LCOV - code coverage report
Current view: top level - src/constraints - ComputeDynamicWeightedGapLMMechanicalContact.C (source / functions) Hit Total Coverage
Test: idaholab/moose contact: 8601ad Lines: 172 188 91.5 %
Date: 2025-07-18 13:27:36 Functions: 14 17 82.4 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //* This file is part of the MOOSE framework
       2             : //* https://mooseframework.inl.gov
       3             : //*
       4             : //* All rights reserved, see COPYRIGHT for full restrictions
       5             : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
       6             : //*
       7             : //* Licensed under LGPL 2.1, please see LICENSE for details
       8             : //* https://www.gnu.org/licenses/lgpl-2.1.html
       9             : 
      10             : #include "ComputeDynamicWeightedGapLMMechanicalContact.h"
      11             : #include "MortarContactUtils.h"
      12             : #include "DisplacedProblem.h"
      13             : #include "Assembly.h"
      14             : 
      15             : #include "metaphysicl/dualsemidynamicsparsenumberarray.h"
      16             : #include "metaphysicl/parallel_dualnumber.h"
      17             : #include "metaphysicl/parallel_dynamic_std_array_wrapper.h"
      18             : #include "metaphysicl/parallel_semidynamicsparsenumberarray.h"
      19             : #include "timpi/parallel_sync.h"
      20             : 
      21             : registerMooseObject("ContactApp", ComputeDynamicWeightedGapLMMechanicalContact);
      22             : 
      23             : namespace
      24             : {
      25             : const InputParameters &
      26         133 : assignVarsInParamsDyn(const InputParameters & params_in)
      27             : {
      28             :   InputParameters & ret = const_cast<InputParameters &>(params_in);
      29         133 :   const auto & disp_x_name = ret.get<std::vector<VariableName>>("disp_x");
      30         133 :   if (disp_x_name.size() != 1)
      31           0 :     mooseError("We require that the disp_x parameter have exactly one coupled name");
      32             : 
      33             :   // We do this so we don't get any variable errors during MortarConstraint(Base) construction
      34         266 :   ret.set<VariableName>("secondary_variable") = disp_x_name[0];
      35         133 :   ret.set<VariableName>("primary_variable") = disp_x_name[0];
      36             : 
      37         133 :   return ret;
      38             : }
      39             : }
      40             : InputParameters
      41         266 : ComputeDynamicWeightedGapLMMechanicalContact::validParams()
      42             : {
      43         266 :   InputParameters params = ADMortarConstraint::validParams();
      44         266 :   params.addClassDescription(
      45             :       "Computes the normal contact mortar constraints for dynamic simulations");
      46         798 :   params.addRangeCheckedParam<Real>("capture_tolerance",
      47         532 :                                     1.0e-5,
      48             :                                     "capture_tolerance>=0",
      49             :                                     "Parameter describing a gap threshold for the application of "
      50             :                                     "the persistency constraint in dynamic simulations.");
      51         532 :   params.addCoupledVar("wear_depth",
      52             :                        "The name of the mortar auxiliary variable that is used to modify the "
      53             :                        "weighted gap definition");
      54         532 :   params.addRequiredRangeCheckedParam<Real>(
      55             :       "newmark_beta", "newmark_beta > 0", "Beta parameter for the Newmark time integrator");
      56         532 :   params.addRequiredRangeCheckedParam<Real>(
      57             :       "newmark_gamma", "newmark_gamma >= 0.0", "Gamma parameter for the Newmark time integrator");
      58         266 :   params.suppressParameter<VariableName>("secondary_variable");
      59         266 :   params.suppressParameter<VariableName>("primary_variable");
      60         532 :   params.addRequiredCoupledVar("disp_x", "The x displacement variable");
