LCOV - code coverage report
Current view: top level - src/base - NavierStokesMethods.C (source / functions) Hit Total Coverage
Test: idaholab/moose navier_stokes: 2bd28b Lines: 117 157 74.5 %
Date: 2025-10-23 22:11:45 Functions: 14 18 77.8 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //* This file is part of the MOOSE framework
       2             : //* https://mooseframework.inl.gov
       3             : //*
       4             : //* All rights reserved, see COPYRIGHT for full restrictions
       5             : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
       6             : //*
       7             : //* Licensed under LGPL 2.1, please see LICENSE for details
       8             : //* https://www.gnu.org/licenses/lgpl-2.1.html
       9             : 
      10             : #include "NavierStokesMethods.h"
      11             : #include "MooseError.h"
      12             : #include "libmesh/vector_value.h"
      13             : #include "NS.h"
      14             : 
      15             : namespace NS
      16             : {
      17             : int
      18           0 : delta(unsigned int i, unsigned int j)
      19             : {
      20           0 :   if (i == j)
      21             :     return 1;
      22             :   else
      23           0 :     return 0;
      24             : }
      25             : 
      26             : int
      27           0 : computeSign(const Real & a)
      28             : {
      29           0 :   return a > 0 ? 1 : (a < 0 ? -1 : 0);
      30             : }
      31             : 
      32             : unsigned int
      33           0 : getIndex(const Real & p, const std::vector<Real> & bounds)
      34             : {
      35           0 :   if (p < bounds.front() || p > bounds.back())
      36           0 :     mooseError("Point exceeds bounds of domain!");
      37             : 
      38           0 :   for (unsigned int i = 1; i < bounds.size(); ++i)
      39           0 :     if (p <= bounds[i])
      40           0 :       return i - 1;
      41             : 
      42           0 :   return bounds.size() - 2;
      43             : }
      44             : 
      45             : Real
      46      356838 : reynoldsPropertyDerivative(
      47             :     const Real & Re, const Real & rho, const Real & mu, const Real & drho, const Real & dmu)
      48             : {
      49      356838 :   return Re * (drho / std::max(rho, 1e-6) - dmu / std::max(mu, 1e-8));
      50             : }
      51             : 
      52             : Real
      53      356838 : prandtlPropertyDerivative(const Real & mu,
      54             :                           const Real & cp,
      55             :                           const Real & k,
      56             :                           const Real & dmu,
      57             :                           const Real & dcp,
      58             :                           const Real & dk)
      59             : {
      60      356838 :   return (k * (mu * dcp + cp * dmu) - mu * cp * dk) / std::max(k * k, 1e-8);
      61             : }
      62             : 
      63             : template <typename T>
      64             : T
      65     1320472 : findUStar(const T & mu, const T & rho, const T & u, const Real dist)
      66             : {
      67             :   // usually takes about 3-4 iterations
      68             :   constexpr int MAX_ITERS{50};
      69             :   constexpr Real REL_TOLERANCE{1e-6};
      70             : 
      71             :   // Check inputs
      72             :   mooseAssert(mu > 0, "Need a strictly positive viscosity");
      73             :   mooseAssert(rho > 0, "Need a strictly positive density");
      74             :   mooseAssert(u > 0, "Need a strictly positive velocity");
      75             :   mooseAssert(dist > 0, "Need a strictly positive wall distance");
      76             : 
      77      790312 :   const T nu = mu / rho;
      78             : 
      79             :   // Wall-function linearized guess
      80             :   const Real a_c = 1 / NS::von_karman_constant;
      81     2910952 :   const T b_c = 1.0 / NS::von_karman_constant * (std::log(NS::E_turb_constant * dist / mu) + 1.0);
      82             :   const T & c_c = u;
      83             : 
      84             :   /// This is important to reduce the number of nonlinear iterations
      85     2910952 :   T u_star = std::max(1e-20, (-b_c + std::sqrt(std::pow(b_c, 2) + 4.0 * a_c * c_c)) / (2.0 * a_c));
      86             : 
      87             :   // Newton-Raphson method to solve for u_star (friction velocity).
