankTwoTensor shifted_stress = stress;
     101           0 :     while (eigvals[0] > eigvals[1] - 0.1 * _shift || eigvals[1] > eigvals[2] - 0.1 * _shift)
     102             :     {
     103           0 :       for (unsigned i = 0; i < 3; ++i)
     104           0 :         for (unsigned j = 0; j <= i; ++j)
     105             :         {
     106           0 :           small_perturbation = 0.1 * _shift * 2 * (MooseRandom::rand() - 0.5);
     107           0 :           shifted_stress(i, j) += small_perturbation;
     108           0 :           shifted_stress(j, i) += small_perturbation;
     109             :         }
     110           0 :       shifted_stress.dsymmetricEigenvalues(eigvals, df_dstress);
     111             :     }
     112             :   }
     113       39504 : }
     114             : 
     115             : void
     116       12072 : TensorMechanicsPlasticTensileMulti::dyieldFunction_dintnlV(const RankTwoTensor & /*stress*/,
     117             :                                                            Real intnl,
     118             :                                                            std::vector<Real> & df_dintnl) const
     119             : {
     120       12072 :   df_dintnl.assign(3, -dtensile_strength(intnl));
     121       12072 : }
     122             : 
     123             : void
     124       26200 : TensorMechanicsPlasticTensileMulti::flowPotentialV(const RankTwoTensor & stress,
     125             :                                                    Real intnl,
     126             :                                                    std::vector<RankTwoTensor> & r) const
     127             : {
     128             :   // This plasticity is associative so
     129       26200 :   dyieldFunction_dstressV(stress, intnl, r);
     130       26200 : }
     131             : 
     132             : void
     133       12072 : TensorMechanicsPlasticTensileMulti::dflowPotential_dstressV(
     134             :     const RankTwoTensor & stress, Real /*intnl*/, std::vector<RankFourTensor> & dr_dstress) const
     135             : {
     136       12072 :   stress.d2symmetricEigenvalues(dr_dstress);
     137       12072 : }
     138             : 
     139             : void
     140       12072 : TensorMechanicsPlasticTensileMulti::dflowPotential_dintnlV(
     141             :     const RankTwoTensor & /*stress*/, Real /*intnl*/, std::vector<RankTwoTensor> & dr_dintnl) const
     142             : {
     143       12072 :   dr_dintnl.assign(3, RankTwoTensor());
     144       12072 : }
     145             : 
     146             : Real
     147      135832 : TensorMechanicsPlasticTensileMulti::tensile_strength(const Real internal_param) const
     148             : {
     149      135832 :   return _strength.value(internal_param);
     150             : }
     151             : 
     152             : Real
     153       35544 : TensorMechanicsPlasticTensileMulti::dtensile_strength(const Real internal_param) const
     154             : {
     155       35544 :   return _strength.derivative(internal_param);
     156             : }
     157             : 
     158             : void
     159        8512 : TensorMechanicsPlasticTensileMulti::activeConstraints(const std::vector<Real> & f,
     160             :                                                       const RankTwoTensor & stress,
     161             :                                                       Real intnl,
     162             :                                                       const RankFourTensor & Eijkl,
     163             :                                                       std::vector<bool> & act,
     164             :                                                       RankTwoTensor & returned_stress) const
     165             : {
     166             :   act.assign(3, false);
     167             : 
     168        8512 :   if (f[0] <= _f_tol && f[1] <= _f_tol && f[2] <= _f_tol)
     169             :   {
     170         456 :     returned_stress = stress;
     171         456 :     return;
     172             :   }
     173             : 
     174             :   Real returned_intnl;
     175        8056 :   std::vector<Real> dpm(3);
     176        8056 :   RankTwoTensor delta_dp;
     177        8056 :   std::vector<Real> yf(3);
     178             :   bool trial_stress_inadmissible;
     179        8056 :   doReturnMap(stress,
     180             :               intnl,
     181             :               Eijkl,
     182             :               0.0,
     183             :               returned_stress,
     184             :               returned_intnl,
     185             :               dpm,
     186             :               delta_dp,
     187             :               yf,
     188             :               trial_stress_inadmissible);
     189             : 
     190       32224 :   for (unsigned i = 0; i < 3; ++i)
     191       24168 :     act[i] = (dpm[i] > 0);
     192             : }
     193             : 
     194             : Real
     195           0 : TensorMechanicsPlasticTensileMulti::dot(const std::vector<Real> & a,
     196             :                                         const std::vector<Real> & b) const
     197             : {
     198           0 :   return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
     199             : }
     200             : 
     201             : Real
     202           0 : TensorMechanicsPlasticTensileMulti::triple(const std::vector<Real> & a,
     203             :                                            const std::vector<Real> & b,
     204             :                                            const std::vector<Real> & c) const
     205             : {
     206           0 :   return a[0] * (b[1] * c[2] - b[2] * c[1]) - a[1] * (b[0] * c[2] - b[2] * c[0]) +
     207           0 :          a[2] * (b[0] * c[1] - b[1] * c[0]);
     208             : }
     209             : 
     210             : std::string
     211          24 : TensorMechanicsPlasticTensileMulti::modelName() const