      61         532 :   params.addRequiredCoupledVar("disp_y", "The y displacement variable");
      62         532 :   params.addCoupledVar("disp_z", "The z displacement variable");
      63         532 :   params.addParam<Real>(
      64         532 :       "c", 1e6, "Parameter for balancing the size of the gap and contact pressure");
      65         532 :   params.addParam<bool>(
      66             :       "normalize_c",
      67         532 :       false,
      68             :       "Whether to normalize c by weighting function norm. When unnormalized "
      69             :       "the value of c effectively depends on element size since in the constraint we compare nodal "
      70             :       "Lagrange Multiplier values to integrated gap values (LM nodal value is independent of "
      71             :       "element size, where integrated values are dependent on element size).");
      72         266 :   params.set<bool>("use_displaced_mesh") = true;
      73         266 :   params.set<bool>("interpolate_normals") = false;
      74         266 :   return params;
      75           0 : }
      76             : 
      77         133 : ComputeDynamicWeightedGapLMMechanicalContact::ComputeDynamicWeightedGapLMMechanicalContact(
      78         133 :     const InputParameters & parameters)
      79             :   : ADMortarConstraint(assignVarsInParamsDyn(parameters)),
      80         133 :     _secondary_disp_x(adCoupledValue("disp_x")),
      81         133 :     _primary_disp_x(adCoupledNeighborValue("disp_x")),
      82         133 :     _secondary_disp_y(adCoupledValue("disp_y")),
      83         133 :     _primary_disp_y(adCoupledNeighborValue("disp_y")),
      84         133 :     _has_disp_z(isCoupled("disp_z")),
      85         133 :     _secondary_disp_z(_has_disp_z ? &adCoupledValue("disp_z") : nullptr),
      86         133 :     _primary_disp_z(_has_disp_z ? &adCoupledNeighborValue("disp_z") : nullptr),
      87         266 :     _c(getParam<Real>("c")),
      88         266 :     _normalize_c(getParam<bool>("normalize_c")),
      89         133 :     _nodal(getVar("disp_x", 0)->feType().family == LAGRANGE),
      90         133 :     _disp_x_var(getVar("disp_x", 0)),
      91         133 :     _disp_y_var(getVar("disp_y", 0)),
      92         165 :     _disp_z_var(_has_disp_z ? getVar("disp_z", 0) : nullptr),
      93         133 :     _capture_tolerance(getParam<Real>("capture_tolerance")),
      94         133 :     _secondary_x_dot(adCoupledDot("disp_x")),
      95         133 :     _primary_x_dot(adCoupledNeighborValueDot("disp_x")),
      96         133 :     _secondary_y_dot(adCoupledDot("disp_y")),
      97         133 :     _primary_y_dot(adCoupledNeighborValueDot("disp_y")),
      98         133 :     _secondary_z_dot(_has_disp_z ? &adCoupledDot("disp_z") : nullptr),
      99         133 :     _primary_z_dot(_has_disp_z ? &adCoupledNeighborValueDot("disp_z") : nullptr),
     100         266 :     _has_wear(isParamValid("wear_depth")),
     101         170 :     _wear_depth(_has_wear ? coupledValueLower("wear_depth") : _zero),
     102         266 :     _newmark_beta(getParam<Real>("newmark_beta")),
     103         532 :     _newmark_gamma(getParam<Real>("newmark_gamma"))
     104             : {
     105         133 :   if (!useDual())
     106           0 :     mooseError("Dynamic mortar contact constraints requires the use of Lagrange multipliers dual "
     107             :                "interpolation");
     108         133 : }
     109             : 
     110             : void
     111      749732 : ComputeDynamicWeightedGapLMMechanicalContact::computeQpProperties()
     112             : {
     113             :   // Trim interior node variable derivatives
     114             :   const auto & primary_ip_lowerd_map = amg().getPrimaryIpToLowerElementMap(
     115      749732 :       *_lower_primary_elem, *_lower_primary_elem->interior_parent(), *_lower_secondary_elem);
     116             :   const auto & secondary_ip_lowerd_map =
     117      749732 :       amg().getSecondaryIpToLowerElementMap(*_lower_secondary_elem);
     118             : 
     119      749732 :   std::array<const MooseVariable *, 3> var_array{{_disp_x_var, _disp_y_var, _disp_z_var}};