      88     5223294 :   for (int i = 0; i < MAX_ITERS; ++i)
      89             :   {
      90     7291834 :     T residual =
      91     3154754 :         u_star / NS::von_karman_constant * std::log(NS::E_turb_constant * u_star * dist / nu) - u;
      92     7291834 :     T deriv = (1.0 + std::log(NS::E_turb_constant * u_star * dist / nu)) / NS::von_karman_constant;
      93     5223294 :     T new_u_star = std::max(1e-20, u_star - residual / deriv);
      94             : 
      95             :     Real rel_err =
      96     5223294 :         std::abs(MetaPhysicL::raw_value(new_u_star - u_star) / MetaPhysicL::raw_value(new_u_star));
      97             : 
      98     2068540 :     u_star = new_u_star;
      99     5223294 :     if (rel_err < REL_TOLERANCE)
     100     1320472 :       return u_star;
     101             :   }
     102             : 
     103           0 :   mooseException("Could not find the wall friction velocity (mu: ",
     104             :                  mu,
     105             :                  " rho: ",
     106             :                  rho,
     107             :                  " velocity: ",
     108             :                  u,
     109             :                  " wall distance: ",
     110             :                  dist,
     111             :                  ")");
     112             : }
     113             : template Real findUStar<Real>(const Real & mu, const Real & rho, const Real & u, const Real dist);
     114             : template ADReal
     115             : findUStar<ADReal>(const ADReal & mu, const ADReal & rho, const ADReal & u, const Real dist);
     116             : 
     117             : template <typename T>
     118             : T
     119     1206728 : findyPlus(const T & mu, const T & rho, const T & u, const Real dist)
     120             : {
     121             :   // Fixed point iteration method to find y_plus
     122             :   // It should take 3 or 4 iterations
     123             :   constexpr int MAX_ITERS{10};
     124             :   constexpr Real REL_TOLERANCE{1e-2};
     125             : 
     126             :   // Check inputs
     127             :   mooseAssert(mu > 0, "Need a strictly positive viscosity");
     128             :   mooseAssert(u > 0, "Need a strictly positive velocity");
     129             :   mooseAssert(rho > 0, "Need a strictly positive density");
     130             :   mooseAssert(dist > 0, "Need a strictly positive wall distance");
     131             : 
     132             :   Real yPlusLast = 0.0;
     133     1206728 :   T yPlus = dist * u * rho / mu; // Assign initial value to laminar
     134     1206728 :   const Real rev_yPlusLam = 1.0 / MetaPhysicL::raw_value(yPlus);
     135     1206728 :   const T kappa_time_Re = NS::von_karman_constant * u * dist / (mu / rho);
     136             :   unsigned int iters = 0;
     137             : 
     138             :   do
     139             :   {
     140             :     yPlusLast = MetaPhysicL::raw_value(yPlus);
     141             :     // Negative y plus does not make sense
     142     3622951 :     yPlus = std::max(NS::min_y_plus, yPlus);
     143     4381838 :     yPlus = (kappa_time_Re + yPlus) / (1.0 + std::log(NS::E_turb_constant * yPlus));
     144     3622951 :   } while (std::abs(rev_yPlusLam * (MetaPhysicL::raw_value(yPlus) - yPlusLast)) > REL_TOLERANCE &&
     145             :            ++iters < MAX_ITERS);
     146             : 
     147     1206728 :   return std::max(NS::min_y_plus, yPlus);
     148             : }
     149             : template Real findyPlus<Real>(const Real & mu, const Real & rho, const Real & u, Real dist);
     150             : template ADReal
     151             : findyPlus<ADReal>(const ADReal & mu, const ADReal & rho, const ADReal & u, Real dist);
     152             : 
     153             : template <typename T>
     154             : T
     155    81827794 : computeSpeed(const libMesh::VectorValue<T> & velocity)
     156             : {
     157             :   // if the velocity is zero, then the norm function call fails because AD tries to calculate the
     158             :   // derivatives which causes a divide by zero - because d/dx(sqrt(f(x))) = 1/2/sqrt(f(x))*df/dx.
