Line data Source code
1 : //* This file is part of the MOOSE framework 2 : //* https://mooseframework.inl.gov 3 : //* 4 : //* All rights reserved, see COPYRIGHT for full restrictions 5 : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT 6 : //* 7 : //* Licensed under LGPL 2.1, please see LICENSE for details 8 : //* https://www.gnu.org/licenses/lgpl-2.1.html 9 : 10 : #include "PMCMCDecision.h" 11 : #include "Sampler.h" 12 : #include "DenseMatrix.h" 13 : 14 : registerMooseObject("StochasticToolsApp", PMCMCDecision); 15 : 16 : InputParameters 17 500 : PMCMCDecision::validParams() 18 : { 19 500 : InputParameters params = GeneralReporter::validParams(); 20 500 : params += LikelihoodInterface::validParams(); 21 500 : params.addClassDescription("Generic reporter which decides whether or not to accept a proposed " 22 : "sample in parallel Markov chain Monte Carlo type of algorithms."); 23 1000 : params.addRequiredParam<ReporterName>("output_value", 24 : "Value of the model output from the SubApp."); 25 1000 : params.addParam<ReporterValueName>( 26 : "outputs_required", 27 : "outputs_required", 28 : "Modified value of the model output from this reporter class."); 29 1000 : params.addParam<ReporterValueName>("inputs", "inputs", "Uncertain inputs to the model."); 30 1000 : params.addParam<ReporterValueName>("tpm", "tpm", "The transition probability matrix."); 31 1000 : params.addParam<ReporterValueName>("variance", "variance", "Model variance term."); 32 1000 : params.addParam<ReporterValueName>( 33 : "noise", "noise", "Model noise term to pass to Likelihoods object."); 34 1000 : params.addRequiredParam<SamplerName>("sampler", "The sampler object."); 35 1000 : params.addRequiredParam<std::vector<UserObjectName>>("likelihoods", "Names of likelihoods."); 36 500 : return params; 37 0 : } 38 : 39 240 : PMCMCDecision::PMCMCDecision(const InputParameters & parameters) 40 : : GeneralReporter(parameters), 41 : LikelihoodInterface(parameters), 42 240 : _output_value(getReporterValue<std::vector<Real>>("output_value", REPORTER_MODE_DISTRIBUTED)), 43 240 : _outputs_required(declareValue<std::vector<Real>>("outputs_required")), 44 240 : _inputs(declareValue<std::vector<std::vector<Real>>>("inputs")), 45 240 : _tpm(declareValue<std::vector<Real>>("tpm")), 46 240 : _variance(declareValue<std::vector<Real>>("variance")), 47 240 : _noise(declareValue<Real>("noise")), 48 240 : _sampler(getSampler("sampler")), 49 240 : _pmcmc(dynamic_cast<const PMCMCBase *>(&_sampler)), 50 240 : _rnd_vec(_pmcmc->getRandomNumbers()), 51 240 : _new_var_samples(_pmcmc->getVarSamples()), 52 240 : _priors(_pmcmc->getPriors()), 53 240 : _var_prior(_pmcmc->getVarPrior()), 54 240 : _local_comm(_sampler.getLocalComm()), 55 720 : _check_step(std::numeric_limits<int>::max()) 56 : { 57 : // Filling the `likelihoods` vector with the user-provided distributions. 58 720 : for (const UserObjectName & name : getParam<std::vector<UserObjectName>>("likelihoods")) 59 240 : _likelihoods.push_back(getLikelihoodFunctionByName(name)); 60 : 61 : // Check whether the selected sampler is an MCMC sampler or not 62 240 : if (!_pmcmc) 63 0 : paramError("sampler", "The selected sampler is not of type MCMC."); 64 : 65 : // Fetching the sampler characteristics 66 240 : _props = _pmcmc->getNumParallelProposals(); 67 240 : _num_confg_values = _pmcmc->getNumberOfConfigValues(); 68 240 : _num_confg_params = _pmcmc->getNumberOfConfigParams(); 69 : 70 : // Resizing the data arrays to transmit to the output file 71 240 : _inputs.resize(_props); 72 1200 : for (unsigned int i = 0; i < _props; ++i) 73 960 : _inputs[i].resize(_sampler.getNumberOfCols() - _num_confg_params); 74 240 : _outputs_required.resize(_sampler.getNumberOfRows()); 75 240 : _tpm.resize(_props); 76 240 : _variance.resize(_props); 77 240 : } 78 : 79 : void 80 680 : PMCMCDecision::computeEvidence(std::vector<Real> & evidence, const DenseMatrix<Real> & input_matrix) 81 : { 82 680 : std::vector<Real> out1(_num_confg_values); 83 680 : std::vector<Real> out2(_num_confg_values); 84 3120 : for (unsigned int i = 0; i < evidence.size(); ++i) 85 : { 86 2440 : evidence[i] = 