     120             :   std::array<ADReal, 3> primary_disp{
     121      749732 :       {_primary_disp_x[_qp], _primary_disp_y[_qp], _has_disp_z ? (*_primary_disp_z)[_qp] : 0}};
     122      749732 :   std::array<ADReal, 3> secondary_disp{{_secondary_disp_x[_qp],
     123      749732 :                                         _secondary_disp_y[_qp],
     124      749732 :                                         _has_disp_z ? (*_secondary_disp_z)[_qp] : 0}};
     125             : 
     126      749732 :   trimInteriorNodeDerivatives(primary_ip_lowerd_map, var_array, primary_disp, false);
     127      749732 :   trimInteriorNodeDerivatives(secondary_ip_lowerd_map, var_array, secondary_disp, true);
     128             : 
     129             :   const ADReal & prim_x = primary_disp[0];
     130             :   const ADReal & prim_y = primary_disp[1];
     131             :   const ADReal * prim_z = nullptr;
     132      749732 :   if (_has_disp_z)
     133             :     prim_z = &primary_disp[2];
     134             : 
     135             :   const ADReal & sec_x = secondary_disp[0];
     136             :   const ADReal & sec_y = secondary_disp[1];
     137             :   const ADReal * sec_z = nullptr;
     138      749732 :   if (_has_disp_z)
     139             :     sec_z = &secondary_disp[2];
     140             : 
     141             :   std::array<ADReal, 3> primary_disp_dot{
     142      749732 :       {_primary_x_dot[_qp], _primary_y_dot[_qp], _has_disp_z ? (*_primary_z_dot)[_qp] : 0}};
     143             :   std::array<ADReal, 3> secondary_disp_dot{
     144      749732 :       {_secondary_x_dot[_qp], _secondary_y_dot[_qp], _has_disp_z ? (*_secondary_z_dot)[_qp] : 0}};
     145             : 
     146      749732 :   trimInteriorNodeDerivatives(primary_ip_lowerd_map, var_array, primary_disp_dot, false);
     147      749732 :   trimInteriorNodeDerivatives(secondary_ip_lowerd_map, var_array, secondary_disp_dot, true);
     148             : 
     149             :   const ADReal & prim_x_dot = primary_disp_dot[0];
     150             :   const ADReal & prim_y_dot = primary_disp_dot[1];
     151             :   const ADReal * prim_z_dot = nullptr;
     152      749732 :   if (_has_disp_z)
     153             :     prim_z_dot = &primary_disp_dot[2];
     154             : 
     155             :   const ADReal & sec_x_dot = secondary_disp_dot[0];
     156             :   const ADReal & sec_y_dot = secondary_disp_dot[1];
     157             :   const ADReal * sec_z_dot = nullptr;
     158      749732 :   if (_has_disp_z)
     159             :     sec_z_dot = &secondary_disp_dot[2];
     160             : 
     161             :   // Compute dynamic constraint-related quantities
     162      749732 :   ADRealVectorValue gap_vec = _phys_points_primary[_qp] - _phys_points_secondary[_qp];
     163      749732 :   gap_vec(0).derivatives() = prim_x.derivatives() - sec_x.derivatives();
     164      749732 :   gap_vec(1).derivatives() = prim_y.derivatives() - sec_y.derivatives();
     165             : 
     166      749732 :   _relative_velocity = ADRealVectorValue(prim_x_dot - sec_x_dot, prim_y_dot - sec_y_dot, 0.0);
     167             : 
     168      749732 :   if (_has_disp_z)
     169             :   {
     170      537632 :     gap_vec(2).derivatives() = prim_z->derivatives() - sec_z->derivatives();
     171      537632 :     _relative_velocity(2) = *prim_z_dot - *sec_z_dot;
     172             :   }
     173             : 
     174      749732 :   _qp_gap_nodal = gap_vec * (_JxW_msm[_qp] * _coord[_qp]);
     175      749732 :   _qp_velocity = _relative_velocity * (_JxW_msm[_qp] * _coord[_qp]);
     176             : 
     177             :   // Current part of the gap velocity Newmark-beta time discretization
     178             :   _qp_gap_nodal_dynamics =
     179      749732 :       (_newmark_gamma / _newmark_beta * gap_vec / _dt) * (_JxW_msm[_qp] * _coord[_qp]);
     180             : 
     181             :   // To do normalization of constraint coefficient (c_n)
     182      749732 :   _qp_factor = _JxW_msm[_qp] * _coord[_qp];
     183      749732 : }
     184             : 
     185             : ADReal
     186           0 : ComputeDynamicWeightedGapLMMechanicalContact::computeQpResidual(Moose::MortarType)