     159             :   // So add a bit of noise (based on hitchhiker's guide to the galaxy's meaning of life number) to
     160             :   // avoid this failure mode.
     161    81827794 :   return isZero(velocity) ? 1e-42 : velocity.norm();
     162             : }
     163             : template Real computeSpeed<Real>(const libMesh::VectorValue<Real> & velocity);
     164             : template ADReal computeSpeed<ADReal>(const libMesh::VectorValue<ADReal> & velocity);
     165             : 
     166             : template <typename T>
     167             : T
     168      904024 : computeShearStrainRateNormSquared(const Moose::Functor<T> & u,
     169             :                                   const Moose::Functor<T> * v,
     170             :                                   const Moose::Functor<T> * w,
     171             :                                   const Moose::ElemArg & elem_arg,
     172             :                                   const Moose::StateArg & state)
     173             : {
     174      904024 :   const auto & grad_u = u.gradient(elem_arg, state);
     175      904024 :   const T Sij_xx = 2.0 * grad_u(0);
     176           0 :   T Sij_xy = 0.0;
     177           0 :   T Sij_xz = 0.0;
     178           0 :   T Sij_yy = 0.0;
     179           0 :   T Sij_yz = 0.0;
     180           0 :   T Sij_zz = 0.0;
     181             : 
     182           0 :   const T grad_xx = grad_u(0);
     183           0 :   T grad_xy = 0.0;
     184           0 :   T grad_xz = 0.0;
     185           0 :   T grad_yx = 0.0;
     186           0 :   T grad_yy = 0.0;
     187           0 :   T grad_yz = 0.0;
     188           0 :   T grad_zx = 0.0;
     189           0 :   T grad_zy = 0.0;
     190           0 :   T grad_zz = 0.0;
     191             : 
     192      904024 :   T trace = Sij_xx / 3.0;
     193             : 
     194      904024 :   if (v) // dim >= 2
     195             :   {
     196      904024 :     const auto & grad_v = (*v).gradient(elem_arg, state);
     197      904024 :     Sij_xy = grad_u(1) + grad_v(0);
     198      904024 :     Sij_yy = 2.0 * grad_v(1);
     199             : 
     200           0 :     grad_xy = grad_u(1);
     201           0 :     grad_yx = grad_v(0);
     202           0 :     grad_yy = grad_v(1);
     203             : 
     204      904024 :     trace += Sij_yy / 3.0;
     205             : 
     206      904024 :     if (w) // dim >= 3
     207             :     {
     208           0 :       const auto & grad_w = (*w).gradient(elem_arg, state);
     209             : 
     210           0 :       Sij_xz = grad_u(2) + grad_w(0);
     211           0 :       Sij_yz = grad_v(2) + grad_w(1);
     212           0 :       Sij_zz = 2.0 * grad_w(2);
     213             : 
     214           0 :       grad_xz = grad_u(2);
     215           0 :       grad_yz = grad_v(2);
     216           0 :       grad_zx = grad_w(0);
     217           0 :       grad_zy = grad_w(1);
     218           0 :       grad_zz = grad_w(2);
     219             : 
     220           0 :       trace += Sij_zz / 3.0;
     221             :     }
     222             :   }
     223             : 
     224      904024 :   return (Sij_xx - trace) * grad_xx + Sij_xy * grad_xy + Sij_xz * grad_xz + Sij_xy * grad_yx +
     225      904024 :          (Sij_yy - trace) * grad_yy + Sij_yz * grad_yz + Sij_xz * grad_zx + Sij_yz * grad_zy +
     226      904024 :          (Sij_zz - trace) * grad_zz;
     227             : }
     228             : template Real computeShearStrainRateNormSquared<Real>(const Moose::Functor<Real> & u,
     229             :                                                       const Moose::Functor<Real> * v,
     230             :                                                       const Moose::Functor<Real> * w,
     231             :                                                       const Moose::ElemArg & elem_arg,
     232             :                                                       const Moose::StateArg & state);
     233             : template ADReal computeShearStrainRateNormSquared<ADReal>(const Moose::Functor<ADReal> & u,
     234             :                                                           const Moose::Functor<ADReal> * v,
