LCOV - code coverage report
Current view: top level - src/executioners - FEProblemSolve.C (source / functions) Hit Total Coverage
Test: idaholab/moose framework: fef103 Lines: 218 233 93.6 %
Date: 2025-09-03 20:01:23 Functions: 13 14 92.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //* This file is part of the MOOSE framework
       2             : //* https://mooseframework.inl.gov
       3             : //*
       4             : //* All rights reserved, see COPYRIGHT for full restrictions
       5             : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
       6             : //*
       7             : //* Licensed under LGPL 2.1, please see LICENSE for details
       8             : //* https://www.gnu.org/licenses/lgpl-2.1.html
       9             : 
      10             : #include "FEProblemSolve.h"
      11             : 
      12             : #include "FEProblem.h"
      13             : #include "NonlinearSystemBase.h"
      14             : #include "LinearSystem.h"
      15             : #include "Convergence.h"
      16             : #include "Executioner.h"
      17             : #include "ConvergenceIterationTypes.h"
      18             : 
      19             : std::set<std::string> const FEProblemSolve::_moose_line_searches = {"contact", "project"};
      20             : 
      21             : const std::set<std::string> &
      22      297171 : FEProblemSolve::mooseLineSearches()
      23             : {
      24      297171 :   return _moose_line_searches;
      25             : }
      26             : 
      27             : InputParameters
      28      455569 : FEProblemSolve::feProblemDefaultConvergenceParams()
      29             : {
      30      455569 :   InputParameters params = emptyInputParameters();
      31             : 
      32     1822276 :   params.addParam<unsigned int>("nl_max_its", 50, "Max Nonlinear Iterations");
      33     1822276 :   params.addParam<unsigned int>("nl_forced_its", 0, "The Number of Forced Nonlinear Iterations");
      34     1822276 :   params.addParam<unsigned int>("nl_max_funcs", 10000, "Max Nonlinear solver function evaluations");
      35     1822276 :   params.addParam<Real>("nl_abs_tol", 1.0e-50, "Nonlinear Absolute Tolerance");
      36     1822276 :   params.addParam<Real>("nl_rel_tol", 1.0e-8, "Nonlinear Relative Tolerance");
      37     1366707 :   params.addParam<Real>(
      38             :       "nl_div_tol",
      39      911138 :       1.0e10,
      40             :       "Nonlinear Relative Divergence Tolerance. A negative value disables this check.");
      41     1366707 :   params.addParam<Real>(
      42             :       "nl_abs_div_tol",
      43      911138 :       1.0e50,
      44             :       "Nonlinear Absolute Divergence Tolerance. A negative value disables this check.");
      45     1822276 :   params.addParam<Real>("nl_abs_step_tol", 0., "Nonlinear Absolute step Tolerance");
      46     1822276 :   params.addParam<Real>("nl_rel_step_tol", 0., "Nonlinear Relative step Tolerance");
      47     1366707 :   params.addParam<unsigned int>("n_max_nonlinear_pingpong",
      48      911138 :                                 100,
      49             :                                 "The maximum number of times the nonlinear residual can ping pong "
      50             :                                 "before requesting halting the current evaluation and requesting "
      51             :                                 "timestep cut for transient simulations");
      52             : 
      53     1366707 :   params.addParamNamesToGroup(
      54             :       "nl_max_its nl_forced_its nl_max_funcs nl_abs_tol nl_rel_tol "
      55             :       "nl_rel_step_tol nl_abs_step_tol nl_div_tol nl_abs_div_tol n_max_nonlinear_pingpong",
      56             :       "Nonlinear Solver");
      57             : 
      58      455569 :   return params;
      59           0 : }
      60             : 
      61             : InputParameters
      62      297171 : FEProblemSolve::validParams()
      63             : {
      64      297171 :   InputParameters params = MultiSystemSolveObject::validParams();
      65      297171 :   params += FEProblemSolve::feProblemDefaultConvergenceParams();
      66             : 
      67      297171 :   std::set<std::string> line_searches = mooseLineSearches();
      68             : 
      69      297171 :   std::set<std::string> alias_line_searches = {"default", "none", "basic"};
      70      297171 :   line_searches.insert(alias_line_searches.begin(), alias_line_searches.end());
      71      297171 :   std::set<std::string> petsc_line_searches = Moose::PetscSupport::getPetscValidLineSearches();
      72      297171 :   line_searches.insert(petsc_line_searches.begin(), petsc_line_searches.end());
      73     1188684 :   std::string line_search_string = Moose::stringify(line_searches, " ");
      74      594342 :   MooseEnum line_search(line_search_string, "default");
      75      297171 :   std::string addtl_doc_str(" (Note: none = basic)");