     187             : {
     188           0 :   mooseError(
     189             :       "We should never call computeQpResidual for ComputeDynamicWeightedGapLMMechanicalContact");
     190             : }
     191             : 
     192             : void
     193     2574728 : ComputeDynamicWeightedGapLMMechanicalContact::computeQpIProperties()
     194             : {
     195             :   mooseAssert(_normals.size() == _lower_secondary_elem->n_nodes(),
     196             :               "Making sure that _normals is the expected size");
     197             : 
     198             :   // Get the _dof_to_weighted_gap map
     199     2574728 :   const DofObject * dof = _var->isNodal()
     200     2574728 :                               ? static_cast<const DofObject *>(_lower_secondary_elem->node_ptr(_i))
     201           0 :                               : static_cast<const DofObject *>(_lower_secondary_elem);
     202             : 
     203             :   // Regular normal contact constraint: Use before contact is established for contact detection
     204     5149456 :   _dof_to_weighted_gap[dof].first += _test[_i][_qp] * (_qp_gap_nodal * _normals[_i]);
     205             : 
     206             :   // Integrated part of the "persistency" constraint
     207     5149456 :   _dof_to_weighted_gap_dynamics[dof] += _test[_i][_qp] * _qp_gap_nodal_dynamics * _normals[_i];
     208     5149456 :   _dof_to_velocity[dof] += _test[_i][_qp] * _qp_velocity * _normals[_i];
     209             : 
     210     2574728 :   _dof_to_nodal_wear_depth[dof] += _test[_i][_qp] * _wear_depth[_qp] * _JxW_msm[_qp] * _coord[_qp];
     211             : 
     212     2574728 :   if (_normalize_c)
     213       72400 :     _dof_to_weighted_gap[dof].second += _test[_i][_qp] * _qp_factor;
     214     2574728 : }
     215             : 
     216             : void
     217         568 : ComputeDynamicWeightedGapLMMechanicalContact::timestepSetup()
     218             : {
     219             :   // These dof maps are not recoverable as they are maps of pointers, and recovering old pointers
     220             :   // would be wrong. We would need to create a custom dataStore() and dataLoad()
     221         568 :   if (_app.isRecovering())
     222           0 :     mooseError("This object does not support recovering");
     223             : 
     224             :   _dof_to_old_weighted_gap.clear();
     225             :   _dof_to_old_velocity.clear();
     226             :   _dof_to_nodal_old_wear_depth.clear();
     227             : 
     228        3583 :   for (auto & map_pr : _dof_to_weighted_gap)
     229        3015 :     _dof_to_old_weighted_gap.emplace(map_pr.first, std::move(map_pr.second.first));
     230             : 
     231        3583 :   for (auto & map_pr : _dof_to_velocity)
     232             :     _dof_to_old_velocity.emplace(map_pr);
     233             : 
     234        3583 :   for (auto & map_pr : _dof_to_nodal_wear_depth)
     235             :     _dof_to_nodal_old_wear_depth.emplace(map_pr);
     236         568 : }
     237             : 
     238             : void
     239       10020 : ComputeDynamicWeightedGapLMMechanicalContact::residualSetup()
     240             : {
     241             :   _dof_to_weighted_gap.clear();
     242             :   _dof_to_weighted_gap_dynamics.clear();
     243             :   _dof_to_velocity.clear();
     244             : 
     245             :   // Wear
     246             :   _dof_to_nodal_wear_depth.clear();
     247       10020 : }
     248             : 
     249             : void
     250         608 : ComputeDynamicWeightedGapLMMechanicalContact::post()
     251             : {
     252         608 :   Moose::Mortar::Contact::communicateGaps(
     253         608 :       _dof_to_weighted_gap, _mesh, _nodal, _normalize_c, _communicator, false);
     254             : 
     255         608 :   if (_has_wear)
     256           0 :     communicateWear();
     257             : 
     258             :   // There is a need for the dynamic constraint to uncouple the computation of the weighted gap from
     259             :   // the computation of the constraint itself since we are switching from gap constraint to
     260             :   // persistency constraint.