     212             : {
     213          24 :   return "TensileMulti";
     214             : }
     215             : 
     216             : bool
     217       26576 : TensorMechanicsPlasticTensileMulti::returnMap(const RankTwoTensor & trial_stress,
     218             :                                               Real intnl_old,
     219             :                                               const RankFourTensor & E_ijkl,
     220             :                                               Real ep_plastic_tolerance,
     221             :                                               RankTwoTensor & returned_stress,
     222             :                                               Real & returned_intnl,
     223             :                                               std::vector<Real> & dpm,
     224             :                                               RankTwoTensor & delta_dp,
     225             :                                               std::vector<Real> & yf,
     226             :                                               bool & trial_stress_inadmissible) const
     227             : {
     228       26576 :   if (!_use_custom_returnMap)
     229       19536 :     return TensorMechanicsPlasticModel::returnMap(trial_stress,
     230             :                                                   intnl_old,
     231             :                                                   E_ijkl,
     232             :                                                   ep_plastic_tolerance,
     233             :                                                   returned_stress,
     234             :                                                   returned_intnl,
     235             :                                                   dpm,
     236             :                                                   delta_dp,
     237             :                                                   yf,
     238       19536 :                                                   trial_stress_inadmissible);
     239             : 
     240        7040 :   return doReturnMap(trial_stress,
     241             :                      intnl_old,
     242             :                      E_ijkl,
     243             :                      ep_plastic_tolerance,
     244             :                      returned_stress,
     245             :                      returned_intnl,
     246             :                      dpm,
     247             :                      delta_dp,
     248             :                      yf,
     249        7040 :                      trial_stress_inadmissible);
     250             : }
     251             : 
     252             : bool
     253       15096 : TensorMechanicsPlasticTensileMulti::doReturnMap(const RankTwoTensor & trial_stress,
     254             :                                                 Real intnl_old,
     255             :                                                 const RankFourTensor & E_ijkl,
     256             :                                                 Real ep_plastic_tolerance,
     257             :                                                 RankTwoTensor & returned_stress,
     258             :                                                 Real & returned_intnl,
     259             :                                                 std::vector<Real> & dpm,
     260             :                                                 RankTwoTensor & delta_dp,
     261             :                                                 std::vector<Real> & yf,
     262             :                                                 bool & trial_stress_inadmissible) const
     263             : {
     264             :   mooseAssert(dpm.size() == 3,
     265             :               "TensorMechanicsPlasticTensileMulti size of dpm should be 3 but it is "
     266             :                   << dpm.size());
     267             : 
     268             :   std::vector<Real> eigvals;
     269       15096 :   RankTwoTensor eigvecs;
     270       15096 :   trial_stress.symmetricEigenvaluesEigenvectors(eigvals, eigvecs);
     271       15096 :   eigvals[0] += _shift;
     272       15096 :   eigvals[2] -= _shift;
     273             : 
     274       15096 :   Real str = tensile_strength(intnl_old);
     275             : 
     276       15096 :   yf.resize(3);
     277       15096 :   yf[0] = eigvals[0] - str;
     278       15096 :   yf[1] = eigvals[1] - str;
     279       15096 :   yf[2] = eigvals[2] - str;
     280             : 
     281       15096 :   if (yf[0] <= _f_tol && yf[1] <= _f_tol && yf[2] <= _f_tol)
     282             :   {
     283             :     // purely elastic (trial_stress, intnl_old)
     284         616 :     trial_stress_inadmissible = false;
     285         616 :     return true;
     286             :   }
     287             : 
     288       14480 :   trial_stress_inadmissible = true;
     289             :   delta_dp.zero();
     290             :   returned_stress.zero();
     291             : 
     292             :   // In the following i often assume that E_ijkl is
     293             :   // for an isotropic situation.  This reduces FLOPS
     294             :   // substantially which is important since the returnMap
     295             :   // is potentially the most compute-intensive function
     296             :   // of a simulation.
     297             :   // In many comments i write the general expression, and
     298             :   // i hope that might guide future coders if they are
     299             :   // generalising to a non-istropic E_ijkl
     300             : 
     301             :   // n[alpha] = E_ijkl*r[alpha]_kl expressed in principal stress space
     302             :   // (alpha = 0, 1, 2, corresponding to the three surfaces)
     303             :   // Note that in principal stress space, the flow
     304             :   // directions are, expressed in 'vector' form,
     305             :   // r[0] = (1,0,0), r[1] = (0,1,0), r[2] = (0,0,1).
