LCOV - code coverage report
Current view: top level - include/covariances - CovarianceFunctionBase.h (source / functions) Hit Total Coverage
Test: idaholab/moose stochastic_tools: f45d79 Lines: 2 2 100.0 %
Date: 2025-07-25 05:00:46 Functions: 0 0 -
Legend: Lines: hit not hit

          Line data    Source code
       1             : //* This file is part of the MOOSE framework
       2             : //* https://mooseframework.inl.gov
       3             : //*
       4             : //* All rights reserved, see COPYRIGHT for full restrictions
       5             : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
       6             : //*
       7             : //* Licensed under LGPL 2.1, please see LICENSE for details
       8             : //* https://www.gnu.org/licenses/lgpl-2.1.html
       9             : 
      10             : #pragma once
      11             : 
      12             : #include "StochasticToolsApp.h"
      13             : #include "MooseObject.h"
      14             : #include "CovarianceInterface.h"
      15             : 
      16             : /**
      17             :  * Base class for covariance functions that are used in Gaussian Processes
      18             :  */
      19             : class CovarianceFunctionBase : public MooseObject, public CovarianceInterface
      20             : {
      21             : public:
      22             :   static InputParameters validParams();
      23             :   CovarianceFunctionBase(const InputParameters & parameters);
      24             : 
      25             :   /// Generates the Covariance Matrix given two sets of points in the parameter space
      26             :   /// @param K Reference to a matrix which should be populated by the covariance entries
      27             :   /// @param x Reference to the first set of points
      28             :   /// @param xp Reference to the second set of points
      29             :   /// @param is_self_covariance Switch to enable adding the noise variance to the diagonal of the covariance matrix
      30             :   virtual void computeCovarianceMatrix(RealEigenMatrix & K,
      31             :                                        const RealEigenMatrix & x,
      32             :                                        const RealEigenMatrix & xp,
      33             :                                        const bool is_self_covariance) const = 0;
      34             : 
      35             :   /// Load some hyperparameters into the local maps contained in this object.
      36             :   /// @param map Input map of scalar hyperparameters
      37             :   /// @param vec_map Input map of vector hyperparameters
      38             :   void loadHyperParamMap(const std::unordered_map<std::string, Real> & map,
      39             :                          const std::unordered_map<std::string, std::vector<Real>> & vec_map);
      40             : 
      41             :   /// Populates the input maps with the owned hyperparameters.
      42             :   /// @param map Map of scalar hyperparameters that should be populated
      43             :   /// @param vec_map Map of vector hyperparameters that should be populated
      44             :   void buildHyperParamMap(std::unordered_map<std::string, Real> & map,
      45             :                           std::unordered_map<std::string, std::vector<Real>> & vec_map) const;
      46             : 
      47             :   /// Get the default minimum and maximum and size of a hyperparameter.
      48             :   /// Returns false is the parameter has not been found in this covariance object.
      49             :   /// @param name The name of the hyperparameter
      50             :   /// @param size Reference to an unsigned int that will contain the size of the
      51             :   ///             hyperparameter (will be populated with 1 if it is scalar)
      52             :   /// @param min Reference to a number which will be populated by the maximum allowed value of the hyperparameter
      53             :   /// @param max Reference to a number which will be populated by the minimum allowed value of the hyperparameter
      54             :   virtual bool
      55             :   getTuningData(const std::string & name, unsigned int & size, Real & min, Real & max) const;
      56             : 
      57             :   /// Populate a map with the names and types of the dependent covariance functions
      58             :   /// @param name_type_map Reference to the map which should be populated
      59             :   void dependentCovarianceTypes(std::map<UserObjectName, std::string> & name_type_map) const;
      60             : 
      61             :   /// Get the names of the dependent covariances
      62             :   const std::vector<UserObjectName> & dependentCovarianceNames() const
      63             :   {
      64         386 :     return _dependent_covariance_names;
      65             :   }
      66             : 
      67             :   /// Redirect dK/dhp for hyperparameter "hp".
      68             :   /// Returns false is the parameter has not been found in this covariance object.
      69             :   /// @param dKdhp The matrix which should be populated with the derivatives
      70             :   /// @param x The input vector for which the derivatives of the covariance matrix
      71             :   ///          is computed
      72             :   /// @param hyper_param_name The name of the hyperparameter
      73             :   /// @param ind The index within the hyperparameter. 0 if it is a scalar parameter.
      74             :   ///            If it is a vector parameter, it should be the index within the vector.
      75             :   virtual bool computedKdhyper(RealEigenMatrix & dKdhp,
      76             :                                const RealEigenMatrix & x,
      77             :                                const std::string & hyper_param_name,
      78             :                                unsigned int ind) const;
      79             : 
      80             :   /// Check if a given parameter is tunable
      81             :   /// @param The name of the hyperparameter
      82             :   virtual bool isTunable(const std::string & name) const;
      83             : 
      84             :   /// Return the number of outputs assumed for this covariance function
      85      116590 :   unsigned int numOutputs() const { return _num_outputs; }
      86             : 
      87             :   /// Get the map of scalar parameters
      88             :   std::unordered_map<std::string, Real> & hyperParamMapReal() { return _hp_map_real; }
      89             : 
      90             :   /// Get the map of vector parameters
      91             :   std::unordered_map<std::string, std::vector<Real>> & hyperParamMapVectorReal()
      92             :   {
      93             :     return _hp_map_vector_real;
      94             :   }
      95             : 
      96             : protected:
      97             :   /// Register a scalar hyperparameter to this covariance function
      98             :   /// @param name The name of the parameter
      99             :   /// @param value The initial value of the parameter
     100             :   /// @param is_tunable If the parameter is tunable during optimization
     101             :   const Real &
     102             :   addRealHyperParameter(const std::string & name, const Real value, const bool is_tunable);
     103             : 
     104             :   /// Register a vector hyperparameter to this covariance function
     105             :   /// @param name The name of the parameter
     106             :   /// @param value The initial value of the parameter
     107             :   /// @param is_tunable If the parameter is tunable during optimization
     108             :   const std::vector<Real> & addVectorRealHyperParameter(const std::string & name,
     109             :                                                         const std::vector<Real> value,
     110             :                                                         const bool is_tunable);
     111             : 
     112             :   /// Map of real-valued hyperparameters
     113             :   std::unordered_map<std::string, Real> _hp_map_real;
     114             : 
     115             :   /// Map of vector-valued hyperparameters
     116             :   std::unordered_map<std::string, std::vector<Real>> _hp_map_vector_real;
     117             : 
     118             :   /// list of tunable hyper-parameters
     119             :   std::unordered_set<std::string> _tunable_hp;
     120             : 
     121             :   /// The number of outputs this covariance function is used to describe
     122             :   const unsigned int _num_outputs;
     123             : 
     124             :   /// The names of the dependent covariance functions
     125             :   const std::vector<UserObjectName> _dependent_covariance_names;
     126             : 
     127             :   /// The types of the dependent covariance functions
     128             :   std::vector<std::string> _dependent_covariance_types;
     129             : 
     130             :   /// Vector of pointers to the dependent covariance functions
     131             :   std::vector<CovarianceFunctionBase *> _covariance_functions;
     132             : };

Generated by: LCOV version 1.14