     261        4028 :   for (const auto & pr : _dof_to_weighted_gap)
     262             :   {
     263        3420 :     if (pr.first->processor_id() != this->processor_id())
     264             :       continue;
     265             : 
     266             :     //
     267        6840 :     _dof_to_weighted_gap[pr.first].first += _dof_to_nodal_wear_depth[pr.first];
     268             :     _dof_to_weighted_gap_dynamics[pr.first] +=
     269        6840 :         _newmark_gamma / _newmark_beta * _dof_to_nodal_wear_depth[pr.first] / _dt;
     270             :     //
     271             : 
     272             :     const auto is_dof_on_map = _dof_to_old_weighted_gap.find(pr.first);
     273             : 
     274             :     // If is_dof_on_map isn't on map, it means it's an initial step
     275        4095 :     if (is_dof_on_map == _dof_to_old_weighted_gap.end() ||
     276             :         _dof_to_old_weighted_gap[pr.first] > _capture_tolerance)
     277        2745 :       _weighted_gap_ptr = &pr.second.first;
     278             :     else
     279             :     {
     280        1350 :       ADReal term = -_newmark_gamma / _newmark_beta / _dt * _dof_to_old_weighted_gap[pr.first];
     281         675 :       term += _dof_to_old_velocity[pr.first];
     282         675 :       _dof_to_weighted_gap_dynamics[pr.first] += term;
     283         675 :       _weighted_gap_ptr = &_dof_to_weighted_gap_dynamics[pr.first];
     284             :     }
     285             : 
     286        3420 :     _normalization_ptr = &pr.second.second;
     287             : 
     288        3420 :     ComputeDynamicWeightedGapLMMechanicalContact::enforceConstraintOnDof(pr.first);
     289             :   }
     290         608 : }
     291             : 
     292             : void
     293        9412 : ComputeDynamicWeightedGapLMMechanicalContact::incorrectEdgeDroppingPost(
     294             :     const std::unordered_set<const Node *> & inactive_lm_nodes)
     295             : {
     296        9412 :   Moose::Mortar::Contact::communicateGaps(
     297        9412 :       _dof_to_weighted_gap, _mesh, _nodal, _normalize_c, _communicator, false);
     298             : 
     299        9412 :   if (_has_wear)
     300        1448 :     communicateWear();
     301             : 
     302       77017 :   for (const auto & pr : _dof_to_weighted_gap)
     303             :   {
     304       67605 :     if ((inactive_lm_nodes.find(static_cast<const Node *>(pr.first)) != inactive_lm_nodes.end()) ||
     305             :         (pr.first->processor_id() != this->processor_id()))
     306             :       continue;
     307             : 
     308             :     //
     309      132946 :     _dof_to_weighted_gap[pr.first].first += _dof_to_nodal_wear_depth[pr.first];
     310             :     _dof_to_weighted_gap_dynamics[pr.first] +=
     311      132946 :         _newmark_gamma / _newmark_beta * _dof_to_nodal_wear_depth[pr.first] / _dt;
     312             :     const auto is_dof_on_map = _dof_to_old_weighted_gap.find(pr.first);
     313             : 
     314             :     // If is_dof_on_map isn't on map, it means it's an initial step
     315      116253 :     if (is_dof_on_map == _dof_to_old_weighted_gap.end() ||
     316             :         _dof_to_old_weighted_gap[pr.first] > _capture_tolerance)
     317             :     {
     318             :       // If this is the first step or the previous step gap is not identified as in contact, apply
     319             :       // regular conditions
     320       50633 :       _weighted_gap_ptr = &pr.second.first;
     321             :     }
     322             :     else
     323             :     {
     324       15840 :       ADReal term = _dof_to_weighted_gap[pr.first].first * _newmark_gamma / (_newmark_beta * _dt);
     325       31680 :       term -= _dof_to_old_weighted_gap[pr.first] * _newmark_gamma / (_newmark_beta * _dt);
     326       15840 :       term -= _dof_to_old_velocity[pr.first];
     327       15840 :       _dof_to_weighted_gap_dynamics[pr.first] = term;
     328             :       // Enable the application of persistency condition
     329       15840 :       _weighted_gap_ptr = &_dof_to_weighted_gap_dynamics[pr.first];
     330             :     }
     331             : 
     332       66473 :     _normalization_ptr = &pr.second.second;
     333             : 
     334       66473 :     ComputeDynamicWeightedGapLMMechanicalContact::enforceConstraintOnDof(pr.first);
     335             :   }
     336        9412 : }
     337             : 
     338             : void
     339        1448 : ComputeDynamicWeightedGapLMMechanicalContact::communicateWear()
     340             : {
     341             :   // We may have wear depth information that should go to other processes that own the dofs
     342             :   using Datum = std::pair<dof_id_type, ADReal>;