     235             :                                                           const Moose::Functor<ADReal> * w,
     236             :                                                           const Moose::ElemArg & elem_arg,
     237             :                                                           const Moose::StateArg & state);
     238             : 
     239             : /// Bounded element maps for wall treatment
     240             : void
     241       18621 : getWallBoundedElements(const std::vector<BoundaryName> & wall_boundary_names,
     242             :                        const FEProblemBase & fe_problem,
     243             :                        const SubProblem & subproblem,
     244             :                        const std::set<SubdomainID> & block_ids,
     245             :                        std::unordered_set<const Elem *> & wall_bounded)
     246             : {
     247             : 
     248             :   wall_bounded.clear();
     249       18621 :   const auto wall_boundary_ids = subproblem.mesh().getBoundaryIDs(wall_boundary_names);
     250             : 
     251             :   // We define these lambdas so that we can fetch the bounded elements from other
     252             :   // processors.
     253       14120 :   auto gather_functor = [&subproblem, &wall_bounded](const processor_id_type libmesh_dbg_var(pid),
     254             :                                                      const std::vector<dof_id_type> & elem_ids,
     255             :                                                      std::vector<unsigned char> & data_to_fill)
     256             :   {
     257             :     mooseAssert(pid != subproblem.processor_id(), "We shouldn't be gathering from ourselves.");
     258       14120 :     data_to_fill.resize(elem_ids.size());
     259             : 
     260       14120 :     const auto & mesh = subproblem.mesh().getMesh();
     261             : 
     262      172472 :     for (const auto i : index_range(elem_ids))
     263             :     {
     264      158352 :       const auto elem = mesh.elem_ptr(elem_ids[i]);
     265      316704 :       data_to_fill[i] = wall_bounded.count(elem) != 0;
     266             :     }
     267       32741 :   };
     268             : 
     269       14120 :   auto action_functor = [&subproblem, &wall_bounded](const processor_id_type libmesh_dbg_var(pid),
     270             :                                                      const std::vector<dof_id_type> & elem_ids,
     271             :                                                      const std::vector<unsigned char> & filled_data)
     272             :   {
     273             :     mooseAssert(pid != subproblem.processor_id(),
     274             :                 "The request filler shouldn't have been ourselves");
     275             :     mooseAssert(elem_ids.size() == filled_data.size(), "I think these should be the same size");
     276             : 
     277       14120 :     const auto & mesh = subproblem.mesh().getMesh();
     278             : 
     279      172472 :     for (const auto i : index_range(elem_ids))
     280             :     {
     281      158352 :       const auto elem = mesh.elem_ptr(elem_ids[i]);
     282      158352 :       if (filled_data[i])
     283       14432 :         wall_bounded.insert(elem);
     284             :     }
     285       32741 :   };
     286             : 
     287             :   // We need these elements from other processors
     288             :   std::unordered_map<processor_id_type, std::vector<dof_id_type>> elem_ids_requested;
     289             : 
     290     4727410 :   for (const auto & elem : fe_problem.mesh().getMesh().active_local_element_ptr_range())
     291     2345084 :     if (block_ids.find(elem->subdomain_id()) != block_ids.end())
     292    11695180 :       for (const auto i_side : elem->side_index_range())
     293             :       {
     294             :         // This is needed because in some cases the internal boundary is registered
     295             :         // to the neighbor element
     296             :         std::set<BoundaryID> combined_side_bds;
     297     9356144 :         const auto & side_bnds = subproblem.mesh().getBoundaryIDs(elem, i_side);