      76      297171 :   params.addParam<MooseEnum>(
      77      594342 :       "line_search", line_search, "Specifies the line search type" + addtl_doc_str);
      78     1188684 :   MooseEnum line_search_package("petsc moose", "petsc");
      79     1188684 :   params.addParam<MooseEnum>("line_search_package",
      80             :                              line_search_package,
      81             :                              "The solver package to use to conduct the line-search");
      82             : 
      83      891513 :   params.addParam<unsigned>("contact_line_search_allowed_lambda_cuts",
      84      594342 :                             2,
      85             :                             "The number of times lambda is allowed to be cut in half in the "
      86             :                             "contact line search. We recommend this number be roughly bounded by 0 "
      87             :                             "<= allowed_lambda_cuts <= 3");
      88      891513 :   params.addParam<Real>("contact_line_search_ltol",
      89             :                         "The linear relative tolerance to be used while the contact state is "
      90             :                         "changing between non-linear iterations. We recommend that this tolerance "
      91             :                         "be looser than the standard linear tolerance");
      92             : 
      93      297171 :   params += Moose::PetscSupport::getPetscValidParams();
      94     1188684 :   params.addParam<Real>("l_tol", 1.0e-5, "Linear Relative Tolerance");
      95     1188684 :   params.addParam<Real>("l_abs_tol", 1.0e-50, "Linear Absolute Tolerance");
      96     1188684 :   params.addParam<unsigned int>("l_max_its", 10000, "Max Linear Iterations");
      97     1188684 :   params.addParam<std::vector<ConvergenceName>>(
      98             :       "nonlinear_convergence",
      99             :       "Name of the Convergence object(s) to use to assess convergence of the "
     100             :       "nonlinear system(s) solve. If not provided, the default Convergence "
     101             :       "associated with the Problem will be constructed internally.");
     102     1188684 :   params.addParam<std::vector<ConvergenceName>>(
     103             :       "linear_convergence",
     104             :       "Name of the Convergence object(s) to use to assess convergence of the "
     105             :       "linear system(s) solve. If not provided, the linear solver tolerance parameters are used");
     106      891513 :   params.addParam<bool>(
     107             :       "snesmf_reuse_base",
     108      594342 :       true,
     109             :       "Specifies whether or not to reuse the base vector for matrix-free calculation");
     110      891513 :   params.addParam<bool>(
     111      594342 :       "skip_exception_check", false, "Specifies whether or not to skip exception check");
     112      891513 :   params.addParam<bool>("compute_initial_residual_before_preset_bcs",
     113      594342 :                         false,
     114             :                         "Use the residual norm computed *before* solution modifying objects like "
     115             :                         "preset BCs are imposed in relative convergence check.");
     116     1783026 :   params.deprecateParam(
     117             :       "compute_initial_residual_before_preset_bcs", "use_pre_SMO_residual", "12/31/2024");
     118      891513 :   params.addParam<bool>(
     119             :       "use_pre_SMO_residual",
     120      594342 :       false,
     121             :       "Compute the pre-SMO residual norm and use it in the relative convergence check. The "
     122             :       "pre-SMO residual is computed at the begining of the time step before solution-modifying "
     123             :       "objects are executed. Solution-modifying objects include preset BCs, constraints, "
     124             :       "predictors, etc.");
     125     1188684 :   params.addParam<bool>("automatic_scaling", "Whether to use automatic scaling for the variables.");
     126     1188684 :   params.addParam<std::vector<bool>>(
     127             :       "compute_scaling_once",
     128             :       {true},
     129             :       "Whether the scaling factors should only be computed once at the beginning of the simulation "
     130             :       "through an extra Jacobian evaluation. If this is set to false, then the scaling factors "
     131             :       "will be computed during an extra Jacobian evaluation at the beginning of every time step. "
     132             :       "Vector entries correspond to each nonlinear system.");
     133     1188684 :   params.addParam<std::vector<bool>>(
     134             :       "off_diagonals_in_auto_scaling",
     135             :       {false},
     136             :       "Whether to consider off-diagonals when determining automatic scaling factors. Vector "