     343             :   std::unordered_map<processor_id_type, std::vector<Datum>> push_data;
     344             : 
     345       11403 :   for (auto & pr : _dof_to_nodal_wear_depth)
     346             :   {
     347        9955 :     const auto * const dof_object = pr.first;
     348        9955 :     const auto proc_id = dof_object->processor_id();
     349        9955 :     if (proc_id == this->processor_id())
     350        9955 :       continue;
     351             : 
     352           0 :     push_data[proc_id].push_back(std::make_pair(dof_object->id(), std::move(pr.second)));
     353             :   }
     354             : 
     355        1448 :   const auto & lm_mesh = _mesh.getMesh();
     356             : 
     357           0 :   auto action_functor = [this, &lm_mesh](const processor_id_type libmesh_dbg_var(pid),
     358           0 :                                          const std::vector<Datum> & sent_data)
     359             :   {
     360             :     mooseAssert(pid != this->processor_id(), "We do not send messages to ourself here");
     361           0 :     for (auto & pr : sent_data)
     362             :     {
     363           0 :       const auto dof_id = pr.first;
     364             :       const auto * const dof_object =
     365           0 :           _nodal ? static_cast<const DofObject *>(lm_mesh.node_ptr(dof_id))
     366           0 :                  : static_cast<const DofObject *>(lm_mesh.elem_ptr(dof_id));
     367             :       mooseAssert(dof_object, "This should be non-null");
     368           0 :       _dof_to_nodal_wear_depth[dof_object] += std::move(pr.second);
     369             :     }
     370        1448 :   };
     371             : 
     372        1448 :   TIMPI::push_parallel_vector_data(_communicator, push_data, action_functor);
     373        1448 : }
     374             : 
     375             : void
     376       69893 : ComputeDynamicWeightedGapLMMechanicalContact::enforceConstraintOnDof(const DofObject * const dof)
     377             : {
     378       69893 :   const auto & weighted_gap = *_weighted_gap_ptr;
     379       69893 :   const Real c = _normalize_c ? _c / *_normalization_ptr : _c;
     380             : 
     381       69893 :   const auto dof_index = dof->dof_number(_sys.number(), _var->number(), 0);
     382       69893 :   ADReal lm_value = (*_sys.currentSolution())(dof_index);
     383             :   Moose::derivInsert(lm_value.derivatives(), dof_index, 1.);
     384             : 
     385       69893 :   const ADReal dof_residual = std::min(lm_value, weighted_gap * c);
     386             : 
     387       69893 :   addResidualsAndJacobian(_assembly,
     388       69893 :                           std::array<ADReal, 1>{{dof_residual}},
     389      139786 :                           std::array<dof_id_type, 1>{{dof_index}},
     390       69893 :                           _var->scalingFactor());
     391       69893 : }
     392             : 
     393             : void
     394      684574 : ComputeDynamicWeightedGapLMMechanicalContact::computeResidual(const Moose::MortarType mortar_type)
     395             : {
     396      684574 :   if (mortar_type != Moose::MortarType::Lower)
     397             :     return;
     398             : 
     399             :   mooseAssert(_var, "LM variable is null");
     400             : 
     401      990190 :   for (_qp = 0; _qp < _qrule_msm->n_points(); _qp++)
     402             :   {
     403      749732 :     computeQpProperties();
     404     3324460 :     for (_i = 0; _i < _test.size(); ++_i)
     405     2574728 :       computeQpIProperties();
     406             :   }
     407             : }
     408             : 
     409             : void
     410        2780 : ComputeDynamicWeightedGapLMMechanicalContact::jacobianSetup()
     411             : {
     412        2780 :   residualSetup();
     413        2780 : }
     414             : 
     415             : void
     416      204323 : ComputeDynamicWeightedGapLMMechanicalContact::computeJacobian(const Moose::MortarType mortar_type)
     417             : {
     418             :   // During "computeResidual" and "computeJacobian" we are actually just computing properties on the
     419             :   // mortar segment element mesh. We are *not* actually assembling into the residual/Jacobian. For
     420             :   // the zero-penetration constraint, the property of interest is the map from node to weighted gap.
     421             :   // Computation of the properties proceeds identically for residual and Jacobian evaluation hence
     422             :   // why we simply call computeResidual here. We will assemble into the residual/Jacobian later from
     423             :   // the post() method
     424      204323 :   computeResidual(mortar_type);
     425      204323 : }

Generated by: LCOV version 1.14