     298     9356144 :         combined_side_bds.insert(side_bnds.begin(), side_bnds.end());
     299     9356144 :         if (const auto neighbor = elem->neighbor_ptr(i_side))
     300             :         {
     301     8752224 :           const auto neighbor_side = neighbor->which_neighbor_am_i(elem);
     302     8752224 :           const auto & neighbor_bnds = subproblem.mesh().getBoundaryIDs(neighbor, neighbor_side);
     303     8752224 :           combined_side_bds.insert(neighbor_bnds.begin(), neighbor_bnds.end());
     304             : 
     305             :           // If the neighbor lives on the first layer of the ghost region then we would
     306             :           // like to grab its value as well (if it exists)
     307     8752224 :           if (neighbor->processor_id() != subproblem.processor_id() &&
     308             :               block_ids.find(neighbor->subdomain_id()) != block_ids.end())
     309      158352 :             elem_ids_requested[neighbor->processor_id()].push_back(neighbor->id());
     310     8752224 :         }
     311             : 
     312    25680252 :         for (const auto wall_id : wall_boundary_ids)
     313             :           if (combined_side_bds.count(wall_id))
     314             :           {
     315             :             wall_bounded.insert(elem);
     316             :             break;
     317             :           }
     318     9374765 :       }
     319             : 
     320             :   unsigned char * bool_ex = nullptr;
     321       18621 :   TIMPI::pull_parallel_vector_data(
     322             :       subproblem.comm(), elem_ids_requested, gather_functor, action_functor, bool_ex);
     323       18621 : }
     324             : 
     325             : /// Bounded element face distances for wall treatment
     326             : void
     327        5049 : getWallDistance(const std::vector<BoundaryName> & wall_boundary_name,
     328             :                 const FEProblemBase & fe_problem,
     329             :                 const SubProblem & subproblem,
     330             :                 const std::set<SubdomainID> & block_ids,
     331             :                 std::map<const Elem *, std::vector<Real>> & dist_map)
     332             : {
     333             :   dist_map.clear();
     334        5049 :   const auto wall_boundary_ids = subproblem.mesh().getBoundaryIDs(wall_boundary_name);
     335             : 
     336     1321018 :   for (const auto & elem : fe_problem.mesh().getMesh().active_local_element_ptr_range())
     337      655460 :     if (block_ids.find(elem->subdomain_id()) != block_ids.end())
     338     3268660 :       for (const auto i_side : elem->side_index_range())
     339             :       {
     340             :         // This is needed because in some cases the internal boundary is registered
     341             :         // to the neighbor element
     342             :         std::set<BoundaryID> combined_side_bds;
     343     2614928 :         const auto & side_bnds = subproblem.mesh().getBoundaryIDs(elem, i_side);
     344     2614928 :         combined_side_bds.insert(side_bnds.begin(), side_bnds.end());
     345     2614928 :         if (const auto neighbor = elem->neighbor_ptr(i_side))
     346             :         {
     347     2449272 :           const auto neighbor_side = neighbor->which_neighbor_am_i(elem);
     348             :           const std::vector<BoundaryID> & neighbor_bnds =
     349     2449272 :               subproblem.mesh().getBoundaryIDs(neighbor, neighbor_side);
     350     2449272 :           combined_side_bds.insert(neighbor_bnds.begin(), neighbor_bnds.end());
     351     2449272 :         }
     352             : 
     353    10016208 :         for (const auto wall_id : wall_boundary_ids)
     354             :           if (combined_side_bds.count(wall_id))
     355             :           {
     356             :             // The list below stores the face infos with respect to their owning elements,
     357             :             // depending on the block restriction we might encounter situations where the
     358             :             // element outside of the block owns the face info.