     137             :       "entries correspond to each nonlinear system.");
     138     2377368 :   params.addRangeCheckedParam<std::vector<Real>>(
     139             :       "resid_vs_jac_scaling_param",
     140             :       {0},
     141             :       "0<=resid_vs_jac_scaling_param<=1",
     142             :       "A parameter that indicates the weighting of the residual vs the Jacobian in determining "
     143             :       "variable scaling parameters. A value of 1 indicates pure residual-based scaling. A value of "
     144             :       "0 indicates pure Jacobian-based scaling. Vector entries correspond to each nonlinear "
     145             :       "system.");
     146     1188684 :   params.addParam<std::vector<std::vector<std::vector<std::string>>>>(
     147             :       "scaling_group_variables",
     148             :       "Name of variables that are grouped together for determining scale factors. (Multiple "
     149             :       "groups can be provided, separated by semicolon). Vector entries correspond to each "
     150             :       "nonlinear system.");
     151     1188684 :   params.addParam<std::vector<std::vector<std::string>>>(
     152             :       "ignore_variables_for_autoscaling",
     153             :       "List of variables that do not participate in autoscaling. Vector entries correspond to each "
     154             :       "nonlinear system.");
     155     1485855 :   params.addRangeCheckedParam<unsigned int>(
     156             :       "num_grids",
     157      594342 :       1,
     158             :       "num_grids>0",
     159             :       "The number of grids to use for a grid sequencing algorithm. This includes the final grid, "
     160             :       "so num_grids = 1 indicates just one solve in a time-step");
     161     1188684 :   params.addParam<std::vector<bool>>("residual_and_jacobian_together",
     162             :                                      {false},
     163             :                                      "Whether to compute the residual and Jacobian together. "
     164             :                                      "Vector entries correspond to each nonlinear system.");
     165             : 
     166      891513 :   params.addParam<bool>("reuse_preconditioner",
     167      594342 :                         false,
     168             :                         "If true reuse the previously calculated "
     169             :                         "preconditioner for the linearized "
     170             :                         "system across multiple solves "
     171             :                         "spanning nonlinear iterations and time steps. "
     172             :                         "The preconditioner resets as controlled by "
     173             :                         "reuse_preconditioner_max_linear_its");
     174      891513 :   params.addParam<unsigned int>("reuse_preconditioner_max_linear_its",
     175      594342 :                                 25,
     176             :                                 "Reuse the previously calculated "
     177             :                                 "preconditioner for the linear system "
     178             :                                 "until the number of linear iterations "
     179             :                                 "exceeds this number");
     180             : 
     181             :   // Multi-system fixed point
     182             :   // Defaults to false because of the difficulty of defining a good multi-system convergence
     183             :   // criterion, unless we add a default one to the simulation?
     184      891513 :   params.addParam<bool>(
     185             :       "multi_system_fixed_point",
     186      594342 :       false,
     187             :       "Whether to perform fixed point (Picard) iterations between the nonlinear systems.");
     188     1188684 :   params.addParam<ConvergenceName>(
     189             :       "multi_system_fixed_point_convergence",
     190             :       "Convergence object to determine the convergence of the multi-system fixed point iteration. "
     191             :       "If unspecified, defaults to checking that every system is converged (based on their own "
     192             :       "convergence criterion)");
     193             : 
     194     1188684 :   params.addParamNamesToGroup("l_tol l_abs_tol l_max_its reuse_preconditioner "
     195             :                               "reuse_preconditioner_max_linear_its",
     196             :                               "Linear Solver");
     197     1188684 :   params.addParamNamesToGroup(
     198             :       "solve_type snesmf_reuse_base use_pre_SMO_residual "
     199             :       "num_grids residual_and_jacobian_together nonlinear_convergence linear_convergence",
     200             :       "Nonlinear Solver");
     201     1188684 :   params.addParamNamesToGroup(