     306             :   // Similar for _n:
     307             :   // so _n[0] = E_ij00*r[0], _n[1] = E_ij11*r[1], _n[2] = E_ij22*r[2]
     308             :   // In the following I assume that the E_ijkl is
     309             :   // for an isotropic situation.
     310             :   // In the anisotropic situation, we couldn't express
     311             :   // the flow directions as vectors in the same principal
     312             :   // stress space as the stress: they'd be full rank-2 tensors
     313       14480 :   std::vector<RealVectorValue> n(3);
     314       14480 :   n[0](0) = E_ijkl(0, 0, 0, 0);
     315       14480 :   n[0](1) = E_ijkl(1, 1, 0, 0);
     316       14480 :   n[0](2) = E_ijkl(2, 2, 0, 0);
     317       14480 :   n[1](0) = E_ijkl(0, 0, 1, 1);
     318       14480 :   n[1](1) = E_ijkl(1, 1, 1, 1);
     319       14480 :   n[1](2) = E_ijkl(2, 2, 1, 1);
     320       14480 :   n[2](0) = E_ijkl(0, 0, 2, 2);
     321       14480 :   n[2](1) = E_ijkl(1, 1, 2, 2);
     322       14480 :   n[2](2) = E_ijkl(2, 2, 2, 2);
     323             : 
     324             :   // With non-zero Poisson's ratio and hardening
     325             :   // it is not computationally cheap to know whether
     326             :   // the trial stress will return to the tip, edge,
     327             :   // or plane.  The following is correct for zero
     328             :   // Poisson's ratio and no hardening, and at least
     329             :   // gives a not-completely-stupid guess in the
     330             :   // more general case.
     331             :   // trial_order[0] = type of return to try first
     332             :   // trial_order[1] = type of return to try second
     333             :   // trial_order[2] = type of return to try third
     334             :   const unsigned int number_of_return_paths = 3;
     335       14480 :   std::vector<int> trial_order(number_of_return_paths);
     336       14480 :   if (yf[0] > _f_tol) // all the yield functions are positive, since eigvals are ordered eigvals[0]
     337             :                       // <= eigvals[1] <= eigvals[2]
     338             :   {
     339        2880 :     trial_order[0] = tip;
     340        2880 :     trial_order[1] = edge;
     341        2880 :     trial_order[2] = plane;
     342             :   }
     343       11600 :   else if (yf[1] > _f_tol) // two yield functions are positive
     344             :   {
     345        4800 :     trial_order[0] = edge;
     346        4800 :     trial_order[1] = tip;
     347        4800 :     trial_order[2] = plane;
     348             :   }
     349             :   else
     350             :   {
     351        6800 :     trial_order[0] = plane;
     352        6800 :     trial_order[1] = edge;
     353        6800 :     trial_order[2] = tip;
     354             :   }
     355             : 
     356             :   unsigned trial;
     357             :   bool nr_converged = false;
     358       20432 :   for (trial = 0; trial < number_of_return_paths; ++trial)
     359             :   {
     360       20432 :     switch (trial_order[trial])
     361             :     {
     362        4560 :       case tip:
     363        4560 :         nr_converged = returnTip(eigvals, n, dpm, returned_stress, intnl_old, 0);
     364             :         break;
     365        6448 :       case edge:
     366        6448 :         nr_converged = returnEdge(eigvals, n, dpm, returned_stress, intnl_old, 0);
     367             :         break;
     368        9424 :       case plane:
     369        9424 :         nr_converged = returnPlane(eigvals, n, dpm, returned_stress, intnl_old, 0);
     370             :         break;
     371             :     }
     372             : 
     373       20432 :     str = tensile_strength(intnl_old + dpm[0] + dpm[1] + dpm[2]);
     374             : 
     375       20432 :     if (nr_converged && KuhnTuckerOK(returned_stress, dpm, str, ep_plastic_tolerance))
     376             :       break;
     377             :   }
     378             : 
     379       14480 :   if (trial == number_of_return_paths)
     380             :   {
     381             :     Moose::err << "Trial stress = \n";
     382           0 :     trial_stress.print(Moose::err);
     383             :     Moose::err << "Internal parameter = " << intnl_old << std::endl;
     384           0 :     mooseError("TensorMechanicsPlasticTensileMulti: FAILURE!  You probably need to implement a "
     385             :                "line search\n");
     386             :     // failure - must place yield function values at trial stress into yf
     387             :     str = tensile_strength(intnl_old);
     388             :     yf[0] = eigvals[0] - str;
     389             :     yf[1] = eigvals[1] - str;
     390             :     yf[2] = eigvals[2] - str;
     391             :     return false;
     392             :   }
     393             : 
     394             :   // success
     395             : 
     396       14480 :   returned_intnl = intnl_old;
     397       57920 :   for (unsigned i = 0; i < 3; ++i)
     398             :   {
     399       43440 :     yf[i] = returned_stress(i, i) - str;
     400       43440 :     delta_dp(i, i) = dpm[i];
     401       43440 :     returned_intnl += dpm[i];
     402             :   }
     403       14480 :   returned_stress = eigvecs * returned_stress * (eigvecs.transpose());
     404       14480 :   delta_dp = eigvecs * delta_dp * (eigvecs.transpose());
     405             :   return true;
     406             : }
     407             : 
     408             : bool
     409        4560 : TensorMechanicsPlasticTensileMulti::returnTip(const std::vector<Real> & eigvals,
     410             :                                               const std::vector<RealVectorValue> & n,
     411             :                                               std::vector<Real> & dpm,
     412             :                                               RankTwoTensor & returned_stress,
     413             :                                               Real intnl_old,
     414             :                                               Real initial_guess) const
     415             : {
     416             :   // The returned point is defined by f0=f1=f2=0.
