Line data Source code
1 : //* This file is part of the MOOSE framework 2 : //* https://mooseframework.inl.gov 3 : //* 4 : //* All rights reserved, see COPYRIGHT for full restrictions 5 : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT 6 : //* 7 : //* Licensed under LGPL 2.1, please see LICENSE for details 8 : //* https://www.gnu.org/licenses/lgpl-2.1.html 9 : 10 : #pragma once 11 : 12 : #include "GeneralReporter.h" 13 : #include "AdaptiveImportanceSampler.h" 14 : #include "ParallelSubsetSimulation.h" 15 : #include "ActiveLearningGPDecision.h" 16 : 17 : /** 18 : * AdaptiveMonteCarloDecision will help make sample accept/reject decisions in adaptive Monte Carlo 19 : * schemes. 20 : */ 21 : class AdaptiveMonteCarloDecision : public GeneralReporter 22 : { 23 : public: 24 : static InputParameters validParams(); 25 : AdaptiveMonteCarloDecision(const InputParameters & parameters); 26 1392 : virtual void initialize() override {} 27 1392 : virtual void finalize() override {} 28 : virtual void execute() override; 29 : 30 : protected: 31 : /// Model output value from SubApp 32 : const std::vector<Real> & _output_value; 33 : 34 : /// Modified value of model output by this reporter class 35 : std::vector<Real> & _output_required; 36 : 37 : /// Model input data that is uncertain 38 : std::vector<std::vector<Real>> & _inputs; 39 : 40 : private: 41 : /** 42 : * This reinitializes the Markov chain to the starting value 43 : * until the Gaussian process training is completed. 44 : */ 45 : void reinitChain(); 46 : 47 : /// The adaptive Monte Carlo sampler 48 : Sampler & _sampler; 49 : 50 : /// Adaptive Importance Sampler 51 : const AdaptiveImportanceSampler * const _ais; 52 : 53 : /// Parallel Subset Simulation sampler 54 : const ParallelSubsetSimulation * const _pss; 55 : 56 : /// Ensure that the MCMC algorithm proceeds in a sequential fashion 57 : int _check_step; 58 : 59 : /// Communicator that was split based on samples that have rows 60 : libMesh::Parallel::Communicator & _local_comm; 61 : 62 : /// Storage for previously accepted input values. This helps in making decision on the next proposed inputs. 63 : std::vector<std::vector<Real>> _prev_val; 64 : 65 : /// Storage for previously accepted output value. 66 : std::vector<Real> _prev_val_out; 67 : 68 : /// Storage for the previously accepted sample inputs across all the subsets 69 : std::vector<std::vector<Real>> _inputs_sto; 70 : 71 : /// Store the sorted input samples according to their corresponding outputs 72 : std::vector<std::vector<Real>> _inputs_sorted; 73 : 74 : /// Storage for previously accepted sample outputs across all the subsets 75 : std::vector<Real> _outputs_sto; 76 : 77 : /// Store the sorted output sample values 78 : std::vector<Real> _output_sorted; 79 : 80 : /// Store the intermediate ouput failure thresholds 81 : Real _output_limit; 82 : 83 : /// Check if a GP is used 84 : const bool _gp_used; 85 : 86 : /// Store the GP training samples 87 : const int * const _gp_training_samples; 88 : };