     202             :       "automatic_scaling compute_scaling_once off_diagonals_in_auto_scaling "
     203             :       "scaling_group_variables resid_vs_jac_scaling_param ignore_variables_for_autoscaling",
     204             :       "Solver variable scaling");
     205     1188684 :   params.addParamNamesToGroup("line_search line_search_package contact_line_search_ltol "
     206             :                               "contact_line_search_allowed_lambda_cuts",
     207             :                               "Solver line search");
     208     1188684 :   params.addParamNamesToGroup("multi_system_fixed_point multi_system_fixed_point_convergence",
     209             :                               "Multiple solver system");
     210      891513 :   params.addParamNamesToGroup("skip_exception_check", "Advanced");
     211             : 
     212      594342 :   return params;
     213      297171 : }
     214             : 
     215       62571 : FEProblemSolve::FEProblemSolve(Executioner & ex)
     216             :   : MultiSystemSolveObject(ex),
     217       62571 :     _num_grid_steps(cast_int<unsigned int>(getParam<unsigned int>("num_grids") - 1)),
     218      125142 :     _using_multi_sys_fp_iterations(getParam<bool>("multi_system_fixed_point")),
     219       62571 :     _multi_sys_fp_convergence(nullptr) // has not been created yet
     220             : {
     221      125142 :   if (_moose_line_searches.find(getParam<MooseEnum>("line_search").operator std::string()) !=
     222      125142 :       _moose_line_searches.end())
     223           0 :     _problem.addLineSearch(_pars);
     224             : 
     225       62870 :   auto set_solver_params = [this, &ex](const SolverSystem & sys)
     226             :   {
     227       62870 :     const auto prefix = sys.prefix();
     228       62870 :     Moose::PetscSupport::storePetscOptions(_problem, prefix, ex);
     229       62870 :     Moose::PetscSupport::setConvergedReasonFlags(_problem, prefix);
     230             : 
     231             :     // Set solver parameter prefix and system number
     232       62870 :     auto & solver_params = _problem.solverParams(sys.number());
     233       62870 :     solver_params._prefix = prefix;
     234       62870 :     solver_params._solver_sys_num = sys.number();
     235       62870 :   };
     236             : 
     237             :   // Extract and store PETSc related settings on FEProblemBase
     238      125441 :   for (const auto * const sys : _systems)
     239       62870 :     set_solver_params(*sys);
     240             : 
     241             :   // Set linear solve parameters in the equation system
     242             :   // Nonlinear solve parameters are added in the DefaultNonlinearConvergence
     243       62571 :   EquationSystems & es = _problem.es();
     244      250284 :   es.parameters.set<Real>("linear solver tolerance") = getParam<Real>("l_tol");
     245      250284 :   es.parameters.set<Real>("linear solver absolute tolerance") = getParam<Real>("l_abs_tol");
     246       62571 :   es.parameters.set<unsigned int>("linear solver maximum iterations") =
     247      187713 :       getParam<unsigned int>("l_max_its");
     248      250284 :   es.parameters.set<bool>("reuse preconditioner") = getParam<bool>("reuse_preconditioner");
     249       62571 :   es.parameters.set<unsigned int>("reuse preconditioner maximum linear iterations") =
     250      187713 :       getParam<unsigned int>("reuse_preconditioner_max_linear_its");
     251             : 
     252             :   // Transfer to the Problem misc nonlinear solve optimization parameters
     253       62571 :   _problem.setSNESMFReuseBase(getParam<bool>("snesmf_reuse_base"),
     254      187713 :                               _pars.isParamSetByUser("snesmf_reuse_base"));
     255      125142 :   _problem.skipExceptionCheck(getParam<bool>("skip_exception_check"));
     256             : 
     257      187713 :   if (isParamValid("nonlinear_convergence"))
     258             :   {
     259         344 :     if (_problem.onlyAllowDefaultNonlinearConvergence())
     260           0 :       mooseError("The selected problem does not allow 'nonlinear_convergence' to be set.");
     261        1032 :     _problem.setNonlinearConvergenceNames(
     262             :         getParam<std::vector<ConvergenceName>>("nonlinear_convergence"));
     263             :   }
     264             :   else
     265       62227 :     _problem.setNeedToAddDefaultNonlinearConvergence();
     266      187713 :   if (isParamValid("linear_convergence"))
     267             :   {
     268         181 :     if (_problem.numLinearSystems() == 0)
     269           0 :       paramError(
     270             :           "linear_convergence",
     271             :           "Setting 'linear_convergence' is currently only possible for solving linear systems");
     272         543 :     _problem.setLinearConvergenceNames(
     273             :         getParam<std::vector<ConvergenceName>>("linear_convergence"));
     274             :   }