     417             :   // that is, returned_stress = diag(str, str, str), where
     418             :   // str = tensile_strength(intnl),
     419             :   // where intnl = intnl_old + dpm[0] + dpm[1] + dpm[2]
     420             :   // The 3 plastic multipliers, dpm, are defiend by the normality condition
     421             :   //   eigvals - str = dpm[0]*n[0] + dpm[1]*n[1] + dpm[2]*n[2]
     422             :   // (Kuhn-Tucker demands that all dpm are non-negative, but we leave
     423             :   // that checking for later.)
     424             :   // This is a vector equation with solution (A):
     425             :   //   dpm[0] = triple(eigvals - str, n[1], n[2])/trip;
     426             :   //   dpm[1] = triple(eigvals - str, n[2], n[0])/trip;
     427             :   //   dpm[2] = triple(eigvals - str, n[0], n[1])/trip;
     428             :   // where trip = triple(n[0], n[1], n[2]).
     429             :   // By adding the three components of that solution together
     430             :   // we can get an equation for x = dpm[0] + dpm[1] + dpm[2],
     431             :   // and then our Newton-Raphson only involves one variable (x).
     432             :   // In the following, i specialise to the isotropic situation.
     433             : 
     434             :   Real x = initial_guess;
     435        4560 :   const Real denom = (n[0](0) - n[0](1)) * (n[0](0) + 2 * n[0](1));
     436        4560 :   Real str = tensile_strength(intnl_old + x);
     437             : 
     438        9120 :   if (_strength.modelName().compare("Constant") != 0)
     439             :   {
     440             :     // Finding x is expensive.  Therefore
     441             :     // although x!=0 for Constant Hardening, solution (A)
     442             :     // demonstrates that we don't
     443             :     // actually need to know x to find the dpm for
     444             :     // Constant Hardening.
     445             :     //
     446             :     // However, for nontrivial Hardening, the following
     447             :     // is necessary
     448        1280 :     const Real eig = eigvals[0] + eigvals[1] + eigvals[2];
     449        1280 :     const Real bul = (n[0](0) + 2 * n[0](1));
     450             : 
     451             :     // and finally, the equation we want to solve is:
     452             :     // bul*x - eig + 3*str = 0
     453             :     // where str=tensile_strength(intnl_old + x)
     454             :     // and x = dpm[0] + dpm[1] + dpm[2]
     455             :     // (Note this has units of stress, so using _f_tol as a convergence check is reasonable.)