0.0; 87 7320 : for (unsigned int j = 0; j < _priors.size(); ++j) 88 4880 : evidence[i] += (std::log(_priors[j]->pdf(input_matrix(i, j))) - 89 4880 : std::log(_priors[j]->pdf(_data_prev(i, j)))); 90 7320 : for (unsigned int j = 0; j < _num_confg_values; ++j) 91 : { 92 4880 : out1[j] = _outputs_required[j * _props + i]; 93 4880 : out2[j] = _outputs_prev[j * _props + i]; 94 : } 95 2440 : if (_var_prior) 96 : { 97 600 : evidence[i] += (std::log(_var_prior->pdf(_new_var_samples[i])) - 98 600 : std::log(_var_prior->pdf(_var_prev[i]))); 99 600 : _noise = std::sqrt(_new_var_samples[i]); 100 1200 : for (unsigned int j = 0; j < _likelihoods.size(); ++j) 101 600 : evidence[i] += _likelihoods[j]->function(out1); 102 600 : _noise = std::sqrt(_var_prev[i]); 103 1200 : for (unsigned int j = 0; j < _likelihoods.size(); ++j) 104 600 : evidence[i] -= _likelihoods[j]->function(out2); 105 : } 106 : else 107 3680 : for (unsigned int j = 0; j < _likelihoods.size(); ++j) 108 1840 : evidence[i] += (_likelihoods[j]->function(out1) - _likelihoods[j]->function(out2)); 109 : } 110 680 : } 111 : 112 : void 113 320 : PMCMCDecision::computeTransitionVector(std::vector<Real> & tv, 114 : const std::vector<Real> & /*evidence*/) 115 : { 116 320 : tv.assign(_props, 1.0); 117 320 : } 118 : 119 : void 120 3800 : PMCMCDecision::nextSamples(std::vector<Real> & req_inputs, 121 : DenseMatrix<Real> & input_matrix, 122 : const std::vector<Real> & tv, 123 : const unsigned int & parallel_index) 124 : { 125 3800 : if (tv[parallel_index] >= _rnd_vec[parallel_index]) 126 : { 127 8040 : for (unsigned int k = 0; k < _sampler.getNumberOfCols() - _num_confg_params; ++k) 128 5360 : req_inputs[k] = input_matrix(parallel_index, k); 129 2680 : _variance[parallel_index] = _new_var_samples[parallel_index]; 130 : } 131 : else 132 : { 133 3360 : for (unsigned int k = 0; k < _sampler.getNumberOfCols() - _num_confg_params; ++k) 134 : { 135 2240 : req_inputs[k] = _data_prev(parallel_index, k); 136 2240 : input_matrix(parallel_index, k) = _data_prev(parallel_index, k); 137 : } 138 1120 : if (_var_prior) 139 440 : _variance[parallel_index] = _var_prev[parallel_index]; 140 3360 : for (unsigned int k = 0; k < _num_confg_values; ++k) 141 2240 : _outputs_required[k * _props + parallel_index] = _outputs_prev[k * _props + parallel_index]; 142 : } 143 3800 : } 144 : 145 : void 146 1200 : PMCMCDecision::execute() 147 : { 148 1200 : if (_sampler.getNumberOfLocalRows() == 0 || _check_step == _t_step) 149 : { 150 0 : _check_step = _t_step; 151 0 : return; 152 : } 153 : 154 : // Gather inputs and outputs from the sampler and subApps 155 1200 : DenseMatrix<Real> data_in(_sampler.getNumberOfRows(), _sampler.getNumberOfCols()); 156 3600 : for (dof_id_type ss = _sampler.getLocalRowBegin(); ss < _sampler.getLocalRowEnd(); ++ss) 157 : { 158 2400 : const auto data = _sampler.getNextLocalRow(); 159 9600 : for (unsigned int j = 0; j < _sampler.getNumberOfCols(); ++j) 160 7200 : data_in(ss, j) = data[j]; 161 : } 162 1200 : _local_comm.sum(data_in.get_values()); 163 1200 : _outputs_required = _output_value; 164 1200 : _local_comm.allgather(_outputs_required); 165 : 166 : // Compute the evidence and transition vectors 167 1200 : std::vector<Real> evidence(_props); 168 1200 : if (_t_step > _pmcmc->decisionStep()) 169 : { 170 800 : computeEvidence(evidence, data_in); 171 800 : computeTransitionVector(_tpm, evidence); 172 : } 173 : else 174 400 : _tpm.assign(_props, 1.0); 175 : 176 : // Accept/reject the proposed samples and assign the correct outputs 177 1200 : std::vector<Real> req_inputs(_sampler.getNumberOfCols() - _num_confg_params); 178 6000 : for (unsigned int i = 0; i < _props; ++i) 179 : { 180 4800 : nextSamples(req_inputs, data_in, _tpm, i); 181 4800 : _inputs[i] = req_inputs; 182 : } 183 : 184 : // Compute the next seeds to facilitate proposals (not always required) 185 1200 : nextSeeds(); 186 : 187 : // Store data from previous step 188 1200 : _data_prev = data_in; 189 1200 : _outputs_prev = _outputs_required; 190 1200 : _var_prev = _variance; 191 : 192 : // Track the current step 193 1200 : _check_step = _t_step; 194 1200 : }