     275             : 
     276             :   // Check whether the user has explicitly requested automatic scaling and is using a solve type
     277             :   // without a matrix. If so, then we warn them
     278      189166 :   if ((_pars.isParamSetByUser("automatic_scaling") && getParam<bool>("automatic_scaling")) &&
     279         449 :       std::all_of(_systems.begin(),
     280             :                   _systems.end(),
     281         449 :                   [this](const auto & solver_sys)
     282         449 :                   { return _problem.solverParams(solver_sys->number())._type == Moose::ST_JFNK; }))
     283             :   {
     284           0 :     paramWarning("automatic_scaling",
     285             :                  "Automatic scaling isn't implemented for the case where you do not have a "
     286             :                  "preconditioning matrix. No scaling will be applied");
     287           0 :     _problem.automaticScaling(false);
     288             :   }
     289             :   else
     290             :     // Check to see whether automatic_scaling has been specified anywhere, including at the
     291             :     // application level. No matter what: if we don't have a matrix, we don't do scaling
     292       62571 :     _problem.automaticScaling(
     293      187713 :         isParamValid("automatic_scaling")
     294       64077 :             ? getParam<bool>("automatic_scaling")
     295       62069 :             : (getMooseApp().defaultAutomaticScaling() &&
     296           0 :                std::any_of(_systems.begin(),
     297             :                            _systems.end(),
     298           0 :                            [this](const auto & solver_sys) {
     299           0 :                              return _problem.solverParams(solver_sys->number())._type !=
     300           0 :                                     Moose::ST_JFNK;
     301             :                            })));
     302             : 
     303      185677 :   if (!_using_multi_sys_fp_iterations && isParamValid("multi_system_fixed_point_convergence"))
     304           8 :     paramError("multi_system_fixed_point_convergence",
     305             :                "Cannot set a convergence object for multi-system fixed point iterations if "
     306             :                "'multi_system_fixed_point' is set to false");
     307       64603 :   if (_using_multi_sys_fp_iterations && !isParamValid("multi_system_fixed_point_convergence"))
     308           8 :     paramError("multi_system_fixed_point_convergence",
     309             :                "Must set a convergence object for multi-system fixed point iterations if using "
     310             :                "multi-system fixed point iterations");
     311             : 
     312             :   // Set the same parameters to every nonlinear system by default
     313       62563 :   int i_nl_sys = -1;
     314      125397 :   for (const auto i_sys : index_range(_systems))
     315             :   {
     316       62846 :     auto nl_ptr = dynamic_cast<NonlinearSystemBase *>(_systems[i_sys]);
     317             :     // Linear systems have very different parameters at the moment
     318       62846 :     if (!nl_ptr)
     319        1340 :       continue;
     320       61506 :     auto & nl = *nl_ptr;
     321       61506 :     i_nl_sys++;
     322             : 
     323      123012 :     nl.setPreSMOResidual(getParam<bool>("use_pre_SMO_residual"));
     324             : 
     325             :     const auto res_and_jac =
     326      123012 :         getParamFromNonlinearSystemVectorParam<bool>("residual_and_jacobian_together", i_nl_sys);
     327       61498 :     if (res_and_jac)
     328         340 :       nl.residualAndJacobianTogether();
     329             : 
     330             :     // Automatic scaling parameters
     331       61498 :     nl.computeScalingOnce(
     332      122996 :         getParamFromNonlinearSystemVectorParam<bool>("compute_scaling_once", i_nl_sys));
     333      122996 :     nl.autoScalingParam(
     334             :         getParamFromNonlinearSystemVectorParam<Real>("resid_vs_jac_scaling_param", i_nl_sys));
     335       61498 :     nl.offDiagonalsInAutoScaling(
     336      122996 :         getParamFromNonlinearSystemVectorParam<bool>("off_diagonals_in_auto_scaling", i_nl_sys));
     337      184494 :     if (isParamValid("scaling_group_variables"))
     338          17 :       nl.scalingGroupVariables(
     339          68 :           getParamFromNonlinearSystemVectorParam<std::vector<std::vector<std::string>>>(
     340             :               "scaling_group_variables", i_nl_sys));
     341      184494 :     if (isParamValid("ignore_variables_for_autoscaling"))
     342             :     {
     343             :       // Before setting ignore_variables_for_autoscaling, check that they are not present in
     344             :       // scaling_group_variables