     456             :     // Use Netwon-Raphson with initial guess x = 0
     457        1280 :     Real residual = bul * x - eig + 3 * str;
     458             :     Real jacobian;
     459             :     unsigned int iter = 0;
     460             :     do
     461             :     {
     462        3760 :       jacobian = bul + 3 * dtensile_strength(intnl_old + x);
     463        3760 :       x += -residual / jacobian;
     464        3760 :       if (iter > _max_iters) // not converging
     465             :         return false;
     466        3760 :       str = tensile_strength(intnl_old + x);
     467        3760 :       residual = bul * x - eig + 3 * str;
     468        3760 :       iter++;
     469        3760 :     } while (residual * residual > _f_tol * _f_tol);
     470             :   }
     471             : 
     472             :   // The following is the solution (A) written above
     473             :   // (dpm[0] = triple(eigvals - str, n[1], n[2])/trip, etc)
     474             :   // in the isotropic situation
     475        4560 :   dpm[0] = (n[0](0) * (eigvals[0] - str) + n[0](1) * (eigvals[0] - eigvals[1] - eigvals[2] + str)) /
     476             :            denom;
     477        4560 :   dpm[1] = (n[0](0) * (eigvals[1] - str) + n[0](1) * (eigvals[1] - eigvals[2] - eigvals[0] + str)) /
     478             :            denom;
     479        4560 :   dpm[2] = (n[0](0) * (eigvals[2] - str) + n[0](1) * (eigvals[2] - eigvals[0] - eigvals[1] + str)) /
     480             :            denom;
     481        4560 :   returned_stress(0, 0) = returned_stress(1, 1) = returned_stress(2, 2) = str;
     482        4560 :   return true;
     483             : }
     484             : 
     485             : bool
     486        6448 : TensorMechanicsPlasticTensileMulti::returnEdge(const std::vector<Real> & eigvals,
     487             :                                                const std::vector<RealVectorValue> & n,
     488             :                                                std::vector<Real> & dpm,
     489             :                                                RankTwoTensor & returned_stress,
     490             :                                                Real intnl_old,
     491             :                                                Real initial_guess) const
     492             : {
     493             :   // work out the point to which we would return, "a".  It is defined by
     494             :   // f1 = 0 = f2, and the normality condition:
     495             :   //   (eigvals - a).(n1 x n2) = 0,
     496             :   // where eigvals is the starting position
     497             :   // (it is a vector in principal stress space).
     498             :   // To get f1=0=f2, we need a = (a0, str, str), and a0 is found
     499             :   // by expanding the normality condition to yield:
     500             :   //   a0 = (-str*n1xn2[1] - str*n1xn2[2] + edotn1xn2)/n1xn2[0];
     501             :   // where edotn1xn2 = eigvals.(n1 x n2)
     502             :   //
     503             :   // We need to find the plastic multipliers, dpm, defined by
     504             :   //   eigvals - a = dpm[1]*n1 + dpm[2]*n2
     505             :   // For the isotropic case, and defining eminusa = eigvals - a,
     506             :   // the solution is easy:
     507             :   //   dpm[0] = 0;
     508             :   //   dpm[1] = (eminusa[1] - eminusa[0])/(n[1][1] - n[1][0]);
     509             :   //   dpm[2] = (eminusa[2] - eminusa[0])/(n[2][2] - n[2][0]);
     510             :   //
     511             :   // Now specialise to the isotropic case.  Define
     512             :   //   x = dpm[1] + dpm[2] = (eigvals[1] + eigvals[2] - 2*str)/(n[0][0] + n[0][1])
     513             :   // Notice that the RHS is a function of x, so we solve using
     514             :   // Newton-Raphson starting with x=initial_guess
     515             :   Real x = initial_guess;
     516        6448 :   const Real denom = n[0](0) + n[0](1);
     517        6448 :   Real str = tensile_strength(intnl_old + x);
     518             : 
     519       12896 :   if (_strength.modelName().compare("Constant") != 0)
     520             :   {
     521             :     // Finding x is expensive.  Therefore
     522             :     // although x!=0 for Constant Hardening, solution
     523             :     // for dpm above demonstrates that we don't
     524             :     // actually need to know x to find the dpm for
     525             :     // Constant Hardening.
     526             :     //
     527             :     // However, for nontrivial Hardening, the following
     528             :     // is necessary
     529        1232 :     const Real eig = eigvals[1] + eigvals[2];
     530        1232 :     Real residual = denom * x - eig + 2 * str;
     531             :     Real jacobian;
     532             :     unsigned int iter = 0;
     533             :     do
     534             :     {
     535        3568 :       jacobian = denom + 2 * dtensile_strength(intnl_old + x);
     536        3568 :       x += -residual / jacobian;
     537        3568 :       if (iter > _max_iters) // not converging
     538             :         return false;
     539        3568 :       str = tensile_strength(intnl_old + x);
     540        3568 :       residual = denom * x - eig + 2 * str;
     541        3568 :       iter++;
     542        3568 :     } while (residual * residual > _f_tol * _f_tol);
     543             :   }
     544             : 
     545        6448 :   dpm[0] = 0;
     546        6448 :   dpm[1] = ((eigvals[1] * n[0](0) - eigvals[2] * n[0](1)) / (n[0](0) - n[0](1)) - str) / denom;
     547        6448 :   dpm[2] = ((eigvals[2] * n[0](0) - eigvals[1] * n[0](1)) / (n[0](0) - n[0](1)) - str) / denom;
     548             : 
     549        6448 :   returned_stress(0, 0) = eigvals[0] - n[0](1) * (dpm[1] + dpm[2]);
     550        6448 :   returned_stress(1, 1) = returned_stress(2, 2) = str;
     551        6448 :   return true;
     552             : }
     553             : 
     554             : bool
     555        9424 : TensorMechanicsPlasticTensileMulti::returnPlane(const std::vector<Real> & eigvals,
     556             :                                                 const std::vector<RealVectorValue> & n,
     557             :                                                 std::vector<Real> & dpm,
     558             :                                                 RankTwoTensor & returned_stress,
     559             :                                                 Real intnl_old,
     560             :                                                 Real initial_guess) const
     561             : {
     562             :   // the returned point, "a", is defined by f2=0 and
     563             :   // a = p - dpm[2]*n2.