     359      138016 :             const auto & neighbor = elem->neighbor_ptr(i_side);
     360      138016 :             const auto elem_has_fi = Moose::FV::elemHasFaceInfo(*elem, neighbor);
     361      138016 :             const auto & elem_for_fi = elem_has_fi ? elem : neighbor;
     362         288 :             const auto side = elem_has_fi ? i_side : neighbor->which_neighbor_am_i(elem);
     363             : 
     364      138016 :             const FaceInfo * const fi = subproblem.mesh().faceInfo(elem_for_fi, side);
     365      138016 :             const auto & elem_centroid = elem_has_fi ? fi->elemCentroid() : fi->neighborCentroid();
     366      138016 :             const Real dist = std::abs((elem_centroid - fi->faceCentroid()) * fi->normal());
     367      138016 :             dist_map[elem].push_back(dist);
     368             :           }
     369     2619977 :       }
     370        5049 : }
     371             : 
     372             : /// Face arguments to wall-bounded faces for wall treatment
     373             : void
     374        5049 : getElementFaceArgs(const std::vector<BoundaryName> & wall_boundary_name,
     375             :                    const FEProblemBase & fe_problem,
     376             :                    const SubProblem & subproblem,
     377             :                    const std::set<SubdomainID> & block_ids,
     378             :                    std::map<const Elem *, std::vector<const FaceInfo *>> & face_info_map)
     379             : {
     380             :   face_info_map.clear();
     381        5049 :   const auto wall_boundary_ids = subproblem.mesh().getBoundaryIDs(wall_boundary_name);
     382             : 
     383     1321018 :   for (const auto & elem : fe_problem.mesh().getMesh().active_local_element_ptr_range())
     384      655460 :     if (block_ids.find(elem->subdomain_id()) != block_ids.end())
     385     3268660 :       for (const auto i_side : elem->side_index_range())
     386             :       {
     387             :         // This is needed because in some cases the internal boundary is registered
     388             :         // to the neighbor element
     389             :         std::set<BoundaryID> combined_side_bds;
     390     2614928 :         const auto & side_bnds = subproblem.mesh().getBoundaryIDs(elem, i_side);
     391     2614928 :         combined_side_bds.insert(side_bnds.begin(), side_bnds.end());
     392     2614928 :         if (elem->neighbor_ptr(i_side) && !elem->neighbor_ptr(i_side)->is_remote())
     393             :         {
     394     2449272 :           const auto neighbor = elem->neighbor_ptr(i_side);
     395     2449272 :           const auto neighbor_side = neighbor->which_neighbor_am_i(elem);
     396             :           const std::vector<BoundaryID> & neighbor_bnds =
     397     2449272 :               subproblem.mesh().getBoundaryIDs(neighbor, neighbor_side);
     398     2449272 :           combined_side_bds.insert(neighbor_bnds.begin(), neighbor_bnds.end());
     399     2449272 :         }
     400             : 
     401    10016208 :         for (const auto wall_id : wall_boundary_ids)
     402             :           if (combined_side_bds.count(wall_id))
     403             :           {
     404             :             // The list below stores the face infos with respect to their owning elements,
     405             :             // depending on the block restriction we might encounter situations where the
     406             :             // element outside of the block owns the face info.
     407      138016 :             const auto & neighbor = elem->neighbor_ptr(i_side);
     408      138016 :             const auto elem_has_fi = Moose::FV::elemHasFaceInfo(*elem, neighbor);
     409      138016 :             const auto & elem_for_fi = elem_has_fi ? elem : neighbor;
     410         288 :             const auto side = elem_has_fi ? i_side : neighbor->which_neighbor_am_i(elem);
     411             : 
     412      138016 :             const FaceInfo * const fi = subproblem.mesh().faceInfo(elem_for_fi, side);
     413      138016 :             face_info_map[elem].push_back(fi);
     414             :           }
     415     2619977 :       }
     416        5049 : }
     417             : }

Generated by: LCOV version 1.14