     345          42 :       if (isParamValid("scaling_group_variables"))
     346             :       {
     347             :         const auto & ignore_variables_for_autoscaling =
     348             :             getParamFromNonlinearSystemVectorParam<std::vector<std::string>>(
     349           8 :                 "ignore_variables_for_autoscaling", i_nl_sys);
     350             :         const auto & scaling_group_variables =
     351             :             getParamFromNonlinearSystemVectorParam<std::vector<std::vector<std::string>>>(
     352           8 :                 "scaling_group_variables", i_nl_sys);
     353           4 :         for (const auto & group : scaling_group_variables)
     354           8 :           for (const auto & var_name : group)
     355           8 :             if (std::find(ignore_variables_for_autoscaling.begin(),
     356             :                           ignore_variables_for_autoscaling.end(),
     357          16 :                           var_name) != ignore_variables_for_autoscaling.end())
     358           8 :               paramError("ignore_variables_for_autoscaling",
     359             :                          "Variables cannot be in a scaling grouping and also be ignored");
     360           0 :       }
     361          10 :       nl.ignoreVariablesForAutoscaling(
     362          40 :           getParamFromNonlinearSystemVectorParam<std::vector<std::string>>(
     363             :               "ignore_variables_for_autoscaling", i_nl_sys));
     364             :     }
     365             :   }
     366             : 
     367             :   // Multi-grid options
     368       62551 :   _problem.numGridSteps(_num_grid_steps);
     369       62551 : }
     370             : 
     371             : template <typename T>
     372             : T
     373      246035 : FEProblemSolve::getParamFromNonlinearSystemVectorParam(const std::string & param_name,
     374             :                                                        unsigned int index) const
     375             : {
     376      246035 :   const auto & param_vec = getParam<std::vector<T>>(param_name);
     377      246035 :   if (index > _num_nl_systems)
     378           0 :     paramError(param_name,
     379             :                "Vector parameter is requested at index (" + std::to_string(index) +
     380             :                    ") which is larger than number of nonlinear systems (" +
     381           0 :                    std::to_string(_num_nl_systems) + ").");
     382      246035 :   if (param_vec.size() == 0)
     383           4 :     paramError(
     384             :         param_name,
     385             :         "This parameter was passed to a routine which cannot handle empty vector parameters");
     386      246031 :   if (param_vec.size() != 1 && param_vec.size() != _num_nl_systems)
     387           4 :     paramError(param_name,
     388             :                "Vector parameter size (" + std::to_string(param_vec.size()) +
     389             :                    ") is different than the number of nonlinear systems (" +
     390           4 :                    std::to_string(_num_nl_systems) + ").");
     391             : 
     392             :   // User passed only one parameter, assume it applies to all nonlinear systems
     393      246027 :   if (param_vec.size() == 1)
     394      246027 :     return param_vec[0];
     395             :   else
     396           0 :     return param_vec[index];
     397             : }
     398             : 
     399             : void
     400       59063 : FEProblemSolve::initialSetup()
     401             : {
     402       59063 :   MultiSystemSolveObject::initialSetup();
     403       59063 :   convergenceSetup();
     404       59055 : }
     405             : 
     406             : void
     407       59063 : FEProblemSolve::convergenceSetup()
     408             : {
     409             :   // nonlinear
     410       59063 :   const auto conv_names = _problem.getNonlinearConvergenceNames();
     411      116932 :   for (const auto & conv_name : conv_names)
     412             :   {
     413       57877 :     auto & conv = _problem.getConvergence(conv_name);
     414       57877 :     conv.checkIterationType(ConvergenceIterationTypes::NONLINEAR);
     415             :   }
     416             : 
     417             :   // linear
     418      177165 :   if (isParamValid("linear_convergence"))
     419             :   {
     420         362 :     const auto conv_names = getParam<std::vector<ConvergenceName>>("linear_convergence");
     421         362 :     for (const auto & conv_name : conv_names)
     422             :     {
     423         181 :       auto & conv = _problem.getConvergence(conv_name);
     424         181 :       conv.checkIterationType(ConvergenceIterationTypes::LINEAR);
     425             :     }
     426         181 :   }
     427             : 
     428             :   // multisystem fixed point
     429      177165 :   if (isParamValid("multi_system_fixed_point_convergence"))