     564             :   // This is a vector equation in
     565             :   // principal stress space, and dpm[2] is the third
     566             :   // plasticity multiplier (dpm[0]=0=dpm[1] for return
     567             :   // to the plane) and "p" is the starting
     568             :   // position (p=eigvals).
     569             :   // (Kuhn-Tucker demands that dpm[2]>=0, but we leave checking
     570             :   // that condition for later.)
     571             :   // Since f2=0, we must have a[2]=tensile_strength,
     572             :   // so we can just look at the [2] component of the
     573             :   // equation, which yields
     574             :   // n[2][2]*dpm[2] - eigvals[2] + str = 0
     575             :   // For hardening, str=tensile_strength(intnl_old+dpm[2]),
     576             :   // and we want to solve for dpm[2].
     577             :   // Use Newton-Raphson with initial guess dpm[2] = initial_guess
     578        9424 :   dpm[2] = initial_guess;
     579        9424 :   Real residual = n[2](2) * dpm[2] - eigvals[2] + tensile_strength(intnl_old + dpm[2]);
     580             :   Real jacobian;
     581             :   unsigned int iter = 0;
     582             :   do
     583             :   {
     584       11672 :     jacobian = n[2](2) + dtensile_strength(intnl_old + dpm[2]);
     585       11672 :     dpm[2] += -residual / jacobian;
     586       11672 :     if (iter > _max_iters) // not converging
     587             :       return false;
     588       11672 :     residual = n[2](2) * dpm[2] - eigvals[2] + tensile_strength(intnl_old + dpm[2]);
     589       11672 :     iter++;
     590       11672 :   } while (residual * residual > _f_tol * _f_tol);
     591             : 
     592        9424 :   dpm[0] = 0;
     593        9424 :   dpm[1] = 0;
     594        9424 :   returned_stress(0, 0) = eigvals[0] - dpm[2] * n[2](0);
     595        9424 :   returned_stress(1, 1) = eigvals[1] - dpm[2] * n[2](1);
     596        9424 :   returned_stress(2, 2) = eigvals[2] - dpm[2] * n[2](2);
     597        9424 :   return true;
     598             : }
     599             : 
     600             : bool
     601       20432 : TensorMechanicsPlasticTensileMulti::KuhnTuckerOK(const RankTwoTensor & returned_diagonal_stress,
     602             :                                                  const std::vector<Real> & dpm,
     603             :                                                  Real str,
     604             :                                                  Real ep_plastic_tolerance) const
     605             : {
     606       66496 :   for (unsigned i = 0; i < 3; ++i)
     607       52016 :     if (!TensorMechanicsPlasticModel::KuhnTuckerSingleSurface(
     608       52016 :             returned_diagonal_stress(i, i) - str, dpm[i], ep_plastic_tolerance))
     609             :       return false;
     610             :   return true;
     611             : }
     612             : 
     613             : RankFourTensor
     614        4472 : TensorMechanicsPlasticTensileMulti::consistentTangentOperator(
     615             :     const RankTwoTensor & trial_stress,
     616             :     Real intnl_old,
     617             :     const RankTwoTensor & stress,
     618             :     Real intnl,
     619             :     const RankFourTensor & E_ijkl,
     620             :     const std::vector<Real> & cumulative_pm) const
     621             : {
     622        4472 :   if (!_use_custom_cto)
     623           0 :     return TensorMechanicsPlasticModel::consistentTangentOperator(
     624             :         trial_stress, intnl_old, stress, intnl, E_ijkl, cumulative_pm);
     625             : 
     626             :   mooseAssert(cumulative_pm.size() == 3,
     627             :               "TensorMechanicsPlasticTensileMulti size of cumulative_pm should be 3 but it is "
     628             :                   << cumulative_pm.size());
     629             : 
     630        4472 :   if (cumulative_pm[2] <= 0) // All cumulative_pm are non-positive, so this is admissible
     631           0 :     return E_ijkl;
     632             : 
     633             :   // Need the eigenvalues at the returned configuration
     634             :   std::vector<Real> eigvals;
     635        4472 :   stress.symmetricEigenvalues(eigvals);
     636             : 
     637             :   // need to rotate to and from principal stress space
     638             :   // using the eigenvectors of the trial configuration
     639             :   // (not the returned configuration).
     640             :   std::vector<Real> trial_eigvals;
     641        4472 :   RankTwoTensor trial_eigvecs;
     642        4472 :   trial_stress.symmetricEigenvaluesEigenvectors(trial_eigvals, trial_eigvecs);
     643             : 
     644             :   // The returnMap will have returned to the Tip, Edge or
     645             :   // Plane.  The consistentTangentOperator describes the
     646             :   // change in stress for an arbitrary change in applied
     647             :   // strain.  I assume that the change in strain will not
     648             :   // change the type of return (Tip remains Tip, Edge remains
     649             :   // Edge, Plane remains Plane).
     650             :   // I assume isotropic elasticity.
     651             :   //
     652             :   // The consistent tangent operator is a little different
     653             :   // than cases where no rotation to principal stress space
     654             :   // is made during the returnMap.  Let S_ij be the stress
     655             :   // in original coordinates, and s_ij be the stress in the
     656             :   // principal stress coordinates, so that
     657             :   // s_ij = diag(eigvals[0], eigvals[1], eigvals[2])
     658             :   // We want dS_ij under an arbitrary change in strain (ep->ep+dep)
     659             :   // dS = S(ep+dep) - S(ep)
     660             :   //    = R(ep+dep) s(ep+dep) R(ep+dep)^T - R(ep) s(ep) R(ep)^T
     661             :   // Here R = the rotation to principal-stress space, ie
     662             :   // R_ij = eigvecs[i][j] = i^th component of j^th eigenvector
     663             :   // Expanding to first order in dep,
     664             :   // dS = R(ep) (s(ep+dep) - s(ep)) R(ep)^T
     665             :   //      + dR/dep s(ep) R^T + R(ep) s(ep) dR^T/dep
     666             :   // The first line is all that is usually calculated in the
     667             :   // consistent tangent operator calculation, and is called
     668             :   // cto below.
     669             :   // The second line involves changes in the eigenvectors, and
     670             :   // is called sec below.
     671             : 
     672        4472 :   RankFourTensor cto;
     673        4472 :   const Real hard = dtensile_strength(intnl);
     674        4472 :   const Real la = E_ijkl(0, 0, 1, 1);
     675        4472 :   const Real mu = 0.5 * (E_ijkl(0, 0, 0, 0) - la);
     676             : 
     677        4472 :   if (cumulative_pm[1] <= 0)
     678             :   {
     679             :     // only cumulative_pm[2] is positive, so this is return to the Plane
     680        1384 :     const Real denom = hard + la + 2 * mu;
     681        1384 :     const Real al = la * la / denom;
     682        1384 :     const Real be = la * (la + 2 * mu) / denom;
     683        1384 :     const Real ga = hard * (la + 2 * mu) / denom;
     684        1384 :     std::vector<Real> comps(9);
     685        1384 :     comps[0] = comps[4] = la + 2 * mu - al;
     686        1384 :     comps[1] = comps[3] = la - al;
     687        1384 :     comps[2] = comps[5] = comps[6] = comps[7] = la - be;
     688        1384 :     comps[8] = ga;
     689        1384 :     cto.fillFromInputVector(comps, RankFourTensor::principal);
     690             :   }
     691        3088 :   else if (cumulative_pm[0] <= 0)
     692             :   {
     693             :     // both cumulative_pm[2] and cumulative_pm[1] are positive, so Edge
     694        2032 :     const Real denom = 2 * hard + 2 * la + 2 * mu;
     695        2032 :     const Real al = hard * 2 * la / denom;
     696        2032 :     const Real be = hard * (2 * la + 2 * mu) / denom;
     697        2032 :     std::vector<Real> comps(9);
     698        2032 :     comps[0] = la + 2 * mu - 2 * la * la / denom;
     699        2032 :     comps[1] = comps[2] = al;
     700        2032 :     comps[3] = comps[6] = al;
     701        2032 :     comps[4] = comps[5] = comps[7] = comps[8] = be;
     702        2032 :     cto.fillFromInputVector(comps, RankFourTensor::principal);
     703             :   }
     704             :   else
     705             :   {
     706             :     // all cumulative_pm are positive, so Tip
     707        1056 :     const Real denom = 3 * hard + 3 * la + 2 * mu;
     708        1056 :     std::vector<Real> comps(2);
     709        1056 :     comps[0] = hard * (3 * la + 2 * mu) / denom;
     710        1056 :     comps[1] = 0;
     711        1056 :     cto.fillFromInputVector(comps, RankFourTensor::symmetric_isotropic);
     712             :   }
     713             : 
     714        4472 :   cto.rotate(trial_eigvecs);
     715             : 
     716             :   // drdsig = change in eigenvectors under a small stress change
     717             :   // drdsig(i,j,m,n) = dR(i,j)/dS_mn
     718             :   // The formula below is fairly easily derived:
     719             :   // S R = R s, so taking the variation
     720             :   // dS R + S dR = dR s + R ds, and multiplying by R^T
     721             :   // R^T dS R + R^T S dR = R^T dR s + ds .... (eqn 1)
     722             :   // I demand that RR^T = 1 = R^T R, and also that
     723             :   // (R+dR)(R+dR)^T = 1 = (R+dT)^T (R+dR), which means
     724             :   // that dR = R*c, for some antisymmetric c, so Eqn1 reads
     725             :   // R^T dS R + s c = c s + ds
     726             :   // Grabbing the components of this gives ds/dS (already
     727             :   // in RankTwoTensor), and c, which is:
     728             :   //   dR_ik/dS_mn = drdsig(i, k, m, n) = trial_eigvecs(m, b)*trial_eigvecs(n, k)*trial_eigvecs(i,
     729             :   //   b)/(trial_eigvals[k] - trial_eigvals[b]);
     730             :   // (sum over b!=k).