     430             :   {
     431        1006 :     _multi_sys_fp_convergence =
     432        2012 :         &_problem.getConvergence(getParam<ConvergenceName>("multi_system_fixed_point_convergence"));
     433        1006 :     _multi_sys_fp_convergence->checkIterationType(
     434             :         ConvergenceIterationTypes::MULTISYSTEM_FIXED_POINT);
     435             :   }
     436       59055 : }
     437             : 
     438             : bool
     439      333474 : FEProblemSolve::solve()
     440             : {
     441             :   // Outer loop for multi-grid convergence
     442      333474 :   bool converged = false;
     443      333474 :   unsigned int num_fp_multisys_iters = 0;
     444      662996 :   for (MooseIndex(_num_grid_steps) grid_step = 0; grid_step <= _num_grid_steps; ++grid_step)
     445             :   {
     446             :     // Multi-system fixed point loop
     447             :     // Use a convergence object if provided, if not, use a reasonable default of every nested system
     448             :     // being converged
     449      333531 :     num_fp_multisys_iters = 0;
     450      333531 :     converged = false;
     451      667489 :     while (!converged)
     452             :     {
     453             :       // Loop over each system
     454      676312 :       for (const auto sys : _systems)
     455             :       {
     456      342354 :         const bool is_nonlinear = (dynamic_cast<NonlinearSystemBase *>(sys) != nullptr);
     457             : 
     458             :         // Call solve on the problem for that system
     459      342354 :         if (is_nonlinear)
     460      336706 :           _problem.solve(sys->number());
     461             :         else
     462             :         {
     463             :           const auto linear_sys_number =
     464        5648 :               cast_int<unsigned int>(sys->number() - _problem.numNonlinearSystems());
     465        5648 :           _problem.solveLinearSystem(linear_sys_number, &_problem.getPetscOptions());
     466             : 
     467             :           // This is for postprocessing purposes in case none of the objects
     468             :           // request the gradients.
     469             :           // TODO: Somehow collect information if the postprocessors
     470             :           // need gradients and if nothing needs this, just skip it
     471        5648 :           _problem.getLinearSystem(linear_sys_number).computeGradients();
     472             :         }
     473             : 
     474             :         // Check convergence
     475             :         const auto solve_name =
     476      675774 :             _systems.size() == 1 ? " Solve" : "System " + sys->name() + ": Solve";
     477      342274 :         if (_problem.shouldSolve())
     478             :         {
     479      311071 :           if (_problem.converged(sys->number()))
     480      307142 :             _console << COLOR_GREEN << solve_name << " Converged!" << COLOR_DEFAULT << std::endl;
     481             :           else
     482             :           {
     483        3925 :             _console << COLOR_RED << solve_name << " Did NOT Converge!" << COLOR_DEFAULT
     484        3925 :                      << std::endl;
     485        3925 :             return false;
     486             :           }
     487             :         }
     488             :         else
     489       31203 :           _console << COLOR_GREEN << solve_name << " Skipped!" << COLOR_DEFAULT << std::endl;
     490      342270 :       }
     491             : 
     492             :       // Assess convergence of the multi-system fixed point iteration
     493      333958 :       if (!_using_multi_sys_fp_iterations)
     494      328512 :         converged = true;
     495             :       else
     496             :       {
     497        5446 :         converged = _multi_sys_fp_convergence->checkConvergence(num_fp_multisys_iters) ==
     498             :                     Convergence::MooseConvergenceStatus::CONVERGED;
     499        5446 :         if (_multi_sys_fp_convergence->checkConvergence(num_fp_multisys_iters) ==
     500             :             Convergence::MooseConvergenceStatus::DIVERGED)
     501           0 :           break;
     502             :       }
     503      333958 :       num_fp_multisys_iters++;
     504             :     }
     505             : 
     506      329522 :     if (grid_step != _num_grid_steps)
     507          57 :       _problem.uniformRefine();
     508             :   }
     509             : 
     510      329465 :   if (_multi_sys_fp_convergence)
     511        1010 :     return (_multi_sys_fp_convergence->checkConvergence(num_fp_multisys_iters) ==
     512        1010 :             Convergence::MooseConvergenceStatus::CONVERGED);
     513             :   else
     514      328455 :     return converged;
     515             : }

Generated by: LCOV version 1.14