     731             : 
     732        4472 :   RankFourTensor drdsig;
     733       17888 :   for (unsigned k = 0; k < 3; ++k)
     734       53664 :     for (unsigned b = 0; b < 3; ++b)
     735             :     {
     736       40248 :       if (b == k)
     737       13416 :         continue;
     738      107328 :       for (unsigned m = 0; m < 3; ++m)
     739      321984 :         for (unsigned n = 0; n < 3; ++n)
     740      965952 :           for (unsigned i = 0; i < 3; ++i)
     741      724464 :             drdsig(i, k, m, n) += trial_eigvecs(m, b) * trial_eigvecs(n, k) * trial_eigvecs(i, b) /
     742      724464 :                                   (trial_eigvals[k] - trial_eigvals[b]);
     743             :     }
     744             : 
     745             :   // With diagla = diag(eigvals[0], eigvals[1], digvals[2])
     746             :   // The following implements
     747             :   // ans(i, j, a, b) += (drdsig(i, k, m, n)*trial_eigvecs(j, l)*diagla(k, l) + trial_eigvecs(i,
     748             :   // k)*drdsig(j, l, m, n)*diagla(k, l))*E_ijkl(m, n, a, b);
     749             :   // (sum over k, l, m and n)
     750             : 
     751        4472 :   RankFourTensor ans;
     752       17888 :   for (unsigned i = 0; i < 3; ++i)
     753       53664 :     for (unsigned j = 0; j < 3; ++j)
     754      160992 :       for (unsigned a = 0; a < 3; ++a)
     755      482976 :         for (unsigned k = 0; k < 3; ++k)
     756     1448928 :           for (unsigned m = 0; m < 3; ++m)
     757     1086696 :             ans(i, j, a, a) += (drdsig(i, k, m, m) * trial_eigvecs(j, k) +
     758     1086696 :                                 trial_eigvecs(i, k) * drdsig(j, k, m, m)) *
     759     1086696 :                                eigvals[k] * la; // E_ijkl(m, n, a, b) = la*(m==n)*(a==b);
     760             : 
     761       17888 :   for (unsigned i = 0; i < 3; ++i)
     762       53664 :     for (unsigned j = 0; j < 3; ++j)
     763      160992 :       for (unsigned a = 0; a < 3; ++a)
     764      482976 :         for (unsigned b = 0; b < 3; ++b)
     765     1448928 :           for (unsigned k = 0; k < 3; ++k)
     766             :           {
     767     1086696 :             ans(i, j, a, b) += (drdsig(i, k, a, b) * trial_eigvecs(j, k) +
     768     1086696 :                                 trial_eigvecs(i, k) * drdsig(j, k, a, b)) *
     769     1086696 :                                eigvals[k] * mu; // E_ijkl(m, n, a, b) = mu*(m==a)*(n==b)
     770     1086696 :             ans(i, j, a, b) += (drdsig(i, k, b, a) * trial_eigvecs(j, k) +
     771     1086696 :                                 trial_eigvecs(i, k) * drdsig(j, k, b, a)) *
     772     1086696 :                                eigvals[k] * mu; // E_ijkl(m, n, a, b) = mu*(m==b)*(n==a)
     773             :           }
     774             : 
     775        4472 :   return cto + ans;
     776             : }
     777             : 
     778             : bool
     779           0 : TensorMechanicsPlasticTensileMulti::useCustomReturnMap() const
     780             : {
     781           0 :   return _use_custom_returnMap;
     782             : }
     783             : 
     784             : bool
     785        4472 : TensorMechanicsPlasticTensileMulti::useCustomCTO() const
     786             : {
     787        4472 :   return _use_custom_cto;
     788             : }

Generated by: LCOV version 1.14